
Outline

Regular algebraic program analysis

Semantic foundations of algebraic program analysis

Interprocedural analysis

ωregular program analysis



Motivation

1 What it would mean to apply algebraic program analyis beyond the framework
of algebraic path properties?

• Set of paths of interest may not be regular (recursive procedures)
• Paths of interest may not be finite (termination)

2 What does it mean for an algebraic program analysis to be correct?
• How do we prove it?

3 How can we reason about the impact of program transformation on analysis?



General picture for algebraic program analysis

• Suppose we have a system of recursive E = {Xi = Ri}n
i=1 defining the

semantics of a program
• Some concrete interpretation I ♮ = ⟨A♮, f♮⟩
• Interested in least solution σ♮ : X → A♮ to E over I ♮: σ(Xi) = I JRi[σ

♮]K for all i

• Want to approximate this semantics [Cousot & Cousot ’77]
• Some abstract interpretation I ♯ = ⟨A♯, f♯⟩
• Some approximation relation ⊩⊆ A♮ × A♯

• p♮ ⊩ p♯: “p♮ is approximated by p♯”
• Want: σ♯ : {Xi}n

i=1 → A♯ s.t. σ♮(Xi) ⊩ σ♯(Xi) for all i
• The algebraic method:

1 Symbolically compute a closedform solution to the system, E′ = {Xi = R′
i}n

i=1

• Righthandsides R′
i do not contain variables

• E and E′ have same least solution over I ♮

2 Interpret the closed forms over I ♯

• σ♯(Xi) ≜ I ♯JR′
iK



General picture for algebraic program analysis

• Suppose we have a system of recursive E = {Xi = Ri}n
i=1 defining the

semantics of a program
• Some concrete interpretation I ♮ = ⟨A♮, f♮⟩
• Interested in least solution σ♮ : X → A♮ to E over I ♮: σ(Xi) = I JRi[σ

♮]K for all i
• Want to approximate this semantics [Cousot & Cousot ’77]

• Some abstract interpretation I ♯ = ⟨A♯, f♯⟩
• Some approximation relation ⊩⊆ A♮ × A♯

• p♮ ⊩ p♯: “p♮ is approximated by p♯”
• Want: σ♯ : {Xi}n

i=1 → A♯ s.t. σ♮(Xi) ⊩ σ♯(Xi) for all i

• The algebraic method:
1 Symbolically compute a closedform solution to the system, E′ = {Xi = R′

i}n
i=1

• Righthandsides R′
i do not contain variables

• E and E′ have same least solution over I ♮

2 Interpret the closed forms over I ♯

• σ♯(Xi) ≜ I ♯JR′
iK



General picture for algebraic program analysis

• Suppose we have a system of recursive E = {Xi = Ri}n
i=1 defining the

semantics of a program
• Some concrete interpretation I ♮ = ⟨A♮, f♮⟩
• Interested in least solution σ♮ : X → A♮ to E over I ♮: σ(Xi) = I JRi[σ

♮]K for all i
• Want to approximate this semantics [Cousot & Cousot ’77]

• Some abstract interpretation I ♯ = ⟨A♯, f♯⟩
• Some approximation relation ⊩⊆ A♮ × A♯

• p♮ ⊩ p♯: “p♮ is approximated by p♯”
• Want: σ♯ : {Xi}n

i=1 → A♯ s.t. σ♮(Xi) ⊩ σ♯(Xi) for all i
• The algebraic method:

1 Symbolically compute a closedform solution to the system, E′ = {Xi = R′
i}n

i=1

• Righthandsides R′
i do not contain variables

• E and E′ have same least solution over I ♮

2 Interpret the closed forms over I ♯

• σ♯(Xi) ≜ I ♯JR′
iK



Relational semantics

• Let P be program, given by a control flow graph G = (V,E) with entry r
• Program configurations: V × State (where, say, State ≜ ZX)
• Program transition relation: →P⊆ (V × State)× (V × State)

• Relational semantics: For each vertex v,

Rv ≜ {⟨s, s′⟩ ∈ State× State : ⟨r, s⟩ →∗
P ⟨v, s′⟩}

Program can reach ⟨v, s′⟩ from initial state ⟨r, s⟩



Relational interpretation

Universe: binary relations over states

0 ≜ ∅ Empty relation
1 ≜ {⟨s, s⟩ : s ∈ ZX} Identity relation

R · S ≜ {(s, s′′) : ∃s′.(s, s′) ∈ R ∧ (s′, s′′) ∈ S} Relational composition
R + S ≜ R ∪ S Union

