Introduction to Algebraic Program Analysis

Zachary Kincaid Thomas Reps

Algebraic program analysis

- A methodology for designing program analyses based on algebra.

Algebraic program analysis

- A methodology for designing program analyses based on algebra.
- High-level intuition: define analysis by recursion on program syntax

$$
\begin{aligned}
\mathcal{A} \llbracket-\rrbracket & : \text { Program } \rightarrow \text { Summary } \\
\mathcal{A} \llbracket S_{1} ; S_{2} \rrbracket & =\mathcal{A} \llbracket S_{1} \rrbracket \cdot \mathcal{A} \llbracket S_{2} \rrbracket \\
\mathcal{A} \llbracket \mathbf{f}(*)\left\{S_{1}\right\} \mathbf{e l s e}\left\{S_{2}\right\} \rrbracket & =\mathcal{A} \llbracket S_{1} \rrbracket+\mathcal{A} \llbracket S_{2} \rrbracket \\
\mathcal{A} \llbracket \mathbf{w h i l e}(*)\{S\} \rrbracket & =(\mathcal{A} \llbracket S \rrbracket)^{*}
\end{aligned}
$$

Algebraic program analysis

- A methodology for designing program analyses based on algebra.
- High-level intuition: define analysis by recursion on program syntax

$$
\begin{aligned}
\mathcal{A} \llbracket-\rrbracket & : \text { Program } \rightarrow \text { Summary } \\
\mathcal{A} \llbracket S_{1} ; S_{2} \rrbracket & =\mathcal{A} \llbracket S_{1} \rrbracket \cdot \mathcal{A} \llbracket S_{2} \rrbracket \\
\mathcal{A} \llbracket \mathbf{i f}(*)\left\{S_{1}\right\} \mathbf{e l s e} \mathbf{s e}\left\{S_{2}\right\} \rrbracket & =\mathcal{A} \llbracket S_{1} \rrbracket+\mathcal{A} \llbracket S_{2} \rrbracket \\
\mathcal{A} \llbracket \mathbf{w h i l e}(*)\{S\} \rrbracket & =(\mathcal{A} \llbracket S \rrbracket)^{*}
\end{aligned}
$$

- Framework for understanding compositionality

Compositional program analysis

- A program analysis is compositional if the result for a composite program is a function of the results for its components

$$
\begin{aligned}
\mathcal{A} \llbracket-\rrbracket & : \text { Program } \rightarrow \text { Summary } \\
\mathcal{A} \llbracket S_{1} ; S_{2} \rrbracket & =\mathcal{A} \llbracket S_{1} \rrbracket \cdot \mathcal{A} \llbracket S_{2} \rrbracket \\
\mathcal{A} \llbracket \mathbf{i f}(*)\left\{S_{1}\right\} \mathbf{e l s e}\left\{S_{2}\right\} \rrbracket & =\mathcal{A} \llbracket S_{1} \rrbracket+\mathcal{A} \llbracket S_{2} \rrbracket \\
\mathcal{A} \llbracket \text { while }(*)\{s\} \rrbracket & =(\mathcal{A} \llbracket S \rrbracket)^{*}
\end{aligned}
$$

Compositional program analysis

- A program analysis is compositional if the result for a composite program is a function of the results for its components

$$
\begin{aligned}
\mathcal{A} \llbracket-\rrbracket & : \text { Program } \rightarrow \text { Summary } \\
\mathcal{A} \llbracket S_{1} ; S_{2} \rrbracket & =\mathcal{A} \llbracket S_{1} \rrbracket \cdot \mathcal{A} \llbracket S_{2} \rrbracket \\
\mathcal{A} \llbracket \mathbf{i f}(*)\left\{S_{1}\right\} \mathbf{e l s e} \mathbf{s e}\left\{S_{2}\right\} \rrbracket & =\mathcal{A} \llbracket S_{1} \rrbracket+\mathcal{A} \llbracket S_{2} \rrbracket \\
\mathcal{A} \llbracket \text { while }(*)\{s\} \rrbracket & =(\mathcal{A} \llbracket S \rrbracket)^{*}
\end{aligned}
$$

- Benefits:
- Potential to scale
- Easy to parallelize
- Can be applied to incomplete programs (e.g. libraries)
- Can respond quickly to program edits
- Enables new kinds of analysis techniques
- ...

Outline

Regular algebraic program analysis

Semantic foundations of algebraic program analysis

Interprocedural analysis
ω-regular program analysis

Algebraic path problems

- Common structure exhibited by several algorithms: [Aho et al. '74, Backhouse \& Carré '75, Lehmann '77, Tarjan '81, ...]
- Kleene's (NFA \rightarrow regexp) algorithm
- Warshall's transitive closure algorithm
- Floyd's shortest path algorithm
- Gauss-Jordan algorithm for solving system of linear equations
- ...

