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Project Goals 

• Develop a “redeveloper’s workbench” 

Tools to identify and extract components, and establish their 
behavioral properties 

– Aid in the harvesting of components from an executable 
• identify components 

• make adjustments to components identified 

• issue queries about a component’s properties 

– Queries 
• type information; function prototypes 

• side-effect “footprint” 

• error-triggering properties 
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Basic scenario 
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Project Activities 

• Component identification 
– Recovering class hierarchies using dynamic analysis 

• group functions into classes 
• identify inheritance and delegation relationships among the inferred classes 

• Component extraction 
– Specialization slicing 

• create multiple specialized versions of a procedure, each equipped with a different subset of the 
original procedure's parameters 

• novel algorithm creates optimal specialization slice 

– Partial evaluation of machine code 
• general method to address extraction, specialization, and optimization of machine code 

• Verifying component properties 
– Symbolic abstraction (BET + ONR STTR) 

• methods to obtain most-precise results in abstract interpretation 
• for a given abstract domain, attains the limit of what is achievable by any analysis algorithm 

– Domain-combination technique: combine results from multiple analysis methods 
– Abstract domain of bit-vector inequalities 

• allows a tool to identify inequality invariants for machine arithmetic (arithmetic mod 232 or 264) 
• fills a long-standing need in both source-code and machine-code analysis 

– Format-compatibility checking (ONR) 
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Outline of Talk 

• Review of goals 

• Progress (Oct. 2012 - May 2013) 
– Component identification 

• Recovering class hierarchies using dynamic analysis 

– Component extraction 
• Specialization slicing 

• Partial evaluation of machine code 

– Verifying component properties 
• Symbolic abstraction (BET + ONR STTR) 

• Domain-combination technique: combine results from multiple analysis methods 

• Abstract domain of bit-vector inequalities 

• Format-compatibility checking (ONR) 

• Recap of publications/submissions 

• Recap of plans for 2013 
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Recovering Class Hierarchies  

• Given: 
– Stripped binary 

• Goals: 
– Group functions 

in the binary into 
classes 

– Identify 
inheritance and 
composition 
relationships 
between 
inferred classes 
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_Disassembly of section .text: 

 
00000000004003e0 <.text>: 
  4003e0:  xor    %ebp,%ebp 
  4003e2:  mov    %rdx,%r9 
  4003e5:  pop    %rsi 
  4003e6:  mov    %rsp,%rdx 
  4003e9:  push   %rax 
  4003ea:  push   %rsp 
 . 
 . 
 . 

? 

Class C 

Class B Class A 

Class D 

Methods: 
0x400460 
0x4004c4 

… 

Methods: 
0x4004f0 
0x400530 

… 

Methods: 
0x4005bf 
0x400607 

… 

Methods: 
0x40054a 
0x400576 

… 

Inheritance relationship Composition relationship 



Recovering Class Hierarchies 

• Why? 

– Reengineering legacy software 

– Understanding architecture of software that lack 
documentation and source code 

• Lego 

– Dynamic analysis tool 

– Recovers software architecture  

– Modulo code coverage 
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Key Ideas 

• “this” pointer idiom 

– Common idiom in 
object-oriented 
programming 

– “this” pointer = 1st 
argument of methods of 
a class 

– Used to classify sets of 
functions 

 

 

• Unique finalizer idiom 

– Unique method in each 
class (Destructor in C++) 

– Cleans up object 

– Parent-class finalizer 
called at end of child-
class finalizer 

– Used to recover 
inheritance and 
composition 
relationships 
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void SetID(int nID) 

void SetID(Simple* const this, int nID) 



Lego – 2 Phases 

• Phase 1  

– Input: stripped binary and 
test input 

– Executes given binary 
under test input 

– Performs dynamic analysis 
by dynamic binary 
instrumentation 

– Records methods invoked 
on allocated objects 

– Output: object-traces 
(summary of lifetime of 
every object) 

 

 

• Phase 2 

– Input: object-traces 

– Uses order of finalizer calls 
as evidence from object-
traces to infer class 
hierarchies 

– Output: Inferred class 
hierarchy and composition 
relationships between 
inferred classes 
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Phase 1: Object-Traces 

• A sequence of method calls and returns that have 
the same receiver object 
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class Vehicle { 

  public: 

    Vehicle(); 

    ~Vehicle(); 

}; 

 

class Car :  

public Vehicle { 

  public: 

    Car(int n); 

    ~Car(); 

    void print_car(); 

  private: 

    void helper(); 

}; 

class Bus :  

public Vehicle { 

  public: 

    Bus(); 

    ~Bus(); 

    void print_bus(); 

}; 

 

int main() { 

  Car c(10); 

  Bus b; 

  c.print_car(); 

  b.print_bus(); 

  return 0; 

} 

0xAAAA 

(Address of c): 

Car(int) C 

Vehicle() C 

Vehicle() R 

Car(int) R 

print_car() C 

print_car() R 

~Car() C 

helper() C 

helper() R 

~Vehicle() C 

~Vehicle() R 

~Car() R 

0xBBBB 

(Address of b): 

Bus() C 

Vehicle() C 

Vehicle() R 

Bus() R 

print_bus() C 

print_bus() R 

~Bus() C 

~Vehicle() C 

~Vehicle() R 

~Bus() R 



Object Traces – How to get them? 

• Instrument binary using PIN to trace: 

– Values of 1st-arguments of methods  

– Method calls and returns 

• Emit a trace of <“this” pointer, method Call/Return> pairs 

• Group methods based on “this”-pointer values 

• From the trace, compute object-traces, pairs <A, S> 
where 

– A is an object address  

– S is the sequence of method calls/returns that were passed A as 
the value of the “this” pointer (1st argument) 
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Object-Traces 
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m() 
{ 
   . . . 
} 

. . . 

a1 

a2 

a3 

. . .   <a1, m, C> . . <a1, n, C> . . . <a1, n, R> . . <a1, m, R>  . . .  
<a2, m, C> . . <a2, m , R> . . <a3, m, C> . . <a3, m , R> 

Emitted Trace 

[a1: <m, C>, <n, C>, <n, R>, <m, R>],  [a2: <m, C>, <m, R>], [a3: <m, C>, <m, R> ] Object Traces 

n() 
{ 
   . . . 
} 

a1 



Challenges – Blacklisting Methods 

• Stand-alone methods and static methods don’t 
receive a “this” pointer 

 

• Lego maintains estimates of allocated address space 

– Stack pointer values during calls and returns 

– Allocated heap objects – instrument new and delete 

• If 1st argument’s value of a method is not within 
allocated address space, method is blacklisted 

– Removed from existing object-traces 

– Never added to future object-traces 
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void foo(); static void Car::setInventionYear(int a); 



Challenges – Object-address Reuse 

 

 

• Methods of two (or more) unrelated classes appear 
in same object-trace 

• Reuse of stack space for objects on different 
Activation Records (ARs) 

• Reuse of same heap space by heap manager 

• Lego versions addresses – increment version of 
address A when A is deallocated  
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class A { 

  public: 

    . . . 

    printA(); 

}; 

 

class B { 

  public: 

    . . . 

    printB(); 

}; 

 

void foo() { 

  A a; 

  a.printA(); 

}   

int main { 

  foo(); 

  bar(); 

  return 0; 

} 

void bar() { 

  B b; 

  b.printB(); 

}   



void f() { 

 { 

  Foo a; 

  … 

 } 

 { 

  Bar b; 

