
Outline

Regular algebraic program analysis

Semantic foundations of algebraic program analysis

Interprocedural analysis

ω­regular program analysis

Non­terminating state semantics
• Let P be program, given by a control flow graph G = (V,E) with entry r

• Program configurations: V × State (where, say, State ≜ ZX)
• Program transition relation: →P⊆ (V × State)× (V × State)

• Non­terminating state semantics: for each vertex v,

Nv ≜ {s ∈ State : exists c1, c2, . . . with 〈v, s〉 →P c1 →P c2 →P . . . }

• Equational formulation – greatest solution to:

r

a

b

[i 6= 0]i := i - 2

[i = 0]

Xr = (〈r, a〉 � Xa)⊞ (〈r, b〉 � Xb)

Xa = 〈a, r〉 � Xr

Xb = 0

UnionPreimage

Non­terminating state semantics
• Let P be program, given by a control flow graph G = (V,E) with entry r

• Program configurations: V × State (where, say, State ≜ ZX)
• Program transition relation: →P⊆ (V × State)× (V × State)

• Non­terminating state semantics: for each vertex v,

Nv ≜ {s ∈ State : exists c1, c2, . . . with 〈v, s〉 →P c1 →P c2 →P . . . }

• Equational formulation – greatest solution to:

r

a

b

[i 6= 0]i := i - 2

[i = 0]

Xr = (〈r, a〉 � Xa)⊞ (〈r, b〉 � Xb)

Xa = 〈a, r〉 � Xr

Xb = 0

UnionPreimage

Non­terminating state semantics
• Let P be program, given by a control flow graph G = (V,E) with entry r

• Program configurations: V × State (where, say, State ≜ ZX)
• Program transition relation: →P⊆ (V × State)× (V × State)

• Non­terminating state semantics: for each vertex v,

Nv ≜ {s ∈ State : exists c1, c2, . . . with 〈v, s〉 →P c1 →P c2 →P . . . }

• Equational formulation – greatest solution to:

r

a

b

[i 6= 0]i := i - 2

[i = 0]

Xr = (〈r, a〉 � Xa)⊞ (〈r, b〉 � Xb)

Xa = 〈a, r〉 � Xr

Xb = 0
Union

Preimage

Non­terminating state semantics
• Let P be program, given by a control flow graph G = (V,E) with entry r

• Program configurations: V × State (where, say, State ≜ ZX)
• Program transition relation: →P⊆ (V × State)× (V × State)

• Non­terminating state semantics: for each vertex v,

Nv ≜ {s ∈ State : exists c1, c2, . . . with 〈v, s〉 →P c1 →P c2 →P . . . }

• Equational formulation – greatest solution to:

r

a

b

[i 6= 0]i := i - 2

[i = 0]

Xr = (〈r, a〉 � Xa)⊞ (〈r, b〉 � Xb)

Xa = 〈a, r〉 � Xr

Xb = 0
UnionPreimage

Closed­form solutions: ω­regular expressions

ω­regular expression syntax:

R ∈ RegExp(Σ) ::= a | 0 | 1 | R1 + R2 | R1 · R2 | R∗

S ∈ ω­RegExp(Σ) ::= Rω | S1 ⊞ S2 | R � S

ω­regular expression semantics:

L JRωK = {w ∈ Σω : w = v1v2v3 . . . for some v1, v2, ... ∈ L JRK} Infinite repetition
L JS1 ⊞ S2K = L JR1K ∪ L JR2K Union

L JR � SK = {vw : v ∈ L JRK,w ∈ L JSK} Prepend

ω­regular expression semantics

• An interpretation I consists of a regular algebra, a semantic function, and
an ω­algebra

• An ω­algebra B = 〈B,⊞,�, ω〉 over a regular algebra A consists of
• A universe B
• Binary operation ⊞ : B × B → B (choice)
• Binary operation � : A × B → B (prepend)
• Unary operation (−)ω : A → B (omega)

ω­regular expression semantics

• An interpretation I consists of a regular algebra, a semantic function, and
an ω­algebra

