Outline

Regular algebraic program analysis

Semantic foundations of algebraic program analysis

Interprocedural analysis
ω-regular program analysis

Motivation

(1) What it would mean to apply algebraic program analyis beyond the framework of algebraic path properties?

- Set of paths of interest may not be regular (recursive procedures)
- Paths of interest may not be finite (termination)
(2) What does it mean for an algebraic program analysis to be correct?
- How do we prove it?
(3) How can we reason about the impact of program transformation on analysis?

General picture for algebraic program analysis

- Suppose we have a system of recursive $E=\left\{X_{i}=R_{i}\right\}_{i=1}^{n}$ defining the semantics of a program
- Some concrete interpretation $\mathscr{I}^{\natural}=\left\langle A^{\natural}, f^{\natural}\right\rangle$
- Interested in least solution $\sigma^{\natural}: X \rightarrow A^{\natural}$ to E over $\mathscr{I}^{\natural}: \sigma\left(X_{i}\right)=\mathscr{I}\left[R_{i}\left[\sigma^{\natural}\right]\right]$ for all i

General picture for algebraic program analysis

- Suppose we have a system of recursive $E=\left\{X_{i}=R_{i}\right\}_{i=1}^{n}$ defining the semantics of a program
- Some concrete interpretation $\mathscr{I}^{\natural}=\left\langle A^{\natural}, f^{\natural}\right\rangle$
- Interested in least solution $\sigma^{\natural}: X \rightarrow A^{\natural}$ to E over $\mathscr{I}^{\natural}: \sigma\left(X_{i}\right)=\mathscr{I} \llbracket R_{i}\left[\sigma^{\natural}\right] \rrbracket$ for all i
- Want to approximate this semantics [Cousot \& Cousot '77]
- Some abstract interpretation $\mathscr{I}^{\sharp}=\left\langle A^{\sharp}, \mathscr{F}^{\sharp}\right\rangle$
- Some approximation relation $\Vdash \subseteq A^{\natural} \times A^{\sharp}$
- $p^{\natural} \Vdash p^{\sharp}$: " p^{\natural} is approximated by $p^{\sharp "}$
- Want: $\sigma^{\sharp}:\left\{X_{i}\right\}_{i=1}^{n} \rightarrow A^{\sharp}$ s.t. $\sigma^{\natural}\left(X_{i}\right) \Vdash \sigma^{\sharp}\left(X_{i}\right)$ for all i

General picture for algebraic program analysis

- Suppose we have a system of recursive $E=\left\{X_{i}=R_{i}\right\}_{i=1}^{n}$ defining the semantics of a program
- Some concrete interpretation $\mathscr{I}^{\natural}=\left\langle A^{\natural}, f^{\natural}\right\rangle$
- Interested in least solution $\sigma^{\natural}: X \rightarrow A^{\natural}$ to E over $\mathscr{I}^{\natural}: \sigma\left(X_{i}\right)=\mathscr{I} \llbracket R_{i}\left[\sigma^{\natural}\right] \rrbracket$ for all i
- Want to approximate this semantics [Cousot \& Cousot '77]
- Some abstract interpretation $\mathscr{I}^{\sharp}=\left\langle A^{\sharp}, \mu^{\sharp}\right\rangle$
- Some approximation relation $\Vdash \subseteq A^{\natural} \times A^{\sharp}$
- $p^{\natural} \Vdash p^{\sharp}$: " p^{\natural} is approximated by $p^{\sharp "}$
- Want: $\sigma^{\sharp}:\left\{X_{i}\right\}_{i=1}^{n} \rightarrow A^{\sharp}$ s.t. $\sigma^{\natural}\left(X_{i}\right) \Vdash \sigma^{\sharp}\left(X_{i}\right)$ for all i
- The algebraic method:
(1) Symbolically compute a closed-form solution to the system, $E^{\prime}=\left\{X_{i}=R_{i}^{\prime}\right\}_{i=1}^{n}$
- Right-hand-sides R_{i}^{\prime} do not contain variables
- E and E^{\prime} have same least solution over \mathscr{I}^{\natural}
(2) Interpret the closed forms over \mathscr{I}^{\sharp}
- $\sigma^{\sharp}\left(X_{i}\right) \triangleq \mathscr{I}^{\sharp} \llbracket R_{i}^{\prime} \rrbracket$

