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Goal

Efficiently find sound linear equalities
in programs using machine integers

Machine integers = w-bit ints
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Analyzing ints

Difficulties:

Arithmetic overflow: 12 + 7 ≡16 3
All even numbers are zero divisors: 2 · 8 ≡16 0
All odd numbers have inverses: 3 · 11 ≡16 1

Advantages:

Can represent some bit-level properties in linear equations:
8x ≡16 8 means x is odd
Fast operations on native ints
Int domains are finite lattices
Soundness: capture real semantics
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Int Domains

KS: Conjunction of affine constraints
MOS: Affine set of affine transformers

KS and MOS are two-vocabulary domains
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Two-vocabulary domain

Definition

If the set of concrete program states is S,
a two-vocabulary domain abstracts relations from S to S

“Standard” domains abstract program states,
Two-vocabulary domains abstract program transitions

Also called:

Sharir-Pneuli-style domain
Transformer domain
Transition domain
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Question 1

How can we adapt KS to
directly model w-bit ints?
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Symbolic Functions

Definition

Symbolic abstraction converts logical formulas
to overapproximating domain elements

Definition

Symbolic concretization converts domain elements
to overapproximating logical formulas
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Question 2

How can we perform
symbolic abstraction to MOS?
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Question 3

KS and MOS:
Which is more precise?
Which is more efficient?
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Outline

How can we adapt KS to directly model w-bit ints?
How can we perform symbolic abstraction to MOS?
Which is more precise, KS or MOS?
Which is more efficient, KS or MOS?
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How can we adapt KS to
directly model w-bit ints?
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KS Definition

KS element: Matrix of w-bit ints; each row encodes a constraint

Example

[ x y x ′ y ′ 1

5 7 9 12 6
5 1 9 2 8

]
:

5x + 7y + 9x’ + 12y’ + 6 = 0
and 5x + y + 9x’ + 2y’ + 8 = 0

Generalization of: King and Søndergaard, CAV 2008
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KS Definition

KS element: Matrix of w-bit ints; each row encodes a constraint

Example

[ x y x ′ y ′ 1

5 7 9 12 6
5 1 9 2 8

]
:

[
5 7 9 12 6
5 1 9 2 8

]
x
y
x ′

y ′

1

 =

[
0
0

]

Generalization of: King and Søndergaard, CAV 2008
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KS Compose

=

C = Project
([

Apre Apost 0 Ac

0 Bpre Bpost Bc

])
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KS Join

=

C = Project
([
−A A
B 0

])
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KS Join

=

C = Project
([
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B 0
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Project is the critical operation!
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Naive Project

1 Move lost variables to the left
2 Do Gaussian elimination
3 Drop every row constraining a lost variable
4 Drop the lost-variable columns

Example (Project onto x and x ′)

[ x y x ′ y ′ 1

9 5 12 7 6
9 5 2 3 8

]
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Naive Project

1 Move lost variables to the left
2 Do Gaussian elimination
3 Drop every row constraining a lost variable
4 Drop the lost-variable columns

Example (Project onto x and x ′)

But x ′ must be odd!

[ y y ′ x x ′ 1

5 7 9 12 6
0 12 0 6 2

]
⇒ 12y ′ + 6x ′ + 2 = 0
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Example (Project onto x and x ′)

But x ′ must be odd!

[ y y ′ x x ′ 1

5 7 9 12 6
0 12 0 6 2

]
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Naive Project
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Example (Project onto x and x ′)

But x ′ must be odd!

[ y y ′ x x ′ 1

5 7 9 12 6
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Naive Project
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But x ′ must be odd!
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Row Space

Definition

The row space of a matrix is the set
of linear combinations of its rows
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Null Space

Definition

The null space of a matrix is the set of values
whose product with the matrix is zero

The null space of A is {x |Ax = 0}
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Row Operations

Definition

A row operation is a matrix transformation
that adds or changes individual rows
without changing the matrix’s row space

Elder, Lim, Sharma, Andersen, Reps Abstract Domains of Affine Relations 19



Row Operations

Some Row Operations:

Scale a row by an odd number
Add a multiple of one row to another
Insert some multiple of a row into the matrix
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Row Operations

What if we scale a row by an even number?

Example

Scale first row by 2: [
1 0 0
0 1 0

]
→
[
2 0 0
0 1 0

]

First row space:
[
x y 0

]
for any x , any y

Second row space:
[
x y 0

]
for even x , any y
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Row-Echelon form

Definition

A matrix is in Row-Echelon Form if
each row has fewer leading zeroes than the next row

Example


∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 0 0 ∗
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Howell Form

Howell form is a normal form for int matrices

Like Gaussian Elimination,
Howellization preserves the row space
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Properties of Howell Form

Normal form for row spaces
Normal form for null spaces
Normal form for KS
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Properties of Howell Form

Normal form for row spaces
Normal form for null spaces
Normal form for KS

Simplifies checking KS equality
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Howell Form Definition

The matrix is in Row-Echelon form

Example

[
5 7 9 12 6
5 3 9 2 8

]
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Howell Form Definition

The matrix is in Row-Echelon form

Example

[
5 7 9 12 6
0 12 0 6 2

]
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Howell Form Definition

Leading values are powers of 2

Example

[
5 7 9 12 6
0 12 0 6 2

]
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Howell Form Definition

Leading values are powers of 2

Example

[
1 11 5 12 14
0 4 0 2 6

]
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Howell Form Definition

Leading values are largest in their columns

Example

[
1 11 5 12 14
0 4 0 2 6

]
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Howell Form Definition

Leading values are largest in their columns

Example

[
1 3 5 8 2
0 4 0 2 6

]
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Howell Form Definition

Every consequence of every row
is a linear combination of the matrix rows
that have at least as many leading zeros as the consequence
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Howell Form Definition

