
Automating Abstract Interpretation?

Thomas Reps1,2 and Aditya Thakur3

1 University of Wisconsin; Madison, WI, USA
2 GrammaTech, Inc.; Ithaca, NY, USA

3 Google, Inc.; Mountain View, CA USA

Abstract. Abstract interpretation has a reputation of being a kind of
“black art,” and consequently difficult to work with. This paper describes
a twenty-year quest by the first author to address this issue by raising
the level of automation in abstract interpretation. The most recent leg
of this journey is the subject of the second author’s 2014 Ph.D. dis-
sertation. The paper discusses several different approaches to creat-
ing correct-by-construction analyzers. Our research has allowed us to
establish connections between this problem and several other areas of
computer science, including automated reasoning/decision procedures,
concept learning, and constraint programming.

1 Introduction

Establishing that a program is correct is undecidable in general. Consequently,
program-analysis and verification tools typically work on an abstraction of a
program, which over-approximates the original program’s behavior. The theory
underlying this approach is called abstract interpretation [18]. Abstract interpre-
tation provides a way to create program analyzers that obtain information about
the possible states that a program reaches during execution, but without actu-
ally running the program on specific inputs. Instead, the analyzer executes the
program using finite-sized descriptors that represent sets of states. For example,
one can use descriptors that represent only the sign of a variable’s value: neg,
zero, pos, or unknown. If the abstract state maps variables x and y as follows,
[x 7→ neg, y 7→ neg], the product “x ∗ y” would be performed as “neg ∗ neg,”
yielding pos. This approximation discards information about the specific values
of x and y; [x 7→ neg, y 7→ neg] represents all concrete states in which x and y
hold negative integers. By using such descriptors to explore the program’s be-
havior for all possible inputs, the analyzer accounts for all possible states that
the program can reach.

The tar-pit of undecidability is sidestepped via two concepts:
– Abstraction. In this context, abstraction means “representing an information

space by a smaller space that captures its essential features.” (The smaller
space is called an abstract domain; an example of an abstract domain is the
set of all descriptors that record the signs of variables, as used above.)

? Portions of this work appeared in [70, 63, 35, 45, 64, 26, 82, 78, 81, 66, 76]. T. Reps has
an ownership interest in GrammaTech, Inc., which has licensed elements of the tech-
nology reported in this publication.

2 Thomas Reps and Aditya Thakur

– One-sided analysis. Whenever the analyzer says “no” it means “no,” but
whenever it says “yes” it means “maybe-yes/maybe-no”—i.e., the property
might or might not hold.

When the analyzer reports “no, a bad state is not reachable,” one is guaranteed
that only good states can arise—and hence that the program is correct with
respect to the property being checked. If the analyzer reports “yes, a bad state
might be reachable,” it must try other techniques to attempt to establish the
desired property (e.g., refining the abstraction in use).

However, there is a glitch: abstract interpretation has a reputation of being
a kind of “black art,” and consequently difficult to work with. This paper de-
scribes a twenty-year quest to make abstract interpretation easier to work with
by (i) raising the level of discourse for specifying abstract interpreters, and (ii)
automating some of abstraction interpretation’s more difficult aspects, thereby
making it possible to create correct-by-construction analyzers.

A major focus of the work has been how to automate the construction of
the functions to transform abstract states—also known as abstract transformers.
The motivation came from our experience with two challenging analysis contexts:

Analysis of programs manipulating linked data structures: When ana-
lyzing such programs, the number of fine-grained details that one needs to
track causes the abstractions to be inherently complex.

Analysis of stripped machine code: Here an analyzer needs to use multiple
(separate and cooperating) abstract interpretations [6, 45], and we also had
the goal of creating machine-code-analysis tools for multiple instruction sets.

In both cases, our experience with hand construction of abstract transformers
[69, 6] was that the process was tedious, time-consuming, and a source of errors.

The paper summarizes three major milestones of our research, based on dif-
ferent approaches that we explored.

1. The TVLA system [70, 42, 12] introduced a way to create abstractions of
systems specified in first-order logic, plus transitive closure (§3). To construct
abstract transformers in TVLA, we developed a non-standard approach to
weakest precondition based on a finite-differencing transformation [63].

2. The TSL system [45] supports the creation of correct-by-construction imple-
mentations of the abstract transformers needed in tools that analyze machine
code (§4). From a single specification of the concrete semantics of an instruc-
tion set, TSL can generate abstract transformers for static analysis, dynamic
analysis, symbolic analysis, or any combination of the three.

3. Our work on symbolic methods for abstract interpretation [64, 82, 78] aims to
bridge the gap between (i) the use of logic for specifying program semantics
and program correctness, and (ii) abstract interpretation. Many of the issues,
including the construction of abstract transformers, can be reduced to the
problem of symbolic abstraction (§5):

Given formula ϕ in logic L, and abstract domain A, find the most-precise
descriptor a] in A that over-approximates the meaning of ϕ.

Automating Abstract Interpretation 3

A particularly exciting aspect of the work on symbolic abstraction is the number
of links the problem has with other research areas that one would not normally
think of as being connected to static program analysis. Our investigations have
established connections with such areas as automated reasoning/decision proce-
dures (§5.4), concept learning (§6.1), and constraint programming (§6.2).
§7 discusses related work. §8 concludes with a few final insights and take-

aways.

2 Problem Statement

2.1 What Can Be Automated About Abstract Interpretation?

A static-analysis system can have many components, including
(i) construction and use of abstract transformers

– an algorithm to construct sound abstract transformers to model the
actions of language primitives and/or user-defined functions

– an algorithm to apply or compose abstract transformers
(ii) state-space exploration

– state-space-exploration algorithms (i.e, equation/constraint solvers)
– methods to enforce termination via widening policies
– containment algorithms (for determining whether state-space explo-

ration should terminate)
(iii) mechanisms for improving precision

– narrowing
– reduced product
– semantic reduction
– construction of best transformers
– determination of the best inductive invariant

(iv) abstraction refinement (enabled by item (i))
While the first author has also done a lot of work on state-space-exploration
algorithms [62, 65, 67] and some on widening policies [29, 30], because so many
of the other aspects of the problem of automating abstract interpretation are
enabled by automating the construction (and use) of abstract transformers, the
paper will focus on work he and his collaborators have carried out on that topic.
In §5, we discuss recent work on a uniform mechanism to construct abstract
transformers that also provides a way to address reduced product, semantic
reduction, and (for some abstract domains) finding the best inductive invariant.

To create sound abstract transformers that use a given abstract domain, we
need to have some way to create the abstract analogs of

(I) each constant that can be denoted in the programming language
(II) each primitive operation in the programming language

(III) each user-defined function in every program to be analyzed.
Task (I) is related to defining the abstraction function α; to create the abstract
analog k] of concrete constant k, apply α; i.e., k] = α({k}). By an abstract analog
of a concrete operation/function f , we mean an abstract operation/function f]

that satisfies

α(f̃(V1, . . . , Vk)) v f](α(V1), . . . , α(Vk)), (1)

4 Thomas Reps and Aditya Thakur

where f̃ denotes the lifting of f to operate on a set of values, i.e., f̃(V1, . . . , Vk) =
{f(v1, . . . , vk) | v1 ∈ V1, . . . , vk ∈ Vk}, and v denotes an ordering on abstract

values that respects concrete containment; i.e., a]1 v a]2 implies γ(a]1) ⊆ γ(a]2),
where γ denotes the concretization function for the abstract domain.

The effort that has to go into task (II) is bounded—the language has a fixed
number of primitive operations—and task (II) only has to be done once for a
given abstract domain. However, task (III) needs automation, because it will be
performed for all functions in all users’ programs, which are not known a priori.

2.2 Non-Compositionality

Unfortunately, abstract interpretation is inherently non-compositional—
meaning that one cannot create abstract analogs of operations/functions sep-
arately, and put them together without losing precision (see below). The non-
compositionality property is the essence of what makes it hard to automate the
construction of abstract transformers. This message is an uncomfortable one for
computer scientists because compositionality is so ingrained in our training—
e.g., our programming languages are defined using context-free grammars; many
concepts and properties are defined using inductive definitions, and recursive
tree traversals are a basic workhorse.

Syntax-Directed Replacement. A compositional approach to construct-
ing sound abstract transformers is relatively easy to implement. In particular,
Eqn. (1) makes possible a simple, compositional approach—namely, syntax-
directed replacement of the concrete constants and concrete primitive opera-
tions by their abstract analogs. For instance, consider the following function:
f(x1, x2) = x1 ∗ x2 + 1. First, hoist f to f̃ , i.e., f̃(X1, X2) = X1 ∗̃ X2 +̃ {1}.
Then, by Eqn. (1), we have

α(f̃(X1, X2)) =α(X1 ∗̃X2 +̃ {1})vα(X1 ∗̃X2) +] {1}]vα(X1) ∗] α(X2) +] {1}].

Thus, one way to ensure that we have a sound f] is to define f](x1, x2) by

f](x1, x2)
def
= x1 ∗] x2 +] {1}].

Drawbacks of Syntax-Directed Replacement. Although syntax-directed
replacement is simple and compositional, it can be quite myopic because it fo-
cuses solely on what happens at a single production in the abstract syntax tree.
The approach can lead to a loss of precision by not accounting for correlations
between operations at far-apart positions in the abstract syntax tree.

To illustrate the issue, consider the function h(x)
def
= x + (−x). Obviously,

h(x) always returns 0. Now suppose that we apply syntax-directed replacement,

h](x)
def
= x +] (−]x), and evaluate h] over the sign abstract domain, which con-

sists of six values: {neg, 0, pos, nonpos, nonneg,>}. In particular, the abstract
unary-minus operation is defined as follows:

x > nonneg nonpos pos zero neg

−]x > nonpos nonneg neg zero pos

Consider evaluating h](x) with the abstract value pos for the value of x. (Ab-
stract values at leaves and internal nodes of the AST of h]’s defining expression

Automating Abstract Interpretation 5

are shown within square brackets in the tree in Fig. 1.) Because pos +] neg = >,
we obtain no useful information from the abstract interpretation. In contrast,
the concrete value is always 0, and therefore the most-precise abstract answer is
zero (because α({0}) = zero).

