Outline

w-regular program analysis

Non-terminating state semantics

* Let P be program, given by a control flow graph G = (V, E) with entry r

* Program configurations: V x State (where, say, State £ Z%)
® Program transition relation: —pC (V x State) x (V x State)

¢ Non-terminating state semantics: for each vertex v,

N, £ {s c State : exists cy, ca,... With (v,s) —pci —pco —p...}

Non-terminating state semantics

* Let P be program, given by a control flow graph G = (V, E) with entry r

* Program configurations: V x State (where, say, State £ Z%)
® Program transition relation: —pC (V x State) x (V x State)

¢ Non-terminating state semantics: for each vertex v,
N, = {s c State : exists ci, ca,... With (v,8) —pci —pca —p...}

e Equational formulation — greatest solution to:

04—[2':0]—@

i=i-2 [ie] j((z EZ:T?BE)?)BH(W, b) & X))

l X, =0
"

Non-terminating state semantics

* Let P be program, given by a control flow graph G = (V, E) with entry r

* Program configurations: V x State (where, say, State £ Z%)
® Program transition relation: —pC (V x State) x (V x State)

¢ Non-terminating state semantics: for each vertex v,
N, £ {s € State : exists c1, ca,... With (v,8) —pci —pc2 —p...}
e Equational formulation — greatest solution to:

04—[2':0]—@

z’:=i—§ \[i;«éo] X = ({r;a) © Xo) B (1, 5) B Xp)

l Xp=0
"

Non-terminating state semantics

* Let P be program, given by a control flow graph G = (V, E) with entry r

* Program configurations: V x State (where, say, State £ Z%)
® Program transition relation: —pC (V x State) x (V x State)

¢ Non-terminating state semantics: for each vertex v,
N, £ {s € State : exists c1, ca,... With (v,8) —pci —pc2 —p...}

e Equational formulation — greatest solution to:

Closed-form solutions: w-regular expressions

w-regular expression syntax:

ReRegExp(X):=a|0|1| R+ Ry | R1-Ro | R
S € w-RegExp(X) :=R* | Si1B S | RE S

w-regular expression semantics:

ZIR] ={we X¥: w=vwvuvs... for some vy, w,... € Z[R]} Infinite repetition
,Z[[Sl H 52]] = gﬂRlﬂ U XHRQH Union
Z[RE 8] = {vw:ve ZL[R],we L[5} Prepend

w-regular expression semantics

* An interpretation .# consists of a regular algebra, a semantic function, and
an w-algebra

w-regular expression semantics

* An interpretation .# consists of a regular algebra, a semantic function, and
an w-algebra
* An w-algebra B = (B, H, 1, w) over a regular algebra A consists of
® A universe B
® Binary operation H : B x B — B (choice)
® Binary operation 1 : A x B — B (prepend)
® Unary operation (—)“ : A — B (omega)

Non-terminating state interpretation

¢ Regular algebra: binary state relations
e w-algebra Universe: set of (non-terminating) states

R¥ £ {s:3s1,82,... with (s,s1), (51, 52)--- R} Non-terminating states of R
RES2 {s:3d.(s,d) € RAS € S} Preimage
S B S £ S1 U Sy Union

Non-terminating state interpretation

¢ Regular algebra: binary state relations
e w-algebra Universe: set of (non-terminating) states

R¥ £ {s:3s1,82,... with (s,s1), (51, 52)--- R} Non-terminating states of R
RES2 {s:3d.(s,d) € RAS € S} Preimage
S B S £ S1 U Sy Union

e Computing closed forms: Gaussian elmination
° Keystep: X=(Ra X)BS~ X=R"+(R"1@59)

Non-terminating state interpretation

¢ Regular algebra: binary state relations
e w-algebra Universe: set of (non-terminating) states