Every consequence of every row
is a linear combination of the matrix rows
that have at least as many leading zeros as the consequence

Definition

The vectors 2kv are the consequences of v

Example

The consequences of
[
0 4 0 2 6

]
are{[

0 8 0 4 4
]
,
[
0 0 0 8 8

]
,
[
0 0 0 0 0

]}
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Howell Form Definition

Every consequence of every row
is a linear combination of the matrix rows
that have at least as many leading zeros as the consequence

Example

1 3 5 0 10
0 4 0 2 6
0 0 0 8 8
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Precise Projection in KS

1 Move lost variables to the left
2 Howellize the matrix
3 Drop every row constraining a lost variable
4 Drop the lost-variable columns

Example (Project onto x and x ′)

[ x y x ′ y ′ 1

9 5 12 7 6
9 5 2 3 8

]
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Precise Projection in KS

1 Move lost variables to the left
2 Howellize the matrix
3 Drop every row constraining a lost variable
4 Drop the lost-variable columns

Example (Project onto x and x ′)
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1 3 5 0 10
0 4 0 2 6
0 0 0 8 8
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Precise Projection in KS

1 Move lost variables to the left
2 Howellize the matrix
3 Drop every row constraining a lost variable
4 Drop the lost-variable columns

Example (Project onto x and x ′)

[ x x ′ 1

0 8 8
]
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How can we adapt KS to
directly model w-bit ints?
Use Howell form for projection!
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Which is more precise, KS or MOS?
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MOS Definition

MOS element: a set of matrices of w-bit ints;
every affine combination those matrices
may transform the initial state

Example


1 0 0

0 1 4
0 0 1

 ,

1 0 0
0 1 6
0 0 1

 : ∃k :

1 0 0
0 1 2k
0 0 1

x
y
1

 =

x ′

y ′

1



See: Müller-Olm and Seidl, TOPLAS 2007
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MOS Compose

=

C = Basis {BjAi}
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MOS Join

=

C = Basis {A ∪ B}

Elder, Lim, Sharma, Andersen, Reps Abstract Domains of Affine Relations 34



Basis via Howellize

Can use Howellize for the Basis function

This allows easy equality checking!
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Non-Affine Constraints

MOS can represent non-affine constraints!

Example


1 0 0

1 0 0
0 0 1

 ,

0 1 0
0 1 0
0 0 1

 :
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Non-Affine Constraints

MOS can represent non-affine constraints!

Example


1 0 0

1 0 0
0 0 1

 ,

0 1 0
0 1 0
0 0 1

 : ∃k :

k 1− k 0
k 1− k 0
0 0 1

x
y
1

 =

x ′

y ′

1
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Non-Affine Constraints

MOS can represent non-affine constraints!

Example


1 0 0

1 0 0
0 0 1

 ,

0 1 0
0 1 0
0 0 1

 : ∃k : x ′ = y ′ = y + k(x − y)
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Assumes

Example

[[assume(x = 5)]] : x = x ′ ∧ y = y ′ ∧ x = 5

One of the best MOS transformers is


1 0 0

0 1 0
0 0 1


MOS cannot represent assumes!
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Assumes

Example

[[assume(x = 5)]] : x = x ′ ∧ y = y ′ ∧ x = 5

One of the best MOS transformers is
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Which is more precise, KS or MOS?
KS and MOS are incomparable
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Which is more efficient, KS or MOS?
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Naive Algorithms

For k variables:
KS MOS

Element size O(k2) O(k4)
Join O(k3) O(k6)

Compose O(k3) O(k7)
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Fast Algorithms

If ring matrix multiplication is O(kα), then:

KS MOS

Element size O(k2) O(k4)
Join O(kα) O(k2α)

Compose O(kα) O(k4+α)
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Experimental Setup

For eight small programs (500-4000 instructions):

1 Compute MOS and KS elements on program edges
2 Perform two-phase queries at the beginning

of basic blocks that end in branches
3 Compare MOS and KS precision at each query point
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Experimental Setup

Symbolic abstraction to build KS elements
Operator reinterpretation to build MOS elements

SMT is used only in devising initial KS elements
Not in KS’s analysis phases; nowhere in MOS
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Experimental Results: Precision

KS (with symbolic abstraction) was at least as precise
as MOS (with operator reinterpretation) at every query point

If this holds for KS with operator reinterpretation,
then MOS’s non-affine constraints don’t help for real programs
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Experimental Results: Construction Time

Constructing KS via symbolic abstraction took 325 times longer
than constructing MOS via operator reinterpretation

Constructing KS via operator reinterpretation: coming soon
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Experimental Results: Phase 1 Time

finger subst label chkdsk convert route logoff setup
0.0

0.5

1.0

1.5

2.0

2.5
T
im

e
 (

s)

MOS
KS
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Experimental Results: Phase 2 Time

finger subst label chkdsk convert route logoff setup
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
T
im

e
 (

s)

MOS
KS
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Experimental Conclusions

Overall, KS analysis time was 91% of MOS analysis time
Phase 1 time, KS/MOS: 94%
Phase 2 time, KS/MOS: 20%

Seems that KS analysis is somewhat
faster than MOS on real inputs
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Technical Highlights

Howell form allows projection in KS
Howell form is a normal form for KS and MOS
MOS can capture non-affine constraints
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Conclusions

KS for w-bit ints:
Needs no bit blasting
Now applies to larger programs

KS and MOS are mathematically incomparable
KS analysis is more efficient than MOS,
in theory and (provisionally) in practice
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