  … 

 } 

} 

 

Challenges – Spurious Traces 

• Spurious traces 

– Methods of two (or more) 
unrelated classes appear in 
the same object-trace 

– Reuse of same stack space 
by compiler for different 
objects in different scopes 
within same AR 

– Locate initializer and 
finalizer methods to split 
spurious traces  
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Stack space 
reused for a 

and b AR of f() 



Phase 2: Object-Trace Fingerprints 

• Common semantics of OO 
languages – derived 
class’s finalizer calls base 
finalizer just before 
returning 

• Fingerprint – ‘return-only’ 
suffix of object-trace 

• ‘return-only’ – Methods 
that were called just 
before caller returned 

• Has methods involved in 
cleanup of object and 
inherited parts 

 

 

 

 

• Length indicates possible 
number of levels in class 
hierarchy 

• Methods in fingerprint – 
potential finalizers in the 
class and ancestor classes 
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class A { 

  ~A(); 

}; 

 

class B : 

public A { 

  ~B(); 

};  

class C : 

public B { 

  ~C(); 

  helper(); 

}; 

 

class D:  

public C { 

  ~D(); 

}; 

~D()  C 

~C()  C 

helper() C 

helper() R 

~B()  C 

~A()  C 

~A()  R 

~B()  R 

~C()  R 

~D()  R 



Finding Class Hierarchies 

• Create a trie from 
fingerprints 

• Associate each object-
trace with trie node that 
accepts object-trace’s 
fingerprint 

• Add methods in each 
object-trace to associated  
trie node 

• If parent and child nodes 
have common methods, 
remove common 
methods from child 
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~A() 

B 

D 

. . p() ~A() 

. . q() ~A() ~B() 

. . r() ~A() ~B() ~D() 

. . s() ~A() ~C() 

~B() ~C() 

~D() 

... 
p(), ~A() 

... 
  q() ~B() 

... 
  r() ~D()   

 ~A() 

 ~A() ~B() 

 ~A() 

   … 
   s() 
 ~C() 



Composition Relationships 

• Class A has a member instance of B 

• A is responsible for cleaning up B – A’s finalizer calls 
B’s finalizer 

• Record the methods directly called by each method 
in object-trace 

• Conditions for a composition relationship to exist 
between inferred classes A and B 

– A’s finalizer calls B’s finalizer 

– A is not B’s ancestor or descendant in the inferred 
hierarchy 
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Scoring – Ground Truth 
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Vehicle 

Car Bus 

Compact SUV 

GPS 

Road 

Arterials 

Inter 
state 

Local 

ios_base 

ofstream 

ios 

ostream 

Unrestricted GT 

Partially Restricted GT 

Restricted GT 



Scoring  

• Precision and Recall  

• Can’t treat classes as flat sets of methods – inheritance 
relationships between classes 

• For every path in the GT inheritance hierarchy, find the path in 
the inferred hierarchy that gives maximum precision and 
recall 
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Vehicle 

Car Bus 

Compact SUV 

Vehicle’ 

Car’ Bus’ 

Compact’ SUV’ SUV’’ 
p = X% 
r = Y% 

p = X% 
r = Y% 

p = X% 
r = Y% 

p = X% 
r = Y% 

p = X% 
r = Y% 



Results 
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Outline of Talk 

• Review of goals 

• Progress (Oct. 2012 - May 2013) 
– Component identification 

• Recovering class hierarchies using dynamic analysis 

– Verifying component properties 
• Symbolic abstraction (BET + ONR STTR) 

• Domain-combination technique: combine results from multiple analysis methods 

• Abstract domain of bit-vector inequalities 

• Format-compatibility checking (ONR) 

– Component extraction 
• Specialization slicing 

• Partial evaluation of machine code 

• Recap of publications/submissions 

• Recap of plans for 2013 
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Verifying component properties 
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• No null-pointer deferences 
• No accesses outside array bounds 
• No stack smashing 
• No division by zero 

• Property holds for all possible inputs 

y→ 2 
y→ 8 
y→ 42 
y→ 178 

Program Possible concrete 
values of y 

… 

y> 0 

Sign Abstraction: only track whether 
variable is positive, negative, or zero 

Invariant 

while(1) { 
   x = input(); 
   If (x > 0)   { 
      y = 2*x; 
       z = w/y; 
   } 
} 

while(1) { 
   x = input(); 
   If (x > 0)   { 
      y = 2*x; 
       z = w/y; 
   } 
} 

Program statement 



Inductive Invariants 
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𝐼1 

𝐼2 

𝐼3 

𝜏12  

𝜏23  

𝑃1 

𝑃2 

𝑃3 

Inductive Invariants Program points 



Abstract Interpretation 
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Concrete  Abstract 

Concrete state  𝒞 

[x→ 2, y→ 2, z → −3] 
[x→ 7, y→ 8, z → −6] 

Abstract state 𝒜 

[x> 0, y> 0, z < 0] 

Concrete transformer  
 𝜏: 𝒞 → 𝒞 

Abstract transformer  
 𝜏#:𝒜 → 𝒜 

Concrete execution 
• Start with concrete input, 

one of the possibly infinite 
set of concrete inputs 

• Apply 𝜏 for each statement 
• Not guaranteed to terminate 

 

Abstract execution 
• Start with abstract input  

that represents all possible concrete 
inputs 

• Apply 𝜏#for each statement 
• Guaranteed to reach fixpoint 

 

Has to be  
sound, precise 
over-approximation 



Transformers via reinterpretation 
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• Define abstract operator ∗# for each concrete 
operator ∗ in the program 

 

   ∗#  < 𝟎 = 𝟎 > 𝟎 

< 𝟎 
 

> 𝟎 
 

= 𝟎 
 

> 𝟎 
 

= 𝟎 
 

= 𝟎 
 

= 𝟎 
 

= 𝟎 
 

> 𝟎 
 

< 𝟎 
 

= 𝟎 
 

> 𝟎 
 



Transformers via reinterpretation 
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• Define abstract operator ∗# for each concrete 
operator ∗ in the program 

 

   ∗#  < 𝟎 = 𝟎 > 𝟎 

< 𝟎 
 

> 𝟎 
 

= 𝟎 
 

< 𝟎 
 

= 𝟎 
 

= 𝟎 
 

= 𝟎 
 

= 𝟎 
 

> 𝟎 
 

< 𝟎 
 

= 𝟎 
 

> 𝟎 
 



• Compositionally define abstract transformers for 
statements using abstract operators 

 

Transformers via reinterpretation 

DARPA BET IPR 31 

a =   (x ∗   y) ∗   z; 

[x> 0, y> 0, z < 0] 

a =# (x ∗# y) ∗# z; a =# ( > 0  ) ∗# z; a =# < 0 

[a < 0, x > 0, y > 0, z < 0] 

   ∗#  < 𝟎 = 𝟎 > 𝟎 

< 𝟎 
 

> 𝟎 
 

= 𝟎 
 

< 𝟎 
 

= 𝟎 
 

= 𝟎 
 

= 𝟎 
 

= 𝟎 
 

> 𝟎 
 

< 𝟎 
 

= 𝟎 
 

> 𝟎 
 



Transformers via reinterpretation 
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𝝉: add bh, al 

Adds al, the low-order byte of 32-bit register eax,to  
bh, the second-to-lowest byte of 32-bit register ebx 

 eax  

 ebx  

+ 



Transformers via reinterpretation 
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𝝉: add bh, al 

