Recovering Components from Executables

[Cooperative Agreement HR0011-12-2-0012]

Thomas Reps
University of Wisconsin

Th R Venkatesh Tushar Divy Vasal Aditya Evan
ofmas Reps Karthik Srinivasan Sharma y Thakur Driscoll

Project Goals

* Develop a “redeveloper’s workbench”

Tools to identify and extract components, and establish their
behavioral properties
— Aid in the harvesting of components from an executable

* identify components
* make adjustments to components identified
* issue queries about a component’s properties

— Queries
* type information; function prototypes
* side-effect “footprint”
* error-triggering properties

DARPA BET IPR 2

Basic scenario

DARPA BET IPR 3

Project Activities

« Component identification

— Recovering class hierarchies using dynamic analysis
* group functions into classes
* identify inheritance and delegation relationships among the inferred classes

* Component extraction

— Specialization slicing

* create multiple specialized versions of a procedure, each equipped with a different subset of the
original procedure's parameters

* novel algorithm creates optimal specialization slice
— Partial evaluation of machine code
* general method to address extraction, specialization, and optimization of machine code

* Verifying component properties
— Symbolic abstraction (BET + ONR STTR)

* methods to obtain most-precise results in abstract interpretation
* for a given abstract domain, attains the limit of what is achievable by any analysis algorithm

— Domain-combination technique: combine results from multiple analysis methods

— Abstract domain of bit-vector inequalities
* allows a tool to identify inequality invariants for machine arithmetic (arithmetic mod 232 or 2%4)
* fills a long-standing need in both source-code and machine-code analysis

— Format-compatibility checking (ONR)

DARPA BET IPR 4

Outline of Talk

* Review of goals
* Progress (Oct. 2012 - May 2013)

— Component identification

* Recovering class hierarchies using dynamic analysis

— Component extraction
* Specialization slicing
* Partial evaluation of machine code
— Verifying component properties
* Symbolic abstraction (BET + ONR STTR)
* Domain-combination technique: combine results from multiple analysis methods
* Abstract domain of bit-vector inequalities
* Format-compatibility checking (ONR)

* Recap of publications/submissions
e Recap of plans for 2013

DARPA BET IPR 5

Outline of Talk

* Review of goals
* Progress (Oct. 2012 - May 2013)

— Component identification
* Recovering class hierarchies using dynamic analysis
— Verifying component properties
* Symbolic abstraction (BET + ONR STTR)
* Domain-combination technique: combine results from multiple analysis methods
* Abstract domain of bit-vector inequalities
* Format-compatibility checking (ONR)
— Component extraction
* Specialization slicing

* Partial evaluation of machine code

* Recap of publications/submissions
e Recap of plans for 2013

DARPA BET IPR 6

Recovering Class Hierarchies

-
V¥

__Disassembly of section .text:

00000000004003e0 <.text>:

° ' .
G ven: 4003e0: xor %ebp,%ebp
— Strlpped b|nary 4003e2: mov %rdx,%r9

4003e5: pop %rsi
4003e6: mov %rsp,%rdx

e Goals: 4003e9: push %rax

4003ea: push %rsp

— Group functions
in the binary into

classes
—_— |dent|fy = |nheritance relationship m—— COMposition relationship
i N h e I"ita nce an d Methods: Methods:
oy 0x400460 0x4004f0
composition 0x4004c4 0x400530
relationships
between

inferred classes

Methods:
0x4005bf
0x400607

DARPA BET IPR

Methods:
0x400543a
0x400576

Recovering Class Hierarchies

e Why?
— Reengineering legacy software

— Understanding architecture of software that lack
documentation and source code

* Lego
— Dynamic analysis tool

— Recovers software architecture
— Modulo code coverage

DARPA BET IPR 8

Key ldeas

* “this” pointer idiom * Unique finalizer idiom

— Common idiom in — Unique method in each
object-oriented class (Destructor in C++)
programming — Cleans up object

— “this” pointer = 1% — Parent-class finalizer
argument of methods of called at end of child-
a class class finalizer

— Used to classify sets of — Used to recover
functions inheritance and

= compositior

relationships

void SetID(Simple* const this, int nID)

DARPA BET IPR 9

Lego — 2 Phases

e Phasel

Input: stripped binary and
test input

Executes given binary
under test input

Performs dynamic analysis
by dynamic binary
instrumentation

Records methods invoked
on allocated objects

Output: object-traces
(summary of lifetime of
every object)

e Phase 2

— Input: object-traces

— Uses order of finalizer calls
as evidence from object-
traces to infer class
hierarchies

— Output: Inferred class
hierarchy and composition
relationships between
inferred classes

DARPA BET IPR 10

Phase 1: Object-Traces

* A sequence of method calls and returns that have
the same receiver object

class Vehicle {
public:
Vehicle() ;
~Vehicle() ;
};

class Car :
public Vehicle {
public:
Car (int n);
~Car() ;

void print car();

private:
void helper () ;

class Bus :
public Vehicle {
public:
Bus() ;
~Bus () ;

void print bus();

}s;

int main() {
Car c(10) ;
Bus b;
c.print_car();
b.print bus() ;
return 0;

DARPA BET IPR

(05:9:V:V.V.:
(Address of c):
Car (int) C
Vehicle() C
Vehicle() R
Car (int) R
print_car() C
print_car() R
~Car() C
helper() C
helper() R
~Vehicle() C
~Vehicle () R
~Car() R

OxBBBB
(Address of b):
Bus() C
Vehicle() C
Vehicle() R
Bus() R
print_bus() C
print_bus() R
~Bus () C
~Vehicle() C
~Vehicle () R
~Bus () R

Object Traces — How to get them?

* Instrument binary using PIN to trace:
— Values of 15t-arguments of methods

— Method calls and returns

* Emit a trace of <“this” pointer, method Call/Return> pairs
* Group methods based on “this”-pointer values

 From the trace, compute object-traces, pairs <A, S>
where
— Ais an object address

— Sis the sequence of method calls/returns that were passed A as
the value of the “this” pointer (1%t argument)

DARPA BET IPR 12

Object-Traces

a3

. <al,mC>..<al,n,C>...<al,n,R>..<al, m,R> ...