[>]+]

[pos]x [neg]−]

[pos]x

Fig. 1: Abstract sub-
traction when leaves
are correlated.

Artificially imposing compositionality on an abstract
interpreter has a number of drawbacks:
– compositionality at expression granularity may not

produce the best abstraction, even if all abstract pro-
gram primitives are best abstract primitives

– compositionality at statement or basic-block level may
not produce the best transformer, even if each abstract
transformer being composed is a best transformer

Moreover, if an analyzer loses precision at one point in a
program, it can provoke a cascade of precision loss throughout the program.

2.3 What Does It Mean to Automate the Construction of Abstract
Transformers?

We sometimes describe our work by saying that we are working on “a yacc

for automating the construction of abstract transformers,” by which we mean
a tool that automates the task to an extent similar to the automation of the
construction of parsers achieved by yacc [36]. As a model for what we would
like to achieve, consider the problem that yacc addresses:

– An instance of a parsing problem, Parse(L,s), has two parameters: L, a
context-free language; and s, a string to be parsed. String s changes more
frequently than language L.

– Context-free grammars are a formalism for specifying context-free languages.
– Create a tool that implements the following specification:
• Input: a context-free grammar that describes language L.
• Output: a parsing function, yyparse(), for which executing yyparse()

on string s computes Parse(L,s).

Thus, we would like to follow a similar scheme.

– An abstract interpreter Interp](Ms,A, a]) has three inputs
• Ms = the meaning function for a programming-language statement s
• A = an abstract domain
• a] = an abstract-domain value (which represents a set of pre-states)
a] changes more frequently than Ms and A.

– Find appropriate formalisms F1 and F2 for specifying Ms and A.
– Create a tool that implements the following specification:
• Input:
∗ an F1 specification of the programming language’s semantics
∗ an F2 specification that characterizes the abstraction that A supports

• Output: a function Is,A(·) such that Is,A(a]) computes Interp](Ms,A, a])

6 Thomas Reps and Aditya Thakur

An alternative goal for the tool’s output is as follows:

Output: a representation of the function Is,A(·) that can be used in the function-
composition operations performed by interprocedural dataflow analyzers [74].

Relationship to Partial Evaluation. Readers who are familiar with partial
evaluation [28, 37] may be struck by how similar the problem statement above is
to the specification of partial evaluation, which suggests that partial evaluation
could play a role in automating abstract interpretation. However, we believe
that this observation is a red herring: whereas partial evaluation provides a
mechanism to speed up computations by removing interpretive overhead, the
key question in automating the construction of abstract transformers is “Given
the specification of an abstraction, how does one create an execution engine for
an analyzer that performs computations in an over-approximating fashion?”

2.4 Four Questions

The above discussion suggests four questions to ask about methods for automat-
ing the construction of abstract transformers:
Q1. What formalism is used to specify Ms?
Q2. What formalism is used to specify A?
Q3. What is the engine at work that applies/constructs abstract transformers?

(a) What method is used to create Is,A(·)?
(b) Can it be used to create a representation of Is,A(·)?

Q4. How is the non-compositionality issue discussed in §2.2 addressed?
The answers given in §3, §4, and §5 explain how these issues are addressed in
the three approaches described in the paper.

3 TVLA: 3-Valued Logic Analyzer

In 1999, Sagiv, Reps, and Wilhelm devised an abstraction method, called canon-
ical abstraction [70], for analyzing the properties of evolving logical structures.
The original motivation for developing canonical-abstraction domains was the
desire to apply abstract interpretation to imperative programs that manipulate
linked data structures, to check such properties as
– when the input to a list-insert program is an acyclic list, the output is an

acyclic list, and
– when the input to a list-reversal program that uses destructive-update oper-

ations is an acyclic list, the output is an acyclic list.
Such analysis problems are known generically as shape-analysis problems. In
programs that manipulate linked data structures, storage cells can be dynami-
cally allocated and freed, and structure fields can be destructively updated. Data
structures can thus grow and shrink, with no fixed upper bound on their size
or number. In the case of thread-based languages, such as Java, the number of
threads can also grow and shrink dynamically [84]. The challenge in shape anal-
ysis is to find a way to create finite-sized descriptors of memory configurations
that (i) abstract away certain details, but (ii) retain enough key information so
that an analyzer can identify interesting node-linkage properties that hold.

Automating Abstract Interpretation 7

A logical structure is a set of individuals together with a certain collection of
relations over the individuals. (In shape analysis, individuals represent entities
such as memory locations, threads, locks, etc.; unary and binary relations en-
code the contents of variables, pointer-valued structure fields, and other aspects
of memory states; and first-order formulas with transitive closure are used to
specify properties such as sharing, cyclicity, reachability, etc.) Because canoni-
cal abstraction is a general method for abstracting logical structures, it actually
has much broader applicability for analyzing systems than just shape-analysis
problems. It is relevant to the analysis of any system that can be modeled as an
evolving logical structure [42, 12, 34, 11].

The concrete semantics of a system—such as the concrete semantics of pro-
grams written in a given programming language—is defined using a fixed set
of core relation symbols C. (Different kinds of systems, such as different pro-
gramming languages, are defined by varying the symbols in C.) The concrete
semantics expresses how a program statement st causes the core relations to
change. The semantics of st is specified with formulas in first-order logic plus
transitive closure over the client-defined core relations in C.

Different abstract domains are defined using canonical abstraction by

– Defining a set of instrumentation relations I (also known as derived relations
or views). Each instrumentation relation p(v) is defined by a formula ψp(v)
over the core relations.

– Choosing a set of unary abstraction relations A from among the unary rela-

tions in the vocabulary R def
= (C] I).

I controls what information is maintained (in addition to the core relations); A
controls what individuals are indistinguishable. The two mechanisms are con-
nected because it is possible to declare unary instrumentation relations as ab-
straction relations. An abstract logical structure is the quotient of a concrete
logical structure with respect to the sets of indistinguishable individuals.

The TVLA (Three-Valued-Logic Analyzer) system [42, 12] automates some
of the more difficult aspects of working with canonical-abstraction domains.
However, the initial version of TVLA failed to meet our goal of automating
abstract interpretation because not all aspects of abstract transformers were
derived automatically from the specification of a given abstraction. The analysis
designer had to supply a key portion of every abstract transformer manually.

The introduction of instrumentation relations causes auxiliary information
to be recorded in a program state, such as whether an individual memory loca-
tion possesses (or does not possess) a certain property. The concrete semantics
expresses how a program statement st causes the core relations to change; the
challenge is how one should go about updating the instrumentation relations.
Canonical-abstraction domains are based on 3-valued logic, where the third truth
value (1/2) arises when it is not known whether a property holds or not. Suppose
that p(v) ∈ I is defined by ψp(v). Reevaluating ψp(v) almost always yields 1/2,
and thus completely defeats the purpose of having augmented logical structures
with instrumentation relation p.

8 Thomas Reps and Aditya Thakur

Table 1: Core relations for shape analysis of programs that manipulate linked lists.

Relation Intended Meaning

eq(v1, v2) Do v1 and v2 denote the same memory cell?
x(v) Does pointer variable x point to memory cell v?
n(v1, v2) Does the n-field of v1 point to v2?

To overcome this effect, the initial version of TVLA required an analysis
designer to specify a relation-maintenance formula for each instrumentation re-
lation, for each kind of statement in the language being analyzed. This approach
could obtain more precise results than that of reevaluating ψp(v), but placed the
onus on the analysis designer to supply a key part of every abstract transformer,
which was both burdensome and a source of errors.

In 2002, we developed a way to create relation-maintenance formulas—and
thereby abstract transformers—fully automatically [63]. Our solution to the
problem is based on a finite-differencing transformation. Finite-differencing turns
out to be a natural way to identify the “footprint” of statement st on an instru-
mentation relation p, which reduces the number of tuples in p that have to be
reevaluated (compared to reevaluating all of p’s tuples using ψp(v)).

2-Valued Logical Structures. A concrete state is a 2-valued logical structure,
which provides an interpretation of a vocabulary R = {eq , p1, . . . , pn} of relation
symbols (with given arities). Rk denotes the set of k-ary symbols.

Definition 1. A 2-valued logical structure S over R is a pair S = 〈U, ι〉,
where U is the set of individuals, and ι is the interpretation. Let B = {0, 1}
be the domain of truth values. For p ∈ Ri, ι(p) : U i → B. We assume that
eq ∈ R2 is the identity relation: (i) for all u ∈ U , ι(eq)(u, u) = 1, and (ii) for
all u1, u2 ∈ U such that u1 and u2 are distinct individuals, ι(eq)(u1, u2) = 0.

The set of 2-valued logical structures over R is denoted by S2[R].