Semantics expressed as a formula 

 # 

 #  #  #  #  # 
 # 

 # 

 # 

Primed variables represent values  
in post-state. 

ebx − ecx = 0 ∈ 𝒜 

𝒜: Conjunctions of bit-vector affine equalities between registers 

∧ 216 ebx’ = 216 ecx’ +224 eax’ 

224 ebx’ − 224 ecx’ = 0 ∈ 𝒜 Not the most-precise value 



Automation of best transformer 
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𝝉 𝑎 ∈ 𝒜 

𝑎′ Application of  
best transformer 

• Ensures correctness 
• Ensures precision 
• Reduces time to 

implement primitives 



Symbolic Abstract Interpretation 
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𝒜 

𝛾  
  

ℒ 

𝛾 

Symbolic Concretization 

Easy 

𝒞 

𝜑 𝑎 



Symbolic Abstract Interpretation 

DARPA BET IPR 36 

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 

𝛾  
  

ℒ 

𝛾 

Symbolic Concretization 

𝒞 

𝑥 ≥ 2 ∧ 𝑥 ≤ 10 {𝑥 ↦ 2,10 } 



Symbolic Abstract Interpretation 
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𝒜 ℒ 𝒞 

𝜑 𝑎 

Symbolic Abstraction 

𝛼  

Challenging 

𝛾 

  



Symbolic abstraction ⇒ best transformer 
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𝒜 ℒ 𝒞 

𝑎 

𝜏 

𝜑𝜏 ∧ 𝛾 (𝑎) 

𝑎′ 

𝛾  

𝛼  

𝜏# 



Automation of best transformer 
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𝝉 𝑎 ∈ 𝒜 

𝑎′ Application of  
best transformer 



Automation of best transformer 
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𝜑𝜏 𝑎 ∈ 𝒜 

𝑎′ Application of  
best transformer 

𝛼  



Algorithm for 𝛼 𝜑  
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𝒞 

SMT 
Solver 

𝑆 ⊨ 𝜑 

SMT:= Satisfiability Modulo Theory  

𝜑 



RSY algorithm for 𝛼 𝜑              [VMCAI’04] 
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Smart sampling 

Converge “from below” 

𝒜 

⊥ 

𝛼 (𝜑) 

𝒞 

𝜑  



𝒜 𝒞 

𝜑 𝑆 ⊨ 𝜑 

ℒ 

𝜑  

⊥ 

𝑆 

𝛽 

𝛽(𝑆) 

ans 

𝛾  
𝛾 (𝑎𝑛𝑠)   

𝛽: 𝛼 for singleton set 

RSY algorithm for 𝛼 𝜑              [VMCAI’04] 



𝒜 

𝜑1 

ℒ 

⊥ 

𝑆1 ⊨ 𝜑1 
𝑆1 

𝛽 

ans 

𝜑1 = 𝜑 ∧ ¬𝛾 (ans) 

𝒞 

𝜑  

RSY algorithm for 𝛼 𝜑              [VMCAI’04] 



𝒜 ℒ 

⊥ 

ans 

𝜑1 = 𝜑 ∧ ¬𝛾 (ans) 

𝒞 

𝜑  

𝛾  𝛾 (𝑎𝑛𝑠)   

𝑆1 

RSY algorithm for 𝛼 𝜑              [VMCAI’04] 



𝒜 ℒ 

⊥ 

ans 

𝜑𝑘 = 𝜑 ∧ ¬𝛾 (ans)   UNSAT 

𝒞 

𝜑  

  
𝛼 (𝜑) 𝛾  𝛾 (𝑎𝑛𝑠) 

RSY algorithm for 𝛼 𝜑              [VMCAI’04] 



Bilateral algorithm for 𝛼 𝜑         [SAS’12] 
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⊤ 

⊥ 

𝛼 (𝜑) 

Converge “from below” 
and “from above” 



Bilateral algorithm for 𝛼 𝜑         [SAS’12] 
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⊤ 

⊥ 

𝛼 (𝜑) 

𝛼 (𝜑) 

Stop at any time sound answer 



Bilateral algorithm for 𝛼 𝜑         [SAS’12] 
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𝛼 (𝜑) 

⊤ 

⊥ 

𝛼 (𝜑) 

Tunable 

More time  more precision 



Bilateral algorithm for 𝛼 𝜑         [SAS’12] 
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𝒜 𝒞 

𝜑 𝑆 ⊨ 𝜑 

ℒ 

𝜑  

⊥ 

𝑆 

𝛽 

𝛽(𝑆) 

lower 

𝛾  
𝛾 (𝑙𝑜𝑤𝑒𝑟)   

𝛽: 𝛼 for singleton set 

⊤ upper 



Bilateral algorithm for 𝛼 𝜑         [SAS’12] 
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𝒜 𝒞 ℒ 

𝜑  

⊥ 

⊤ upper 

lower 

p 
𝛾  𝛾 (𝑝) 

  

𝜑1 = 𝜑 ∧ ¬𝛾 (p) UNSAT! 



Bilateral algorithm for 𝛼 𝜑         [SAS’12] 
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𝒜 𝒞 ℒ 

𝜑  

⊥ 

⊤ upper 

p 
𝛾  𝛾 (𝑝) 

  

𝜑1 = 𝜑 ∧ ¬𝛾 (p) SAT! 

𝑆1 
𝛽 lower 



Symbolic abstraction ⇒ Best inductive invariants 
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• Theoretical limit of attainable precision 

• Achieved via repeated application of best 
transformer 

– That’s it!  [TAPAS 2013] 

 



Combination of domains 

• Exchange of information among different domains 
during analysis 

• More precision 

– “sum is greater than parts” 

– 𝑥 ≥ 0, 𝑥 𝑜𝑑𝑑 reduces to 𝒙 > 𝟎, 𝑥 𝑜𝑑𝑑 

• Enables heterogeneous (“fish-eye”) analysis 
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Symbolic abstraction ⇒ information exchange 
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𝒜1 ℒ 

𝑎1 

𝛾 1 𝑎1 ∧ 𝛾 2 (𝑎2) 

𝛾 1 

𝒜2 

𝑎2 
𝛾 2 

𝛼 2 

𝑎1
′  

𝑎2
′  

𝛼 1 



Summary 

Symbolic abstraction increases level of automation, and 
ensures correctness when 

• applying abstract transformers, 

• computing best inductive invariants, and 

• exchanging information among domains 

 

Algorithms for symbolic abstraction require 

• off-the-shelf SMT solvers, and 

• implementation of very few abstract-domain operations 
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Outline of Talk 

• Review of goals 

• Progress (Oct. 2012 - May 2013) 
– Component identification 

• Recovering class hierarchies using dynamic analysis 

– Verifying component properties 
• Symbolic abstraction (BET + ONR STTR) 

• Domain-combination technique: combine results from multiple analysis methods 

• Abstract domain of bit-vector inequalities 

• Format-compatibility checking (ONR) 

– Component extraction 
• Specialization slicing 

• Partial evaluation of machine code 

• Recap of publications/submissions 

• Recap of plans for 2013 
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Convex Polyhedra 
[Figures from Halbwachs et al. FMSD97] 
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Conjunctions of linear inequalities over rationals 

                     a1 x1 + a2 x2 + . . . + ak xk ≤ c 

 



Limitations of convex polyhedra 
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• Consider the following code fragment: 

  assume (0 <= low <= high ) ; 

  mid = ( low + high ) / 2 ; 

  assert (0 <= low <= mid <= high ) ; 

 

• Polyhedral analysis unsoundly verifies that the assert 
holds.  

