

Regular algebraic program analysis

Semantic foundations of algebraic program analysis

Interprocedural analysis

 ω -regular program analysis

Motivation

- What it would mean to apply algebraic program analyis *beyond* the framework of algebraic path properties?
 - Set of paths of interest may not be regular (recursive procedures)
 - Paths of interest may not be finite (termination)
- 2 What does it mean for an algebraic program analysis to be correct?
 - How do we prove it?
- 3 How can we reason about the impact of program transformation on analysis?

General picture for algebraic program analysis

- Suppose we have a system of recursive $E = \{X_i = R_i\}_{i=1}^n$ defining the semantics of a program
 - Some *concrete* interpretation $\mathscr{I}^{\natural} = \langle A^{\natural}, f^{\natural} \rangle$
 - Interested in *least solution* $\sigma^{\natural} : X \to A^{\natural}$ to *E* over \mathscr{I}^{\natural} : $\sigma(X_i) = \mathscr{I}[\![R_i[\sigma^{\natural}]\!]]$ for all *i*

General picture for algebraic program analysis

- Suppose we have a system of recursive $E = \{X_i = R_i\}_{i=1}^n$ defining the semantics of a program
 - Some *concrete* interpretation $\mathscr{I}^{\natural} = \langle A^{\natural}, f^{\natural} \rangle$
 - Interested in *least solution* $\sigma^{\natural} : X \to A^{\natural}$ to *E* over \mathscr{I}^{\natural} : $\sigma(X_i) = \mathscr{I}[\![R_i[\sigma^{\natural}]]\!]$ for all *i*
- Want to approximate this semantics [Cousot & Cousot '77]
 - Some *abstract* interpretation $\mathscr{I}^{\sharp} = \langle A^{\sharp}, f^{\sharp} \rangle$
 - Some approximation relation $\Vdash \subseteq A^{\natural} \times A^{\sharp}$
 - $p^{\natural} \Vdash p^{\sharp}$: " p^{\natural} is approximated by p^{\sharp} "
 - Want: $\sigma^{\sharp}: \{X_i\}_{i=1}^n \to A^{\sharp} \text{ s.t. } \sigma^{\natural}(X_i) \Vdash \sigma^{\sharp}(X_i) \text{ for all } i$

General picture for algebraic program analysis

- Suppose we have a system of recursive $E = \{X_i = R_i\}_{i=1}^n$ defining the semantics of a program
 - Some *concrete* interpretation $\mathscr{I}^{\natural} = \langle A^{\natural}, f^{\natural} \rangle$
 - Interested in *least solution* $\sigma^{\natural} : X \to A^{\natural}$ to *E* over \mathscr{I}^{\natural} : $\sigma(X_i) = \mathscr{I}[\![R_i[\sigma^{\natural}]]\!]$ for all *i*
- Want to approximate this semantics [Cousot & Cousot '77]
 - Some *abstract* interpretation $\mathscr{I}^{\sharp} = \langle A^{\sharp}, f^{\sharp} \rangle$
 - Some approximation relation $\Vdash \subseteq A^{\natural} \times A^{\sharp}$
 - $p^{\natural} \Vdash p^{\sharp}$: " p^{\natural} is approximated by p^{\sharp} "
 - Want: $\sigma^{\sharp}: \{X_i\}_{i=1}^n \to A^{\sharp} \text{ s.t. } \sigma^{\natural}(X_i) \Vdash \sigma^{\sharp}(X_i) \text{ for all } i$
- The algebraic method:
 - **1** Symbolically compute a *closed-form* solution to the system, $E' = \{X_i = R'_i\}_{i=1}^n$
 - Right-hand-sides R'_i do not contain variables
 - E and E' have same least solution over \mathscr{I}^{\natural}
 - Interpret the closed forms over I[#]

•
$$\sigma^{\sharp}(X_i) \triangleq \mathscr{I}^{\sharp}\llbracket R'_i \rrbracket$$

