Outline

Regular algebraic program analysis
Semantic foundations of algebraic program analysis
Interprocedural analysis

ω-regular program analysis

Non-terminating state semantics

- Let P be program, given by a control flow graph $G=(V, E)$ with entry r
- Program configurations: $V \times$ State (where, say, State $\triangleq \mathbb{Z}^{X}$)
- Program transition relation: $\rightarrow_{P} \subseteq(V \times$ State $) \times(V \times$ State $)$
- Non-terminating state semantics: for each vertex v,

$$
N_{v} \triangleq\left\{s \in \text { State : exists } c_{1}, c_{2}, \ldots \text { with }\langle v, s\rangle \rightarrow_{P} c_{1} \rightarrow_{P} c_{2} \rightarrow_{P} \ldots\right\}
$$

Non-terminating state semantics

- Let P be program, given by a control flow graph $G=(V, E)$ with entry r
- Program configurations: $V \times$ State (where, say, State $\triangleq \mathbb{Z}^{X}$)
- Program transition relation: $\rightarrow_{P} \subseteq(V \times$ State $) \times(V \times$ State $)$
- Non-terminating state semantics: for each vertex v,

$$
N_{v} \triangleq\left\{s \in \text { State : exists } c_{1}, c_{2}, \ldots \text { with }\langle v, s\rangle \rightarrow_{P} c_{1} \rightarrow_{P} c_{2} \rightarrow_{P} \ldots\right\}
$$

- Equational formulation - greatest solution to:

$$
\begin{aligned}
& X_{r}=\left(\langle r, a\rangle \boxtimes X_{a}\right) \boxplus\left(\langle r, b\rangle \boxtimes X_{b}\right) \\
& X_{a}=\langle a, r\rangle \boxtimes X_{r} \\
& X_{b}=0
\end{aligned}
$$

Non-terminating state semantics

- Let P be program, given by a control flow graph $G=(V, E)$ with entry r
- Program configurations: $V \times$ State (where, say, State $\triangleq \mathbb{Z}^{X}$)
- Program transition relation: $\rightarrow_{P} \subseteq(V \times$ State $) \times(V \times$ State $)$
- Non-terminating state semantics: for each vertex v,

$$
N_{v} \triangleq\left\{s \in \text { State : exists } c_{1}, c_{2}, \ldots \text { with }\langle v, s\rangle \rightarrow_{P} c_{1} \rightarrow_{P} c_{2} \rightarrow_{P} \ldots\right\}
$$

- Equational formulation - greatest solution to:

$$
\begin{aligned}
& X_{r}=\left(\langle r, a\rangle \odot X_{a}\right) \boxplus\left(\langle r, b\rangle \oplus X_{b}\right) \\
& X_{a}=\langle a, r\rangle \oplus X_{r} \\
& X_{b}=0
\end{aligned}
$$

Non-terminating state semantics

- Let P be program, given by a control flow graph $G=(V, E)$ with entry r
- Program configurations: $V \times$ State (where, say, State $\triangleq \mathbb{Z}^{X}$)
- Program transition relation: $\rightarrow_{P} \subseteq(V \times$ State $) \times(V \times$ State $)$
- Non-terminating state semantics: for each vertex v,

$$
N_{v} \triangleq\left\{s \in \text { State : exists } c_{1}, c_{2}, \ldots \text { with }\langle v, s\rangle \rightarrow_{P} c_{1} \rightarrow_{P} c_{2} \rightarrow_{P} \ldots\right\}
$$

- Equational formulation - greatest solution to:

Closed-form solutions: ω-regular expressions

ω-regular expression syntax:

$$
\begin{aligned}
R \in \operatorname{Reg} \operatorname{Exp}(\Sigma) & ::=a|0| 1\left|R_{1}+R_{2}\right| R_{1} \cdot R_{2} \mid R^{*} \\
S \in \omega-\operatorname{Reg} \operatorname{Exp}(\Sigma) & ::=R^{\omega}\left|S_{1} \boxplus S_{2}\right| R \square S
\end{aligned}
$$

ω-regular expression semantics:
$\mathscr{L} \llbracket R^{\omega} \rrbracket=\left\{w \in \Sigma^{\omega}: w=v_{1} v_{2} v_{3} \ldots\right.$ for some $\left.v_{1}, v_{2}, \ldots \in \mathscr{L} \llbracket R \rrbracket\right\} \quad$ Infinite repetition
$\mathscr{L} \llbracket S_{1} \boxplus S_{2} \rrbracket=\mathscr{L} \llbracket R_{1} \rrbracket \cup \mathscr{L} \llbracket R_{2} \rrbracket$
$\mathscr{L} \llbracket R \boxminus S \rrbracket=\{v w: v \in \mathscr{L} \llbracket R \rrbracket, w \in \mathscr{L} \llbracket S \rrbracket\}$