Relational semantics

- Let P be program, given by a control flow graph $G=(V, E)$ with entry r
- Program configurations: $V \times$ State (where, say, State $\triangleq \mathbb{Z}^{X}$)
- Program transition relation: $\rightarrow_{P} \subseteq(V \times$ State $) \times(V \times$ State $)$
- Relational semantics: For each vertex v,

$$
R_{v} \triangleq\left\{\left\langle s, s^{\prime}\right\rangle \in \text { State } \times \text { State }:\langle r, s\rangle \rightarrow_{P}^{*}\left\langle v, s^{\prime}\right\rangle\right\}
$$

Relational interpretation

Universe: binary relations over states

$$
\begin{aligned}
0 & \triangleq \emptyset \\
1 & \triangleq\left\{\langle s, s\rangle: s \in \mathbb{Z}^{X}\right\} \\
R \cdot S & \triangleq\left\{\left(s, s^{\prime \prime}\right): \exists s^{\prime} \cdot\left(s, s^{\prime}\right) \in R \wedge\left(s^{\prime}, s^{\prime \prime}\right) \in S\right\} \\
R+S & \triangleq R \cup S \\
R^{*} & \triangleq \bigcup_{i=0}^{\infty} \underbrace{R \circ \cdots \circ R}_{i \text { times }}
\end{aligned}
$$

Empty relation Identity relation Relational composition Union

Reflexive transitive closure

Equational formulation of relational semantics

Control flow graph corresponds to left-linear system of equations equations

$$
\begin{aligned}
& X_{r}=1 \\
& X_{a}=X_{r} \cdot\langle r, a\rangle \\
& X_{b}=X_{a} \cdot\langle a, b\rangle+X_{d} \cdot\langle d, b\rangle+X_{e} \cdot\langle e, b\rangle \\
& X_{c}=X_{b} \cdot\langle b, c\rangle \\
& X_{d}=X_{c} \cdot\langle c, d\rangle \\
& X_{e}=X_{d} \cdot\langle d, e\rangle \\
& X_{f}=X_{b} \cdot\langle b, f\rangle
\end{aligned}
$$

Equational formulation of relational semantics

Control flow graph corresponds to left-linear system of equations equations

$$
j:=0
$$

$$
\begin{aligned}
& X_{r}=1 \\
& X_{a}=X_{r} \cdot\langle r, a\rangle \\
& X_{b}=X_{a} \cdot\langle a, b\rangle+X_{d} \cdot\langle d, b\rangle+X_{e} \cdot\langle e, b\rangle
\end{aligned}
$$

$$
X_{c}=X_{b} \cdot\langle b, c\rangle
$$

Abstract interpretation

Abstract interpretation

Abstract interpretation

Computing closed form solutions

Variable elimination \sim Gauss-Jordan

$$
\begin{aligned}
X_{r} & =1 \\
X_{a} & =X_{r} \cdot\langle r, a\rangle \\
X_{b} & =X_{a} \cdot\langle a, b\rangle+X_{d} \cdot\langle d, b\rangle+X_{e} \cdot\langle e, b\rangle \\
X_{c} & =X_{b} \cdot\langle b, c\rangle \\
X_{d} & =X_{c} \cdot\langle c, d\rangle \\
X_{e} & =X_{d} \cdot\langle d, e\rangle \\
X_{f} & =X_{b} \cdot\langle b, f\rangle
\end{aligned}
$$