R∗ ≜
∞⋃

i=0

R ◦ · · · ◦ R︸ ︷︷ ︸
i times

Reflexive transitive closure



Equational formulation of relational semantics

Control flow graph corresponds to leftlinear system of equations equations
r

a

b

c

d

e
f

i := 0

j := 0 [i < 1000] i := i + 2

[j < 500]j := j + 1

[j ≥ 500]

i ≥ 1000

Xr = 1

Xa = Xr · ⟨r, a⟩
Xb = Xa · ⟨a, b⟩ + Xd · ⟨d, b⟩+ Xe · ⟨e, b⟩
Xc = Xb · ⟨b, c⟩
Xd = Xc · ⟨c, d⟩
Xe = Xd · ⟨d, e⟩
Xf = Xb · ⟨b, f⟩



Equational formulation of relational semantics

Control flow graph corresponds to leftlinear system of equations equations
r

a

b

c

d

e
f

i := 0

j := 0 [i < 1000] i := i + 2

[j < 500]j := j + 1

[j ≥ 500]

i ≥ 1000

Xr = 1

Xa = Xr · ⟨r, a⟩
Xb = Xa · ⟨a, b⟩ + Xd · ⟨d, b⟩+ Xe · ⟨e, b⟩
Xc = Xb · ⟨b, c⟩
Xd = Xc · ⟨c, d⟩
Xe = Xd · ⟨d, e⟩
Xf = Xb · ⟨b, f⟩

Least solution σ♮ coincides with relational semantics.

σ♮(Xv) = Rv = {⟨s, s′⟩ ∈ State× State : ⟨r, s⟩ →∗
P ⟨v, s′⟩}



Abstract interpretation

Concrete interpretation
I ♮ = ⟨A♮, f♮⟩

Abstract interpretation
I ♯ = ⟨A♯, f♯⟩

Approx. relation

⊩⊆ A♮ × A♯

State relations Transition formulas

(R ⊩ F ⇐⇒ every ⟨s, s′⟩ ∈ R is a model of F



Abstract interpretation

Concrete interpretation
I ♮ = ⟨A♮, f♮⟩

Abstract interpretation
I ♯ = ⟨A♯, f♯⟩

Approx. relation

⊩⊆ A♮ × A♯

State relations Transition formulas

(R ⊩ F ⇐⇒ every ⟨s, s′⟩ ∈ R is a model of F



Abstract interpretation

Concrete interpretation
I ♮ = ⟨A♮, f♮⟩

Abstract interpretation
I ♯ = ⟨A♯, f♯⟩

Approx. relation

⊩⊆ A♮ × A♯

State relations Transition formulas

(R ⊩ F ⇐⇒ every ⟨s, s′⟩ ∈ R is a model of F



Computing closed form solutions

Variable elimination ∼ GaussJordan

Xr = 1
Xa = Xr · ⟨r, a⟩
Xb = Xa · ⟨a, b⟩+ Xd · ⟨d, b⟩+ Xe · ⟨e, b⟩
Xc = Xb · ⟨b, c⟩
Xd = Xc · ⟨c, d⟩
Xe = Xd · ⟨d, e⟩
Xf = Xb · ⟨b, f⟩



Computing closed form solutions

Variable elimination ∼ GaussJordan

Xr = 1
Xa = ⟨r, a⟩
Xb = Xa · ⟨a, b⟩+ Xd · ⟨d, b⟩+ Xe · ⟨e, b⟩
Xc = Xb · ⟨b, c⟩
Xd = Xc · ⟨c, d⟩
Xe = Xd · ⟨d, e⟩
Xf = Xb · ⟨b, f⟩



Computing closed form solutions

Variable elimination ∼ GaussJordan

Xr = 1
Xa = ⟨r, a⟩
Xb = ⟨r, a⟩ · ⟨a, b⟩+ Xd · ⟨d, b⟩+ Xe · ⟨e, b⟩
Xc = Xb · ⟨b, c⟩
Xd = Xc · ⟨c, d⟩
Xe = Xd · ⟨d, e⟩
Xf = Xb · ⟨b, f⟩



Computing closed form solutions

Variable elimination ∼ GaussJordan

Xr = 1
Xa = ⟨r, a⟩
Xb = ⟨r, a⟩ · ⟨a, b⟩+ Xd · ⟨d, b⟩+ Xe · ⟨e, b⟩
Xc = Xb · ⟨b, c⟩
Xd = Xb · ⟨b, c⟩ · ⟨c, d⟩
Xe = Xd · ⟨d, e⟩
Xf = Xb · ⟨b, f⟩