 

 
 2/_ MININTmid 

1low

MAXINThigh _



Limitations of convex polyhedra 
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1232 

1232 

x 

y 

P 

P[x+1/x] 

• Effect of the linear transformation might 
overflow 

• Polyhedra expresses constraints over 
rational not bit-vector integers 



Problems with Polyhedra 

• Unsound for machine arithmetic 

– machine integers wrap 

– mathematical integers do not 

 

• Solution: Bit-Vector Inequality Domain 
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Bitvectors (Not so well-behaved . . .) 
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Key Idea! 
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]5,0[,  ssba

5ba

]3,4[,  ssyx ]3,0[,  ssyx

74  yx 3 yx

• Split inequality into an equality and an interval by 
using a view variable 

      For example,                   is changed to  

 

 
•     Examples on previous page: 
                               and                   are represented as 
                                               and 
        respectively. 



Bit-Vector Inequality Domain (BVI) 

• Use a Bit-Vector equality domain for equalities (Ԑ) 

       (King-Sondergaard 2010; Elder et al. 2011) 
  Ԑ is and equality-element over P  S 

•   Bit-Vector Interval domain (I) on view variables  
 I is an interval-element over S   

•   P and S are the set of program and view variables,       
  respectively 
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Bit-Vector Inequality Domain (BVI) 

•  S, the set of slack variables, is shared between Ԑ and   
 I 

•  S acts as information exchange between the two   
 domains 

– Example:  
• Ԑ specifies the constraints                         and   

• I specifies the constraints     
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 ]5,0[,5 ssbaba
5ba sba 
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View Variables 

• View variables are defined by integrity constraints 

 

• For example,  in       ,                  is an integrity 
constraint 
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Symbolic Abstraction 

• BVI is a combination of Ԑ and I 

• Symbolic abstraction for Ԑ and I is available 

• Information exchange is provided through common 
vocabulary S 

• Symbolic abstraction for BVI is automatically 
available through 𝛼 𝜑  
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Preliminary Results 

• Setup: View constraints are of the form s = r, where r 
represents the 32-bit register in Machine 
Architecture (eg. ia32) 

• BVI domain was 3.5 times slower than Bit-Vector 
equality domain 

• BVI more precise than equality domain at 63% of the 
control points 

• BVI’s procedure summaries more precise than that of 
equality domain at 29% of the procedures 
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Heuristics 

• Heuristics to choose view variables 

• View constraints are of the form s = r are not 
sufficient 

            a=0; b=0; 

            for (i = 0; i < 100; i++)  { 

                 a++; 

     if (i%2 == 0) 

                     b++; 

            } 

     Cannot get the constraint that   
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Heuristics 

• Linear expressions in branch predicates and 
assert statements 

 

• “Invariants” produced by unsound analysis, 
eg polyhedra 
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Handling Memory 

• Previous analysis only focused on registers 

• Memory is treated as flat array in machine code 

• Memory constraints represent memory views:  

       v = mm[e], where  

       v is the memory view, 

       mm is the memory map, 

       e is the address. 

• Memory domain: Set of memory constraints 
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BVMI domain 

• BVMI domain is capable of expressing Bit-Vector 
inequalities over memory variables 

• BVMI components 
   Ԑ is an equality-domain element over P  U  S 

  I is an interval-domain element over S 

  M is an memory-domain element over U 

• Information exchange happen between Ԑ and I 
through common variables S and between Ԑ and M 
through common variables U.  
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Current Status 

• Implementation of BVI is completed 

 

• Undergoing restructuring of code to utilize symbolic 
abstraction 
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Future Work 

• Implementing heuristics for BVI and BVMI 

 

• Integrating memory domain in the new framework 
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Recap 

• Convex polyhedra doesn’t work for machine integers 

• Bit-Vector Inequality Domain (BVI) handles Bit-Vector 
Inequalities by splitting them into Bit-Vector 
Equalities and Bit-Vector Intervals 

• Memory Variables can be incorporated in a similar 
fashion by splitting them into Bit-Vector Equalities 
and Memory Constraints 

• Information Exchange between the two domains 
happen through View Variables  
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Outline of Talk 

• Review of goals 

• Progress (Oct. 2012 - May 2013) 
– Component identification 

• Recovering class hierarchies using dynamic analysis 

– Verifying component properties 
• Symbolic abstraction (BET + ONR STTR) 

• Domain-combination technique: combine results from multiple analysis methods 

• Abstract domain of bit-vector inequalities 

• Format-compatibility checking (ONR) 

– Component extraction 
• Specialization slicing 

• Partial evaluation of machine code 

• Recap of publications/submissions 

• Recap of plans for 2013 
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Partial Evaluation for Machine-Code 

• Slicing has limitations 

– limited semantic information – i.e., just dependence edges 

– no evaluation/simplification 

• Partial evaluation: a framework for specializing programs  

– software specialization, optimization, etc. 

• Binding-time analysis 

– what patterns are foo and bar called with? 

• e.g, { foo(S,S,D,D), foo(S,D,S,D), bar(S,D), bar(D,S) } 

– polyvariant binding-time analysis?  specialized slicing! 

• Design and implement an algorithm for                         
partial evaluation of machine code 

BET 77 
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Partial Evaluation of Machine code 

• Given: 

– Machine-code procedure P(x, y) 

– Value “a” for x 

• Goals: 

– Create a specialized procedure Pa(y)  

– If the value “b” is supplied for y, Pa(y) 
computes P(a,b) 
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P(x,y) 

a 

b 

Partial 
Evaluator 

P(x,y) 

a 
Pa(y) 

b 
P(a, b) 

. . . 
mov     dword [ebp - C],eax 
. . . 
mov     dword [ebp - 8],eax 
mov     eax,dword [ebp - 8] 
mov     edx,dword [ebp - C] 
add      eax, edx 
mov     dword [ebp - 4],eax 
mov     eax,0 
leave 
ret 

. . . 
mov     dword [ebp - C],eax 
mov     eax,dword [ebp - C] 
add      eax, 2 
mov     dword [ebp - 4],eax 
mov     eax,0 
leave 
ret 



Partial Evaluation – Why? 

• Extraction of functional components 

– gzip executable has code that compresses and decompresses 
bundled together 

– Partial evaluation with ‘-c’ as the value of compress/decompress 
flag produces an executable that only compresses 

• Binary specialization  

– Produces faster and smaller binaries optimized for a specific 
task 

• Offline optimizer for unoptimized binaries 

– Partial evaluator performs optimizations such as constant 
propagation and constant folding, loop unrolling, elimination of 
unreachable/infeasible basic blocks, etc. 
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Methods 

• Binding-time analysis 

– Classify instructions as: 
• Static – Instructions that only depend on inputs whose values are 

known at specialization time (can be evaluated at specialization 
time) 

• Dynamic – Instructions that are not static 

• Specialization 

– Evaluate static instructions 

– Simplify dynamic instructions using partial static state 

– Emit residual code (simplified dynamic instructions) 

– Evaluate static jumps to eliminate entire basic blocks 
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Binding-Time Analysis 

• Construct Program Dependence Graph (PDG) for 
binary  

– Using CodeSurfer/x86 

• Add the instructions that initialize dynamic inputs’ 
memory locations to the slicing criterion 