Emitted Trace <a2, m,C>..<a2, m,R>..<a3, m,C>..<a3, m, R>

Object Traces [al: <m, C>, <n, C>, <n, R>, <m, R>], [a2: <m, C>, <m, R>], [a3: <m, C>, <m, R>]
DARPA BET IPR 13

Challenges — Blacklisting Methods

e Stand-alone methods and static methods don’t
receive a “this” pointer

void foo () ; static void Car::setInventionYear (int a) ;

* Lego maintains estimates of allocated address space
— Stack pointer values during calls and returns
— Allocated heap objects — instrument new and delete

e If 1St argument’s value of a method is not within
allocated address space, method is blacklisted
— Removed from existing object-traces
— Never added to future object-traces

DARPA BET IPR 14

Challenges — Object-address Reuse

class A { class B { void foo () { void bar () { int main {
public: public: A a; B b; foo() ;
.« .. .« .. a.printA() ; b.printB() ; bar () ;
printA() ; printB() ; } } return O0;
}; }; }

 Methods of two (or more) unrelated classes appear
in same object-trace

e Reuse of stack space for objects on different
Activation Records (ARs)

* Reuse of same heap space by heap manager

* Lego versions addresses — increment version of
address A when A is deallocated

DARPA BET IPR 15

Challenges — Spurious Traces

 Spurious traces void () {
— Methods of two (or more) { Fo0 a-
unrelated classes appear in '
the same object-trace \
— Reuse of same stack space {
by compiler for different Bar b
objects in different scopes
within same AR } \[Stack space
— Locate initializer and } AR of f() — | e
finalizer methods to split
spurious traces -

DARPA BET IPR 16

Phase 2: Object-Trace Fingerprints

e Common semantics of OO (ST NI () ¢
languages — derived 0T BREST petper(c
class’s finalizer calls base [T v
finalizer just before i A0 &
returning x e, | =

* Fingerprint — ‘return-only’ _ —
suffix of object-trace * Length indicates possible

* ‘return-only’ — Methods number of levels in class
that were called just hierarchy
before caller returned Methods in fingerprint —

 Has methods involved in potential finalizers in the
cleanup of object and class and ancestor classes

inherited parts

DARPA BET IPR 17

Finding Class Hierarchies

 Create a trie from
fingerprints

e Associate each object- /

trace with trie node that | .. p() ~A()

accepts object-trace’s /

fingerprint oA B [
* Add methods in each _

object-trace to associated @
trie node [r() ~D() ~A() ~B();

* If parent and child nodes [y ~a)~g() ~d(
have common methods,
remove common
methods from child . s() ~A() ~C()

~C()
~A()

DARPA BET IPR 18

Composition Relationships

 Class A has a member instance of B

* Aisresponsible for cleaning up B — A’s finalizer calls
B’s finalizer

* Record the methods directly called by each method
in object-trace

e Conditions for a composition relationship to exist
between inferred classes A and B
— A’s finalizer calls B’s finalizer

— Ais not B’s ancestor or descendant in the inferred
hierarchy

DARPA BET IPR 19

Scoring — Ground Truth

G

ios_base
ostream

ofstream

Cyehie

o> Con D oD
% Restricted GT ’

N | i oAt
Partially Restricted GT

v,

v

!

Unrestricted GT

Scoring

* Precision and Recall

e Can’ttreat classes as flat sets of methods — inheritance
relationships between classes

* For every path in the GT inheritance hierarchy, find the path in
the inferred hierarchy that gives maximum precision and
recall

DARPA BET IPR 21

Results

Class Hierarchies - Precision

mRGT-
100 SoT
60 mPRGT-
40 SST
28 RGT-
NoSST
Q NS > - - o
& 6&{& %5&@ Q’\& W & =PRGT-
<% R W NOSST
Class Hierarchies - Recall
100
80
50 A B B § A B B §&
20 A B B B A B B R B
20 A B B § H IB IR BR IB
0 A B B B A B B B B
S S F s &SNS
%JF' v Y & & Q &
22

DARPA BET IPR

Outline of Talk

* Review of goals
* Progress (Oct. 2012 - May 2013)

— Component identification
* Recovering class hierarchies using dynamic analysis
— Verifying component properties
* Symbolic abstraction (BET + ONR STTR)
* Domain-combination technique: combine results from multiple analysis methods
* Abstract domain of bit-vector inequalities
* Format-compatibility checking (ONR)
— Component extraction
* Specialization slicing
* Partial evaluation of machine code

* Recap of publications/submissions
e Recap of plans for 2013

DARPA BET IPR 25

Verifying component properties

| |

* Property holds for all possible inputs * No null-pointer deferences
* No accesses outside array bounds
* No stack smashing

* [No division by zero v

while(1) {
X = input(); S5 Sign Abstraction: only track whether
If (x>0) { y variable is positive, negative, or zero
o y— 8
V=2 y— 42 |:> y> 0
z=wly; y— 178
}
}
Program statement Possible concrete Invariant
values of y

DARPA BET IPR 26

Inductive Invariants

Program points Inductive Invariants
P, ¢ I,
T12
P, ¥ I
123
P; Vv I3

DARPA BET IPR 27

Abstract Interpretation

Concrete Abstract
Concrete state C Abstract state A V
[x—= 2,y—= 2,z —> —3] [x> 0,y> 0,z < 0]
[X_) 7) y— 8) Z— _6]
Has to be

Concrete transformer Abstract transformer <: sound, precise
T:C > C ™A > A over-approximation
Concrete execution Abstract execution V
e Start with concrete input, e Start with abstract input

one of the possibly infinite that represents all possible concrete

set of concrete inputs inputs
* Apply 7 for each statement Apply t#for each statement
* Not guaranteed to terminate e Guaranteed to reach fixpoint