Computing closed form solutions

Variable elimination ∼ GaussJordan

Xr = 1
Xa = ⟨r, a⟩
Xb = ⟨r, a⟩ · ⟨a, b⟩+ Xb · ⟨b, c⟩ · ⟨c, d⟩ · ⟨d, b⟩+ Xe · ⟨e, b⟩
Xc = Xb · ⟨b, c⟩
Xd = Xb · ⟨b, c⟩ · ⟨c, d⟩
Xe = Xb · ⟨b, c⟩ · ⟨c, d⟩ · ⟨d, e⟩
Xf = Xb · ⟨b, f⟩



Computing closed form solutions

Variable elimination ∼ GaussJordan

Xr = 1
Xa = ⟨r, a⟩
Xb = ⟨r, a⟩ · ⟨a, b⟩+ Xb · ⟨b, c⟩ · ⟨c, d⟩ · ⟨d, b⟩+ Xb · ⟨b, c⟩ · ⟨c, d⟩ · ⟨d, e⟩ · ⟨e, b⟩
Xc = Xb · ⟨b, c⟩
Xd = Xb · ⟨b, c⟩ · ⟨c, d⟩
Xe = Xb · ⟨b, c⟩ · ⟨c, d⟩ · ⟨d, e⟩
Xf = Xb · ⟨b, f⟩



Computing closed form solutions

Variable elimination ∼ GaussJordan

Xr = 1
Xa = ⟨r, a⟩
Xb = ⟨r, a⟩ · ⟨a, b⟩+ Xb · (⟨b, c⟩ · ⟨c, d⟩ · (⟨d, b⟩+ ⟨d, e⟩ · ⟨e, b⟩))
Xc = Xb · ⟨b, c⟩
Xd = Xb · ⟨b, c⟩ · ⟨c, d⟩
Xe = Xb · ⟨b, c⟩ · ⟨c, d⟩ · ⟨d, e⟩
Xf = Xb · ⟨b, f⟩



Computing closed form solutions

Variable elimination ∼ GaussJordan

Xr = 1
Xa = ⟨r, a⟩
Xb = ⟨r, a⟩ · ⟨a, b⟩ · (⟨b, c⟩ · ⟨c, d⟩ · (⟨d, b⟩+ ⟨d, e⟩ · ⟨e, b⟩))∗
Xc = Xb · ⟨b, c⟩
Xd = Xb · ⟨b, c⟩ · ⟨c, d⟩
Xe = Xb · ⟨b, c⟩ · ⟨c, d⟩ · ⟨d, e⟩
Xf = Xb · ⟨b, f⟩

AB∗ is least solution to X = A + XB



Computing closed form solutions

Variable elimination ∼ GaussJordan

Xr = 1
Xa = ⟨r, a⟩
Xb = ⟨r, a⟩ · ⟨a, b⟩ · (⟨b, c⟩ · ⟨c, d⟩ · (⟨d, b⟩+ ⟨d, e⟩ · ⟨e, b⟩))∗
Xc = ⟨r, a⟩ · ⟨a, b⟩ · (⟨b, c⟩ · ⟨c, d⟩ · (⟨d, b⟩+ ⟨d, e⟩ · ⟨e, b⟩))∗ · ⟨b, c⟩
Xd = ⟨r, a⟩ · ⟨a, b⟩ · (⟨b, c⟩ · ⟨c, d⟩ · (⟨d, b⟩+ ⟨d, e⟩ · ⟨e, b⟩))∗ · ⟨b, c⟩ · ⟨c, d⟩
Xe = ⟨r, a⟩ · ⟨a, b⟩ · (⟨b, c⟩ · ⟨c, d⟩ · (⟨d, b⟩+ ⟨d, e⟩ · ⟨e, b⟩))∗ · ⟨b, c⟩ · ⟨c, d⟩ · ⟨d, e⟩
Xf = ⟨r, a⟩ · ⟨a, b⟩ · (⟨b, c⟩ · ⟨c, d⟩ · (⟨d, b⟩+ ⟨d, e⟩ · ⟨e, b⟩))∗ · ⟨b, f⟩



