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SAFETY-CHECKING OF MACHINE CODE

Zhichen Xu

Under the supervision of Professor Barton Miller and Professor Thomas Reps

at the University of Wisconsin—Madison

Importing and executing untrusted foreign code has become an everyday

occurrence: Web servers download plug-ins and applets; databases load type-spe-

cific extensions; and operating systems load customized policies and performance

measurement code. Certification of the safety of the untrusted code is crucial in

these domains.

I have developed new methods to determine statically whether it is safe for

untrusted machine code to be loaded into a trusted host system. My safety-check-

ing technique operates directly on the untrusted machine-code program, requir-

ing only that the initial inputs to the untrusted program be annotated with

typestate information and linear constraints. This approach opens up the possi-

bility of being able to certify code produced by any compiler from any source lan-

guage. It eliminates the dependence of safety on the correctness of the compiler

because the final product of the compiler is checked. It leads to the decoupling of

the safety policy from the language in which the untrusted code is written, and

consequently, makes it possible for safety checking to be performed with respect

to an extensible set of safety properties that are specified on the host side.

I have implemented a prototype safety checker for SPARC machine-language
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programs, and applied the safety checker to examples (ranging from code that

contains just a few branches, to code that contains nested loops, and to code that

contains function and method calls). The safety checker was able to mechanically

synthesize the loop invariants and check these examples in times ranging from

less than a second to dozens of seconds.
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Chapter 1

Introduction

Two prevailing trends in software development call for techniques to protect

one software component from another. The first trend is dynamic extensibility,

where a trusted host is extended by importing and executing untrusted foreign

code. For example, web browsers download plug-ins [65,83]; databases load type-

specific extensions for storing and querying unconventional data [40,82]; operat-

ing systems load customized policies, general functionality

[7,26,55,66,70,75,80,85], and performance-measurement code [85]. Operating

systems can download part of an application into the kernel so that the applica-

tion can perform better. There are even proposals for loading application-specific

policies into Internet routers [90]. Certification of the safety of untrusted code is

crucial in these domains. The second trend is component-based software develop-

ment, where software components produced by multiple vendors are used to con-

struct a complete application [18] (e.g., COM [51]). The component-based

software-development model improves both software reusability and productivity.
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However, because the software components can come from different sources,

proper protection among software components is essential.

In this thesis, we show how to determine statically whether it is safe for

untrusted machine code to be loaded into a trusted host system. In contrast to

work that enforces safety by restricting the things that can be expressed in a

source language (e.g., safe languages, certifying compilers [20,63], and typed

assembly languages [58,59,60]), we believe that safe code can be written in any

source language and produced by any compiler, as long as nothing “unsafe” is

expressed in the machine code. This philosophical difference has several implica-

tions. First, it gives the code producer more freedom in choosing an implementa-

tion language. Instead of building a certifying compiler for each language, we can

certify code produced by a general-purpose off-the-shelf compiler. Second, it leads

to the decoupling of the safety policy from the language in which the untrusted

code is written. This makes it possible for safety checking to be performed with

respect to an extensible set of safety properties that are specified on the host side.

The most important, high-level characteristics of our safety-checking tech-

nique are (i) it operates directly on binary code; (ii) it provides the ability to

extend the host at a very fine-grained level, in that we allow the untrusted for-

eign code to manipulate the internal data structures of the host directly; and (iii)

it enforces a default collection of safety conditions to prevent type violations,

array out-of-bounds violations, address-alignment violations, uses of uninitial-

ized variables, null-pointer dereferences, and stack-manipulation violations, in

addition to providing the ability for the safety criterion to be extended according

thesis.fm  Page 2  Tuesday, December 19, 2000  11:00 AM



3

to an access policy specified by the host. The host-specified access policy lists the

host data that can be accessed and the host functions (methods) that can be called

by the untrusted code. This provides a means for the host to grant the “least priv-

ilege” that the untrusted code needs to accomplish its task.

Our approach is based on annotating the global data in the trusted host. The

type information (more precisely, typestate information) in the untrusted code is

inferred. Our analysis starts with information about the initial memory state at

the entry of the untrusted code. It abstractly interprets the untrusted code to pro-

duce a safe approximation of the memory state at each program point. It then

annotates each instruction with the safety conditions each instruction must obey

and checks these conditions.

The memory states at the entry, and other program points of the untrusted

code, are described in terms of typestates and linear constraints (i.e., linear

equalities and inequalities that are combined with ∧, ∨, ¬, and the quantifiers ∃

and ∀). Our analysis uses typestates (as opposed to types) because the condition

under which it is safe to perform an operation is a function of not just the types of

the operation’s operands, but also their states. For example, it is safe to write to a

location that stores an uninitialized value, but it is unsafe to read from it.

Typestates differ from types by providing information at a finer granularity.

Moreover, typestate checking [78,79] differs from traditional type checking in

that traditional type checking is a flow-insensitive analysis, whereas typestate

checking is a flow-sensitive analysis. Typestates can be related to security autom-

ata [4]. In a security automaton, all states are accepting states; the automaton
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detects a security-policy violation whenever it reads a symbol for which the

automaton’s current state has no transition defined. It is possible to design a

typestate system that captures the possible states of a security automaton

(together with a “security-violation” state). Typestate checking provides a

method, therefore, for statically assessing whether a security violation might be

possible.

Figure 1.1 illustrates the inputs to and the phases of the safety-checking anal-

Figure 1.1 The Inputs to and Phases of Our Safety-Checking Analysis.
The dotted vertical line separates the untrusted and trusted worlds.
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ysis. The inputs to the safety-checking analysis include a host-typestate specifica-

tion and an invocation specification, in addition to the untrusted code and the

host-specified access policy. The host typestate specification describes the type

and the state of the host data before the invocation of the untrusted code, as well

as safety pre- and post-conditions for calling host functions (methods). The invo-

cation specification provides the binding information from host resources to regis-

ters and memory locations that represent initial inputs to the untrusted code.

The combination of host-typestate specification, invocation specification and the

access policy provides the information about the initial memory state at the time

the untrusted code is to be invoked.

The safety-checking analysis consists of five phases: preparation, typestate-

propagation, annotation, local verification and global verification. The first two

phases find the state(s) on which each instruction operates. The last three phases

find the safety conditions each instruction must obey and check the conditions.

The preparation phase combines the information that is provided by the host-

typestate specification, the invocation specification, and the access policy to pro-

duce an initial annotation (in the form of an abstract store for the program’s

entry point). This phase also produces an interprocedural control-flow graph for

the untrusted code. The typestate-propagation phase takes the control-flow graph

and the initial annotation as inputs. It abstractly interprets the untrusted code to

produce a safe approximation of the memory contents (i.e., a typestate for each

abstract location) at each program point. The annotation phase takes as input the

typestate information discovered from the typestate-propagation phase, and
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traverses the control-flow graph to annotate each instruction with local and glo-

bal safety conditions and assertions: the local safety preconditions are conditions

that can be checked using typestate information alone; the assertions are restate-

ments (as logical formulas) of facts that are implicit in the typestate information.

The local-verificationphase checks the local safety conditions. The global-verifica-

tion phase verifies the global safety conditions. The global safety conditions per-

form array bounds checks, null-pointer dereference checks, and address-

alignment checks. They are represented as linear constraints. We take advantage

of the synergy of an efficient range analysis and an expensive but powerful tech-

nique that can be applied on demand for array bounds checks. The range analysis

determines safe estimates of the range of values each register can take on at each

program point. This information can be used for determining whether accesses on

arrays are within bounds. For conditions that cannot be proven just by using the

results of the range analysis, we use program-verification techniques. We use the

induction-iteration method [84] to synthesize loop invariants if the untrusted

code contains loops.

In the above description, the safety-checking analysis both synthesizes and

verifies a safety proof. It should be noted that this is just one way to structure the

safety-checker. In principle, we could separate the safety-checker into a proof gen-

erator and a proof verifier. The proof generator generates Proof-Carrying Code

(PCC) [64], whereas the proof checker validates the safety proof. In this way, our

technique provides a way to lift the current limitations of certifying compilers

[20, 63], which produce PCC automatically, but only for programs written in cer-
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tain safe source languages.

We have implemented a prototype safety checker for SPARC machine-lan-

guage programs. We applied the safety checker to several examples (ranging from

code that contains just a few branches, to code that contains nested loops, and to

code with function and method calls). The safety checker was able to either prove

that an example met the necessary safety conditions, or identify the places where

the safety conditions were violated, in times ranging from less than a second to

tens of seconds on an UltraSPARC machine.

In the remainder of this dissertation, we will call the party that generates the

untrusted foreign code the code producer (which can be either human or a code-

generation tool), and the party who is responsible for the trusted host the code

consumer.

1.1  Contributions

The major contributions of this thesis are as follows:

1. Our technique opens up the possibility of being able to certify object code pro-

duced by off-the-shelf compilers (independent of both the source language and

the compiler). We require only that the inputs to the untrusted code be anno-

tated with typestate information and linear constraints.

2. The technique is extensible: in addition to a default collection of safety condi-

tions that are always checked, additional safety conditions to be checked can

be specified by the host.

3. We extend the notion of typestate in several ways: (i) we use typestates to
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describe the state information of abstract locations in an abstract storage

model; (ii) we extend typestates to include access permissions (which are used

to specify the extent to which untrusted code is allowed to access host

resources); (iii) in addition to using typestates to distinguish initialized values

from uninitialized ones, we also use typestates to track pointers.

4. We propose a typestate-checking system that allows us to perform safety-

checking on untrusted machine code that implements inheritance polymor-

phism via physical subtyping [76]. This work introduces a new method for cop-

ing with subtyping in the presence of mutable pointers.

5. We introduce a mechanism for summarizing the effects of function calls via

safety pre- and post-conditions. These summaries allow our analysis to stop at

trusted boundaries. They form a first step toward checking untrusted code in a

modular fashion, which will make the safety-checking technique more scal-

able.

6. We present a technique to infer information about the sizes and types of stack-

allocated arrays.

7. We describe a symbolic range analysis that is suitable for propagating infor-

mation about array bounds. Range analysis can speed up safety checking

because it is generally much less expensive than the program-verification

techniques that we use to bounds checks.

8. We describe a prototype implementation of the safety-checking technique, and

experimental studies to evaluate it.

The work described in thesis focuses on enforcing fine-grained memory protec-
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tion, which allows us to use a decidable logic for expressing safety conditions and

simple heuristics for synthesizing loop invariants. We wish to stress that,

although we use techniques originally developed for verification of correctness,

we are not trying to prove either total or partial correctness [24,39]. Safety check-

ing is less ambitious than verification of correctness.

1.2  Organization of Dissertation

The dissertation is organized into eight chapters. We begin with a discussion

of related work in Chapter 2. In Chapter 3, we describe the safety properties we

enforce, and the notion of an access policy. We present an overview of our safety

checking analysis by means of a simple example.

Chapters 4 to 6 describe the five phases of our safety-checking analysis start-

ing from the second phase. In Chapter 4, we describe the second phase of the

safety-checking analysis. We describe an abstract storage model used in the anal-

ysis (in particular, a typestate system). We present the typestate-checking analy-

sis that recovers typestate information at each program point in the untrusted

code. The typestate-checking system allows us to check the safety of untrusted

machine code that implements inheritance polymorphism via physical subtyping.

Moreover, we describe several techniques that make the safety-checking analysis

more precise and efficient.

In Chapter 5, we present the details of the annotation and local-verification

phases of our analysis. In Chapter 6, we describe the global-verification phase.

We present the induction-iteration method for synthesizing loop invariants and

thesis.fm  Page 9  Tuesday, December 19, 2000  11:00 AM



10

our enhancements to it, and also describe a symbolic range analysis for array

bounds checking.

In Chapter 7, we present our experience with the safety-checking technique

gained from using a prototype implementation for untrusted code written in

SPARC machine languages on a few case studies.

Finally, in Chapter 8, we present our conclusions and suggest some directions

for future research.
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Chapter 2

Related Work

In this chapter we discuss the research efforts that are most closely related to

this dissertation. In Section 2.1, we survey techniques to enforce safe program

execution. We examine techniques that can be used to statically check for array

out-of-bounds violations in Section 2.2. We discuss techniques for synthesizing

loop invariants in Section 2.3.

2.1  Safety Checking

Techniques to enforce code safety fall into three categories: dynamic, static,

and hybrid. Static techniques are potentially more efficient at run-time than

dynamic and hybrid techniques because static techniques incur no run-time over-

head, but they can be less precise because they will have to reject code that can-

not be determined to be safe statically. A dynamic technique incurs run-time cost

and may require corrective actions in the case that a safety violation is detected

at run-time. Hybrid techniques tend to be more efficient than dynamic tech-

niques, and like dynamic techniques, they may require corrective actions in the
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presence of a safety violation. We survey the related work and compare our work

with static techniques that are closest to ours.

2.1.1  Dynamic Techniques

Two safety issues must be addressed when a dynamic technique is used to

enforce code safety. First, safety violations must be detected. Second, corrective

action must be taken after a violation is detected at run-time. This corrective

action can be as simple as terminating the offending code, or can be much more

complex if the offending code accesses shared data structures in the trusted host.

One extreme of dynamic techniques is safety through interpretation, where a

virtual machine (VM) interprets the untrusted code and checks the safety of each

instruction at run-time. The BSD network packet filter utility [49, 55], commonly

referred to as BPF, is such an example. It defines a language that is interpreted

by the operating system’s network driver. The interpreter checks, at run-time,

that all references to memory are within the bounds of the packet data or a stati-

cally allocated scratch memory. Interpretation incurs high run-time cost. For

example, BPF is about 10 times slower than versions written in the statically

checked proof-carrying code [64]. Moreover, languages that are designed to be

interpreted are usually small, and with limited control and data structures,

makes them unsuitable for general-purpose use.

A simple way to enforce the safety of untrusted code is to isolate it in a hard-

ware-enforced address space, similar to the way operating system kernels protect

themselves from user-level applications [8]. In this approach, the hardware and
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the operating system kernel prevent code in one address space from corrupting

code and data in another address space. To prevent the untrusted code from leav-

ing the host software in an inconsistent state (e.g., terminating without releasing

resources it has acquired), the untrusted code must interact with the host soft-

ware through a restricted interface. Apart from the apparent limitation of requir-

ing special hardware support, a major disadvantage of this approach is its high

run-time cost. A cross-address-space call requires (at least) a trap into the operat-

ing system kernel, copying of arguments from the caller to the callee, saving and

restoring registers, switching hardware address spaces, and dispatch back to user

level [93].

Software Fault Isolation (SFI) [93] uses pure software techniques to achieve

much of the same functionality as hardware-enforced address spaces, but at a

much lower cost. A form of SFI, sandboxing, ensures that the high bits of a mem-

ory address match those of the sandbox region assigned to the foreign code. VINO

[75] and Exokernel [26] are two systems that use sandboxing to ensure that

extensions downloaded into the OS are safe. Both SFI and hardware-enforced

address spaces provide protection by isolating the untrusted code in its own pro-

tection domain, and restricting the interface through which it can interact with

the host software. Since SFI modifies the binary code directly, it is independent of

the source language. Like hardware-enforced address spaces, the protection pro-

vided by SFI is coarse-grained, and is not appropriate for a system with fine-

grained sharing. SFI incurs low run-time overhead on processors with a large

number of registers, because less register spilling is needed to free up registers
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for sandboxing. However, if the untrusted code interacts frequently with code in

the host environment (or other untrusted components residing in different pro-

tection domains) and the read operations must be checked also, the overhead of

run-time checking can amount to 20% as opposed to only a few percent when only

write operations are checked [93]. Checking read operations is necessary because

reads to certain memory-mapped devices could be destructive. Finally, SFI can be

difficult to implement correctly; for example, it is hard to prevent code from mod-

ifying itself, and to protect the contents of the stack.

Leroy and Rouaix [46] have proposed a theoretical model for systematically

placing type-based run-time checks into interface routines of the host code to pro-

vide fine-grained memory protection. Their technique checks the host and

requires that the source of the host API be available. Safety requirements are

specified by enumerating a set of predetermined sensitive locations and invari-

ants on these locations.

Our technique is related to Leroy and Rouaix’s technique in that our tech-

nique is also type-based. However, we rely on static analysis rather than run-time

checking. In addition, our technique works on untrusted binary code whereas

their technique instruments the host API at the source level. Our model of a

safety policy (see Chapter 4) is more general than theirs. Finally, they perform

type checking whereas we perform typestate checking (see Chapter 4).

Typestates provide finer grained information than types, and typestate checking

is a flow-sensitive analysis, whereas traditional type checking is a flow-insensitive

analysis. Hence, our technique is potentially more precise.
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2.1.2  Static Techniques

Static techniques to ensure code safety have two advantages. First, the code is

potentially more efficient because no run-time checks are involved. Second, no

corrective action is needed since the code can never misbehave. Static techniques

to enforce code safety range from those that provide accountability, to techniques

that use formal methods to verify that a binary conforms to its specification in

logic (correctness checking), to techniques that verify that a binary conforms to

certain safety properties (e.g., type safety), to techniques that emphasize finding

potential bugs rather than enforcing full safety.

Techniques that check the correctness of a program are hard to automate.

Techniques that check that a program has specific safety properties are more

manageable than correctness checking, but can still be very expensive. Tech-

niques that focus on finding potential bugs can, for better analysis efficiency, rely

on analyses that are neither sound nor complete.

The simplest static technique for enforcing safety is through personal author-

ity. For example, Microsoft’s ActiveX [2] uses digital signatures to record informa-

tion about the origin of the code. SVR4 kernels allow users with super-user

privilege to install kernel modules (such as device drivers) into the kernel. This

approach provides accountability rather than safety.

Several research projects have used formal methods to verify that binary code

conforms to its specification (as a logical formula), and that it has certain memory

safety properties [11, 19]. Clutterbuck and Carre [19] describe a technique to

prove that programs written in a subset of Intel 8080 machine language conform
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to their specifications. Their technique uses the SPADE software tools, which

work on programs defined in SPADE’s FDL, the SPADE program modelling lan-

guage. Their safety-checking analysis uses flow-analysis and program-verifica-

tion techniques. The flow analyses check for such problems as unreachable code,

code from which the exit cannot be reached, multiple-entry loops, use of unde-

fined variables, unused definitions, and redundant tests. SPADE’s program veri-

fier checks that a program conforms to its specification in logical formulae.

Boyer and Yu [11] have described a different approach to prove that a

machine-code program is memory safe and consistent with its mathematical

specification. Their technique models the semantics of a subset of MC68020

instruction set architecture (ISA) in meticulous detail by giving the machine code

an explicit formal operational semantics. This operational semantics is given in

the logic of their automated reasoning system. Analogous to supplying loop

invariants with Floyd-style verification conditions, their approach requires man-

ual construction of lemmas.

A major limitation of using general theorem-proving techniques is that prov-

ing the validity of an arbitrary predicate (in first-order logic) is undecidable. In

addition, proving that a program containing loops satisfies a given pre- and post-

condition using Floyd-style verification conditions involves synthesizing loop

invariants, which, in general, cannot be done mechanically.

Instead of proving that a program conforms to its specification (i.e., is correct),

which is hard to accomplish mechanically in general, several projects focus on

verifying that a piece of untrusted code has specific safety properties. Examples
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of these projects include Proof-Carrying Code (PCC) [64], the Certifying Compiler

[20, 63], Typed-Assembly Language (TAL) [58,59,60], and our work.

PCC is based on the observation that it is generally faster and easier to vali-

date a proof than to generate one. With PCC, a code producer provides code, along

with a proof that the code has certain safety properties. Necula and Lee have

used PCC to statically check the safety of network packet filters, and to provide

safe native extensions to ML. A major advantage of PCC is that safety only

depends on the correctness of a proof checker that is relatively small, and no

trusted third party is needed. PCC is “tamper proof” in that any change that

either makes the code unsafe or the proof invalid will be identified by the proof

checker. PCC also has the ability to associate proofs to the end-product, i.e., the

machine code. However, manual generation of proofs can be tedious and error-

prone. For each type of safety property considered, a proof system is needed. Fur-

thermore, adding proofs to the code can considerably increase the size of the code

(3 to 7 times the original size).

To avoid manual construction of PCC, Necula and Lee [63] introduce the

notion of a certifying compiler, which compiles a high-level programming lan-

guage program into PCC. Their prototype compiler, TouchStone, compiles a safe

subset of C into assembly code that carries proofs about type safety. They show

that loop invariants for type safety (without considering array bounds checks)

can be generated automatically by the compiler. Their work shows that the rele-

vant operational content of simple type systems may be encoded using extensions

to first-order predicate logic.
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Instead of relying on a logic system to encode types, Morrisett et al [58,59,60]

introduced the notion of typed assembly language (TAL). In their approach, type

information from a high-level program is incorporated into the representation of

the program in a platform-independent typed intermediate form, and carried

through a series of transformations down to the level of the target code. The com-

piler can use the type information to perform sophisticated optimizations. Cer-

tain internal errors of a compiler can be detected by invoking a type-checker after

each code transformation. A compiler that uses typed assembly language certifies

type safety by ensuring that a well-typed source program always maps to a well-

typed assembly program.

Checking full safety can be time consuming because the analyses, at a mini-

mum, have to be sound. A static debugger uses static analysis to find unsafe oper-

ations rather than to guarantee full safety. It is willing to make use of analyses

that are neither sound nor complete in the interest of efficiency.

Flanagan et al [30] describe an interactive static debugger for Scheme that

can be used to identify program operations that may cause run-time errors, such

as dereferencing a null pointer, or calling a non-function. The program analysis

computes value-set descriptions for each term in the program, and constructs a

value flow graph connecting the set descriptions. Evans [27] describes extensions

to the LCLint checking tool (a tool for statically checking C programs, and a tool

that can perform stronger checking than any standard version of lint) [28] to

detect dynamic memory errors, such as dereferencing null pointers, failure to

allocate or deallocate memory, uses of undefined or deallocated storage, and dan-

thesis.fm  Page 18  Tuesday, December 19, 2000  11:00 AM



19

gerous or unexpected aliasing. His technique uses interface annotations to avoid

expensive interprocedural analysis and to reduce the amount of error messages.

In his analysis, loops are treated as though they were conditional statements.

Detlefs et al [23] describe a static checker for common programming errors,

such as array index out-of-bounds, null-pointer dereferencing, and synchroniza-

tion errors (in multi-threaded programs). Their analysis makes use of linear con-

straints, automatically synthesizes loop-invariants to perform bounds checking,

and is parameterized by a policy specification. Their safety-checking analysis

works on source-language programs and also makes use of analyses that are nei-

ther sound nor complete. In their policy specifications, user-supplied MODIFIES

lists (specifying which variables of a procedure can be modified) offer a certain

degree of access control.