DARPA BET IPR 28

Transformers via reinterpretation

» Define abstract operator ** for each concrete
operator * in the program

RN

DARPA BET IPR 29

Transformers via reinterpretation

» Define abstract operator ** for each concrete
operator * in the program

RN

DARPA BET IPR 30

Transformers via reinterpretation

 Compositionally define abstract transformers for
statements using abstract operators

[x>0,y> 0,z < 0]

s
[@a<0,x>0,y>02z<0] .>0 -0 <0

DARPA BET IPR 31

Transformers via reinterpretation

T: add bh, al

Adds al, the low-order byte of 32-bit register eax, to
bh, the second-to-lowest byte of 32-bit register ebx

cax +?
—

DARPA BET IPR 32

Transformers via reinterpretation

7: add bh, al

A: Conjunctions of bit-vector affine equalities between registers

ebx —ecx=0€ A

ebx’ =

. [(ebx &' OXFFFFOOFF) Aeax’ ="eax
Aecx ='ecx

#
"((ebx +7256 +"(eax & 0xFF)) & 0xFF00)

Semantics expressed as a formula

22% by’ — 22%ecx’ = 0 € A Not the most-precise value
A 216 ebx’ = 216 ecx’ 4224 eax’

Primed variables represent values
in post-state.

DARPA BET IPR 33

Automation of best transformer

T

a €

A

* Ensures correctness

* Ensures precision

* Reduces time to
implement primitives

~——| Application of

best transformer

DARPA BET IPR

34

Symbolic Abstract Interpretation

Symbolic Concretization

Symbolic Abstract Interpretation

C L :):: Intervals

x>2/\x<10 {XH210}
—

Symbolic Concretization

A BET IPR 36

ﬁ

Symbolic Abstract Interpretation

Symbolic Abstraction

Symbolic abstraction = best transformer

DARPA BET IPR 38

Automation of best transformer

a | Application of
best transformer

DARPA BET IPR 39

Automation of best transformer

a €A

a | Application of
best transformer

DARPA BET IPR 40

Algorithm for @ ()

Cf}:)i i

—S E @

SMT:= Satisfiability Modulo Theory

DARPA BET IPR 41

RSY algorithm for C?(QD) [VMCAI'04]

C A
/\
Smart sampling C/f((,ﬂ)
-
e
LI
\~__‘ .),
[[gp]]" Converge “from below”

DARPA BET IPR 42

RSY algorithm for C?(QD) [VMCAI'04]

C L A

1 ans

f: a for singleton set

RSY algorithm for C?(QD) [VMCAI'04]

L
1! -7

Sle S, F | @1
[l R
1

@1 = @ AN-y(ans)

RSY algorithm for C?(QD) [VMCAI'04]

@1 = @ AN-y(ans)

RSY algorithm for C?(QD) [VMCAI'04]

Q. = @ AN =y(ans) UNSAT

Bilateral algorithm for & () [SAS'12]

Converge “from below”
and “from above”

J_ DARPA BET IPR 47

Bilateral algorithm for & () [SAS'12]

Stop at any time—> sound answer

J_ DARPA BET IPR 48

Bilateral algorithm for & () [SAS'12]

Tunable

More time = more precision

J_ DARPA BET IPR 49

Bilateral algorithm for & () [SAS'12]

U 1 lower

DARPA BET IPR IBZ a for singleton set 50

Bilateral algorithm for & () [SAS'12]

C L A
T upper
n | YA TS,
/
® lower
1

@1 =@ AN-Y(P) UNSAT!

DARPA BET IPR 51

Bilateral algorithm for & () [SAS'12]

<)
N\
e
Nt
<)
!
©

ﬁ/ 7
447;’ lower

P1 =@ AN-Y(Dp) saTI

DARPA BET IPR 52

Symbolic abstraction = Best inductive invariants

* Theoretical limit of attainable precision

* Achieved via repeated application of best
transformer

— That’s it! [TAPAS 2013]

DARPA BET IPR 53

Combination of domains

* Exchange of information among different domains
during analysis
* More precision

— “sum is greater than parts”
— x = 0,x odd reducestox > 0, x odd

* Enables heterogeneous (“fish-eye”) analysis

DARPA BET IPR 54

Symbolic abstraction = information exchange

DARPA BET IPR 55

Summary

Symbolic abstraction increases level of automation, and
ensures correctness when

e applying abstract transformers,
e computing best inductive invariants, and
e exchanging information among domains

Algorithms for symbolic abstraction require
o off-the-shelf SMT solvers, and

* implementation of very few abstract-domain operations

DARPA BET IPR 56

Outline of Talk

* Review of goals
* Progress (Oct. 2012 - May 2013)

— Component identification

* Recovering class hierarchies using dynamic analysis
— Verifying component properties

* Symbolic abstraction (BET + ONR STTR)

* Domain-combination technique: combine results from multiple analysis methods
* Abstract domain of bit-vector inequalities
* Format-compatibility checking (ONR)

— Component extraction
* Specialization slicing
* Partial evaluation of machine code

* Recap of publications/submissions
e Recap of plans for 2013

DARPA BET IPR 57

Convex Polyhedra

[Figures from Halbwachs et al. FMSD97]

P=< (z,y) | T+y
2 0 ’ T
o

IA IV Y
[P g
N—
——

=
-]
—
=
NS
%]
By
-
Il
—h—
=
=
f"—-"‘\
= b2
S
”ﬁ
—
—
[
S
—
oy
Il
i'_“-“
=3
=
o,
=
S
b]
—
o
(I
S
S —t

Figure 1: A convex polyhedron and its 2 representations

Conjunctions of linear inequalities over rationals

a;X;+a, X, +...+a x <cC

DARPA BET IPR 58

Limitations of convex polyhedra

e Consider the following code fragment:
assume (0 <= low <= high) ;
mid = (low + high) / 2 ;
assert (0 <= low <= mid <= high) ;

e Polyhedral analysis unsoundly verifies that the assert
holds.