A concrete state is modeled by a 2-valued logical structure over a fixed vo-
cabulary C ⊆ R of core relations. Tab. 1 lists the core relations that are used
to represent a program state made up of linked lists. The set of unary core re-
lations, C1, contains relations that encode the pointer variables of the program:
a unary relation of the form x(v) ∈ C1 encodes pointer variable x ∈ Var . The
binary relation n(v1, v2) ∈ C2 encodes list-node linkages.
R does not include constant or function symbols. Constant symbols are en-

coded via unary relations, and k-ary functions via k + 1-ary relations. In both
cases, we use integrity rules—i.e., global constraints that restrict the set of struc-
tures considered to ones that we intend. The following integrity rules restrict each
unary relation x, for x ∈ Var , to serve as a constant, and restrict binary relation
n to encode a partial function:

for each x ∈ Var ,∀v1, v2 : x(v1) ∧ x(v2)⇒ eq(v1, v2)
∀v1, v2, v3 : n(v3, v1) ∧ n(v3, v2)⇒ eq(v1, v2)

3-Valued Structures, Embedding, and Canonical Abstraction. A 3-

Automating Abstract Interpretation 9

valued logical structure provides a finite over-approximation of a possibly in-

finite set of 2-valued structures. The set T def
= {0, 1, 1/2} of 3-valued truth values

is partially ordered under the information order : l @ 1/2 for l ∈ {0, 1}. 0 and
1 are definite values; 1/2, which denotes uncertainty, is an indefinite value. The
symbol t denotes the least-upper-bound operation with respect to v.

Definition 2. A 3-valued logical structure S = 〈U, ι〉 is almost identical to
a 2-valued structure, except that ι maps each p ∈ Ri to a 3-valued function
ι(p) : U i → T. In addition, (i) for all u ∈ U , ι(eq)(u, u) w 1, and (ii) for all
u1, u2 ∈ U such that u1 and u2 are distinct individuals, ι(eq)(u1, u2) = 0. (An
individual u for which ι(eq)(u, u) = 1/2 is called a summary individual.)

The set of 3-valued logical structures over R is denoted by S3[R]) S2[R].
Given S = 〈U, ι〉, S′ = 〈U ′, ι′〉 ∈ S3[R], and surjective function f : U → U ′, f
embeds S in S′, denoted by S vf S′, if for all p ∈ R and u1, . . . , uk ∈ U ,
ι(p)(u1, . . . , uk) v ι′(p)(f(u1), . . . , f(uk)) If, in addition, for all u′1, . . . , u

′
k ∈ U ′,

ι′(p)(u′1, . . . , u
′
k) =

⊔
u1,...,uk∈U,s.t.f(ui)=u′

i,1≤i≤k

ι(p)(u1, . . . , uk)

then S′ is the tight embedding of S with respect to f , denoted by S′ = f(S).

The relation vid, abbreviated as v, reflects the tuple-wise information order
between structures with the same universe. We have S vf S′ ⇔ f(S) v S′.

The Embedding Theorem [70, Thm. 4.9] says that if S vf S′, then every piece
of information extracted from S′ via a formula ϕ is a conservative approximation
of the information extracted from S via ϕ:

Theorem 1. (Embedding Theorem [simplified]). If S = 〈U, ι〉, S′ =
〈U ′, ι′〉 ∈ S3[R] such that S vf S′, then for every formula ϕ, [[ϕ]]S3 v [[ϕ]]S

′

3 .

However, embedding alone is not enough. The universe U of 2-valued struc-
ture S = 〈U, ι〉 ∈ S2[R] is of a priori unbounded size; consequently, we need a
method that maps U to an abstract universe U] of bounded size. The idea be-
hind canonical abstraction is to choose a subset A ⊆ R1 of abstraction relations,
and to define an equivalence relation 'AS on U that is parameterized by S itself:

u1 'AS u2 ⇔ ∀p ∈ A : ι(p)(u1) = ι(p)(u2).

This equivalence relation defines the surjective function fSA : U → (U/ 'AS),
which maps an individual to its equivalence class. We have the Galois connection

℘(S2[R]) −−−→←−−−α
γ

℘(S3[R])

α(X) = {fSA(S) | S ∈ X} γ(Y) = {S | S] ∈ Y ∧ S vf S]},
where fSA in the definition of α denotes the tight-embedding function for logical
structures induced by the node-embedding function fSA : U → (U/ 'AS). The
abstraction function α is referred to as canonical abstraction. Note that there is
an upper bound on the size of each structure 〈U], ι]〉 ∈ S3[R] that is in the image
of α: |U]| ≤ 2|A|—and thus the power-set of the image of α is a finite sublattice
of ℘(S3[R]). The ordering on ℘(S3[R]) is the Hoare ordering: SS1 v SS2 if for
all S1 ∈ SS1 there exists S2 ∈ SS2 such that S1 vf S2.

10 Thomas Reps and Aditya Thakur

Maintaining Instrumentation Relations. The technique used to create ab-
stract transformers for canonical-abstraction domains works as follows. The post-
state structures for statement st are determined using four primitives: (i) partial
concretization (or partial model enumeration) via the focus operation [70, §6.3];
(ii) formula evaluation, using (a) for a core relation c ∈ C, the relation-update
formula τc,st from the concrete semantics, evaluated in 3-valued logic: [[τc,st]]3,
and (b) for an instrumentation relation p ∈ I, a finite-differencing-based relation-
maintenance formula µp,st created by the technique described below [63, §5 &
§6]; (iii) lightweight logical reasoning via the coerce operation [70, §6.4], which
repeatedly performs semantic-reduction steps [19] on the post-state structure
to increase the precision of the result; and (iv) a final application of canonical
abstraction with respect to abstraction relations A. Due to space limitations, we
will only discuss step (ii).4 Step (ii) transforms a 3-valued pre-state structure

S#
1 that arises just before step (ii), into post-state structure S#

2 just after step

(ii). The structure that consists of just the core relations of S#
2 is called a proto-

structure, denoted by S#
proto . The creation of core relation c in S#

proto from S#
1

can be expressed as follows:

for each u1, . . . , uk ∈ US
#
1 , ιS

#
proto (c)(u1, . . . , uk) := [[τc,st(u1, . . . , uk)]]

S#
1

3 (2)

We now come to the crux of the matter: Suppose that instrumentation re-
lation p is defined by formula ψp; how should the analysis engine obtain the

value of relation p in S#
2 ? From the standpoint of the concrete semantics, p is

just cached information that could always be recomputed by reevaluating the
defining formula ψp, and thus the Embedding Theorem tells us that it is sound
to perform

for each u1, . . . , uk ∈ US
#
proto , ιS

#
2 (p)(u1, . . . , uk) := [[ψp(u1, . . . , uk)]]

S#
proto

3 . (3)

In practice, however, this approach loses too much precision.
An alternative approach is to create a relation-maintenance formula for p

with respect to st via a weakest-liberal-precondition (WLP) transformation,

µp,st
def
= ψp[c←↩ τc,st | c ∈ C], (4)

where ϕ[q ←↩ θ] denotes the formula obtained from ϕ by replacing each occur-

rence of relation symbol q by formula θ. Formula µp,st is evaluated in S#
1 :

for each u1, . . . , uk ∈ US
#
1 , ιS

#
2 (p)(u1, . . . , uk) := [[µp,st(u1, . . . , uk)]]

S#
1

3 . (5)

However, Eqns. (3) and (5) turn out to be equivalent—and hence equivalently

imprecise—because the steps of creating S#
proto and evaluating [[ψp]]

S#
proto

3 mimic

exactly those of evaluating [[ψp[c←↩ τc,st | c ∈ C]]]
S#
1

3 .

Relation Maintenance via Finite Differencing. The algorithm for creating
a relation-maintenance formula µp,st, for p ∈ I, uses an incremental-computation

4 It is interesting to note that the roles of steps (i), (iii), and (iv) are close to the steps
of splitting, propagation, and join, respectively, in our generalization of St̊almarck’s
algorithm to perform symbolic abstraction [82]. See §5.

Automating Abstract Interpretation 11

evaluate
✫p

retrieve
stored
value

execute statement st

p
p′′ b p′

∆–[✫p]st

∆+[✫p]st

evaluate
∆+[✫p]stevaluate

∆–[✫p]st

p ? ¬∆–[✫p] : ∆
+[✫p]st st

S1
#

Sproto
#

Fig. 2: How to maintain the value of ψp in 3-valued logic in response to changes in
the values of core relations caused by the execution of structure transformer st.

ϕ ∆+
st[ϕ] ∆−st[ϕ]

1 0 0
0 0 0
p(w1, . . . , wk),
p ∈ C, and τp,st
is of the form
p ? ¬δ−p,st : δ+p,st

(δ+p,st ∧¬p)(w1, . . . , wk) (δ−p,st ∧ p)(w1, . . . , wk)

p(w1, . . . , wk),
p ∈ C, and τp,st
is of the form
p∨ δp,st or
δp,st ∨ p

(δp,st ∧¬p)(w1, . . . , wk) 0

p(w1, . . . , wk),
p ∈ C, and τp,st
is of the form
p∧ δp,st or
δp,st ∧ p

0 (¬δp,st ∧ p)(w1, . . . , wk)

p(w1, . . . , wk),
p ∈ C,but τp,st
is not of the
above forms

(τp,st ∧¬p)(w1, . . . , wk) (p∧¬τp,st)(w1, . . . , wk)

p(w1, . . . , wk),
p ∈ I

((∃ v : ∆+
st[ϕ1])∧¬p)(w1, . . . , wk) ifψp ≡ ∃ v : ϕ1

∆+
st[ψp](w1, . . . , wk) otherwise

((∃ v : ∆−st[ϕ1])∧ p)(w1, . . . , wk) ifψp ≡ ∀ v : ϕ1

∆−st[ψp](w1, . . . , wk) otherwise

¬ϕ1 ∆−st[ϕ1] ∆+
st[ϕ1]

ϕ1 ∨ϕ2 (∆+
st[ϕ1]∧¬ϕ2)∨(¬ϕ1 ∧∆+

st[ϕ2]) (∆−st[ϕ1]∧¬Fst[ϕ2])∨(¬Fst[ϕ1]∧∆−st[ϕ2])

ϕ1 ∧ϕ2 (∆+
st[ϕ1]∧Fst[ϕ2])∨(Fst[ϕ1]∧∆+

st[ϕ2]) (∆−st[ϕ1]∧ϕ2)∨(ϕ1 ∧∆−st[ϕ2])

∃ v : ϕ1 (∃ v : ∆+
st[ϕ1])∧¬(∃ v : ϕ1) (∃ v : ∆−st[ϕ1])∧¬(∃ v : Fst[ϕ1])

∀ v : ϕ1 (∃ v : ∆+
st[ϕ1])∧(∀ v : Fst[ϕ1]) (∃ v : ∆−st[ϕ1])∧(∀ v : ϕ1)

Fig. 3: Finite-difference formulas for first-order formulas.

strategy: µp,st is defined in terms of the stored (pre-state) value of p, along with
two finite-differencing operators, denoted by ∆−st[·] and ∆+

st[·].