• Compute an interprocedural forward slice 

• Instructions included in the slice are dynamic 
instructions 

• Remaining instructions are static (solely depend on 
static inputs) 
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Specialization 

• Initialize static locations in program state to given values 
• Worklist algorithm – <first basic block, initial state> is put in 

worklist 
• Remove an item from worklist 
• Static instructions 

– Evaluate and update state 

• Dynamic instructions 
– Emit instructions that set up values for static hidden operands (for 

example, registers and flags) 
– Simplify dynamic instruction to use static values as immediate 

operands 
– Emit simplified instruction 
– Dynamic jumps – For each target basic block put <basic block, state> in 

worklist  
– If a <basic block, state> pair was already processed, do not put in 

worklist 

• Keep processing until worklist is empty 
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Challenges 
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Outline of Talk 

• Review of goals 

• Progress (Oct. 2012 - May 2013) 
– Component identification 

• Recovering class hierarchies using dynamic analysis 

– Verifying component properties 
• Symbolic abstraction (BET + ONR STTR) 

• Domain-combination technique: combine results from multiple analysis methods 

• Abstract domain of bit-vector inequalities 

• Format-compatibility checking (ONR) 

– Component extraction 
• Specialization slicing 

• Partial evaluation of machine code 

• Recap of publications/submissions 

• Recap of plans for 2013 
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Recap of publications/submissions 
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Recap of plans for 2013 

• Component identification 

– object traces  class hierarchies 

• Component extraction 
– partial evaluator for machine code 

• Verifying component properties 

– 𝛼 ↓ 
• separation logic 

• WALi-based and Boogie-based invariant finding 

– bitvector-inequality domain 

– Stretched-TreeIC3 
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Outline of Talk 

• Review of goals 

• Progress (Oct. 2012 - May 2013) 
– Component identification 

• Recovering class hierarchies using dynamic analysis 

– Verifying component properties 
• Symbolic abstraction (BET + ONR STTR) 

• Domain-combination technique: combine results from multiple analysis methods 

• Abstract domain of bit-vector inequalities 

• Format-compatibility checking (ONR) 

– Component extraction 
• Specialization slicing 

• Partial evaluation of machine code 

• Recap of publications/submissions 

• Recap of plans for 2013 
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Specialization Slicing 

• Problem statement 

– Ordinary “closure slices” can have mismatches between 
call sites and called procedures 
• different call sites have different subsets of the parameters 

– Idea: specialize the called procedures 

– Challenge: find a minimal solution (minimal duplication) 

101 Min 
Aung 
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Specialization Slicing 

int g1, g2, g3; 
 
void p(int a, int b) { 
  g1 = a; 
  g2 = b; 
  g3 = g2; 
} 
 
 
 
 
int main() { 
  g2 = 100; 
  p(g2, 2); 
  p(g2, 3); 
  p(4, g1+g2); 
  printf("%d", g2); 
} 

int g1, g2; 
 
void p(int a, int b) { 
  g1 = a; 
  g2 = b; 
  
} 
 
 
 
 
int main() { 
  
  p(      2); 
  p(g2, 3); 
  p(    g1+g2); 
  printf("%d", g2); 
} 

int g1, g2; 
 
void p1(int b) { 
  g2 = b; 
 } 
 
void p2(int a, int b) { 
  g1 = a; 
  g2 = b; 
 } 
 
int main() { 
   
  p1(2); 
  p2(g2, 3); 
  p1(g1+g2); 
  printf("%d", g2); 
} 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 

Closure slice Specialized slice 
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m4: g2 

m3: call p 

m21: call printf 

m5: 2 m6: g3 

m7: g2 

m23: g2 

C1 

m2: g2=100 

m8: g1 

C2 

C3 

p3: b p7: g3 p8: g2 p2: a p9: g1 

p6: g3=g2 

p4: g1=a 

m22: “%d” 

m10: g2 

m11: 3 m12: g3 

m13: g2 

m14: g1 

m16: 4 

m15: call p 

m17: g1+g2 m18: g3 

m19: g2 

m20: g1 

p1: p 

m1: main 

m9: call p 

p5: g2=b 

System Dependence Graph (SDG) 
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C2 

(p2, C1) 

C1 

(m4, ε) (m6, ε) (m8, ε) 

(p7, C1) (p9, C1) 

(p6, C1) 

(p4, C1) 

(m12, ε) 

(p7, C2) 

(p6, C2) 

(m13, ε) (m14, ε) 

(p3, C2) (p8, C2) (p2, C2) (p9, C2) 

(p4, C2) 

C3 

(m16, ε) (m18, ε) (m20, ε) 

(p7, C3) (p2, C3) (p9, C3) 

(p6, C3) 

(p4, C3) 

(m5, ε) (m7, ε) 

(p3, C1) (p8, C1) 

(m10, ε) (m11, ε) 

(m21, ε) 

(m23, ε) (m22, ε) 

(m17, ε) 

(p3, C3) (p8, C3) 

(m2, ε) 

(p1, C2) 

(p5, C2) 

(m15, ε) 

(m3, ε) 

(p1, C1) 

(p5, C1) 

(m1, ε) 

(m9, ε) 

(m19, ε) 

(p1, C3) 

(p5, C3) 

Unrolled SDG 



105 

C2 

C1 

C3 

p8 

m21 

m23 m22 

m17 

m9 

p1 

p4 

p5 

p5 

p3 

m3, 

m1 

p1) 

m7 

m15 

m5 

m13 m14 

p3 p8 p2 p9 

m10 m11 m19 

Specialized SDG 



Specialization slice of a recursive program 

(1)   int g1, g2; 
(2) 
(3)   void s(int a, 
(4)               int b){ 
(5) 
(6)       g1 = b; 
(7)       g2 = a; 
(8)   } 
(9) 
(10) 
(11) 
(12)   int r(int k) { 
(13) 
(14)       if (k > 0) { 
(15)           s(g1, g2); 
(16)           r(k-1); 
(17)           s(g1, g2); 
(18)       } 
(19) 
(20)   } 
(21) 
(22) 
(23) 
(24)   int main() { 
(25)       g1 = 1; 
(26)       g2 = 2; 
(27)       r(3); 
(28)       printf("%d\n", g1); 
(29)   } 
 

int g1, g2; 
 
void s_1(int b) { 
    g1 = b; 
} 
void s_2(int a) { 
    g2 = a; 
} 
 
void r_1(int k) { 
    if (k > 0) { 
        s_2(g1); 
        r_2(k-1); 
        s_1(g2); 
    } 
} 
void r_2(int k) { 
    if (k > 0) { 
        s_1(g2); 
        r_1(k-1); 
        s_2(g1); 
    } 
} 
 
int main() { 
    g1 = 1; 
    r_1(3); 
    printf("%d\n", g1); 
} 
 

DARPA BET IPR 106 

Calling pattern:   

(27) ((16)(16))* 

Calling pattern:   

(27)(16)((16)(16))* 



Specialization Slicing 
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• Problem statement 

– Ordinary “closure slices” can have mismatches between 
call sites and called procedures 
• different call sites  have different subsets of the parameters 

– Idea: specialize the called procedures 

– Challenge: find a minimal solution (minimal duplication) 

1. In the worst case, specialization causes an 
exponential increase in size 

2. In practice, observed a 9.4% increase 



Relatively Few Specialized Procedures 
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Specialization Slicing 

• Problem statement 
– Ordinary “closure slices” can have mismatches between call 

sites and called procedures 
• different call sites  have different subsets of the parameters 

– Idea: specialize the called procedures 

– Challenge: find a minimal solution (minimal duplication) 

• Key insight 
– minimal solution involves solving a partitioning problem on a 

certain infinite graph 

– problem solvable using PDSs: all node-sets in infinite graph can 
be represented via FSMs 

– algorithm: a few automata-theoretic operations 

110 
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Algorithm 

Input: SDG S and slicing criterion C 
Output: An SDG R for the specialized slice of S with respect to C 
 
// Create A6, a minimal reverse-deterministic automaton for the 
// stack-configuration slice of S with respect to C 
1 PS = the PDS for S 
2 A0 = a PS-automaton that accepts C 
3 A1 = Prestar[PS](A0) 
4 A2 = reverse(A1) 
5 A3 = determinize(A2) 
6 A4 = minimize(A3) 
7 A5 = reverse(A4) 
8 A6 = removeEpsilonTransitions(A5) 
 
// Read out SDG R from A6 

... 