low =1

igh— INT MAX mid = INT _MIN /2

DARPA BET IPR 59

Limitations of convex polyhedra

» Effect of the linear transformation might
overflow

* Polyhedra expresses constraints over
rational not bit-vector integers

DARPA BET IPR 60

Problems with Polyhedra

* Unsound for machine arithmetic
— machine integers wrap
— mathematical integers do not

e Solution: Bit-Vector Inequality Domain

BET 61

S
Q
>
(qV)

i -
Q

<

U
=
O
(Vp)

)
®

Z
(0p)
S
O

)
O
Q
>

=

af)

+ + + ++ ++ +[0
+ + ++++++3
+ +++++++2
++++++++0
++++++++ =
++++++++ =
++++++++ =)
++++++++ bo
++++++++ I~
++++++++ \o
++++++++ 1o
+4+++++++ <+
+4++++++ +n
+4+++++ + 4+
+++++ ++ 4+
+ 4+ + ++ + +f=
Tals aslot K pRenRa B ol po el s sl o Ry e

(Ar+y+4<7

+++ +

+ 4+ ++

++ + +

+ 4+ 4+ +

+4+++

++ + +

+ 4+ + +

++++

++ + +

+++ +

++ + +

+++ +

+

+ + +

++ ++

14

13

§ 9 10 11

7

6
b)r+y<3

wmtenocl— ol o tenol = o
— — — — —

—

62

Key Idea!

Split inequality into an equality and an interval by
using a view variable \ /

For example, a+b <5 is changed to 5 s
a+b=s,se][0,5]

Examples on previous page:
X+Y+4<7 and X+ Y <3 arerepresented as

X+y=5s5,se[-4,3]and XxX+Yy=s5,5¢e]0,3]
respectively.

BET 63

Bit-Vector Inequality Domain (BVI)

* Use a Bit-Vector equality domain for equalities (€)
(King-Sondergaard 2010; Elder et al. 2011)

» € is and equality-element over P U S

e Bit-Vector Interval domain (/) on view variables

> | is an interval-element over S

e PandS are the set of program and view variables,
respectively

DARPA BET IPR 64

Bit-Vector Inequality Domain (BVI)

S, the set of slack variables, is shared between € and
/

e S acts as information exchange between the two
domains

— Example: A=<a-b=5Aa+b=s,5€[0,5]>
» & specifies the constraints a —b =5and a+b =s
* | specifies the constraints s [0,5]

DARPA BET IPR 65

View Variables

* View variables are defined by integrity constraints

 Forexample, in A,a+b =Sisan integrity
constraint

DARPA BET IPR 66

Symbolic Abstraction

* BVIis a combination of € and /
* Symbolic abstraction for € and / is available

* Information exchange is provided through common
vocabulary S

e Symbolic abstraction for BVI is automatically
available through @(¢p)

DARPA BET IPR 67

Preliminary Results

e Setup: View constraints are of the form s =r, wherer
represents the 32-bit register in Machine
Architecture (eg. ia32)

e BVIdomain was 3.5 times slower than Bit-Vector
equality domain

* BVI more precise than equality domain at 63% of the
control points

* BVI's procedure summaries more precise than that of
equality domain at 29% of the procedures

DARPA BET IPR 68

Heuristics

e Heuristics to choose view variables

e View constraints are of the form s =r are not
sufficient
a=0; b=0;
for (i=0;i<100; i++) {
a++;
if (i%2 ==0)
b++;

7

}
Cannot get the constraint that 0 <2b—-a <1

DARPA BET IPR 69

Heuristics

* Linear expressions in branch predicates and
assert statements

* “Invariants” produced by unsound analysis,
eg polyhedra

DARPA BET IPR

70

Handling Memory

* Previous analysis only focused on registers
 Memory is treated as flat array in machine code
* Memory constraints represent memory views:
v = mm|[e], where
v is the memory view,

mm is the memory map,
e is the address.

Memory domain: Set of memory constraints

DARPA BET IPR 71

BVMI domain

 BVMI domain is capable of expressing Bit-Vector
inequalities over memory variables
* BVMI components

» €Eis an equality-domain element overP U U U S
» lis an interval-domain element over S
» M is an memory-domain element over U

* Information exchange happen between € and |
through common variables S and between € and M
through common variables U.

DARPA BET IPR 72

Current Status

* Implementation of BVI is completed

* Undergoing restructuring of code to utilize symbolic
abstraction

DARPA BET IPR 73

* Implementing heuristics for BVI and BVMI

* Integrating memory domain in the new framework

DARPA BET IPR 74

Recap

e Convex polyhedra doesn’t work for machine integers

e Bit-Vector Inequality Domain (BVI) handles Bit-Vector
Inequalities by splitting them into Bit-Vector
Equalities and Bit-Vector Intervals

* Memory Variables can be incorporated in a similar
fashion by splitting them into Bit-Vector Equalities
and Memory Constraints

* Information Exchange between the two domains
happen through View Variables

DARPA BET IPR 75

Outline of Talk

* Review of goals
* Progress (Oct. 2012 - May 2013)

— Component identification

* Recovering class hierarchies using dynamic analysis
— Verifying component properties

* Symbolic abstraction (BET + ONR STTR)

* Domain-combination technique: combine results from multiple analysis methods
* Abstract domain of bit-vector inequalities
* Format-compatibility checking (ONR)

— Component extraction
* Specialization slicing

* Partial evaluation of machine code

* Recap of publications/submissions
e Recap of plans for 2013

DARPA BET IPR 76

Partial Evaluation for Machine-Code

Slicing has limitations
— limited semantic information —i.e., just dependence edges
— no evaluation/simplification
e Partial evaluation: a framework for specializing programs
— software specialization, optimization, etc.
* Binding-time analysis
— what patterns are foo and bar called with?
e e.g, {foo(S,S,D,D), foo(S,D,S,D), bar(S,D), bar(D,S) }
— polyvariant binding-time analysis? specialized slicing!
* Design and implement an algorithm for
partial evaluation of machine code

Venkatesh
BET Srinivasan’

Partial Evaluation of Machine code

e @Given:

— Machine-code procedure P(x, y)

— Value “a” for x

e Goals:

— Create a specialized procedure P_(y)

— If the value “b” is supplied fory, P_(y)

computes P(a,b)

d b
b

Partial
Evaluator

J: P(x,y)
d

dword [ebp - C],eax

dword [ebp - 8],eax
eax,dword [ebp - 8]
edx,dword [ebp - C]
eax, edx

dword [ebp - 4],eax
eax,0

dword [ebp - C],eax
eax,dword [ebp - C]
eax, 2
dword [ebp - 4],eax
eax,0

Partial Evaluation — Why?

e Extraction of functional components

— gzip executable has code that compresses and decompresses
bundled together

— Partial evaluation with ‘-c’ as the value of compress/decompress
flag produces an executable that only compresses

* Binary specialization
— Produces faster and smaller binaries optimized for a specific
task
e Offline optimizer for unoptimized binaries

— Partial evaluator performs optimizations such as constant
propagation and constant folding, loop unrolling, elimination of
unreachable/infeasible basic blocks, etc.

DARPA BET IPR 79

Methods

* Binding-time analysis
— Classify instructions as:

 Static — Instructions that only depend on inputs whose values are
known at specialization time (can be evaluated at specialization
time)

* Dynamic — Instructions that are not static
e Specialization
— Evaluate static instructions
— Simplify dynamic instructions using partial static state
— Emit residual code (simplified dynamic instructions)
— Evaluate static jumps to eliminate entire basic blocks

DARPA BET IPR 80

Binding-Time Analysis

e Construct Program Dependence Graph (PDG) for
binary
— Using CodeSurfer/x86

* Add the instructions that initialize dynamic inputs’
memory locations to the slicing criterion

 Compute an interprocedural forward slice

* Instructions included in the slice are dynamic
Instructions

 Remaining instructions are static (solely depend on
static inputs)

DARPA BET IPR 81

Specialization

* I|nitialize static locations in program state to given values

* Worklist algorithm — <first basic block, initial state> is put in
worklist

* Remove an item from worklist

e Static instructions
— Evaluate and update state

* Dynamic instructions

— Emit instructions that set up values for static hidden operands (for
example, registers and flags)

— Simplify dynamic instruction to use static values as immediate
operands

— Emit simplified instruction

— Dynamic jumps — For each target basic block put <basic block, state> in
worklist

— |If a <basic block, state> pair was already processed, do not put in
worklist

* Keep processing until worklist is empty

DARPA BET IPR 82

Challenges

DARPA BET IPR 83

Outline of Talk

* Recap of publications/submissions
e Recap of plans for 2013

DARPA BET IPR 84

Recap of publications/submissions

1. Lim, J. and Reps. T., TSL: A system for generating abstract interpreters and its application to
machine-code analysis. To appear in ACM Trans. on Program. Lang. and Syst. (TOPLAS), April 2013.
http://www.cs.wisc.edu/wpis/papers/toplas13-tsi-final.pdf

2. Srinivasan, V.K. and Reps, T., Software-architecture recovery from machine code. TR-1781,
Computer Sciences Department, University of Wisconsin, Madison, WI, March 2013. Submitted for
conference publication. http://www.cs.wisc.edu/wpis/papers/tr1781.pdf

3. Aung, M., Horwitz, S., Joiner, R., and Reps, T., Specialization slicing. TR-1776, Computer Sciences
Department, University of Wisconsin, Madison, WI, October 2012. Submitted for journal
publication. http://www.cs.wisc.edu/wpis/papers/SpecSlicing-submission.pdf

4. Thakur, A,, Lal, A., Lim, J., and Reps, T., PostHat and all that: Attaining most-precise inductive
invariants. To appear in 4" Workshop on Tools for Automatic Program Analysis, June 2013. TR-1790,
Computer Sciences Department, University of Wisconsin, Madison, WI, April 2013.
http://www.cs.wisc.edu/wpis/papers/tr1790.pdf

5. Sharma, T., Thakur, A., and Reps, T., An abstract domain for bit-vector inequalities. TR-1789,
Computer Sciences Department, University of Wisconsin, Madison, WI, April 2013.
http://www.cs.wisc.edu/wpis/papers/tr1789.pdf

DARPA BET IPR 85

http://www.cs.wisc.edu/wpis/papers/toplas13-tsl-final.pdf
http://www.cs.wisc.edu/wpis/papers/toplas13-tsl-final.pdf
http://www.cs.wisc.edu/wpis/papers/toplas13-tsl-final.pdf
http://www.cs.wisc.edu/wpis/papers/toplas13-tsl-final.pdf
http://www.cs.wisc.edu/wpis/papers/toplas13-tsl-final.pdf
http://www.cs.wisc.edu/wpis/papers/tr1781.pdf
http://www.cs.wisc.edu/wpis/papers/SpecSlicing-submission.pdf
http://www.cs.wisc.edu/wpis/papers/SpecSlicing-submission.pdf
http://www.cs.wisc.edu/wpis/papers/SpecSlicing-submission.pdf
http://www.cs.wisc.edu/wpis/papers/tr1790.pdf
http://www.cs.wisc.edu/wpis/papers/tr1789.pdf

Recap of plans for 2013

 Component identification

— object traces — class hierarchies
 Component extraction

— partial evaluator for machine code
* Verifying component properties

—al

e separation logic
* WALi-based and Boogie-based invariant finding
— bitvector-inequality domain

— Stretched-TreelC3

DARPA BET IPR 86

DARPA BET IPR

87

Outline of Talk

* Review of goals
* Progress (Oct. 2012 - May 2013)

— Component identification

* Recovering class hierarchies using dynamic analysis
— Verifying component properties

* Symbolic abstraction (BET + ONR STTR)

* Domain-combination technique: combine results from multiple analysis methods
* Abstract domain of bit-vector inequalities
* Format-compatibility checking (ONR)

— Component extraction
* Specialization slicing
* Partial evaluation of machine code