R¥ £ {s:3s1,82,... with (s,s1), (51, 52)--- R} Non-terminating states of R
RES2 {s:3d.(s,d) € RAS € S} Preimage
S B S £ S1 U Sy Union

e Computing closed forms: Gaussian elmination

° Keystep: X=(Ra X)BS~ X=R"+(R"1@59)
e Efficient algorithm: adapt Tarjan’s path expression algorithm [Zhu & K '21]

w-path expressions

step = 8 °
while (true) do I
_ step := 8
m := @
while (m < step) do *
if (n < @) then e
halt 7\
else [m > step] m := 0
m :=m + 1 l
n:=n-1 e
(—'\
I n:=n-1
[m < step]

O<i<a-

tn = @] ~0
m :=m + 1
-

¥
o
|
>
¥
o

w-path expressions

step = 8
while (true) do
m = 0 step := 8
while (m < step) do *
if (n < @) then o
halt 7\
else [m > step] m :=0
m :=m+ 1
n:=n-1 \‘fi
I n:=n-1
[m < step]
¥
outer loop 6‘ [n < @] _e
({a, b) ({b, c)(c, d){d, e)(e, b))" (b, a))” I
9| 4 (ab) (b M, d)(d e)le, B)* (b a))* ({8, 6) (e, dy{d e) e, b)* [n 2 o] -0

inner loop 0,

Non-terminating state formula interpretation

* Regular algebra: transition formulas F(X, X') over a fixed set of variables X
* w-algebra Universe: set of state formulas P(X) over X
® Interpretation: any non-terminating state must satisfy P(X)

Fr P£3X.F(X,X)A P(X) Preimage

Non-terminating state formula interpretation

* Regular algebra: transition formulas F(X, X') over a fixed set of variables X
* w-algebra Universe: set of state formulas P(X) over X
® Interpretation: any non-terminating state must satisfy P(X)

Fr P£3X.F(X,X)A P(X) Preimage
PiE P = PV Py Union

Non-terminating state formula interpretation

* Regular algebra: transition formulas F(X, X') over a fixed set of variables X
* w-algebra Universe: set of state formulas P(X) over X
® Interpretation: any non-terminating state must satisfy P(X)

Fr P£3X.F(X,X)A P(X) Preimage
PiE P = PV Py Union
A (Over-approximate) non-terminating states

Non-terminating state formula interpretation

* Regular algebra: transition formulas F(X, X') over a fixed set of variables X
* w-algebra Universe: set of state formulas P(X) over X
® Interpretation: any non-terminating state must satisfy P(X)

Fr P£3X.F(X,X)A P(X) Preimage
PiE P = PV Py Union
A (Over-approximate) non-terminating states

Qany different implementations>

Ex. 1: Linear Ranking Functions
® A linear ranking function for a loop is a linear term that is non-negative and

decreases at each iteration
® LRF exists = loop terminates

e Forinstance,

while (lo < hi7)
if (x) then hi :
lo :

hi -1 Ranking function: hi-lo
lo+1

else

Ex. 1: Linear Ranking Functions
® A linear ranking function for a loop is a linear term that is non-negative and

decreases at each iteration
® LRF exists = loop terminates

e Forinstance,

while (lo < hi7)
if (x) then hi :
lo :=

hi -1 Ranking function: hi-lo
lo+1

else

e Existence of LRFs for polyhedral loops is decidable [Podelski & Rybalchenko '04]
® Loop body must be expressed as conjunction of linear inequations

Ex. 1: Linear Ranking Functions
® A linear ranking function for a loop is a linear term that is non-negative and

decreases at each iteration
® LRF exists = loop terminates

e Forinstance,

while (lo < hi7)
if (x) then hi :
lo :=

hi -1 Ranking function: hi-lo
lo+1

else
e Existence of LRFs for polyhedral loops is decidable [Podelski & Rybalchenko '04]

