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Semantic foundations of algebraic program analysis



Motivation

© What it would mean to apply algebraic program analyis beyond the framework
of algebraic path properties?
® Set of paths of interest may not be regular (recursive procedures)
¢ Paths of interest may not be finite (termination)
® What does it mean for an algebraic program analysis to be correct?
* How do we prove it?

® How can we reason about the impact of program transformation on analysis?



General picture for algebraic program analysis

¢ Suppose we have a system of recursive E = {X; = R;};., defining the
semantics of a program
* Some concrete interpretation 7% = (A%, ff)
* Interested in least solution o* : X — A to Eover .#": o(X;) = Z[R;[0"]] for all i
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General picture for algebraic program analysis

¢ Suppose we have a system of recursive E = {X; = R;};., defining the
semantics of a program
* Some concrete interpretation 7% = (A%, ff)
* Interested in least solution o* : X — A to Eover .#": o(X;) = Z[R;[0"]] for all i
* \Want to approximate this semantics [Cousot & Cousot '77]
* Some abstract interpretation .#% = (A*, f)
* Some approximation relation IFC A% x A*
o II— p*1 “p is approximated by Pl
* Want: of : {X;}7, — A* s.t. 0%(X) I o¥(X;) forall
* The algebraic method:
© Symbolically compute a closed-form solution to the system, F' = {X; = R/},

¢ Right-hand-sides R do not contain variables
e Eand E have same least solution over .#*

(2] Interpret the closed forms over .#*
* o (X)) £ FH[R]



Relational semantics

® Let P be program, given by a control flow graph G = (V, E) with entry r

* Program configurations: V x State (where, say, State £ ZX)
* Program transition relation: —pC (V x State) x (V x State)

¢ Relational semantics: For each vertex v,

R, % {(s,§) € State x State : (r,s) =% (v,5)}

< Program can reach (v, s') from initial state (r, s) >




Relational interpretation

Universe: binary relations over states

020

12 {(s,5): 5 € 2Y)
R-S2{(sd):35.(s,d) e RA(d,5) € S}
R+S=RUS

R* £ URO

itimes

Empty relation
Identity relation
Relational composition

Union

Reflexive transitive closure



Equational formulation of relational semantics

Control flow graph corresponds to left-linear system of equations equations
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Equational formulation of relational semantics

Control flow graph corresponds to left-linear system of equations equations

i 0
Xr=1
° Xa:Xr '<7‘, (L>
/ I Xy = Xo-(a,b) + Xq-(d,b) + Xc- (e, b)
ji=o0 [i < 1000] =1+ 2 X. = X;- (b, c)
* X o — X . (-4

Least solution &% coincides with relational semantics.

o*(X,) = R, = {(s,s') € State x State : (r,s) =5 (v,s)}
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Abstract interpretation

Concrete interpretation Approx. relation Abstract interpretation

IFC A% x Af

I = (45, f) It = (A% f)
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Concrete interpretation Approx. relation Abstract interpretation
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State relations Transition formulas

—

< (RIF F <= every (s,s) € Ris amodel of F
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Computing closed form solutions

Variable elimination ~ Gauss-Jordan
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Computing closed form solutions

Variable elimination ~ Gauss-Jordan

X, =1

Xo =(r,a)
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Computing closed form solutions

Variable elimination ~ Gauss-Jordan

X, =1

Xa —(’/’, >

Xy =(r,a) - (a,b) - ((b,¢) - (¢, d) - ((d, b) + (d, €) - (€, b)))"
Xc :Xb <b,C>

Xa =Xp- (b

X, =X, (b AB* is least solutionto X = A + XB

Xy =Xy (b7




Computing closed form solutions

Variable elimination ~ Gauss-Jordan
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Computing closed form solutions

Variable elimination ~ Gauss-Jordan

1
(r, a)

Solving single-source path expression problem
~ computing closed-form solution to left-linear equations

A SN U N & NS W N VTN B NS V) N BN W

(r;a) - (a,b) - ((b; ¢) - (¢, d) - ((d, b) + (d; e) - (&, 1)))" - (b, f)

(d, ¢)



Abstract interpretation of closed forms
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Abstract semantics o* over-approximates concrete semantics o*
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Soundness relations

e Say that a approximation relation I is soundness relation if
© F(a) IF £(a) for each constant a
@ I+ is compatible with all operations (I a subalgebra of A" x A*)
* Key lemma: I+ is a soundness relation = .#[¢] IF .#%[¢] for any e

¢ For instance:
RIF F(X,X') <= every (s,§) € Ris a model of F

For all R, S transition relations

F, G transition formulas

suchthat RIFF SIFG

We have:
o o {(s,§):3d.(s,§) e RA(5,§") € S}IFIX'.F(X, X") AN G(X", X))
® +: RUSIFFV G
® x: overapproximate transitive closure



The algebraic recipe

© (Modeling) formulate problem of interest as extremal solution to system of
equations

® (Closed forms) design language of “closed forms” & algorithm for computing
them

©® (Interpretation) design abstract interpretation & formulate soundness relation
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Algebraic reasoning

¢ Transition formula algebras form idempotent semirings
® + is associative, commutative, and idempotent, and has identity 0
® . is associative, has identity 1, distributes over +, 0 is annihilator
® The x operators from last section satisfy pre-Kleene algebra iteration laws.
® Monotonicity F< G= F* < G*,wherez<y < z+y=y
® “more information in — more information out”
e Unrolling (F™)* < F* forany n
e ... and more
* Laws give users guarantees they mey rely upon
® Every operation is monotone: user can make progress by supplying “hints”
* Laws give analysis designers guarantees they may exploit

® Design program transformations that are guaranteed to improve precision
[Cyphert et al. "19]
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