2.1.3  Our Work vs. Related Static Techniques

The static techniques that are closest to ours are the certifying compiler and

typed-assembly language.

The most prominent difference between our approach and the certifying com-

piler (or the TAL) approach is a philosophical one. The certifying compiler

approach enforces safety by preventing “bad” things from being expressible in a

source language. For example, both the safe subset of C of the Touchstone com-

piler and the Popcorn language for TALx86 [60] do not allow pointer arithmetic,

pointer casting, or explicit deallocation of memory. In contrast, we believe that
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safe code can be written in any language and produced by any compiler, as long as

nothing “bad” is said in the code.

This philosophical difference has several implications. It gives the code pro-

ducer the freedom to choose any language (including even “unsafe” languages

such as C or assembly), and the freedom to produce the code with an off-the-shelf

compiler or manually. It eliminates the dependence of safety on the correctness of

a compiler. As with PCC, our technique checks the safety of the final product of

the compiler. It leads to the decoupling of the safety policy from the source lan-

guage, which in turn, makes it possible for safety checking to be performed with

respect to an extensible set of safety properties that are specified on the host side.

Our approach does introduce an additional variable into the process that is

only partially within the programmer’s control — namely, the code-generation

idioms that a particular compiler uses could be ones that defeat the techniques

used in our system. This is because the implementation of our analyses may rely

on (or not aware of) some idioms the compiler uses.

The second important difference between our approach and the certifying

compiler (or TAL) approach is that the safety properties we enforce are based on

the notion of typestate, which provides more extensive information than types.

In addition to these high-level differences, there are a few technical differ-

ences. Our safety checker can be viewed as a certifier that generates proofs by

first recovering type information that (may have) existed in the source-language

program (an embodiment of a suggestion made by Necula and Lee [63, p. 342]).

The approach used in our safety checker differs from that used in the Touchstone
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compiler in the following respects: First, Touchstone replaces the standard

method for generating verification conditions (VCs), in which formulae are

pushed backwards through the program, with a forward pass over the program

that combines VC generation with symbolic execution. In contrast, our system

uses a forward phase of typestate checking (which is a kind of symbolic execution)

followed by a fairly standard backward phase of VC generation. (See Chapter 4

for a description of typestate checking, and Chapter 6 for a description of VC gen-

eration.) The VC-generation phase is a backwards pass over the program for the

usual reason; the advantage of propagating information backwards is that it

avoids the existential quantifiers that arise when formulae are pushed in the for-

ward direction to generate strongest post-conditions; in a forward VC-generation

phase, quantifiers accumulate—forcing one to work with larger and larger formu-

lae. Second, our safety-checking analysis mechanically synthesizes loop invari-

ants for bounds checking and alignment checking, whereas Touchstone generates

code that contains explicit bounds checks and then removes those checks that it

can prove to be redundant.

Comparing with TAL, our type system and that of TAL model different lan-

guage features: For instance, TAL models several language features that we do

not address, such as exceptions and existential types. On the other hand, our sys-

tem models size and alignment constraints, which TAL does not. Furthermore,

the TAL type system does not support general pointers into the stack, and

because stack and heap pointers are distinguished by TAL, one cannot declare a

function that receives a tuple argument that can accept both a heap-allocated

thesis.fm  Page 21  Tuesday, December 19, 2000  11:00 AM



22

tuple at one call site and a stack-allocated one at another call site [59]. TALx86

introduces special macros for array subscripting and updating to prevent an opti-

mizer from rescheduling them. (These macros expand into code sequences that

perform array-bounds checks.) We impose no such restrictions on the idioms that

a compiler can employ to implement array subscripting. TAL achieves flow-sensi-

tivity in a different way than our system does; with TAL, different blocks of code

are labeled as different functions, and types are assigned to the registers associ-

ated with each function. Our system achieves flow-sensitivity by having a differ-

ent typestate at each instruction. Despite the differences, it is interesting to note

that if our safety checker were to be given programs written in typed assembly

language rather than in an untyped machine language, less work would be

required to recover type information and to perform overload resolution

(although we would still have to propagate state and access information). This

also applies to Java bytecode [47], where type information is contained in the

bytecode instructions themselves.

Finally, neither Touchstone nor the Popcorn compiler of TALx86 track aliasing

information. We have introduced an abstract storage model and extended

typestate checking to also track pointers. As a result, the analysis we provide is

more precise than that used in Popcorn and Touchstone.

Our work is also related to the work of Detlefs et al [23] in that both their

technique and ours make use of linear constraints, automatically synthesize loop-

invariants to perform bounds checking, and are parameterized by policy specifica-

tions. However, their safety-checking analysis works on source-language pro-
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grams and makes use of analyses that are neither sound nor complete. Their

policy specifications are less general than our access policies, which are given in

terms of regions, categories, and access permissions (see Chapter 4).

2.1.4  Hybrid Techniques

A technique that combines both static and dynamic checking requires fewer

run-time checks than dynamic techniques, but still needs corrective actions

because faults can still occur at run-time. Examples that use hybrid techniques

for safety checking include safe languages, such as Java [34], Mesa [50], and Mod-

ula 3 [37].

A safe language has well defined semantics so that all valid programs written

in the language are guaranteed to have certain safety properties. It employs both

static and run-time measures to avoid operations that are potentially harmful.

Systems that use safe languages for system extensions include Pilot [70], which

runs programs written in Mesa, HotJava Web Browser, which can be extended

with applets written in Java, and the SPIN extensible OS [7], which can be

extended with modules written in Modula 3.

In a safe language, the safety property is build into the language. A safe lan-

guage usually relies on strong typing to enforce fine-grained memory protection

and data abstraction. Techniques based on types and programming-language

semantics (including PCC, certifying compilers, and safe languages), offer much

finer-grained access control and flexibility than those based on physical means,
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such as SFI and hardware-enforced address spaces. Types correspond more natu-

rally to the computer resources that we want to protect.

Safe languages prohibit certain “badthings” from happening by restricting

the expressiveness of the language, which, as a consequence, also restricts the

applicability of the technique to such languages as C or assembly code. Moreover,

even for general-purpose type-safe languages, such as Java, there are occasions

when some functionality has to be implemented in “low-level”languages such as

C or assembly code [41].

2.2  Array Bounds Checking

A basic requirement of safe program execution is that all array accesses

should be within their bounds. Array bounds checks are also essential for enforc-

ing program security. For example, buffer-overrun vulnerabilities, which allow a

malicious user to overrun the stack contents to circumvent the computer’s secu-

rity checks, have long plagued security architects. Wagner et al [91] report that

buffer overruns account for up to 50% of today’s vulnerabilities (based on data

from CERT advisories over the last decade).

Techniques for performing array bounds checks include techniques for opti-

mizing array bounds checks [35,45,48], symbolic analyses that compute the

bounds of index for array references [10,21,38,72,86,91], and program-verification

techniques [84]. In the next few sections, we describe work in each of these three

areas.
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2.2.1  Techniques for Optimizing Array Bounds Checks

Markstein et al [48] have developed an analysis technique that first moves

array bounds checks out of a loop, and then eliminates the checks if the analysis

can determine that there are no array out-of-bounds violations. Their analysis

places the array bounds checks outside of the loop, modifies the loop-control con-

dition so that it guarantees that no array out-of-bounds violations will occur, and

places a test at the loop exit to ensure that the loop will perform the same num-

ber of iterations as in the original program.

Gupta [35] also described a technique for optimizing array bound checks.

Gupta’s optimizations reduce the program execution time and the object code size

through elimination of redundant checks, propagation of checks out of loops, and

combination of multiple checks into a single check. His analysis is performed on a

reduced control-flow graph that consists of only the minimal amount of data flow

information for range-check optimizations.

Kolte and Wolfe [45] present a compiler-optimization algorithm to reduce the

run-time overhead of array bounds checks. Their algorithm is based on partial

redundancy elimination and incorporates previously developed algorithms

(including those that were described by Gupta [35]) for array bounds checking

optimizations.

The above techniques can be used to perform array bounds checking by first

introducing code to perform the checks, and then checking whether such code can

be optimized away.
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2.2.2  Techniques for Propagating Information about Array Bounds

The algorithms that rely either on dataflow analysis or on abstract interpreta-

tion to propagate information about array bounds vary both in sophistication of

the assertions and the rules used for propagating and combining the assertions.

For example, the assertions used by Verbrugge et al [86] are intervals of scalars,

whereas Cousot and Halbwachs [21] use convex polyhedra, which can track corre-

lations between variables. Wagner et al [91] use flow-insensitive analysis for bet-

ter analysis efficiency, whereas Verbrugge et al [86] use flow- and context-

sensitive analysis.

Harrison [38] uses compile-time analysis to reduce the overhead due to range

checks. Compile-time techniques for range propagation and range analysis are

employed yielding bounds on the ranges of variables at various points in a pro-

gram. Harrison’s technique propagates both ranges that are scalar intervals, and

ranges with simple symbolic bounds. The range information is used to eliminate

redundant range checks on array subscripts.

Verbrugge et al [86] described a range-analysis technique called Generalized

Constant Propagation (GCP). GCP uses a scalar interval domain. It employs a

flow- and context-sensitive analysis. It attempts to balance convergence and pre-

cision of the analysis by “steppingup” ranges (decreasing the lower bound or

increasing the upper bound) for variables that have failed to converge after some

fixed number of iterations. GCP uses points-to information discovered in an ear-

lier analysis phase.
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Rugina and Rinard [72] also use symbolic bounds analysis. Their analysis

gains context sensitivity by representing the symbolic bounds for each variable as

functions (polynomials with rational coefficients) of the initial values of formal

parameters. Their analysis proceeds as follows: For each basic block, it generates

the bounds for each variable at the entry; it then abstractly interprets the state-

ments in the block to compute the bounds for each variable at each program point

inside and at the exit of the basic block. Based on these bounds, they build a sym-

bolic constraint system, and solve the constraints by reducing it to a linear pro-

gram over the coefficient variables from the symbolic-bound polynomials. They

solve the symbolic constraint system with the goal of minimizing the upper

bounds and maximizing the lower bounds.

Bodik at al [10] describe a method to eliminate array bounds checks for Java

programs. Their method uses a restricted form of linear constraints called differ-

ence constraints that can be solved using an efficient graph-traversal algorithm

on demand. Their goal is to apply their analysis to array bounds checks selec-

tively based on profile information, and fall back on run-time checks for cold code

blocks.

Wagner et al [91] have formulated the buffer-overrun-detection problem as an

integer constraint problem that can be solved in linear time in practice. Their

analysis is flow- and context-insensitive with a goal of finding as many errors as

possible. Cousot and Halbwachs [21] described a method that is based on abstract

interpretation using convex hulls of polyhedra. Their technique is precise in that
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it does not simply try to verify assertions, but instead tries to discover assertions

that can be deduced from the semantics of the program.

We also propose a range analysis for array bounds checking (see Section 6.7).

Our range analysis is closest to GCP, but differs from GCP in the following

respects: We use a domain of symbolic ranges. We perform a widening operation

right away for quicker convergence, but sharpen our analysis by selecting suit-

able spots in loops for performing the widening operation, and also by incorporat-

ing correlations among register values. Both GCP and our technique use points-to

information discovered in an earlier analysis phase. Our current implementation

of range analysis is context-insensitive, whereas GCP is context-sensitive.

2.2.3  Program-Verification Techniques

Suzuki and Ishihata [84] and German [32] used Floyd-style program verifica-

tion techniques to verify the absence of array out-of-bound violations in pro-

grams. Floyd-style program verification relies on the system’s ability to

synthesize loop invariants automatically. Suzuki and Ishihata introduced a

method called induction iteration for synthesizing loop invariants, whereas Ger-

man’s method relies some simple heuristics. Both Suzuki and Ishihata, and Ger-

man’s methods were developed for structured source-level programs.

2.3  Synthesis of Loop Invariants

A major problem in building an automatic verifier that does not require any

programmer-supplied annotations is that the system must synthesize loop invari-
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ants. There are several ways to synthesize loop invariants automatically: using

heuristics, difference equations, abstract interpretation, running the program in

a test-oriented fashion [13], and the induction-iteration method [84].

Katz and Manna [43] and Wegbreit [92] both describe the use of heuristics to

synthesize loop invariants. In this approach, back-substitutions are performed,

starting with the postcondition, to produce trial loop predicates. Trial loop predi-

cates that are not loop invariants are modified according to various heuristics to

generate better trial predicates. Many of the heuristics are domain specific. They

have shown examples in the domain of integers and integer arrays.

Synthesizing loop invariants using difference equations [25] proceeds in two

steps: (i) finding an explicit expression for each variable after t iterations of the

loop, and (ii) eliminating t to obtain invariants.

The abstract interpretation method [92] works forward from the precondition.

Since the precondition is known to hold, it can be treated as data and submitted

as input to an appropriate evaluator. In this evaluator, all operators are treated

as operations on predicates in some abstract interpretation, taking predicates as

arguments and delivering a predicate as their result. When the evaluator encoun-

ters a conditional, it either chooses one of the alternatives (if the current state

logically implies either the decision predicate or its negation), or otherwise con-

trol splits into parallel branches. Junction nodes are handled by a sequence of two

operations: first the predicates on the input arcs are merged; then the result of

this merge is joined with the previous predicate on the output edge to form a new

predicate on the output edge.
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Loop invariants can also be synthesized by running the program in a test-ori-

ented fashion [89], which consists of three steps: the first step selects several val-

ues of input variables; the second step runs the program for each of these inputs

and collects the values of the output variables at each program point; the third

step tries to establish relations among the variables.

The induction-iteration method of Suzuki and Ishihata uses weakest liberal

preconditions for synthesizing loop-invariant. For each postcondition of a loop

that needs to be verified, it inductively synthesizes a loop invariant that (i) is true

on entry to the loop and (ii) implies the postcondition.

We have extended the induction-iteration method for machine-language pro-

grams, for nested loops, and for interprocedural verification. A description of the

induction-iteration method and our extensions to it can be found in Chapter 6.

We adopt the induction-iteration method because it is mechanical, and

because the assertions we need to prove are less general than those required to

prove that a program conforms to its specification.
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Chapter 3

Overview

Our goal is to check statically whether it is safe for a piece of untrusted for-

eign machine code to be loaded into a trusted host system. We start with ordinary

machine code and mechanically synthesize (and verify) a safety proof. The chief

advantage of this approach is that it opens up the possibility of being able to cer-

tify code produced by a general-purpose off-the-shelf compiler from programs

written in languages such as C and C++. Furthermore, in our work we do not

limit the safety policy to just a fixed set of memory-access conditions that must be

avoided; instead, we perform safety checking with respect to a safety policy that

is supplied on the host side.

When our proof-synthesis techniques are employed on the host side, our

approach can be viewed as an alternative to the Proof-Carrying Code (PCC)

approach [64]; PCC requires a code producer to create not just the machine code

but also a proof that the code is safe, and then has the host perform a proof-vali-

dation step. When our proof-synthesis techniques are employed by the code pro-
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ducer (on the foreign side of the untrusted/trusted boundary), our approach can

be viewed as an ally of PCC that helps to lift current limitations of certifying com-

pilers [20,63], which produce PCC automatically, but only for programs written in

certain safe source languages.

To mechanically synthesize and verify a safety proof for a piece of untrusted

code, our analysis starts with a description of the initial inputs to the untrusted

code and an access policy. It abstractly interprets the untrusted code to produce a

safe approximation of the memory state at each program point. These memory

states are described in an abstract storage model. Given the information discov-

ered at each program point, our analysis annotates each instruction with the

safety conditions the instruction must obey, and then verifies these conditions.

In the reminder of this chapter, we describe the safety properties we enforce

and the notion of an access policy. We describe an abstract storage model, and the

inputs to our safety-checking analysis. We present an overview of our safety-

checking analysis by means of a simple example.

3.1  Safety Properties and Policy

When untrusted code is to be imported into a host system, we need to specify

acceptable behaviors for the untrusted code. These behavior specifications take

the form of safety conditions that include a collection of default safety conditions

and host-specified access policies.

The default safety conditions enforce fine-grained memory protection and data

abstraction based on strong typing. The default safety conditions check for type
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violations, array out-of-bounds violations, address-alignment violations, uses of

uninitialized values, null-pointer dereferences, and stack-manipulation viola-

tions. They ensure that the untrusted code will not forge pointers, and that all

operations in the untrusted code will operate on only values of proper types and

with a proper level of initialization.

An access policy provides additional flexibility by allowing the host to specify

the host data that can be accessed and the host functions (methods) that can be

called by the untrusted code. It provides a means for the host to specify the “least

privilege” that the untrusted code needs to accomplish its task. This can mini-

mize the potential damages the untrusted code may do to the trusted host.

In our model, we view any addresses passed to a piece of untrusted code as

doors into the host data region. An access policy controls the memory locations

(resources) that are accessible by specifying the pointer types that can be fol-

lowed. For the memory locations reachable, the access policy specifies the ways

they can be accessed in terms of the types of the memory locations and their con-

tents.

An access policy is specified by a classification of the memory locations into

regions, and a list of triples of the form [Region : Category : Access Permitted]. A

Region can be as large as an entire address space or as small as a single variable.

The Category field is a set of types or aggregate fields. The Access field can be any

subset of r, w, f, x, and o, meaning readable, writable, followable, executable, and

operable, respectively.

In our model, r and w are properties of a location, whereas f, x, and o are prop-
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erties of the value stored in a location. The access permission f is introduced for

pointer-typed values to indicate whether the pointer can be dereferenced. The

access permission x applies to values of type “pointerto function” (i.e., values that

hold the address of a function) to indicate whether the function pointed to can be

called by the untrusted code. The access permission o includes the rights to

“examine”, “copy”, and perform other operations not covered byx and f.

To get a feel for what a safety policy looks like, suppose that a user is asked to

write an extension (as a piece of untrusted code) that finds the lightweight pro-

cess on which a thread is running, and suppose that information about threads is

stored in the host address space in a linked list defined by the structure thread

struct thread {

int tid;

int lwpid;

...

struct thread * next;

};

The following policy allows the extension to read and examine the tid and

lwpid fields, and to follow only the next field (H stands for “HostRegion” , which

is the region in which the list of threads is stored):

[H : thread.tid, thread.lwpid : ro]

[H : thread.next : rfo]

The above model can be used to specify a variety of different safety policies.

For example, we can specify something roughly equivalent to sandboxing [93].

The original sandboxing model partitions the address space into protection

domains, and modifies a piece of untrusted code so that it accesses only its own
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domain. In our model, sandboxing boils down to allowing untrusted code to access

memory only via valid addresses in the untrusted data region, but otherwise to

examine, and operate on data items of any type. Because an address of a location

in the host region cannot be dereferenced, side-effects are confined to the

untrusted region. Our approach differs from sandboxing in that it is purely static,

and it does not make any changes to the untrusted code.

While sandboxing works well in situations where it is appropriate to limit

memory accesses to only the untrusted data region, forbidding access to all data

in the host region is often too draconian a measure. For instance, access to the

host data region is necessary for applications as simple as performance instru-

mentation (e.g., to read statistics maintained by the host environment). In our

model, more aggressive policies are defined by allowing simple reads and writes

to locations in the host data region, but forbidding pointers to be followed or mod-

ified. We can go even further by specifying policies that permit untrusted code to

follow certain types of valid pointers in the host data region in order to traverse

linked data structures. We can even specify more aggressive policies that permit

untrusted code to change the shape of a host data structure, by allowing the

untrusted code to modify pointers.

The safety properties and policies are introduced to ensure that the integrity

of the host environment will not be violated and that host resources will not be

accessed improperly. A safety policy can also include safety postconditions for

ensuring that certain invariants defined on the host data are restored by the time

control is returned to the host.
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3.2  An Abstract Storage Model

We introduce an abstract storage model for describing the memory states at

each program point. The abstract storage model provides the abstract domain for

our safety-checking analysis. This model includes the notion of an abstract store

and linear constraints.

An abstract store is a total map from abstract locations to typestates. An

abstract location summarizes one or more physical locations (e.g., heap- and

stack- allocated objects) so that the analysis has a finite domain to work over. An

abstract location has a name, a size, an alignment, and optional attributes r and

w to indicate if the abstract location is readable and writable according to the

access policy. A typestate describes the type, state, and access permissions of the

value stored in an abstract location. The typestates form a meet semi-lattice.

(Typestates are described in Section 4.1.)

The linear constraints are linear equalities and linear inequalities combined

with logical operators and quantifiers. They are used to represent safety require-

ments such as array bounds checks, address alignment checks, and null-pointer

checks.

3.3  The Inputs to the Safety-Checking Analysis

The inputs to our safety-checking analysis include the untrusted code, the

host-specified access policy (described in Section 3.1), a host-typestate specifica-

tion, and an invocation specification. All inputs except for the untrusted code are

provided by the host. A host-typestate specification provides information regard-
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ing how functions (methods) in the host can be called. Together with the access

permission x given in the access policy, they specify what host functions can be

called and how they can be called.

A host-typestate specification includes a data aspect and a control aspect. The

data aspect describes the type and the state of host data before the invocation of

the untrusted code. The control aspect provides safety preconditions and postcon-

ditions for calling host functions and methods.

The safety preconditions and postconditions are given in the form of place-

holder abstract locations. The typestate and size of a placeholder abstract loca-

tion in a safety precondition represent obligations that the corresponding actual

parameter must provide. The placeholder abstract locations in the postconditions

specify the typestates of the corresponding locations after the execution of the

function. Verifying the safety of a call into a host function (method) involves a

binding process that matches the actual parameters with the placeholder

abstract locations in the safety preconditions, and an update process that com-

putes the memory state after the invocation of the call based on the safety post-

conditions. A detailed description of how to summarize calls to trusted functions

is given in Section 4.4.

An invocation specification provides the binding information between the

resources in the host and the registers and memory locations that represent the

parameters of the untrusted code. The host-typestate specification, the invocation

specification, and the access policy, together, provide information about the initial

memory state at the entry of the untrusted code.
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3.4  The Phases of the Safety-Checking Analysis

Starting from the initial memory state, our analysis will abstractly interpret

the untrusted code to find a safe approximation of memory state at each program

point. The approximations of memory states are described using the abstract

storage model. Once our analysis finds the memory state at each program point

(i.e., a description of the state(s) on which each instruction operates), we use the

default safety conditions and the access policy to attach a safety predicate to each

instruction, and check whether each instruction obeys the corresponding safety

predicate.

