
Recovering Components from Executables
[Cooperative Agreement HR0011-12-2-0012]

Thomas Reps

University of Wisconsin

Thomas Reps Evan
Driscoll

Venkatesh
Karthik Srinivasan

Tushar
Sharma

Aditya
Thakur

Divy Vasal

2

Project Goals

• Develop a “redeveloper’s workbench”

Tools to identify and extract components, and establish their
behavioral properties

– Aid in the harvesting of components from an executable
• identify components

• make adjustments to components identified

• issue queries about a component’s properties

– Queries
• type information; function prototypes

• side-effect “footprint”

• error-triggering properties

DARPA BET IPR

Basic scenario

DARPA BET IPR 3

4

Project Activities

• Component identification
– Recovering class hierarchies using dynamic analysis

• group functions into classes
• identify inheritance and delegation relationships among the inferred classes

• Component extraction
– Specialization slicing

• create multiple specialized versions of a procedure, each equipped with a different subset of the
original procedure's parameters

• novel algorithm creates optimal specialization slice

– Partial evaluation of machine code
• general method to address extraction, specialization, and optimization of machine code

• Verifying component properties
– Symbolic abstraction (BET + ONR STTR)

• methods to obtain most-precise results in abstract interpretation
• for a given abstract domain, attains the limit of what is achievable by any analysis algorithm

– Domain-combination technique: combine results from multiple analysis methods
– Abstract domain of bit-vector inequalities

• allows a tool to identify inequality invariants for machine arithmetic (arithmetic mod 232 or 264)
• fills a long-standing need in both source-code and machine-code analysis

– Format-compatibility checking (ONR)

DARPA BET IPR

5

Outline of Talk

• Review of goals

• Progress (Oct. 2012 - May 2013)
– Component identification

• Recovering class hierarchies using dynamic analysis

– Component extraction
• Specialization slicing

• Partial evaluation of machine code

– Verifying component properties
• Symbolic abstraction (BET + ONR STTR)

• Domain-combination technique: combine results from multiple analysis methods

• Abstract domain of bit-vector inequalities

• Format-compatibility checking (ONR)

• Recap of publications/submissions

• Recap of plans for 2013

DARPA BET IPR

6

Outline of Talk

• Review of goals

• Progress (Oct. 2012 - May 2013)
– Component identification

• Recovering class hierarchies using dynamic analysis

– Verifying component properties
• Symbolic abstraction (BET + ONR STTR)

• Domain-combination technique: combine results from multiple analysis methods

• Abstract domain of bit-vector inequalities

• Format-compatibility checking (ONR)

– Component extraction
• Specialization slicing

• Partial evaluation of machine code

• Recap of publications/submissions

• Recap of plans for 2013

DARPA BET IPR

Recovering Class Hierarchies

• Given:
– Stripped binary

• Goals:
– Group functions

in the binary into
classes

– Identify
inheritance and
composition
relationships
between
inferred classes

DARPA BET IPR 7

_Disassembly of section .text:

00000000004003e0 <.text>:
 4003e0: xor %ebp,%ebp
 4003e2: mov %rdx,%r9
 4003e5: pop %rsi
 4003e6: mov %rsp,%rdx
 4003e9: push %rax
 4003ea: push %rsp
 .
 .
 .

?

Class C

Class B Class A

Class D

Methods:
0x400460
0x4004c4

…

Methods:
0x4004f0
0x400530

…

Methods:
0x4005bf
0x400607

…

Methods:
0x40054a
0x400576

…

Inheritance relationship Composition relationship

Recovering Class Hierarchies

• Why?

– Reengineering legacy software

– Understanding architecture of software that lack
documentation and source code

• Lego

– Dynamic analysis tool

– Recovers software architecture

– Modulo code coverage

DARPA BET IPR 8

Key Ideas

• “this” pointer idiom

– Common idiom in
object-oriented
programming

– “this” pointer = 1st
argument of methods of
a class

– Used to classify sets of
functions

• Unique finalizer idiom

– Unique method in each
class (Destructor in C++)

– Cleans up object

– Parent-class finalizer
called at end of child-
class finalizer

– Used to recover
inheritance and
composition
relationships

DARPA BET IPR 9

void SetID(int nID)

void SetID(Simple* const this, int nID)

Lego – 2 Phases

• Phase 1

– Input: stripped binary and
test input

– Executes given binary
under test input

– Performs dynamic analysis
by dynamic binary
instrumentation

– Records methods invoked
on allocated objects

– Output: object-traces
(summary of lifetime of
every object)

• Phase 2

– Input: object-traces

– Uses order of finalizer calls
as evidence from object-
traces to infer class
hierarchies

– Output: Inferred class
hierarchy and composition
relationships between
inferred classes

DARPA BET IPR 10

Phase 1: Object-Traces

• A sequence of method calls and returns that have
the same receiver object

DARPA BET IPR 11

class Vehicle {

 public:

 Vehicle();

 ~Vehicle();

};

class Car :

public Vehicle {

 public:

 Car(int n);

 ~Car();

 void print_car();

 private:

 void helper();

};

class Bus :

public Vehicle {

 public:

 Bus();

 ~Bus();

 void print_bus();

};

int main() {

 Car c(10);

 Bus b;

 c.print_car();

 b.print_bus();

 return 0;

}

0xAAAA

(Address of c):

Car(int) C

Vehicle() C

Vehicle() R

Car(int) R

print_car() C

print_car() R

~Car() C

helper() C

helper() R

~Vehicle() C

~Vehicle() R

~Car() R

0xBBBB

(Address of b):

Bus() C

Vehicle() C

Vehicle() R

Bus() R

print_bus() C

print_bus() R

~Bus() C

~Vehicle() C

~Vehicle() R

~Bus() R

Object Traces – How to get them?

• Instrument binary using PIN to trace:

– Values of 1st-arguments of methods

– Method calls and returns

• Emit a trace of <“this” pointer, method Call/Return> pairs

• Group methods based on “this”-pointer values

• From the trace, compute object-traces, pairs <A, S>
where

– A is an object address

– S is the sequence of method calls/returns that were passed A as
the value of the “this” pointer (1st argument)

DARPA BET IPR 12

Object-Traces

DARPA BET IPR 13

m()
{
 . . .
}

. . .

a1

a2

a3

. . . <a1, m, C> . . <a1, n, C> . . . <a1, n, R> . . <a1, m, R> . . .
<a2, m, C> . . <a2, m , R> . . <a3, m, C> . . <a3, m , R>

Emitted Trace

[a1: <m, C>, <n, C>, <n, R>, <m, R>], [a2: <m, C>, <m, R>], [a3: <m, C>, <m, R>] Object Traces

n()
{
 . . .
}

a1

Challenges – Blacklisting Methods

• Stand-alone methods and static methods don’t
receive a “this” pointer

• Lego maintains estimates of allocated address space

– Stack pointer values during calls and returns

– Allocated heap objects – instrument new and delete

• If 1st argument’s value of a method is not within
allocated address space, method is blacklisted

– Removed from existing object-traces

– Never added to future object-traces

 DARPA BET IPR 14

void foo(); static void Car::setInventionYear(int a);

Challenges – Object-address Reuse

• Methods of two (or more) unrelated classes appear
in same object-trace

• Reuse of stack space for objects on different
Activation Records (ARs)

• Reuse of same heap space by heap manager

• Lego versions addresses – increment version of
address A when A is deallocated

DARPA BET IPR 15

class A {

 public:

 . . .

 printA();

};

class B {

 public:

 . . .

 printB();

};

void foo() {

 A a;

 a.printA();

}

int main {

 foo();

 bar();

 return 0;

}

void bar() {

 B b;

 b.printB();

}

void f() {

 {

 Foo a;

 …

 }

 {

 Bar b;

 …

 }

}

Challenges – Spurious Traces

• Spurious traces

– Methods of two (or more)
unrelated classes appear in
the same object-trace

– Reuse of same stack space
by compiler for different
objects in different scopes
within same AR

– Locate initializer and
finalizer methods to split
spurious traces

DARPA BET IPR 16

Stack space
reused for a

and b AR of f()

Phase 2: Object-Trace Fingerprints

• Common semantics of OO
languages – derived
class’s finalizer calls base
finalizer just before
returning

• Fingerprint – ‘return-only’
suffix of object-trace

• ‘return-only’ – Methods
that were called just
before caller returned

• Has methods involved in
cleanup of object and
inherited parts

• Length indicates possible
number of levels in class
hierarchy

• Methods in fingerprint –
potential finalizers in the
class and ancestor classes

DARPA BET IPR 17

class A {

 ~A();

};

class B :

public A {

 ~B();

};

class C :

public B {

 ~C();

 helper();

};

class D:

public C {

 ~D();

};

~D() C

~C() C

helper() C

helper() R

~B() C

~A() C

~A() R

~B() R

~C() R

~D() R

Finding Class Hierarchies

• Create a trie from
fingerprints

• Associate each object-
trace with trie node that
accepts object-trace’s
fingerprint

• Add methods in each
object-trace to associated
trie node

• If parent and child nodes
have common methods,
remove common
methods from child

DARPA BET IPR 18

~A()

B

D

. . p() ~A()

. . q() ~A() ~B()

. . r() ~A() ~B() ~D()

. . s() ~A() ~C()

~B() ~C()

~D()

...
p(), ~A()

...
 q() ~B()

...
 r() ~D()

 ~A()

 ~A() ~B()

 ~A()

 …
 s()
 ~C()

Composition Relationships

• Class A has a member instance of B

• A is responsible for cleaning up B – A’s finalizer calls
B’s finalizer

• Record the methods directly called by each method
in object-trace

• Conditions for a composition relationship to exist
between inferred classes A and B

– A’s finalizer calls B’s finalizer

– A is not B’s ancestor or descendant in the inferred
hierarchy

 DARPA BET IPR 19

Scoring – Ground Truth

DARPA BET IPR 20

Vehicle

Car Bus

Compact SUV

GPS

Road

Arterials

Inter
state

Local

ios_base

ofstream

ios

ostream

Unrestricted GT

Partially Restricted GT

Restricted GT

Scoring

• Precision and Recall

• Can’t treat classes as flat sets of methods – inheritance
relationships between classes

• For every path in the GT inheritance hierarchy, find the path in
the inferred hierarchy that gives maximum precision and
recall

DARPA BET IPR 21

Vehicle

Car Bus

Compact SUV

Vehicle’

Car’ Bus’

Compact’ SUV’ SUV’’
p = X%
r = Y%

p = X%
r = Y%

p = X%
r = Y%

p = X%
r = Y%

p = X%
r = Y%

Results

DARPA BET IPR 22

0
20
40
60
80

100
Class Hierarchies - Precision RGT-

SST

PRGT-

SST

RGT-

NoSST

PRGT-

NoSST

0

20

40

60

80

100
Class Hierarchies - Recall

25

Outline of Talk

• Review of goals

• Progress (Oct. 2012 - May 2013)
– Component identification

• Recovering class hierarchies using dynamic analysis

– Verifying component properties
• Symbolic abstraction (BET + ONR STTR)

• Domain-combination technique: combine results from multiple analysis methods

• Abstract domain of bit-vector inequalities

• Format-compatibility checking (ONR)

– Component extraction
• Specialization slicing

• Partial evaluation of machine code

• Recap of publications/submissions

• Recap of plans for 2013

DARPA BET IPR

Verifying component properties

DARPA BET IPR 26

• No null-pointer deferences
• No accesses outside array bounds
• No stack smashing
• No division by zero

• Property holds for all possible inputs

y→ 2
y→ 8
y→ 42
y→ 178

Program Possible concrete
values of y

…

y> 0

Sign Abstraction: only track whether
variable is positive, negative, or zero

Invariant

while(1) {
 x = input();
 If (x > 0) {
 y = 2*x;
 z = w/y;
 }
}

while(1) {
 x = input();
 If (x > 0) {
 y = 2*x;
 z = w/y;
 }
}

Program statement

Inductive Invariants

DARPA BET IPR 27

𝐼1

𝐼2

𝐼3

𝜏12

𝜏23

𝑃1

𝑃2

𝑃3

Inductive Invariants Program points

Abstract Interpretation

DARPA BET IPR 28

Concrete Abstract

Concrete state 𝒞

[x→ 2, y→ 2, z → −3]
[x→ 7, y→ 8, z → −6]

Abstract state 𝒜

[x> 0, y> 0, z < 0]

Concrete transformer
 𝜏: 𝒞 → 𝒞

Abstract transformer
 𝜏#:𝒜 → 𝒜

Concrete execution
• Start with concrete input,

one of the possibly infinite
set of concrete inputs

• Apply 𝜏 for each statement
• Not guaranteed to terminate

Abstract execution
• Start with abstract input

that represents all possible concrete
inputs

• Apply 𝜏#for each statement
• Guaranteed to reach fixpoint

Has to be
sound, precise
over-approximation

Transformers via reinterpretation

DARPA BET IPR 29

• Define abstract operator ∗# for each concrete
operator ∗ in the program

 ∗# < 𝟎 = 𝟎 > 𝟎

< 𝟎

> 𝟎

= 𝟎

> 𝟎

= 𝟎

= 𝟎

= 𝟎

= 𝟎

> 𝟎

< 𝟎

= 𝟎

> 𝟎

Transformers via reinterpretation

DARPA BET IPR 30

• Define abstract operator ∗# for each concrete
operator ∗ in the program

 ∗# < 𝟎 = 𝟎 > 𝟎

< 𝟎

> 𝟎

= 𝟎

< 𝟎

= 𝟎

= 𝟎

= 𝟎

= 𝟎

> 𝟎

< 𝟎

= 𝟎

> 𝟎

• Compositionally define abstract transformers for
statements using abstract operators

Transformers via reinterpretation

DARPA BET IPR 31

a = (x ∗ y) ∗ z;

[x> 0, y> 0, z < 0]

a =# (x ∗# y) ∗# z; a =# (> 0) ∗# z; a =# < 0

[a < 0, x > 0, y > 0, z < 0]

 ∗# < 𝟎 = 𝟎 > 𝟎

< 𝟎

> 𝟎

= 𝟎

< 𝟎

= 𝟎

= 𝟎

= 𝟎

= 𝟎

> 𝟎

< 𝟎

= 𝟎

> 𝟎

Transformers via reinterpretation

DARPA BET IPR 32

𝝉: add bh, al

Adds al, the low-order byte of 32-bit register eax,to
bh, the second-to-lowest byte of 32-bit register ebx

 eax

 ebx

+

Transformers via reinterpretation

DARPA BET IPR 33

𝝉: add bh, al

Semantics expressed as a formula

 #

 # # # # #
 #

 #

 #

Primed variables represent values
in post-state.