µp,st
def
= p ? ¬∆−st[ψp] : ∆+

st[ψp]. (6)

In this approach to the relation-maintenance problem, the two finite-differencing
operators characterize the tuples of relation p that are subtracted and added in
response to structure transformation st. ∆−st[·] has value 1 for tuples that st
changes from 1 to 0; ∆+

st[·] has value 1 for tuples that st changes from 0 to 1.
Eqn. (6) means that if the old value of a p tuple is 1, then its new value is 1
unless there is a negative change; if the old value of a p tuple is 0, then its new
value is 0 unless there is a positive change. Fig. 2 depicts how the static-analysis
engine evaluates ∆−st[ψp] and ∆+

st[ψp] in S#
1 and combines these values with the

value of the p tuple from S#
1 to obtain the value of the p′′ tuple.

12 Thomas Reps and Aditya Thakur

The operators ∆−st[·] and ∆+
st[·] are defined recursively, as shown in Fig. 3.

The definitions in Fig. 3 make use of the operator Fst[ϕ] (standing for “Future”),
defined as follows:

Fst[ϕ]
def
= ϕ ? ¬∆−st[ϕ] : ∆+

st[ϕ]. (7)

Thus, maintenance formula µp,st can also be expressed as µp,st
def
= Fst[p]. Eqn. (7)

and Fig. 3 define a syntax-directed translation scheme that can be implemented
via a recursive walk over a formula ϕ. The operators∆−st[·] and∆+

st[·] are mutually
recursive. For instance, ∆+

st[¬ϕ1] = ∆−st[ϕ1] and ∆−st[¬ϕ1] = ∆+
st[ϕ1]. Moreover,

each occurrence of Fst[ϕi] contains additional occurrences of ∆−st[ϕi] and ∆+
st[ϕi].

Note how ∆−st[·] and ∆+
st[·] for ϕ1 ∨ϕ2 and ϕ1 ∧ϕ2 resemble the product

rule of differentiation. Continuing the analogy, it helps to bear in mind that the
“independent variables” are the core relations, whose values are changed via the
τc,st formulas; the “dependent variable” is the relation defined by formula ϕ.

The relation-maintenance formula defined in Eqn. (6) is, in essence, a non-
standard approach to WLP based on finite differencing, rather than substitu-
tion. To see the relationship with WLP, consider the substitution-based relation-
maintenance formula ψp[c ←↩ τc,st | c ∈ C] defined in Eqn. (4), which computes
the WLP of post-state instrumentation relation p with respect to statement st.
In the concrete semantics, this formula is equivalent to the finite-differencing-
based relation-maintenance formula, Fst[p] = p ?¬∆−st[p] : ∆+

st[p] [63, Thm. 5.3].
In effect, Fst[p] is a “footprint-based” version of WLP.

Answers to The Four Questions.
Q1. The concrete semantics is specified by (i) declaring a suitable set of core

relations C that define a system’s concrete states, and (ii) writing—using
first-order logic plus transitive closure over C—the τc,st formulas that define
the concrete transformers.

Q2. A canonical-abstraction domain is specified by (i) defining instrumentation
relations I (again, using first-order logic plus transitive closure), and (ii)
selecting which unary relations in C1] I1 to use as abstraction relations A.
I controls what information is maintained (in addition to the core relations);
A controls what individuals are indistinguishable. The two mechanisms are
connected because one can declare unary instrumentation relations to be
abstraction relations.

Q3.
(a) Abstract transformers are constructed automatically by means of the
four-part construction sketched in the section “Maintaining Instrumenta-
tion Relations” above. In particular, an instrumentation relation p ∈ I is
evaluated using the relation-maintenance formula µp,st, created by applying
a finite-differencing transformation to p’s defining formula ψp (Eqn. (6)).
(b) Representations of abstract transformers can be created by means of a
principle of “pairing and then abstracting” [35, §6]. In particular, one uses
(sets of) logical structures over a duplicated vocabulary R] R′ to repre-
sent relations between logical structures over vocabulary R. The relation-
composition operation needed for interprocedural analysis [74], can be per-
formed in the usual way, i.e., R3[R]R′′] = ∃R′ : R1[R]R′]∧R2[R′]R′′],

Automating Abstract Interpretation 13

using three vocabularies of relation symbols, a meet operation on 3-valued
structures [4], and implementing ∃R′ by dropping all R′ relations [35, §6.5].

Q4. For statement st, the relation-maintenance formula µp,st for instrumenta-
tion relation p is p?¬∆−st[ψp] : ∆+

st[ψp] (evaluated in the pre-state structure),
rather than ψp (evaluated in the post-state structure) or ψp[c←↩ τc,st | c ∈ C]
(evaluated in the pre-state structure). Finite-differencing addresses the non-
compositionality issue because µp,st identifies the “footprint” of statement st
on p, which reduces the number of tuples in p that have to be reevaluated.

4 TSL: Transformer Specification Language

In 2008, Lim and Reps created the TSL system [45], a meta-tool to help in the
creation of tools for analyzing machine code. From a single specification of the
concrete semantics of a machine-code instruction set, TSL automatically gener-
ates correct-by-construction implementations of the state-transformation func-
tions needed in state-space-exploration tools that use static analysis, dynamic
analysis, symbolic analysis, or any combination of the three [45, 44, 80].

The TSL meta-language is a strongly typed, first-order functional language
with a datatype-definition mechanism for defining recursive datatypes, plus de-
construction by means of pattern matching. Writing a TSL specification for an
instruction set is similar to writing an interpreter in first-order ML: the specifi-
cation of an instruction set’s concrete semantics is written as a TSL function

state interpInstr(instruction I, state S) ...;

where instruction and state are user-defined datatypes that represent the
instructions and the semantic states, respectively. TSL’s meta-language provides
a fixed set of basetypes; a fixed set of arithmetic, bitwise, relational, and logical
operators; and a facility for defining map-types.

TSL’s most basic mechanism for creating abstract transformers is similar to
the syntax-directed-replacement method described in §2.2. From the specifica-
tion of interpInstr for a given instruction set, the TSL compiler creates a C++
template that serves as a common intermediate representation (CIR). The CIR
template is parameterized on an abstract-domain class, A, and a fixed set of A
primitive operations that mainly correspond to the primitive operations of the
TSL meta-language. A C++ class that can be used to instantiate the CIR is
called a semantic reinterpretation [56–58, 46]; it must implement an interface
that consists of 42 basetype operators, most of which have four variants, for 8-,
16-, 32-, and 64-bit integers, as well as 12 map access/update operations and a
few additional operations, such as join, meet, and widen.

The CIR can be used to create multiple abstract interpreters for a given
instruction set. Each analyzer is specified by supplying a semantic reinterpre-
tation (for the TSL primitives), which—by extension to TSL expressions and
user-defined functions—provides the reinterpretation of the function interpInstr,
which is essentially the desired function Is,A(·) discussed in §2.3. Each reinter-
pretation instantiates the same CIR template, which in turn comes directly from
the specification of the instruction set’s concrete semantics. By this means, the
abstract transformers generated for different abstract domains are guaranteed

14 Thomas Reps and Aditya Thakur

to be mutually consistent (and also to be consistent with an instruction-set em-
ulator that is generated from the same specification of the concrete semantics).

Although the syntax-directed-replacement method has its drawbacks, it
works well for machine-code instruction sets. Using a corpus of 19,066 Intel
x86 instructions, Lim and Reps found, for one abstract domain, that 96.8% of
the transformers created via semantic reinterpretation reached the limit of pre-
cision attainable with that abstract domain [45, §5.4.1]. Evidently, the semantic
specifications of x86 instructions do not usually suffer from the kinds of missed-
correlation effects discussed in §2.2.

Answers to The Four Questions.

Q1. The semantics of machine-code instructions are specified by writing an
interpreter in the TSL meta-language.

Q2. To define an abstract domain and its operations, one needs to supply a
C++ class that implements a semantic reinterpretation.

Q3.
(a) The common intermediate representation (CIR) generated for a given
TSL instruction-set specification is a C++ template that can be instanti-
ated with multiple semantic-reinterpretation classes to create multiple rein-
terpretations of the function interpInstr.
(b) Representations of abstract transformers can be created via the ap-
proach discussed below in the section “Relational Abstract Domains.”

Q4. One predefined reinterpretation is for quantifier-free formulas over the the-
ory of bitvectors and bitvector arrays (QF ABV). One can avoid the my-
opia of operator-by-operator reinterpretation illustrated in §2.2 by using the
QF ABV reinterpretation on basic blocks and loop-free fragments. The for-
mula so obtained has a “long-range view” of the fragment’s semantics. One
can then employ the symbolic-abstraction techniques described in §5.

Relational Abstract Domains. An interesting problem that we encountered
with TSL was how to perform reinterpretation for relational abstract domains,
such as polyhedra [21], weakly relational domains [49], and affine equalities [55,
40, 27]. With such domains, the goal is to create a representation of an abstract
transformer that over-approximates the concrete transformer for an instruction
or basic block. Clearly state should be redefined as a relational-abstract-domain
class whose values represent a relation between input states and output states;
however, it was not immediately obvious how the TSL basetypes should be rede-
fined, nor how operations such as Plus32, And32, Xor32, etc. should be handled.