Union
Prepend

- An interpretation \mathscr{I} consists of a regular algebra, a semantic function, and an ω-algebra
- An interpretation \mathscr{I} consists of a regular algebra, a semantic function, and an ω-algebra
- An ω-algebra $\mathbf{B}=\langle B, \boxplus, \boxtimes, \omega\rangle$ over a regular algebra A consists of
- A universe B
- Binary operation $\boxplus: B \times B \rightarrow B$ (choice)
- Binary operation $\square: A \times B \rightarrow B$ (prepend)
- Unary operation $(-)^{\omega}: A \rightarrow B$ (omega)

Non-terminating state interpretation

- Regular algebra: binary state relations
- ω-algebra Universe: set of (non-terminating) states

$$
\begin{array}{rlr}
R^{\omega} \triangleq\left\{s: \exists s_{1}, s_{2}, \ldots \text { with }\left\langle s, s_{1}\right\rangle,\left\langle s_{1}, s_{2}\right\rangle \cdots R\right\} & \text { Non-terminating states of } R \\
R \boxminus S \triangleq\left\{s: \exists s^{\prime} .\left\langle s, s^{\prime}\right\rangle \in R \wedge s^{\prime} \in S\right\} & \text { Preimage } \\
S_{1} \boxplus S_{2} \triangleq S_{1} \cup S_{2} & \text { Union }
\end{array}
$$

Non-terminating state interpretation

- Regular algebra: binary state relations
- ω-algebra Universe: set of (non-terminating) states

$$
\begin{array}{rlr}
R^{\omega} \triangleq\left\{s: \exists s_{1}, s_{2}, \ldots \text { with }\left\langle s, s_{1}\right\rangle,\left\langle s_{1}, s_{2}\right\rangle \cdots R\right\} & \text { Non-terminating states of } R \\
R \boxminus S \triangleq\left\{s: \exists s^{\prime} .\left\langle s, s^{\prime}\right\rangle \in R \wedge s^{\prime} \in S\right\} & \text { Preimage } \\
S_{1} \boxplus S_{2} \triangleq S_{1} \cup S_{2} & \text { Union }
\end{array}
$$

- Computing closed forms: Gaussian elmination
- Key step: $X=(R \boxtimes X) \boxplus S \rightsquigarrow X=R^{\omega}+\left(R^{*} \boxtimes S\right)$

Non-terminating state interpretation

- Regular algebra: binary state relations
- ω-algebra Universe: set of (non-terminating) states

$$
\begin{array}{rlr}
R^{\omega} \triangleq\left\{s: \exists s_{1}, s_{2}, \ldots \text { with }\left\langle s, s_{1}\right\rangle,\left\langle s_{1}, s_{2}\right\rangle \cdots R\right\} & \text { Non-terminating states of } R \\
R \boxminus S \triangleq\left\{s: \exists s^{\prime} .\left\langle s, s^{\prime}\right\rangle \in R \wedge s^{\prime} \in S\right\} & \text { Preimage } \\
S_{1} \boxplus S_{2} \triangleq S_{1} \cup S_{2} & \text { Union }
\end{array}
$$

- Computing closed forms: Gaussian elmination
- Key step: $X=(R \boxtimes X) \boxplus S \rightsquigarrow X=R^{\omega}+\left(R^{*} \boxtimes S\right)$
- Efficient algorithm: adapt Tarjan's path expression algorithm [Zhu \& K '21]

ω-path expressions

```
step = 8
while (true) do
    m := 0
    while ( }m< step\mathrm{ ) do
        if ( }n<0\mathrm{ ) then
        halt
    else
        m := m + 1
        n:= n-1
```


ω-path expressions

```
step = 8
while (true) do
    m := 0
    while ( }m< step\mathrm{ ) do
        if ( }n<0\mathrm{ ) then
            halt
    else
m := m + 1
n:= n-1
```


$[m<s t e p]$
$[n \geq 0]$
$n:=n-1$
$[m \geq$ step $] \quad m:=0$

Non-terminating state formula interpretation

- Regular algebra: transition formulas $F\left(X, X^{\prime}\right)$ over a fixed set of variables X
- ω-algebra Universe: set of state formulas $P(X)$ over X
- Interpretation: any non-terminating state must satisfy $P(X)$

$$
F \backsim P \triangleq \exists X^{\prime} . F\left(X, X^{\prime}\right) \wedge P\left(X^{\prime}\right)
$$

