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Compositional program analysis

e A program analysis is compositional if the result for a composite program is
a function of the results for its components

A[-] : Program — Summary
AlS1; 82 = A[S1] - A[S:]
Alif(«){ 51 }else{S:}] = A[Si] + A[S]
Alwhile(x){s}] = (A[S])*

e Benefits:

® Potential to scale

® Easy to parallelize

® Can be applied to incomplete programs (e.g. libraries)
® Can respond quickly to program edits

* Enables new kinds of analysis techniques

[ ]



Outline

Regular algebraic program analysis

Semantic foundations of algebraic program analysis

Interprocedural analysis

w-regular program analysis



Algebraic path problems

e Common structure exhibited by several algorithms:
[Aho et al. 74, Backhouse & Carré ’75, Lehmann ’77, Tarjan ’81, ...]
® Kleene’s (NFA — regexp) algorithm
Warshall’s transitive closure algorithm
Floyd’s shortest path algorithm
Gauss-Jordan algorithm for solving system of linear equations



Algebraic path problems

e Common structure exhibited by several algorithms:
[Aho et al. 74, Backhouse & Carré ’75, Lehmann ’77, Tarjan ’81, ...]
® Kleene’s (NFA — regexp) algorithm
® Warshall’s transitive closure algorithm
® Floyd’s shortest path algorithm
® Gauss-Jordan algorithm for solving system of linear equations
[ ]
¢ Algebraic approach to solving path problems in graphs [Tarjan '81]:
@ Compute a regular expression recognizing a set of paths of interest
® Interpret the regular expression in a suitable algebraic structure
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over the alphabet of edges F such that each word recognized by R corre-
sponds to a path in G.



Path expressions

A path expression for a directed graph G = (V, E): regular expression R
over the alphabet of edges F such that each word recognized by R corre-
sponds to a path in G.

Regular expression syntax:
ReRegExp(X) :=a€X|0|1| R+ Ry | RiRy | R*

Regular expression semantics:
g[[O]]:@ j[[Rl'RQ]]:{'LUl’LUQI'lUleg[[Rl]],UJQeg[[RQII}
g[[l]] = {6} f[[Rl + RQ]] = f[[Rl]] U XHRQII
Zla] ={a} ForaeX Z[R"] = Z[R]*
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Regular expression semantics

* An interpretation .# consists of a regular algebra and a semantic function

 Aregular algebra A = (4,04,14,+4,.4 «*) consists of

® A set A (the universe or carrier of the algebra)

* Distinguished elements 04,14 € 4

* Two binary operators -4, +4 : A x A — A (sequencing and choice)
* A unary operator «“ : A — A (iteration)

* A semantic function f: ¥ — A maps letters of the alphabet into the algebra
¢ Define interpretation .#[—] : RegExp(X) — A:

0] =04 SRy - Ro] = I[R1] * F[R,]

s =14 IR+ Ry = Z[R1] +" S [Ro]

Sd] = fla) Foraex SR] = S[R]*"
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Warm-up: shortest paths

¢ Consider an edge-weighted graph:

b
i By
a -1 c
0 1
4\
2 -1
AW <
€
e Suppose we want to compute smallest-weight path from a to ¢
@ Compute a path expression recognizing paths from a to ¢

({a, )b, d) ((d, €){e, d)" (d, a))" {a, b) ((b, ) + (b, d) ((d, &) {e, )" (d, c))

@ Interpret the path expression within a distance algebra



Algebra of distances

¢ Distance algebra universe: Z U {—o0, 00}
e QOperations:

0P =
17 =0
dy 4P dy £ min(dy, dy) Minimum
Addition

_ if
! d<0_ Infimum of {nd: n € N}
0 otherwise



Interpreting a path expression DAG

({a, b)(b, d) ((d, e){e, d))" (d, a))"
(a, b) ((b, ¢) + (b, d) ({d, e) (e, d))" (d, c))
® Explicit path expressions can be
exponential in graph size

® DAG representation to share
repeated subexpressions =
polynomial size




Interpreting a path expression DAG

0P = o0
1”=0
di +° dy 2 min(dy, d) Minimum
di P dy & dy + do Addition
o e {‘Oo Td<0  ottnd: neny
0 otherwise




Interpreting a path expression DAG

0” =
1”=0
di +° dy 2 min(dy, d) Minimum
di P dy 2 dy + do Addition
—oo ifd<0 :
e { oo fas inf{nd : n € N}
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Interpreting a path expression DAG

0P = o0
1”=0
di +° dy 2 min(dy, d) Minimum
di P dy & dy + do Addition

D

d*

>

{—oo ifd<0 inf{nd: n € N}

0 otherwise




Parallel developments

e Algebraic path problems: line of work in algorithms / operations research

¢ Elimination-style dataflow analysis: dataflow analysis using algorithms
resembling Gaussian elimination

[Allen & Cocke 76, Hecht & Uliman 73, Graham & Wegman '76]



Convergence [Tarjan ’81]