The safety-checking analysis consists of five phases: preparation, typestate-

propagation, annotation, local verification, and global verification. We illustrate

these phases informally by means of a simple example. Figure 3.1 shows a piece

of untrusted code (in SPARC assembly language) that sums the elements of an

UNTRUSTED CODE

1: mov %o0,%o2 // %o2=%o0
2: clr %o0 // %o0= 0
3: cmp %o0,%o1 //
4: bge 12 // if (%o0 ≥ %o1) goto 12
5: clr %g3 // %g3= 0
6: sll %g3, 2,%g2 // %g2= 4 x %g3
7: ld  [%o2+%g2],%g2 // %g2= [%o2+%g2]
8: inc %g3 // %g3= %g3 + 1
9: cmp %g3,%o1 //
10:bl 6 // if (%g3 < %o1) goto 6
11:add %o0,%g2,%o0 // %o0 = %o0 + %g2
12:retl
13:nop

Figure 3.1 A Simple Example: Summing the Elements of an Integer Array.
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integer array. This example will be used a running example throughout the entire

thesis.

Figure 3.2 shows the host-typestate specification, the access policy, and the

invocation specification. In Figure 3.2, the host-typestate specification states that

ap is the base address of an integer array of size n, where n ≥ 1. We have used a

single abstract location e to summarize all elements of the array ap. The safety

policy states that ap and e are in the V region, that all integers in the V region

are readable and operable, and that all base addresses to an integer array of size

n in the V region are readable, operable, and followable. The invocation specifica-

tion states that ap and the size of ap will be passed through the registers %o0 and

%o1, respectively. The code uses three additional registers, %o2, %g2, and %g3.

(Note that given the annotation that n is a positive integer before the invoca-

tion of the untrusted code, the test at lines 3 and 4 in Figure 3.1 is redundant.

However, our technique is based on annotating the initial inputs to the untrusted

HOST TYPESTATE ACCESS POLICY INVOCATION

e: <int, initialized, ro>
ap: <int [n], {e}, rfo>

{n≥1}

V = {e, ap}
[V : int : ro]

[V : int [n] : rfo]

%o0 ← ap

%o1 ← n

ap is an integer array of size
n, where n≥1. e is an

abstract location that sum-
marizes all elements of ap.

ap and e are in the V region.
All integers in the V region
are readable and operable.

All base addresses to an inte-
ger array of size n in the V
region are readable, opera-

ble, and followable.

ap and the size of ap will be
passed through the registers
%o0, and %o1, respectively.

Figure 3.2 Host-typestate specification, in vocation specification, and access polic y.
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code, and it makes no assumption about how much optimization has been done to

the untrusted code.)

3.4.1  Preparation

The preparation phase takes the host-typestate specification, the access policy,

and the invocation specification, and translates them into initial annotations that

consist of linear constraints and the typestates of the inputs. The initial annota-

tion gives the initial abstract store at the entry of the untrusted code. The prepa-

ration phase also constructs an interprocedural control graph for the untrusted

code.

For the example in Figure 3.1, the initial annotations are shown in Figure 3.3.

The fact that the address of ap is passed via register %o0 is described in the sec-

ond line in column 1, where the register %o0 stores the base address of the inte-

ger array and points to e. The fact that the size of ap is passed via the register

%o1 is captured by the linear constraint “n=%o1”.

Note that %o0 and %o1 both have the r and w access permissions. These refer

to the registers themselves (i.e., the untrusted code is permitted to read and

change the value of both registers). However, array ap cannot be overwritten

INITIAL TYPESTATE INITIAL CONSTRAINTS

e:<int, initialized, ro>
%o0:<int [n], {e}, rwfo>
%o1:<int, initialized, rwo>

n ≥ 1 ∧ n=%o1

Figure 3.3 Initial Annotations.
For convenience, we have listed the access permissions r and w of an abstract location

together with the f, x, o permissions of the value that is stored in the location.
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because the access permission for e, which acts as a surrogate for all elements of

ap, does not have the w permission.

Also note that in machine code, a register can be used to store values of differ-

ent types at different program points. In our model, a register or a memory loca-

tion on the untrusted code’s stack is always writable.

3.4.2  Typestate Propagation

The typestate-propagation phase takes the interprocedural control flow graph

of the untrusted code and the initial annotations as inputs. It abstractly inter-

prets the untrusted code to annotate each instruction with an abstract represen-

tation of the memory contents using the abstract storage model. The abstract

representation of memory characterizes the memory state before the execution of

that instruction.

For our example, this phase discovers that the instruction at line 7 is an array

access, with %o2 holding the base address of the array and %g2 representing the

index. The instruction at line 7 loads an integer from e and stores it in the regis-

ter %g2. Figure 3.4 summarizes the memory state (the typestates of the abstract

locations) before the execution of the load instruction at line 7. In Chapter 4, we

will elaborate the typestate-checking system for the Phase 2 of our analysis.

3.4.3  Annotation

The annotation phase takes as input the typestate information discovered in

Phase 2, and traverses the untrusted code to annotate each instruction with

safety preconditions and with assertions. The safety preconditions are divided
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into local safety preconditions and global safety preconditions. The local safety

preconditions are conditions that can be checked using typestate information

alone. The global safety preconditions will need to be verified via further analysis.

The global safety preconditions include array bounds checks, address alignment

checks, and null pointer dereference checks.

The assertions are facts that can be derived from the results of typestate prop-

agation. For our example, the assertions, local safety preconditions, and global

safety preconditions for the instruction at line 7 are summarized in Figure 3.5.

Because %o2 stores the base address of an integer array, it must be word

aligned and non-null. Since the instruction loads the contents from e and stores it

into the register %g2, the local safety preconditions state that the location e must

ABSTRACT STORE

e:<int, initialized, ro>
%o1:<int, initialized, rwo>
%o2:<int [n], {e}, rwfo>
%g2:<int, initialized, rwo>
%g3:<int, initialized, rwo>

Figure 3.4 The Memory State at line 7.

ASSERTIONS LOCAL SAFETY PRECONDITIONS GLOBAL SAFETY PRECONDITIONS

%o2 is the address of an
integer array:
%o2 mod 4 = 0
%o2 ≠ NULL

e is readable;
e is initialized;
%g2 is writable;

%o2 is followable and operable

Array bounds checks:
%g2≥ 0 ∧ %g2 < 4n

∧%g2 mod 4 = 0

Alignment and
null-pointer checks:

(%o2 + %g2) mod 4 = 0
∧ %o2 ≠ null

Figure 3.5 Assertions and Safety Preconditions for Line 7.
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be readable and initialized, %g2 must be writable, and %o2 must be followable

and operable. The global safety conditions verify that the array index %g2 is

within the array bounds and that the address calculated by “%o2+%g2” is prop-

erly aligned and non-null.

3.4.4  Local Verification

The local-verificationphase checks the local safety preconditions. It performs

a linear scan over the instructions in the untrusted code. In our example, it finds

that the local safety preconditions are all true at line 7. We will describe the

annotation phase and the local-verification phase of our analysis in more detail in

Chapter 5.

3.4.5  Global Verification

The global-verificationattempts to verify the global safety preconditions using

program-verification techniques. In the presence of loops, we use the induction-

iteration method [84] to synthesize loop invariants.

To make the global-verification phase more efficient, this phase also incorpo-

rates a symbolic range analysis that propagates range information of registers.

This allows the analysis to avoid using expensive program-verification techniques

wherever the range analysis is sufficient to verify that an array access is within

the bounds.

For our example, symbolic range analysis will find that at line 7 the lower

bound of %g2 is zero and the upper bound is 4n-4. This analysis verifies that there

are no array out-of-bounds violations at line 7.
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Without using the range analysis, we would have to use the induction-itera-

tion method to synthesize a loop invariant for the loop in lines 6-11. In this case,

to prove that at line 7 index %g2 is less than the array upper bound, i.e., %g2 <

4n, we need to prove %g3 is less than n at line 6. (Note that the size of an integer

is 4 bytes, and %g2 at line 7 is computed from %g3 at line 6 by the sll instruc-

tion.) The induction-iteration method can automatically synthesize the loop

invariant “n > %g3 ∧ n ≥ %o1”. This invariant implies that “%g3 < n” holds at line

6, which in turn implies that “%g2 < 4n” holds at line 7.

In Chapter 6, we will describe the global-verification phase of our analysis in

more detail.
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Chapter 4

Typestate Checking

We describe the second phase of our safety-checking analysis. This phase

abstractly interprets the untrusted code to produce a safe approximation of the

memory state at each program point. The safe approximation of memory state is

described using an abstract storage model. This model represents a memory state

as a total map from abstract locations to typestates. An abstract location summa-

rizes one or more physical locations, and a typestate describes the properties of

the values stored in an abstract location.

This chapter is organized into two parts. In the first part, we describe the

basic typestate system that includes an abstract storage model, an abstract oper-

ational semantics for SPARC machine-language instructions, and a typestate-

checking algorithm that propagates typestate information. The typestate system

incorporates a subtyping relationship among structures and pointers. This allows

our analysis to check the safety of untrusted machine code that implements

inheritance polymorphism via physical subtyping.
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In the second part, we describe several techniques that strengthen our basic

typestate-checking analysis. These techniques include a way to summarize func-

tion calls, and a method to detect stack-allocated arrays. Summarizing function

calls allow our analysis to stop at the trusted boundaries.

4.1  Typestate System

The safety-checking analysis is based on an abstract storage model. The

abstract storage model includes the notion of an abstract store and linear con-

straints. (We will describe linear constraints in more detail in Section 6.2.)

An abstract store is given by a total map from abstract locations to typestates.

By design, the domain of abstract stores is a finite domain. (In contrast, the con-

crete stores form an infinite domain: in general, the number of concrete activa-

tion records is unbounded in the presence of recursion, as are the number of

concrete objects allocated in a loop and the size of concrete linked data-struc-

tures.) Thus, an abstract location summarizes a set of physical locations. An

abstract location has a name, size, offset, alignment, and optional attributes r

and w to indicate whether the location is readable and writable by the untrusted

code.

We use absLoc to denote the set of all abstract locations, and the symbols l and

m to denote individual abstract locations. We use Size(l), Align(l), to denote the

size and alignment, of abstract location l. We call an abstraction location that

summarizes more than one physical location a summary location. A register is

always readable and writable, and has an alignment of zero.
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A typestate records properties of the values stored in an abstract location. A

typestate is defined by a triple <type, state, access>. We define a meet operation 

on typestates so that typestates form a meet semi-lattice. The meet of two

typestates is defined as the meet of their respective components. We describe

type, state, and access component of our typestate system in the next few sec-

tions.

4.1.1  Type

In a machine-language program, a register or memory location can be used to

store values of different types at different program points. The typestate-check-

ing algorithm used in the typestate-propagation phase is a flow-sensitive analysis

that determines an appropriate typestate for each abstract location at each pro-

gram point by finding the greatest fixed point of a set of typestate-propagation

equations. The typestate system incorporates a notion of subtyping among struc-

tures and pointers. With this approach, each use of a register or memory location

at a given occurrence of an instruction is resolved to a polymorphic type (i.e., a

supertype of the acceptable values).

4.1.1.1  Type Expressions.

The type component of our type system is based on the physical type system of

Siff et al [76]. Figure 4.1 shows the language of type expressions used in the

typestate system. Compared with the type system of Siff et al, our typestate sys-

tem additionally includes (i) bit-level representations of integer types, (ii) top and

bottom types that are parameterized with a size parameter, (iii) pointer into the
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middle of an array, and (iv) alignment and size constraints on types (which is not

shown in Figure 4.1).

The type int(g:s:v) represents a signed integer that has g+s+v bits, of which

the highest g bits are ignored, the middle s bits represent the sign or are the

result of a sign extension, and the lowest v bits represent the value. For example,

a 32-bit signed integer is represented as int(0:1:31), and an 8-bit signed integer

(e.g., a C/C++ char) with a 24-bit sign extension is represented as int(0:25:7). The

type uint(g:s:v) represents an unsigned integer, whose middle s bits are zeros.

A bit-level representation of integers allow us to express the effect of instruc-

tions that load (or store) partial words. For example, the following code fragment

(in SPARC machine language) copies a character pointed to by register %o1 to the

location that is pointed to by register %o0:

t :: ground Ground types
| t [n] Pointer to the base of an array of type t of size n
| t (n] Pointer into the middle of an array of type t of size n
| t ptr Pointer to t
| s {m1, ..., mk} struct

| u {m1, ..., mk} union

| (t1, ..., tk) → t Function

| T(n) Top type of n bits
| ⊥(n) Bottom type of n bits (Type “any” of n bits)

m:: (t, l, i) Member labeled l of type t at offset i

ground:: int(g:s:v) | uint(g:s:v) | . . .

Figure 4.1 A Simple Language of Type Expressions.
t stands for type, and m stands for a structure or union member. Although the

language in which we have chosen to express the type system looks a bit like C, we
do not assume that the untrusted code was necessarily written in C or C++.
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ldub [%o1],%g2

stb %g2,[%o0]

If %o1 points to a signed character and a C-like type system is used, typestate

checking will lose precision when checking the above code fragment. There is a

loss of precision because the instruction “ldub [%o1], %g2” loads register %g2

with a byte from memory and zero-fills the highest 24 bits, and thus a naïve type

system (such as that is described in [94]) treats the value in %g2 as an unsigned

integer. In contrast, with the bit-level integer types of Figure 4.1, we can assign

the type int(24:1:7) to %g2 after the execution of the load instruction. This pre-

serves the fact that the lowest 8 bits of %g2 store a signed character (i.e., an

int(0:1:7)).

The type t(n] denotes a pointer that points somewhere into the middle of an

array of type t of size n. Introducing pointers into the middle of an array allow our

analysis to handle array pointers with better precision. For example, consider a

program that reads from the elements of an array by advancing a pointer that

initially points to the base address of the array at each iteration of a loop. The

static type of the pointer inside of the loop will be a pointer into the middle of the

array. This preserves the fact the pointer points to some element of the array. In

contrast, a naïve type system would conclude that the pointer is a pointer to the

element type of the array. With the naïve type system, we would have to forbid

pointer arithmetic that advances the pointer to point to another element of the

array.
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4.1.1.2  A Subtyping Relation.

We now introduce a notion of subtyping on type expressions, adopted from the

physical-subtyping system of Chandra and Reps [14], which takes into account

the layout of aggregate fields in memory. Figure 4.2 lists the rules that define

when a type t is a physical subtype of t’ (denoted by t <: t’). Note that the subtype

ordering is conventional. However, during typestate checking the ordering is

flipped: t1≤ t2 in the type lattice iff t2 <: t1.

In Figure 4.2, the rules [Top], [Bottom], [Ground], [Pointer], and [Array] are

our additions to the physical-subtyping system given in [14]. An integer type t is

a subtype of type t’ if the range represented by t is a subrange of the range repre-

sented by t’, and t has at least as many sign-extension bits as t’. Rule [First Mem-

ber] states that a structure is a subtype of a type t if the type of the first member

of the structure is a subtype of t. The consequence of this rule is that it is valid for

Figure 4.2 Inference Rules that Define the Subtyping Relation.

[Structures]
s(m1,..., mk) <: s (m’1, ..., m’k’)

[Top]
T(sizeof(t)) <: t

[Bottom]
t <: ⊥(sizeof(t))

[Ground]
int(g:s:v) <: int(g’:s’:v’)

g+s+v=g’+s’+v’, g ≤ g’, v ≤ v’
[First Member]

s{m1, ..., mk} <: t’

m1 = (l, t, 0), t<: t’

[Members]
m <: m’

k’ ≤ k, m1 <: m’1, ..., mk’  <: m’k’ m=(l, t, i), m’=(l’, t’, i’ ), l=l’, i=i’, t <: t’

[Reflexivity]
t <: t

[Array]
t [i] <: t (i]

[Pointer]
t ptr <: t’ ptr

t <: t’

uint(g:s:v)<: uint(g’:s’:v’)
uint(g:s:v) <: int(g’:s’:v’)

t (i] <: t [0]
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a program to pass a structure in a place where a supertype of its first member is

expected. The rules [Structures] and [Members] state that a structure s is a sub-

type of s’ if s’ is a prefix of s, and each member of s’ is a supertype of the corre-

sponding member of s. Rule [Members] gives the constraints on the corresponding

members of two structures. Rule [Pointer] states if t is a subtype of t’, then t ptr

is a subtype of t’ ptr. Rule [Array] states that a pointer to the base of an array is

a subtype of a pointer into the middle of an array, and that all array types whose

element type is t is a physical subtype of t [0]. (Rule [Array] is a little crude. It

states that the meet of two array types of different sizes will return an array of

size zero. This could cause the typestate-checking analysis to lose precision when

checking certain programs. We will outline a solution to this problem in

Section 7.3.2.)

When we make use of this notion of subtyping in the safety-checking analysis

(see Section 4.3), an assignment is legal only if the type of the right-hand-side

expression is a physical subtype of the type of the receiving location, and the

receiving location has enough space. The Rule [Array] is valid because t(i]

describes a larger set of states than t[i]. (The global-verification phase of the anal-

ysis will check that all array references are within bounds.)

struct Point {
int(0:1:31) x;
int(0:1:31) y;

};

struct ColorPoint {
int(0:1:31) x;
int(0:1:31) y;
uint(24:0:8) color;

};

void f(Point* p)
{

p->x++;
p->y--;

}

Figure 4.3 Subtyping Among Pointer Types.
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Allowing subtyping among integer types, structures, and pointers allows the

typestate-checking analysis to handle code that implements inheritance polymor-

phism via physical subtyping. For example, for a function that accepts a 32-bit

integer, it is legal to invoke the function with an actual parameter that is a signed

character (i.e., int(0:1:7)), provided that the value of the actual parameter is

stored into a register or into memory via an instruction that handles sign exten-

sion properly. In this case, the actual parameter is a physical subtype of the for-

mal parameter. Figure 4.3 shows another example that involves subtyping among

structures and pointers. According to the subtyping inference rules for structures

and pointers, type ColorPointPtr is a subtype of PointPtr. Function f is poly-

morphic because it is legal to pass an actual parameter that is of type Color-

PointPtr to function f.

4.1.1.3  Typestate Checking with Subtyping.

Readers who are familiar with the problems encountered with subtyping in

the presence of mutable pointers may be suspicious of rule [Pointer]. In fact, rule

[Pointer] is unsound for traditional flow-insensitive type systems in the absence

of alias information. This is because a flow-insensitive analysis that does not

account for aliasing is unable to determine whether there are any indirect modifi-

cations to a shared data structure, and some indirect modifications can have

disastrous effects. Figure 4.4 provides a concrete example. The statement at line

8 changes clrPtr to point to an object of the type Point indirectly via the vari-

able t, so that clrPtr can no longer fulfill the obligation to supply the color
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field at line 9. Figure 4.5 shows the contents of the store after each statement of

function f2.

A static technique to handle this problem must be able to detect whether such

disastrous indirect modifications could happen. There are several approaches to

this problem found in the literature. For example, the linear type system given in

[88] avoids aliases altogether (and hence any indirect modifications) by “consum-

typedef Point *PointPtr;
typedef ColorPoint *ColorPointPtr;

1: ColorPoint clr;
2: Point bw;
3: void f2(void) {
4: PointPtr bwPtr = &bw;
5: ColorPointPtr clrPtr = &clr;
6: ColorPointPtr *r = &clrPtr;
7: PointPtr *t = r;
8: *t = bwPtr;
9: clrPtr->color = 1;
10: }

Figure 4.4 Rule [ Pointer] is unsound f or flo w-insensitive type c hecking in the
absence of aliasing inf ormation.

(Assume the same type declarations as shown in Figure 4.3.)

Figure 4.5 The contents of the store after eac h statement of function f2 of
Figure 4.4.

bwPtr bw

clrPtr clr

r

t

clrPtr clr

r
clrPtr clr

t

r
clrPtr

bwPtr bw

bwPtr bw

bwPtr bw

bwPtr bw

After 4:

After 5:

After 6:

After 7:

After 8: clr
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ing” a pointer as soon as it is used once. Smith et al [81] use singleton types to

track pointers, and alias constraints to model the shape of the store. (Their goal is

to tracks non-aliasing to facilitate memory reuse and safe deallocation of objects.)

Another approach involves introducing the notions of immutable fields and

objects [1]. The idea is that if t is a subtype of type t’, type t ptr is a subtype of t’

ptr only if any field of t that is a subtype of the corresponding field of t’ is immu-

table. Moreover, if a field of t is a pointer, then any object that the field points to

must also be immutable. This rule applies transitively. For this approach to work

correctly, a mechanism is needed to enforce these immutability restrictions.

Our work represents yet a fourth technique. Our system performs typestate

checking, which is a flow-sensitive analysis that tracks aliasing relationships

among abstract locations. (These state descriptors resemble the storage-shape

graphs of Chase et al [15], and are similar to the diagrams shown in Figure 4.5.

We describe the state component of our typestate system in Section 4.1.2.) By

inspecting the storage-shape graphs at program points that access heap-allocated

storage, we can (safely) detect whether an illegal field access can occur. For

instance, from the shape graph that arises after statement 8 in Figure 4.4, one

can determine that the access to color in statement 9 represents a possible mem-

ory-access error. Programs with such accesses are rejected by our safety checker.

4.1.2  State

The state component of a typestate captures the notion of an object of a given

type being in an appropriate state for some operations, but not for others. The
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state lattice contains a bottom element, denoted by ⊥s, that represents an unde-

fined value of any type. Figure 4.6 illustrates selected elements of the state lat-

tice. For a scalar type t, its state can be [ut] or [it], which denote uninitialized and

initialized values, respectively. For a pointer type p, its state can be [up], which is

the state of an uninitialized pointer, or P, a non-empty set of abstract locations

referenced, where one of the elements of P can be null. For sets P1 and P2, we

define P1 ≤ P2 iff P2 ⊆ P1. For an aggregate type G, its state is given by the states

of its fields. Since we also use the state descriptors to track abstract locations that

represent pieces of stack- and heap-allocated storage, they resemble the storage-

shape graphs of Chase et al [15].

Figure 4.6 A Portion of the State Lattice.

[it2]

[ut2]

{m} {null}

{m, null}

[it1]

[ut1]

<[it1], [it2]>

<[it1], [ut2]>

<[ut], [ut]>

<⊥s, [ut2]>

⊥s

Scalars Pointers Aggregates

[up]

<[ut1], [it2]>

<[it1], ⊥s> <⊥s, [it2]>

<[ut1], ⊥s>
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4.1.3  Access Permissions

An access permission is either a subset of {f, x, o}, or a tuple of access permis-

sions. If an abstract location stores an aggregate, its access permission will be a

tuple of access permissions, with the elements of the tuple denoting the access

permissions of the respective aggregate fields. The meet of two access-permission

sets is their intersection. The meet of two tuples of access permissions is given by

the meet of their respective elements.