• An ω­algebra B = 〈B,⊞,�, ω〉 over a regular algebra A consists of
• A universe B
• Binary operation ⊞ : B × B → B (choice)
• Binary operation � : A × B → B (prepend)
• Unary operation (−)ω : A → B (omega)

Non­terminating state interpretation

• Regular algebra: binary state relations
• ω­algebra Universe: set of (non­terminating) states

Rω ≜ {s : ∃s1, s2, . . . with 〈s, s1〉, 〈s1, s2〉· · ·R} Non­terminating states of R
R � S ≜ {s : ∃s′.〈s, s′〉 ∈ R ∧ s′ ∈ S} Preimage

S1 ⊞ S2 ≜ S1 ∪ S2 Union

• Computing closed forms: Gaussian elmination
• Key step: X = (R � X)⊞ S⇝ X = Rω + (R∗ � S)
• Efficient algorithm: adapt Tarjan’s path expression algorithm [Zhu & K ’21]

Non­terminating state interpretation

• Regular algebra: binary state relations
• ω­algebra Universe: set of (non­terminating) states

Rω ≜ {s : ∃s1, s2, . . . with 〈s, s1〉, 〈s1, s2〉· · ·R} Non­terminating states of R
R � S ≜ {s : ∃s′.〈s, s′〉 ∈ R ∧ s′ ∈ S} Preimage

S1 ⊞ S2 ≜ S1 ∪ S2 Union

• Computing closed forms: Gaussian elmination
• Key step: X = (R � X)⊞ S⇝ X = Rω + (R∗ � S)

• Efficient algorithm: adapt Tarjan’s path expression algorithm [Zhu & K ’21]

Non­terminating state interpretation

• Regular algebra: binary state relations
• ω­algebra Universe: set of (non­terminating) states

Rω ≜ {s : ∃s1, s2, . . . with 〈s, s1〉, 〈s1, s2〉· · ·R} Non­terminating states of R
R � S ≜ {s : ∃s′.〈s, s′〉 ∈ R ∧ s′ ∈ S} Preimage

S1 ⊞ S2 ≜ S1 ∪ S2 Union

• Computing closed forms: Gaussian elmination
• Key step: X = (R � X)⊞ S⇝ X = Rω + (R∗ � S)
• Efficient algorithm: adapt Tarjan’s path expression algorithm [Zhu & K ’21]

ω­path expressions

step = 8
while (true) do

m := 0
while (m < step) do

if (n < 0) then
halt

else
m := m + 1
n := n - 1

⟨r, a⟩


outer loop︷ ︸︸ ︷

(⟨a, b⟩ (⟨b, c⟩⟨c, d⟩⟨d, e⟩⟨e, b⟩)∗ ⟨b, a⟩)ω
+(⟨a, b⟩ (⟨b, c⟩⟨c, d⟩⟨d, e⟩⟨e, b⟩)∗ ⟨b, a⟩)∗ (⟨b, c⟩⟨c, d⟩⟨d, e⟩⟨e, b⟩)ω︸ ︷︷ ︸

inner loop



r

a

b

c

d

e

f

step := 8

m := 0[m ≥ step]

[m < step]

[n < 0]

[n ≥ 0]

m := m + 1

n := n - 1

ω­path expressions

step = 8
while (true) do

m := 0
while (m < step) do

if (n < 0) then
halt

else
m := m + 1
n := n - 1

⟨r, a⟩


outer loop︷ ︸︸ ︷

(⟨a, b⟩ (⟨b, c⟩⟨c, d⟩⟨d, e⟩⟨e, b⟩)∗ ⟨b, a⟩)ω
+(⟨a, b⟩ (⟨b, c⟩⟨c, d⟩⟨d, e⟩⟨e, b⟩)∗ ⟨b, a⟩)∗ (⟨b, c⟩⟨c, d⟩⟨d, e⟩⟨e, b⟩)ω︸ ︷︷ ︸

inner loop



r

a

b

c

d

e

f

step := 8

m := 0[m ≥ step]

[m < step]

[n < 0]