Computing closed form solutions

Variable elimination ~ Gauss-Jordan

$$
\begin{aligned}
X_{r} & =1 \\
X_{a} & =\langle r, a\rangle \\
X_{b} & =X_{a} \cdot\langle a, b\rangle+X_{d} \cdot\langle d, b\rangle+X_{e} \cdot\langle e, b\rangle \\
X_{c} & =X_{b} \cdot\langle b, c\rangle \\
X_{d} & =X_{c} \cdot\langle c, d\rangle \\
X_{e} & =X_{d} \cdot\langle d, e\rangle \\
X_{f} & =X_{b} \cdot\langle b, f\rangle
\end{aligned}
$$

Computing closed form solutions

Variable elimination \sim Gauss-Jordan

$$
\begin{aligned}
X_{r} & =1 \\
X_{a} & =\langle r, a\rangle \\
X_{b} & =\langle r, a\rangle \cdot\langle a, b\rangle+X_{d} \cdot\langle d, b\rangle+X_{e} \cdot\langle e, b\rangle \\
X_{c} & =X_{b} \cdot\langle b, c\rangle \\
X_{d} & =X_{c} \cdot\langle c, d\rangle \\
X_{e} & =X_{d} \cdot\langle d, e\rangle \\
X_{f} & =X_{b} \cdot\langle b, f\rangle
\end{aligned}
$$

Computing closed form solutions

Variable elimination \sim Gauss-Jordan

$$
\begin{aligned}
X_{r} & =1 \\
X_{a} & =\langle r, a\rangle \\
X_{b} & =\langle r, a\rangle \cdot\langle a, b\rangle+X_{d} \cdot\langle d, b\rangle+X_{e} \cdot\langle e, b\rangle \\
X_{c} & =X_{b} \cdot\langle b, c\rangle \\
X_{d} & =X_{b} \cdot\langle b, c\rangle \cdot\langle c, d\rangle \\
X_{e} & =X_{d} \cdot\langle d, e\rangle \\
X_{f} & =X_{b} \cdot\langle b, f\rangle
\end{aligned}
$$

Computing closed form solutions

Variable elimination \sim Gauss-Jordan

$$
\begin{aligned}
X_{r} & =1 \\
X_{a} & =\langle r, a\rangle \\
X_{b} & =\langle r, a\rangle \cdot\langle a, b\rangle+X_{b} \cdot\langle b, c\rangle \cdot\langle c, d\rangle \cdot\langle d, b\rangle+X_{e} \cdot\langle e, b\rangle \\
X_{c} & =X_{b} \cdot\langle b, c\rangle \\
X_{d} & =X_{b} \cdot\langle b, c\rangle \cdot\langle c, d\rangle \\
X_{e} & =X_{b} \cdot\langle b, c\rangle \cdot\langle c, d\rangle \cdot\langle d, e\rangle \\
X_{f} & =X_{b} \cdot\langle b, f\rangle
\end{aligned}
$$

Computing closed form solutions

Variable elimination \sim Gauss-Jordan

$$
\begin{aligned}
X_{r} & =1 \\
X_{a} & =\langle r, a\rangle \\
X_{b} & =\langle r, a\rangle \cdot\langle a, b\rangle+X_{b} \cdot\langle b, c\rangle \cdot\langle c, d\rangle \cdot\langle d, b\rangle+X_{b} \cdot\langle b, c\rangle \cdot\langle c, d\rangle \cdot\langle d, e\rangle \cdot\langle e, b\rangle \\
X_{c} & =X_{b} \cdot\langle b, c\rangle \\
X_{d} & =X_{b} \cdot\langle b, c\rangle \cdot\langle c, d\rangle \\
X_{e} & =X_{b} \cdot\langle b, c\rangle \cdot\langle c, d\rangle \cdot\langle d, e\rangle \\
X_{f} & =X_{b} \cdot\langle b, f\rangle
\end{aligned}
$$