The literature on relational numeric abstract domains did not provide much
assistance. Most papers on such domains focus on some modeling language—
typically affine programs ([21, §4], [55, §2], [49, §4])—involving only assignments
and tests written in some restricted form—and describe how to create abstract
transformers only for concrete transformers written in that form. For instance,
for an assignment statement “x := e”

– If e is a linear expression, the coefficients for the variables in e are used to
create an abstract-domain value that encodes a linear transformation.

Automating Abstract Interpretation 15

– If e is a non-linear expression, it is modeled as “x := ?” or, equivalently,
“havoc(x).” (That is, after “x := e” executes, x can hold any value.)

In contrast, with TSL each abstract-domain value must be constructed by evalu-
ating an expression in the TSL meta-language. Moreover, the concrete semantics
of an instruction set often makes use of non-linear operators, such as bitwise-
and and bitwise-or. There could be an unacceptable loss of precision if every use
of a non-linear operator in an instruction’s semantic definition caused a havoc.
Fortunately, we were able to devise a generic method for creating abstract trans-
formers, usable with multiple relational abstract domains, that can retain some
degree of precision for some occurrences of non-linear operators [27, §6.6.4].

For relational abstract domains, the usually straightforward syntax-directed-
replacement method is somewhat subtle. For a set of variables V , a value in type
Rel[V] denotes a set of assignments V → Val (for some value space Val). When
V and V ′ are disjoint sets of variables, the type Rel[V ;V ′] denotes the set of Rel
values over variables V] V ′. We extend this notation to cover singletons: if i is
a single variable not in V , then the type Rel[V ; i] denotes the set of Rel values
over the variables V]{i}. (Operations sometimes introduce additional temporary
variables, in which case we have types like Rel[V ; i, i′] and Rel[V ; i, i′, i′′].)

In a reinterpretation that yields abstractions of concrete transition-relations,
the type state represents a relation on pre-states to post-states. For example,
suppose that the goal is to track relationships among the values of the processor’s
registers. The abstraction of state would be Rel[R;R′], where R is the set of

register names (e.g., for Intel x86, R
def
= {eax, ebx, . . . }), and R′ is the same set

of names, distinguished by primes (R′
def
= {eax’, ebx’, . . . }).

In contrast, the abstraction of a machine-integer type, such as INT32, becomes
a relation on pre-states to machine integers. Thus, for machine-integer types,
we introduce a fresh variable i to hold the “current value” of a reinterpreted
machine integer. Because R still refers to the pre-state registers, we write the
type of a Rel-reinterpreted machine integer as Rel[R; i]. Although technically we
are working with relations, for a Rel[R; i] value it is often useful to think of R
as a set of independent variables and i as the dependent variable.

Constants. The Rel reinterpretation of a constant c is the Rel[V ; i] value that
encodes the constraint i = c.

Variable-Access Expressions. The Rel reinterpretation of a variable-access
expression access(S, v), where S’s value is a Rel state-transformer of type
Rel[V ;V ′] and v ∈ V , is the Rel[V ; i] value obtained as follows:

1. Extend S to be a Rel[V ;V ′; i] value, leaving i unconstrained.
2. Assume the constraint i = v′ on the extended S value (to retrieve v from the

“current state”).
3. Project away V ′, leaving a Rel[V ; i] value that holds in i constraints on v’s

value in terms of the pre-state vocabulary V .

Update Operations. Suppose that S ∈ Rel[V ;V ′], and the reinterpretation of
expression e with respect to S has produced the reinterpreted value J ∈ Rel[V ; i].
We want to create S′′ ∈ Rel[V ;V ′] that acts like S, except that post-state

16 Thomas Reps and Aditya Thakur

variable v′ ∈ V ′ satisfies the constraints on i in J ∈ Rel[V ; i]. The operation
update(S, v, J) is carried out as follows:
1. Let S′ be the result of havocking v′ from S.
2. Let K be the result of starting with J , renaming i to v′, and then extending it

to be a Rel[V ;V ′] value by adding unconstrained variables in the set V ′−{v′}.
3. Return S′′

def
= S′ uK.

S′ captures the state in which we “forget” the previous value of v′, and K asserts
that v′ satisfies the constraints (in terms of the pre-state vocabulary V) that were
obtained from evaluating e.

Addition. Suppose that we have two Rel[V ; i] values x and y, and wish to
compute the Rel[V ; i] value for the expression x+ y. We proceed as follows:
1. Rename y’s i variable to i′; this makes y a Rel[V ; i′] value.
2. Extend both x and y to be Rel[V ; i, i′, i′′] values, leaving i′ and i′′ uncon-

strained in x, and i and i′′ unconstrained in y.
3. Compute x u y.
4. Assume the constraint i′′ = i+ i′ on the value computed in step (3).
5. Project away i and i′, leaving a Rel[V ; i′′] value.
6. In the value computed in step (5), rename i′′ to i, yielding a Rel[V ; i] value.

5 Symbolic Abstraction

Since 2002, the first author has been interested in connections between abstract
interpretation and logic—in particular, how to harness decision procedures to
obtain algorithms for several fundamental primitives used in abstract interpre-
tation [64, 85, 82, 78, 79]. The work aims to bridge the gap between (i) the use of
logic for specifying program semantics and performing program analysis, and (ii)
abstract interpretation. In 1997, Graf and Säıdi [31] showed how to use theorem
provers to generate best abstract transformers for predicate-abstraction domains
(fixed, finite collections of Boolean predicates). In 2004, Reps et al. [64] gave a
method that makes such a connection for a much broader class of abstract do-
mains. That paper also introduced the following problem, which we (now) call
symbolic abstraction:

Given formula ϕ in logic L, and abstract domain A, find the most-precise
descriptor a] in A that over-approximates the meaning of ϕ (i.e., [[ϕ]] ⊆ γ(a]).

We use α̂A(ϕ) to denote the symbolic abstraction of ϕ ∈ L with respect to
abstract domain A. We drop the subscript A when it is clear from context.

The connection between logic and abstract interpretation becomes clearer if
we view an abstract domain A as a logic fragment LA of some general-purpose
logic L, and each abstract value as a formula in LA. We say that γ̂ is a symbolic-
concretization operation for A if it maps each a] ∈ A to ϕa] ∈ LA such that the
meaning of ϕa] equals the concretization of a]; i.e., [[ϕa]]] = γ(a]). LA is often
defined by a syntactic restriction on the formulas of L.

Example 1. If A is the set of environments over intervals, LA is the set of con-
junctions of one-variable inequalities over the program variables. It is generally

Automating Abstract Interpretation 17

easy to implement γ̂ for an abstract domain. For example, given a] ∈ A, it is
straightforward to read off the appropriate ϕa] ∈ LA: each entry x 7→ [clow, chigh]
contributes the conjuncts “clow ≤ x” and “x ≤ chigh.” ut

Thus, symbolic abstraction addresses a fundamental approximation problem:

Given formula ϕ ∈ L, find the strongest consequence of ϕ that is expressible
in a different logic L′.

Since 2011, we (Thakur and Reps) pursued several new insights on this ques-
tion. One insight was that generalized versions of an old, and not widely used,
method for validity checking of propositional-logic formulas, called St̊almarck’s
method, provide new ways to implement α̂. The methods that we subse-
quently developed [82, 78, 81, 79] offer much promise for building more powerful
program-analysis tools. They (i) allow more precise implementations of abstract-
interpretation primitives to be created—including ones that attain the funda-
mental limits on precision that abstract-interpretation theory establishes—and
(ii) drastically reduce the time needed to implement such primitives while en-
suring correctness by construction. In [79], we described a method that, for a
certain class of abstract domains, uses α̂ to solve the following problem:

Given program P and abstract domain A, find the most-precise inductive A-
invariant for P .

5.1 Abstract Transformers via Symbolic Abstraction

We now illustrate how α̂ can be used both to apply an abstract transformer and
to construct a representation of an abstract transformer.

Example 2. Consider the Intel x86 instruction τ ≡ add bh,al, which adds al,
the low-order byte of 32-bit register eax, to bh, the second-to-lowest byte of
32-bit register ebx. No other register apart from ebx is modified. For simplicity,
we only consider the registers eax, ebx, and ecx. The semantics of τ can be
expressed in the logic QF ABV as the formula ϕτ :

ϕτ
def
= ebx′ =

(
(ebx & 0xFFFF00FF)
| ((ebx + 256 ∗ (eax & 0xFF)) & 0xFF00)

)
∧ eax′ = eax

∧ ecx′ = ecx,
(8)

where “&” and “|” denote the non-linear bit-masking operations bitwise-and and
bitwise-or, respectively.

Suppose that the abstract domain is E232 , the domain of affine equalities
over the 32-bit registers eax, ebx, and ecx, and that we would like to apply the
abstract transformer for τ when the input abstract value in E232 is ebx = ecx.
This task corresponds to finding the strongest consequence of the formula ψ ≡
(ebx = ecx∧ϕτ) that can be expressed as an affine relation among eax′, ebx′, and
ecx′, which turns out to be α̂(ψ) ≡ (216ebx′ = 216ecx′ + 224eax′) ∧ (224ebx′ =
224ecx′). Multiplying by a power of 2 shifts bits to the left; because we are
using arithmetic mod 232, bits shifted off the left end are unconstrained. Thus,

18 Thomas Reps and Aditya Thakur

��
#

�
1

��
#

�
2

��
#

�
3

��
#

�
4

��
#

�
5

��
#

�
1

��
#

�
2

��
#

�
3

��
#

�
4

��
#

�
5

�
#

�

��
#

�
1

��
#

�
2

��
#

�
3

��
#

�
4

��
#

�
5

L

��
#

�
1

��
#

�
2

��
#

�
3

��
#

�
4

��
#

�
5

L

�
#

�

(a) (b) (c) (d)

Fig. 4: Conversion between abstract domains with the clique approach ((a) and (b))
versus the symbolic-abstraction approach ((c) and (d)).

the first conjunct of α̂(ψ) captures the relationship between the low-order two
bytes of ebx′, the low-order two bytes of ecx′, and the low-order byte of eax′.
This example illustrates that the result of applying an abstract transformer can
be non-obvious—even for a single machine-code instruction—which serves to
motivate the desire for automation.