Algebraic path problems

- Common structure exhibited by several algorithms: [Aho et al. '74, Backhouse \& Carré '75, Lehmann '77, Tarjan '81, ...]
- Kleene's (NFA \rightarrow regexp) algorithm
- Warshall's transitive closure algorithm
- Floyd's shortest path algorithm
- Gauss-Jordan algorithm for solving system of linear equations
- ...
- Algebraic approach to solving path problems in graphs [Tarjan '81]:
(1) Compute a regular expression recognizing a set of paths of interest
(2) Interpret the regular expression in a suitable algebraic structure

Path expressions

A path expression for a directed graph $G=(V, E)$: regular expression R over the alphabet of edges E such that each word recognized by R corresponds to a path in G.

Path expressions

A path expression for a directed graph $G=(V, E)$: regular expression R over the alphabet of edges E such that each word recognized by R corresponds to a path in G.
Regular expression syntax:

$$
R \in \operatorname{Reg} \operatorname{Exp}(\Sigma)::=a \in \Sigma|0| 1\left|R_{1}+R_{2}\right| R_{1} R_{2} \mid R^{*}
$$

Regular expression semantics:

$$
\begin{aligned}
& \mathscr{L} \llbracket 0 \rrbracket=\emptyset \\
& \mathscr{L} \llbracket 1 \rrbracket=\{\epsilon\} \\
& \mathscr{L} \llbracket a \rrbracket=\{a\} \quad \text { For } a \in \Sigma
\end{aligned}
$$

$$
\mathscr{L} \llbracket R_{1} \cdot R_{2} \rrbracket=\left\{w_{1} w_{2}: w_{1} \in \mathscr{L} \llbracket R_{1} \rrbracket, w_{2} \in \mathscr{L} \llbracket R_{2} \rrbracket\right\}
$$

$$
\begin{aligned}
\mathscr{L} \llbracket R_{1}+R_{2} \rrbracket & =\mathscr{L} \llbracket R_{1} \rrbracket \cup \mathscr{L} \llbracket R_{2} \rrbracket \\
\mathscr{L} \llbracket R^{*} \rrbracket & =\mathscr{L} \llbracket R \rrbracket^{*}
\end{aligned}
$$

Regular expression semantics

- An interpretation \mathscr{I} consists of a regular algebra and a semantic function

Regular expression semantics

- An interpretation \mathscr{I} consists of a regular algebra and a semantic function
- A regular algebra $\mathbf{A}=\left\langle A, 0^{A}, 1^{A},+{ }^{A}, .^{A}, *^{A}\right\rangle$ consists of
- A set A (the universe or carrier of the algebra)
- Distinguished elements $0^{A}, 1^{A} \in A$
- Two binary operators $\cdot{ }^{A},+{ }^{A}: A \times A \rightarrow A$ (sequencing and choice)
- A unary operator $*^{A}: A \rightarrow A$ (iteration)

Regular expression semantics

- An interpretation \mathscr{I} consists of a regular algebra and a semantic function
- A regular algebra $\mathbf{A}=\left\langle A, 0^{A}, 1^{A},+^{A}, .^{A}, *^{A}\right\rangle$ consists of
- A set A (the universe or carrier of the algebra)
- Distinguished elements $0^{A}, 1^{A} \in A$
- Two binary operators $\cdot{ }^{A},+{ }^{A}: A \times A \rightarrow A$ (sequencing and choice)
- A unary operator $*^{A}: A \rightarrow A$ (iteration)
- A semantic function $f: \Sigma \rightarrow A$ maps letters of the alphabet into the algebra

Regular expression semantics

- An interpretation \mathscr{I} consists of a regular algebra and a semantic function
- A regular algebra $\mathbf{A}=\left\langle A, 0^{A}, 1^{A},+^{A}, .^{A}, *^{A}\right\rangle$ consists of
- A set A (the universe or carrier of the algebra)
- Distinguished elements $0^{A}, 1^{A} \in A$
- Two binary operators $\cdot{ }^{A},+{ }^{A}: A \times A \rightarrow A$ (sequencing and choice)
- A unary operator $*^{A}: A \rightarrow A$ (iteration)
- A semantic function $f: \Sigma \rightarrow A$ maps letters of the alphabet into the algebra
- Define interpretation $\mathscr{I} \llbracket-\rrbracket: \operatorname{Reg} \operatorname{Exp}(\Sigma) \rightarrow A$:

$$
\begin{aligned}
\mathscr{I} \llbracket 0 \rrbracket & =0^{A} \\
\mathscr{I} \llbracket 1 \rrbracket & =1^{A} \\
\mathscr{I} \llbracket a \rrbracket & =f(a) \quad \text { For } a \in \Sigma
\end{aligned}
$$

$$
\begin{aligned}
\mathscr{I} \llbracket R_{1} \cdot R_{2} \rrbracket & =\mathscr{I} \llbracket R_{1} \rrbracket \cdot{ }^{A} \mathscr{I} \llbracket R_{2} \rrbracket \\
\mathscr{I} \llbracket R_{1}+R_{2} \rrbracket & =\mathscr{I} \llbracket R_{1} \rrbracket+{ }^{A} \mathscr{I} \llbracket R_{2} \rrbracket \\
\mathscr{I} \llbracket R^{*} \rrbracket & =\mathscr{I} \llbracket R \rrbracket^{*^{A}}
\end{aligned}
$$