ebx − ecx = 0 ∈ 𝒜

𝒜: Conjunctions of bit-vector affine equalities between registers

∧ 216 ebx’ = 216 ecx’ +224 eax’

224 ebx’ − 224 ecx’ = 0 ∈ 𝒜 Not the most-precise value

Automation of best transformer

DARPA BET IPR 34

𝝉 𝑎 ∈ 𝒜

𝑎′ Application of
best transformer

• Ensures correctness
• Ensures precision
• Reduces time to

implement primitives

Symbolic Abstract Interpretation

DARPA BET IPR 35

𝒜

𝛾

ℒ

𝛾

Symbolic Concretization

Easy

𝒞

𝜑 𝑎

Symbolic Abstract Interpretation

DARPA BET IPR 36

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

𝛾

ℒ

𝛾

Symbolic Concretization

𝒞

𝑥 ≥ 2 ∧ 𝑥 ≤ 10 {𝑥 ↦ 2,10 }

Symbolic Abstract Interpretation

DARPA BET IPR 37

𝒜 ℒ 𝒞

𝜑 𝑎

Symbolic Abstraction

𝛼

Challenging

𝛾

Symbolic abstraction ⇒ best transformer

DARPA BET IPR 38

𝒜 ℒ 𝒞

𝑎

𝜏

𝜑𝜏 ∧ 𝛾 (𝑎)

𝑎′

𝛾

𝛼

𝜏#

Automation of best transformer

DARPA BET IPR 39

𝝉 𝑎 ∈ 𝒜

𝑎′ Application of
best transformer

Automation of best transformer

DARPA BET IPR 40

𝜑𝜏 𝑎 ∈ 𝒜

𝑎′ Application of
best transformer

𝛼

Algorithm for 𝛼 𝜑

DARPA BET IPR 41

𝒞

SMT
Solver

𝑆 ⊨ 𝜑

SMT:= Satisfiability Modulo Theory

𝜑

RSY algorithm for 𝛼 𝜑 [VMCAI’04]

DARPA BET IPR 42

Smart sampling

Converge “from below”

𝒜

⊥

𝛼 (𝜑)

𝒞

𝜑

𝒜 𝒞

𝜑 𝑆 ⊨ 𝜑

ℒ

𝜑

⊥

𝑆

𝛽

𝛽(𝑆)

ans

𝛾
𝛾 (𝑎𝑛𝑠)

𝛽: 𝛼 for singleton set

RSY algorithm for 𝛼 𝜑 [VMCAI’04]

𝒜

𝜑1

ℒ

⊥

𝑆1 ⊨ 𝜑1
𝑆1

𝛽

ans

𝜑1 = 𝜑 ∧ ¬𝛾 (ans)

𝒞

𝜑

RSY algorithm for 𝛼 𝜑 [VMCAI’04]

𝒜 ℒ

⊥

ans

𝜑1 = 𝜑 ∧ ¬𝛾 (ans)

𝒞

𝜑

𝛾 𝛾 (𝑎𝑛𝑠)

𝑆1

RSY algorithm for 𝛼 𝜑 [VMCAI’04]

𝒜 ℒ

⊥

ans

𝜑𝑘 = 𝜑 ∧ ¬𝛾 (ans) UNSAT

𝒞

𝜑

𝛼 (𝜑) 𝛾 𝛾 (𝑎𝑛𝑠)

RSY algorithm for 𝛼 𝜑 [VMCAI’04]

Bilateral algorithm for 𝛼 𝜑 [SAS’12]

DARPA BET IPR 47

⊤

⊥

𝛼 (𝜑)

Converge “from below”
and “from above”

Bilateral algorithm for 𝛼 𝜑 [SAS’12]

DARPA BET IPR 48

⊤

⊥

𝛼 (𝜑)

𝛼 (𝜑)

Stop at any time sound answer

Bilateral algorithm for 𝛼 𝜑 [SAS’12]

DARPA BET IPR 49

𝛼 (𝜑)

⊤

⊥

𝛼 (𝜑)

Tunable

More time  more precision

Bilateral algorithm for 𝛼 𝜑 [SAS’12]

DARPA BET IPR 50

𝒜 𝒞

𝜑 𝑆 ⊨ 𝜑

ℒ

𝜑

⊥

𝑆

𝛽

𝛽(𝑆)

lower

𝛾
𝛾 (𝑙𝑜𝑤𝑒𝑟)

𝛽: 𝛼 for singleton set

⊤ upper

Bilateral algorithm for 𝛼 𝜑 [SAS’12]

DARPA BET IPR 51

𝒜 𝒞 ℒ

𝜑

⊥

⊤ upper

lower

p
𝛾 𝛾 (𝑝)

𝜑1 = 𝜑 ∧ ¬𝛾 (p) UNSAT!

Bilateral algorithm for 𝛼 𝜑 [SAS’12]

DARPA BET IPR 52

𝒜 𝒞 ℒ

𝜑

⊥

⊤ upper

p
𝛾 𝛾 (𝑝)

𝜑1 = 𝜑 ∧ ¬𝛾 (p) SAT!

𝑆1
𝛽 lower

Symbolic abstraction ⇒ Best inductive invariants

DARPA BET IPR 53

• Theoretical limit of attainable precision

• Achieved via repeated application of best
transformer

– That’s it! [TAPAS 2013]

Combination of domains

• Exchange of information among different domains
during analysis

• More precision

– “sum is greater than parts”

– 𝑥 ≥ 0, 𝑥 𝑜𝑑𝑑 reduces to 𝒙 > 𝟎, 𝑥 𝑜𝑑𝑑

• Enables heterogeneous (“fish-eye”) analysis

DARPA BET IPR 54

Symbolic abstraction ⇒ information exchange

DARPA BET IPR 55

𝒜1 ℒ

𝑎1

𝛾 1 𝑎1 ∧ 𝛾 2 (𝑎2)

𝛾 1

𝒜2

𝑎2
𝛾 2

𝛼 2

𝑎1
′

𝑎2
′

𝛼 1

Summary

Symbolic abstraction increases level of automation, and
ensures correctness when

• applying abstract transformers,

• computing best inductive invariants, and

• exchanging information among domains

Algorithms for symbolic abstraction require

• off-the-shelf SMT solvers, and

• implementation of very few abstract-domain operations

 DARPA BET IPR 56

57

Outline of Talk

• Review of goals

• Progress (Oct. 2012 - May 2013)
– Component identification

• Recovering class hierarchies using dynamic analysis

– Verifying component properties
• Symbolic abstraction (BET + ONR STTR)

• Domain-combination technique: combine results from multiple analysis methods

• Abstract domain of bit-vector inequalities

• Format-compatibility checking (ONR)

– Component extraction
• Specialization slicing

• Partial evaluation of machine code

• Recap of publications/submissions

• Recap of plans for 2013

DARPA BET IPR

Convex Polyhedra
[Figures from Halbwachs et al. FMSD97]

DARPA BET IPR 58

Conjunctions of linear inequalities over rationals

 a1 x1 + a2 x2 + . . . + ak xk ≤ c

Limitations of convex polyhedra

DARPA BET IPR 59

• Consider the following code fragment:

 assume (0 <= low <= high) ;

 mid = (low + high) / 2 ;

 assert (0 <= low <= mid <= high) ;

• Polyhedral analysis unsoundly verifies that the assert
holds.