The reader may be puzzled why an access policy is defined in terms of five

kinds of access permissions (r, w, f, x, and o), whereas typestates have only three

kinds (f, x, and o). The reason is that f, x, and o are properties of a value, whereas

r and w are properties of a location. Typestates capture properties of values.

Access policies specify the r and w permissions of abstract locations, as well as f,

x, and o permissions of their values.

In our model, a constant always has access permission o.

4.2  An Abstract Operational Semantics for SPARC Instructions

An abstract store is given by a total map M: absLoc → typestate. We define the

abstract operational semantics of a SPARC machine instruction as a transition

function R: M→M. We use T(l), S(l), and A(l) to denote the type, state, and access

component of the typestate of abstract location l, respectively.

Because machine-code operations are overloaded, the typestate lattice also

includes a top element T. This allows the typestate-propagation algorithm to per-

form overload resolution on-the-fly (see Section 4.2.1).
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4.2.1  Overload Resolution

We determine an appropriate typestate for each abstract location at each pro-

gram point by finding the greatest fixed point of a set of typestate-propagation

equations (see Section 4.2.2). Overload resolution of instructions such as add and

ld falls out as a by-product of this process: The type components of the typestates

obtained for the arguments of overloaded instructions let us identify whether a

register holds a scalar, a pointer, or the base address of an array (and hence

whether an instruction such as “add %o0,%g2,%o0” represents the addition of

two scalars, a pointer indirection, or an array-index calculation). To achieve this,

we define the abstract operational semantics of SPARC machine instructions to

be strict in T. Consequently, during typestate checking, propagation of informa-

tion through the instructions of a loop is delayed until a non-T value arrives at

the loop entrance.

One artifact of this method is that each occurrence of an overloaded instruc-

tion is resolved to just a single usage kind (e.g., scalar addition, pointer indirec-

tion, or array-index calculation). We call this the single-usage restriction. We

believe that this restriction does not represent a significant limitation in practice

because we are performing typestate checking (which is flow sensitive). For exam-

ple, typestate checking allows an instruction such as “add %o0,%g2,%o0” to be

resolved as a pointer indirection at one occurrence of the instruction, but as an

array-index calculation at a different occurrence.

In the remainder of this section, we assume that we have non-T values at our

disposal.

thesis.fm  Page 57  Tuesday, December 19, 2000  11:00 AM



58

4.2.2  Propagation of Type, State, and Access Information

For the sake of brevity, Figure 4.7 shows the rules for propagating type, state,

and access information only for two different kinds of uses of the add instruction

(scalar add and array-index calculation) and for storing to an aggregate field. rs,

ra, and rd are registers, and Opnd is either an integer constant n or a register.

We use l ≠ rd to denote l ∈ (absLoc − {rd}), and use T(l) and T ’(l) to denote the

types of abstract location l before and after the execution of an instruction. We

define S(l), S ’(l), A(l), and A ’(l) similarly. We use β to refer to a (possibly empty)

sequence of field names. The function lookUp takes a type and two integers n and

OPERATION

1 2
st rs, [ra+n]

addrs, Opnd, rd

ASSUMPTION
Scalar add

Array-index calculation
T(rs) = t [n]

Store to an aggregate field
Let F = {s.β | s ∈ S(ra),

β ∈ lookUp(T(s), n, 4)}

TYPE-PROPAGATION

RULE

1. T’(rd) = T(rs) T(Opnd).

2. for l ≠rd, T’( l) = T(l).

1. T’(rd) = t(n].

2. for l ≠rd, T’( l) = T(l).

1. if F={ l},
if l is not a summary location,

T’ (l)=T(rs);

otherwiseT’ (l)=T(rs)  T(l).

2. if | F | > 1,

for l ∈ F, T’ (l)=T(rs)  T(l).

3. for l ∉ F, T’( l) = T(l).

STATE-
PROPAGATION RULE

1. S’(rd) = S(rs) S(Opnd).

2. for l ≠rd, S’( l) = S(l).

1. S’(rd) = S(rs).

2. for l ≠rd, S’( l) = S(l).

1. if F={ l},
if l is not a summary location,

S’ (l)=S(rs);

otherwise S’ (l)=S(rs) S(l).

2. if | F |>1,

for l ∈ F, S’ (l)=S(rs) S(l).

3. for l ∉ F, S’( l) = S(l).

ACCESS-
PROPAGATION RULE

1. A’(rd) = A(rs) ∩ A(Opnd).

2. for l ≠rd, A’( l) = A(l).

1. A’(rd) = A(rs).

2. for l ≠rd, A’( l) = A(l).

1. if F = { l},
if l is not a summary location,

A’ (l)=A(rs);

otherwiseA’( l) =A(l) ∩ A(rs).

2. if | F |>1,
for l ∈ F, A’( l) =A(l) ∩ A(rs).

3. for l ∉ F, A’( l) = A(l).

Figure 4.7 Propagation of Type, State, and Access information.
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m as input; it returns the set of fields that are at offset n and of size m, or ∅ if no

such fields exist.

• The typestate-propagation rules for scalar-add state that after the execution

of the add instruction, the typestate of rd is the meet of those of rs and Opnd

before the execution, and the typestate of all other abstract locations in

absLoc remain unchanged.

• For an array-index calculation, the type of the destination register becomes

“t(n]”, where “t” is the type of an array element. The type “t(n]” indicates that

rd could point to any element in the array. As to the state-propagation rule, at

present we use a single abstract location to summarize the entire array; thus

the state of the destination register is the same as that of the source register.

• The typestate-propagation rules for storing to an aggregate field are divided

into two cases, depending on whether strong or weak update is appropriate.

The abstract-location set F represents a set of concrete locations into which

the st instruction may store. The pointer “ra+n” must point to a unique con-

crete location, if |F|=1 and l is not a summary location. In this case, l receives

the typestate of the source register. The pointer “ra+n” may point to any of

several concrete locations, if |F|>1, or F={l} and l is a summary location. In

this case, each possible destination receives the meet of the typestate before

the operation and the typestate of the source register.

4.3  Typestate Checking

The typestate-propagation algorithm works on an interprocedural control-flow

graph in which the nodes in the graph represent instructions and the edges rep-

resent control-flow in the usual fashion. For each instruction N (i.e., a node in the

control-flow graph), we associate with it two total maps:

preTypestate(N): absLoc→typestate and
postTypestate(N): absLoc→typestate.
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These two maps safely approximate the program states before and after each

instruction at the respective program point. We define the meet of two total maps

as the map that is constructed by performing a meet on their respective elements.

That is, for m, n: absLoc→typestate, m  n is defined as follows: for any s ∈

absLoc, (m  n)(s) = m(s)  n(s). To facilitate the presentation, we define the fol-

lowing notation:

• InitialStore: a map from abstract locations to the typestates for all abstract

locations at the entry of the untrusted code. This initial store is computed in

Phase 1.

• CFGedge: the set of all control-flow edges.

• Instruction: the set of all instructions in the untrusted code.

• StartNode: the instruction that is the entry point to the foreign code.

• Incoming, Outgoing: Instruction→ 2CFGedge, where 2CFGedge denotes the

power set of CFGedge. These two mapping functions give the control-flow

edges that link an instruction to its control-flow predecessors and successors.

• Interpret: Instruction →R. Interpret (N) gives the abstract operational seman-

tics of the instruction N (see Section 4.2.2).

The algorithm is a standard worklist-based algorithm. It starts with the map

λl.T at all program points (i.e., all abstract locations have the typestate T). The

algorithm for typestate propagation is shown in Figure 4.8. Initially, the start

node of the untrusted code is placed on the worklist. An instruction is chosen

from the worklist and examined. If it is the start node, its preTypestate gets the ini-

tialStore. Otherwise, the typestates of the abstract locations at the entry of the

examined instruction become the meet of the corresponding typestates at the

exits of the instruction’s predecessors. The instruction is interpreted abstractly
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using the new typestates. This may cause the abstract store associated with the

exit of the instruction to change. In that case, each instruction that is a successor

of the examined instruction is added to the worklist. This process is repeated

until the worklist is empty.

Figure 4.9 shows the results of typestate propagation applied to our running

example. The right most column shows the instructions. The left most column

shows the abstract store before the execution of the corresponding instruction.

Typestate_Propagation() {

worklist = {StartNode};

while (worklist is not empty) {

Select and remove an instruction N from worklist;

If (N is the StartNode) {

 ts = InitialStore;

} else {

foreach (control-flow edge, <M, N> ∈ Incoming(N))

ts = ts postTypestate (M);

}

preTypestate(N) = ts;

oldPostTypestate(N) = postTypestate(N);

postTypestate (N) = Interpret (N) (preTypestate (N));

if (postTypestate(N) ≠ oldPostTypestate (N)) {

foreach (control-flow edge, <N,W> ∈ Outgoing (N))

worklist = worklist ∪ { W };

}

}

}

Figure 4.8 Propagation of Typestate.
We use two nodes in the control-flow graph, e.g., <M,N>, to represent a control-flow

edge. For the edge <M, N>, the node M represents the source of the edge and the
node N represents the target of the edge.
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Lines 6 to 11 correspond to the loop. Initially, %o0 holds the base address of the

integer array ap (whose elements are summarized by e), and %o1 holds the size of

the array. Typestate checking is initiated by placing the mov instruction at line 1

on the worklist. Abstract interpretation of the mov instruction at line 1 sets the

contents of %o2 to point to e. Because the typestate of %o2 has changed, the

instruction at line 2 is placed on the worklist. The interpretation of the clr

instruction at line 2 sets the contents of %o0 to 0. This process continues until the

worklist becomes empty. For line 7, the results show that %o2 holds the base

address of an integer array and that %g2 is an integer (and hence must be an

index).

TYPESTATE BEFORE UNTRUSTED CODE

1: mov %o0,%o2

2: clr %o0

3: cmp %o0,%o1

4: bge 12

5: clr %g3

6: sll %g3, 2,%g2

7: ld  [%o2+%g2],%g2

8: inc %g3

9: cmp %g3,%o1

10: bl 6

11: add %o0,%g2,%o0

12: retl

13: nop

Figure 4.9 Results of Typestate Propagation.

%o0: int[n], {e}, rwfoe: iint, ro %o1: iint, rwo%o2: ⊥ %g2: ⊥ %g3: ⊥

e: iint, ro %o1: iint, rwo %g2: ⊥ %g3: ⊥%o2: int[n], {e}, rwfo%o0: int[n], {e}, rwfo

e: iint, ro %o1: iint, rwo %g2: ⊥ %g3: ⊥%o0: 0, rwo %o2: int[n], {e}, rwfo

e: iint, ro %o1: iint, rwo %g2: ⊥ %g3: ⊥%o0: 0, rwo %o2: int[n], {e}, rwfo

e: iint, ro %o1: iint, rwo %g2: ⊥ %g3: ⊥%o0: 0, rwo %o2: int[n], {e}, rwfo

e: iint, ro %o1: iint, rwo %g2: ⊥ %g3: iint, rwo%o0: iint, rwo %o2: int[n], {e}, rwfo

e: iint, ro %o1: iint, rwo %g2: iint, rwo %g3: iint, rwo%o2: int[n], {e}, rwfo%o0: iint, rwo

e: iint, ro %o1: iint, rwo %g2: iint, rwo %g3: iint, rwo%o0: iint, rwo %o2: int[n], {e}, rwfo

e: iint, ro %o1: iint, rwo %g2: iint, rwo %g3: iint, rwo%o0: iint, rwo %o2: int[n], {e}, rwfo

e: iint, ro %o1: iint, rwo %g2: iint, rwo %g3: iint, rwo%o0: iint, rwo %o2: int[n], {e}, rwfo

e: iint, ro %o1: iint, rwo %g2: iint, rwo %g3: iint, rwo%o0: iint, rwo %o2: int[n], {e}, rwfo

e: iint, ro %o1: iint, rwo %g2: iint, rwo %g3: iint, rwo%o2: int[n], {e}, rwfo%o0: iint, rwo

e: iint, ro %o1: iint, rwo %g2: iint, rwo %g3: iint, rwo%o0: iint, rwo %o2: int[n], {e}, rwfo
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In the next few sections, we describe several techniques that strengthen the

typestate-checking analysis. These techniques include a technique to summarize

calls to trusted functions, and a technique to determine types and sizes of stack-

allocated arrays.

4.4  Summarizing Calls

By summarizing function calls, the safety-checking analysis can stop at the

boundaries of trusted code. Instead of tracing into the body of a trusted callee, the

analysis can check that a call obeys a safety precondition, and then use the post-

condition in the rest of the analysis. We describe a method for summarizing

trusted calls with safety pre- and post-conditions in terms of abstract locations,

typestates, and linear constraints. The safety preconditions describe the obliga-

tions that the actual parameters must meet, whereas the postconditions provide

a guarantee on the resulting state.

Currently, we produce the safety pre- and post-conditions by hand. This pro-

cess is error-prone, and it is desirable to automate the generation of function

summaries. Recent work on interprocedural pointer analysis has shown that

pointer analysis can be performed in a modular fashion [16, 17]. These tech-

niques analyze each function, assuming unknown initial values for parameters

(and globals) at a function’s entry point to obtain a summary function for the

dataflow effect of the function. Possible follow-on work to the thesis would be to

investigate how to use such techniques to create safety pre- and post- conditions

automatically.

thesis.fm  Page 63  Tuesday, December 19, 2000  11:00 AM



64

We represent the obligation that must be provided by an actual parameter as

a placeholder abstract location (placeholder for short) whose size, access permis-

sions, and typestate provide the detailed requirements that the actual parameter

must satisfy. When a formal parameter is a pointer, its state descriptor can

include references to other placeholders that represent the obligations that must

be provided by the locations that may be pointed to by the actual parameter. In

our model, the state descriptor of a pointer-typed placeholder can refer to null, to

a placeholder, or to a placeholder and null. If it refers to just null, then the actual

parameter must point to null. If it refers to a placeholder, then all locations that

are pointed to by the actual parameter must satisfy the obligation denoted by the

placeholder. If the state descriptor refers to both null and a placeholder, then the

actual parameter must either point to null, or to locations that satisfy the obliga-

tion. We represent the obligations as a list of pre-conditions of the form “place-

holder : typestate”.

The safety postconditions provide a way for the safety-checking analysis to

compute the resulting state of a call to a summarized function. They are repre-

sented by a list of postconditions of the form [alias context, placeholder :

typestate]. An alias context [16] is a set of potential aliases (l eq l’) (or potential

non-aliases (l neq l’)), where l and l’ are placeholders. The alias contexts capture

how aliasing among the actual parameters can affect the resulting state.

The safety pre- and post-conditions can also include linear constraints. When

they appear in the safety preconditions, they represent additional safety require-
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ments. When they appear in the postconditions, they provide additional informa-

tion about the resulting memory state after the call.

To make this idea concrete, Figure 4.10 shows an example that summarizes

the C library function gettimeofday. It specifies that for the call to be safe, %o0

must either be (i) null or (ii) be the address of a writable location of size sufficient

for storing a value of the type struct timeval. The safety postconditions spec-

ify that after the execution of the call, the two fields of the location pointed to by

%o0 before the call will be initialized, and %o0 will be an initialized integer. (Note

that if %o0 points to null before the execution of the call, the placeholder t

becomes irrelevant because it would not be bound to any actual abstract location

when we perform the binding process described latter in this section.) On a

SPARC, the parameters to a function are passed through the out registers %o0,

%o1, ..., %o5, and the return value of a function is stored in the register %o0.

int gettimeofday (struct timeval *tp);

SAFETY PRECONDITION:

%o0: <struct timeval ptr, {null, t}, fo>

t: <struct timeval, u, wo>
SAFETY POSTCONDITION:

[(), t: <struct timeval, [0:<int(0:1:31), i, o>, 32:<int(0:1:31), i, o>], o>]

[(), %o0 : <int(0:1:31), i, o>]

[(), %o1-%o5, %g1-%g7: <⊥(32), ⊥, o>]

Figure 4.10 Safety Pre- and Post- Conditions..
The typestate of an aggregate is given by the typestates of its components (enclosed in “[“ and

“]”). Each component is labeled by its offset (in bits) in its closest enclosing aggregate.
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In the example in Figure 4.10, the alias contexts were empty because there

was no ambiguity about aliasing. Having alias contexts allows us to summarize

function calls with better precision (as opposed to having to make fixed assump-

tions about aliasing). Now consider the example in Figure 4.11, which shows how

alias contexts can provide better precision. Function g returns either null or the

object that is pointed to by the first parameter depending on whether *p1 and

*p2 are aliases.

Checking a call to a trusted function involves a binding process and an update

process. The binding process matches the placeholders with actual abstract loca-

tions, and checks whether they meet the obligation. The update process updates

the typestates of all actual locations that are represented by the placeholders

according to the safety postconditions.

PointPtr g(PointPtr *p1, PointPtr* p2){

*p2 = null;

return *p1

}

SAFETY PRECONDITION:

%o0: <PointPtr ptr, {q1}, fo>

%o1:<PointPtr ptr, {q2}, fo>

q1: <PointPtr, {r1}, fo>
SAFETY POSTCONDITION:

[(q1 neq q2), %o0 : <PointPtr, {r1}, ...>]

[(q1 eq q2), %o0 : <PointPtr, {null}, ...>]

Figure 4.11 An example of safety pre- and post-conditions with alias contexts.
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Our goal is to summarize library functions, which generally do not do very

complicated things with pointers. Thus, at present we have focused only on obli-

gations that can be represented as a tree of placeholders. (When obligations can-

not be represented in this way, we fall back on letting the typestate-propagation

phase trace into the body of the function.) This allows the binding process to be

carried out with a simple algorithm: The binding algorithm iterates over all for-

mal parameters, and obtains the respective actual parameters from the typestate

descriptors at the call site. It then traverses the obligation tree, checks whether

the actual parameter meets the obligation, and establishes a mapping between

the placeholders and the set of abstract locations they may represent in the store

at the callsite.

The binding process distinguishes between may information and must infor-

mation. Intuitively, a placeholder must represent a location if the binding algo-

rithm can establish that it can only represent a unique concrete location. The

algorithm for the updating process interprets each postcondition. It distinguishes

a strong update from a weak update depending on whether a placeholder must

represent a unique location or may represent multiple locations, and whether the

alias context evaluates to true or false. A strong update happens when the place-

holder represents a unique location and the alias context evaluates to true. A

weak update happens if the placeholder may represent multiple locations or the

alias contexts cannot be determined to be either definitely true or definitely false;

in this case, the typestate of the location receives the meet of its typestate before

the call and the typestate specified in the postcondition. When the alias context
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cannot be determined to be either definitely true or definitely false, the update

specified by the postcondition may or may not take place. We make a safe

assumption by performing a weak update.

4.5  Detecting Local Arrays

Determining type and bounds information for arrays that reside on the stack

is difficult. We describe a method for inferring that a subrange of a stack frame

holds an array, and illustrate the method with a simple example.

Figure 4.12 shows a C program that updates a local array; the second column

shows the SPARC machine code that is produced by compiling the program with

“gcc -O” (version 2.7.2.3). To infer that a local array is present, we examine all

live pointers each time the typestate-propagation algorithm reaches the entry of

a loop. In the following discussion, the abstract location SF denotes the stack

frame that is allocated by the add instruction at line 2; SF[n] denotes the point in

SF at offset n; and SF[s,t] denotes the subrange of SF that starts at offset s and

ends at offset t-1.

By abstractly interpreting the add instructions at lines 3 and 5, we find that

%g3 points to SF[96] and %g2 points to SF[176]. The first time the typestate-

checking algorithm visits the loop entry, %g2 and %o1 both point to SF[176] (see

the third column of Figure 4.12). Abstractly interpreting the instructions from

line 10 to line 14 reveals that SF[96,100] stores an integer. The second time the

typestate-checking algorithm visits the loop entry, %g3 points to either SF[96] or

SF[104]. We now have a candidate for a local array. The reasoning runs as follows:
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if we create two fictitious components A and B of SF (as shown in the right-most

column in Figure 4.12), then %g3 can point to either A or B (where B is a compo-

nent of A). However, an instruction can have only one (polymorphic) usage at a

particular program point; therefore, a pointer to A and a pointer to B must have

compatible types. The only choice (that is compatible with our type system) is a

pointer into an array. Letting τ denote the type of the array element, we compute

a most general type for τ by the following steps:

• Compute the size of τ. We compute the greatest common divisor (GCD) of the

sizes of the slots that are delimited by the pointer under consideration. In this

example, there is only one slot: SF[96, 104], whose size is 8. Therefore, the size

of τ is 8.

• Compute the possible limits of the array. We assume that the array ends at

the location just before the closest live pointer into the stack (i.e., other than

the pointer under consideration). The global-verification phase will verify

later that all references to the local array are within the inferred bounds.

C PROGRAM SPARC MACHINE LANGUAGE FIRST TIME SECOND TIME

typedef struct {
  int f;
  int g;
} s;

int main() {
  s a[10];
  s *p = &a[0];
  int i=0;
  while (p<a+10) {
    (p++)->f = i++;
  }
}

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:

main:
add %sp,-192,%sp
add %sp,96,%g3
mov 0,%o0
add %sp,176,%g2
cmp %g3,%g2
bgeu .LL3
mov %g2,%o1

.LL4:
st %o0,[%g3]
add %g3,8,%g3
cmp %g3,%o1
blu .LL4
add %o0,1,%o0

.LL3:
retl
sub %sp,-192,%sp

Figure 4.12 Inferring the Type and Size of a Local Array..
The label .LL4 represents the entry of the while loop.

%sp

%g3

192

176

96

%g2
%o1

%sp

%g3

192

176

96

%g2
%o1

104

int

A

B
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• Compute the type of τ. Assuming that the size of τ we have computed is n, we

create a fictitious location e of size n, and give it an initial type T(n). We then

slide e over the area that we have identified in the second step, n bytes at a

time—e .g., SF[96,176], 8 bytes at a time—and perform a meet operation with

whatever is covered by e. If an area covered by e (or a sub-area of it) does not

have a type associated with it, we assume that its type is T. In this example,

the τ that we find is

struct {

int m1;

T(32) m2;

}

No more refinement is needed for this example. In general, we may need to

make refinements to our findings in later iterations of the typestate-checking

algorithm. Each refinement will bring the element type of the array down in the

type lattice. In this example, the address under consideration is the value of a

register; in general it could be of the form “r1+r2” or “r1 +n”, where r1 and r2 are

registers and n is an integer.

This method uses some heuristics to compute the possible bounds of the array.

This does not affect the soundness of this approach for the following two reasons:

(i) The typestate-propagation algorithm will make sure that the program is type

correct. This will ensure that the element type inferred is consistent with the rest

of the program. (ii) The global-verification phase will verify later that all refer-

ences to the inferred local array are within the inferred bounds.