Warm-up: shortest paths

- Consider an edge-weighted graph:

- Suppose we want to compute smallest-weight path from a to c

Warm-up: shortest paths

- Consider an edge-weighted graph:

- Suppose we want to compute smallest-weight path from a to c
(1) Compute a path expression recognizing paths from a to c

$$
\left(\langle a, b\rangle\langle b, d\rangle(\langle d, e\rangle\langle e, d\rangle)^{*}\langle d, a\rangle\right)^{*}\langle a, b\rangle\left(\langle b, c\rangle+\langle b, d\rangle(\langle d, e\rangle\langle e, d\rangle)^{*}\langle d, c\rangle\right)
$$

Warm-up: shortest paths

- Consider an edge-weighted graph:

- Suppose we want to compute smallest-weight path from a to c
(1) Compute a path expression recognizing paths from a to c

$$
\left(\langle a, b\rangle\langle b, d\rangle(\langle d, e\rangle\langle e, d\rangle)^{*}\langle d, a\rangle\right)^{*}\langle a, b\rangle\left(\langle b, c\rangle+\langle b, d\rangle(\langle d, e\rangle\langle e, d\rangle)^{*}\langle d, c\rangle\right)
$$

(2) Interpret the path expression within a distance algebra

Algebra of distances

- Distance algebra universe: $\mathbb{Z} \cup\{-\infty, \infty\}$
- Operations:

$$
\begin{array}{rlr}
0^{D} & =\infty & \\
1^{D} & =0 & \\
d_{1}+{ }^{D} d_{2} & \triangleq \min \left(d_{1}, d_{2}\right) & \text { Minimum } \\
d_{1} \cdot{ }^{D} d_{2} & \triangleq d_{1}+d_{2} & \text { Addition } \\
d^{*^{D}} & \triangleq\left\{\begin{array}{lll}
-\infty & \text { if } d<0 \\
0 & \text { otherwise } & \text { Infimum of }\{n d: n \in \mathbb{N}\}
\end{array}\right.
\end{array}
$$

Interpreting a path expression DAG

$$
\begin{aligned}
& \left(\langle a, b\rangle\langle b, d\rangle(\langle d, e\rangle\langle e, d\rangle)^{*}\langle d, a\rangle\right)^{*} \\
& \langle a, b\rangle\left(\langle b, c\rangle+\langle b, d\rangle(\langle d, e\rangle\langle e, d\rangle)^{*}\langle d, c\rangle\right)
\end{aligned}
$$

- Explicit path expressions can be exponential in graph size
- DAG representation to share repeated subexpressions \Rightarrow polynomial size

Interpreting a path expression DAG

$$
\begin{array}{rlr}
0^{D} & =\infty \\
1^{D} & =0 & \\
d_{1}+{ }^{D} d_{2} & \triangleq \min \left(d_{1}, d_{2}\right) & \text { Minimum } \\
d_{1} \cdot{ }^{D} d_{2} & \triangleq d_{1}+d_{2} & \text { Addition } \\
d^{*^{D}} & \triangleq\left\{\begin{array}{llr}
-\infty & \text { if } d<0 \\
0 & \text { otherwise }
\end{array}\right. & \inf \{n d: n \in \mathbb{N}\}
\end{array}
$$

$\langle a, b\rangle$

Interpreting a path expression DAG

$$
\begin{array}{rlr}
0^{D} & =\infty \\
1^{D} & =0 & \\
d_{1}+{ }^{D} d_{2} & \triangleq \min \left(d_{1}, d_{2}\right) & \text { Minimum } \\
d_{1} \cdot{ }^{D} d_{2} & \triangleq d_{1}+d_{2} & \text { Addition } \\
d^{*} D & \triangleq\left\{\begin{array}{llr}
-\infty & \text { if } d<0 \\
0 & \text { otherwise }
\end{array}\right. & \inf \{n d: n \in \mathbb{N}\}
\end{array}
$$

$\langle a, b\rangle$

Interpreting a path expression DAG

$$
\begin{array}{rlr}
0^{D} & =\infty \\
1^{D} & =0 & \\
d_{1}+{ }^{D} d_{2} & \triangleq \min \left(d_{1}, d_{2}\right) & \text { Minimum } \\
d_{1} \cdot{ }^{D} d_{2} & \triangleq d_{1}+d_{2} & \text { Addition } \\
d^{*^{D}} & \triangleq\left\{\begin{array}{llr}
-\infty & \text { if } d<0 \\
0 & \text { otherwise }
\end{array}\right. & \inf \{n d: n \in \mathbb{N}\}
\end{array}
$$