 2/_ MININTmid 

1low

MAXINThigh _

Limitations of convex polyhedra

DARPA BET IPR 60

1232 

1232 

x

y

P

P[x+1/x]

• Effect of the linear transformation might
overflow

• Polyhedra expresses constraints over
rational not bit-vector integers

Problems with Polyhedra

• Unsound for machine arithmetic

– machine integers wrap

– mathematical integers do not

• Solution: Bit-Vector Inequality Domain

BET 61

Bitvectors (Not so well-behaved . . .)

DARPA BET IPR 62

Key Idea!

BET 63

]5,0[,  ssba

5ba

]3,4[,  ssyx]3,0[,  ssyx

74  yx 3 yx

• Split inequality into an equality and an interval by
using a view variable

 For example, is changed to

• Examples on previous page:
 and are represented as
 and
 respectively.

Bit-Vector Inequality Domain (BVI)

• Use a Bit-Vector equality domain for equalities (Ԑ)

 (King-Sondergaard 2010; Elder et al. 2011)
 Ԑ is and equality-element over P  S

• Bit-Vector Interval domain (I) on view variables
 I is an interval-element over S

• P and S are the set of program and view variables,
 respectively

DARPA BET IPR 64

Bit-Vector Inequality Domain (BVI)

• S, the set of slack variables, is shared between Ԑ and
 I

• S acts as information exchange between the two
 domains

– Example:
• Ԑ specifies the constraints and

• I specifies the constraints

DARPA BET IPR 65

]5,0[,5 ssbaba
5ba sba 

]5,0[s

View Variables

• View variables are defined by integrity constraints

• For example, in , is an integrity
constraint

DARPA BET IPR 66

 sba 

Symbolic Abstraction

• BVI is a combination of Ԑ and I

• Symbolic abstraction for Ԑ and I is available

• Information exchange is provided through common
vocabulary S

• Symbolic abstraction for BVI is automatically
available through 𝛼 𝜑

DARPA BET IPR 67

Preliminary Results

• Setup: View constraints are of the form s = r, where r
represents the 32-bit register in Machine
Architecture (eg. ia32)

• BVI domain was 3.5 times slower than Bit-Vector
equality domain

• BVI more precise than equality domain at 63% of the
control points

• BVI’s procedure summaries more precise than that of
equality domain at 29% of the procedures

 DARPA BET IPR 68

Heuristics

• Heuristics to choose view variables

• View constraints are of the form s = r are not
sufficient

 a=0; b=0;

 for (i = 0; i < 100; i++) {

 a++;

 if (i%2 == 0)

 b++;

 }

 Cannot get the constraint that

DARPA BET IPR 69

120  ab

Heuristics

• Linear expressions in branch predicates and
assert statements

• “Invariants” produced by unsound analysis,
eg polyhedra

DARPA BET IPR 70

Handling Memory

• Previous analysis only focused on registers

• Memory is treated as flat array in machine code

• Memory constraints represent memory views:

 v = mm[e], where

 v is the memory view,

 mm is the memory map,

 e is the address.

• Memory domain: Set of memory constraints

DARPA BET IPR 71

BVMI domain

• BVMI domain is capable of expressing Bit-Vector
inequalities over memory variables

• BVMI components
 Ԑ is an equality-domain element over P  U  S

 I is an interval-domain element over S

 M is an memory-domain element over U

• Information exchange happen between Ԑ and I
through common variables S and between Ԑ and M
through common variables U.

DARPA BET IPR 72

Current Status

• Implementation of BVI is completed

• Undergoing restructuring of code to utilize symbolic
abstraction

DARPA BET IPR 73

Future Work

• Implementing heuristics for BVI and BVMI

• Integrating memory domain in the new framework

DARPA BET IPR 74

Recap

• Convex polyhedra doesn’t work for machine integers

• Bit-Vector Inequality Domain (BVI) handles Bit-Vector
Inequalities by splitting them into Bit-Vector
Equalities and Bit-Vector Intervals

• Memory Variables can be incorporated in a similar
fashion by splitting them into Bit-Vector Equalities
and Memory Constraints

• Information Exchange between the two domains
happen through View Variables

DARPA BET IPR 75

76

Outline of Talk

• Review of goals

• Progress (Oct. 2012 - May 2013)
– Component identification

• Recovering class hierarchies using dynamic analysis

– Verifying component properties
• Symbolic abstraction (BET + ONR STTR)

• Domain-combination technique: combine results from multiple analysis methods

• Abstract domain of bit-vector inequalities

• Format-compatibility checking (ONR)

– Component extraction
• Specialization slicing

• Partial evaluation of machine code

• Recap of publications/submissions

• Recap of plans for 2013

DARPA BET IPR

Partial Evaluation for Machine-Code

• Slicing has limitations

– limited semantic information – i.e., just dependence edges

– no evaluation/simplification

• Partial evaluation: a framework for specializing programs

– software specialization, optimization, etc.

• Binding-time analysis

– what patterns are foo and bar called with?

• e.g, { foo(S,S,D,D), foo(S,D,S,D), bar(S,D), bar(D,S) }

– polyvariant binding-time analysis? specialized slicing!

• Design and implement an algorithm for
partial evaluation of machine code

BET 77
Venkatesh
Srinivasan

Partial Evaluation of Machine code

• Given:

– Machine-code procedure P(x, y)

– Value “a” for x

• Goals:

– Create a specialized procedure Pa(y)

– If the value “b” is supplied for y, Pa(y)
computes P(a,b)

DARPA BET IPR 78

P(x,y)

a

b

Partial
Evaluator

P(x,y)

a
Pa(y)

b
P(a, b)

. . .
mov dword [ebp - C],eax
. . .
mov dword [ebp - 8],eax
mov eax,dword [ebp - 8]
mov edx,dword [ebp - C]
add eax, edx
mov dword [ebp - 4],eax
mov eax,0
leave
ret

. . .
mov dword [ebp - C],eax
mov eax,dword [ebp - C]
add eax, 2
mov dword [ebp - 4],eax
mov eax,0
leave
ret

Partial Evaluation – Why?

• Extraction of functional components

– gzip executable has code that compresses and decompresses
bundled together

– Partial evaluation with ‘-c’ as the value of compress/decompress
flag produces an executable that only compresses

• Binary specialization

– Produces faster and smaller binaries optimized for a specific
task

• Offline optimizer for unoptimized binaries

– Partial evaluator performs optimizations such as constant
propagation and constant folding, loop unrolling, elimination of
unreachable/infeasible basic blocks, etc.