Note that it does not matter to the analysis whether the original program was

written in terms of an n-dimensional array or in terms of a 1-dimensional array;

the analysis treats all arrays as 1-dimensional arrays. This approach works even

thesis.fm  Page 70  Tuesday, December 19, 2000  11:00 AM



71

when the original code was written in terms of an n-dimensional array because

the layout scheme that compilers use for n-dimensional array involves a linear

indexing scheme, which is reflected in linear relationships that the analysis

infers for the values of registers.

4.6  Related Work

We compare our typestate-checking analysis with Mycroft’s technique [52]

that recovers type information from binary code.

Mycroft’s technique reverse engineers C programs from target machine code

using type-inference techniques. His type-reconstruction algorithm is based on

Milner’s algorithm W [54]; it associates type constraints with each instruction in

an static single-assignment (SSA) representation of a program; type reconstruc-

tion is via unification. Mycroft’s technique infers recursive data-types when there

are loops or recursive procedures. We start from annotations about the initial

inputs to the untrusted code, whereas his technique requires no annotation. We

use abstract interpretation, whereas he uses unification. Note that the technique

we use to detect local arrays is based on the same principle as his unification

technique. Mycroft’s technique currently only recovers types for registers (and

not memory locations), whereas our technique can handle both stack- and heap-

allocated objects. Moreover, his technique recovers only type information,

whereas ours propagates type, state, and access information, as well. Our analy-

sis is flow-sensitive, whereas Mycroft’s is flow-insensitive, but it recovers a degree
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of flow sensitivity by using SSA form so that different variables are associated

with different live ranges.
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Chapter 5

Annotation and Local Verification

The annotation phase of our safety-checking analysis annotates each instruc-

tion in a piece of untrusted code with safety preconditions and assertions. The

safety preconditions assert that each instruction obeys the safety properties we

enforce. The assertions are facts that can be used to assist the validation of the

safety preconditions. The local-verification phase verifies the safety preconditions

that can be validated using the results of typestate propagation alone. We

describe the annotation and local-verification phases and illustrate them by

means of our running example.

5.1  Annotation

The annotation phase consists of two steps: The first step attaches a collection

of safety predicates to each usage of an instruction; the second step annotates

each instruction in the untrusted code with safety preconditions and assertions

via a linear scan of the untrusted code.
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5.1.1  Attachment of Safety Predicates

For each different use of an instruction (e.g., a scalar add, or an add for array-

index calculation), the annotation phase attaches to it a collection of safety predi-

cates. The safety predicates assert that each instruction abides by the default

safety conditions, and the host-specified access policy. The safety predicates are

divided into local safety predicates and global safety predicates, depending on

whether or not the predicates can be validated using typestate information alone.

To illustrate how the local and global safety predicates are attached to each

usage of an instruction, Figure 5.1 summarizes the safety predicates for two

cases of add (scalar add and array-index calculation), one case of st that stores to

an aggregate field, and one case of ld that loads from an array.

OPERATION ASSUMPTIONS

LOCAL SAFETY

PREDICATES GLOBAL SAFETY PREDICATES

1 addrs, Opnd, rd Scalar add
operable(rs) ∧
operable(Opnd)

2 addrs, Opnd, rd
Array-index calculation
T(rs) = t [n]

operable(rs) ∧
operable(Opnd)

null ∉ S(rs) ∧
inbounds(sizeof(t), 0, n, Opnd)

3 st rs, [ra+n]
Store to an aggregate field
Let F = {s.β | s ∈ S(ra),
β ∈ lookUp(T(s), n, 4)}

followable(ra) ∧
operable(ra) ∧
F ≠ ∅ ∧
forall l ∈ F,
assignable(rs, l)

null ∉ S(ra) ∧
forall a∈ S(ra),
align(Align(a)+n, 4)∧
sizeof(T(rs))=4

4 ld [ra+Opnd], rd

Load from an array
T(ra) = t [n]
T(Opnd) = int(0:s:v)
S(ra) = {e}

followable(ra) ∧
operable(ra) ∧
operable(Opnd) ∧
readable(e) ∧
operable(e) ∧
assignable(e, rd)

align(ra+n, 4)∧
inbounds(sizeof(t), 0, n, Opnd)
∧ sizeof(T(rd))=4

Figure 5.1 Attachment of Safety Properties.
All registers are readable and writable by default.
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• For scalar add, the safety predicate specifies that uninitialized values must

not be used. The predicate readable(l) is true iff l is readable, and the predi-

cate operable is true iff o ∈ A(l) and S(l) ∉ {[uT(l)], ⊥s}. The predicate readable

does not appear explicitly in Figure 5.1 because all registers are readable and

writable by default.

• The safety predicates for an array-index calculation state that rs and Opnd

must both be readable and operable, and the index must be within the bounds

of the array. The predicate inbounds(size, low, high, i) is true iff low × size ≤ i <

high × size, align(i, size). The predicate align(A, n) is true iff ∃ α st. A = nα.

• The safety predicates for st state that (i) ra must be followable and n must be

a valid index of a field of the right size; (ii) ra must be non-null, and the

address “ra+n” must be properly aligned. The predicate followable(l) is true iff

f∈Α(l), and T(l) is a pointer type; the predicate assignable(m, l) is true iff read-

able(m), writable(l), and (T(l)≤T(m), align(Align(l), Align(T(m))) and

sizeof(T(m))≤Size(l)) all hold;

• The ld instruction loads from an array. The local safety predicates for an ld

instruction state that (i) the base address of the array must be followable and

operable; (ii) the operand that is used as the array index must be operable and

of integer type; (iii) the abstract location e that is used as a surrogate for all

elements of the array must be readable and operable, and the predicate

assignable(e, rd) must be true. The global safety predicate ensures that the

loading address is properly aligned, and the array index is within the bounds

of the array.

5.1.2  Generating Safety Preconditions and Assertions

Given the safety predicates, the annotation phase performs a linear scan

through the machine instructions of the untrusted code. It generates safety pre-
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conditions by instantiating the safety predicates (see Figure 5.1) with the actual

operands to the instructions. The instantiated safety predicates are called local or

global safety preconditions depending on whether a precondition is instantiated

from a local or a global safety predicate. Besides the safety preconditions, the

annotation phase also attaches assertions to each instruction to assist the later

verification phases. The assertions are facts that can be derived from the results

of typestate propagation. For machine code, a type means more than just a set of

values and a set of valid operations defined on those values; it also includes phys-

ical properties, such as size and alignment constraints. If the typestate-propaga-

tion algorithm establishes that a location stores a valid address of a certain type,

then that address must have a certain alignment property. The assertions are a

means to give the verifier access to such information.

5.2  Local Verification

The verification of the local safety preconditions is a purely local process. This

phase generates an error message for each violation of the local safety precondi-

tions.

5.3  An Example

We illustrate how the annotation and local-verification phases are applied in

our running example that sums an integer array. The results of the annotation

phase are shown in Figure 5.2.
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The assertions are shown in column 2 of Figure 5.2. At the entry of the

untrusted code the register %o0 stores the base address of an integer array,

hence, %o0 must be non-zero and word-aligned. That is, “%o0≠0 ∧ ∃ α s.t. %o0 =

4α”. Similarly, given that typestate analysis has revealed that %o2 stores the

base address of the array at program points 2 to 13, the annotation phase will

generate the assertions “∃ α s.t. %o2 = 4α ∧ %o2≠ 0” for each of these points.

UNTRUSTED CODE ASSERTIONS

SAFETY PRECONDITIONS

LOCAL GLOBAL

1:mov %o0,%o2
∃ α s.t. %o0 = 4α∧
%o0≠ 0 operable(%o0)

2:clr %o0
∃ α s.t. %o0 = 4α ∧
%o2≠ 0 operable(%o0)

3:cmp %o0,%o1
∃ α s.t. %o2 = 4α ∧
%o2≠ 0 ∧ %o0 = 0 operable(%o0) ∧ operable(%o1)

4:bge 12
∃ α s.t. %o2 = 4α ∧
%o2≠ 0

5:clr %g3
∃ α s.t. %o2 = 4α ∧
%o2≠ 0

6:sll %g3,2,%g2
∃ α s.t. %o2 = 4α ∧
%o2≠ 0 operable(%g3)

7:ld [%o2+%g2],%g2
∃ α s.t. %o2 = 4α ∧
%o2≠ 0

followable(%o2)∧ operable(%o2)
∧operable(%g2)∧
operable(e) ∧ readable(e)

∃ α s.t.(%g2+%o2)=4α
∧ 0 ≤ %g2 < 4n
∧ ∃ α s.t. %g2 = 4α

8:inc %g3
∃ α s.t. %o2 = 4α ∧
%o2≠ 0 operable(%g3)

9:cmp %g3,%o1
∃ α s.t. %o2 = 4α ∧
%o2≠ 0 operable(%g3) ∧ operable(%o1)

10:bl 6
∃ α s.t. %o2 = 4α ∧
%o2≠ 0

11:add %o0,%g2,%o0
∃ α s.t. %o2 = 4α ∧
%o2≠ 0 operable(%o0) ∧ operable(%g2)

12:retl
∃ α s.t. %o2 = 4α ∧
%o2≠ 0

13:nop
∃ α s.t. %o2 = 4α ∧
%o2≠ 0

Figure 5.2 Safety Preconditions Produced by the Annotation Phase.
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Columns 3 and 4 in Figure 5.2 show the local and global safety preconditions

generated for each instruction in the untrusted code. For example, for the load

instruction at program point 7, the typestate information for point 7 indicates

that the register %o2 is the base address of an integer array, and %g2 is an inte-

ger that is used as an array index. (That is, the load instruction loads from an

arbitrary element of the array and stores it into %g2.) The local safety precondi-

tions state that %o2 must be readable, and the value stored in %o2 must be fol-

lowable and operable. Because the abstract location e is used as a surrogate for

all elements of the array, e must be both readable and operable. The global safety

conditions at program point 7 state that the address calculated by “%o2+%g2”

must be 4-byte aligned, and the value stored in %g2 that is used as an index must

be greater than or equal to zero and less than the upper bound of the array. (The

upper bound is 4n because the size of an array element is 4.) The global safety

precondition also states that the array index %g2 should be 4-byte aligned.

The local-verification phase is a local process, and it generates an error mes-

sage for each violation of the local safety preconditions. For the running example,

it is able to verify that the local safety preconditions are all true.
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Chapter 6

Global Verification

The global-verification phase of the safety-checking analysis verifies the glo-

bal safety preconditions, which check for array out-of-bounds violations, address

misalignment violations, and null-pointer dereference violations. The global

safety preconditions are represented as linear constraints. To verify the global

safety preconditions, we take advantage of the synergy of an efficient range anal-

ysis and an expensive but powerful program-verification technique that can be

applied on demand. The range analysis determines safe estimates of the range of

values each register can take on at each program point, which can be used for

determining whether accesses on arrays are within bounds. We apply the pro-

gram-verification technique only for safety preconditions that cannot be proven

just by using the results of range analysis.

The rest of the chapter starts with an introduction to program verification, fol-

lowed by a description of the linear constraints that we use to represent global

safety preconditions, the technique we use to synthesize loop invariants, and the
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symbolic range analysis that we use to perform array bounds checks. A key to

automated program verification is that the system must be able to synthesize

loop invariants. We describe the induction-iteration method for synthesizing loop

invariants, and our extensions to the induction-iteration method.

6.1  Program Verification

Floyd set the cornerstone of program verification with the idea of attaching

assertions to statements to describe their behavior [36]. His technique is called

the inductive assertion method. His approach models a program as a flowchart

(control-flow graph) where the nodes represent program statements, and the

edges represent the control flow. Logical assertions are attached to the control-

flow edges. A program is correct with respect to the assertions, if it can be shown

that assertions are true whenever control passes over the edges. Hoare [39],

among others, refined this approach by developing a concise notation to represent

the effect of a program construct in terms of a logical precondition and a postcon-

dition. He also developed a set of axioms and inference rules for reasoning about

these pre- and post-conditions.

Traditionally, program verification has focused on proving that a program con-

forms to its logical specification by giving a precondition that is true of program’s

inputs at the program’s entry point and verifying that a postcondition is true at

the exit. If we can attach assertions to the edges of the program’s flowchart, and

show that the assertions are all true whenever control passes over the edges,
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then the postcondition is true along all paths from the program entry to the pro-

gram exit.

For programs that have acyclic flowcharts, the attachment and the checking of

the assertions can be done by (i) generating verification conditions (VCs), and (ii)

verifying the VCs using a theorem prover. VC generation can be either forward or

backward. In the backward approach, given a statement and a postcondition that

needs to be verified, VC generation finds the weakest precondition such that if

the precondition is true and the statement terminates then the postcondition is

true. With a forward approach, VC generation finds the strongest postcondition of

a program construct given the precondition.

A major difficulty with automated program verification is that the system

needs to synthesize loop invariants in the presence of loops. For a program con-

taining loops, a naïve VC generation process may not terminate due to the cycles

in the program’s control-flow graph. To cope with this problem, the program is

partitioned at the loop entry points, and a loop invariant is synthesized for each

loop. A loop invariant is an assertion such that if the assertion is true at the loop

entry, it implies that it is also true when the loop is entered for each iteration.

Thus, verifying the correctness of a program that contains a loop involves proving

that (i) the loop invariant implies the postconditions to be proved, (ii) the loop

invariant is true on entry to the loop, and (iii) the loop invariant is reestablished

on each subsequent iteration.

Instead of proving that a program a program conforms to a specification in a

general logic, which is difficult to achieve mechanically, the global-verification
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phase of our analysis focuses only on a small set of conditions to prevent the pro-

gram from performing out-of-bounds array references, misaligned loads and

stores, and null pointer dereferences. In the next few sections, we will describe

the linear constraints we use for expressing the global safety conditions, our the-

orem prover, and the induction-iteration method introduced by Suzuki and Ishi-

hata [84] for synthesizing loop invariants. Unlike standard techniques for

program verification, in which one monolithic VC is created containing all proper-

ties to prove, the induction-iteration method checks the validity of the global

safety preconditions in a demand-driven fashion, and verifies the conditions one

at a time.

6.2  Linear Constraints and Theorem Prover

Because array-bounds, null-pointer, and address-alignment requirements can

usually be represented as linear equalities and inequalities, our theorem prover

is based on the Omega Library [44]. The Omega library represents relations and

sets as Presburger formulas, which are formulas constructed by combining affine

constraints on integer variables with the logical operations ¬, ∧, and ∨, and the

quantifiers ∀ and ∃. The affine constraints can be either equality or inequality

constraints [44]. Presburger formulas are decidable. Below, we give a few exam-

ples of linear constraints:

0 ≤ index ∧ index < Length

pointer < 0 ∨ pointer > 0

∃ α s.t. address = 4α.
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The first constraint expresses that an array index is within the bounds of an

array of size Length. The second constraint expresses that a pointer is not null,

and the third constraint expresses that an address is 4-byte aligned.

The Omega Library uses the Fourier-Motzkin method to determine if a Pres-

burger formula is a tautology or is satisfiable. The basic operation used by the

Omega Library is projection. Given a set of linear equalities and inequalities on a

set of variables V, projecting the constraints onto the variables V’ (where V’ ⊂ V)

produces a set of constraints on variables in V’ that has the same integer solution

as the original problem. The Omega Library determines if a set of constraints has

integer solutions by using projection to eliminate variables until the constraints

involve a single variable, at which point it is easy to check for an integer solution

[44]. For example, projecting the set of constraints x ≤ y and x+y ≤ 1 onto x gener-

ates 2x ≤ 1.

According to Pugh and Wannacott [68], if P and Q are propositions that can

each be represented as a conjunction of linear equalities and inequalities, the

Omega test can be used to check whether P is a tautology, whether P is satisfi-

able, and whether P ⊃ Q is a tautology. Checking whether P is a tautology is triv-

ial. For more details on the Omega Library, see Kelly et al [44] and Pugh et al

[67,68,69].

6.3  Induction-Iteration Method

When the untrusted code contains loops, we need to synthesize loop invari-

ants. In our system, the synthesis of loop invariants is attempted by means of the
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induction-iteration method. We present the basic algorithm in this section, and

describe our extensions to the induction-iteration method later in the chapter.

The induction-iteration method uses the “weakestliberal precondition” (wlp)

as a heuristic for generating loop invariants. The weakest liberal precondition of

statement S with respect to postcondition Q, denoted by wlp(S, Q), is a condition

R such that if statement S is executed in a state satisfying R, (i) Q is always true

after the termination of S (if S terminates), and (ii) no condition weaker than R

satisfies (i). A weakest liberal precondition differs from a weakest precondition in

that a weakest liberal precondition does not guarantee termination.

Since our technique works on machine language programs, we have extended

the induction-iteration method to work on reducible control-flow graphs [61]. In

the description below, we assume that the control-flow graph has been partitioned

into code regions that are either cyclic (natural loops) or acyclic (see below).

A control-flow graph G = (N, E) is reducible iff E can be partitioned into dis-

joint sets EF, the forward edge set, and EB, the back edge set, such that (N, EF)

forms a DAG in which each node can be reached from the entry node, and for each

edge in EB the target of the edge dominates its source [61]. Given a backedge <m,

n> (where m and n are control-flow graph nodes), the natural loop containing <m,

n> is the subgraph consisting of the set of nodes containing n and all the nodes

from which m can be reached in the graph without passing through n, and the

edge set connecting all nodes in this set [61]. In our implementation, we merge

natural loops that share the same entry node to reduce the number of loops the

global-verification phase has to analyze.
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We believe our restriction to reducible control-flow graphs does not represent

a significant limitation in practice. For example, a study cited by Muchnick [61]

showed that over 90% of a selection of real-world Fortran 77 programs have

reducible control-flow graphs. In addition, any irreducible control-flow graph can

be transformed into a reducible one using a technique called node splitting [61].

The method for generating wlps for non-conditional instructions is the same

as those for generating weakest preconditions [39]. Figure 6.1 lists the wlps with

respect to a postcondition Q for a few sample SPARC instructions. In Figure 6.1,

rs and rd are registers, icc is the integer condition code, and Opnd is either an

integer constant n or a register r. The operations +, −, and × are integer addition,

subtraction, and multiplication. Q[r\e] denotes Q with all occurrences of r

replaced with the expression e.

In the reminder of this chapter, we will use [addr] to denote the value stored

in the memory location that is at the address addr. To simplify matters, we will

INSTRUCTION TYPE

WEAKEST LIBERAL

PRECONDITION COMMENTS

mov Opnd, rd Q[rd \ Opnd] Move

add rs, Opnd, rd Q[rd\ (rs + Opnd)] Integer Add

sll rs, Opnd, rd Q[rd \ (rs × 2Opnd)] Logical Left Shift

cmp rs, Opnd Q[icc \ (rs − Opnd)] Comparison

ld [ra + Opnd], rd Q[rd \ ([ra + Opnd])] Load

bg label Q Branch

Figure 6.1 Weakest Liberal Preconditions for Sample SPARC Instructions with
respect to the Postcondition Q.
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omit the sizes of the memory locations. For example, [ra+Opnd] represents the

value stored in the address “ra+Opnd”; the weakest liberal precondition of Q with

respect to the load instruction “ld [ra+Opnd], rd” is Q with all occurrences of rd

replaced with [ra+Opnd]. We will show how to compute the weakest liberal precon-

dition for the store instruction in Section 6.4.2.

To compute the wlp for a natural loop, we define W(0) as the wlp generated by

back-substituting the postcondition Q to be proved until the entry of a loop is

reached, i.e., W(0) = wlp(loop-body, Q), and define W(i+1) as wlp(loop-body, W(i)).

The wlp of the loop is the formula ∧i≥0W(i). We show how to compute the weakest

liberal precondition of a condition with repect to an acyclic code region in

Section 6.4.1.

We use L(j) to denote ∧j≥ i ≥ 0W(i). The induction-iteration method attempts to

find an L(j) that is both true on entry to the loop and a loop invariant (i.e., L(j)

implies wlp(loop-body, L(j))). Suzuki and Ishihata show that this can be estab-

lished by showing:

L(j) is true on entry to the loop, and (Inv.0(j))

L(j) ⊃ W(j+1) (Inv.1(j)).

Their argument runs as follows [84]:

From the assumption that L(j) implies W(j+1), we know that ∧ j≥ i≥ 0W(i)

implies ∧ j ≥ i ≥ 0W(i+1).

Next, we observe that ∧j≥i≥0W(i+1) is equivalent to wlp(loop-body, L(j)):

∧j≥ i ≥ 0 W(i+1) = ∧ j≥ i ≥ 0wlp(loop-body, W(i))

= wlp(loop-body, ∧ j≥ i ≥ 0W(i)) = wlp(loop-body, L(j))
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The induction iteration method, in essence, iterates the following steps: create

the expression L(j) as the current candidate for the loop invariant; generate VCs

for (Inv.0(j)) and (Inv.1(j)); and attempt to verify the VCs using a theorem prover.

Figure 6.2 shows the basic induction-iteration algorithm taken from Suzuki and

Ishihata (rewritten in pseudo code) [84]. The algorithm will perform at most

MAX_NUMBER_OF_ITERATIONS induction steps. As discussed further in

Section 6.6, we have found in practice, that for our situation it is sufficient to set

MAX_NUMBER_OF_ITERATIONS to three.

The reader may be puzzled why the algorithm first tests for inv.1(i-1), and

then tests for inv.0(i). This is because the test inv.0(i-1) that matches the test for

1: Induction_Iteration() : SUCCESS | FAILURE {
2: i=0; Create formula W(0); //Try L(-1)
3: while (i < MAX_NUMBER_OF_ITERATIONS) {
4: case (Theorem_prover((∧i-1 ≥ k ≥ 0W (k)) ⊃ W (i))) { //inv.1(i-1)
5: true: return SUCCESS;
6: otherwise:{ //Try L(i)
7: case (Theorem_prover(wlp(<code-along-path-to-loop-entry>,W(i)))) {//inv.0(i)
8: true: W(i+1)=wlp(loop-body, W(i));
9: i=i+1;
10: otherwise: return FAILURE;
11: }
12: }
13:  }
14: }
15: return FAILURE;
16:}

Figure 6.2 The Basic Induction-Iteration Algorithm.
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inv.1(i-1) is performed in the previous iteration. In the case of L(-1), inv.0(-1)

holds vacuously because L(-1)=∧-1 ≥ i ≥ 0W(i) = true.

6.4  Enhancements to the Induction-Iteration Method

We have made several enhancements to the basic induction-iteration algo-

rithm to handle the SPARC instruction set, store instructions, nested loops, and

procedure calls, and to make the global verification phase more precise and effi-

cient.