[n ≥ 0]

m := m + 1

n := n - 1

Non­terminating state formula interpretation

• Regular algebra: transition formulas F(X,X′) over a fixed set of variables X
• ω­algebra Universe: set of state formulas P(X) over X

• Interpretation: any non­terminating state must satisfy P(X)

F � P ≜ ∃X′.F(X,X′) ∧ P(X′) Preimage

P1 � P2 ≜ P1 ∨ P2 Union
Fω ≜ ... (Over­approximate) non­terminating states

Many different implementations

Non­terminating state formula interpretation

• Regular algebra: transition formulas F(X,X′) over a fixed set of variables X
• ω­algebra Universe: set of state formulas P(X) over X

• Interpretation: any non­terminating state must satisfy P(X)

F � P ≜ ∃X′.F(X,X′) ∧ P(X′) Preimage
P1 � P2 ≜ P1 ∨ P2 Union

Fω ≜ ... (Over­approximate) non­terminating states

Many different implementations

Non­terminating state formula interpretation

• Regular algebra: transition formulas F(X,X′) over a fixed set of variables X
• ω­algebra Universe: set of state formulas P(X) over X

• Interpretation: any non­terminating state must satisfy P(X)

F � P ≜ ∃X′.F(X,X′) ∧ P(X′) Preimage
P1 � P2 ≜ P1 ∨ P2 Union

Fω ≜ ... (Over­approximate) non­terminating states

Many different implementations

Non­terminating state formula interpretation

• Regular algebra: transition formulas F(X,X′) over a fixed set of variables X
• ω­algebra Universe: set of state formulas P(X) over X

• Interpretation: any non­terminating state must satisfy P(X)

F � P ≜ ∃X′.F(X,X′) ∧ P(X′) Preimage
P1 � P2 ≜ P1 ∨ P2 Union

Fω ≜ ... (Over­approximate) non­terminating states

Many different implementations

Ex. 1: Linear Ranking Functions
• A linear ranking function for a loop is a linear term that is non­negative and
decreases at each iteration

• LRF exists ⇒ loop terminates
• For instance,

while (lo < hi)
if (*) then hi := hi - 1
else lo := lo + 1

Ranking function: hi-lo

• Existence of LRFs for polyhedral loops is decidable [Podelski & Rybalchenko ’04]
• Loop body must be expressed as conjunction of linear inequations

• Terminator: “lifts” LRF synthesis to whole programs using guess­and­check
loop [Cook et al. ’2006]

for (i = 0; i < 4096; i++)
for (j = 0; j < 4096; j++)
...

May not discover LRFs that exists

Ex. 1: Linear Ranking Functions
• A linear ranking function for a loop is a linear term that is non­negative and
decreases at each iteration

• LRF exists ⇒ loop terminates
• For instance,

while (lo < hi)
if (*) then hi := hi - 1
else lo := lo + 1

Ranking function: hi-lo

• Existence of LRFs for polyhedral loops is decidable [Podelski & Rybalchenko ’04]
• Loop body must be expressed as conjunction of linear inequations

• Terminator: “lifts” LRF synthesis to whole programs using guess­and­check
loop [Cook et al. ’2006]

for (i = 0; i < 4096; i++)
for (j = 0; j < 4096; j++)
...

May not discover LRFs that exists

Ex. 1: Linear Ranking Functions
• A linear ranking function for a loop is a linear term that is non­negative and
decreases at each iteration

• LRF exists ⇒ loop terminates
• For instance,

while (lo < hi)
if (*) then hi := hi - 1
else lo := lo + 1

Ranking function: hi-lo

• Existence of LRFs for polyhedral loops is decidable [Podelski & Rybalchenko ’04]
• Loop body must be expressed as conjunction of linear inequations

• Terminator: “lifts” LRF synthesis to whole programs using guess­and­check
loop [Cook et al. ’2006]

for (i = 0; i < 4096; i++)
for (j = 0; j < 4096; j++)
...