Preimage

Non-terminating state formula interpretation

- Regular algebra: transition formulas $F\left(X, X^{\prime}\right)$ over a fixed set of variables X
- ω-algebra Universe: set of state formulas $P(X)$ over X
- Interpretation: any non-terminating state must satisfy $P(X)$

$$
\begin{array}{rr}
F \text { ■ } P & \triangleq \exists X^{\prime} \cdot F\left(X, X^{\prime}\right) \wedge P\left(X^{\prime}\right)
\end{array} \text { Preimage }
$$

Non-terminating state formula interpretation

- Regular algebra: transition formulas $F\left(X, X^{\prime}\right)$ over a fixed set of variables X
- ω-algebra Universe: set of state formulas $P(X)$ over X
- Interpretation: any non-terminating state must satisfy $P(X)$

$$
\begin{aligned}
& F \odot P \triangleq \exists X^{\prime} \cdot F\left(X, X^{\prime}\right) \wedge P\left(X^{\prime}\right) \\
& P_{1} \boxminus P_{2} \triangleq P_{1} \vee P_{2} \\
& F^{\omega} \triangleq \ldots
\end{aligned}
$$

Preimage
Union
(Over-approximate) non-terminating states

Non-terminating state formula interpretation

- Regular algebra: transition formulas $F\left(X, X^{\prime}\right)$ over a fixed set of variables X
- ω-algebra Universe: set of state formulas $P(X)$ over X
- Interpretation: any non-terminating state must satisfy $P(X)$

$$
\begin{array}{rr}
F \unrhd P \triangleq \exists X^{\prime} . F\left(X, X^{\prime}\right) \wedge P\left(X^{\prime}\right) & \text { Preimage } \\
P_{1} \boxtimes P_{2} \triangleq P_{1} \vee P_{2} & \text { Union }
\end{array}
$$

$F^{\omega} \triangleq \ldots \quad$ (Over-approximate) non-terminating states

Ex. 1: Linear Ranking Functions

- A linear ranking function for a loop is a linear term that is non-negative and decreases at each iteration
- LRF exists \Rightarrow loop terminates
- For instance,

$$
\begin{aligned}
& \text { while }(l o<h i) \\
& \left.\begin{array}{l}
\text { if }(*) \text { then } h i:=h i-1 \\
\text { else } \\
\text { elo }:=l o+1
\end{array}\right\} \text { Ranking function: } h i-l o ~
\end{aligned}
$$

Ex. 1: Linear Ranking Functions

- A linear ranking function for a loop is a linear term that is non-negative and decreases at each iteration
- LRF exists \Rightarrow loop terminates
- For instance,

- Existence of LRFs for polyhedral loops is decidable [Podelski \& Rybalchenko '04]
- Loop body must be expressed as conjunction of linear inequations

Ex. 1: Linear Ranking Functions

- A linear ranking function for a loop is a linear term that is non-negative and decreases at each iteration
- LRF exists \Rightarrow loop terminates
- For instance,

$$
\begin{aligned}
& \text { while }(l o<h i) \\
& \text { if }(*) \text { then } h i:=h i-1 \\
& \text { else } \\
& l o:=l o+1
\end{aligned}
$$

- Existence of LRFs for polyhedral loops is decidable [Podelski \& Rybalchenko '04]
- Loop body must be expressed as conjunction of linear inequations
- Terminator: "lifts" LRF synthesis to whole programs using guess-and-check loop [Cook et al. '2006]

$$
\begin{aligned}
& \text { for }(i=0 ; i<4096 ; i++) \\
& \quad \text { for }(j=0 ; j<4096 ; j++)
\end{aligned}
$$

May not discover LRFs that exists

Ex. 2: Linear Ranking Functions

- A linear ranking function for a TF $F\left(X, X^{\prime}\right)$ is a linear term $t(X)$ such that
(1) (Non-negative) $F\left(X, X^{\prime}\right) \models t(X) \geq 0$

2. (Decreasing) $F\left(X, X^{\prime}\right) \models t(X)-1 \geq t\left(X^{\prime}\right)$

Ex. 2: Linear Ranking Functions

- A linear ranking function for a TF $F\left(X, X^{\prime}\right)$ is a linear term $t(X)$ such that
(1) (Non-negative) $F\left(X, X^{\prime}\right) \models t(X) \geq 0$
(2. (Decreasing) $F\left(X, X^{\prime}\right) \models t(X)-1 \geq t\left(X^{\prime}\right)$
- Existence of a LRF is decidable:
- F has a LRF iff convex hull of F has a LRF
- Existence of a LRF for a polyhedron can be checked by LP

