Outline

Semantic foundations of algebraic program analysis

Motivation

© What it would mean to apply algebraic program analyis beyond the framework
of algebraic path properties?
® Set of paths of interest may not be regular (recursive procedures)
¢ Paths of interest may not be finite (termination)
® What does it mean for an algebraic program analysis to be correct?
* How do we prove it?

® How can we reason about the impact of program transformation on analysis?

General picture for algebraic program analysis

¢ Suppose we have a system of recursive E = {X; = R;};., defining the
semantics of a program
* Some concrete interpretation 7% = (A%, ff)
* Interested in least solution o* : X — A to Eover .#": o(X;) = Z[R;[0"]] for all i

General picture for algebraic program analysis

¢ Suppose we have a system of recursive E = {X; = R;};., defining the
semantics of a program

* Some concrete interpretation 7% = (A%, ff)

* Interested in least solution o* : X — A to Eover .#": o(X;) = Z[R;[0"]] for all i
* \Want to approximate this semantics [Cousot & Cousot '77]

* Some abstract interpretation .#% = (A*, f)

* Some approximation relation IFC A% x A*

e p* I p*: “p? is approximated by p”
* Want: of : {X;}7, — A* s.t. 0%(X) I o¥(X;) forall

General picture for algebraic program analysis

¢ Suppose we have a system of recursive E = {X; = R;};., defining the
semantics of a program
* Some concrete interpretation 7% = (A%, ff)
* Interested in least solution o* : X — A to Eover .#": o(X;) = Z[R;[0"]] for all i
* \Want to approximate this semantics [Cousot & Cousot '77]
* Some abstract interpretation .#% = (A*, f)
* Some approximation relation IFC A% x A*
o II— p*1 “p is approximated by Pl
* Want: of : {X;}7, — A* s.t. 0%(X) I o¥(X;) forall
* The algebraic method:
© Symbolically compute a closed-form solution to the system, F' = {X; = R/},

¢ Right-hand-sides R do not contain variables
e Eand E have same least solution over .#*

(2] Interpret the closed forms over .#*
* o (X)) £ FH[R]

Relational semantics

® Let P be program, given by a control flow graph G = (V, E) with entry r

* Program configurations: V x State (where, say, State £ ZX)
* Program transition relation: —pC (V x State) x (V x State)

¢ Relational semantics: For each vertex v,

R, % {(s,§) € State x State : (r,s) =% (v,5)}

< Program can reach (v, s') from initial state (r, s) >

Relational interpretation

Universe: binary relations over states

020

12 {(s,5): 5 € 2Y)
R-S2{(sd):35.(s,d) e RA(d,5) € S}
R+S=RUS

R* £ URO

itimes

Empty relation
Identity relation
Relational composition

Union

Reflexive transitive closure

Equational formulation of relational semantics

Control flow graph corresponds to left-linear system of equations equations

0 [i< 1e00] 2

=7 +

/ ;
;j > so0] —— @)

I

<«

[
)
¥
0o P
] .
0
i zllooo Ji=gj+1 [j < 500]

¥
6 e

X, =1

Xo=X, -
Xy = Xo
X. =X,
Xo= X, -
X.= X,
Xp=X

(
~{a,b) + Xq-(d,b) + Xc- (e, b)
'(

(

(

(

Equational formulation of relational semantics

Control flow graph corresponds to left-linear system of equations equations

i 0
Xr=1
° Xa:Xr '<7‘, (L>
/ I Xy = Xo-(a,b) + Xq-(d,b) + Xc- (e, b)
ji=o0 [i < 1000] =1+ 2 X. = X;- (b, c)
* X o — X . (-4

Least solution &% coincides with relational semantics.

o*(X,) = R, = {(s,s') € State x State : (r,s) =5 (v,s)}

\é

Abstract interpretation

Concrete interpretation Approx. relation Abstract interpretation

IFC A% x Af

I = (45, f) It = (A% f)

Abstract interpretation

Concrete interpretation Approx. relation Abstract interpretation

""""" e

I = (A8 F)