May not discover LRFs that exists

Ex. 2: Linear Ranking Functions

• A linear ranking function for a TF F(X,X′) is a linear term t(X) such that
1 (Non­negative) F(X,X′) |= t(X) ≥ 0
2 (Decreasing) F(X,X′) |= t(X)− 1 ≥ t(X′)

• Existence of a LRF is decidable:
• F has a LRF iff convex hull of F has a LRF
• Existence of a LRF for a polyhedron can be checked by LP

• Fω ≜
{
false if F has an LRF
dom(F) otherwise

where dom(F) ≜ ∃X′.F(X,X′) – set of states with F­successors
• Also works for linear lexicographic ranking functions [Gonnord et al. ’2015],
and more

• Completeness ⇒ ω is monotone

Ex. 2: Linear Ranking Functions

• A linear ranking function for a TF F(X,X′) is a linear term t(X) such that
1 (Non­negative) F(X,X′) |= t(X) ≥ 0
2 (Decreasing) F(X,X′) |= t(X)− 1 ≥ t(X′)

• Existence of a LRF is decidable:
• F has a LRF iff convex hull of F has a LRF
• Existence of a LRF for a polyhedron can be checked by LP

• Fω ≜
{
false if F has an LRF
dom(F) otherwise

where dom(F) ≜ ∃X′.F(X,X′) – set of states with F­successors
• Also works for linear lexicographic ranking functions [Gonnord et al. ’2015],
and more

• Completeness ⇒ ω is monotone

Ex. 2: Linear Ranking Functions

• A linear ranking function for a TF F(X,X′) is a linear term t(X) such that
1 (Non­negative) F(X,X′) |= t(X) ≥ 0
2 (Decreasing) F(X,X′) |= t(X)− 1 ≥ t(X′)

• Existence of a LRF is decidable:
• F has a LRF iff convex hull of F has a LRF
• Existence of a LRF for a polyhedron can be checked by LP

• Fω ≜
{
false if F has an LRF
dom(F) otherwise

where dom(F) ≜ ∃X′.F(X,X′) – set of states with F­successors

• Also works for linear lexicographic ranking functions [Gonnord et al. ’2015],
and more

• Completeness ⇒ ω is monotone

Ex. 2: Linear Ranking Functions

• A linear ranking function for a TF F(X,X′) is a linear term t(X) such that
1 (Non­negative) F(X,X′) |= t(X) ≥ 0
2 (Decreasing) F(X,X′) |= t(X)− 1 ≥ t(X′)

• Existence of a LRF is decidable:
• F has a LRF iff convex hull of F has a LRF
• Existence of a LRF for a polyhedron can be checked by LP

• Fω ≜
{
false if F has an LRF
dom(F) otherwise

where dom(F) ≜ ∃X′.F(X,X′) – set of states with F­successors
• Also works for linear lexicographic ranking functions [Gonnord et al. ’2015],
and more

• Completeness ⇒ ω is monotone

Ex. 2: Termination analysis for free

• Any overapproximate transitive closure operator (−)∗ induces a conditional
termination analysis (−)ω [Zhu & K ’21]

• Over­approximate k­fold composition of F with

F[k] ≜ (F ∧ k′ = k − 1)∗[k′ 7→ 0]

• Fω ≜ ∀k.k ≥ 0 ⇒ (∃X′.F[k](X,X′) ∧ dom(F)(X′))

while (i 6= n)
i := i + 2

F : i 6= n ∧ i′ = i + 2 ∧ n′ = n
F[k] : i′ = i+2k∧n′ = n (Recurrence analysis)
dom(F) : i 6= n
Fω : i > n ∨ (n − i ≡ 1 mod 2)

Ex. 2: Termination analysis for free

• Any overapproximate transitive closure operator (−)∗ induces a conditional
termination analysis (−)ω [Zhu & K ’21]

• Over­approximate k­fold composition of F with

F[k] ≜ (F ∧ k′ = k − 1)∗[k′ 7→ 0]

• Fω ≜ ∀k.k ≥ 0 ⇒ (∃X′.F[k](X,X′) ∧ dom(F)(X′))

while (i 6= n)
i := i + 2

F : i 6= n ∧ i′ = i + 2 ∧ n′ = n
F[k] : i′ = i+2k∧n′ = n (Recurrence analysis)
dom(F) : i 6= n
Fω : i > n ∨ (n − i ≡ 1 mod 2)