$\langle a, b\rangle$
$\langle\hat{2}, d\rangle$

Interpreting a path expression DAG

$$
\begin{array}{rlr}
0^{D} & =\infty \\
1^{D} & =0 & \\
d_{1}+{ }^{D} d_{2} & \triangleq \min \left(d_{1}, d_{2}\right) & \text { Minimum } \\
d_{1} \cdot{ }^{D} d_{2} & \triangleq d_{1}+d_{2} & \text { Addition } \\
d^{*} & \triangleq\left\{\begin{array}{llr}
-\infty & \text { if } d<0 \\
0 & \text { otherwise }
\end{array}\right. & \inf \{n d: n \in \mathbb{N}\}
\end{array}
$$

Parallel developments

- Algebraic path problems: line of work in algorithms / operations research
- Elimination-style dataflow analysis: dataflow analysis using algorithms resembling Gaussian elimination
[Allen \& Cocke '76, Hecht \& Ullman '73, Graham \& Wegman '76]

Convergence [Tarjan '81]

A Unified Approach to Path Problems

ROBERT ENDRE TARJAN
Stanjord Unnersty, Starford. Califomia
Abssract. A general method is descrbbed for solving path problems oa directed graphs Such palia problems inclade finding shoricest paths, solvng sparse syttems of inear equations, and carrying out global fox analyes of compuer programs ine method consts oft tw iteps first a colection of regular
expressions representung sets of paths in the graph is consructed This can be done by using any standard aloortithm. such as Gaussun or Gauss-Jordan elimination. Next. a natural minoing from reaular

Fast Algorithms for Solving Path Problems
robert endre tarjan
Stanford Uniersity, Stanford, Califorma
Abstract Let $G=(V, E)$ be a durected greph with a disunguushed source veriex s. The stigge-source of all paths in G from s io $\begin{aligned} & \text { A solution to this probiem can pe used to solve shortest path probiems, solve }\end{aligned}$ sparse systems of lincar equatons, and carry out global flow analysis A method is described for compuing path expressions by dviding G into cemponents. computing path expressicns on the components by

- Dataflow analysis as an algebraic path problem
- Graph: control flow graph
- Algebra: transfer functions $L \rightarrow L$ (for some lattice L) [Graham \& Wegman '76]

Convergence [Tarjan '81]

A Unified Approach to Path Problems

ROBERT ENDRE TARJAN
Stanjord Unversty, Stanford. Califoma

Fast Algorithms for Solving Path Problems
Robert endre tarjan
Stanford Universty, Slanford, Caitforma
Abstract Let $G=(V, E)$ be a durected graph wath a distungushed source veriex s. The single-source
 sparse systems of linear equattons, and carry out global flow analysis A method is described for compuing

- Dataflow analysis as an algebraic path problem
- Graph: control flow graph
- Algebra: transfer functions $L \rightarrow L$ (for some lattice L) [Graham \& Wegman '76]
- Efficient (almost linear time) algorithm for single-source path expression problem
- Given: Graph $G=(V, E)$ and root vertex r
- Compute: For each $v \in V$, a path expression $P(r, v)$ recognizing all paths from r to v in G

Program summarization as an algebraic path problem

```
step = 8
while (true) do
    m := 0
    while ( }m<step\mathrm{ ) do
    if ( }n<0)\mathrm{ then
        halt
    else
        m := m + 1
        n:= n-1
```


Program summarization as an algebraic path problem

```
step = 8
while (true) do
    m := 0
    while ( }m<step\mathrm{ ) do
    if ( }n<0)\mathrm{ then
        halt
    else
        m := m + 1
        n:= n-1
```


Program summarization as an algebraic path problem

Program summarization as an algebraic path problem

Transition Formulas

- Transition formula $F\left(X, X^{\prime}\right)$: logical formula \sim binary relation on states
- X : pre-state variables
- $X^{\prime} \triangleq\left\{x^{\prime}: x \in X\right\}$: post-state variables

$$
t f(x:=x+1) \triangleq x^{\prime}=x+1 \wedge y^{\prime}=y \wedge z^{\prime}=z
$$

Transition Formulas

- Transition formula $F\left(X, X^{\prime}\right)$: logical formula \sim binary relation on states
- X : pre-state variables
- $X^{\prime} \triangleq\left\{x^{\prime}: x \in X\right\}$: post-state variables

$$
t f(x:=x+1) \triangleq x^{\prime}=x+1 \wedge y^{\prime}=y \wedge z^{\prime}=z
$$

- To verify an assertion:
(1) Compute path expression R from entry to assert (P)
(2) Check TF $\llbracket R \rrbracket \wedge \neg P\left(X^{\prime}\right)$
- UNSAT: assertion verified \checkmark
- SAT: No conclusion

Transition Formulas

- Transition formula $F\left(X, X^{\prime}\right)$: logical formula \sim binary relation on states
- X : pre-state variables
- $X^{\prime} \triangleq\left\{x^{\prime}: x \in X\right\}$: post-state variables

$$
t f(x:=x+1) \triangleq x^{\prime}=x+1 \wedge y^{\prime}=y \wedge z^{\prime}=z
$$