Automata used to hold 
onto sets of points in 
possibly infinite graph 

Partition obtained by 
determinizing and minimizing: 

Each state = set of calling 
contexts for one specialized 

procedure 
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C2 

(p2, C1) 

C1 

(m4, ε) (m6, ε) (m8, ε) 

(p7, C1) (p9, C1) 

(p6, C1) 

(p4, C1) 

(m12, ε) 

(p7, C2) 

(p6, C2) 

(m13, ε) (m14, ε) 

(p3, C2) (p8, C2) (p2, C2) (p9, C2) 

(p4, C2) 

C3 

(m16, ε) (m18, ε) (m20, ε) 

(p7, C3) (p2, C3) (p9, C3) 

(p6, C3) 

(p4, C3) 

(m5, ε) (m7, ε) 

(p3, C1) (p8, C1) 

(m10, ε) (m11, ε) 

(m21, ε) 

(m23, ε) (m22, ε) 

(m17, ε) 

(p3, C3) (p8, C3) 

(m2, ε) 

(p1, C2) 

(p5, C2) 

(m15, ε) 

(m3, ε) 

(p1, C1) 

(p5, C1) 

(m1, ε) 

(m9, ε) 

(m19, ε) 

(p1, C3) 

(p5, C3) 

Unrolled SDG 

Each yellow name has the same set of stack configurations {C1,C3} 
Such sets are infinite for recursive programs => FSMs 
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C2 

C1 

C3 

p8 

m21 

m23 m22 

m17 

m9 

p1 

p4 

p5 

p5 

p3 

m3, 

m1 

p1 

m7 

m15 

m5 

m13 m14 

p3 p8 p2 p9 

m10 m11 m19 

Specialized SDG 

Each yellow name has the same set of stack configurations {C1,C3} 
Such sets are infinite for recursive programs => FSMs 



Feature Removal 
int add(int a,int b) { 
     q: return a+b; 
} 
           
int mult(int a,int b) { 
     int i = 0; 
     int ans = 0; 
     while(i < a) { 
          c5: ans = add(ans,b); 
          c6: i = add(i,1); 
     } 
     return ans; 
} 
 
void tally 
(int& sum,int& prod,int N) { 
     int i = 1; 
     while(i <= N) { 
          c2: sum = add(sum,i); 
          c3: prod = mult(prod,i); 
          c4: i = add(i,1); 
     } 
} 
           
int main() { 
     int sum = 0; 
     int prod = 1; 
     c1: tally(sum,prod,10); 
     printf("%d ",sum); 
     printf("%d ",prod); 
} 

int add(int a,int b) { 
     q: return a+b; 
} 
           
int mult(      int b) { 
     int i = 0; 
     int ans = 0; 
 
 
 
 
     return; 
} 
 
void tally 
(int& sum,         int N) { 
     int i = 1; 
     while(i <= N) { 
          c2: sum = add(sum,i); 
          c3:        mult(    i); 
          c4: i = add(i,1); 
     } 
} 
           
int main() { 
     int sum = 0; 
 
     c1: tally(sum,     10); 
     printf("%d ",sum); 
 
} 
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Feature Removal 

int g1, g2, g3; 
 
void p(int a, int b) { 
  g1 = a; 
  g2 = b; 
  g3 = g2; 
} 
 
 
 
 
int main() { 
  g2 = 100; 
  p(g2, 2); 
  p(g2, 3); 
  p(4, g1+g2); 
  printf("%d", g2); 
} 

int g1, g2, g3; 
 
void p(int a, int b) { 
  g1 = a; 
  g2 = b; 
  g3 = g2; 
} 
 
 
 
 
int main() { 
  g2 = 100; 
  p(g2, 2); 
  p(g2, 3); 
  p(4, g1+g2); 
  printf("%d", g2); 
} 
 

int g1, g2; 
 
void p1(int a) { 
  g1 = a; 
 } 
 
void p2(int b) { 
  g2 = b; 
  g3 = g2; 
 } 
 
int main() { 
  g2 = 100; 
  p1(g2); 
  p2(3); 
  p1(4); 
   
} 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 
(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 

Forward 
closure slice 

Specialized slice 
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C2 

(p2, C1) 

C1 

(m4, ε) (m6, ε) (m8, ε) 

(p7, C1) (p9, C1) 

(p6, C1) 

(p4, C1) 

(m12, ε) 

(p7, C2) 

(p6, C2) 

(m13, ε) (m14, ε) 

(p3, C2) (p8, C2) (p2, C2) (p9, C2) 

(p4, C2) 

C3 

(m16, ε) (m18, ε) (m20, ε) 

(p7, C3) (p2, C3) (p9, C3) 

(p6, C3) 

(p4, C3) 

(m5, ε) (m7, ε) 

(p3, C1) (p8, C1) 

(m10, ε) (m11, ε) 

(m21, ε) 

(m23, ε) (m22, ε) 

(m17, ε) 

(p3, C3) (p8, C3) 

(m2, ε) 

(p1, C2) 

(m15, ε) 

(m3, ε) 

(p1, C1) 

(m1, ε) 

(m9, ε) 

(m19, ε) 

(p1, C3) 

(p5, C3) 

(p5, C1) 

(p5, C2) 

Unrolled SDG 
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C2 

(p2, C1) 

C1 

(m4, ε) (m6, ε) (m8, ε) 

(p7, C1) (p9, C1) 

(p6, C1) 

(p4, C1) 

(m12, ε) 

(p7, C2) 

(p6, C2) 

(m13, ε) (m14, ε) 

(p3, C2) (p8, C2) (p2, C2) (p9, C2) 

(p4, C2) 

C3 

(m16, ε) (m18, ε) (m20, ε) 

(p7, C3) (p2, C3) (p9, C3) 

(p6, C3) 

(p4, C3) 

(m5, ε) (m7, ε) 

(p3, C1) (p8, C1) 

(m10, ε) (m11, ε) 

(m21, ε) 

(m23, ε) (m22, ε) 

(m17, ε) 

(p3, C3) (p8, C3) 

(m2, ε) 

(p1, C2) 

(m15, ε) 

(m3, ε) 

(p1, C1) 

(m1, ε) 

(m9, ε) 

(m19, ε) 

(p1, C3) 

(p5, C3) 

(p5, C1) 

(p5, C2) 
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C2 

(p2, C1) 

C1 

(m4, ε) (m6, ε) (m8, ε) 

(p7, C1) (p9, C1) 

(p6, C1) 

(p4, C1) 