DARPA BET IPR 79

Methods

• Binding-time analysis

– Classify instructions as:
• Static – Instructions that only depend on inputs whose values are

known at specialization time (can be evaluated at specialization
time)

• Dynamic – Instructions that are not static

• Specialization

– Evaluate static instructions

– Simplify dynamic instructions using partial static state

– Emit residual code (simplified dynamic instructions)

– Evaluate static jumps to eliminate entire basic blocks

DARPA BET IPR 80

Binding-Time Analysis

• Construct Program Dependence Graph (PDG) for
binary

– Using CodeSurfer/x86

• Add the instructions that initialize dynamic inputs’
memory locations to the slicing criterion

• Compute an interprocedural forward slice

• Instructions included in the slice are dynamic
instructions

• Remaining instructions are static (solely depend on
static inputs)

DARPA BET IPR 81

Specialization

• Initialize static locations in program state to given values
• Worklist algorithm – <first basic block, initial state> is put in

worklist
• Remove an item from worklist
• Static instructions

– Evaluate and update state

• Dynamic instructions
– Emit instructions that set up values for static hidden operands (for

example, registers and flags)
– Simplify dynamic instruction to use static values as immediate

operands
– Emit simplified instruction
– Dynamic jumps – For each target basic block put <basic block, state> in

worklist
– If a <basic block, state> pair was already processed, do not put in

worklist

• Keep processing until worklist is empty

DARPA BET IPR 82

Challenges

DARPA BET IPR 83

84

Outline of Talk

• Review of goals

• Progress (Oct. 2012 - May 2013)
– Component identification

• Recovering class hierarchies using dynamic analysis

– Verifying component properties
• Symbolic abstraction (BET + ONR STTR)

• Domain-combination technique: combine results from multiple analysis methods

• Abstract domain of bit-vector inequalities

• Format-compatibility checking (ONR)

– Component extraction
• Specialization slicing

• Partial evaluation of machine code

• Recap of publications/submissions

• Recap of plans for 2013

DARPA BET IPR

Recap of publications/submissions

DARPA BET IPR 85

1. Lim, J. and Reps. T., TSL: A system for generating abstract interpreters and its application to
machine-code analysis. To appear in ACM Trans. on Program. Lang. and Syst. (TOPLAS), April 2013.
http://www.cs.wisc.edu/wpis/papers/toplas13-tsl-final.pdf

2. Srinivasan, V.K. and Reps, T., Software-architecture recovery from machine code. TR-1781,
Computer Sciences Department, University of Wisconsin, Madison, WI, March 2013. Submitted for
conference publication. http://www.cs.wisc.edu/wpis/papers/tr1781.pdf

3. Aung, M., Horwitz, S., Joiner, R., and Reps, T., Specialization slicing. TR-1776, Computer Sciences
Department, University of Wisconsin, Madison, WI, October 2012. Submitted for journal
publication. http://www.cs.wisc.edu/wpis/papers/SpecSlicing-submission.pdf

4. Thakur, A., Lal, A., Lim, J., and Reps, T., PostHat and all that: Attaining most-precise inductive
invariants. To appear in 4th Workshop on Tools for Automatic Program Analysis, June 2013. TR-1790,
Computer Sciences Department, University of Wisconsin, Madison, WI, April 2013.
http://www.cs.wisc.edu/wpis/papers/tr1790.pdf

5. Sharma, T., Thakur, A., and Reps, T., An abstract domain for bit-vector inequalities. TR-1789,
Computer Sciences Department, University of Wisconsin, Madison, WI, April 2013.
http://www.cs.wisc.edu/wpis/papers/tr1789.pdf

http://www.cs.wisc.edu/wpis/papers/toplas13-tsl-final.pdf
http://www.cs.wisc.edu/wpis/papers/toplas13-tsl-final.pdf
http://www.cs.wisc.edu/wpis/papers/toplas13-tsl-final.pdf
http://www.cs.wisc.edu/wpis/papers/toplas13-tsl-final.pdf
http://www.cs.wisc.edu/wpis/papers/toplas13-tsl-final.pdf
http://www.cs.wisc.edu/wpis/papers/tr1781.pdf
http://www.cs.wisc.edu/wpis/papers/SpecSlicing-submission.pdf
http://www.cs.wisc.edu/wpis/papers/SpecSlicing-submission.pdf
http://www.cs.wisc.edu/wpis/papers/SpecSlicing-submission.pdf
http://www.cs.wisc.edu/wpis/papers/tr1790.pdf
http://www.cs.wisc.edu/wpis/papers/tr1789.pdf

Recap of plans for 2013

• Component identification

– object traces  class hierarchies

• Component extraction
– partial evaluator for machine code

• Verifying component properties

– 𝛼 ↓
• separation logic

• WALi-based and Boogie-based invariant finding

– bitvector-inequality domain

– Stretched-TreeIC3

DARPA BET IPR 86

DARPA BET IPR 87

100

Outline of Talk

• Review of goals

• Progress (Oct. 2012 - May 2013)
– Component identification

• Recovering class hierarchies using dynamic analysis

– Verifying component properties
• Symbolic abstraction (BET + ONR STTR)

• Domain-combination technique: combine results from multiple analysis methods

• Abstract domain of bit-vector inequalities

• Format-compatibility checking (ONR)

– Component extraction
• Specialization slicing

• Partial evaluation of machine code

• Recap of publications/submissions

• Recap of plans for 2013

DARPA BET IPR

Specialization Slicing

• Problem statement

– Ordinary “closure slices” can have mismatches between
call sites and called procedures
• different call sites have different subsets of the parameters

– Idea: specialize the called procedures

– Challenge: find a minimal solution (minimal duplication)

101 Min
Aung

102

Specialization Slicing

int g1, g2, g3;

void p(int a, int b) {
 g1 = a;
 g2 = b;
 g3 = g2;
}

int main() {
 g2 = 100;
 p(g2, 2);
 p(g2, 3);
 p(4, g1+g2);
 printf("%d", g2);
}

int g1, g2;

void p(int a, int b) {
 g1 = a;
 g2 = b;

}

int main() {

 p(2);
 p(g2, 3);
 p(g1+g2);
 printf("%d", g2);
}

int g1, g2;

void p1(int b) {
 g2 = b;
 }

void p2(int a, int b) {
 g1 = a;
 g2 = b;
 }

int main() {

 p1(2);
 p2(g2, 3);
 p1(g1+g2);
 printf("%d", g2);
}

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

Closure slice Specialized slice

103

m4: g2

m3: call p

m21: call printf

m5: 2 m6: g3

m7: g2

m23: g2

C1

m2: g2=100

m8: g1

C2

C3

p3: b p7: g3 p8: g2 p2: a p9: g1

p6: g3=g2

p4: g1=a

m22: “%d”

m10: g2

m11: 3 m12: g3

m13: g2

m14: g1

m16: 4

m15: call p

m17: g1+g2 m18: g3

m19: g2

m20: g1

p1: p

m1: main

m9: call p

p5: g2=b

System Dependence Graph (SDG)

104

C2

(p2, C1)

C1

(m4, ε) (m6, ε) (m8, ε)

(p7, C1) (p9, C1)

(p6, C1)

(p4, C1)

(m12, ε)

(p7, C2)

(p6, C2)

(m13, ε) (m14, ε)

(p3, C2) (p8, C2) (p2, C2) (p9, C2)

(p4, C2)

C3

(m16, ε) (m18, ε) (m20, ε)

(p7, C3) (p2, C3) (p9, C3)

(p6, C3)

(p4, C3)

(m5, ε) (m7, ε)

(p3, C1) (p8, C1)

(m10, ε) (m11, ε)

(m21, ε)

(m23, ε) (m22, ε)

(m17, ε)

(p3, C3) (p8, C3)

(m2, ε)

(p1, C2)

(p5, C2)

(m15, ε)

(m3, ε)

(p1, C1)

(p5, C1)

(m1, ε)

(m9, ε)

(m19, ε)

(p1, C3)

(p5, C3)