Computing closed form solutions

Variable elimination \sim Gauss-Jordan

$$
\begin{aligned}
X_{r} & =1 \\
X_{a} & =\langle r, a\rangle \\
X_{b} & =\langle r, a\rangle \cdot\langle a, b\rangle+X_{b} \cdot(\langle b, c\rangle \cdot\langle c, d\rangle \cdot(\langle d, b\rangle+\langle d, e\rangle \cdot\langle e, b\rangle)) \\
X_{c} & =X_{b} \cdot\langle b, c\rangle \\
X_{d} & =X_{b} \cdot\langle b, c\rangle \cdot\langle c, d\rangle \\
X_{e} & =X_{b} \cdot\langle b, c\rangle \cdot\langle c, d\rangle \cdot\langle d, e\rangle \\
X_{f} & =X_{b} \cdot\langle b, f\rangle
\end{aligned}
$$

Computing closed form solutions

Variable elimination \sim Gauss-Jordan

$$
\begin{aligned}
X_{r} & =1 \\
X_{a} & =\langle r, a\rangle \\
X_{b} & =\langle r, a\rangle \cdot\langle a, b\rangle \cdot(\langle b, c\rangle \cdot\langle c, d\rangle \cdot(\langle d, b\rangle+\langle d, e\rangle \cdot\langle e, b\rangle))^{*} \\
X_{c} & =X_{b} \cdot\langle b, c\rangle \\
X_{d} & =X_{b} \cdot\langle b, \\
X_{e} & =X_{b} \cdot\left\langle b, \quad A B^{*} \text { is least solution to } X=A+X B\right. \\
X_{f} & =X_{b} \cdot\left\langle b,{ }^{\prime}\right.
\end{aligned}
$$

Computing closed form solutions

Variable elimination \sim Gauss-Jordan

$$
\begin{aligned}
X_{r} & =1 \\
X_{a} & =\langle r, a\rangle \\
X_{b} & =\langle r, a\rangle \cdot\langle a, b\rangle \cdot(\langle b, c\rangle \cdot\langle c, d\rangle \cdot(\langle d, b\rangle+\langle d, e\rangle \cdot\langle e, b\rangle))^{*} \\
X_{c} & =\langle r, a\rangle \cdot\langle a, b\rangle \cdot(\langle b, c\rangle \cdot\langle c, d\rangle \cdot(\langle d, b\rangle+\langle d, e\rangle \cdot\langle e, b\rangle))^{*} \cdot\langle b, c\rangle \\
X_{d} & =\langle r, a\rangle \cdot\langle a, b\rangle \cdot(\langle b, c\rangle \cdot\langle c, d\rangle \cdot(\langle d, b\rangle+\langle d, e\rangle \cdot\langle e, b\rangle))^{*} \cdot\langle b, c\rangle \cdot\langle c, d\rangle \\
X_{e} & =\langle r, a\rangle \cdot\langle a, b\rangle \cdot(\langle b, c\rangle \cdot\langle c, d\rangle \cdot(\langle d, b\rangle+\langle d, e\rangle \cdot\langle e, b\rangle))^{*} \cdot\langle b, c\rangle \cdot\langle c, d\rangle \cdot\langle d, e\rangle \\
X_{f} & =\langle r, a\rangle \cdot\langle a, b\rangle \cdot(\langle b, c\rangle \cdot\langle c, d\rangle \cdot(\langle d, b\rangle+\langle d, e\rangle \cdot\langle e, b\rangle))^{*} \cdot\langle b, f\rangle
\end{aligned}
$$

Computing closed form solutions

Variable elimination ~ Gauss-Jordan

$$
\begin{aligned}
& X_{r}=1 \\
& X_{a}=\langle r, a\rangle \\
& X_{b}= \\
& X_{c}= \\
& X_{d}= \\
& X_{e}=\langle\quad \text { Solving single-source path expression problem } \\
& X_{f}=\langle r, a\rangle \cdot\langle a, b\rangle \cdot(\langle b, c\rangle \cdot\langle c, d\rangle \cdot(\langle d, b\rangle+\langle d, e\rangle \cdot\langle e, b\rangle))^{*} \cdot\langle b, f\rangle
\end{aligned}
$$