Now suppose that we would like to compute a representation of the best
abstract transformer for τ in abstract domain E232 . This task corresponds to
finding the strongest consequence of ϕτ that can be expressed as an affine relation
among eax, ebx, ecx, eax′, ebx′, and ecx′, which turns out to be α̂(ϕτ) ≡
(216ebx′ = 216ebx + 224eax) ∧ (eax′ = eax) ∧ (ecx′ = ecx). ut

5.2 Communication of Information Between Abstract Domains

We now show how symbolic abstraction provides a way to combine the results
from multiple analyses automatically (thereby enabling the construction of new,
more-precise analyzers that use multiple abstract domains simultaneously).

Fig. 4(a) and Fig. 4(b) show what happens if we want to communicate in-
formation between abstract domains without symbolic abstraction. Because it
is necessary to create explicit conversion routines for each pair of abstract do-
mains, we call this approach the “clique approach.” As shown in Fig. 4(b), when
a new abstract domain A is introduced, the clique approach requires that a con-
version method be developed for each prior domain Ai. In contrast, as shown in
Fig. 4(d), the symbolic-abstraction approach only requires that we have α̂ and
γ̂ methods that relate A and L.

If each analysis i is sound, each result a]i represents an over-approximation
of the actual set of concrete states. Consequently, the collection of analysis re-
sults {a]i} implicitly tells us that only the states in

⋂
i γ(a]i) can actually occur.

However, this information is only implicit, and it can be hard to determine what
the intersection value really is. One way to address this issue is to perform a se-
mantic reduction [19] of each of the a]i with respect to the set of abstract values

{a]j | i 6= j}. Fortunately, symbolic abstraction provides a way to carry out such
semantic reductions without the need to develop pair-wise or clique-wise reduc-
tion operators. The principle is illustrated in Fig. 5 for the case of two abstract
domains, P = Env [Parity] and I = Env [Interval]. Given a]1 ∈ P and a]2 ∈ I, we

Automating Abstract Interpretation 19

L

∧∧∧∧
αP

∧∧∧∧
αI

∧∧∧∧

γP
∧∧∧∧
γI

��
#
	= (axeven,

bxodd,

cxΤ)

��
#
	= (ax[3,12],

bx[5,10],

cx[7,7])

3 ≤ a ≤ 12

∧ 5 ≤ b ≤ 10

∧ 7 ≤ c ≤ 7

∧ 231 a = 0

∧ 231 b = 231

��
#
�

= (ax[4,12],

bx[5,9],

cx[7,7])

Parity Interval

��
#
�

= (axeven,

bxodd,

cxodd)

Fig. 5: Improving values from two abstract domains via symbolic abstraction.

can improve the pair 〈a]1, a
]
2〉 by first creating the formula ϕ

def
= γ̂P(a]1)∧ γ̂I(a]2),

and then applying α̂P and α̂I to ϕ to obtain a]1
′

= α̂P(ϕ) and a]2
′

= α̂I(ϕ),

respectively. a]1
′

and a]2
′

can be smaller than the original values a]1 and a]2, re-

spectively. We then use the pair 〈a]1
′
, a]2
′
〉 instead of 〈a]1, a

]
2〉. Fig. 5 shows a

specific example of how this approach to semantic reduction improves both the
Env [Parity] value and the Env [Interval] value. When there are more than two

abstract domains, we form the conjunction ϕ
def
=
∧
i γ̂i(a

]
i), and then apply each

α̂i to obtain a]i
′

= α̂i(ϕ).

5.3 Algorithms for Symbolic Abstraction

The various algorithms for computing symbolic abstraction can be seen as relying
on the following two properties:

Theorem 2. [76, Thm. 3.14] α̂(ϕ) =
⊔{

β(S)
∣∣S |= ϕ

}
ut

Theorem 3. [76, Thm. 3.15] α̂(ϕ) =
{
a
∣∣ϕ⇒ γ̂(a)

}
ut

The representation function β returns the abstraction of a singleton concrete
state; i.e., β(σ) = α ({σ}).
RSY Algorithm. Reps et al. [64] presented a framework for computing α̂—
which we call the RSY algorithm—that applies to any logic L and abstract
domain A that satisfy certain conditions. The key insight of the algorithm is
the use of an SMT solver for L as a black-box to query for models of ϕ and
then make use of Thm. 2. Unfortunately, Thm. 2 does not directly lead to an
algorithm for computing α̂(ϕ), because, as stated, it involves finding all models
of ϕ, which would be impractical. The RSY algorithm queries the SMT solver
to compute a finite sequence σ1, σ2, . . . , σk of models of ϕ. This sequence is used
to compute the sequence of abstract values a]0, a

]
1, a

]
2, . . . , a

]
k as follows:

a]0 = ⊥
a]i = a]i−1 t β(σi), σi |= ϕ, 1 ≤ i ≤ k

(9)

Merely sampling k arbitrary models of ϕ would not work. In particular, it is
possible that a]i−1 = a]i , in which case step i has not made progress. To ensure

20 Thomas Reps and Aditya Thakur

progress, we require σi to be a model of ϕ such that σi /∈ γ(a]i−1). In other words,

σi should be a model that satisfies ϕ ∧ ¬γ̂(a]i−1). Eqn. (9) can be restated as

a]0 = ⊥
a]i = a]i−1 t β(σi), σi |= ϕ ∧ ¬γ̂(a]i−1), 1 ≤ i

(10)

Obtaining σi as a model of ϕ ∧ ¬γ̂(a]i−1) ensures that either a]i−1 @ a]i or else

a]i−1 = a]i = α̂(ϕ). Thus, if A has no infinite ascending chains, the sequence
constructed by Eqn. (10) forms a finite ascending chain that converges to α̂(ϕ):

⊥ = a]0 @ a]1 @ a]2 @ . . . @ a]k−1 @ a]k = α̂(ϕ). (11)

From Eqn. (10), we can identify the requirements on L and A:

1. There is a Galois connection C −−−→←−−−α
γ

A between A and concrete domain C,
and an implementation of the corresponding representation function β.

2. There is an algorithm to evaluate a] t β(σ) for all a] ∈ A.
3. There is a symbolic-concretization operation γ̂ that maps an abstract value
a] ∈ A to a formula γ̂(a]) in L.

4. A has no infinite ascending chains.
5. There is a decision procedure for logic L that is also capable of returning a

model satisfying a given formula in L.
6. Logic L is closed under conjunction and negation.
Pseudo-code for the RSY algorithm can be found in [64].

Bilateral Algorithm. The bilateral algorithm [78] is a framework for comput-
ing α̂ that is similar to the RSY algorithm in that it queries an SMT solver.
However, the nature of the queries differ in the two algorithms. Furthermore,
the bilateral algorithm makes use of both Thm. 2 and Thm. 3. While the RSY
algorithm converges to the final answer by moving up the lattice, the bilateral
algorithm converges to the final answer by both moving up the lattice start-
ing from ⊥ and moving down the lattice starting from >. That is, the bilateral
algorithm computes a finite sequence of pairs of abstract values (l]i , u

]
i) such that

⊥ = l]0 v l
]
1 v . . . v l

]
k = α̂(ϕ) = u]k v . . . v u

]
1 v u

]
0 = >. (12)

The progress guarantee for the RSY algorithm is that a]i @ a]i+1: on each itera-
tion, the algorithm moves up the lattice. The progress guarantee for the bilateral
algorithm is slightly different: on each iteration, the algorithm either moves up
the lattice or moves down the lattice: either l]i @ l]i+1 or u]i+1 @ u]i .

A key concept in the bilateral algorithm is the notion of an abstract-
consequence operation:

Definition 3. An operation AC(·, ·) is an acceptable abstract-consequence
operation iff for all l], u] ∈ A such that l] @ u], a] = AC(l], u]) implies that
l] v a] and a] 6w u]. ut

In particular, γ(a]) does not encompass γ(u]), and whenever a] 6= ⊥, γ(a])
overlaps γ(u]).

Readers familiar with the concept of interpolation [23] might see similarities
between interpolation and abstract consequence. However, as discussed in [78,
§3], there are significant differences between these two notions.

Automating Abstract Interpretation 21

The sequence (l]i , u
]
i) is computed using the following rules:

(l]0, u
]
0) = (⊥,>) (13)

(l]i , u
]
i) = (l]i−1, u

]
i−1 uAC(l]i−1, u

]
i−1), ϕ⇒ γ̂

(
AC(l]i−1, u

]
i−1)

)
, l]i−1 @u]i−1 (14)

(l]i , u
]
i) = (l]i−1 t β(σi), u

]
i−1), σi |= ϕ ∧ ¬γ̂

(
AC(l]i−1, u

]
i−1)

)
, l]i−1 @ u]i−1 (15)

The invariant that is maintained is that l]i v α̂(ϕ) v u]i . l
]
0 is initialized to ⊥,

and u]0 is initialized to >. Let a]i−1 = AC(l]i−1, u
]
i−1). There are two cases: either

ϕ⇒ γ̂(a]i−1) or it does not. If ϕ⇒ γ̂(a]i−1), then u]i can be defined as u]i−1ua
]
i−1,

and l]i = l]i−1 (Eqn. (14)). This step makes progress because a]i−1 6w u
]
i−1 implies

that u]i @ u]i−1 u a
]
i−1. Otherwise, there must exist a model σi such that σi |=

ϕ∧¬γ̂(a]i−1). In this case, l]i can be defined as l]i−1tβ(σi) (Eqn. (15)). This step
makes progress for reasons similar to the RSY algorithm. Thus, on each iteration
either l]i or u]i is updated. The values l]i and u]i are guaranteed to converge to
α̂(ϕ) provided A has neither infinite ascending chains nor infinite descending
chains.5

There can be multiple ways of defining the abstract-consequence opera-
tion. In fact, the bilateral algorithm reduces to the RSY algorithm if we define

AC(l]i−1, u
]
i−1)

def
= l]i−1. Other algorithms for computing abstract consequence for

a large class of abstract domains are described in [78]. The choice of abstract
consequence determines the cost of each query of the SMT solver as well as the
rate of convergence of the bilateral algorithm.