State relations Transition formulas

Abstract interpretation

Concrete interpretation Approx. relation Abstract interpretation

""""" e

I = (A8 F)

State relations Transition formulas

—

< (RIF F <= every (s,s) € Ris amodel of F

S

Computing closed form solutions

Variable elimination ~ Gauss-Jordan

X, =1

Xo =X, (ra)

Xy =X, (a,b)+ Xg-(d,b) + X (e, b)
X, =Xp- (b0

Xd = Xc . <C, d)

Xe =Xy (d, e

Xy =X (b f)

Computing closed form solutions

Variable elimination ~ Gauss-Jordan

X, =1

X, ={(ra)

Xy =X, (a,b)+ Xg-(d, b) + X (e, b)
X, =Xp- (b0

Xd = Xc . <C, d)

Xe =Xy (d,e)

Xy =X (b f)

Computing closed form solutions

Variable elimination ~ Gauss-Jordan

X, =1

X =(ra)

Xy =(r,a)-(a, by + Xq-(d, b) + X, (e, b)
Xo =Xp-(b,c)

Xd = Xc . <C, d)

Xe =Xy (d, e

Xy =X (b f)

Computing closed form solutions

Variable elimination ~ Gauss-Jordan

X, =1

X =(ra)

Xy =(r,a)-(a, by + Xq-(d, b) + X, (e, b)
X, =Xp- (b0

)(,] = Xb . <b, C> . <C, d)

Xe =Xy (d, e

Xy =X (b f)

Computing closed form solutions

Variable elimination ~ Gauss-Jordan

X, =1

Xo =(r,a)

Xy ={(r,a)-(a, by + Xp- (b, c) - (c,d)-(d,b) + X (e, b)
X, =Xp- (b0

Xd ZXb-<b, C>'<C, d)

Xe =Xp- <b7 C> ’ <Cv d> ’ <d7 €>

Xy =Xy (b,

Computing closed form solutions

Variable elimination ~ Gauss-Jordan

X, =1

Xo =(r,a)

Xy ={(ra)-{(a,b)+ Xy, (b,c) (¢, d)-(db)+ Xy (b c)-(c,d)-(de)-(eb)
Xe =Xy <b7 C>

Xd =Xb-<b, C>'<C, d)

Xe :Xb'<b7 C>'<C’ d) <d7 €>

X; =Xy (b,

Computing closed form solutions

Variable elimination ~ Gauss-Jordan

X, =1

Xo =(r,a)

Xy ={(ra)-{(a,b)+ Xy, ((b,¢c) (e, d)-({(d, D)+ (d,e) (eD)))
X, =Xp- (b0

Xd ZXb-<b, C>'<C, d)

Xe :Xb'<b7 C>'<C7 d><d7 €>

Xy =Xy (b,

Computing closed form solutions

Variable elimination ~ Gauss-Jordan

X, =1

Xa —(’/’, >

Xy =(r,a) - (a,b) - ((b,¢) - (¢, d) - ((d, b) + (d, €) - (€, b)))"
Xc :Xb <b,C>

Xa =Xp- (b

X, =X, (b AB* is least solutionto X = A + XB

Xy =Xy (b7

Computing closed form solutions

Variable elimination ~ Gauss-Jordan

P R R i
N N N N
o~ o~ o~~~

~ ~ ~ ~ ~—
o~ o~ o~~~

~ ~ ~ ~— ~—

o~~~ o~~~

~ ~— ~ ~ ~—
— — —

o~ e~~~

~ ~ ~ ~ ~—
o~ o~~~

~ ~ ~ ~— ~—
— N

o~ o~ o~~~

~ ~ ~— ~— ~—

o~ o~~~ o~

(T AT
SRS

Computing closed form solutions

Variable elimination ~ Gauss-Jordan

1
(r, a)

Solving single-source path expression problem
~ computing closed-form solution to left-linear equations

A SN U N & NS W N VTN B NS V) N BN W

(r;a) - (a,b) - ((b; ¢) - (¢, d) - ((d, b) + (d; e) - (&, 1)))" - (b, f)