Unrolled SDG

105

C2

C1

C3

p8

m21

m23 m22

m17

m9

p1

p4

p5

p5

p3

m3,

m1

p1)

m7

m15

m5

m13 m14

p3 p8 p2 p9

m10 m11 m19

Specialized SDG

Specialization slice of a recursive program

(1) int g1, g2;
(2)
(3) void s(int a,
(4) int b){
(5)
(6) g1 = b;
(7) g2 = a;
(8) }
(9)
(10)
(11)
(12) int r(int k) {
(13)
(14) if (k > 0) {
(15) s(g1, g2);
(16) r(k-1);
(17) s(g1, g2);
(18) }
(19)
(20) }
(21)
(22)
(23)
(24) int main() {
(25) g1 = 1;
(26) g2 = 2;
(27) r(3);
(28) printf("%d\n", g1);
(29) }

int g1, g2;

void s_1(int b) {
 g1 = b;
}
void s_2(int a) {
 g2 = a;
}

void r_1(int k) {
 if (k > 0) {
 s_2(g1);
 r_2(k-1);
 s_1(g2);
 }
}
void r_2(int k) {
 if (k > 0) {
 s_1(g2);
 r_1(k-1);
 s_2(g1);
 }
}

int main() {
 g1 = 1;
 r_1(3);
 printf("%d\n", g1);
}

DARPA BET IPR 106

Calling pattern:

(27) ((16)(16))*

Calling pattern:

(27)(16)((16)(16))*

Specialization Slicing

107

• Problem statement

– Ordinary “closure slices” can have mismatches between
call sites and called procedures
• different call sites have different subsets of the parameters

– Idea: specialize the called procedures

– Challenge: find a minimal solution (minimal duplication)

1. In the worst case, specialization causes an
exponential increase in size

2. In practice, observed a 9.4% increase

Relatively Few Specialized Procedures

108

Specialization Slicing

• Problem statement
– Ordinary “closure slices” can have mismatches between call

sites and called procedures
• different call sites have different subsets of the parameters

– Idea: specialize the called procedures

– Challenge: find a minimal solution (minimal duplication)

• Key insight
– minimal solution involves solving a partitioning problem on a

certain infinite graph

– problem solvable using PDSs: all node-sets in infinite graph can
be represented via FSMs

– algorithm: a few automata-theoretic operations

110

111

Algorithm

Input: SDG S and slicing criterion C
Output: An SDG R for the specialized slice of S with respect to C

// Create A6, a minimal reverse-deterministic automaton for the
// stack-configuration slice of S with respect to C
1 PS = the PDS for S
2 A0 = a PS-automaton that accepts C
3 A1 = Prestar[PS](A0)
4 A2 = reverse(A1)
5 A3 = determinize(A2)
6 A4 = minimize(A3)
7 A5 = reverse(A4)
8 A6 = removeEpsilonTransitions(A5)

// Read out SDG R from A6

...

Automata used to hold
onto sets of points in
possibly infinite graph

Partition obtained by
determinizing and minimizing:

Each state = set of calling
contexts for one specialized

procedure

112

C2

(p2, C1)

C1

(m4, ε) (m6, ε) (m8, ε)

(p7, C1) (p9, C1)

(p6, C1)

(p4, C1)

(m12, ε)

(p7, C2)

(p6, C2)

(m13, ε) (m14, ε)

(p3, C2) (p8, C2) (p2, C2) (p9, C2)

(p4, C2)

C3

(m16, ε) (m18, ε) (m20, ε)

(p7, C3) (p2, C3) (p9, C3)

(p6, C3)

(p4, C3)

(m5, ε) (m7, ε)

(p3, C1) (p8, C1)

(m10, ε) (m11, ε)

(m21, ε)

(m23, ε) (m22, ε)

(m17, ε)

(p3, C3) (p8, C3)

(m2, ε)

(p1, C2)

(p5, C2)

(m15, ε)

(m3, ε)

(p1, C1)

(p5, C1)

(m1, ε)

(m9, ε)

(m19, ε)

(p1, C3)

(p5, C3)

Unrolled SDG

Each yellow name has the same set of stack configurations {C1,C3}
Such sets are infinite for recursive programs => FSMs

113

C2

C1

C3

p8

m21

m23 m22

m17

m9

p1

p4

p5

p5

p3

m3,

m1

p1

m7

m15

m5

m13 m14

p3 p8 p2 p9

m10 m11 m19

Specialized SDG

Each yellow name has the same set of stack configurations {C1,C3}
Such sets are infinite for recursive programs => FSMs

Feature Removal
int add(int a,int b) {
 q: return a+b;
}

int mult(int a,int b) {
 int i = 0;
 int ans = 0;
 while(i < a) {
 c5: ans = add(ans,b);
 c6: i = add(i,1);
 }
 return ans;
}

void tally
(int& sum,int& prod,int N) {
 int i = 1;
 while(i <= N) {
 c2: sum = add(sum,i);
 c3: prod = mult(prod,i);
 c4: i = add(i,1);
 }
}

int main() {
 int sum = 0;
 int prod = 1;
 c1: tally(sum,prod,10);
 printf("%d ",sum);
 printf("%d ",prod);
}

int add(int a,int b) {
 q: return a+b;
}

int mult(int b) {
 int i = 0;
 int ans = 0;

 return;
}

void tally
(int& sum, int N) {
 int i = 1;
 while(i <= N) {
 c2: sum = add(sum,i);
 c3: mult(i);
 c4: i = add(i,1);
 }
}

int main() {
 int sum = 0;

 c1: tally(sum, 10);
 printf("%d ",sum);

}
 DARPA BET IPR 114

115

Feature Removal

int g1, g2, g3;

void p(int a, int b) {
 g1 = a;
 g2 = b;
 g3 = g2;
}

int main() {
 g2 = 100;
 p(g2, 2);
 p(g2, 3);
 p(4, g1+g2);
 printf("%d", g2);
}

int g1, g2, g3;

void p(int a, int b) {
 g1 = a;
 g2 = b;
 g3 = g2;
}

int main() {
 g2 = 100;
 p(g2, 2);
 p(g2, 3);
 p(4, g1+g2);
 printf("%d", g2);
}

int g1, g2;

void p1(int a) {
 g1 = a;
 }

void p2(int b) {
 g2 = b;
 g3 = g2;
 }

int main() {
 g2 = 100;
 p1(g2);
 p2(3);
 p1(4);

}

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

Forward
closure slice

Specialized slice

116

C2

(p2, C1)

C1

(m4, ε) (m6, ε) (m8, ε)

(p7, C1) (p9, C1)

(p6, C1)

(p4, C1)

(m12, ε)

(p7, C2)

(p6, C2)

(m13, ε) (m14, ε)

(p3, C2) (p8, C2) (p2, C2) (p9, C2)

(p4, C2)

C3

(m16, ε) (m18, ε) (m20, ε)

(p7, C3) (p2, C3) (p9, C3)

(p6, C3)

(p4, C3)

(m5, ε) (m7, ε)

(p3, C1) (p8, C1)

(m10, ε) (m11, ε)

(m21, ε)

(m23, ε) (m22, ε)

(m17, ε)

(p3, C3) (p8, C3)

(m2, ε)

(p1, C2)

(m15, ε)

(m3, ε)

(p1, C1)

(m1, ε)

(m9, ε)

(m19, ε)

(p1, C3)

(p5, C3)

(p5, C1)

(p5, C2)

Unrolled SDG

117

C2

(p2, C1)

C1

(m4, ε) (m6, ε) (m8, ε)

(p7, C1) (p9, C1)

(p6, C1)

(p4, C1)

(m12, ε)

(p7, C2)

(p6, C2)

(m13, ε) (m14, ε)

(p3, C2) (p8, C2) (p2, C2) (p9, C2)

(p4, C2)

C3

(m16, ε) (m18, ε) (m20, ε)

(p7, C3) (p2, C3) (p9, C3)

(p6, C3)

(p4, C3)