The key advantage of the bilateral algorithm over the RSY algorithm is that
the bilateral algorithm is an anytime algorithm, because the algorithm can return
a sound over-approximation (u]i) of the final answer if it is stopped at any point.
This property makes the bilateral algorithm resilient to SMT-solver timeouts.

Pseudo-code for the bilateral algorithm can be found in [78] and [76, Ch. 5].

Generalizations of St̊almarck’s Algorithm. In [81], we showed how
St̊almarck’s method [75], an algorithm for satisfiability checking of propositional
formulas, can be explained using abstract-interpretation terminology—in partic-
ular, as an instantiation of a more general algorithm, St̊almarck[A], that is pa-
rameterized on an abstract domain A and operations on A. The algorithm that
goes by the name “St̊almarck’s method” is one instantiation of St̊almarck[A]
with a certain Boolean abstract domain. At each step, St̊almarck[A] holds some
a] ∈ A; each of the proof rules employed in St̊almarck’s method improves a] by
finding a semantic reduction of a] with respect to ϕ.

The abstraction-interpretation-based view enables us to lift St̊almarck’s
method from propositional logic to richer logics by instantiating St̊almarck[A]
with richer abstract domains [82]. Moreover, it brings out a new connection be-
tween St̊almarck’s method and α̂. To check whether a formula ϕ is unsatisfiable,
St̊almarck[A] computes α̂A(ϕ) and performs the test “α̂A(ϕ) = ⊥A?” If the test
succeeds, it establishes that [[ϕ]] ⊆ γ(⊥A) = ∅, and hence that ϕ is unsatisfiable.

5 A slight modification to the bilateral algorithm can remove the requirement of having
no infinite descending chains [78].

22 Thomas Reps and Aditya Thakur

To explain the St̊almarck[A] algorithm for α̂, we first define the notion of

Âssume. Given ϕ ∈ L and a] ∈ A, Âssume[ϕ](a]) returns the best value in A
that over-approximates the meaning of ϕ in concrete states described by a].

That is, Âssume[ϕ](a]) equals α([[ϕ]] ∩ γ(a])).
The principles behind the St̊almarck[A] algorithm for α̂ can be understood

via the following equations:

α̂(ϕ) = Âssume[ϕ](>) (16)

Âssume[ϕ1 ∧ ϕ2](a]) v Âssume[ϕ1](a]) u Âssume[ϕ2](a]) (17)

Âssume[ϕ](a]) v Âssume[ϕ](a] u a]1) t Âssume[ϕ](a] u a]2),

where γ(a]1) ∪ γ(a]2) ⊇ γ(a]) (18)

Âssume[`](a]) v µα̂(`) u a],where ` is a literal in L (19)

Eqn. (16) follows from the definition of α̂ and Âssume. Eqn. (17) follows from
the definition of ∧ and u, and corresponds to the simple deductive rules used
in St̊almarck’s algorithm. Eqn. (18) is the abstract-interpretation counterpart of
the Dilemma Rule used in St̊almarck’s method: the current goal a] is split into
sub-goals using meet (u), and the results of the sub-goals are combined using join

(t). The correctness of this rule relies on the condition that γ(a]1)∪γ(a]2) ⊇ γ(a]).
The µα̂ operation in Eqn. (19) translates a literal in L into an abstract value

in A; that is µα̂(`)
def
= α̂(`). However, for certain combinations of L and A, the

µα̂ operation is straightforward to implement—for example, when L is linear
rational arithmetic (LRA) and A is the polyhedral domain [21]. µα̂ can also be
implemented using the RSY or bilateral algorithms when L and A satisfy the
requirements for those frameworks.

The St̊almarck-based framework is based on much different principles from
the RSY and bilateral frameworks for computing symbolic abstraction. The lat-
ter frameworks use an inductive-learning approach to learn from examples, while
the St̊almarck-based framework uses a deductive approach by using inference
rules to deduce the answer. Thus, they represent two different classes of frame-
works, with different requirements for the abstract domain. In contrast to the
RSY/Bilateral framework, which uses a decision procedure as a black box, the
St̊almarck-based framework adopts (and adapts) some principles from decision
procedures.

Answers to The Four Questions.
Q1. The semantics of a statement st are specified as a two-vocabulary formula
ϕst in some logic L. In our work, we have typically used quantifier-free for-
mulas over the theory of bitvectors and bitvector arrays (QF ABV).

Q2. The abstract domain is specified via an interface consisting of the stan-
dard operations (t, u, etc.). The RSY and bilateral frameworks for sym-
bolic abstraction require the β operation. The St̊almarck-based framework
for symbolic abstraction requires the µα̂ operation.

Q3. The various algorithms for α̂ are the engines that apply/construct abstract
transformers for a concrete transformer τ .

Automating Abstract Interpretation 23

(a) The abstract execution of τ on a] is performed via a]
′

= α̂
(
ϕτ ∧ γ̂(a])

)
.

(b) The representation of the abstract transformer for τ is obtained via
τ] = α̂(ϕτ).

Q4. The formula used to construct an abstract transformer can express the
concrete semantics of (i) a basic block or (ii) a loop-free fragment (including
a finite unrolling of a loop) à la large-block encoding [9] or adjustable-block
encoding [10]. In our work, we used the TSL framework to obtain such for-
mulas.

5.4 Automated Reasoning/Decision Procedures

Our investigation of symbolic abstraction led us to a new connection between de-
cision procedures and abstract interpretation—namely, how to exploit abstract
interpretation to provide new principles for designing decision procedures [82].
This work, which we call Satisfiability Modulo Abstraction (SMA), has led to
new principles for designing decision procedures, and provides a way to create
decision procedures for new logics. At the same time, it shows great promise
from a practical standpoint. In other words, the methods for symbolic abstrac-
tion are “dual-use.” In addition to providing methods for building improved
abstract-interpretation tools, they also provide methods for building improved
logic solvers that use abstract interpretation to speed up the search that a solver
carries out.

One of the main advantages of the SMA approach is that it is able to
reuse abstract-interpretation machinery to implement decision procedures. For
instance, in [82], the polyhedral abstract domain—implemented in PPL [5]—is
used to implement an SMA solver for the logic of linear rational arithmetic.

More recently, we created an SMA solver for separation logic [77]. Separa-
tion logic (SL) [68] is an expressive logic for reasoning about heap structures in
programs, and provides a mechanism for concisely describing program states by
explicitly localizing facts that hold in separate regions of the heap. SL is unde-
cidable in general, but by using an abstract domain of shapes [70] we were able
to design an unsatisfiability checker for SL.

5.5 Symbolic Abstraction and Quantifier Elimination

Gulwani and Musuvathi [32] defined what they termed the “cover problem,”
which addresses approximate existential-quantifier elimination:

Given a formula ϕ in logic L, and a set of variables V , find the strongest
quantifier-free formula ϕ in L such that [[∃V : ϕ]] ⊆ [[ϕ]].

(We use CoverV (ϕ) to denote the cover of ϕ with respect to variable set V .)
Both CoverV (ϕ) and α̂(ϕ) (deliberately) lose information from ϕ, and hence

both result in over-approximations of [[ϕ]]. In general, however, they yield differ-
ent over-approximations of [[ϕ]].
1. The information loss from CoverV (ϕ) only involves the removal of variable

set V from the vocabulary of ϕ. The resulting formula ϕ is still allowed to be
an arbitrarily complex L formula; ϕ can use all of the (interpreted) operators
and (interpreted) relation symbols of L.

24 Thomas Reps and Aditya Thakur

2. The information loss from α̂(ϕ) involves finding a formula ψ in an impover-
ished logic L′: ψ must be a restricted L formula; it can only use the operators
and relation symbols of L′, and must be written using the syntactic restric-
tions of L′.
One of the uses of information-loss capability 2 is to bridge the gap between

the concrete semantics and an abstract domain. In particular, it may be necessary
to use the full power of logic L to express the semantics of a concrete transformer
τ (e.g., Eqn. (8)). However, the corresponding abstract transformer must be
expressed in L′. When L′ is something other than the restriction of L to a sub-
vocabulary, the cover of ϕτ is not guaranteed to return an answer in L′, and
thus does not yield a suitable abstract transformer. This difference is illustrated
using the scenario described in Ex. 2.

Example 3. In Ex. 2, the application of the abstract transformer for τ is obtained
by computing α̂(ψ) ∈ E232 , where E232 is the domain of affine equalities over the
32-bit registers eax, ebx, and ecx; ψ ≡ (ebx = ecx ∧ ϕτ); and ϕτ is defined
in Eqn. (8). In particular, α̂(ψ) ≡ (216ebx′ = 216ecx′ + 224eax′) ∧ (224ebx′ =
224ecx′).