Ex. 2: Termination analysis for free

• Any overapproximate transitive closure operator (−)∗ induces a conditional
termination analysis (−)ω [Zhu & K ’21]

• Over­approximate k­fold composition of F with

F[k] ≜ (F ∧ k′ = k − 1)∗[k′ 7→ 0]

• Fω ≜ ∀k.k ≥ 0 ⇒ (∃X′.F[k](X,X′) ∧ dom(F)(X′))

while (i 6= n)
i := i + 2

F : i 6= n ∧ i′ = i + 2 ∧ n′ = n
F[k] : i′ = i+2k∧n′ = n (Recurrence analysis)
dom(F) : i 6= n
Fω : i > n ∨ (n − i ≡ 1 mod 2)

Ex. 2: Termination analysis for free

• Any overapproximate transitive closure operator (−)∗ induces a conditional
termination analysis (−)ω [Zhu & K ’21]

• Over­approximate k­fold composition of F with

F[k] ≜ (F ∧ k′ = k − 1)∗[k′ 7→ 0]

• Fω ≜ ∀k.k ≥ 0 ⇒ (∃X′.F[k](X,X′) ∧ dom(F)(X′))

while (i 6= n)
i := i + 2

F : i 6= n ∧ i′ = i + 2 ∧ n′ = n
F[k] : i′ = i+2k∧n′ = n (Recurrence analysis)
dom(F) : i 6= n
Fω : i > n ∨ (n − i ≡ 1 mod 2)

Advertisement

• Reflections on Termination of Linear Loops with Shaowei Zhu, on Wednesday
• Applies decision procedures for linear loops to general transition formulas
• Algebraic termination analysis “lifts” loop termination analysis to
whole­program termination analysis

Challenges & Future Directions

The context problem

• Compositionality implies loss of context. When analyzing a piece of code:
• We don’t know what initial states it might start in (forwards context)
• We don’t know what final states might lead to a subsequent failure (backwards

context)
x := 0
c := 1
n := 100
while(x < n):

x := x + c
assert(x == n)

100

1

100

c = 1 ∧ n = 100 ∧ 0 ≤ x ≤ 100∃k.((k ≥ 1 ∧ x < n) ∨ k = 0) ∧ x′ = x + kc...

• Challenge: How can we design precise compositional analyses?

The context problem

• Compositionality implies loss of context. When analyzing a piece of code:
• We don’t know what initial states it might start in (forwards context)
• We don’t know what final states might lead to a subsequent failure (backwards

context)
x := 0
c := 1
n := 100
while(x < n):

x := x + c
assert(x == n)

100

1

100

c = 1 ∧ n = 100 ∧ 0 ≤ x ≤ 100∃k.((k ≥ 1 ∧ x < n) ∨ k = 0) ∧ x′ = x + kc...

• Challenge: How can we design precise compositional analyses?

The context problem

• Compositionality implies loss of context. When analyzing a piece of code:
• We don’t know what initial states it might start in (forwards context)
• We don’t know what final states might lead to a subsequent failure (backwards

context)
x := 0
c := 1
n := 100
while(x < n):

x := x + c
assert(x == n)

100

1

100

c = 1 ∧ n = 100 ∧ 0 ≤ x ≤ 100

∃k.((k ≥ 1 ∧ x < n) ∨ k = 0) ∧ x′ = x + kc...

• Challenge: How can we design precise compositional analyses?

The context problem

• Compositionality implies loss of context. When analyzing a piece of code:
• We don’t know what initial states it might start in (forwards context)
• We don’t know what final states might lead to a subsequent failure (backwards

context)
x := 0
c := 1
n := 100
while(x < n):

x := x + c
assert(x == n)

100

1

100

c = 1 ∧ n = 100 ∧ 0 ≤ x ≤ 100

∃k.((k ≥ 1 ∧ x < n) ∨ k = 0) ∧ x′ = x + kc...

• Challenge: How can we design precise compositional analyses?