- To verify an assertion:
(1) Compute path expression R from entry to assert (P)
(2) Check TF $\llbracket R \rrbracket \wedge \neg P\left(X^{\prime}\right)$
- UNSAT: assertion verified \checkmark
- SAT: No conclusion
- To bound time usage:
- Compute path expression R from entry to exit
- Redefine semantic function $f^{\prime}(e) \triangleq t f(e) \wedge t^{\prime}=t+1$
- Maximize t^{\prime} w.r.t. TF $\llbracket R \rrbracket$

Transition Formula Algebras

Universe: set of transition formulas $F\left(X, X^{\prime}\right)$ over a fixed set of variables X

$$
\begin{aligned}
& 0^{\mathrm{TF}} \triangleq \text { false } \\
& 1^{\mathrm{TF}} \triangleq \bigwedge_{x \in X} x^{\prime}=x
\end{aligned}
$$

Empty relation
Identity relation

Transition Formula Algebras

Universe: set of transition formulas $F\left(X, X^{\prime}\right)$ over a fixed set of variables X

$$
\begin{gathered}
0^{\mathrm{TF}} \triangleq \text { false } \\
1^{\mathrm{TF}} \triangleq \bigwedge_{x \in X} x^{\prime}=x \\
F+{ }^{\mathrm{TF}} G \triangleq F \vee G
\end{gathered}
$$

Empty relation
Identity relation

Union

Transition Formula Algebras

Universe: set of transition formulas $F\left(X, X^{\prime}\right)$ over a fixed set of variables X

$$
\begin{aligned}
& 0^{\mathrm{TF}} \triangleq \text { false } \\
& 1^{\mathrm{TF}} \triangleq \bigwedge_{x \in X} x^{\prime}=x \\
& F+{ }^{\mathrm{TF}} G \triangleq F \vee G \\
& F \cdot{ }^{\mathrm{TF}} G \triangleq \exists X^{\prime \prime} \cdot F\left(X, X^{\prime \prime}\right) \wedge G\left(X^{\prime \prime}, X^{\prime}\right)
\end{aligned}
$$

Empty relation
Identity relation

Union
Relational composition

Transition Formula Algebras

Universe: set of transition formulas $F\left(X, X^{\prime}\right)$ over a fixed set of variables X

$$
\begin{aligned}
0^{\mathrm{TF}} & \triangleq \text { false } \\
1^{\mathrm{TF}} & \triangleq \bigwedge_{x \in X} x^{\prime}=x \\
F+{ }^{\mathrm{TF}} G & \triangleq F \vee G \\
F \cdot \cdot^{\mathrm{TF}} G & \triangleq \exists X^{\prime \prime} \cdot F\left(X, X^{\prime \prime}\right) \wedge G\left(X^{\prime \prime}, X^{\prime}\right) \\
F^{* \mathrm{TF}} & \triangleq \ldots
\end{aligned}
$$

Empty relation
Identity relation

Union
Relational composition
Approximate transitive closure

Transition Formula Algebras

Universe: set of transition formulas $F\left(X, X^{\prime}\right)$ over a fixed set of variables X

$$
\begin{array}{rlr}
0^{\mathrm{TF}} & \triangleq \text { false } & \text { Empty relation } \\
1^{\mathrm{TF}} \triangleq \bigwedge_{x \in X} x^{\prime}=x & \text { Identity relation } \\
F+{ }^{\mathrm{TF}} G \triangleq F \vee G & \text { Union } \\
F \cdot \cdot^{\mathrm{TF}} G \triangleq \exists X^{\prime \prime} . F\left(X, X^{\prime \prime}\right) \wedge G\left(X^{\prime \prime}, X^{\prime}\right) & \text { Relational composition } \\
F^{* T \mathrm{~F}} \triangleq \ldots & \text { Approximate transitive closure }
\end{array}
$$

Iteration

$$
(-)^{*}: \mathbf{T F} \rightarrow \mathbf{T F}
$$

- Input: transition formula summarizing loop body
- Regardless of structure of inner loop (nested loops, procedure calls, ...)
- Output: transition formula summarizing loop
- Output language is the same as input language!
- Related work in CAV community: loop summarization / acceleration

Ex. 1: Predicate abstraction

- Houdini [Flanagan \& Leino '01]
- Fix a finite set of predicates P.
- Infer loop invariants of the form $\left(\bigwedge_{p \in Q \subseteq P} p\right)$ by fixpoint computation