Ex. 2: Linear Ranking Functions

- A linear ranking function for a TF $F\left(X, X^{\prime}\right)$ is a linear term $t(X)$ such that
(1) (Non-negative) $F\left(X, X^{\prime}\right) \models t(X) \geq 0$
(2. (Decreasing) $F\left(X, X^{\prime}\right) \models t(X)-1 \geq t\left(X^{\prime}\right)$
- Existence of a LRF is decidable:
- F has a LRF iff convex hull of F has a LRF
- Existence of a LRF for a polyhedron can be checked by LP
- $F^{\omega} \triangleq \begin{cases}\text { false } & \text { if } F \text { has an LRF } \\ \operatorname{dom}(F) & \text { otherwise }\end{cases}$
where $\operatorname{dom}(F) \triangleq \exists X^{\prime} . F\left(X, X^{\prime}\right)$ - set of states with F-successors

Ex. 2: Linear Ranking Functions

- A linear ranking function for a TF $F\left(X, X^{\prime}\right)$ is a linear term $t(X)$ such that
(1) (Non-negative) $F\left(X, X^{\prime}\right) \models t(X) \geq 0$

2. (Decreasing) $F\left(X, X^{\prime}\right) \models t(X)-1 \geq t\left(X^{\prime}\right)$

- Existence of a LRF is decidable:
- F has a LRF iff convex hull of F has a LRF
- Existence of a LRF for a polyhedron can be checked by LP
- $F^{\omega} \triangleq \begin{cases}\text { false } & \text { if } F \text { has an LRF } \\ \operatorname{dom}(F) & \text { otherwise }\end{cases}$
where $\operatorname{dom}(F) \triangleq \exists X^{\prime} . F\left(X, X^{\prime}\right)$ - set of states with F-successors
- Also works for linear lexicographic ranking functions [Gonnord et al. '2015], and more
- Completeness $\Rightarrow \omega$ is monotone

Ex. 2: Termination analysis for free

- Any overapproximate transitive closure operator $(-)^{*}$ induces a conditional termination analysis $(-)^{\omega}$ [Zhu \& K '21]

Ex. 2: Termination analysis for free

- Any overapproximate transitive closure operator $(-)^{*}$ induces a conditional termination analysis $(-)^{\omega}$ [Zhu \& K '21]
- Over-approximate k-fold composition of F with

$$
F^{[k]} \triangleq\left(F \wedge k^{\prime}=k-1\right)^{*}\left[k^{\prime} \mapsto 0\right]
$$

Ex. 2: Termination analysis for free

- Any overapproximate transitive closure operator $(-)^{*}$ induces a conditional termination analysis $(-)^{\omega}$ [Zhu \& K '21]
- Over-approximate k-fold composition of F with

$$
F^{[k]} \triangleq\left(F \wedge k^{\prime}=k-1\right)^{*}\left[k^{\prime} \mapsto 0\right]
$$

- $F^{\omega} \triangleq \forall k . k \geq 0 \Rightarrow\left(\exists X^{\prime} . F^{[k]}\left(X, X^{\prime}\right) \wedge \operatorname{dom}(F)\left(X^{\prime}\right)\right)$

Ex. 2: Termination analysis for free

- Any overapproximate transitive closure operator $(-)^{*}$ induces a conditional termination analysis $(-)^{\omega}$ [Zhu \& K '21]
- Over-approximate k-fold composition of F with

$$
F^{[k]} \triangleq\left(F \wedge k^{\prime}=k-1\right)^{*}\left[k^{\prime} \mapsto 0\right]
$$

- $F^{\omega} \triangleq \forall k . k \geq 0 \Rightarrow\left(\exists X^{\prime} . F^{[k]}\left(X, X^{\prime}\right) \wedge \operatorname{dom}(F)\left(X^{\prime}\right)\right)$

$$
F: i \neq n \wedge i^{\prime}=i+2 \wedge n^{\prime}=n
$$

while ($i \neq n$)
$F^{[k]}: i^{\prime}=i+2 k \wedge n^{\prime}=n$ (Recurrence analysis)
i := $i+2$

$$
\begin{aligned}
& \operatorname{dom}(F): i \neq n \\
& F^{\omega}: i>n \vee(n-i \equiv 1 \bmod 2)
\end{aligned}
$$

Advertisement

- Reflections on Termination of Linear Loops with Shaowei Zhu, on Wednesday
- Applies decision procedures for linear loops to general transition formulas
- Algebraic termination analysis "lifts" loop termination analysis to whole-program termination analysis