(m12, ε) 

(p7, C2) 

(p6, C2) 

(m13, ε) (m14, ε) 

(p3, C2) (p8, C2) (p2, C2) (p9, C2) 

(p4, C2) 

C3 

(m16, ε) (m18, ε) (m20, ε) 

(p7, C3) (p2, C3) (p9, C3) 

(p6, C3) 

(p4, C3) 

(m5, ε) (m7, ε) 

(p3, C1) (p8, C1) 

(m10, ε) (m11, ε) 

(m21, ε) 

(m23, ε) (m22, ε) 

(m17, ε) 

(p3, C3) (p8, C3) 

(m2, ε) 

(p1, C2) 

(m15, ε) 

(m3, ε) 

(p1, C1) 

(m1, ε) 

(m9, ε) 

(m19, ε) 

(p1, C3) 

(p5, C3) 

(p5, C1) 

(p5, C2) 
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C2 

(p2, C1) 

C1 

(m4, ε) (m6, ε) (m8, ε) 

(p7, C1) (p9, C1) 

(p6, C1) 

(p4, C1) 

(m12, ε) 

(p7, C2) 

(p6, C2) 

(m13, ε) (m14, ε) 

(p3, C2) (p8, C2) (p2, C2) (p9, C2) 

(p4, C2) 

C3 

(m16, ε) (m18, ε) (m20, ε) 

(p7, C3) (p2, C3) (p9, C3) 

(p6, C3) 

(p4, C3) 

(m5, ε) (m7, ε) 

(p3, C1) (p8, C1) 

(m10, ε) (m11, ε) 

(m21, ε) 

(m23, ε) (m22, ε) 

(m17, ε) 

(p3, C3) (p8, C3) 

(m2, ε) 

(p1, C2) 

(m15, ε) 

(m3, ε) 

(p1, C1) 

(m1, ε) 

(m9, ε) 

(m19, ε) 

(p1, C3) 

(p5, C3) 

(p5, C1) 

(p5, C2) 

Complemented Unrolled SDG 
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C2 

(p2, C1) 

C1 

(m4, ε) (m8, ε) 

(p9, C1) 

(p4, C1) 

(m12, ε) 

(p7, C2) 

(p6, C2) 

(m13, ε) 

(p3, C2) (p8, C2) 

C3 

(m16, ε) (m20, ε) 

(p2, C3) (p9, C3) 

(p4, C3) 

(m11, ε) 

(m2, ε) 

(p1, C2) 

(m15, ε) 

(m3, ε) 

(p1, C1) 

(m1, ε) 

(m9, ε) 

(p1, C3) 

(p5, C2) 
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C2 

p2 

C1 

m4 m8 

p9 

p4 

m12 

p7 

p6 

m13) 

p3, p8 

C3 

m16 m20 m11 

m2 

p1 

m15 

m3 

p1 

m1 

m9 

p5 

Complemented Unrolled SDG 



Goal: check format compatibility 
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Producer 
component 

Consumer 
component 

1. Infer output format 
2. Infer accepted format 
3. Check compatibility 

DARPA BET IPR 
Evan 

Driscoll 



Formats are strings over “types” 
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ID CM FG FG OS … M TIME 

Header of gzip format: 

short    byte byte            word             byte byte 

DARPA BET IPR 



Current work: enhance format spec 
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nrows  ncols  pix11 pix12 pix13 pix14  pix21 pix22 pix23 … 

DARPA BET IPR 



Current work: enhance format spec 
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nrows  ncols  pix11 pix12 pix13 pix14  pix21 pix22 pix23 … 

nrows 

DARPA BET IPR 



Current work: enhance format spec 
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nrows  ncols  pix11 pix12 pix13 pix14  pix21 pix22 pix23 … 

nrows ncols 

ncols ncols 

nrows 
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Current work: enhance format spec 
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nrows  ncols  pix11 pix12 pix13 pix14  pix21 pix22 pix23 … 
ncols ncols 

nrows 

nrows:int  ncols:int  ((byte byte byte byte)ncols)nrows 

Infer an automaton equivalent to: 

DARPA BET IPR 



Roadmap: Inference 
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Program Traces 

I/O equalities 

ICFG Inferred XFA 

Inputs 

DARPA BET IPR 



Roadmap: Compatibility 
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Producer 
component 

Consumer 
component 

Inferred XFA Inferred XFA ⊆               ? 

DARPA BET IPR 



Status 

Prototype essentially done, but not well-tested. Working 
on performance and on finding tests. 
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How we do it 
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Exponents start as standard Kleene *, 
and correspond to program loops 

nrows:int  ncols:int  ((byte byte byte)*)* 

DARPA BET IPR 



How we do it 
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nrows:int  ncols:int  ((byte byte byte)*)* 

We instrument loops with trip counts 
We instrument I/O calls to remember values 
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How we do it 
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nrows:int  ncols:int  ((byte byte byte)*)* 

We instrument loops with trip counts 
We instrument I/O calls to remember values 

When two of these are found to always equal, 
      replace the * with an exponent 

trip count remembered I/O value 
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How we do it 
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nrows:int  ncols:int  ((byte byte byte)*)nrows 

We instrument loops with trip counts 
We instrument I/O calls to remember values 

When two of these are found to always equal, 
      replace the * with an exponent 

trip count remembered I/O value 

DARPA BET IPR 



How we do it 
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nrows:int  ncols:int  ((byte byte byte)*)nrows 

We instrument loops with trip counts 
We instrument I/O calls to remember values 

When two of these are found to always equal, 
      replace the * with an exponent 
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How we do it 
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nrows:int  ncols:int  ((byte byte byte)ncols)nrows 

We instrument loops with trip counts 
We instrument I/O calls to remember values 

When two of these are found to always equal, 
      replace the * with an exponent 

DARPA BET IPR 



We use Daikon 

Daikon identifies dynamic invariants 

• Hold over all test runs; might not actually be invariants 

• Could use statically inferred instead 

 

We wrote our own Daikon front end for machine code 

• Assumes debugging information 
• can we remove this restriction? 

• Front ends supplied with Daikon not sufficient 
• checks only entry-to-exit invariants, whereas we need 

• loop trip-count instrumentation 

• I/O-to-loop-exit invariants 

• Instruments program using Dyninst 
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Instrumentation remembers I/O vals 

138 

If value is returned: 
 x = read_int();  x = __io1 = read_int(); 
 
If value is “returned” via out parameter: 
 err = read_int(&x);  err = read_int(&x); 
     __io2 = *(&x); 
 
If value is passed by parameter: 
 write_int(x);   __io3 = x; 
     write_int(x); 

DARPA BET IPR 



Instrumentation finds trip counts 
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Instrumentation finds trip counts 
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On loop entry: 
Set trip count to 0 
__trip1 = 0; 
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Instrumentation finds trip counts 
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On loop entry: 
Set trip count to 0 
__trip1 = 0; 

Entering loop body: 
Increment trip count 
__trip1++; 
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Instrumentation finds trip counts 
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On loop entry: 
Set trip count to 0 
__trip1 = 0; 

Entering loop body: 
Increment trip count 
__trip1++; 

On loop exit: 
Output current value of variables 
Interested in invariants here 
print(__io1, __io2, …, __trip1); 

DARPA BET IPR 



We use Daikon to find I/O equalities 
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I/O equalities Value trace 

Instrumented 
program 

Dakion dynamic 
invariant detector 

LOOP_EXIT_A 
__io2 = 2 
__io4 = 5 
__trip_count_A = 5 
 
LOOP_EXIT_B 
__io2 = 6 
__io4 = 5 
__trip_count_B = 6 

__trip_count_A = __io4 = 5 
__trip_count_B = __io2 = 6 

DARPA BET IPR 



We model programs as XFAs 

XFAs: extended finite automata 

 

Add separate bounded “data state” to standard FAs 

Transformers on transitions describe data-state 
changes 

144 DARPA BET IPR 



Symbolic abstraction: Who cares? 