Ex. 1: Predicate abstraction

- Houdini [Flanagan \& Leino '01]
- Fix a finite set of predicates P.
- Infer loop invariants of the form $\left(\bigwedge_{p \in Q \subseteq P} p\right)$ by fixpoint computation
- Transition predicate abstraction [Kroening et al. '08]
- Fix finite set of transition predicates P such that each $p \in P$ is
- reflexive: $X=X^{\prime} \models p\left(X, X^{\prime}\right)$.
- transitive: $p\left(X, X^{\prime}\right) \wedge p\left(X^{\prime}, X^{\prime \prime}\right) \models p\left(X, X^{\prime \prime}\right)$.
- Examples: $\left(x \leq x^{\prime}\right),\left(x \geq 0 \Rightarrow x^{\prime} \geq 0\right), \ldots$
- Non-examples: $x<x^{\prime}\left(x \geq 0 \Rightarrow\left(x^{\prime} \leq x\right)\right)$

Ex. 1: Predicate abstraction

- Houdini [Flanagan \& Leino '01]
- Fix a finite set of predicates P.
- Infer loop invariants of the form $\left(\bigwedge_{p \in Q \subseteq P} p\right)$ by fixpoint computation
- Transition predicate abstraction [Kroening et al. '08]
- Fix finite set of transition predicates P such that each $p \in P$ is
- reflexive: $X=X^{\prime} \models p\left(X, X^{\prime}\right)$.
- transitive: $p\left(X, X^{\prime}\right) \wedge p\left(X^{\prime}, X^{\prime \prime}\right) \models p\left(X, X^{\prime \prime}\right)$.
- Examples: $\left(x \leq x^{\prime}\right),\left(x \geq 0 \Rightarrow x^{\prime} \geq 0\right), \ldots$
- Non-examples: $x<x^{\prime}\left(x \geq 0 \Rightarrow\left(x^{\prime} \leq x\right)\right)$
- Iteration operator: $F^{*} \triangleq \bigwedge\{p \in P: F \models p\}$
- No fixpoint computation (max $|P|$ calls to an SMT solver).

Ex 2: Interval analysis

- Interval invariant for a loop is an inductive invariant of the form

$$
\bigwedge_{x \in X} a_{x} \leq x \leq b_{x}
$$

Ex 2: Interval analysis

- Interval invariant for a loop is an inductive invariant of the form

```
                    \(\bigwedge_{x \in X} a_{x} \leq x \leq b_{x}\)
\(i=0 ;\)
\(j=0\);
while ( \(i<10 \wedge j \neq 20 \wedge j<100\) ) \{
    \(i=i+1\);
    \(j=j+1\);
\}
```


Ex 2: Interval analysis

- Interval invariant for a loop is an inductive invariant of the form

$$
\bigwedge_{x \in X} a_{x} \leq x \leq b_{x}
$$

```
i=0;
j = 0;
while ( }i<10\wedgej\not=20\wedgej<100
    i= i + 1;
    j = j + 1;
}
```


Ex 2: Interval analysis

- Interval invariant for a loop is an inductive invariant of the form

$$
\bigwedge_{x \in X} a_{x} \leq x \leq b_{x}
$$

```
i = 0;
j = 0;
while ( }i<10\wedgej\not=20\wedgej< 100
    i= i + 1;
    j = j + 1;
}
```


Ex 2: Interval analysis

- Interval invariant for a loop is an inductive invariant of the form

$$
\bigwedge_{x \in X} a_{x} \leq x \leq b_{x}
$$

```
\(i=0 ;\)
\(j=0\);
while ( \(i<10 \wedge j \neq 20 \wedge j<100\) )
    \(i=i+1\);
    \(j=j+1\);
\}
```


Ex 2: Interval analysis

- Interval invariant for a loop is an inductive invariant of the form

```
    \(\bigwedge a_{x} \leq x \leq b_{x}\)
    \(x \in X\)
\(i=0\);
\(j=0\);
while \((i<10 \wedge j \neq 20 \wedge j<100) \quad\{\)
    \(i=i+1\);
    \(j=j+1\);
\}
```

- Classical approach to computing interval invariants: iterative, using widening/narrowing [Cousot \& Cousot '76]
- Computes some interval invariant; not nessarily best

Ex 2: Interval analysis

- Interval invariant for TF $F\left(X, X^{\prime}\right)$: for each variable x, a pair a_{x}, b_{x} such that

$$
\vDash \underbrace{\forall X, X^{\prime} \cdot\left(\left(\bigwedge_{x \in X} a_{x} \leq x \leq b_{x}\right) \wedge F\left(X, X^{\prime}\right)\right) \Rightarrow \bigwedge_{x \in X} a_{x} \leq x^{\prime} \leq b_{x}}_{\operatorname{Inv}(A, B)}
$$

Ex 2: Interval analysis

- Interval invariant for TF $F\left(X, X^{\prime}\right)$: for each variable x, a pair a_{x}, b_{x} such that

$$
\models \underbrace{\forall X, X^{\prime} \cdot\left(\left(\bigwedge_{x \in X} a_{x} \leq x \leq b_{x}\right) \wedge F\left(X, X^{\prime}\right)\right) \Rightarrow \bigwedge_{x \in X} a_{x} \leq x^{\prime} \leq b_{x}}_{\operatorname{Inv}(A, B)}
$$

