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Summary

I. The Goal: Semantic Role Labeling

II. Previous Work: Parse Trees and SVMs

II. Our Work: End-to-end learning via

Neural Networks
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Part I

The Goal:

Semantic Role Labeling
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Semantic Role Labeling

? Task: Label segments of sentences with semantic roles

[The company]ARG0 [bought]REL [sugar]ARG1 [on the world

market]ARGM-LOC [to meet export commitments]ARGM-PNC

? Uses: information extraction, call center, search, web crawling. . .

? Need for Speed: lots of data, fast answer for interactive systems

? Previous solutions: use a parse tree, slow

? Our solution: direct mapping
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Part II

Previous Work:

Parse Trees and SVMs
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ASSERT: State-of-the-Art∗ (Pradhan et al, 2004)

? Run a parser, like Charniak’s parser

? An SVM predicts for each node of the parse tree whether it has a
semantic role or not

? If yes, another set of one-vs-rest SVMs classifies the exact role

slow + slow = super slow

*Many other methods exist (see CONLL 2004/2005) – but they have a similar flavor.
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ASSERT: Hand Built Features for SVMs

? Predicate and POS tag of predicate

? Voice: active or passive (hand-built rules)

? Phrase type: adverbial phrase, prepositional phrase, . . .

? Governing category: Parent node’s phrase type(s)

? Head word and POS tag of the head word

? Position: left or right of verb

? Path: traversal from predicate to constituent
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More ASSERT features

? Predicted named entity class

? Word-sense disambiguation of the verb

? Verb clustering

? Length of the target constituent (number of words)

? NEG feature: whether the verb chunk has a ”not” in it

? Partial Path: lowest common ancestor in path

? Head word replacement in prepopositional phrases (hand-built rules)
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Err... Even more ASSERT features...

? First and last words and POS in constituents

? Ordinal position from predicate + constituent type

? Constituent tree distance

? Temporal cue words (hand-built rules)

? Constituent relative features: 9 features representing phrase type,

head word and head word POS for parent and left + right siblings

? Dynamic class context: previous node labels

? How many pirates exist in the world at the current time
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Part III

Our work:

End-to-End Learning with

Neural Networks
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The Brain Way

We propose a radically different, machine learning, approach:

• Avoid building a parse tree. Humans don’t need this to talk.

• We try to avoid all hand-built features → monolithic systems.

• Humans implicitly learn these features. Neural networks can too.

End-to-end system

+

Fast predictions (0.02 secs per sentence)
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Architecture

? Fast: able to handle millions of examples – Neural network

? Handle text – 1st layer of network [Bengio et al., 2001]

? Tag w.r.t. a predicate – 2nd layer of network [novel contribution]
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The Brain Way: End-to-end Learning
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1st layer : Words into Vectors: TDNN/CNN
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2nd layer : Integrating Word + Verb Positions
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SENNA vs ASSERT

We report experiments on PropBank in the standard train/test split.

ASSERT had no access to a gold standard parse tree.

Measurement SENNA ASSERT
Per-word
Accuracy 83.64% 83.46%

Per-sentence
compute time (secs) 0.02 secs 5.08 secs

Our method is 254x faster than the existing approach.

NOTE: SENNA without 2nd layer trick: 51.3%
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Example Output

TRUTH: He camped out at a high-tech nerve center

on the floor of [the Big Board, where]ARGM-LOC [he]ARG0

[could]ARGM-MOD [watch]REL [updates on prices and pending

stock orders]ARG1.

ASSERT (68.7%): He camped out at a high-tech

nerve center on the floor of the Big Board, [ where]ARGM-LOC

[he]ARG0 [could]ARGM-MOD [watch]REL [updates]ARG1 on prices

and pending stock orders.

NN (100%): He camped out at a high-tech nerve

center on the floor of [the Big Board, where]ARGM-LOC [he]ARG0

[could]ARGM-MOD [watch]REL [updates on prices and pending

stock orders]ARG1.
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TRUTH: [United Auto Workers Local 1069, which]ARG0

[represents]REL [3,000 workers at Boeing’s helicopter unit

in Delaware County, Pa.]ARG1 , said it agreed to extend its

contract on a day-by-day basis, with a 10-day notification to

cancel, while it continues bargaining.

ASSERT (100%): [United Auto Workers Local 1069,

which]ARG0 [represents]REL [3,000 workers at Boeing’s

helicopter unit in Delaware County, Pa.]ARG1 , said it agreed

to extend its contract on a day-by-day basis, with a 10-day

notification to cancel, while it continues bargaining.

NN (89.1%): [United Auto Workers Local 1069, which]ARG0

[represents]REL [3,000 workers at Boeing’s helicopter unit]ARG1

[ in Delaware County]ARGM-LOC, Pa., said it agreed to extend

its contract on a day-by-day basis, with a 10-day notification

to cancel, while it continues bargaining.
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Final Comments

• Downloadable Software + demo + test results on the WSJ at:

http://ml.nec-labs.com/software/senna

• Open Post-Doc position @ NEC Princeton.

Speak to me or Ronan Collobert if you’re interested.

Thanks!
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Extra I: Integrating Word and Verb Positions

binary vectors
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Extra II: Loss Functions

Currently our architecture is designed to label on a per-word basis,

while existing systems perform a segmentation process, and then label

segments.

We do not optimize our model for the same criteria, but can use the

same metrics.

We measured argument classification accuracy, by post-processing our

per-word tags to form a majority vote over segments using the parse

tree. This gives 83.18% accuracy for our network when we suppose the

predicate must also be identified, and 80.53% for ASSERT.
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Extra III: Parsing Speed

Even though some parsers effectively exhibit linear behavior in sentence

length [Ratnaparkhi et al., 1997], fast statistical parsers such as

[Henderson et al., 2004] still take around 1.5 seconds for sentences of

length 35 in tests that we made.
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