* Recap of publications/submissions
e Recap of plans for 2013

DARPA BET IPR 100

Specialization Slicing

* Problem statement

— Ordinary “closure slices” can have mismatches between
call sites and called procedures

 different call sites have different subsets of the parameters
— ldea: specialize the called procedures
— Challenge: find a minimal solution (minimal duplication)

Aung

(1)
(2)
€)
4)
()
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

Specialization Slicing

int g1, g2, g3;

void p(int a, int b) {
gl=a;
g2 = b;
g3 = g2;

}

int main() {
g2 = 100;
p(g2, 2):
p(g2, 3):
p(4. g1+g2);
printf("7%d", g2):
}

int g1, g2;

void p(int a, int b) {
gl =a;
g2 = b;

}

int main() {

p(2)

p(g2, 3):

p(gl+g2);
printf("%d", g2):

}

Closure slice

int g1, g2;

void p1(int b) {
g2 = b;
}

void p2(int q, int b) {
gl=a;
g2 = b;

}

int main() {

p1(2);

p2(g2, 3):
pl(gl+g2):
printf("%d", g2);

}

Specialized slice

System Dependence Graph (SDG)

m1: main

m21: call printf

(m22:“%d”) (m23:g2)

C1

C3

103

Unrolled SDG

f(p9, C1)
K

104

Specialized SDG

ml

m21

m22 m23

m19

105

Specialization slice of a recursive program

(1) intgl, g2; int g1, g2;

(2) N |

(3) |voids(int a, 1 void s_1(int b) { 8 .
(@) int b)(Toh, Calling pattern:
(5) } *
(6) gl=b; void s_2(int a) {| (27) ((16)(16))
(7) g2=g3; g2 =a,

(8) } }

(9)

(10) void r_1(int k) {

(11) if (k >0) {

(12) intr(intk) { s_2(gl);

(13) r 2(k-1);

(14) if(k>0){ s_1(g2);

(15) s(gl, g2); }

(16) r(k-1); }

(17) s(gl, g2); void r_2(int k) {

(18) 1} if (k>0){

(19) s_1(g2); .

(20) } r_1(k-1); Calling pattern:
(21) s 2(gl);

(22) } (27)(16)((16)(16)) *
(23) }

(24) int main() {

(25) gl=1; int main() {

(26) g2=2; gl=1;

(27) r(3); r_1(3);

(28) printf("%d\n", g1); printf("%d\n", g1);

(29) } }

DARPA BET IPR 106

Specialization Slicing

* Problem statement

— Ordinary “closure slices” can have mismatches between
call sites and called procedures

 different call sites have different subsets of the parameters

— ldea: specialize the called procedures

— Challenge: find a 3] solution (minimal duplication)

1. In the worst case, specialization causes an

exponential increase in size
2. In practice, observed a 9.4% increase

Relatively Few Specialized Procedures

20000
69

15000}
wn
v
=3
o]
[
|®)
o
2 10000}
(o]
@
L0
£
>3
=2

5000}

iii6
9 139 13 2, 1L
0 1 2 3 4 5 6

Number of specialized versions per procedure

Specialization Slicing

* Problem statement

— Ordinary “closure slices” can have mismatches between call
sites and called procedures
 different call sites have different subsets of the parameters

— ldea: specialize the called procedures
— Challenge: find a minimal solution (minimal duplication)
e Key insight

— minimal solution involves solving a partitioning problem on a
certain infinite graph

— problem solvable using PDSs: all node-sets in infinite graph can
be represented via FSMs

— algorithm: a few automata-theoretic operations

Partition obtained by

Algori

contexts

Input: SDG S and slicing criterion C plocedure

determinizing and minimizing:
Each state = set of calling
r one specialized

~

J

Output: An SDG R for the specialized slice respect To C

// Create A,, alminimal reverse-deterministic autorfatonffor the
// stack-configurafion slice of S with respect fo C

1 P, = the PDS for S " Auto
2 Ag = a Ps-automaton that accepts C) onto fets of points in

3 A, = PrestariP:](Ap) ly infinite graph
4 A, = reverse(A,)

J

5 A; = determinize(A,) >
6 A, = minimize(A;)
7 As = reverse(A,)
8 A, = removeEpsilonTransitions(As) |

// Read out SDG R from A,

111

Unrolled SDG

Each yellow name has the same
Such sets are infinite for recursive programs => FSMs

112

Specialized SD6G

ml

m22

m19

m21

m23

Each yellow name has the same
Such sets are infinite for recursive programs => FSMs

113

Feature Removal

int add(int a,int b) {
g: return a+b;

}

[int add(int a,int b) { |

|q: return a+b; ‘

int multfint alint b) {

intmult(intb){

inti=0; inti=0;
intans=0 intans=0;
|wh|Ie(| < al{
|c5: ans = add(ans,b);
|.c6: i =add(i,1);
return|ans;| return;
} }
void tally void tally
(int& suint N) { |(int& sum, int N)|{
inti=1; inti=1;
while(i <= N) { while(i <= N) {
c2: sum = add(sum,i); c2: sum = add(sum,i);
[c3: prod|= mult{prod}i); c3: mult(i)
c4:i=add(i,1); c4:i=add(i,1);
} }
} }
int main() { int main() {
intsum=0; int sum = 0;
| int prod = 1;
c1: tally(sumj,prod|10); | c1: tally(sum, 10);|
printf("%d ",sum); printf("%d ",sum);
printf("%d ‘;
} }

DARPA BET IPR 114

(1)
(2)
€)
4)
()
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

Feature Removal

int g1, g2, g3;

void p(int a, int b) {
gl=a;
g2 = b;
g3 = g2;

}

int main() {
g2 = 100;
p(92, 2);
p(92, 3).
p(4, gl+g2);
printf("7%d", g2):
}

int g1, g2, g3;

void p(int q, int b) {
gl=aq;
g2 = b;
g3 = g2;

}

int main() {
g2 = 100;
p(g2, 2):
p(g2, 3):
p(4, gl+g2).
printf("%d", g2);
}

Forward
closure slice

int g1, g2;

void pl(int a) {
gl =a;
}

void p2(int b) {
g2 = b;
g3 = g2;