- $F^{*} \triangleq \forall A, B .\left(\operatorname{Inv}(A, B) \wedge \bigwedge_{x \in X} a_{x} \leq x \leq b_{x}\right) \Rightarrow \bigwedge_{x \in X} a_{x} \leq x^{\prime} \leq b_{x}$ [Monniaux '09]

Ex 2: Interval analysis

- Interval invariant for TF $F\left(X, X^{\prime}\right)$: for each variable x, a pair a_{x}, b_{x} such that

$$
\vDash \underbrace{\forall X, X^{\prime} \cdot\left(\left(\bigwedge_{x \in X} a_{x} \leq x \leq b_{x}\right) \wedge F\left(X, X^{\prime}\right)\right) \Rightarrow \bigwedge_{x \in X} a_{x} \leq x^{\prime} \leq b_{x}}_{\operatorname{Inv}(A, B)}
$$

- $F^{*} \triangleq \forall A, B .\left(\operatorname{Inv}(A, B) \wedge \bigwedge_{x \in X} a_{x} \leq x \leq b_{x}\right) \Rightarrow \bigwedge_{x \in X} a_{x} \leq x^{\prime} \leq b_{x}$ [Monniaux '09]
- F^{*} entails all interval invariants of F.

Ex 3: Recurrence analysis

$$
\begin{aligned}
& \text { while }(x>0) \text { do } \\
& \text { if }(y<0) \text { then } \\
& x:=x+y \\
& y:=y-1 \\
& \text { else } \\
& x:=x-2 \\
& y:=y-3
\end{aligned}
$$

$$
\begin{aligned}
& x \geqslant 0 \\
& \wedge\left(\begin{array}{c}
\\
v\left(y \geq 0 \wedge x^{\prime}=x+y \wedge y^{\prime}=y-1\right) \\
v
\end{array}\right)
\end{aligned}
$$

Ex 3: Recurrence analysis

$$
\begin{aligned}
& \text { while }(x>0) \text { do } \\
& \text { if }(y<0) \text { then } \\
& x:=x+y \\
& y:=y-1 \\
& \text { else } \\
& x:=x-2 \\
& y:=y-3
\end{aligned}
$$

$$
\begin{aligned}
& x>0 \\
& \wedge\binom{\left(y<0 \wedge x^{\prime}=x+y \wedge y^{\prime}=y-1\right)}{\vee\left(y \geq 0 \wedge x^{\prime}=x-2 \wedge y^{\prime}=y-2\right)}
\end{aligned}
$$

Ex 3: Recurrence analysis

$$
\begin{aligned}
& \text { while }(x>0) \text { do } \\
& \text { if }(y<0) \text { then } \\
& x:=x+y \\
& y:=y-1 \\
& \text { else } \\
& x:=x-2 \\
& y:=y-3
\end{aligned}
$$

$$
\begin{array}{cc}
\mathrm{y}^{(k)} \leq \mathrm{y}^{(k-1)}-1 \\
\mathrm{y}^{(k)} \geq \mathrm{y}^{(k-1)}-3 \\
\left(2 \mathrm{x}^{(k)}-\mathrm{y}^{(k)}\right) \leq\left(2 \mathrm{x}^{(k-1)}-\mathrm{y}^{(k-1)}\right)-1
\end{array}
$$

Ex 3: Recurrence analysis

while $(x>0)$ do

$$
\text { if } \begin{aligned}
&(y<0) \text { then } \\
& x:=x+y \\
& y:=y-1
\end{aligned}
$$

else

$$
\begin{aligned}
& x>0\left(y<0 \wedge x^{\prime}=x+y \wedge y^{\prime}=y-1\right) \\
& \wedge\left(\begin{array}{l}
\left(y \geq 0 \wedge x^{\prime}=x-2 \wedge y^{\prime}=y-2\right)
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x:=x-2 \\
& y:=y-3
\end{aligned}
$$

$$
\begin{array}{cc}
\mathrm{y}^{(k)} \leq \mathrm{y}^{(k-1)}-1 \\
\mathrm{y}^{(k)} \geq \mathrm{y}^{(k-1)}-3 \\
\left(2 \mathrm{x}^{(k)}-\mathrm{y}^{(k)}\right) \leq\left(2 \mathrm{x}^{(k-1)}-\mathrm{y}^{(k-1)}\right)-1
\end{array}
$$

$$
\exists k . k \geq 0 \wedge \mathrm{y}^{\prime} \leq \mathrm{y}-k \wedge \mathrm{y}^{\prime} \geq \mathrm{y}-3 k \wedge\left(2 \mathrm{x}^{\prime}-\mathrm{y}^{\prime}\right) \leq(2 \mathrm{x}-\mathrm{y})-k
$$