Relational semantics

- Let *P* be program, given by a control flow graph G = (V, E) with entry *r*
 - Program configurations: $V \times$ State (where, say, State $\triangleq \mathbb{Z}^X$)
 - Program transition relation: $\rightarrow_P \subseteq (V \times \text{State}) \times (V \times \text{State})$
- Relational semantics: For each vertex v,

$$R_{v} \triangleq \{ \langle s, s' \rangle \in \mathsf{State} \times \mathsf{State} : \langle r, s \rangle \to_{P}^{*} \langle v, s' \rangle \}$$
Program can reach $\langle v, s' \rangle$ from initial state $\langle r, s \rangle$

Relational interpretation

i=0

i times

Universe: binary relations over states

$$0 \triangleq \emptyset$$
Empty relation

$$1 \triangleq \{ \langle s, s \rangle : s \in \mathbb{Z}^X \}$$
Identity relation

$$R \cdot S \triangleq \{ (s, s'') : \exists s'. (s, s') \in R \land (s', s'') \in S \}$$
Relational composition

$$R + S \triangleq R \cup S$$
Union

$$R^* \triangleq \begin{bmatrix} \infty \\ R \circ \cdots \circ R \end{bmatrix}$$
Reflexive transitive closure

Equational formulation of relational semantics

$$\begin{aligned} X_r &= 1\\ X_a &= X_r \cdot \langle r, a \rangle\\ X_b &= X_a \cdot \langle a, b \rangle + X_d \cdot \langle d, b \rangle + X_e \cdot \langle e, b \rangle\\ X_c &= X_b \cdot \langle b, c \rangle\\ X_d &= X_c \cdot \langle c, d \rangle\\ X_e &= X_d \cdot \langle d, e \rangle\\ X_f &= X_b \cdot \langle b, f \rangle \end{aligned}$$

Equational formulation of relational semantics

Abstract interpretation

Approx. relation $\Vdash \subseteq A^{\natural} \times A^{\sharp}$

Abstract interpretation $\mathscr{I}^{\sharp} = \langle A^{\sharp}, f^{\sharp} \rangle$

Abstract interpretation

Abstract interpretation

$$\begin{array}{ll} X_r &= 1\\ X_a &= X_r \cdot \langle r, a \rangle\\ X_b &= X_a \cdot \langle a, b \rangle + X_d \cdot \langle d, b \rangle + X_e \cdot \langle e, b \rangle\\ X_c &= X_b \cdot \langle b, c \rangle\\ X_d &= X_c \cdot \langle c, d \rangle\\ X_e &= X_d \cdot \langle d, e \rangle\\ X_f &= X_b \cdot \langle b, f \rangle \end{array}$$

$$\begin{array}{lll} X_r &= 1 \\ \overline{X_a} &= \langle r, a \rangle \\ X_b &= X_a \cdot \langle a, b \rangle + X_d \cdot \langle d, b \rangle + X_e \cdot \langle e, b \rangle \\ X_c &= X_b \cdot \langle b, c \rangle \\ X_d &= X_c \cdot \langle c, d \rangle \\ X_e &= X_d \cdot \langle d, e \rangle \\ X_f &= X_b \cdot \langle b, f \rangle \end{array}$$

$$\begin{array}{lll} X_r &= 1 \\ X_a &= \langle r, a \rangle \\ X_b &= \langle r, a \rangle \cdot \langle a, b \rangle + X_d \cdot \langle d, b \rangle + X_e \cdot \langle e, b \rangle \\ \hline X_c &= X_b \cdot \langle b, c \rangle \\ X_d &= X_c \cdot \langle c, d \rangle \\ X_e &= X_d \cdot \langle d, e \rangle \\ X_f &= X_b \cdot \langle b, f \rangle \end{array}$$

$$\begin{array}{lll} X_r &= 1\\ X_a &= \langle r, a \rangle\\ X_b &= \langle r, a \rangle \cdot \langle a, b \rangle + X_d \cdot \langle d, b \rangle + X_e \cdot \langle e, b \rangle\\ X_c &= X_b \cdot \langle b, c \rangle\\ X_d &= X_b \cdot \langle b, c \rangle \cdot \langle c, d \rangle\\ X_e &= X_d \cdot \langle d, e \rangle\\ X_f &= X_b \cdot \langle b, f \rangle \end{array}$$