• Win, win, win 

• Easier/faster implementation of analysis tools 

– just state concrete (actual!) semantics in logic  

– supply an abstract domain 

• e.g., as a class that meets a specific interface 

– obtain analyzer/decision-procedure 

• More precise results in abstract interpretation 

– can identify loop and procedure summaries that are more 
precise than ones obtained via conventional techniques 

• Applies to interesting, non-standard logics (we think!) 

– separation logic: memory safety properties 
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Basic scenario
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interfere? 



Symbolic abstraction: Who cares? 

• Win, win, win 
• Easier/faster implementation of analysis tools 

– just state concrete (actual!) semantics in logic  
– supply an abstract domain 

• e.g., as a class that meets a specific interface 

– obtain analyzer/decision-procedure 

• More precise results in abstract interpretation 
– can identify loop and procedure summaries that are more 

precise than ones obtained via conventional techniques 

• Applies to interesting, non-standard logics (we think!) 
– separation logic: memory safety properties 

• Improve level of automation for creating analyzers 
– implement analysis tools in a much smaller time-span and with 

drastically reduced programmer effort 
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Basic scenario
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interfere? 
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In 1977, Cousot & Cousot gave us a 
beautiful theory of overapproximation 

α 

Universe of States 

x  [2,5] 
y  [1,3] 

{(x2, y1),    
 (x5, y3)} 

{(2,1), (2,2), (2,3), 
 (3,1), (3,2), (3,3), 
 (4,1), (4,2), (4,3), 
 (5,1), (5,2), (5,3)} 

γ 

α 
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In 1979, Cousot & Cousot gave us: 

τ# τ 
α 

γ 

Universe of States 
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In 1979, Cousot & Cousot gave us: 

τ# τ 
α 

γ 

Universe of States 
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In 2004, Reps, Sagiv, and Yorsh gave us: 

Symbolic Abstract Interpretation Symbolic Concretization 

Universe of States 
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Symbolic Abstraction 

In 2004, Reps, Sagiv, and Yorsh gave us: 

Universe of States 
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Universe of States 
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ans 
Universe of States 

  
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ans 

Universe of States 
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From “Below” vs. From “Above” 

• Reps, Sagiv, and Yorsh 2004: approximation from “below” 

• Desirable: approximation from “above” 
– always have safe over-approximation in hand 

– can stop algorithm at any time (e.g., if taking too long) 

– Thakur, A. and Reps, T., A method for symbolic computation of abstract 
operations. In Proc. Computer-Aided Verification (CAV), 2012 

 

Aditya 
Thakur 
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[CAV 2012] 
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Tunable 

More time  more precision 

Stop at any time  
 sound answer 

[CAV 2012] 



Stålmarck’s method (1989) 

Dilemma Rule 

𝑅 ∪ {𝑣 = True} 𝑅 ∪ {𝑣 = False} 

𝑅 

𝑅1
′  

𝑅2
′  

𝑅1
′ ∩ 𝑅2

′  
 

• Split 

• Propagate 

• Merge 
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Stålmarck’s method (1989) 

1-saturation 
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Stålmarck’s method (1989) 

2-saturation 
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⊥ 

⊤ 

𝑅 ∪ {𝑣 = False} 𝑅 ∪ {𝑣 = True} 𝐴 ⊓ 𝑎1 

𝐴 

Stålmarck’s method for 𝛼 ↓ 

Dilemma Rule 

𝑅 

𝐹1
′ 

𝐹2
′ 

𝐹1
′ ∩ 𝐹2

′ 
 

• Split 

• Propagate 

• Merge 

𝐴 ⊓ 𝑎2 

𝐴1
′ ⊔ 𝐴2

′  
 

𝐴1
′  𝐴2

′  

177 

𝛾 𝑎1 ∪ 𝛾 𝑎2 ⊇  𝛾 𝐴  



⊤ 

⊥ 

Stålmarck’s method 

178 

𝜶  
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Reasoning: Using 𝛼 ↓ 𝜑  in an SMT solver 

𝛼 ↓ 𝜑 = 𝜑 is unsatisfiable 

Property verification 
via model checking: 

OK if Unsat(Program  Bad) 

Dual use: 
• 𝛼  for abstract interpretation 
• Unsat/validity checking for 
     pure logical reasoning 
       abstract interpretation in 
           service to logic! 

[CAV 2012] 



The importance of data structures 

• Classic union-find 

– plus layers 

– plus least-upper bound 

• Given UF1 and UF2, find 
the coarsest partition 
that is finer than UF1 
and UF2 

• Roughly, “confluent, 
partially-persistent 
union-find” 
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Extend WALi to use  

• Weighted Automaton Library 
(WALi): 
– supports context-sensitive 

interprocedural analysis 
– weights = dataflow transformers 
– weighted version of PDSs (a la 

material on specialized slicing) 

• More precise results in 
abstract interpretation 

• Easier implementation of 
analysis tools  

BET 181 
Junghee 

Lim 
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AlphaHat 

• AlphaHat technique in three ways 

– WALi + AlphaHat (Aditya Thakur and Junghee Lim) 
• ~October 2012 

– Boogie + AlphaHat for source code (Akash Lal at Microsoft 
India) 
• ~November 2012 

– Boogie + AlphaHat for machine code (Aditya Thakur and 
Junghee Lim) 
• ~November 2012 
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Outline of Talk 

• Review of goals 

• Progress (Oct. 2012 - May 2013) 
– Component identification 

• Recovering class hierarchies using dynamic analysis 

– Verifying component properties 
• Symbolic abstraction (BET + ONR STTR) 

• Domain-combination technique: combine results from multiple analysis methods 

• Abstract domain of bit-vector inequalities 

• Format-compatibility checking (ONR) 

– Component extraction 
• Specialization slicing 

• Partial evaluation of machine code 

• Recap of publications/submissions 

• Recap of plans for 2013 
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Possible-overflow example 
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char* concat(char* a, char* b) 
{ 
    unsigned size = strlen(a)+strlen(b)+1; 
    char* out = (char*)malloc(size*sizeof(char));       // Possible overflow 
    for(unsigned i = 0; i < strlen(a); i++)  {  
        out[i] = a[i];      // Potential memory corruption 
    }   
    for(unsigned i = 0; i < strlen(b); i++) {  
        out[i+strlen(a)] = b[i];       // Potential memory corruption 
    } 
    out[i+strlen(a)] = '\0'; 
    return out; 
} 



Convex Polyhedra 
[Figures from Halbwachs et al. FMSD97] 
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Bitvector Inequality domain 

• Conventional domain for representing inequalities 

– polyhedra: conjunctions of linear inequalities 

        a1 x1 + a2 x2 + . . . + ak xk ≤ c 

– operations on polyhedra: linear transformations 

• unsound for machine arithmetic 

• machine integers wrap while mathematical integers do not 

• Solution: Bitvector Inequality Domain 
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Not so well-behaved . . . 
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