® Loop body must be expressed as conjunction of linear inequations
e Terminator: “lifts” LRF synthesis to whole programs using guess-and-check

loop [Cook et al. *2006]

for (i = 0; i < 4096; i++)

for (j = 0; j < 4096; j++) May not discover LRFs that exists

Ex. 2: Linear Ranking Functions

* A linear ranking function for a TF F(X, X’) is a linear term #(X) such that
© (Non-negative) F(X, X') &= #(X) >0
@ (Decreasing) F(X, X') E #(X) — 1> ¢(X)

Ex. 2: Linear Ranking Functions

* A linear ranking function for a TF F(X, X’) is a linear term #(X) such that
© (Non-negative) F(X, X') = ¢(X) >0
@ (Decreasing) F(X, X') E #(X) — 1> ¢(X)

¢ Existence of a LRF is decidable:

® F'has a LRF iff convex hull of F'has a LRF
* Existence of a LRF for a polyhedron can be checked by LP

Ex. 2: Linear Ranking Functions

* A linear ranking function for a TF F(X, X’) is a linear term #(X) such that
© (Non-negative) F(X, X') &= #(X) >0
@ (Decreasing) F(X, X') E #(X) — 1> ¢(X)
¢ Existence of a LRF is decidable:
® F'has a LRF iff convex hull of F'has a LRF
* Existence of a LRF for a polyhedron can be checked by LP
o false if F'has an LRF
dom(F) otherwise

where dom(F) £ 3X'.F(X, X’) — set of states with F-successors

Ex. 2: Linear Ranking Functions

A linear ranking function for a TF F(X, X’) is a linear term #(X) such that
© (Non-negative) F(X, X') &= #(X) >0
@ (Decreasing) F(X, X') E #(X) — 1> ¢(X)
Existence of a LRF is decidable:
® F'has a LRF iff convex hull of F'has a LRF
* Existence of a LRF for a polyhedron can be checked by LP

») false if Fhas an LRF
~ | dom(F) otherwise
where dom(F) £ 3X'.F(X, X’) — set of states with F-successors
Also works for linear lexicographic ranking functions [Gonnord et al. '2015],
and more

® Completeness = w is monotone

Ex. 2: Termination analysis for free

* Any overapproximate transitive closure operator (—)* induces a conditional
termination analysis (—)“ [Zhu & K "21]

Ex. 2: Termination analysis for free

* Any overapproximate transitive closure operator (—)* induces a conditional
termination analysis (—)“ [Zhu & K "21]

e Qver-approximate k-fold composition of £’ with

FH 2 (FAK =k—1)*[K 0]

Ex. 2: Termination analysis for free

* Any overapproximate transitive closure operator (—)* induces a conditional
termination analysis (—)“ [Zhu & K "21]

e Qver-approximate k-fold composition of £’ with
FH2(FAK =k— 1)K — 0]

o F¥2AVEEk>0= (3X .FH(X, X') A dom(F)(X))

Ex. 2: Termination analysis for free

* Any overapproximate transitive closure operator (—)* induces a conditional
termination analysis (—)“ [Zhu & K "21]

e Qver-approximate k-fold composition of £’ with
FH2(FAK =k— 1)K — 0]
o F¥2AVEEk>0= (3X .FH(X, X') A dom(F)(X))
F:i#gnANi=i+2An0 =n
while (i # n) FH . { = i+2kAn’ = n(Recurrence analysis)

ii= 0+ 2 dom(F):i#n
F’:i>nV(n—i=1mod?2)

Advertisement

e Reflections on Termination of Linear Loops with Shaowei Zhu, on Wednesday
e Applies decision procedures for linear loops to general transition formulas

¢ Algebraic termination analysis “lifts” loop termination analysis to
whole-program termination analysis

Challenges & Future Directions

The context problem

e Compositionality implies loss of context. When analyzing a piece of code:

® We don’'t know what initial states it might start in (forwards context)
* We don’'t know what final states might lead to a subsequent failure (backwards

context)
X := 0
c :=1
n := 100
while(x < n):
X =X +¢C

assert(x == n)