$$\begin{array}{lll} X_r &= 1 \\ X_a &= \langle r, a \rangle \\ X_b &= \langle r, a \rangle \cdot \langle a, b \rangle + X_b \cdot \langle b, c \rangle \cdot \langle c, d \rangle \cdot \langle d, b \rangle + X_e \cdot \langle e, b \rangle \\ X_c &= X_b \cdot \langle b, c \rangle \\ X_d &= X_b \cdot \langle b, c \rangle \cdot \langle c, d \rangle \\ X_e &= X_b \cdot \langle b, c \rangle \cdot \langle c, d \rangle \cdot \langle d, e \rangle \\ X_f &= X_b \cdot \langle b, f \rangle \end{array}$$

$$\begin{array}{ll} X_r &= 1\\ X_a &= \langle r, a \rangle\\ X_b &= \langle r, a \rangle \cdot \langle a, b \rangle + X_b \cdot \langle b, c \rangle \cdot \langle c, d \rangle \cdot \langle d, b \rangle + X_b \cdot \langle b, c \rangle \cdot \langle c, d \rangle \cdot \langle d, e \rangle \cdot \langle e, b \rangle\\ X_c &= X_b \cdot \langle b, c \rangle\\ X_d &= X_b \cdot \langle b, c \rangle \cdot \langle c, d \rangle\\ X_e &= X_b \cdot \langle b, c \rangle \cdot \langle c, d \rangle \cdot \langle d, e \rangle\\ X_f &= X_b \cdot \langle b, f \rangle \end{array}$$

$$\begin{array}{lll} X_r &= 1 \\ X_a &= \langle r, a \rangle \\ X_b &= \langle r, a \rangle \cdot \langle a, b \rangle + X_b \cdot (\langle b, c \rangle \cdot \langle c, d \rangle \cdot (\langle d, b \rangle + \langle d, e \rangle \cdot \langle e, b \rangle) \\ X_c &= X_b \cdot \langle b, c \rangle \\ X_d &= X_b \cdot \langle b, c \rangle \cdot \langle c, d \rangle \\ X_e &= X_b \cdot \langle b, c \rangle \cdot \langle c, d \rangle \cdot \langle d, e \rangle \\ X_f &= X_b \cdot \langle b, f \rangle \end{array}$$

$$\begin{array}{lll} X_r &= 1\\ X_a &= \langle r, a \rangle\\ X_b &= \langle r, a \rangle \cdot \langle a, b \rangle \cdot (\langle b, c \rangle \cdot \langle c, d \rangle \cdot (\langle d, b \rangle + \langle d, e \rangle \cdot \langle e, b \rangle))^*\\ X_c &= X_b \cdot \langle b, c \rangle\\ X_d &= X_b \cdot \langle b, c \rangle\\ X_e &= X_b \cdot \langle b, d \rangle\\ X_f &= X_b \cdot \langle b, J \rangle \end{array}$$

$$\begin{array}{lll} X_r &= 1 \\ X_a &= \langle r, a \rangle \\ X_b &= \langle r, a \rangle \cdot \langle a, b \rangle \cdot (\langle b, c \rangle \cdot \langle c, d \rangle \cdot (\langle d, b \rangle + \langle d, e \rangle \cdot \langle e, b \rangle))^* \\ X_c &= \langle r, a \rangle \cdot \langle a, b \rangle \cdot (\langle b, c \rangle \cdot \langle c, d \rangle \cdot (\langle d, b \rangle + \langle d, e \rangle \cdot \langle e, b \rangle))^* \cdot \langle b, c \rangle \\ X_d &= \langle r, a \rangle \cdot \langle a, b \rangle \cdot (\langle b, c \rangle \cdot \langle c, d \rangle \cdot (\langle d, b \rangle + \langle d, e \rangle \cdot \langle e, b \rangle))^* \cdot \langle b, c \rangle \cdot \langle c, d \rangle \\ X_e &= \langle r, a \rangle \cdot \langle a, b \rangle \cdot (\langle b, c \rangle \cdot \langle c, d \rangle \cdot (\langle d, b \rangle + \langle d, e \rangle \cdot \langle e, b \rangle))^* \cdot \langle b, c \rangle \cdot \langle c, d \rangle \cdot \langle d, e \rangle \\ X_f &= \langle r, a \rangle \cdot \langle a, b \rangle \cdot (\langle b, c \rangle \cdot \langle c, d \rangle \cdot (\langle d, b \rangle + \langle d, e \rangle \cdot \langle e, b \rangle))^* \cdot \langle b, f \rangle \end{array}$$

