Fast Semantic Extraction Using a Novel Neural Network **Architecture**

Ronan Collobert &

Jason Weston

ronan@collobert.com

jaseweston@gmail.com

NEC Laboratories America

I. The Goal: Semantic Role Labeling

- II. Previous Work: Parse Trees and SVMs
- II. Our Work: End-to-end learning via Neural Networks

The Goal: Semantic Role Labeling

* Task: Label segments of sentences with semantic roles

[The company]_{ARG0} [bought]_{REL} [sugar]_{ARG1} [on the world market]_{ARGM-LOC} [to meet export commitments]_{ARGM-PNC}

- * Uses: information extraction, call center, search, web crawling...
- * Need for Speed: lots of data, fast answer for interactive systems
- * Previous solutions: use a parse tree, slow
- * Our solution: direct mapping

Previous Work: Parse Trees and SVMs

ASSERT: State-of-the-Art* (Pradhan et al, 2004)

★ Run a parser, like Charniak's parser

- An SVM predicts for each node of the parse tree whether it has a semantic role or not
- ★ If yes, another set of one-vs-rest SVMs classifies the exact role

slow + slow = super slow

*Many other methods exist (see CONLL 2004/2005) – but they have a similar flavor.

ASSERT: Hand Built Features for SVMs

- ★ Predicate and POS tag of predicate
- ★ Voice: active or passive (hand-built rules)
- * Phrase type: adverbial phrase, prepositional phrase, ...
- Governing category: Parent node's phrase type(s)
- ★ Head word and POS tag of the head word
- ★ Position: left or right of verb
- ★ Path: traversal from predicate to constituent

More **ASSERT** features

- ★ Predicted named entity class
- ★ Word-sense disambiguation of the verb
- ★ Verb clustering
- Length of the target constituent (number of words)
- ★ NEG feature: whether the verb chunk has a "not" in it
- ★ Partial Path: lowest common ancestor in path
- * Head word replacement in prepopositional phrases (hand-built rules)

Err... Even more ASSERT features...

- ***** First and last words and POS in constituents
- ★ Ordinal position from predicate + constituent type
- ★ Constituent tree distance
- * Temporal cue words (hand-built rules)
- Constituent relative features: 9 features representing phrase type, head word and head word POS for parent and left + right siblings
- * Dynamic class context: previous node labels
- ★ How many pirates exist in the world at the current time

Our work:

End-to-End Learning with Neural Networks

We propose a radically different, machine learning, approach:

- Avoid building a parse tree. Humans don't need this to talk.
- We try to avoid all hand-built features \rightarrow monolithic systems.
- Humans implicitly learn these features. Neural networks can too.

End-to-end system + Fast predictions (0.02 secs per sentence)

- ★ Fast: able to handle millions of examples Neural network
- * Handle text 1^{st} layer of network [Bengio et al., 2001]
- * Tag w.r.t. a predicate -2^{nd} layer of network [novel contribution]

The Brain Way: End-to-end Learning

1st layer : Words into Vectors: TDNN/CNN

2^{nd} layer : Integrating Word + Verb Positions

C(position w.r.t. word to predict, position w.r.t. predicate) is a function to be chosen

We report experiments on PropBank in the standard train/test split.

ASSERT had no access to a gold standard parse tree.

Measurement	SENNA	ASSERT
Per-word		
Accuracy	83.64%	83.46%
Per-sentence		
compute time (secs)	0.02 secs	5.08 secs

Our method is 254x faster than the existing approach.

NOTE: SENNA without 2^{nd} layer trick: 51.3%

TRUTH: He camped out at a high-tech nerve center on the floor of [the Big Board, where]_{ARGM-LOC} [he]_{ARG0} [could]_{ARGM-MOD} [watch]_{REL} [updates on prices and pending stock orders]_{ARG1}.

ASSERT (68.7%): He camped out at a high-tech nerve center on the floor of the Big Board, [where]_{ARGM-LOC} [he]_{ARG0} [could]_{ARGM-MOD} [watch]_{REL} [updates]_{ARG1} on prices and pending stock orders.

NN (100%): He camped out at a high-tech nerve center on the floor of [the Big Board, where]_{ARGM-LOC} [he]_{ARG0} [could]_{ARGM-MOD} [watch]_{REL} [updates on prices and pending stock orders]_{ARG1}.

TRUTH: [United Auto Workers Local 1069, which]_{ARG0} [represents]_{REL} [3,000 workers at Boeing's helicopter unit in Delaware County, Pa.]_{ARG1}, said it agreed to extend its contract on a day-by-day basis, with a 10-day notification to cancel, while it continues bargaining.

ASSERT (100%): [United Auto Workers Local 1069, which]_{ARG0} [represents]_{REL} [3,000 workers at Boeing's helicopter unit in Delaware County, $Pa.]_{ARG1}$, said it agreed to extend its contract on a day-by-day basis, with a 10-day notification to cancel, while it continues bargaining.

NN (89.1%): [United Auto Workers Local 1069, which]_{ARG0} [represents]_{REL} [3,000 workers at Boeing's helicopter unit]_{ARG1} [in Delaware County]_{ARGM-LOC}, Pa., said it agreed to extend its contract on a day-by-day basis, with a 10-day notification to cancel, while it continues bargaining.

- Downloadable Software + demo + test results on the WSJ at: http://ml.nec-labs.com/software/senna
- Open Post-Doc position @ NEC Princeton. Speak to me or Ronan Collobert if you're interested.

Thanks!

Extra I: Integrating Word and Verb Positions

Currently our architecture is designed to label on a per-word basis, while existing systems perform a segmentation process, and then label segments.

We do not optimize our model for the same criteria, but can use the same metrics.

We measured argument classification accuracy, by post-processing our per-word tags to form a majority vote over segments using the parse tree. This gives 83.18% accuracy for our network when we suppose the predicate must also be identified, and 80.53% for ASSERT.

Even though some parsers effectively exhibit linear behavior in sentence length [Ratnaparkhi et al., 1997], fast statistical parsers such as [Henderson et al., 2004] still take around 1.5 seconds for sentences of length 35 in tests that we made.