Abstract interpretation of closed forms

$$
\begin{aligned}
\sigma^{\sharp}\left(X_{r}\right) & \triangleq \mathscr{I}^{\sharp} \llbracket 1 \rrbracket \\
\sigma^{\sharp}\left(X_{a}\right) & \triangleq \mathscr{I}^{\sharp} \llbracket\langle r, a\rangle \rrbracket \\
\sigma^{\sharp}\left(X_{b}\right) & \triangleq \mathscr{I}^{\sharp} \llbracket\langle r, a\rangle \cdot\langle a, b\rangle \cdot(\langle b, c\rangle \cdot\langle c, d\rangle \cdot(\langle d, b\rangle+\langle d, e\rangle \cdot\langle e, b\rangle))^{*} \rrbracket \\
\sigma^{\sharp}\left(X_{c}\right) & \triangleq \mathscr{I}^{\sharp} \llbracket\langle r, a\rangle \cdot\langle a, b\rangle \cdot(\langle b, c\rangle \cdot\langle c, d\rangle \cdot(\langle d, b\rangle+\langle d, e\rangle \cdot\langle e, b\rangle))^{*} \cdot\langle b, c\rangle \rrbracket \\
\sigma^{\sharp}\left(X_{d}\right) & \triangleq \mathscr{I}^{\sharp} \llbracket\langle r, a\rangle \cdot\langle a, b\rangle \cdot(\langle b, c\rangle \cdot\langle c, d\rangle \cdot(\langle d, b\rangle+\langle d, e\rangle \cdot\langle e, b\rangle))^{*} \cdot\langle b, c\rangle \cdot\langle c, d\rangle \rrbracket \\
\sigma^{\sharp}\left(X_{e}\right) & \triangleq \mathscr{I}^{\sharp} \llbracket\langle r, a\rangle \cdot\langle a, b\rangle \cdot(\langle b, c\rangle \cdot\langle c, d\rangle \cdot(\langle d, b\rangle+\langle d, e\rangle \cdot\langle e, b\rangle))^{*} \cdot\langle b, c\rangle \cdot\langle c, d\rangle \cdot\langle d, e\rangle \rrbracket \\
\sigma^{\sharp}\left(X_{f}\right) & \triangleq \mathscr{I}^{\sharp} \llbracket\langle r, a\rangle \cdot\langle a, b\rangle \cdot(\langle b, c\rangle \cdot\langle c, d\rangle \cdot(\langle d, b\rangle+\langle d, e\rangle \cdot\langle e, b\rangle))^{*} \cdot\langle b, f\rangle \rrbracket
\end{aligned}
$$

Abstract semantics σ^{\sharp} over-approximates concrete semantics σ^{\natural}

Soundness relations

- Say that a approximation relation \Vdash is soundness relation if
(1) $f^{\sharp}(a) \Vdash f^{\#}(a)$ for each constant a
(2) \Vdash is compatible with all operations (\Vdash a subalgebra of $\left.A^{\natural} \times A^{\sharp}\right)$

Soundness relations

- Say that a approximation relation \Vdash is soundness relation if
(1) $f^{\dagger}(a) \Vdash f^{\sharp}(a)$ for each constant a
(2) \Vdash is compatible with all operations (\Vdash a subalgebra of $A^{\natural} \times A^{\sharp}$)
- Key lemma: \Vdash is a soundness relation $\Rightarrow \mathscr{I}^{\natural} \llbracket e \rrbracket \Vdash \mathscr{I}^{\sharp} \llbracket e \rrbracket$ for any e