The context problem

e Compositionality implies loss of context. When analyzing a piece of code:

® We don’'t know what initial states it might start in (forwards context)
* We don’'t know what final states might lead to a subsequent failure (backwards

context)
X := @
c :=1
n := 100
while(x < @
X =X +

assert(x ==

The context problem

e Compositionality implies loss of context. When analyzing a piece of code:

® We don’'t know what initial states it might start in (forwards context)
* We don’'t know what final states might lead to a subsequent failure (backwards

context)
X := 0
c :=1
N = 1@@ 100A0<2< 100 >
while(x < n):
X := X +C

assert(x == n)

The context problem

e Compositionality implies loss of context. When analyzing a piece of code:

® We don’'t know what initial states it might start in (forwards context)
* We don’'t know what final states might lead to a subsequent failure (backwards
context)

<3k’.((k2 IANz<n)Vk=0)Ad =z+ kc...>
while(x < n): =

X =X +cC

The context problem

e Compositionality implies loss of context. When analyzing a piece of code:

® We don’'t know what initial states it might start in (forwards context)
* We don’'t know what final states might lead to a subsequent failure (backwards
context)

while(x < n):
X 1= X +¢C

e Challenge: How can we design precise compositional analyses?

Scaling SMT-based algebraic analysis

* Complexity of algebraic program analysis is nearly linear in program size
e .. assuming unit-cost for each operation of the algebra

¢ Transition formula algebras are not unit cost!
:)):))3 3.)(= x + 1

® Expression DAG with n nodes, corresponding to formula of size 2™

Scaling SMT-based algebraic analysis

* Complexity of algebraic program analysis is nearly linear in program size
e .. assuming unit-cost for each operation of the algebra

¢ Transition formula algebras are not unit cost!
:)):))3 3.)(= x + 1

® Expression DAG with n nodes, corresponding to formula of size 2™
e Challenge: How can we scale SMT-based algebraic analyses?

¢ Efficient reasoning about A\ abstractions
® Formula simplification

Recursive procedures

* Problem: the set of paths through a recursive procedure is not regular

Recursive procedures

* Problem: the set of paths through a recursive procedure is not regular

e Partial solution: the set of paths through a linearly recursive procedure can be
captured by a tensored regular expression

Recursive procedures

* Problem: the set of paths through a recursive procedure is not regular

e Partial solution: the set of paths through a linearly recursive procedure can be
captured by a tensored regular expression
e Challenge: How can the algebraic approach be applied to summarize
arbitrary recursive procedures?
* What is an appropriate language of “closed forms”? (recognizing context-free

grammars)
* How can we design a practical abstract interpretation of such a language?

Expanding the scope of algebraic program analysis

® Current state-of-the-art of algebraic program analysis: numerical invariant
generation & termination analysis

Expanding the scope of algebraic program analysis

® Current state-of-the-art of algebraic program analysis: numerical invariant
generation & termination analysis
e Challenge: How can we design algebraic program analyses for

® Reasoning about arrays
® Reasoning about memory

® Property refutation
o .7

Summary

e Algebraic program analysis is a framework for building compositional program
analyses

Summary

e Algebraic program analysis is a framework for building compositional program
analyses
* Loop analysis internal to the analysis

® Opens the door to new ways of analyzing loops
® Can achieve theoretical guarantees about analysis behavior
® Can use the language of algebra to reason about analysis behavior

Summary

e Algebraic program analysis is a framework for building compositional program
analyses
* Loop analysis internal to the analysis
® Opens the door to new ways of analyzing loops
® Can achieve theoretical guarantees about analysis behavior
® Can use the language of algebra to reason about analysis behavior
* | ots of work to be donel!

	Regular algebraic program analysis
	Semantic foundations of algebraic program analysis
	Interprocedural analysis
	-regular program analysis