Computing closed form solutions

Variable elimination ∼ GaussJordan

Xr = 1
Xa = ⟨r, a⟩
Xb = ⟨r, a⟩ · ⟨a, b⟩ · (⟨b, c⟩ · ⟨c, d⟩ · (⟨d, b⟩+ ⟨d, e⟩ · ⟨e, b⟩))∗
Xc = ⟨r, a⟩ · ⟨a, b⟩ · (⟨b, c⟩ · ⟨c, d⟩ · (⟨d, b⟩+ ⟨d, e⟩ · ⟨e, b⟩))∗ · ⟨b, c⟩
Xd = ⟨r, a⟩ · ⟨a, b⟩ · (⟨b, c⟩ · ⟨c, d⟩ · (⟨d, b⟩+ ⟨d, e⟩ · ⟨e, b⟩))∗ · ⟨b, c⟩ · ⟨c, d⟩
Xe = ⟨r, a⟩ · ⟨a, b⟩ · (⟨b, c⟩ · ⟨c, d⟩ · (⟨d, b⟩+ ⟨d, e⟩ · ⟨e, b⟩))∗ · ⟨b, c⟩ · ⟨c, d⟩ · ⟨d, e⟩
Xf = ⟨r, a⟩ · ⟨a, b⟩ · (⟨b, c⟩ · ⟨c, d⟩ · (⟨d, b⟩+ ⟨d, e⟩ · ⟨e, b⟩))∗ · ⟨b, f⟩

Solving singlesource path expression problem
∼ computing closedform solution to leftlinear equations



Abstract interpretation of closed forms

σ♯(Xr) ≜ I ♯J1K
σ♯(Xa) ≜ I ♯J⟨r, a⟩K
σ♯(Xb) ≜ I ♯J⟨r, a⟩ · ⟨a, b⟩ · (⟨b, c⟩ · ⟨c, d⟩ · (⟨d, b⟩+ ⟨d, e⟩ · ⟨e, b⟩))∗K
σ♯(Xc) ≜ I ♯J⟨r, a⟩ · ⟨a, b⟩ · (⟨b, c⟩ · ⟨c, d⟩ · (⟨d, b⟩+ ⟨d, e⟩ · ⟨e, b⟩))∗ · ⟨b, c⟩K
σ♯(Xd) ≜ I ♯J⟨r, a⟩ · ⟨a, b⟩ · (⟨b, c⟩ · ⟨c, d⟩ · (⟨d, b⟩+ ⟨d, e⟩ · ⟨e, b⟩))∗ · ⟨b, c⟩ · ⟨c, d⟩K
σ♯(Xe) ≜ I ♯J⟨r, a⟩ · ⟨a, b⟩ · (⟨b, c⟩ · ⟨c, d⟩ · (⟨d, b⟩+ ⟨d, e⟩ · ⟨e, b⟩))∗ · ⟨b, c⟩ · ⟨c, d⟩ · ⟨d, e⟩K
σ♯(Xf) ≜ I ♯J⟨r, a⟩ · ⟨a, b⟩ · (⟨b, c⟩ · ⟨c, d⟩ · (⟨d, b⟩+ ⟨d, e⟩ · ⟨e, b⟩))∗ · ⟨b, f⟩K

Abstract semantics σ♯ overapproximates concrete semantics σ♮



Soundness relations

• Say that a approximation relation ⊩ is soundness relation if
1 f♮(a) ⊩ f♯(a) for each constant a
2 ⊩ is compatible with all operations (⊩ a subalgebra of A♮ × A♯)

• Key lemma: ⊩ is a soundness relation ⇒ I ♮JeK ⊩ I ♯JeK for any e
• For instance:

R ⊩ F(X,X′) ⇐⇒ every ⟨s, s′⟩ ∈ R is a model of F

For all R,S transition relations
F,G transition formulas

such that R ⊩ F S ⊩ G
We have:

• ·: {(s, s′′) : ∃s′.(s, s′) ∈ R ∧ (s′, s′′) ∈ S} ⊩ ∃X′′.F(X,X′′) ∧ G(X′′,X′)
• +: R ∪ S ⊩ F ∨ G
• ∗: overapproximate transitive closure



Soundness relations

• Say that a approximation relation ⊩ is soundness relation if
1 f♮(a) ⊩ f♯(a) for each constant a
2 ⊩ is compatible with all operations (⊩ a subalgebra of A♮ × A♯)

• Key lemma: ⊩ is a soundness relation ⇒ I ♮JeK ⊩ I ♯JeK for any e

• For instance:

R ⊩ F(X,X′) ⇐⇒ every ⟨s, s′⟩ ∈ R is a model of F

For all R,S transition relations
F,G transition formulas

such that R ⊩ F S ⊩ G
We have:

• ·: {(s, s′′) : ∃s′.(s, s′) ∈ R ∧ (s′, s′′) ∈ S} ⊩ ∃X′′.F(X,X′′) ∧ G(X′′,X′)
• +: R ∪ S ⊩ F ∨ G
• ∗: overapproximate transitive closure



Soundness relations

• Say that a approximation relation ⊩ is soundness relation if
1 f♮(a) ⊩ f♯(a) for each constant a
2 ⊩ is compatible with all operations (⊩ a subalgebra of A♮ × A♯)

• Key lemma: ⊩ is a soundness relation ⇒ I ♮JeK ⊩ I ♯JeK for any e
• For instance:

R ⊩ F(X,X′) ⇐⇒ every ⟨s, s′⟩ ∈ R is a model of F

For all R,S transition relations
F,G transition formulas

such that R ⊩ F S ⊩ G
We have:

• ·: {(s, s′′) : ∃s′.(s, s′) ∈ R ∧ (s′, s′′) ∈ S} ⊩ ∃X′′.F(X,X′′) ∧ G(X′′,X′)
• +: R ∪ S ⊩ F ∨ G
• ∗: overapproximate transitive closure



The algebraic recipe

1 (Modeling) formulate problem of interest as extremal solution to system of
equations

2 (Closed forms) design language of “closed forms” & algorithm for computing
them

3 (Interpretation) design abstract interpretation & formulate soundness relation



Algebraic reasoning

• Transition formula algebras form idempotent semirings
• + is associative, commutative, and idempotent, and has identity 0
• · is associative, has identity 1, distributes over +, 0 is annihilator

• The ∗ operators from last section satisfy preKleene algebra iteration laws.
• Monotonicity F ≤ G ⇒ F∗ ≤ G∗, where x ≤ y ⇐⇒ x + y = y

• “more information in → more information out”
• Unrolling (Fn)∗ ≤ F∗ for any n
• ... and more

• Laws give users guarantees they mey rely upon
• Every operation is monotone: user can make progress by supplying “hints”

• Laws give analysis designers guarantees they may exploit
• Design program transformations that are guaranteed to improve precision

[Cyphert et al. ’19]



Algebraic reasoning

• Transition formula algebras form idempotent semirings
• + is associative, commutative, and idempotent, and has identity 0
• · is associative, has identity 1, distributes over +, 0 is annihilator

• The ∗ operators from last section satisfy preKleene algebra iteration laws.
• Monotonicity F ≤ G ⇒ F∗ ≤ G∗, where x ≤ y ⇐⇒ x + y = y

• “more information in → more information out”
• Unrolling (Fn)∗ ≤ F∗ for any n
• ... and more

• Laws give users guarantees they mey rely upon
• Every operation is monotone: user can make progress by supplying “hints”

• Laws give analysis designers guarantees they may exploit
• Design program transformations that are guaranteed to improve precision

[Cyphert et al. ’19]



Algebraic reasoning

• Transition formula algebras form idempotent semirings
• + is associative, commutative, and idempotent, and has identity 0
• · is associative, has identity 1, distributes over +, 0 is annihilator

• The ∗ operators from last section satisfy preKleene algebra iteration laws.
• Monotonicity F ≤ G ⇒ F∗ ≤ G∗, where x ≤ y ⇐⇒ x + y = y

• “more information in → more information out”
• Unrolling (Fn)∗ ≤ F∗ for any n
• ... and more

• Laws give users guarantees they mey rely upon
• Every operation is monotone: user can make progress by supplying “hints”

• Laws give analysis designers guarantees they may exploit
• Design program transformations that are guaranteed to improve precision

[Cyphert et al. ’19]



Algebraic reasoning

• Transition formula algebras form idempotent semirings
• + is associative, commutative, and idempotent, and has identity 0
• · is associative, has identity 1, distributes over +, 0 is annihilator

• The ∗ operators from last section satisfy preKleene algebra iteration laws.
• Monotonicity F ≤ G ⇒ F∗ ≤ G∗, where x ≤ y ⇐⇒ x + y = y

• “more information in → more information out”
• Unrolling (Fn)∗ ≤ F∗ for any n
• ... and more

• Laws give users guarantees they mey rely upon
• Every operation is monotone: user can make progress by supplying “hints”

• Laws give analysis designers guarantees they may exploit
• Design program transformations that are guaranteed to improve precision

[Cyphert et al. ’19]


	Regular algebraic program analysis
	Semantic foundations of algebraic program analysis
	Interprocedural analysis
	-regular program analysis