6.4.1  Handling the SPARC Machine Language

In this section, we discuss the extensions that are needed to handle the

SPARC instruction set, including delay slots, annulled instructions, and the use

of condition codes.

To handle delay-slot instructions (which are also possibly annulled), we con-

struct the control-flow graph so that the instruction in the delay slot is itself a

basic block. This basic block follows the basic block in which the branch instruc-

tion is the last instruction but precedes the branch target. If the instruction that

precedes the delay-slot instruction has the annul bit set, the respective delay-slot

basic block is included only in the taken path. Otherwise the basic block of the

delayed instruction is replicated and included in both the taken and fall through

paths (see Figure 6.3).

To handle the use of condition codes, we model the SPARC condition code with

a variable icc that holds the result of an appropriate arithmetic operation (e.g. for
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the instruction “cmprs, Opnd”, icc will hold “rs-Opnd” ), and label its exit edges

with conditions for the edges to be taken in the form of “icc relop 0”. relop is a

relational operator, including >, ≥, <, ≤, and =.

We illustrate this with the following code fragment with an annulled branch:

9: cmp %o0, %i2

10: ble,a target

11: add %o1, 1, %l0,

We use the line number (of an instruction) to represent an instruction, and a

sequence of numbers to represent a path. Figure 6.4 illustrates how to compute

the wlp of the condition Q (right before the program point 11) with respect to the

path <9,10,11>. We model the effect of the “cmp”instruction as “icc=%o0-%i2”,

and label the edge that represents the fall through branch <10,11> with the con-

dition {icc > 0}. We have wlp(<10,11>, Q)={icc > 0 ⊃ Q), and wlp(9, icc > 0 ⊃ Q) =

{%o2-%i2> 0 ⊃ Q}.

To compute the wlp for an acyclic code region, the standard technique for veri-

fication-condition generation is used. Figure 6.5 illustrates this with an example

where the condition for a branch to be taken in the indicated direction is enclosed

Figure 6.3 Branch With Delay Slot.

bg

Instruction in Delay Slot

Branch Target Fall through

icc > 0 icc ≤ 0

BRANCH WITHOUT ANNUL BIT SET

bg,a

Instruction in Delay Slot

Branch Target Fall through

icc > 0
icc ≤ 0

BRANCH WITH ANNUL BIT SET

Instruction in Delay Slot
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in curly brackets. During back-substitution, at a control-flow merge point that

has multiple outgoing edges, the conjunction of the conditions for each of the out-

going edge of the junction node is computed first, before performing the back sub-

stitution across the junction node.

Figure 6.4 Handling SPARC Condition Code.

Figure 6.5 Weakest Liberal Precondition for an Acyclic Code Region.

Q

wlp(<10,11>, Q) = {icc > 0 ⊃ Q}

wlp(<9,10,11>, Q)= {%o0-%i2 > 0 ⊃ Q}

WEAKEST LIBERAL PRECONDITION

{ icc> 0}

9: icc=%o0-%i2
10: ble,a Target

CONTROL-FLOW GRAPH

11: add %o1,1,%l0

S1 S2

S3

Q

{C1} {¬ C1}

{C2}

wlp(S3, Q)

wlp(S2, wlp(S3, Q)
wlp(S1, wlp(S3, Q))

C2 ⊃ wlp(S2, wlp(S3, Q))

C1 ⊃ wlp(S1, wlp(S3, Q)) ∧ ¬ C1 ⊃ C2 ⊃ wlp(S2, wlp(S3, Q))

Branch

Code Region

Control-Flow Edge

C1 ⊃ wlp(S1, wlp(S3, Q)) ¬ C1 ⊃ C2 ⊃ wlp(S2, wlp(S3, Q))
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6.4.2  Handling Store Instructions

We compute the wlp of store instructions based on Morris’ general axiom of

assignment [56], which provides a general framework for computing weakest pre-

condition for assignments to pointer-typed variables.

We describe Morris’ general axiom of assignment, and define the weakest lib-

eral precondition for store instructions. Let p and q denote addresses, [p] denote a

pointer dereference, and “ste, [p]” denote storing the result that is produced by

evaluating the expression e into the memory location at address p. (We omit the

sizes of memory locations.) We assume that e does not have side-effects. We define

[q]/p
e as follows:

•Definition 6.1:[q]/p
e ≡ if p=q then e else [q]

Let Q denote an arbitrary postcondition; the axiom for computing the wlp for a

store instruction is

wlp(“ste, [p]”, Q) = Q [[q] \[q] /p
e]

where Q [[q] \([q] /p
e)] stands for Q with every occurrences of [q] in Q replaced by

[q] /p
e. In other words, the weakest liberal precondition of the assignment is Q

with each alias of [p] in Q replaced by e.

One difficulty with analyzing machine-language programs is that determining

whether two addresses are the same cannot be determined, in many cases, until

later during back-substitution. For example, consider the following code fragment

that has both load and store instructions

1: mov %o1, %o2
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2: st %i0, [%o0+%o1]

3: mov %o2, %o3

4: ld [%o0+%o3], %i1

5: {%i0=%i1}.

We want to verify the postcondition {%i0=%i1} at program point 5. Below we

show the result of back-substituting the formula {%i0=%i1} across the four

instructions in the above code fragment. As before, we use the line number (of the

instruction) to represent the instruction.

wlp(4, {%i0=%i1}) = {%i0= [%o0+%o3]}

wlp(3, {%i0 = [%o0+%o3]}) = {%i0 = [%o0+%o2]}

wlp(2, {%i0 = [%o0+%o2]}) = {%i0 = [%o0+%o2]}/(%o0+%o1)
%i0

= {if ((%o0+%o1)=(%o0+%o2)) then {%i0=%i0) else (%i0 = [%o0+%o2])}

wlp(1, {%i0 = [%o0+%o2]}/(%o0+%o1)
%i0)

= {if ((%o0+%o1)=(%o0+%o2)) then {%i0=%i0) else (%i0 = [%o0+%o2])}

= {if ((%o0+%o1)=(%o0+%o1)) then {%i0=%i0) else (%i0 = [%o0+%o2])}

= {%i0=%i0} = true.

Note that the destination address of the store instruction at line 2 is the same

as the source address of the load instruction at line 4. But, this cannot be deter-

mined until we back-substitute the formula across the mov instruction at line 1.

Having multiple store instructions in an instruction sequence further compli-

cates the situation because we will not be able to determine the dependences

among the instructions until the point at which we can disambiguate the

addresses. A store instruction would affect a later load instruction only if it is not
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killed by a later store instruction that is also before the load instruction. Morris’

axiom of concurrent assignment handles this situation.

Let us consider a list of store instructions “ste1, [p1]; ...; st en, [pn]” that is to

be executed sequentially. We use p to denote the list of addresses “p1, ..., pn”, and

e to denote the list of expressions “e1, ..., en”.

For an arbitrary address q, we define

•Definition 6.2:[q] /p
e ≡ if (q = pn) then en

else if (q ≠ pn and q = pn-1) then en-1

....

else if (q ≠ pn and ... and q≠ p2 and q = p1) then e1

else if (q ≠ pn and ... and q ≠ p1) then [q];

With an arbitrary postcondition Q, the axiom for computing the wlp for a list

of store instruction is

wlp(“ste1, [p1]; ..., st en, [pn]”, Q) = Q[[q] \( [q]/p e)]

where Q[[q] \ ([q]/pe)] stands for Q with every occurrence of [q] in Q replaced by

[q]/p e.

6.4.3  Handling Multiple Loops

The basic induction-iteration algorithm assumes that there is only a single

loop in the program. To apply the induction-iteration method to programs with

multiple loops, extensions are needed. To simplify matters, we show extensions to

the basic induction-iteration algorithm for programs with two different kinds of
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loop structures: (i) two consecutive loops, and (ii) two nested loops. All other cases

are combinations of these two cases.

Figure 6.6 illustrates the steps to prove a postcondition Q1 in a program with

two consecutive loops. We assume that S1, S2, and S3 themselves do not contain

loops. To synthesize a loop invariant for the second loop that implies Q1, in each

induction step, we compute W(i) and establish that W(i) is implied by the con-

junction of W(j) (0 ≤ j < i), and that W(i) is true on entry to the second loop. To

establish that W(i) is true on entry to the second loop, we may need to apply

induction-iteration method recursively to the first loop. That is, we may need to

synthesize a loop invariant for the first loop for each W(i) generated for the sec-

ond loop. For example, to verify that W(i) is true on entry to the second loop, we

Figure 6.6 Applying the Induction Iteration Method to Two Consecutive Loops.

C1

C2

S1

S2

Q1

W(0)=¬ C1 ⊃ Q1

S3

Q2=wlp(S3, W(i))

F

F

Inv (Inv implies ¬ C2 ⊃ Q2)while C2 do S2;

S3;

while C1 do S1;

{Q1}

PROGRAM TEXT CONTROL-FLOW GRAPH

Test

Statement

Control-Flow Edge

W(i+1)=C1 ⊃ wlp(S1, W(i))
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may need to synthesize a loop invariant Inv for the first loop, and Inv should

imply the condition ¬ C2 ⊃ Q2.

Figure 6.7 illustrates the steps needed to prove a postcondition Q1 in a pro-

gram with two nested loops. Again, we assume that S1, S2, and S3 themselves do

not contain loops. To compute W(i+1) for the outer loop from W(i), we need to use

the induction-iteration method to synthesize a loop invariant Inv for the inner

loop that has the property “Inv∧ ¬ C2 ⊃ wlp(S3, W(i))”. Once Inv is synthesized,

W(i+1) can be computed (in this case) using the formula C1 ⊃ wlp (S2, Inv). More-

over, given the way W(i+1) is obtained, W(i+1) being true on entry to the outer

loop implies that Inv is true on entry to the inner loop. This indicates that there is

no need to prove explicitly that Inv is true on entry to the inner loop. This makes

synthesizing Inv local to the inner loop.

In our implementation, the extended induction-iteration algorithm also

employs a backtracking strategy for finding W(i) at each induction step to over-

come a problem that results from the weakening of the formula due to irrelevant

conditionals in the program, and to apply a strategy called generalization (see

Sectons 6.4.5 and 6.4.6). To use backtracking when synthesizing Inv, in the case

of computing a wlp for an inner loop due to the synthesis of a loop invariant for an

outer loop, instead of naïvely testing that W(i) of the inner loop is true on entry to

the loop (a process that may never terminate), we record the current trial invari-

ant L(j) of the outer loop, and first try to verify that L(j) implies W(i). If that fails,

we test if W(i) is true on entry to the inner loop by disregarding all back edges

along the paths from the entry of the program to the entry of the inner loop (i.e.,
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by treating the part of the program from the entry to the entry to the inner loop

as if it were acyclic). These weak tests provide a means to drive the backtracking

process when synthesizing invariants for an inner loop. This does not affect the

soundness of our technique because each W(i) of the outer loop is computed by

back-substituting the respective invariant synthesized in the inner loop, and our

analysis will verify that each W(i) of the outer loop is true on entry to the outer

loop.

6.4.4  Handling Procedure Calls

Procedure calls complicate the induction-iteration method in three ways: (i)

handling a procedure call when performing a back-substitution, (ii) reaching the

Figure 6.7 Applying the Induction Iteration Method to Two Nested Loops.

W(0) =¬ C1 ⊃ Q1

Inv

W(i)

Q1

C1

C2

S1
Q2 = wlp(S3, W(i))

S2

S3

W(i+1) = C1 ⊃ wlp(S2, Inv)
T

T

while C1 do

PROGRAM TEXT

Test

Statement

Control-Flow Edge

CONTROL-FLOW GRAPH

begin

end

S2;

while C2 do S1;

S3;
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procedure entry before we can prove or disprove a condition, and (iii) recursion.

To handle procedure calls during back-substitution, we simply walk through the

body of the callee as though it is inlined in the caller; this will generate a wlp for

the callee function with respect to the postcondition that is propagated to the

callsite. To make VC generation more efficient for procedural calls, we could do

tabulation at procedure calls to reuse previous results of VC generation. When we

reach the entry of a procedure, we check that the conditions are true at each

callsite by using these conditions as postconditions to be proven at each of the

caller. To simplify matters, our present system detects and rejects recursive pro-

grams. In principle, we could use the induction-iteration method to synthesize

invariant entry conditions for recursive functions as we do for loops.

6.4.5  Strengthening the Formulae

Certain conditionals in the program can sometimes weaken L(j) to such an

extent that it is prevented from becoming a loop invariant. For example, for the

simple code fragment in Figure 6.8 that has two consecutive loops, we show how

we fail to prove that the index variable i is greater than or equal to zero at pro-

gram point 6. To verify {i ≥ 0} at program point 6, the induction-iteration method

will produce {i< j ⊃ i ≥ 0} as W2(0) for the second loop. (We use a subscript to dis-

tinguish the W(i) produced for the first loop from those produced for the second

loop.) To verify that W2(0) is true on entry to the second loop, we need to synthe-

size a loop invariant for the first loop. (To simplify things, we are ignoring the test

at program point 3.) The W1(0) produced for the first loop is {i< j ⊃ i ≥ 0}, and
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W1(1) is {i<(j+1) ⊃ i ≥ 0}. The induction-iteration method will fail to synthesize a

loop invariant for the first loop because W1(i) is strengthened after each induction

step of induction iteration. For example, W1(0) is {i ≥ j ∨ i ≥ 0}, whereas W1(1) is {

i ≥ (j+1) ∨ i ≥ 0}, which is stronger than W1(0).

To address this problem, we strengthen L(j) by computing the disjunctive nor-

mal form of wlp(loop-body, W(i-1)), and trying each of its disjuncts as W(i) in turn.

We rank the candidates according to a simple heuristic (by comparing the dis-

juncts with the original formula propagated to the same program point without

Figure 6.8 Conditionals in a program can sometimes weaken L(j) to such an extent
that it is prevented from becoming a loop-invariant.

1: i=0

5:i < j

6: a[i]=b[i]

7: i=i+1

T
{i ≥ 0}

{i<n ⊃ i ≥ 0}

W2(0) ={i<j ⊃ i ≥ 0}

2:j=0

3:b[j]=0

4: j = j+1

W1(0) ={i<j ⊃ i ≥ 0} W1(1) ={i<(j+1) ⊃ i ≥ 0}

Induction Step 1: Induction Step 2:

thesis.fm  Page 98  Tuesday, December 19, 2000  11:00 AM



99

considering the conditionals) and test the potential candidates for W(i) using a

breadth-first strategy. For the example shown in Figure 6.8, it is easy to verify

that {i ≥ 0} (one of the disjunct of {i<j ⊃ i ≥ 0}) is a loop invariant for the first loop.

Figure 6.9 shows the extended induction-iteration algorithm with the breath-

first search strategy. The algorithm uses a worklist to hold the candidates. Each

item in the worklist has three components: i, f, and prev. The component f is the

formula that is the tentative W(i). The component prev provides a backward link

to obtain the respective W(k), ( i-1 ≥ k ≥ 0) for the W(i) that is represented by f.

Given a formula, the function Get_Disjuncts returns the set of formulae that are

the disjuncts of the disjunctive normal form of the formula.

6.4.6  Incorporating Generalization

The breath-first strategy of the extended induction-iteration algorithm also

incorporates a technique called generalization, also introduced by Suzuki and

Ishihata [84]. The generalization of a formula f is defined as “¬(elimination(¬f)).”

Elimination uses the Fourier-Motzkin variable-elimination method to eliminate

variables from the set of variables in ¬f to generate a simplified set of constraints

that has the same integer solution as f. If there are several resulting generaliza-

tions, then each of them in turn is chosen to be the generalized formula. We will

show how generalization is applied to our running example in Section 6.5.

6.4.7  Controlling the Sizes of the Formulae

The conditionals in a program can cause the formula under consideration to

grow exponentially in size during verification condition generation. To reduce this
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typedef struct node {
i: int;
f: Presburger_Formula;
prev: node ptr

};
W: Presburger_Formula [MAX_NUMBER_OF_ITERATIONS+1];
worklist: list of node ptr;
Get_Disjuncts: Presburger_Formula → set of Presburger_Formua

1: Induction_Iteration(Q) : SUCCESS | FAILURE {
2: F = Get_Disjuncts(wlp(loop-body, Q));
3: foreach (f ∈ F) worklist.append(node(0, f, NULL));
4: while (worklist is not empty) {
5: p = worklist.get();
6: i=p.i;
7: W[i] = p.f;
8: np=p.prev; k=i-1;
9: while (k ≥ 0) {
10: W[k] = np.f; np=np.prev; k--;
11: }
12: case (Theorem_prover((∧i-1 ≥ k ≥ 0W (k)) ⊃ W (i))) { //inv.1(i-1)
13: true: return SUCCESS;
14: otherwise:{ //Try L(i)
15:  if (i < MAX_NUMBER_OF_ITERATIONS) {
16: if (Theorem_prover(wlp(<code-along-path-to-loop-entry>,W(i)))) {//inv.0(i)
17: F = Get_Disjuncts(wlp(loop-body, W(i)));
18: i=i+1;
19: foreach (f ∈ F) worklist.append(node(i, f, p));
20: } //if
21: } //if
22: }
23: }//switch
24 }//while
25 return FAILURE;
26:}

Figure 6.9 The Induction-Iteration Algorithm using Breath-fir st Sear ch.
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effect, back-substitution over a code region is performed in backwards topological

order (with respect to the program’s control-flow graph), and the formula at each

junction point is simplified. This strategy effectively controls the size of the for-

mulas considered, and ultimately the time that is spent in the theorem prover.

6.4.8  Sharing Common Computations

To reduce the number of times the induction-iteration algorithm is performed,

we back-substitute all formulas to be proven until they reach a loop entry. We

partition the formulae into groups that are made of comparable constituents, and

invoke the induction-iteration algorithm starting from the strongest formulas in

each group. If we can verify that a stronger formula is true, this implies that all

formulae that are weaker than the formula are true.

6.4.9  Performing Simple Tests Assuming Acyclic Code Fragment

In a program that has many consecutive loops, to verify that each W(i) is true

on entry to a later loop, we may need to synthesize loop invariants for each of the

earlier loops. This must be done for conditions that eventually become part of the

synthesized loop invariant, but it will be a waste effort for the conditions that will

be rejected. To reduce this effect, for each candidate W(i), before we go into the

expensive process of verifying that it is true on entry to the loop, we perform a

simple test that treats the part of the program from the entry of the program to

the entry of the loop as if it were acyclic. Performing this simple test allows us to

handle a test case (a kernel device driver) that we cannot handle otherwise.
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6.5  Example

Here we illustrate how the induction-iteration method is applied in our run-

ning example (first introduced in Figure 3.1 in Section 3.4). The control-flow

graph of the program is shown in Figure 6.10. The instructions at lines 5 and 11

are replicated to model the semantics of delayed branches. We use a single inte-

ger variable icc to model the SPARC condition code and label each control-flow

graph edge with the condition for that edge to be taken. Like before, we use the

line number of an instruction to denote the instruction, and a sequence of line

numbers within square brackets to represent a path.

To verify that “%g2< 4n” holds at line 7, we perform back-substitution, start-

ing with “%g2< 4n”. Back-substituting this condition across line 6 produces “%g3

Figure 6.10 Induction Iteration: Example.

6: sll %g3,2,%g2
7: ld [%o2+%g2],%g2
8: inc %g3
9: cmp %g3,%o1
10:bl 6

1: mov %o0,%o2
2: clr %o0
3: cmp %o0,%o1
4: bge 12

5’: clr %g3

11: add %o0,%g2,%o0

12: retl
13: nop

5: clr %g3

11’: add %o0,%g2,%o0

{icc ≥ 0} {icc  < 0}

{icc < 0}{icc ≥ 0}
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< n”. Since the instruction at line 6 is the entry of a natural loop, we attempt to

synthesize a loop invariant that implies “%g3 < n”.

We set W(0) to “%g3 < n”. Since W(0) is not a tautology, we need to verify that

W(0) is true on entry to the loop and to create the formula for W(1). The fact that

W(0) is true on entry to the loop can be shown by back-substituting W(0) along

the path <5’,4,3,2,1>. To create W(1), we perform back-substitution through the

loop body, starting with the formula “%g3 < n”, until we reach the loop entry

again:

wlp(11’, “%g3 < n”) = “%g3 < n”

wlp(<11’,10>, “%g3 < n”) = “icc < 0 ⊃ %g3 < n”

wlp(<10,9>, “icc < 0 ⊃ %g3 < n”) = “%g3 < %o1 ⊃ %g3 < n”

wlp(8, “%g3 < %o1 ⊃ %g3 < n”) = “%g3+1 < %o1 ⊃ %g3+1 < n”

wlp(<7,6>, “%g3+1 < %o1 ⊃ %g3+1 < n”) = “%g3+1 < %o1 ⊃ %g3+1 < n”

Thus, W(1) is the formula “%g3+1 < %o1 ⊃ %g3+1 < n”.

Unfortunately, W(0) ⊃ W(1) is not a tautology. Instead of continuing by creat-

ing W(2) etc., we strengthen W(1) using the generalization technique mentioned

in Section 6.3. The steps to generalize W(1) are as follows: (i) negating “%g3+1 <

%o1 ⊃ %g3+1 < n” produces “%g3+1 < %o1 ∧ %g3+1 ≥ n”; (ii) eliminating %g3 pro-

duces “%o1 > n”; (iii) negating “%o1 > n” produces “%o1 ≤ n”. Consequently, we set

W(1) to be the generalized formula “%o1 ≤ n”.

It is still the case that W(0) ⊃ W(1) is not a tautology, but now the formula

that we create for W(2) (by another round of back-substitution) is “%o1 ≤ n”. (The
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variables %o1 and n are not modified in the loop body.) We now have that W(0) ∧

W(1) implies W(2).

By this means, the loop invariant synthesized for line 6 is “%g3 < n ∧ %o1 ≤ n”.

This invariant implies that “%g3 < n” holds at line 6, which in turn implies that

“%g2 < 4n” holds at line 7.

6.6  Scalability of the Induction-Iteration Method and Potential
Improvements

In this section, we address the scalability of the verification phase and discuss

other potential improvements to our enhanced induction-iteration method.

One major cost of the verification phase is from performing the induction-iter-

ation method, whose cost is determined by the number of iterations that have to

be performed before an invariant is identified. The cost of an iteration step of the

induction-iteration method is determined by the cost to perform VC generation

and to invoke the theorem prover, and the cost to invoke the theorem prover is

the dominate one. These costs are ultimately determined by the characteristics of

the untrusted code. From our experience, it seems to be sufficient to set the maxi-

mum allowable number of iterations to three for each loop. The intuition behind

this number is as follows: the first iteration will incorporate the conditionals in

the loop into L(1), the second iteration will test if L(1) is already a loop invariant.