A Unified Approach to Path Problems Fast Algorithms for Solving Path Problems

ROBERT ENDRE TARJAN
Stanford Universsy, Stanford, California

ROBERT ENDRE TARJAN
Stanford Univeraiy, Starford, California

ASSTRACT Let G = (1 ) be  duted graph w3 dtmgushl s e 5. Tho s sres
path expression problem is (o find, for regolar expression A(s, ) which represents the set
ot o5+ A i ot can be used 1o slve shortest path problems, slve

path expressions by diiding G inio componeats, computing path expressions on the components by

e Dataflow analysis as an algebraic path problem

® Graph: control flow graph
® Algebra: transfer functions L — L (for some lattice L) [Graham & Wegman ’76]



Convergence [Tarjan ’81]

A Unified Approach to Path Problems Fast Algorithms for Solving Path Problems

ROBERT ENDRE TARJAN ROBERT ENDRE TARJAN

e Dataflow analysis as an algebraic path problem

® Graph: control flow graph

® Algebra: transfer functions L — L (for some lattice L) [Graham & Wegman ’76]
¢ Efficient (almost linear time) algorithm for single-source path expression

problem
® Given: Graph G = (V, E) and root vertex r
® Compute: For each v € V, a path expression P(r, v) recognizing all paths from r
tovin G



Program summarization as an algebraic path problem

step = 8
while (true) do
m := @

while (m < step) do
if (n < @) then
halt
else
m :=m+ 1
n:=n-1



Program summarization as an algebraic path problem

step = 8 0

while (true) do |
m o= 0 step := 8
while (m < step) do 4
if (n < @) then
halt 7\
else [m > stepl] m := @
m :=m+ 1 \ ‘
n:=n-1 e(_'“
| n:=n-1
[m < step]



Program summarization as an algebraic path problem

step = 8 e

while (true) do

m := 0@ step := 8
while (m < step) do 4
if (n < 0) then e
halt 7\
else [m > stepl] m := 0
m :=m+ 1 \ ‘
n:=n-1 e(_—\
| n:=n-1
[m < step]
b 4
<€« [n < Q] =
Inner loop 6 " ?
(r,0) ((a,8) (0. ){e, ) (d, ) (e, 1) (0.0))"(a BB, ) e ) 0 > 0] -0
=m +

Vv m:
Outer loop 0,



Program summarization as an algebraic path problem

step = 8
while (true) do |
m = 0 step := 8
while (m < step) do 4
if ( A
hq Recursion on regular expression ~ recursion on program syntax
else 0
ml A[-] : Program — Summary
n A[S1; S2] = A[S1] - A[S2] \
Alif(x){ 51 }else{S:}] = A[S1] + A[S2] n:i=mn-1
Alwhile(x){S}] = (A[S])"
V‘- | A2 L2 |

Inner loop Y
(r, @) ({a, b) (b, (e, d)(d, €) (e, )" (b, @) (a, b) (b, ) (e, ) Ln 3
Outer loop Q,m :
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® SAT: No conclusion



Transition Formulas

e Transition formula F(X, X'): logical formula ~ binary relation on states
® X: pre-state variables
° X' £ {4 :z€ X}: post-state variables
tfix :=x+1)2x =x+1Ay =yAZ =z

e To verify an assertion:
@ Compute path expression R from entry to assert(P)
® Check TF[R] A —P(X)
® UNSAT: assertion verified v/
® SAT: No conclusion
* To bound time usage:
® Compute path expression R from entry to exit
* Redefine semantic function tf’(e) = tfe) ANt = t+ 1
* Maximize ¢ w.r.t. TF[R]
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Transition Formula Algebras

Universe: set of transition formulas F(X, X’) over a fixed set of variables X

0'F £ false Empty relation
1P 2 Ao =2 Identity relation
zeX
F TF A H
+ G=FVA{E Union
F-TF G2 3X" F(X, X") A GX', X') Relational composition
FTFa Approximate transitive closure

Qany different implementationD




Iteration

(=) : TF — TF

e |nput: transition formula summarizing loop body

® Regardless of structure of inner loop (nested loops, procedure calls, ...)
e Qutput: transition formula summarizing loop

® Qutput language is the same as input language!

¢ Related work in CAV community: loop summarization / acceleration
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e Houdini [Flanagan & Leino '01]
® Fix a finite set of predicates P.

® Infer loop invariants of the form ( /\ p) by fixpoint computation
pPEQCP



Ex. 1: Predicate abstraction

e Houdini [Flanagan & Leino '01]
® Fix a finite set of predicates P.

pPEQCP
e Transition predicate abstraction [Kroening et al. "08]
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Ex. 1: Predicate abstraction

e Houdini [Flanagan & Leino '01]
® Fix a finite set of predicates P.

pPEQCP
e Transition predicate abstraction [Kroening et al. "08]
* Fix finite set of transition predicates P such thateach p € Pis
° reflexive: X = X' | p(X, X').
e transitive: p(X, X') A p(X', X") = p(X, X).
* Examples: (z< ), (z>0= 42 >0), ...
* Non-examples: z < 2 (z> 0= (2 < x))
* lteration operator: F* = /\{p € P:FEp}

* No fixpoint computation (max |P| calls to an SMT solver).