Challenges \& Future Directions

The context problem

- Compositionality implies loss of context. When analyzing a piece of code:
- We don't know what initial states it might start in (forwards context)
- We don't know what final states might lead to a subsequent failure (backwards context)

$$
x:=0
$$

$$
c:=1
$$

$$
\mathrm{n}:=100
$$

while ($x<n$):
x := $x+c$
$\operatorname{assert}(x==n)$

The context problem

- Compositionality implies loss of context. When analyzing a piece of code:
- We don't know what initial states it might start in (forwards context)
- We don't know what final states might lead to a subsequent failure (backwards context)

$$
x:=0
$$

c := 1
n := 100
while $(x<n)$:
100
$x:=x+$
$\operatorname{assert}(x==n) 100$

The context problem

- Compositionality implies loss of context. When analyzing a piece of code:
- We don't know what initial states it might start in (forwards context)
- We don't know what final states might lead to a subsequent failure (backwards context)

```
x := 0
c := 1
n := 100
while(x < n)
    x := x + c
assert(x == n)
```


The context problem

- Compositionality implies loss of context. When analyzing a piece of code:
- We don't know what initial states it might start in (forwards context)
- We don't know what final states might lead to a subsequent failure (backwards context)

```
x := 0
```

$$
\exists k .((k \geq 1 \wedge x<n) \vee k=0) \wedge x^{\prime}=x+k c \ldots
$$

while $(x<n)$:
x := $x+c$
assert(x == n)

The context problem

- Compositionality implies loss of context. When analyzing a piece of code:
- We don't know what initial states it might start in (forwards context)
- We don't know what final states might lead to a subsequent failure (backwards context)

```
x := 0
```

c := 1
$n:=100$
while ($x<n$):
$x \quad:=x+c$
assert(x == n)

- Challenge: How can we design precise compositional analyses?

Scaling SMT-based algebraic analysis

- Complexity of algebraic program analysis is nearly linear in program size
- ... assuming unit-cost for each operation of the algebra
- Transition formula algebras are not unit cost!

$$
\rightrightarrows \cdot \rightrightarrows \cdot \rightrightarrows \cdots \rightrightarrows \cdot x:=x+1
$$

- Expression DAG with n nodes, corresponding to formula of size 2^{n}

Scaling SMT-based algebraic analysis

- Complexity of algebraic program analysis is nearly linear in program size
- ... assuming unit-cost for each operation of the algebra
- Transition formula algebras are not unit cost!

$$
\rightrightarrows \cdot \rightrightarrows \cdot \rightrightarrows \cdots \rightrightarrows \cdot x:=x+1
$$

- Expression DAG with n nodes, corresponding to formula of size 2^{n}
- Challenge: How can we scale SMT-based algebraic analyses?
- Efficient reasoning about λ abstractions
- Formula simplification

Recursive procedures

- Problem: the set of paths through a recursive procedure is not regular

Recursive procedures

- Problem: the set of paths through a recursive procedure is not regular
- Partial solution: the set of paths through a linearly recursive procedure can be captured by a tensored regular expression

Recursive procedures

- Problem: the set of paths through a recursive procedure is not regular
- Partial solution: the set of paths through a linearly recursive procedure can be captured by a tensored regular expression
- Challenge: How can the algebraic approach be applied to summarize arbitrary recursive procedures?
- What is an appropriate language of "closed forms"? (recognizing context-free grammars)
- How can we design a practical abstract interpretation of such a language?

Expanding the scope of algebraic program analysis

- Current state-of-the-art of algebraic program analysis: numerical invariant generation \& termination analysis

Expanding the scope of algebraic program analysis

- Current state-of-the-art of algebraic program analysis: numerical invariant generation \& termination analysis
- Challenge: How can we design algebraic program analyses for
- Reasoning about arrays
- Reasoning about memory
- Property refutation
- ...?

Summary

- Algebraic program analysis is a framework for building compositional program analyses

Summary

- Algebraic program analysis is a framework for building compositional program analyses
- Loop analysis internal to the analysis
- Opens the door to new ways of analyzing loops
- Can achieve theoretical guarantees about analysis behavior
- Can use the language of algebra to reason about analysis behavior

Summary

- Algebraic program analysis is a framework for building compositional program analyses
- Loop analysis internal to the analysis
- Opens the door to new ways of analyzing loops
- Can achieve theoretical guarantees about analysis behavior
- Can use the language of algebra to reason about analysis behavior
- Lots of work to be done!

