³ò
’B_Kc        	   @   s¶   d  d k  Z  d  d k Z d  d k l Z y d  d k Z Wn e j
 o d Z n Xd a d d „ Z d „  Z	 d „  Z
 d „  Z d „  Z d „  Z e d	 j o e ƒ  e ƒ  n d S(
   iÿÿÿÿN(   t   find_binaryc      	   C   s+   t  d |  d d g d d g d d ƒa d  S(   Nt   tadmt   env_varst   TADM_DIRt   binary_namest   urls   http://tadm.sf.net(   R    t	   _tadm_bin(   t   bin(    (    s(   /p/zhu/06/nlp/nltk/nltk/classify/tadm.pyt   config_tadm   s
    			c      	   C   s    | i  ƒ  } x |  D]… \ } } | i d t | ƒ ƒ x_ | D]W } | i | | ƒ } | i d t | | j ƒ t | ƒ d i d „  | Dƒ ƒ f ƒ q= Wq Wd S(   sm  
    Generate an input file for C{tadm} based on the given corpus of
    classified tokens.

    @type train_toks: C{list} of C{tuples} of (C{dict}, C{str})
    @param train_toks: Training data, represented as a list of
        pairs, the first member of which is a feature dictionary,
        and the second of which is a classification label.

    @type encoding: L{TadmEventMaxentFeatureEncoding}
    @param encoding: A feature encoding, used to convert featuresets
        into feature vectors.

    @type stream: C{stream}
    @param stream: The stream to which the C{tadm} input file should be
        written.
    s   %d
s	   %d %d %s
t    c         s   s   x |  ] } d  | Vq Wd S(   s   %d %dN(    (   t   .0t   u(    (    s(   /p/zhu/06/nlp/nltk/nltk/classify/tadm.pys	   <genexpr>6   s    N(   t   labelst   writet   lent   encodet   intt   join(   t
   train_tokst   encodingt   streamR   t
   featuresett   labelt   known_labelt   v(    (    s(   /p/zhu/06/nlp/nltk/nltk/classify/tadm.pyt   write_tadm_file   s      !c         C   s@   g  } x' |  D] } | i  t | i ƒ  ƒ ƒ q Wt i | d ƒ S(   s™   
    Given the stdout output generated by C{tadm} when training a
    model, return a C{numpy} array containing the corresponding weight
    vector.
    t   d(   t   appendt   floatt   stript   numpyt   array(   t	   paramfilet   weightst   line(    (    s(   /p/zhu/06/nlp/nltk/nltk/classify/tadm.pyt   parse_tadm_weights8   s
     c         C   s™   t  |  t ƒ o t d ƒ ‚ n t d j o t ƒ  n t g |  } t i | d t i	 ƒ} | i
 ƒ  \ } } | i d j o H| GHt d ƒ ‚ n d S(   s;   
    Call the C{tadm} binary with the given arguments.
    s    args should be a list of stringst   stdouti    s   tadm command failed!N(   t
   isinstancet
   basestringt	   TypeErrorR   t   NoneR   t
   subprocesst   Popent   sysR$   t   communicatet
   returncodet   OSError(   t   argst   cmdt   pR$   t   stderr(    (    s(   /p/zhu/06/nlp/nltk/nltk/classify/tadm.pyt	   call_tadmC   s    c          C   s3   d d k  l }  d d k l } |  | i ƒ } d  S(   Niÿÿÿÿ(   t
   names_demo(   t   TadmMaxentClassifier(   t   nltk.classify.utilR4   t   nltk.classify.maxentR5   t   train(   R4   R5   t
   classifier(    (    s(   /p/zhu/06/nlp/nltk/nltk/classify/tadm.pyR4   W   s    c       	   C   s  d d  k  }  d d k l } d d k l } h  d d <d d <d d <d f h  d d <d d	 <d d
 <d f h  d d <d d	 <d d <d d
 <d f g } | i | ƒ } | | | |  i ƒ Hx2 t | i ƒ  ƒ D] } d | i	 | ƒ | f GHqÝ WHd  S(   Niÿÿÿÿ(   t   TadmEventMaxentFeatureEncoding(   R   i   t   f0t   f1t   f3t   At   f2t   f4t   Bi   s	   %s --> %d(
   R+   R7   R:   t   nltk.classify.tadmR   R8   R$   t   ranget   lengtht   describe(   R+   R:   R   t   tokensR   t   i(    (    s(   /p/zhu/06/nlp/nltk/nltk/classify/tadm.pyt   encoding_demo\   s    $$3 t   __main__(   R+   R)   t   nltk.internalsR    R   t   ImportErrorR(   R   R   R   R#   R3   R4   RH   t   __name__(    (    (    s(   /p/zhu/06/nlp/nltk/nltk/classify/tadm.pys   <module>   s    					