$$\begin{array}{lll} X_{r} &= 1 \\ X_{a} &= \langle r, a \rangle \\ X_{b} &= \\ X_{c} &= \\ X_{d} &= \\ X_{d} &= \\ X_{e} &= \langle r, a \rangle \cdot \langle a, b \rangle \cdot (\langle b, c \rangle \cdot \langle c, a \rangle \cdot (\langle a, b \rangle + \langle a, c \rangle \cdot \langle c, b \rangle)) \cdot \langle b, c \rangle \cdot \langle c, a \rangle} \langle d, e \rangle \\ X_{f} &= \langle r, a \rangle \cdot \langle a, b \rangle \cdot (\langle b, c \rangle \cdot \langle c, d \rangle \cdot (\langle d, b \rangle + \langle d, e \rangle \cdot \langle e, b \rangle))^{*} \cdot \langle b, f \rangle \end{array}$$

Abstract interpretation of closed forms

$$\begin{split} \sigma^{\sharp}(X_{r}) &\triangleq \mathscr{I}^{\sharp}\llbracket[1] \\ \sigma^{\sharp}(X_{a}) &\triangleq \mathscr{I}^{\sharp}\llbracket\langle r, a \rangle \rrbracket \\ \sigma^{\sharp}(X_{b}) &\triangleq \mathscr{I}^{\sharp}\llbracket\langle r, a \rangle \cdot \langle a, b \rangle \cdot (\langle b, c \rangle \cdot \langle c, d \rangle \cdot (\langle d, b \rangle + \langle d, e \rangle \cdot \langle e, b \rangle))^{*} \rrbracket \\ \sigma^{\sharp}(X_{c}) &\triangleq \mathscr{I}^{\sharp}\llbracket\langle r, a \rangle \cdot \langle a, b \rangle \cdot (\langle b, c \rangle \cdot \langle c, d \rangle \cdot (\langle d, b \rangle + \langle d, e \rangle \cdot \langle e, b \rangle))^{*} \cdot \langle b, c \rangle \rrbracket \\ \sigma^{\sharp}(X_{d}) &\triangleq \mathscr{I}^{\sharp}\llbracket\langle r, a \rangle \cdot \langle a, b \rangle \cdot (\langle b, c \rangle \cdot \langle c, d \rangle \cdot (\langle d, b \rangle + \langle d, e \rangle \cdot \langle e, b \rangle))^{*} \cdot \langle b, c \rangle \cdot \langle c, d \rangle \rrbracket \\ \sigma^{\sharp}(X_{e}) &\triangleq \mathscr{I}^{\sharp}\llbracket\langle r, a \rangle \cdot \langle a, b \rangle \cdot (\langle b, c \rangle \cdot \langle c, d \rangle \cdot (\langle d, b \rangle + \langle d, e \rangle \cdot \langle e, b \rangle))^{*} \cdot \langle b, c \rangle \cdot \langle c, d \rangle \rrbracket \\ \sigma^{\sharp}(X_{f}) &\triangleq \mathscr{I}^{\sharp}\llbracket\langle r, a \rangle \cdot \langle a, b \rangle \cdot (\langle b, c \rangle \cdot \langle c, d \rangle \cdot (\langle d, b \rangle + \langle d, e \rangle \cdot \langle e, b \rangle))^{*} \cdot \langle b, c \rangle \cdot \langle c, d \rangle \cdot \langle d, e \rangle \rrbracket \end{split}$$