Soundness relations

- Say that a approximation relation \Vdash is soundness relation if
(1) $f^{\sharp}(a) \Vdash f^{\#}(a)$ for each constant a
(2) \Vdash is compatible with all operations (\Vdash a subalgebra of $A^{\natural} \times A^{\sharp}$)
- Key lemma: \Vdash is a soundness relation $\Rightarrow \mathscr{I}^{\natural} \llbracket e \rrbracket \Vdash \mathscr{I}^{\sharp} \llbracket e \rrbracket$ for any e
- For instance:

$$
R \Vdash F\left(X, X^{\prime}\right) \Longleftrightarrow \text { every }\left\langle s, s^{\prime}\right\rangle \in R \text { is a model of } F
$$

For all

$$
R, S \text { transition relations }
$$

F, G transition formulas
such that $\quad R \Vdash F \quad S \Vdash G$
We have:

- $\because\left\{\left(s, s^{\prime \prime}\right): \exists s^{\prime} .\left(s, s^{\prime}\right) \in R \wedge\left(s^{\prime}, s^{\prime \prime}\right) \in S\right\} \Vdash \exists X^{\prime \prime} . F\left(X, X^{\prime \prime}\right) \wedge G\left(X^{\prime \prime}, X^{\prime}\right)$
- $+: R \cup S \Vdash F \vee G$
- *: overapproximate transitive closure

The algebraic recipe

(1) (Modeling) formulate problem of interest as extremal solution to system of equations
(2) (Closed forms) design language of "closed forms" \& algorithm for computing them
(3) (Interpretation) design abstract interpretation \& formulate soundness relation

Algebraic reasoning

- Transition formula algebras form idempotent semirings
- + is associative, commutative, and idempotent, and has identity 0
- . is associative, has identity 1 , distributes over,+ 0 is annihilator

Algebraic reasoning

- Transition formula algebras form idempotent semirings
- + is associative, commutative, and idempotent, and has identity 0
- . is associative, has identity 1 , distributes over,+ 0 is annihilator
- The $*$ operators from last section satisfy pre-Kleene algebra iteration laws.
- Monotonicity $F \leq G \Rightarrow F^{*} \leq G^{*}$, where $x \leq y \Longleftrightarrow x+y=y$
- "more information in \rightarrow more information out"
- Unrolling $\left(F^{n}\right)^{*} \leq F^{*}$ for any n
- ... and more

Algebraic reasoning

- Transition formula algebras form idempotent semirings
- + is associative, commutative, and idempotent, and has identity 0
- . is associative, has identity 1 , distributes over,+ 0 is annihilator
- The $*$ operators from last section satisfy pre-Kleene algebra iteration laws.
- Monotonicity $F \leq G \Rightarrow F^{*} \leq G^{*}$, where $x \leq y \Longleftrightarrow x+y=y$
- "more information in \rightarrow more information out"
- Unrolling $\left(F^{n}\right)^{*} \leq F^{*}$ for any n
- ... and more
- Laws give users guarantees they mey rely upon
- Every operation is monotone: user can make progress by supplying "hints"

Algebraic reasoning

- Transition formula algebras form idempotent semirings
- + is associative, commutative, and idempotent, and has identity 0
- . is associative, has identity 1 , distributes over,+ 0 is annihilator
- The $*$ operators from last section satisfy pre-Kleene algebra iteration laws.
- Monotonicity $F \leq G \Rightarrow F^{*} \leq G^{*}$, where $x \leq y \Longleftrightarrow x+y=y$
- "more information in \rightarrow more information out"
- Unrolling $\left(F^{n}\right)^{*} \leq F^{*}$ for any n
- ... and more
- Laws give users guarantees they mey rely upon
- Every operation is monotone: user can make progress by supplying "hints"
- Laws give analysis designers guarantees they may exploit
- Design program transformations that are guaranteed to improve precision [Cyphert et al. '19]