The context problem

• Compositionality implies loss of context. When analyzing a piece of code:
• We don’t know what initial states it might start in (forwards context)
• We don’t know what final states might lead to a subsequent failure (backwards

context)
x := 0
c := 1
n := 100
while(x < n):

x := x + c
assert(x == n)

100

1

100

c = 1 ∧ n = 100 ∧ 0 ≤ x ≤ 100∃k.((k ≥ 1 ∧ x < n) ∨ k = 0) ∧ x′ = x + kc...

• Challenge: How can we design precise compositional analyses?

Scaling SMT­based algebraic analysis

• Complexity of algebraic program analysis is nearly linear in program size
• ... assuming unit­cost for each operation of the algebra

• Transition formula algebras are not unit cost!
· · · . . . ·x := x + 1

• Expression DAG with n nodes, corresponding to formula of size 2n

• Challenge: How can we scale SMT­based algebraic analyses?
• Efficient reasoning about λ abstractions
• Formula simplification

Scaling SMT­based algebraic analysis

• Complexity of algebraic program analysis is nearly linear in program size
• ... assuming unit­cost for each operation of the algebra

• Transition formula algebras are not unit cost!
· · · . . . ·x := x + 1

• Expression DAG with n nodes, corresponding to formula of size 2n

• Challenge: How can we scale SMT­based algebraic analyses?
• Efficient reasoning about λ abstractions
• Formula simplification

Recursive procedures

• Problem: the set of paths through a recursive procedure is not regular

• Partial solution: the set of paths through a linearly recursive procedure can be
captured by a tensored regular expression

• Challenge: How can the algebraic approach be applied to summarize
arbitrary recursive procedures?

• What is an appropriate language of “closed forms”? (recognizing context­free
grammars)

• How can we design a practical abstract interpretation of such a language?

Recursive procedures

• Problem: the set of paths through a recursive procedure is not regular
• Partial solution: the set of paths through a linearly recursive procedure can be
captured by a tensored regular expression

• Challenge: How can the algebraic approach be applied to summarize
arbitrary recursive procedures?

• What is an appropriate language of “closed forms”? (recognizing context­free
grammars)

• How can we design a practical abstract interpretation of such a language?

Recursive procedures

• Problem: the set of paths through a recursive procedure is not regular
• Partial solution: the set of paths through a linearly recursive procedure can be
captured by a tensored regular expression

• Challenge: How can the algebraic approach be applied to summarize
arbitrary recursive procedures?

• What is an appropriate language of “closed forms”? (recognizing context­free
grammars)

• How can we design a practical abstract interpretation of such a language?

Expanding the scope of algebraic program analysis

• Current state­of­the­art of algebraic program analysis: numerical invariant
generation & termination analysis

• Challenge: How can we design algebraic program analyses for
• Reasoning about arrays
• Reasoning about memory
• Property refutation
• ...?

Expanding the scope of algebraic program analysis

• Current state­of­the­art of algebraic program analysis: numerical invariant
generation & termination analysis

• Challenge: How can we design algebraic program analyses for
• Reasoning about arrays
• Reasoning about memory
• Property refutation
• ...?

Summary

• Algebraic program analysis is a framework for building compositional program
analyses

• Loop analysis internal to the analysis
• Opens the door to new ways of analyzing loops
• Can achieve theoretical guarantees about analysis behavior
• Can use the language of algebra to reason about analysis behavior

• Lots of work to be done!

Summary

• Algebraic program analysis is a framework for building compositional program
analyses

• Loop analysis internal to the analysis
• Opens the door to new ways of analyzing loops
• Can achieve theoretical guarantees about analysis behavior
• Can use the language of algebra to reason about analysis behavior

• Lots of work to be done!

Summary

• Algebraic program analysis is a framework for building compositional program
analyses

• Loop analysis internal to the analysis
• Opens the door to new ways of analyzing loops
• Can achieve theoretical guarantees about analysis behavior
• Can use the language of algebra to reason about analysis behavior

• Lots of work to be done!

	Regular algebraic program analysis
	Semantic foundations of algebraic program analysis
	Interprocedural analysis
	-regular program analysis