Ex 3: Recurrence analysis

while $(x>0)$ do

$$
\text { if } \begin{aligned}
&(y<0) \text { then } \\
& x:=x+y \\
& y:=y-1
\end{aligned}
$$

else

$$
\begin{aligned}
& x>0 \\
& \wedge\binom{\left(y<0 \wedge x^{\prime}=x+y \wedge y^{\prime}=y-1\right)}{\vee\left(y \geq 0 \wedge x^{\prime}=x-2 \wedge y^{\prime}=y-2\right)}
\end{aligned}
$$

$$
\begin{aligned}
& x:=x-2 \\
& y:=y-3
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{y}^{(k)} \leq \mathrm{y}^{(k-1)}-1 \\
& \mathrm{y}^{(k)} \geq \mathrm{y}^{(k-1)}-3 \\
&\left(2 \mathrm{x}^{(k)}-\mathrm{y}^{(k)}\right) \leq\left(2 \mathrm{x}^{(k-1)}-\mathrm{y}^{(k-1)}\right)-1
\end{aligned}
$$

$$
\exists k . k \geq 0 \wedge \mathrm{y}^{\prime} \leq \mathrm{y}-k \wedge \mathrm{y} \geq \mathrm{y}-3 k \wedge\left(2 \mathrm{x}^{\prime}-\mathrm{y}^{\prime}\right) \leq(2 \mathrm{x}-\mathrm{y})-k
$$

Ex 3: Recurrence analysis

- A linear recurrence relation for a TF $F\left(X, X^{\prime}\right)$ is a formula of the form $\mathbf{a}^{T} \mathbf{x}^{\prime} \leq \mathbf{a}^{T} \mathbf{x}+b$ entailed by F
- $\mathrm{x} / \mathrm{x}^{\prime}$ denote vectors containing X / X^{\prime}

Ex 3: Recurrence analysis

- A linear recurrence relation for a TF $F\left(X, X^{\prime}\right)$ is a formula of the form $\mathbf{a}^{T} \mathbf{x}^{\prime} \leq \mathbf{a}^{T} \mathbf{x}+b$ entailed by F
- $\mathbf{x} / \mathbf{x}^{\prime}$ denote vectors containing X / X^{\prime}
- $\operatorname{Rec}(F) \triangleq$ convex cone of all linear recurrence relations of F
- $\operatorname{Rec}(F) \cong$ valid inequalities of

$$
\Delta(F) \triangleq\left(\exists X, X^{\prime} . F\left(X, X^{\prime}\right) \wedge \bigwedge_{x \in X} \delta_{x}=\left(x^{\prime}-x\right)\right)
$$

That is,

$$
F \models \mathbf{a}^{T} \mathbf{x}^{\prime} \leq \mathbf{a}^{T} \mathbf{x}+b \Longleftrightarrow \Delta(F) \models \mathbf{a}^{T} \delta \leq b
$$

- Generators of $\operatorname{Rec}(F)$ can be computed from convex hull of $\Delta(F)$ [Ancourt et al. '10, Farzan \& K '2015]
- I.e., we can compute all implied linear recurrence relations
- Polynomial recurrence relations with polynomial / complex exponential closed forms [K et al. '2018]
- Polynomial recurrence relations with polynomial / rational exponential closed forms [K et al. '2019]
- Vector addition systems [Silverman \& K'19]
- Octagonal relations [Bozga et al. '09]
- Combinations thereof
- ...

Ex 4: Affine relation analysis [Karr '76]

- An affine relation is a TF of the form $A \mathbf{x}^{\prime}=B \mathbf{x}+\mathbf{c}$
- Subuniverse of transition formulas

Ex 4: Affine relation analysis [Karr '76]

- An affine relation is a TF of the form $A \mathbf{x}^{\prime}=B \mathbf{x}+\mathbf{c}$
- Subuniverse of transition formulas
- Closed under relational composition, but not disjunction
- $F+G \triangleq$ affine hull of $F \vee G$

Ex 4: Affine relation analysis [Karr '76]

- An affine relation is a TF of the form $A \mathbf{x}^{\prime}=B \mathbf{x}+\mathbf{c}$
- Subuniverse of transition formulas
- Closed under relational composition, but not disjunction
- $F+G \triangleq$ affine hull of $F \vee G$
- Lattice of affine relations has no infinite increasing chains
- $1 \subseteq 1+F \subseteq 1+F+(F \circ F) \subseteq \cdots$ reaches limit at some $n \leq 2|X|$
- $F^{*} \triangleq \sum_{i=0}^{n} \underbrace{F \circ \cdots \circ F}_{i \text { times }} \quad$ (Least solution to $F^{*} \circ F+1=F^{*}$)

Designing an algebraic analysis

(1) Define:

- Semantic algebra $\mathcal{A}=\langle A, \cdot,+, *, 0,1\rangle$
- Semantic function $f: E \rightarrow A$
(2) Apply: Tarjan's path expression algorithm

Iterative vs. algebraic program analysis

Iterative Framework	Algebraic Framework
Join semi-lattice	Semantic Algebra
Abstract transformers	Semantic function
Chaotic iteration algorithm	Path-expression algorithm

Key differences

- Algebraic analyses are compositional
- Loop analysis is internal to an algebraic program analysis