No new information will be discovered beyond the second iteration.

Given that we limit the number of induction steps for each loop to three, and

assume that there are n loops in the program, the worst-case scenario would
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require 3n induction steps to verify a safety condition. Consider a program that

has n consecutive loops. The worst-case scenario happens if verifying that each

W(i) is true on entry to a loop requires that we synthesize a loop invariant for its

preceding loop; the same situation also happens at each preceding loop. The

worst-case scenario could also happen for a program that contains n nested loops,

if to compute a W(i+1) from a W(i) requires the synthesis of loop invariants for

the inner loops. In practice, the worst-case scenario will seldom happen because

the variables that are used in a loop are usually initialized right before the loop

(hence, there is no need to go across the preceding loops to verify that a W(i) is

true on entry to a loop). Furthermore, the tests in the inner loops usually do not

contribute to the proof of a condition for an outer loop.

Besides the enhancements that were described in the previous section, there

are a few enhancements that can, in principle, be made to our existing prototype:

• The first would be to employ caching in the theorem prover: we can represent

formulas in a canonical form and use previous results whenever possible.

• The second would be to perform tabulation at function calls or at nodes that

have multiple incoming edges, and to reuse previous results of VC generation.

• The third would be to use more efficient algorithms for simple formulas. Sev-

eral people have described methods that trade the generality of the constraint

system for better efficiency. Bodik at al [10] describe a method to eliminate

array-bounds checks for Java programs. Their method uses a restricted form

of linear constraints called difference constraints that can be solved using an

efficient graph-traversal algorithm on demand. Wagner et al [91] have formu-

lated the buffer-overrun detection problem as an integer constraint problem

that can be solved in linear time in practice.
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• Finally, it might be profitable to use other invariant-synthesis methods in con-

junction with induction iteration.

We chose to use the induction-iteration method to synthesize loop invariants

because it works well for linear constraints and is totally mechanical. It is con-

ceivable that we could use other techniques, such as the heuristic methods intro-

duced by Katz and Manna [43] and Wegbreit [92], the difference equations

method introduced by Elspas et al [25], or abstract interpretation using convex

hulls described by Cousot and Halbwachs [21].

Cousot and Halbwachs’ method works forward on a program’s control-flow

graph. It has the potential to speed up the induction-iteration method by pushing

the facts forward in the program’s control-flow graph. Our preliminary investiga-

tion demonstrated substantial speedups in the induction-iteration method by

selectively pushing conditions involving array bounds forward in the program’s

control-flow graph. We will describe a symbolic range analysis for array-bounds

checking in the next section. This symbolic range analysis is simpler than the

method of Cousot and Halbwachs, but is more efficient.

6.7  Range Analysis

The induction-iteration method we have described in the previous sections

and techniques such as those described by Cousot and Halbwachs [21] are quite

powerful, but have a high cost. Here, we describe a simple range analysis that

determines safe estimates of the range of values that each register can take on at

each program point [86]. This information can be used for determining whether
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accesses on arrays are within bounds. We take advantage of the synergy of the

efficient range analysis and the expensive but powerful induction-iteration

method. We apply the induction-iteration method only for the global safety pre-

conditions that cannot be proven just by using the results of range analysis.

The range-analysis algorithm that we use is a standard worklist-based for-

ward dataflow algorithm. It finds a symbolic range for each register at each pro-

gram point. In our analysis, a range is denoted by [l, u], where l and u are lower

and upper bounds of the form ax+by+c (a, b, and c are integer constants, and x

and y are symbolic names that serve as placeholders for either the base address

or the length of an array). The reason that we restrict the bounds to the form

ax+by+c is because array-bounds checks usually involve checking either that the

range of an array index is a subrange of [0, length-1], or that the range of a

pointer that points into an array is a subrange of [base, base+length-1], where

base and length are the base address and length of the array, respectively. In the

analysis, symbolic names such as x and y stand for (unknown) values of quanti-

ties like base and length.

Ranges form a meet semi-lattice with respect to the following meet operation:

for ranges r=[l, u], r’=[l’, u’], the meet of r and r’ is defined as [min(l, l’), max(u,

u’)]; the top element is the empty range; the bottom element is the largest range

[−∞, ∞]. The function min(l, l’) returns the smaller of l and l’. If l and l’ are not

comparable (i.e., we cannot determine the relative order of l and l’ because, for

instance, l=ax+by+c, l’=a’x’+b’y’+c’, x≠x’, and y≠y’), min returns −∞. The function
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max is defined similarly except that it returns the greater of its two parameters,

and ∞ if its two parameters are not comparable.

We give a dataflow transfer function for each machine instruction, and define

dataflow transfer functions to be strict with respect to the top element. We intro-

duce four basic abstract operations, +, −, ×, and ÷, for describing the dataflow

transfer functions. The abstract operations are summarized below, where n is an

integer:

[l, u] + [l’, u’] = [l  +− l’, u ++ u’]

[l, u] − [l’, u’] = [l −− u’, u −+ l’]

[l, u] × n = [l × n, u × n]

[l, u] ÷ n = [l ÷ n, u ÷ n]

The arithmetic operations ++, +−, −+, −− over bounds ax+by+c and a’x’ + b’y’+c’

are given in Figure 6.11, where a, b, a’, and b’ are non-zero integers. These arith-

metic operations ensure that the bounds are always of the form ax+by+c.

Comparison instructions are a major source of bounds information. Because

our analysis works on machine code, we need only consider tests of two forms: w

OPERATIONS
x=x’, y=y’ x=x’, y≠y’ x≠x’, y=y’

x≠x’,
y≠y’

++
(a+a’)x+(b+b’)y+c+c’

if (a+a’)=0, by+b’y’+c+c’
otherwise, ∞

if (b+b’)=0, ax+a’x’+c+c ’
otherwise, ∞

∞

+−
if (a+a’)=0, by+b’y’+c+c’
otherwise, −∞

if (b+b’)=0, ax+a’x’+c+c ’
otherwise, −∞

−∞

−+
(a−a’)x+(b−b’)y+c−c’

if (a−a’)=0, by−b’y’+c −c’
otherwise, ∞

if (b−b’)=0, ax−a’x’+c −c’
otherwise, ∞

∞

−−
if (a−a’)=0, by−b’y’+c −c’
otherwise, −∞

if (b−b’)=0, ax−a’x’+c −c’
otherwise, −∞

−∞

Figure 6.11 Binary Operations over Symbolic Expressions.
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≤ v and w = v (where w and v are program variables). Figure 6.12 summarizes the

dataflow transfer functions for these two forms. We assume that the ranges of w

and v are [lw, uw] and [lv, uv] before the tests.

The function min1(l, l’) and max1(l, l’) are defined as follows:

If an upper bound of a range is smaller than its lower bound, the range is equiva-

lent to the empty range. For the dataflow functions for variables w and v along

the false branch of the test w=v, we could improve precision slightly by returning

the empty range when lw, uw, lv, and uv are all equal.

To ensure the convergence of the range-analysis algorithm in the presence of

loops, we perform a widening operation at a node in the loop that dominates the

source of a loop backedge. Let r=[l, u] be the range of an arbitrary variable x at

the previous iteration and r’=[l’, u’] be the dataflow value of x at the current itera-

tion. The resulting range will be r’’= r ∇ r’ where ∇ is the widening operator

defined as follows:

TEST w v

w = v
TRUE BRANCH [max1(lw, lv), min1(uw, uv)] [max1(lv, lw ), min1(uv, uw)]

FALSE BRANCH [lw, uw] [lv, uv]

 w ≤ v
TRUE BRANCH [lw, min1(uw, uv)] [max1(lv, lw), uv]

FALSE BRANCH [max1(lw, lv+1), uw] [lv, min1(uv, uw-1)]

Figure 6.12 Dataflo w Functions f or Tests.

min1(l, l’)= {min(l, l’) if comparable(l,l’ )
and max1(l, l’)= {max(l, l’) if comparable(l,l’ )

l otherwise l otherwise

[l,u]∇ [l’, u’] = [l’’, u’’], where l’’ = { −∞ if ( l’<l )
and u’’= {∞ if (u’>u)

l otherwise u otherwise
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We sharpen the basic range analysis with two enhancements. The first

enhancement deals with selecting the most suitable spot in a loop to perform wid-

ening. The key observation is that for a “do-while”loop (which is the kind that

dominates in binary code1), it is more effective to perform widening right before

the test to exit the loop. In the case of a loop that iterates over an array (e.g.,

where the loop test is “i < length”) this strategy minimizes the imprecision of our

relatively crude widening operation: the range for i is widened to [0, +∞] just

before the loop test, but is then immediately sharpened by the transfer function

for the loop test, so that the range propagated along the loop’s backedge is [0,

length-1]. Consequently, the analysis quiesces after two iterations. The second

enhancement is to utilize correlations between register values. For example, if

the test under consideration is r < n and we can establish that r = r’+c at that pro-

gram point, where c is a constant, we can incorporate this information into the

range analysis by assuming that the branch also tests r’<n-c.

6.7.1  An Example of Range Analysis

We now show how the range analysis is applied in our running example. In

Figure 6.13, the left column shows the untrusted code that sums the elements of

an integer array, the right columns show the results of range analysis. Each line

1. Although “while”and “for”loops are more common in source code, compilers typically
transform them into an “if” with a “do-while”in the “then-part”of the “if”. After this
transformation has been done, the compiler can exploit the fact that the code in the
body of the “do-while”will always be executed at least once if the loop executes. Thus, it
is possible to perform code-motion without the fear of ever slowing down the execution
of the program. In particular, the compiler can hoist expressions from within the body
of the loop to the point in the “then-part”just before the loop, where they are still
guarded by the “if”.
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shows the range of the registers after the execution of the instruction in the corre-

sponding line. To simplify the presentation, we show only how the range informa-

tion is propagated for three registers %o1, %g2 and %g3. (Recall that the base

address of the array is passed to register %o0, and the size of the array is passed

to register %o1.) Because the size of the array is n, and it is passed through %o1,

the range of %o1 is [n, n] on entry to the untrusted code.

When the instructions are first visited, interpreting the clr instruction at line

5 sets %g3 to [0,0], interpreting the sll instruction at line 6 sets %g2 to [0,0], and

interpreting the inc instruction in line 8 increments %g3 to [1,1]. Interpreting

the branch instruction in line 9 sets the range of %g3 to [1,1] along the taken

path. When the instructions are visited the second time, the range of %g3 is set to

[0,1], which is the result of performing a meet of the range of %g3 propagated

UNTRUSTED CODE PASS 1 PASS 2 PASS 3

%o1 %g2 %g3 %g2 %g3 %g2 %g3

1: mov %o0,%o2 [n,n] [-∞,∞] [-∞,∞]

2: clr %o0 [n,n] [-∞,∞] [-∞,∞]

3: cmp %o0,%o1 [n,n] [-∞,∞] [-∞,∞]

4: bge 12 [n,n] [-∞,∞] [-∞,∞]

5: clr %g3 [n,n] [-∞,∞] [0,0]

6: sll %g3, 2,%g2 [n,n] [0,0] [0,0] [0,4] [0,1] [0, 4n-4] [0,n-1]

7: ld  [%o2+%g2],%g2 [n,n] [-∞,∞] [0,0] [-∞,∞] [0,1] [-∞,∞] [0,n-1]

8: inc %g3 [n,n] [-∞,∞] [1,1] [-∞,∞] [1,2] [-∞,∞] [1,n]

9: cmp %g3,%o1 [n,n] [-∞,∞] [1,1] [-∞,∞] [1,2] [-∞,∞] [1,n]

10:bl 6 [n,n] [-∞,∞] [1,1] [-∞,∞] [1,∞] [-∞,∞] [1,∞]

11:add %o0,%g2,%o0 [n,n] [-∞,∞] [1,1] [-∞,∞] [1,n-1] [-∞,∞] [1,n-1]

12:retl [n,n] [-∞,∞] [1,1] [-∞,∞] [0,∞] [-∞,∞]

13:nop [n,n] [-∞,∞] [1,1] [-∞,∞] [0,∞] [-∞,∞]

Figure 6.13 Symbolic Range Analysis Applied to our Running Example.
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along the edge <5, 6> and the range of %g3 propagated along the edge <11, 6>.

Interpreting the inc instruction at line 8 sets the range of %g3 to [1, 2]. We per-

form a widening operation at line 9, and this brings the range of %g3 to [1, ∞].

(Note that [1,1] ∇ [1,2] = [1, ∞].) Interpreting the branch instruction at line 9

along the taken path sets the range of %g3 to [1, n-1]. In the third pass, the range

of %g3 at line 6 becomes [0, n-1]. This is the result of performing a meet of the

range [0,0] propagated along the edge <5,6> with the range [1,n-1] propagated

along the edge <11, 6>. This causes the range of %g2 to be set to [0, 4n-4]. The

algorithm then terminates because a fixed point has been reached. Knowing that

the range of %g2 is [0, 4n-4] implies that %g2 is within the bounds of the array.

This indicates that we do not have to use the induction-iteration method to prove

that all array accesses are within bounds for this example. In Section 7.2, we

show how the range analysis can actually speed up the global-verification phase

for a few test cases.
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Chapter 7

Experimental Evaluation

We present experimental evidence to demonstrate that our technique to

enforce safe code execution is both feasible and practical. We describe a prototype

implementation of our safety-checking analysis, and present our initial experi-

ence with it in which the prototype has been applied to a few case studies.

7.1  Prototype Implementation

All of the techniques described in the previous chapters, with the exception of

the technique to infer sizes and types of local arrays (see Section 4.5), have been

implemented in a prototype safety-checker for SPARC machine programs. The

safety checker takes untrusted binary code that is in the form of executable or

object files. It checks whether the untrusted code obeys the default safety condi-

tions and the host-specified access policy, and reports reasons why it is unsafe if

the code has safety violations.

Although the safety checker is implemented for SPARC machine language

programs, the techniques embodied in it are essentially language independent.
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As an alternative to reimplementing it for another language, it might be possible

to employ binary translation techniques to achieve platform independence. That

is, for untrusted code that is not written in SPARC machine language, we could

first translate the untrusted code into semantically equivalent SPARC code

before performing safety checking.

Figure 7.1 shows the flow chart of our prototype implementation. We recapitu-

late the five phases of our safety-checking analysis, and mention some details

that have been left out of the previous chapters.

The preparation phase produces the initial annotation (the initial memory

state at the entry of the untrusted code) and an interprocedural control-flow

graph. To produce an interprocedural control-flow graph, our analysis identifies

the boundaries of each function using symbol table information. Starting with the

start function of the untrusted code, it dissembles each instruction, identifies the

basic blocks, and builds intraprocedural control-flow graphs for all functions that

are reachable from the start function. It identifies the targets of call instructions

to build a static call graph. To find the targets of calls through registers, a simple

intraprocedural constant propagation algorithm is performed. At the end, an

interprocedural control-flow graph is produced based on the intraprocedural con-

trol-flow graphs and the static call graph. Note that the interprocedural control-

flow graph could be incomplete. It will be refined during the typestate-propaga-

tion phase when typestate information becomes available. For example, with

interface-based programming [51], the addresses of interface functions are typi-

cally stored in a structure. Calling an interface function typically involves a load
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Figure 7.1 Prototype Implementation for SPARC Machine Language.
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from the structure followed by a call through the register that holds the loaded

value. The typestate of the loaded value, which provides the information about

the callee, is not known before typestate-propagation is performed.

Besides the interprocedural control-flow graph and the initial annotation, the

preparation phase also identifies natural loops and loop-nesting relationships.

This information is used later by the global-verification phase. To identify the

natural loops in a program, we implemented the algorithm developed by Len-

gauer and Tarjan for computing dominators and the algorithm Nat_Loop (both

algorithms are described in Muchnick’s book [61]). A node n in the control-flow

graph is a dominator of a node m if all control-flow paths that reach node m from

the entry of the function (that contains m and n) go through the node n. The algo-

rithm Nat_Loop identifies a natural loop given a back edge (i.e., a control-flow

edge whose target node dominates its source node). To reduce the number of nat-

ural loops that the global-verification phase has to analyze, our implementation

merges natural loops whose back edges share the same target node. This is

important because otherwise our analysis will have to treat them as nested loops,

which are more expensive to analyze.

The typestate-propagation phase finds a safe approximation of the memory

state at each program point. Our implementation replicates functions during the

analysis to achieve some degree of context sensitivity: If the analysis finds that a

parameter of a function could be pointing to arrays of different sizes, the function

will be replicated so that in each copy the parameter points to only to arrays of

one size.
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For untrusted code that accesses structures that have multiple array-typed

fields, we may need the bounds information of pointers or index variables to fig-

ure out to where a pointer points inside a structure. For this purpose, we run a

simple range analysis on demand if such a situation arises. The simple range

analysis is executed at most once for each procedure.

In our implementation, we have combined the annotation phase and the local

verification phase to check the local safety conditions right after it is annotated.

The global-verification phase takes advantage of the synergy of range analysis

and the induction-iteration method. We represent the results of range analysis as

facts to be used by the induction-iteration method.

7.2  Case Studies

We now present our initial experience in which the system has been applied to

a few case studies. The test cases we use include array sum (which has been used

as the running example in previous chapters), start-timer and stop-timer code

taken from Paradyn’s performance-instrumentation suite [53], two versions of

Btree traversal (one version compares keys via a function call), hash-table

lookup, a kernel extension that implements a page-replacement policy [80], bub-

ble sort, two versions of heap sort (one manually inlined version and one interpro-

cedural version), stack-smashing (example 9.b described in Smith’s paper [77]),

MD5Update of the MD5 Message-Digest Algorithm [71], a few functions from

jPVM [42], and the device driver /dev/kerninst [85] that comprises two modules:

/dev/kerninst/symbol and /dev/kerninst/loggedWrites.
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The stack-smashing program is a sample program that demonstrates how to

take advantage of the vulnerability of the UNIX system; the intruder gains

access to the system by overrunning the contents of the stack in a way that

causes control to subsequently be transferred to the intruder’s code. The MD5

Message-Digest Algorithm takes as input a message of arbitrary length and pro-

duces as output a 128-bit “fingerprint” or “messagedigest” of the input. It is

intended for digital-signature applications, where a large file must be “com-

pressed” in a secure manner before being encrypted with a private (secret) key

under a public-key cryptosystem such as RSA. jPVM is a Java native interface to

PVM for the Java platform. Java Native Interface (JNI) is a native-programming

interface that allows Java code that runs inside a Java Virtual Machine to inter-

operate with applications and libraries written in other programming languages,

such as C, C++, and assembler [41]. In the jPVM example, we verify that calls

into JNI methods and PVM library functions are safe, i.e., they obey the safety

preconditions. /dev/kerninst is a device driver that can be installed in a Solaris

kernel to allow the kernel instrumentation tool kerninst to modify a running ker-

nel on-the-fly. The module /dev/kerninst/symbol provides the API for parsing the

kernel symbol table, and the module /dev/kerninst/loggedWrites allows recover-

able modifications to be made to (the instructions or data of) a run-time kernel. In

our experimental study, we check the API function kerninst_symtab_do in the

/dev/kerninst/symbol module, and the API function loggedWrites::perfor-

mUndoableAlignedWrites in the /dev/kerninst/loggedWrites module. These are

the major functions in the two modules. All examples are written in C or C++. All
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except the two /dev/kerninst example are compiled with gcc -O (version 2.7.2.3);

the two dev/kerninst examples are compiled with Sun Workshop Compiler 5.0.

Figure 7.2 characterizes the examples in terms of the number of machine

instructions, number of branches, number of loops (total versus number of inner

loops), number of calls (total versus number of calls to trusted functions), number

of global safety conditions (total versus the number of bounds checks), and the

source language in which each test case is written. We treat the checking of the

lower and upper bounds as two separate safety conditions. A trusted function is

either a host function or a function that we trust. We check that calls to a trusted

function obey the corresponding safety preconditions of the function.

In our experiments, we were able to find a safety violation in the example that

implements a page-replacement policy—it attempts to dereference a pointer that

could be NULL—and we identified all array out-of-bounds violations in the stack-

S
U

M

P
A

G
IN

G

P
O

L
IC

Y

S
TA

R
T

T
IM

E
R

H
A

S
H

B
U

B
B

L
E

S
O

R
T

S
TO

P

T
IM

E
R

B
T

R
E

E

B
T

R
E

E
2

H
E

A
P

S
O

R
T

2
H

E
A

P

S
O

R
T

JP
V

M

S
TA

C
K

-
S

M
A

S
H

IN
G

JP
V

M
2

/D
E

V
/K

E
R

N
IN

S
T

/S
Y

M
B

O
L

/D
E

V
/K

E
R

N
IN

S
T

/L
O

G
G

E
D

W
R

IT
E

S

M
D

5

INSTRUCTIONS 13 20 22 25 25 36 41 51 71 95 157 309 315 339 358 883

BRANCHES 2 5 1 4 5 3 11 11 9 16 12 89 16 45 36 11

LOOPS

(INNER LOOPS)
1 2 (1) 0 1 2 (1) 0 2 (1) 2 (1) 4 (2) 4 (2) 3 7(1) 3 6(4) 6 5(2)

PROCEDURE CALLS

(TRUSTED CALLS)
0 0

1
(1)

1
(1)

0
2

(2)
0

4
(4)

3 0
21

(21)
2

40
(40)

36
(25)

48
(12)

6

GLOBAL

CONDITIONS

(BOUNDS CHECKS)

4
(2)

9 13
15
(2)

16
(8)

17
35

(14)
39

(14)
56

(26)
84

(42)
49

(18)
100
(74)

99
(18)

116
(42)

192
(40)

121
(30)

SOURCE

LANGUAGE
C C C C C C C C C C C C C C++ C++ C

Figure 7.2 Characteristics of the Examples and Performance Results.
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smashing example and the symbol table module of /dev/kerninst. Figure 7.3 sum-

marizes the time needed to verify each of the examples on a 440MHz Sun Ultra

10 machine. The times are divided into the times to perform typestate propaga-

tion, create annotations and perform local verification, perform range analysis,

and perform program verification using the induction-iteration method. The time

to check these examples ranges from about less than a second to about 30 sec-

onds.

The performance results for the /dev/kerninst/loggedWrites example were

obtained based on a preliminary implementation of two new features (see

Section 7.3.2 and Section 7.3.3 for the details). These features allow the analysis

to handle the meet of array types of different sizes with better precision, and to

account for the correlations among the induction variables in a loop when per-

forming array bounds checks. Without these new features, the analysis would

generate some false warnings about array out-of-bounds violations when check-
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Figure 7.3 Performance Results.
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ing the /dev/kerninst/loggedWrites example. The /dev/kerninst/loggedWrites

example takes longer time to check than the other test cases largely because the

implementation of the new features is very preliminary with a goal to minimize

the changes made to the existing infrastructure. The implementation was not

sufficiently complete for a full test of its abilities to be made. Also note that,

besides /dev/kerninst/loggedWrites, stack-smashing and /dev/kerninst/symbol

also take longer times to check than the other examples. This is because that they

have array out-of-bounds violations. We have to exhaust the breadth-first search

of the induction-iteration method before we can conclude that an array out of-

bound violation is possible.