(m5, ε) (m7, ε)

(p3, C1) (p8, C1)

(m10, ε) (m11, ε)

(m21, ε)

(m23, ε) (m22, ε)

(m17, ε)

(p3, C3) (p8, C3)

(m2, ε)

(p1, C2)

(m15, ε)

(m3, ε)

(p1, C1)

(m1, ε)

(m9, ε)

(m19, ε)

(p1, C3)

(p5, C3)

(p5, C1)

(p5, C2)

Complemented Unrolled SDG

118

C2

(p2, C1)

C1

(m4, ε) (m6, ε) (m8, ε)

(p7, C1) (p9, C1)

(p6, C1)

(p4, C1)

(m12, ε)

(p7, C2)

(p6, C2)

(m13, ε) (m14, ε)

(p3, C2) (p8, C2) (p2, C2) (p9, C2)

(p4, C2)

C3

(m16, ε) (m18, ε) (m20, ε)

(p7, C3) (p2, C3) (p9, C3)

(p6, C3)

(p4, C3)

(m5, ε) (m7, ε)

(p3, C1) (p8, C1)

(m10, ε) (m11, ε)

(m21, ε)

(m23, ε) (m22, ε)

(m17, ε)

(p3, C3) (p8, C3)

(m2, ε)

(p1, C2)

(m15, ε)

(m3, ε)

(p1, C1)

(m1, ε)

(m9, ε)

(m19, ε)

(p1, C3)

(p5, C3)

(p5, C1)

(p5, C2)

Complemented Unrolled SDG

119

C2

(p2, C1)

C1

(m4, ε) (m6, ε) (m8, ε)

(p7, C1) (p9, C1)

(p6, C1)

(p4, C1)

(m12, ε)

(p7, C2)

(p6, C2)

(m13, ε) (m14, ε)

(p3, C2) (p8, C2) (p2, C2) (p9, C2)

(p4, C2)

C3

(m16, ε) (m18, ε) (m20, ε)

(p7, C3) (p2, C3) (p9, C3)

(p6, C3)

(p4, C3)

(m5, ε) (m7, ε)

(p3, C1) (p8, C1)

(m10, ε) (m11, ε)

(m21, ε)

(m23, ε) (m22, ε)

(m17, ε)

(p3, C3) (p8, C3)

(m2, ε)

(p1, C2)

(m15, ε)

(m3, ε)

(p1, C1)

(m1, ε)

(m9, ε)

(m19, ε)

(p1, C3)

(p5, C3)

(p5, C1)

(p5, C2)

Complemented Unrolled SDG

120

C2

(p2, C1)

C1

(m4, ε) (m8, ε)

(p9, C1)

(p4, C1)

(m12, ε)

(p7, C2)

(p6, C2)

(m13, ε)

(p3, C2) (p8, C2)

C3

(m16, ε) (m20, ε)

(p2, C3) (p9, C3)

(p4, C3)

(m11, ε)

(m2, ε)

(p1, C2)

(m15, ε)

(m3, ε)

(p1, C1)

(m1, ε)

(m9, ε)

(p1, C3)

(p5, C2)

Complemented Unrolled SDG

121

C2

p2

C1

m4 m8

p9

p4

m12

p7

p6

m13)

p3, p8

C3

m16 m20 m11

m2

p1

m15

m3

p1

m1

m9

p5

Complemented Unrolled SDG

Goal: check format compatibility

122

Producer
component

Consumer
component

1. Infer output format
2. Infer accepted format
3. Check compatibility

DARPA BET IPR
Evan

Driscoll

Formats are strings over “types”

123

ID CM FG FG OS … M TIME

Header of gzip format:

short byte byte word byte byte

DARPA BET IPR

Current work: enhance format spec

124

nrows ncols pix11 pix12 pix13 pix14 pix21 pix22 pix23 …

DARPA BET IPR

Current work: enhance format spec

125

nrows ncols pix11 pix12 pix13 pix14 pix21 pix22 pix23 …

nrows

DARPA BET IPR

Current work: enhance format spec

126

nrows ncols pix11 pix12 pix13 pix14 pix21 pix22 pix23 …

nrows ncols

ncols ncols

nrows

DARPA BET IPR

Current work: enhance format spec

127

nrows ncols pix11 pix12 pix13 pix14 pix21 pix22 pix23 …
ncols ncols

nrows

nrows:int ncols:int ((byte byte byte byte)ncols)nrows

Infer an automaton equivalent to:

DARPA BET IPR

Roadmap: Inference

128

Program Traces

I/O equalities

ICFG Inferred XFA

Inputs

DARPA BET IPR

Roadmap: Compatibility

129

Producer
component

Consumer
component

Inferred XFA Inferred XFA ⊆ ?

DARPA BET IPR

Status

Prototype essentially done, but not well-tested. Working
on performance and on finding tests.

130 DARPA BET IPR

How we do it

131

Exponents start as standard Kleene *,
and correspond to program loops

nrows:int ncols:int ((byte byte byte)*)*

DARPA BET IPR

How we do it

132

nrows:int ncols:int ((byte byte byte)*)*

We instrument loops with trip counts
We instrument I/O calls to remember values

DARPA BET IPR

How we do it

133

nrows:int ncols:int ((byte byte byte)*)*

We instrument loops with trip counts
We instrument I/O calls to remember values

When two of these are found to always equal,
 replace the * with an exponent

trip count remembered I/O value

DARPA BET IPR

How we do it

134

nrows:int ncols:int ((byte byte byte)*)nrows

We instrument loops with trip counts
We instrument I/O calls to remember values

When two of these are found to always equal,
 replace the * with an exponent

trip count remembered I/O value

DARPA BET IPR

How we do it

135

nrows:int ncols:int ((byte byte byte)*)nrows

We instrument loops with trip counts
We instrument I/O calls to remember values

When two of these are found to always equal,
 replace the * with an exponent

DARPA BET IPR

How we do it

136

nrows:int ncols:int ((byte byte byte)ncols)nrows

We instrument loops with trip counts
We instrument I/O calls to remember values

When two of these are found to always equal,
 replace the * with an exponent

DARPA BET IPR

We use Daikon

Daikon identifies dynamic invariants

• Hold over all test runs; might not actually be invariants

• Could use statically inferred instead

We wrote our own Daikon front end for machine code

• Assumes debugging information
• can we remove this restriction?

• Front ends supplied with Daikon not sufficient
• checks only entry-to-exit invariants, whereas we need

• loop trip-count instrumentation

• I/O-to-loop-exit invariants

• Instruments program using Dyninst

 137 DARPA BET IPR

Instrumentation remembers I/O vals

138

If value is returned:
 x = read_int(); x = __io1 = read_int();

If value is “returned” via out parameter:
 err = read_int(&x); err = read_int(&x);
 __io2 = *(&x);

If value is passed by parameter:
 write_int(x); __io3 = x;
 write_int(x);

DARPA BET IPR

Instrumentation finds trip counts

139 DARPA BET IPR

Instrumentation finds trip counts

140

On loop entry:
Set trip count to 0
__trip1 = 0;

DARPA BET IPR

Instrumentation finds trip counts

141

On loop entry:
Set trip count to 0
__trip1 = 0;

Entering loop body:
Increment trip count
__trip1++;

DARPA BET IPR

Instrumentation finds trip counts

142

On loop entry:
Set trip count to 0
__trip1 = 0;

Entering loop body:
Increment trip count
__trip1++;

On loop exit:
Output current value of variables
Interested in invariants here
print(__io1, __io2, …, __trip1);

DARPA BET IPR

We use Daikon to find I/O equalities

143

I/O equalities Value trace

Instrumented
program

Dakion dynamic
invariant detector

LOOP_EXIT_A
__io2 = 2
__io4 = 5
__trip_count_A = 5

LOOP_EXIT_B
__io2 = 6
__io4 = 5
__trip_count_B = 6

__trip_count_A = __io4 = 5
__trip_count_B = __io2 = 6

DARPA BET IPR

We model programs as XFAs

XFAs: extended finite automata

Add separate bounded “data state” to standard FAs

Transformers on transitions describe data-state
changes

144 DARPA BET IPR

Symbolic abstraction: Who cares?