}

int main() {
g2 = 100;
pl(92):
YAE))
p1(4);

}

Specialized slice

Unrolled SDG

.,

'

£ (o, C1)

116

Complemented Unrolled SDG

s)g

§(m12, s)g (mls;,
¥ X

e,

:

117

Complemented Unrolled SDG

118

Complemented Unrolled SDG

(m2, €)

(m4, £) (m5 £ ! i(m6,e)} i (m7 s) ifms, o)
| i

119

Complemented Unrolled SDG

120

Complemented Unrolled SDG

121

Goal: check format compatibility

Producer Consumer
component A component

1. Infer output format
2. Infer accepted format
3. Check compatibility

Evan
Driscoll DARPA BET IPR 122

Formats are strings over “types”

Header of gzip format:

o

short byte byte word byte byte

DARPA BET IPR 123

Current work: enhance format spec

nrows ncols pix11 pix12 pix13 pix14 pix21 pix22 pix23 ...

DARPA BET IPR 124

Current work: enhance format spec

nrows ncols pix11 pix12 pix13 pix14 pix21 pix22 pix23 ...

Nrows

DARPA BET IPR 125

Current work: enhance format spec

pix11 pix12 pixl3 pix1ld pix21 pix22 pix23 ...

ncols ncols

Nrows

—
Nrows ncols

DARPA BET IPR 126

Current work: enhance format spec

Infer an automaton equivalent to:

int iint ((byte byte byte byte)'“°")

DARPA BET IPR 127

Roadmap: Inference

Program Traces
/0 equalities

Inputs

ICFG Inferred XFA

DARPA BET IPR 128

Roadmap: Compatibility

Inferred XFA (Inferred XFA ?

DARPA BET IPR 129

Status

Prototype essentially done, but not well-tested. Working
on performance and on finding tests.

DARPA BET IPR 130

int int ((byte byte byte)”)”

V

Exponents start as standard Kleene *,
and correspond to program loops

DARPA BET IPR 131

int int ((byte byte byte)®)”

We instrument loops with trip counts
We instrument 1/O calls to remember values

DARPA BET IPR 132

int int ((byte byte byte)®)”

n remembered |/O value n trip count

We instrument loops with trip counts
We instrument 1/O calls to remember values

When two of these are found to always equal,
replace the * with an exponent

DARPA BET IPR 133

int int ((byte byte byte)®)

n remembered |/O value n trip count

We instrument loops with trip counts
We instrument 1/O calls to remember values

When two of these are found to always equal,
replace the * with an exponent

DARPA BET IPR 134

int int ((byte byte byte)®)

We instrument loops with trip counts
We instrument 1/O calls to remember values

When two of these are found to always equal,
replace the * with an exponent

DARPA BET IPR 135

:int ncols:int ((byte byte byte)<°)

We instrument loops with trip counts
We instrument 1/O calls to remember values

When two of these are found to always equal,
replace the * with an exponent

DARPA BET IPR 136

We use Daikon

Daikon identifies dynamic invariants
* Hold over all test runs; might not actually be invariants
* Could use statically inferred instead

We wrote our own Daikon front end for machine code

* Assumes debugging information
e can we remove this restriction?

* Front ends supplied with Daikon not sufficient

* checks only entry-to-exit invariants, whereas we need
* loop trip-count instrumentation
* 1/O-to-loop-exit invariants

* |nstruments program using Dyninst

DARPA BET IPR 137

Instrumentation remembers |/O vals

If value is returned:
x = read_int(); Xx=__iol =read_int();

If value is “returned” via out parameter:
err = read_int(&x); err = read_int(&x);
__i02 = *(&x);

If value is passed by parameter:
write_int(x); 03 =x;
write_int(x);

DARPA BET IPR 138

Instrumentation finds trip counts

DARPA BET IPR 139

Instrumentation finds trip counts

On loop entry:
Set trip countto O

__tripl =0; \

DARPA BET IPR 140

Instrumentation finds trip counts

™~

Entering loop body:
Increment trip count
__tripl++;

DARPA BET IPR 141

Instrumentation finds trip counts

On loop exit:

Output current value of variables
Interested in invariants here

l print(__iol, io2, ..., tripl);

/

>

DARPA BET IPR 142

We use Daikon to find I/O equalities

Instrumented Dakion dynamic

program invariant detector
> /all - > g olV -
LOOP_EXIT_A /\ / /\

_i02=2
o4 =5
__trip_count A=5

__trip_count A=__io4=5

LOOP_EXIT_B __trip_count B=__i02=6

__i02=6

04 =5
__trip_count B=6 / \ /

DARPA BET IPR 143

We model programs as XFAs

XFAs: extended finite automata

Add separate bounded “data state” to standard FAs

Transformers on transitions describe data-state
changes

DARPA BET IPR 144

Symbolic abstraction: Who cares?

Basic scenario

interfere?

* More precise res%in abstract interpretation

— can identify loop and [procedure summaries|that are more
precise than ones obtained via conventional techniques

* Applies to interesting, non-standard logics (we think!)

— separation logic:lmemory safety properties

DARPA BET IPR 159

Symbolic abstraction: Who cares?

Basic scenario

* Win, win,
e Easier/fas 5is tools
— just statq 0gic
— supply a interfere?
° e.g.,q
— obtain a
* More prec . retation

— can |dent|fy loop\and procedure summaries that are more
precise than ones oktained via conventional techniques

* Appliesto interestind,_nanﬁj:andam_mgcs (we thin

— separation logic: memory safety properties
* Improve level of automation for creating analyzers

— implement anal
drastically reduc

)

n and with

DARPA BET IPR 160

In 1977, Cousot & Cousot gave us a
beautiful theory of overapproximation

- N

{(2.1),(2,2), (2,3),

C (31), (3.2), (3.3), A
(4.1), (4,2), (4,3),
(5.1), (5.,2), (5,3)}

N \ ')

{(x—>2,y->1), _

[(x—>5, y—>3)}

X — [2,9]
% y = [1.3]

Universe of States

161

In 1979, Cousot & Cousot gave us:

C

Q

Universe of States

162

163

In 1979, Cousot & Cousot gave us:

Universe of States

164

In 2004, Reps, Sagiv, and Yorsh gave us:
C L

Universe of States

Symbolic Bbsuadiatimpretation

In 2004, Reps, Sagiv, and Yorsh gave us:
C L

Universe of States

Symbolic Abstraction

166

&' (o) [VMCAI 2004]

C

Use SMT solvers to get leverage:

get models of @
.