Abstract semantics σ^{\sharp} over-approximates concrete semantics σ^{\sharp}

Soundness relations

- Say that a approximation relation ⊩ is soundness relation if
 - **1** $f^{\ddagger}(a) \Vdash f^{\ddagger}(a)$ for each constant *a*
 - **2** \Vdash is compatible with all operations (\Vdash a subalgebra of $A^{\natural} \times A^{\sharp}$)

Soundness relations

- - **1** $f^{\ddagger}(a) \Vdash f^{\ddagger}(a)$ for each constant *a*
 - **2** \Vdash is compatible with all operations (\Vdash a subalgebra of $A^{\natural} \times A^{\sharp}$)
- Key lemma: ⊢ is a soundness relation ⇒ 𝒴^t[[e]] ⊢ 𝒴^t[[e]] for any e

Soundness relations

- Say that a approximation relation I⊢ is soundness relation if
 f[#](a) I⊢ f[#](a) for each constant a
 - **2** \Vdash is compatible with all operations (\Vdash a subalgebra of $A^{\ddagger} \times A^{\ddagger}$)
- For instance:

$$R \Vdash F(X, X') \iff$$
 every $\langle s, s' \rangle \in R$ is a model of F

For all

R, S transition relations F, G transition formulas

such that $R \Vdash F$ $S \Vdash G$ We have:

- $: \{(s, s'') : \exists s'.(s, s') \in R \land (s', s'') \in S\} \Vdash \exists X''.F(X, X'') \land G(X'', X')$
- +: $R \cup S \Vdash F \lor G$
- *: overapproximate transitive closure

The algebraic recipe

- (Modeling) formulate problem of interest as extremal solution to system of equations
- (Closed forms) design language of "closed forms" & algorithm for computing them
- 3 (Interpretation) design abstract interpretation & formulate soundness relation

- Transition formula algebras form idempotent semirings
 - + is associative, commutative, and idempotent, and has identity 0
 - · is associative, has identity 1, distributes over +, 0 is annihilator

- Transition formula algebras form idempotent semirings
 - + is associative, commutative, and idempotent, and has identity 0
 - · is associative, has identity 1, distributes over +, 0 is annihilator
- The * operators from last section satisfy pre-Kleene algebra iteration laws.
 - Monotonicity $F \leq G \Rightarrow F^* \leq G^*$, where $x \leq y \iff x + y = y$
 - "more information in \rightarrow more information out"
 - Unrolling $(F^n)^* \leq F^*$ for any n
 - ... and more

- Transition formula algebras form idempotent semirings
 - + is associative, commutative, and idempotent, and has identity 0
 - is associative, has identity 1, distributes over +, 0 is annihilator
- The * operators from last section satisfy pre-Kleene algebra iteration laws.
 - Monotonicity $F \leq G \Rightarrow F^* \leq G^*$, where $x \leq y \iff x + y = y$
 - "more information in \rightarrow more information out"
 - Unrolling $(F^n)^* \leq F^*$ for any n
 - ... and more
- Laws give users guarantees they mey rely upon
 - Every operation is monotone: user can make progress by supplying "hints"

- Transition formula algebras form idempotent semirings
 - + is associative, commutative, and idempotent, and has identity 0
 - is associative, has identity 1, distributes over +, 0 is annihilator
- The * operators from last section satisfy pre-Kleene algebra iteration laws.
 - Monotonicity $F \leq G \Rightarrow F^* \leq G^*$, where $x \leq y \iff x + y = y$
 - "more information in \rightarrow more information out"
 - Unrolling $(F^n)^* \leq F^*$ for any n
 - ... and more
- Laws give users guarantees they mey rely upon
 - Every operation is monotone: user can make progress by supplying "hints"
- Laws give analysis designers guarantees they may exploit
 - Design program transformations that are *guaranteed* to improve precision [Cyphert et al. '19]