® Infer loop invariants of the form ( /\ p) by fixpoint computation
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/\ a; <z < by
ze X
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Ex 2: Interval analysis

¢ Interval invariant for a loop is an inductive invariant of the form

/\awéxébz
e X
i = o 0<i<10A0<<I0X >
Jj=20;
while (i < 10 A j # 20 A j < 100)
1= 1+ 1;
j=3+ 1

3



Ex 2: Interval analysis

¢ Interval invariant for a loop is an inductive invariant of the form

/\axéxébz
zeX
1= 0;
Jj=0;
while (i < 10 A j # 20 A j < 100) {
1= 1+ 1;
J=it 1L
}

e Classical approach to computing interval invariants: iterative, using
widening/narrowing [Cousot & Cousot '76]

® Computes some interval invariant; not nessarily best
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Ex 2: Interval analysis

e Interval invariant for TF F(X, X'): for each variable z, a pair a, b, such that

= VX, X, ((/\ ay, < < bx> /\F(X,X’)) = N\ a<od<b,

zeX ze X

-~

Inv(A,B)

o *£VA B </I7V(A,B)/\ /\ a; < < bl) = /\ 4y < o < b,
zeX zeX
[Monniaux '09]

e F* entails all interval invariants of F.



Ex 3: Recurrence analysis
while (z > 0) do
if (y < @) then
T =zt y
y:=y-1
else
T :=x- 2
y =y -3

............................ loop body sas,

>0 ’ ’ .
(y<O0AX =x+yAy =y—1)
Vy>0AX =x—2Ay =y —2)



Ex 3: Recurrence analysis
while (z > 0) do
if (y < @) then

T =Tty PxX > . ,
y =y -1 ia( W<OAX =x+yny =y-1)
Wy > 0AX =x—2Ay =y —2)

............................ loop body .

else
T :=x- 2

: y® >y g :
(2x® — y My < (2D =Dy g



Ex 3: Recurrence analysis
while (z > 0) do

if (y <0 then i, loop body .
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while (z > 0) do

if (y <0 then i, loop body sas

Ti=x+y Sx >0 :
y =y -1 2 A (y<OAX =x+yAy =y—1)
olse Wy > 0AX =x—2Ay =y —2)) &
r =
Yy =
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* A linear recurrence relation for a TF F(X, X') is a formula of the form
a’x’ < a’x + bentailed by F
* x/x’ denote vectors containing X/ X’



Ex 3: Recurrence analysis

* A linear recurrence relation for a TF F(X, X') is a formula of the form
Tx' < a”x + bentailed by F
* x/x’ denote vectors containing X/ X’
* Rec(F) £ convex cone of all linear recurrence relations of F
® Rec(F) = valid inequalities of

A(F) & (EIXX’FXX’ N b= (2 x)

ze X
That is,
FEalx' <aTx+b <= A(F)=a’6<b

® Generators of Rec(F) can be computed from convex hull of A(F)
[Ancourt et al. '10, Farzan & K’2015]
® |.e., we can compute all implied linear recurrence relations



. and many more

Polynomial recurrence relations with polynomial / complex exponential closed
forms [K et al. "2018]

Polynomial recurrence relations with polynomial / rational exponential closed
forms [K et al. '2019]

e Vector addition systems [Silverman & K '19]

e QOctagonal relations [Bozga et al. '09]
Combinations thereof



Ex 4: Affine relation analysis [Karr ’76]

e An affine relation is a TF of the form Ax’ = Bx + ¢
® Subuniverse of transition formulas
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Ex 4: Affine relation analysis [Karr °76]

* An affine relation is a TF of the form Ax' = Bx + ¢
® Subuniverse of transition formulas
¢ Closed under relational composition, but not disjunction
* F+ G £ affine hull of FVvV G
¢ Lattice of affine relations has no infinite increasing chains
® 1C1+FC1+4+ F+ (FoF)C---reaches limit at some n < 2|X]

° F*éZFo~.~oF (Least solutionto F* o F+1 = F¥)
=0

7 times



Designing an algebraic analysis

@ Define:
® Semantic algebra A = (A, -, +, %,0,1)
® Semantic function f: £ — A

® Apply: Tarjan’s path expression algorithm



Iterative vs. algebraic program analysis

Iterative Framework \ Algebraic Framework
Join semi-lattice Semantic Algebra
Abstract transformers Semantic function

Chaotic iteration algorithm | Path-expression algorithm

Key differences
e Algebraic analyses are compositional
e Loop analysis is internal to an algebraic program analysis



	Regular algebraic program analysis
	Semantic foundations of algebraic program analysis
	Interprocedural analysis
	-regular program analysis