We now highlight some of the benefits that our typestate system and the sym-

bolic range analysis provide. Having bit-level representations of integers allow

the analysis to deal with instructions that load/store a partial word in the

Md5Update and stack-smashing examples. The technique to summarize trusted

functions allows the analysis to use summaries of several host and library func-

tions in hash, start- and stop timer, Btree2, the two jPVM examples, and the

/dev/kerninst. For these examples, we simply summarize the library functions

without checking them. This implies that the examples are safe only if the library

functions are safe. In principle, we could check the library code once and use the

summaries whenever possible.

Subtyping among structures and pointers allows summaries to be given for

JNI [41] methods that are polymorphic. For example, the JNI function “jsize

GetArrayLength(JNIEnv* env, jarray array)” takes the type jarray as the
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second parameter, and it is also applicable to the types jintArray and

jobjectArray, both of which are subtypes of jarray. Because all Java objects

have to be manipulated via the JNI interface, we model the types jintArray and

jobjectArray as physical subtypes of jarray when summarizing the JNI

interface functions.

Symbolic range analysis allows the system to identify the boundaries of an

array that is one field of a structure in the MD5 example. (We run an intraproce-

dural version of the range analysis on demand, when the typestate-propagation

algorithm needs information about the range of a register value. The intraproce-

dural range analysis is run at most once for each function.) In the 11 test cases

that have array accesses, range analysis eliminated 55% of the total attempts to

synthesize loop invariants. In 4 of the 11 test cases, it eliminated the need to syn-

thesize loop invariants altogether. The resulting speedup for global verification

ranges from -4% to 53% (with a median of 29%). Furthermore, in conjunction

with simple test that treats part of the untrusted code as acyclic code (described

in Section 6.4.9), range analysis allows us to verify the /dev/kerninst/symbol

example, which we were not able to handle otherwise.

Figure 7.4 shows the times for performing program verification, together with

the times for performing range analysis (normalized with respect to the times for

performing global verification without range analysis). The reason that the anal-

ysis of the stack-smashing example is not speeded up is because most array

accesses in that example are out of bounds. When array accesses are actually out

of bounds, range analysis will not speed up overall analysis because the analysis
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still needs to apply the program-verification technique before it can conclude that

there are array out-of-bounds violations. Similarly, the reason that hash is slowed

down is because only 2 of the 14 conditions are for array-bounds checking, and

range analysis cannot prove that the array accesses are within bounds.

Note that range analysis has eliminated the need to synthesize loop invari-

ants for array bounds checks, in about 55% of the cases. Two of the reasons why

range analysis has not been able to do better are: (i) lost precision due to widen-

ing, and (ii) the inability of the range analysis algorithm to recognize certain cor-

Figure 7.4 Times to perf orm global verification with rang e analysis normaliz ed with
respect to times to perf orm global verification without rang e analysis.

Su
m

H
as

h

Bu
bb

le

Bt
re

e

Bt
re

e2

H
ea

p

H
ea

p

jP
VM

St
ac

k-

jP
VM

2

M
D5

Ra
tio

Time for induction-iteration (normalized)
Time for range analysis (normalized)

Sm
as

hi
ng

 S
or

t

So
rt

 2

So
rt

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

thesis.fm  Page 123  Tuesday, December 19, 2000  11:00 AM



124

relations among the registers. In our implementation of range analysis, we

perform a widening operation just before the test to exit a loop for better preci-

sion. However, with nested loops, a widening operation in an inner loop could

cause information in its outer loop to lose precision. A potential improvement to

range analysis would be to not perform widening for variables that are invariants

in the loop that contains the widening point. Another potential improvement is to

identify correlations among loop induction variables and to include a pass after

range analysis to make use of these correlations.

7.3  Limitations

Despite the initial success, our analysis has several limitations. We describe

these limitations and outline possible solutions to them.

7.3.1  Lost of Precision due to Array References

The analysis may lose precision due to array references. Recall that we use a

single abstract location to summarize all elements of an array, and model a

pointer to the array base (or to an arbitrary array element) as a pointer that may

point to the summary location. Our analysis loses precision when we cannot

determine whether an assignment kills all elements of an array. For example, our

analysis reported that some actual parameters to the host methods and functions

are undefined in the jPVM examples, when they were in fact defined. We believe

that dependence-analysis techniques such as those used in parallelizing compil-

ers can be used to address this limitation [6,12].
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7.3.2  Lost of Precision due to the Type System

The typestate-checking system described in this dissertation is not sophisti-

cated enough to handle certain test cases. In particular, the subtyping rule states

that the meet of two array types of different sizes will return an array of size zero.

This rule will cause our analysis to lose precision when checking the safety of a

variable-length vector type that is used in the /dev/kerninst/loggedWrites exam-

ple. The vector type is implemented as a C++ template class shown below.

template<class T>

class vector {

T* data_;

int sz_;

int tsz_;

vector<T>& operator += (const T&);

...

};

The data_ field of vector is an array, and its size is given by the field tsz_. The

field sz_ points to the next available slot in the vector. The operator “+=”adds an

additional element into the vector. The C++ code that implements the operator

“+=” (simplified) is illustrated in Figure 7.5.

At line 11, the type of data_ is the meet of T[tsz_] and T[newtsz], which is

T[0]. For the array reference at line 11, our analysis will generate a false warning

for the array bounds checks.

We sketch an enhancement to the typestate-propagation algorithm to address

this limitation. The basic idea is to introduce a φ node for each meet of array

types of different sizes, and propagate information about how each φ node is com-

puted. We illustrate the technique with an example in Figure 7.6. The variables a
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and b are of type T[n] and T[m]. Initially, p points to the base address of a at pro-

gram point 0. The first time program points 1 and 3 are visited, p is of type T[n].

The first time program point 4 is visited, we introduce a φ node and a new vari-

able w at program point 4 because of the meet of array types T[m] and T[n]. We

record that w is either m or n depending on which edge was used to arrive at pro-

gram point 4. The second time program point 1 is visited, we introduce another φ

node and a new variable y. We record that y is either n or w. The second time pro-

gram point 4 is visited, we update information about how w is computed. This

process will eventually converge because for each array typed variable at each

static program point we introduce at most one new variable. We can record this

information on the control-flow edges to assist the global-verification phase (see

the assignments in bold face attached to the control-flow edges). For example, if

we were to check the condition “i<w” at program point 4, it will become “i<m”

1: vector<T>::operator+=(const T &t) {
2: const unsigned newsz = sz_ + 1;
3: if (newsz > tsz_) {
4: unsigned newtsz = unsignedint_bigger_than_newsz;
5: T* newdata = new T[newtsz];
6: copy(newdata, data_, sz_);
7: delete data_;
8: data_ = newdata;
9: tsz_ = newtsz;
10: }
11: data_[sz_] = t;
12: sz_++;
13: return *this;
14:}

Figure 7.5 The operator “+=” of the V ector T ype .
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when we back-substitute the condition across the edge <4,2>. Similarly, it will

become “i<y” if we back-substitute the condition across the edge <4,3>.

To perform the global verification for the vector type, we also need to know

that the field data_ is an array of size tsz_ and that the value of the field sz_ is

less than or equal to the value of the field tsz_. This invariant can be repre-

sented by introducing symbolic names m and n (where 0 < n and 0 < m ≤ n), and

encoded as the range information shown below:

data_ : T[n] // data_ is an array of type T and size n
tsz_ :[n,n] // tsz_ equals to n
sz_: [m,m] //sz_ equals to m.

7.3.3  Limitations of the Induction-Iteration Method

The induction-iteration method is not powerful enough to handle cases when

the correlation between the loop tests and the calculation of an array index is not

Figure 7.6 Introducing and Propagating φ nodes.
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obvious. This can happen because of compiler optimizations such as strength

reduction and optimizations to address-calculations. It can also appear in source

code because of the programming style. We show two examples in Figure 7.7.

Both examples appear in the implementation of the vector class that were

described earlier.

The key to solving this problem is to uncover the correlations between loop

tests and array-index calculations. A simple solution is to introduce a basic induc-

tion variable, and to represent all other induction variables as linear expressions

of the basic induction variable. For the two examples in Figure 7.7, we can intro-

duce a basic induction variable i and transform the examples into the correspond-

ing programs shown in Figure 7.8. We now show how induction-iteration can

handle the examples after they have been transformed.

To prove the condition “ptr < a+n” at line 6 in the program on the left-hand

side of Figure 7.8, we have W(0) = {x>0 ⊃ ptr <a + n}. The fact that W(0) is true on

entry to the loop can be shown by back-substituting W(0) across the path

<4,3,2,1,0>.

// n>0
T a[n];
ptr = a;
x = n;
while ( (x--) > 0) {

*(ptr++) = ....;
}

// m ≤ n, n>0
T a[n];
int x=0;
int y=0;
while(x<m) {

a[y] = ...;
x++,y++;

}

Figure 7.7 Two examples that the induction-iteration method cannot handle.
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Below we show the steps to compute W(1) by performing back-substitution of

W(0) across the loop body:

wlp(9, {x>0 ⊃ ptr <a + n}) = {x>0 ⊃ a+i <a + n}

wlp(8, {x>0 ⊃ a+i <a + n}) = {n-i>0 ⊃ a+i <a + n} = {n-i>0 ⊃ i < n} = true

wlp(<7,6,5>, true) = true

Hence, W(1) is true, and the loop invariant synthesized is {x>0 ⊃ ptr <a + n}.

Verifying the program on the right-hand side of Figure 7.8 is slightly more

complicated. To prove the condition “y < n” at line 6, we have

W(0) = {x<m ⊃ y < n}

Like the previous example, the fact that W(0) is true on entry to the loop can be

shown by back-substituting W(0) along the path <4,3,2,1,0>.

Since that W(0) is not a tautology, we compute W(1) as follows:

wlp(8, {x<m ⊃ y < n})={i<m ⊃ i < n}

wlp(<7,5,6,5>, {i<m ⊃ i < n}) = {x<m ⊃ (i+1<m ⊃ i+1 < n)}

W(1) = {x<m ⊃ i+1<m ⊃ i+1 < n}

0:// n>0
1: T a[n];
2: int i=0;
3: T*ptr = a+i;
4: int x = n-i;
5: while (x > 0) {
6: *(ptr) = ....;
7: i=i+1;
8: x = n-i;
9: ptr = a+i;
10: }

0:// m ≤ n, n>0
1:  T a[n];
2: int i=0;
3:  int x=i;
4:  int y=i;
5:  while(x<m) {
6: a[y] = ...;
7: i=i+1;
8: x=i,y=i;
9: }

Figure 7.8 After Introducing a Basic Induction Variable for the two examples shown in
Figure 7.7.
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Instead of continuing to compute W(2), we strengthen W(1) by carrying out the

following steps: (i) compute the disjunctive normal form of W(1), (ii) drop the dis-

juncts that involve the non-basic induction variables, and (iii) perform generali-

zation.

The disjunctive normal form of the formula {x < m ⊃ i+1< m ⊃ i+1 < n} is {x ≥

m ∨ i+1 ≥ m ∨ i+1 < n}. After dropping the disjunct that involves the non-basic

induction variable x, we have W(1)={i+1 ≥ m ∨ i+1 < n}. After performing general-

ization on {i+1 ≥ m ∨ i+1 < n}, we get W(1) = {m ≤ n}. (It is easy to verify that W(1)

is true on entry to the loop.) Since m and n are not modified in the body of the

loop, we have W(2) = {m ≤ n}, which is implied by W(0) ∧ W(1). Hence the loop

invariant synthesized is {x < m ⊃ y < n ∧ m ≤ n}. This loop invariant implies that

y is less than n at line 6.

We believe that standard techniques such as those described by Muchnick [61]

should allow us to identify the induction variables and to perform the transfor-

mations described above to address this limitation of the induction-iteration

method.

7.4 Summary

Our experience to date allows us to make the following observations:

• Contrary to our initial intuition, certain compiler optimizations, such as loop-

invariant code motion and improved register-allocation algorithms, actually

make the task of safety checking easier. The memory-usage analysis that is

part of typestate checking can lose precision at instructions that access mem-

ory (rather than registers). When a better job of register allocation has been
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done, more precise typestate information will be recovered. Loop-invariant

code motion makes induction iteration more efficient by making the loops

smaller and simpler.

• Certain compiler optimizations, such as strength reduction and optimizations

to address-calculations, complicate the task of global verification because they

hide relationships that can be used by the induction-iteration method.

• There are several strategies that make the induction-iteration method more

effective: First, because certain conditions in a program can pollute L(j),

instead of using wlp(loop-body, W(i-1)) as W(i), we compute the disjunctive

normal form of wlp(loop-body, W(i-1)), and try each of its disjuncts as W(i) in

turn. Second, we rank the potential candidates according to a simple heuris-

tic, and test each candidate for W(i) using a breadth-first strategy, rather than

a depth-first one. Finally, forward propagation of information about array

bounds (such as range analysis) can substantially reduce the time spent in the

induction-iteration method (it reduces the time needed to verify that a W(i) is

true on entry, and it can eliminate the need to use generalization to synthesize

a loop invariant). In our implementation of the safety checker, we use the

results of range analysis as assertions to assist the induction-iteration

method.

• Verifying an interprocedural version of an untrusted program can take less

time than verifying a manually inlined version because the manually inlined

version replicates the callee functions and the global conditions in the callee

functions. This is a place where our analysis benefits from the procedure

abstraction.

• It is more expensive to verify programs that have array out-of-bounds viola-

tions than programs that are safe. This is because we have to exhaust the
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breath-first search of the induction-iteration method before we can conclude

that an array out-of-bounds violation is possible.

• In our work, we perform safety checking without any help from the compiler.

However, some information that is easy for the compiler to retain, but hard for

our analysis to infer, would make the analysis easier. Such information could

include: types and sizes of local arrays, pointers to array inside a structure,

and correlations among loop induction variables that were hidden due to com-

piler optimizations. In particular, information about the correlations among

loop induction variables would benefit both range analysis and the induction-

iteration method.
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Chapter 8

Conclusions and Future Work

In this dissertation, we have presented techniques for statically checking

whether it is safe for a piece of untrusted foreign code to be loaded and executed

in a trusted host system. Our techniques work on ordinary machine code, and

mechanically synthesize (and verify) a safety proof. In this chapter, we examine

the limitations of our technique and discuss future research directions.

8.1  Limitations

A major limitation of our techniques is that they can only enforce safety prop-

erties that are expressible using typestates and linear constraints. This excludes

all liveness properties, some safety properties (e.g., array bounds checks for array

references with non-linear subscripting, and checks for floating-point exceptions).

Our analysis uses flow-sensitive interprocedural analysis to propagate

typestate information. The verification phase is fairly costly due to the need to

synthesize loop invariants to prove the safety predicates. The scalability of our

analysis remains to be evaluated with bigger applications.
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Like all static techniques, our technique is incomplete. First, the analysis

loses precision when handling array references, because we use a single abstract

location to summarize all elements of the array.

Second, the induction-iteration method itself is incomplete even for linear con-

straints. The induction-iteration method cannot prove the correctness of array

accesses in a loop if correctness depends on some data whose values are set before

the execution of the loop. One such example is the use of a sentinel at the end of

an array to speed up a sequential search [84]. The generalization capabilities of

the system may fall short for many problems, even though we care only about

memory safety. The induction-iteration method could fail in cases where a loop

invariant must be strengthened to the point that we end up verifying a large part

of the partial correctness of the algorithm.

Third, the type system is not sophisticated enough for handling certain cases.

In particular, with the type system described in this dissertation, the meet of two

array types that have the same element type but have different numbers of ele-

ments will return an array type of size zero. This causes our analysis to lose pre-

cision when checking the kernel-device-driver example.

Finally, our analysis is not able to deal with certain unconventional usages of

operations, such as swapping two non-integer values by means of “exclusive or”

operations.
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8.2  Future Research

Despite these limitations, the method shows promise. Its limitations repre-

sent potential research opportunities, and we believe that future research could

make the analysis more precise and efficient, and continued engineering could

make the technique practical for larger programs. We discuss some potential

research directions in the sections that follow.

8.2.1  Improving the Precision of the Safety-Checking Analysis

8.2.1.1  Developing Better Algorithms: An interesting research direction is to

develop a better typestate system and algorithms to make the safety-checking

analysis more precise. A natural starting point would be to address the limita-

tions that we have identified, including better handling of array references, han-

dling the meet of array types with better precision, and developing better

heuristics to strengthen the induction-iteration method for array bounds checks.

8.2.1.2  Employing both Static and Run-Time Checks: In addition to improving

the precision of the safety-checking algorithms, we can sharpen our analysis by

incorporating run-time checking. Rather than rejecting untrusted code that has

conditions that cannot be checked statically, we can generate code to perform run-

time checks. This is straightforward with our technique: The annotation phase of

our analysis generates the safety conditions; we need only to generate run-time

checks for the conditions that fail static checking.
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To allow run-time checking, we need to address the recovery problem— that

is, what should we do if a fault is detected at run-time. The simplest thing to do is

to terminate the offending code. This can ensure that the untrusted code has not

violated—and will not—violate any of the default safety conditions and the access

policy. Unfortunately, simply terminating the offending code may not be enough if

the untrusted code accesses shared data or acquires host resources. In general,

more complicated actions need to be taken to ensure the integrity of the host.

Traditionally, people avoid the recovery problem by, for example, allowing the

untrusted code to interact with the trusted host through a well-defined interface

[41, 93], or using a transaction model [75] so that the untrusted code can be

aborted if a fault does occur.

The notion of typestate is more general than what we have used in this disser-

tation. For each type, its states correspond to a state machine. An operation can

bring each of its operands from one state to another. In principle, one could label

certain states as safe states, and other states as unsafe states. The safety policy

could include a post-condition in the form of typestates and linear constraints to

specify the invariants that must hold when the untrusted code terminates. Cor-

rective actions might be generated automatically by examining the difference

between the faulting state and the desired state. For example, we can use

typestate to capture resources that are allocated but have not been released at

the time of a fault, and generate the corrective actions to release the resources.
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8.2.2  Improving the Scalability of the Safety-Checking Analysis

8.2.2.1  Employing Modular Checking: One way to make the safety-checking

analysis more scalable is to perform intraprocedural analysis instead of interpro-

cedural analysis. Recent work on interprocedural pointer analysis has shown

that pointer analysis can be performed in a modular fashion [16,17]. These tech-

niques analyze each function assuming unknown initial values for parameters

(and globals) at a function’s entry point to obtain a summary function for the

dataflow effect of the function. It may be possible to use such techniques to create

safety pre- and post- conditions automatically.

8.2.2.2  Employing Analyses that are Unsound: Another way to make the tech-

nique more scalable is to employ analyses that are more efficient but are

unsound. Such examples include treating a program that contains loops as

though it were acyclic, or terminating the analysis after a fixed number of itera-

tions before it converges. In principle, one can have a series of techniques that

vary both in efficiency and power, and apply the techniques starting from the

most efficient, and apply more expensive techniques only when there is a need.

8.2.2.3  Producing Proof-Carrying Code: One argument against our approach is

that the safety-checker we have implemented is much more complicated than the

proof checker used in the Proof-Carrying Code approach. It should be noted that

what we have shown in this thesis is just one way to structure our safety checker.

In principle, we could separate our safety-checker into a proof generator and a

proof checker. The proof generator would be used by the code producer to synthe-
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size and attach safety proofs to the machine code, and the proof checker would be

used by the code consumer to check the validity of the proofs.

8.2.3  Extending the Techniques beyond Safety Checking

8.2.3.1  Enforcing Security Policy: The work in this thesis has focused on enforc-

ing safety based on access control, which is a form of discretionary access control.

Discretionary access control policies do not impose any restriction on the usage of

information once it is obtained by the untrusted code [73], hence cannot prevent

any disastrous information leaks.

This limitation can be addressed by mandatory access control policies, where

the accesses to be allowed are determined on the basis of predefined rules. A gen-

eralization of the mandatory access policy is represented by the information flow

model of Denning [22].

Denning’s policy is based on a lattice model, where a flow policy is represented

by a partial ordered set <S, →>. S is a set of security classes, and → is a partial

order, called the flow relation. Every variable is assigned a security class. Flow of

information from variable x to variable y is permissible iff security_class(x)→

security_class(y). The function security_class(x) returns the security class of vari-

able x [87].

It should be possible to extend the safety policy described in this dissertation,

[Region : Category : Access] to include a flow policy of Denning, by adding a

fourth component “securityclass”, and the partial ordered set <S, →>. Instances

of the fourth component belong to the set S. We would then check that no infor-
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mation of a higher security class ever flows into a location that is allocated for

storing information of a lower security class.

One limitation of Denning’s flow certification method is that it requires all

variables to have a security class a priori. This limitation makes it unsuitable for

certifying legacy code, or code where such information is not available (such as

machine code). Volpano and Irvine [87] show that limitations of flow certification

of Denning can be overcome via a secure flow type system, where flow control

becomes type checking. Their focus has been on producing principal types (secu-

rity requirements) for function abstractions.

Treating information flow certification as type-checking fits perfectly with the

typestate-checking analysis we have used to enforce safety. A simple extension to

our technique would be to extend the typestate system to include an orthogonal

“secureflow type” component, and to extend the safety-checking analysis to per-

form secure flow type checking. As a consequence, our typestate-checking analy-

sis would be able to enforce both discretionary and mandatory access policies.

8.2.3.2  Reverse Engineering: Because our safety-checking analysis works on

unannotated binary and recovers typestate information that could have existed

in the source code, we could use the typestate checking analysis to reverse engi-

neer machine code into code in a typed source language such as C. The informa-

tion that is recovered by our analysis from an unannotated binary can be useful

for purposes other than safety checking. For example, the type information recov-

ered could be used by a dynamic optimizer to enable optimizations that are
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impossible without type information (e.g., to eliminate virtual function calls in

object-oriented programs [3]). Another possible usage of this information is to

guide a performance tool to choose better spots in a program to insert instrumen-

tation code, and to gather and present the performance data that are more sensi-

ble to the human.

The attractive aspect of these uses of our techniques is that we can forsake the

most expensive parts of our analysis, global verification. We may not have to care

whether a variable is defined. We can even perform intraprocedural analysis, for

example, if the signature of a function is available.
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