• Win, win, win

• Easier/faster implementation of analysis tools

– just state concrete (actual!) semantics in logic

– supply an abstract domain

• e.g., as a class that meets a specific interface

– obtain analyzer/decision-procedure

• More precise results in abstract interpretation

– can identify loop and procedure summaries that are more
precise than ones obtained via conventional techniques

• Applies to interesting, non-standard logics (we think!)

– separation logic: memory safety properties

DARPA BET IPR 159

Basic scenario

DARPA BET IPR 48

interfere?

Symbolic abstraction: Who cares?

• Win, win, win
• Easier/faster implementation of analysis tools

– just state concrete (actual!) semantics in logic
– supply an abstract domain

• e.g., as a class that meets a specific interface

– obtain analyzer/decision-procedure

• More precise results in abstract interpretation
– can identify loop and procedure summaries that are more

precise than ones obtained via conventional techniques

• Applies to interesting, non-standard logics (we think!)
– separation logic: memory safety properties

• Improve level of automation for creating analyzers
– implement analysis tools in a much smaller time-span and with

drastically reduced programmer effort

DARPA BET IPR 160

Basic scenario

DARPA BET IPR 48

interfere?

161

In 1977, Cousot & Cousot gave us a
beautiful theory of overapproximation

α

Universe of States

x  [2,5]
y  [1,3]

{(x2, y1),
 (x5, y3)}

{(2,1), (2,2), (2,3),
 (3,1), (3,2), (3,3),
 (4,1), (4,2), (4,3),
 (5,1), (5,2), (5,3)}

γ

α

162

In 1979, Cousot & Cousot gave us:

τ# τ
α

γ

Universe of States

163

164

In 1979, Cousot & Cousot gave us:

τ# τ
α

γ

Universe of States

165

In 2004, Reps, Sagiv, and Yorsh gave us:

Symbolic Abstract Interpretation Symbolic Concretization

Universe of States

166
Symbolic Abstraction

In 2004, Reps, Sagiv, and Yorsh gave us:

Universe of States

167

Universe of States

168

ans
Universe of States

 

169

ans

Universe of States

170

171

From “Below” vs. From “Above”

• Reps, Sagiv, and Yorsh 2004: approximation from “below”

• Desirable: approximation from “above”
– always have safe over-approximation in hand

– can stop algorithm at any time (e.g., if taking too long)

– Thakur, A. and Reps, T., A method for symbolic computation of abstract
operations. In Proc. Computer-Aided Verification (CAV), 2012

Aditya
Thakur

172

[CAV 2012]

173

Tunable

More time  more precision

Stop at any time
 sound answer

[CAV 2012]

Stålmarck’s method (1989)

Dilemma Rule

𝑅 ∪ {𝑣 = True} 𝑅 ∪ {𝑣 = False}

𝑅

𝑅1
′

𝑅2
′

𝑅1
′ ∩ 𝑅2

′

• Split

• Propagate

• Merge

174

Stålmarck’s method (1989)

1-saturation

175

Stålmarck’s method (1989)

2-saturation

176

⊥

⊤

𝑅 ∪ {𝑣 = False} 𝑅 ∪ {𝑣 = True} 𝐴 ⊓ 𝑎1

𝐴

Stålmarck’s method for 𝛼 ↓

Dilemma Rule

𝑅

𝐹1
′

𝐹2
′

𝐹1
′ ∩ 𝐹2

′

• Split

• Propagate

• Merge

𝐴 ⊓ 𝑎2

𝐴1
′ ⊔ 𝐴2

′

𝐴1
′ 𝐴2

′

177

𝛾 𝑎1 ∪ 𝛾 𝑎2 ⊇ 𝛾 𝐴

⊤

⊥

Stålmarck’s method

178

𝜶

⊤

⊥ 179

Reasoning: Using 𝛼 ↓ 𝜑 in an SMT solver

𝛼 ↓ 𝜑 = 𝜑 is unsatisfiable

Property verification
via model checking:

OK if Unsat(Program  Bad)

Dual use:
• 𝛼 for abstract interpretation
• Unsat/validity checking for
 pure logical reasoning
  abstract interpretation in
 service to logic!

[CAV 2012]

The importance of data structures

• Classic union-find

– plus layers

– plus least-upper bound

• Given UF1 and UF2, find
the coarsest partition
that is finer than UF1
and UF2

• Roughly, “confluent,
partially-persistent
union-find”

DARPA BET IPR 180

Extend WALi to use 

• Weighted Automaton Library
(WALi):
– supports context-sensitive

interprocedural analysis
– weights = dataflow transformers
– weighted version of PDSs (a la

material on specialized slicing)

• More precise results in
abstract interpretation

• Easier implementation of
analysis tools

BET 181
Junghee

Lim
Aditya
Thakur



AlphaHat

• AlphaHat technique in three ways

– WALi + AlphaHat (Aditya Thakur and Junghee Lim)
• ~October 2012

– Boogie + AlphaHat for source code (Akash Lal at Microsoft
India)
• ~November 2012

– Boogie + AlphaHat for machine code (Aditya Thakur and
Junghee Lim)
• ~November 2012

BET 182

183

Outline of Talk

• Review of goals

• Progress (Oct. 2012 - May 2013)
– Component identification

• Recovering class hierarchies using dynamic analysis

– Verifying component properties
• Symbolic abstraction (BET + ONR STTR)

• Domain-combination technique: combine results from multiple analysis methods

• Abstract domain of bit-vector inequalities

• Format-compatibility checking (ONR)

– Component extraction
• Specialization slicing

• Partial evaluation of machine code

• Recap of publications/submissions

• Recap of plans for 2013

DARPA BET IPR

Possible-overflow example

DARPA BET IPR 184

char* concat(char* a, char* b)
{
 unsigned size = strlen(a)+strlen(b)+1;
 char* out = (char*)malloc(size*sizeof(char)); // Possible overflow
 for(unsigned i = 0; i < strlen(a); i++) {
 out[i] = a[i]; // Potential memory corruption
 }
 for(unsigned i = 0; i < strlen(b); i++) {
 out[i+strlen(a)] = b[i]; // Potential memory corruption
 }
 out[i+strlen(a)] = '\0';
 return out;
}

Convex Polyhedra
[Figures from Halbwachs et al. FMSD97]

DARPA BET IPR 185

Bitvector Inequality domain

• Conventional domain for representing inequalities

– polyhedra: conjunctions of linear inequalities

 a1 x1 + a2 x2 + . . . + ak xk ≤ c

– operations on polyhedra: linear transformations

• unsound for machine arithmetic

• machine integers wrap while mathematical integers do not

• Solution: Bitvector Inequality Domain

BET 186 Tushar
Sharma

Not so well-behaved . . .

DARPA BET IPR 187