(d, ¢)

Abstract interpretation of closed forms

e e N e
N N N /N
o~ o~ o~~~

~ ~— ~— ~— ~—

o~ o~~~

~ ~— ~— ~— ~—

o~ o~ o~~~

~ ~— ~— ~— ~—
— N

o~ e~ e~ e~

~ ~— ~— ~— ~—

o~ o~~~

~ ~ ~ ~— ~—
~— N N N

o~ o~ o~~~

~ ~— ~— ~— ~—

o~ o~ o~~~

~ ~— ~—— ~—— ~—— ~—

e e e e e = =
IX AT TT T A A ey

o~~~ o~~~

— e — — e —
=

Abstract semantics o* over-approximates concrete semantics o*

Soundness relations

e Say that a approximation relation I is soundness relation if

© F(a) IF £(a) for each constant a
@ I+ is compatible with all operations (I a subalgebra of A% x A%)

Soundness relations

e Say that a approximation relation I is soundness relation if

© F(a) IF £(a) for each constant a
@ I+ is compatible with all operations (I a subalgebra of A% x A%)

* Key lemma: I+ is a soundness relation = .#[¢] IF .#%[¢] for any e

Soundness relations

e Say that a approximation relation I is soundness relation if
© F(a) IF £(a) for each constant a
@ I+ is compatible with all operations (I a subalgebra of A" x A*)
* Key lemma: I+ is a soundness relation = .#[¢] IF .#%[¢] for any e

¢ For instance:
RIF F(X,X') <= every (s,§) € Ris a model of F

For all R, S transition relations

F, G transition formulas

suchthat RIFF SIFG

We have:
o o {(s,§):3d.(s,§) e RA(5,§") € S}IFIX'.F(X, X") AN G(X", X))
® +: RUSIFFV G
® x: overapproximate transitive closure

The algebraic recipe

© (Modeling) formulate problem of interest as extremal solution to system of
equations

® (Closed forms) design language of “closed forms” & algorithm for computing
them

©® (Interpretation) design abstract interpretation & formulate soundness relation

Algebraic reasoning

e Transition formula algebras form idempotent semirings

® + is associative, commutative, and idempotent, and has identity 0
® . s associative, has identity 1, distributes over +, 0 is annihilator

Algebraic reasoning

e Transition formula algebras form idempotent semirings
® + is associative, commutative, and idempotent, and has identity 0
® . is associative, has identity 1, distributes over +, 0 is annihilator
® The x operators from last section satisfy pre-Kleene algebra iteration laws.
® Monotonicity F< G= F* < G*,wherez<y < z+y=y
® “more information in — more information out”
e Unrolling (F™)* < F* forany n
e ... and more

Algebraic reasoning

¢ Transition formula algebras form idempotent semirings
® + is associative, commutative, and idempotent, and has identity 0
® . is associative, has identity 1, distributes over +, 0 is annihilator
® The x operators from last section satisfy pre-Kleene algebra iteration laws.
® Monotonicity F< G= F* < G*,wherez<y < z+y=y
® “more information in — more information out”
e Unrolling (F™)* < F* forany n
e ... and more
* Laws give users guarantees they mey rely upon
® Every operation is monotone: user can make progress by supplying “hints”

Algebraic reasoning

¢ Transition formula algebras form idempotent semirings
® + is associative, commutative, and idempotent, and has identity 0
® . is associative, has identity 1, distributes over +, 0 is annihilator
® The x operators from last section satisfy pre-Kleene algebra iteration laws.
® Monotonicity F< G= F* < G*,wherez<y < z+y=y
® “more information in — more information out”
e Unrolling (F™)* < F* forany n
e ... and more
* Laws give users guarantees they mey rely upon
® Every operation is monotone: user can make progress by supplying “hints”
* Laws give analysis designers guarantees they may exploit

® Design program transformations that are guaranteed to improve precision
[Cyphert et al. "19]

	Regular algebraic program analysis
	Semantic foundations of algebraic program analysis
	Interprocedural analysis
	-regular program analysis