Universe of States

167

N\

&' (o) [VMCAI 2004]

[o]

Universe of States

168

&' (o) [VMCAI 2004]

C L A

I ;)
|

~

lo]]“ SiFo P1 ans

Universe of States 1
1 = @ A=y(ans)

169

N\

"(p)

[VMCAI 2004]

170

From “Below” vs. From “Above”

* Reps, Sagiv, and Yorsh 2004: approximation from “below”
* Desirable: approximation from “above”

— always have safe over-approximation in hand

— can stop algorithm at any time (e.g., if taking too long)

— Thakur, A. and Reps, T., A method for symbolic computation of abstract
operations. In Proc. Computer-Aided Verification (CAV), 2012

Aditya
Thakur 171

[CAV 2012]

172

[CAV 2012]

Stop at any time
- sound answer

Tunable

More time = more precision

173

Stalmarck’s method (1989)

Dilemma Rule

R
* Split /\
R U {v = True} R U {v = False}
* Propagate
Ri NR,

174

Stalmarck’s method (1989)

1-saturation

Stalmarck’s method (1989)

2-saturation

f/i

Stalmarck’s method for @*

: T
Dilemma Rule
/R\y(al) U]/(Clz) =2)/(A)
* Split
R Anla; rue} 1 Ana, False}
* Propagate
A1 0 By

* Merge

J_ 177

Stalmarck’s method

T

AN

w [CAV 2012]

'(d} Reasoning: Using C~Zi(§0 Dual use:

%& e (for abstract interpretation
* Unsat/validity checking for
pure logical reasoning
—> abstract interpretation in
service to logic!

Property verification
via model checking:
OK if Unsat(Program A Bad)

&l(gp) = | . @ is unsatisfiable ..

The importance of data structures

e Classic union-find
— plus layers
— plus least-upper bound

* Given UF, and UF,, find

the coarsest partition
that is finer than UF,
and UF,

* Roughly, “confluent,
partially-persistent
union-find”

New 1-Stalmarck[2BAR]++

=500

'-- -10{} san e

.0.1.._

D 00T 01 L marckbBAR]

Extend WAL to use O

* Weighted Automaton Library
(WALI):
— supports context-sensitive
interprocedural analysis
— weights = dataflow transformers
— weighted version of PDSs (a la
material on specialized slicing)
* More precise results in
abstract interpretation

e Easier implementation of
analysis tools

Junghee Aditya
Lim Thakur BET 181

AlphaHat

* AlphaHat technique in three ways
— WALI + AlphaHat (Aditya Thakur and Junghee Lim)
e ~October 2012

— Boogie + AlphaHat for source code (Akash Lal at Microsoft
India)
* “November 2012
— Boogie + AlphaHat for machine code (Aditya Thakur and
Junghee Lim)
* “November 2012

BET 182

Outline of Talk

* Review of goals
* Progress (Oct. 2012 - May 2013)

— Component identification

* Recovering class hierarchies using dynamic analysis
— Verifying component properties

* Symbolic abstraction (BET + ONR STTR)

* Domain-combination technique: combine results from multiple analysis methods
* Abstract domain of bit-vector inequalities
* Format-compatibility checking (ONR)

— Component extraction
* Specialization slicing
* Partial evaluation of machine code

* Recap of publications/submissions
e Recap of plans for 2013

DARPA BET IPR 183

Possible-overflow example

char* concat(char* a, char* b)
{
unsigned size = strlen(a)+strlen(b)+1;
char* out = (char*)malloc(size*sizeof(char)); // Possible overflow
for(unsigned i = 0; i < strlen(a); i++) {
out[i] = a[i]; // Potential memory corruption
}
for(unsigned i = 0; i < strlen(b); i++) {
out[i+strlen(a)] = b[i]; // Potential memory corruption
}
out[i+strlen(a)] = '\0';
return out;

DARPA BET IPR 184

Convex Polyhedra

[Figures from Halbwachs et al. FMSD97]

P=< (z,y) | T+y

L v=fn () ()} = {n(2)m ()}

IA IV Y
[P g
N—
——

BY

P [z + 1/x]

o
<
=
=

/

|-.1U
C
»

P[0/y] x
Figure 2: Intersection and convex

hull Figure 3: Linear transformations

Bitvector Inequality domain

* Conventional domain for representing inequalities
— polyhedra: conjunctions of linear inequalities
a X +a, X, +...+a x <cC
— operations on polyhedra: linear transformations

e unsound for machine arithmetic
* machine integers wrap while mathematical integers do not

* Solution: Bitvector Inequality Domain

Tushar
BET 86
Sharma

S
QD
>
(qV)

-
)

<

O
=
O
Vp)

s
O

Z

++++

++++

++++

+ + + +

++++

++++++

+4++ +++

+ 4+ ++

+++ +

++ +

+ +

+

+4++++

++++++

++++++

+4+ +++ +

+++++

++ 4+ +

++ +

+ +

+

++ +

+++ +

10 11 12

9

8
(@r+y+4<T7T

7

6

Wit — oot ol — o
p— p— — p— p—

—

+++ +

+ 4+ ++

++ + +

+ 4+ 4+ +

+4+++

++ + +

+ 4+ + +

++++

++ + +

+++ +

++ + +

+++ +

+

+ + +

++ ++

14

13

7% 9 10 11
b)x+y<3

6

wmtenocl— ol o tenol = o
— — — — —

—

187