Let R be the set of pre-state registers {eax, ebx, ecx}. The cover of ψ with
respect to R is

CoverR(ψ)≡ ebx′ =

(
(ecx′ & 0xFFFF00FF)
| ((ecx′ + 256 ∗ (eax′ & 0xFF)) & 0xFF00)

)
(20)

Eqn. (20) shows that even though the result does not contain any unprimed
registers, it is not an abstract value in the domain E232 . ut

The notion of symbolic abstraction subsumes the notion of cover: if L′ is the
logic L restricted to the variables not contained in V , then α̂L′(ϕ) = CoverV (ϕ).

6 Connections with Other Areas of Computer Science

One of the most exciting aspects of the work on symbolic abstraction and au-
tomating the creation of abstract transformers is that the problem turns out to
have many connections to other areas of Computer Science. Connections with
automated reasoning and decision procedures were discussed in §5.4. Other con-
nections include concept learning (§6.1) and constraint programming (§6.2).

6.1 Concept Learning

Reps et al. [64] identified a connection between the RSY algorithm for symbolic
abstraction and the problem of concept learning in (classical) machine learning.
In machine-learning terms, an abstract domain A is a hypothesis space; each
domain element corresponds to a concept. A hypothesis space has an inductive
bias, which means that it has a limited ability to express sets of concrete objects.
In abstract-interpretation terms, inductive bias corresponds to the image of γ
on A not being the full power set of the concrete objects. Given a formula ϕ, the
symbolic-abstraction problem is to find the most specific concept that explains
the meaning of ϕ.

The RSY algorithm is related to the Find-S algorithm for concept learning
[51, §2.4]. Both algorithms start with the most-specific hypothesis (i.e., ⊥) and

Automating Abstract Interpretation 25

work bottom-up to find the most-specific hypothesis that is consistent with posi-
tive examples of the concept. Both algorithms generalize their current hypothesis
each time they process a (positive) training example that is not explained by
the current hypothesis. A major difference is that Find-S receives a sequence of
positive and negative examples of the concept (e.g., from nature). It discards
negative examples, and its generalization steps are based solely on the positive
examples. In contrast, the RSY algorithm already starts with a precise state-
ment of the concept in hand, namely, the formula ϕ, and on each iteration, calls
a decision procedure to generate the next positive example; the RSY algorithm
never sees a negative example.

A similar connection exists between the Bilateral algorithm and the
Candidate-Elimination (CE) algorithm for concept learning [51, §2.5]. Both
algorithms maintain two approximations of the concept, one that is an over-
approximation and one that is an under-approximation. The CE algorithm up-
dates its under-approximation using positive examples in the same way that the
Find-S algorithm updates its under-approximation. Similarly, the Bilateral algo-
rithm updates its under-approximation (via a join) in the same way that the RSY
algorithm updates its under-approximation. One key difference between the CE
algorithm and the Bilateral algorithm is that the CE algorithm updates its over-
approximation using negative examples. Most conjunctive abstract domains are
not closed under negation. Thus, given a negative example, there usually does
not exist an abstract value that only excludes that particular negative example.

There are, however, some differences between the problems of symbolic ab-
straction and concept learning. These differences mostly stem from the fact that
an algorithm for performing symbolic abstraction already starts with a precise
statement of the concept in hand, namely, the formula ϕ. In the machine-learning
context, usually no such finite description of the concept exists, which imposes
limitations on the types of queries that the learning algorithm can make to an
oracle (or teacher); see, for instance, [2, §1.2]. The power of the oracle also af-
fects the guarantees that a learning algorithm can provide. In particular, in the
machine-learning context, the learned concept is not guaranteed or even required
to be an over-approximation of the underlying concrete concept. During the past
three decades, the machine-learning theory community has shifted their focus
to learning algorithms that only provide probabilistic guarantees. This approach
to learning is called probably approximately correct learning (PAC learning) [83,
39]. The PAC guarantee also enables a learning algorithm to be applicable to
concept lattices that are not complete lattices.

The similarities and differences between symbolic abstraction and concept
learning open up opportunities for a richer exchange of ideas between the two
areas. In particular, one can imagine situations in which it is appropriate for
the over-approximation requirement for abstract transformers to be relaxed to
a PAC guarantee—for example, if abstract interpretation is being used only to
find errors in programs, instead of proving programs correct [14], or to analyze
programs with a probabilistic concrete semantics [41, 52, 22].

26 Thomas Reps and Aditya Thakur

6.2 Constraint Programming

Constraint programming [54] is a declarative programming paradigm in which
problems are expressed as conjunctions of first-order-logic formulas, called con-
straints. A constraint-satisfaction problem is defined by (i) a set of variables
V1, . . . , Vn; (ii) a search space S given by a domain Di for each variable Vi;
and (iii) a set of constraints ϕ1, . . . , ϕp. The objective is to enumerate all vari-
able valuations in the search space that satisfy every constraint. Different fam-
ilies of constraints come with specific operators—such as choice operators and
propagators—used by the solver to explore the search space of the problem and
to reduce its size, respectively. A constraint solver alternates two kinds of steps:

1. Propagation steps exploit constraints to reduce the domains of variables by
removing values that cannot participate in a solution. The goal is to achieve
consistency, when no more values can be removed.

2. When domains cannot be reduced further, the solver performs a splitting step:
it makes an assumption about how to split a domain, and continues searching
in the smaller search spaces.

The search proceeds, alternating propagation and splitting, until the search space
contains either no solution, only solutions, or is smaller than a user-specified size.
Backtracking may be used to explore other splitting assumptions.

Because the solution set cannot generally be enumerated exactly, continuous
solvers compute a collection of intervals with floating-point bounds that contain
all solutions and over-approximate the solution set while trying—on a best-effort
basis—to include as few non-solutions as possible. In our terminology, such a
constraint solver approaches α̂(ϕ) from above, for a conjunctive formula ϕ; the
abstract domain is the disjunctive completion of the domain of environments of
intervals; and the splitting and tightening steps are semantic reductions.

Several connections between abstract interpretation and constraint solving
have been made in the past. Apt observed that applying propagators can be seen
as an iterative fixpoint computation [3]. Pelleau et al. used this connection to
describe a parameterized constraint solver that can be instantiated with different
abstract domains [60]. Miné et al. describe a related algorithm to prove that a
candidate invariant ϕ for a loop really is an invariant [50]. The goal is to identify
a stronger invariant ψ that is both inductive and implies ϕ. The algorithm is
parameterized on an abstract domain A; the algorithm’s actions are inspired by
constraint solvers: it repeatedly splits and tightens non-overlapping elements of
A (and therefore is searching for an inductive invariant in the disjunctive com-
pletion of A). The algorithm works from “above” in the sense that it starts with
(an under-approximation of) ϕ and creates descriptors of successively smaller
areas of the state space as it searches for a suitable ψ.

7 Related Work

7.1 Best Abstract Transformers

In 1979, Cousot and Cousot [19] gave the specification of the best abstract
transformer:

Automating Abstract Interpretation 27

Let τ : Store → Store be a concrete transformer and C = P(Store). Given

a Galois connection C −−−→←−−−α
γ

A, the best abstract transformer, defined by

τ]best
def
= α ◦ τ̃ ◦ γ, (21)

is the most precise abstract transformer that over-approximates τ .

τ]best establishes the limit of precision with which the actions of τ can be tracked
using a given abstract domain A. It provides a limit on what can be achieved
by a system to automate the construction of abstract transformers. However,
Eqn. (21) is non-constructive; it does not provide an algorithm, either for com-

puting the result of applying τ]best or for finding a representation of the function

τ]best . In particular, the explicit application of γ to an abstract value would, in
most cases, yield an intermediate set of concrete states that is either infinite or
too large to fit into memory.

Graf and Säıdi [31] showed that theorem provers can be used to generate best
abstract transformers for predicate-abstraction domains. In 2004, three papers
appeared that concerned the problem of automatically constructing abstract
transformers:
– Reps et al. [64] gave the method described in §5.3 for computing best trans-

formers from below, which applies to a broader class of abstract domains than
predicate-abstraction domains.

– Yorsh et al. [85] gave a method that works from above, for abstract domains
based on canonical abstraction.

– Regehr and Reid [61] presented a method to construct abstract transformers
for machine instructions, for interval and bitwise abstract domains. Their
method is not based on logical reasoning, but instead uses a physical processor
(or simulator) as a black box. To compute the abstract post-state for an
abstract value a], the approach recursively divides a] until an abstract value
is obtained whose concretization is a singleton set. The concrete semantics
are then used to derive the post-state value. The results of each division are
joined as the recursion unwinds to derive the abstract post-state value.

Since then, a number of other methods for creating best abstract transformers
have been devised [71, 53, 8, 40, 82, 78, 27]. (Some of them are discussed in §7.3.)

7.2 Heuristics for Good Transformers

With TVLA, a desired abstraction is specified by (i) defining the set of instru-
mentation relations I to use, and (ii) selecting which unary relations to use
as abstraction relations A. The abstract transformers are then constructed au-
tomatically by means of the four-part construction sketched in the paragraph
“Maintaining Instrumentation Relations” of §3. There is no expectation that the
abstract transformers constructed in this way are best transformers. However,
practical experience with TVLA has shown that when the abstract domain is
defined by the right sets of relations I and A, TVLA produces excellent results.

Four theorems at the level of the framework—one for each part of the four-
part construction—relieve the TVLA user from having to write the usual “near-
commutativity” proofs of soundness that one finds in papers about one-off uses of

28 Thomas Reps and Aditya Thakur

abstract interpretation.6 These meta-level theorems are the key enabling factors
that allow abstract transformers to be constructed automatically for canonical-
abstraction domains.

The finite-differencing approach is generally able to retain an appropriate
amount of precision because, for a concrete transformer τst, the application of the
finite-differencing operators to an instrumentation relation p’s defining formula
ψp identifies the “footprint” of st on p. Knowledge of the footprint lets the
relation-maintenance formula reuse as much information as possible from the pre-
state structure, and thereby avoid performing formula-reevaluation operations
for tuples whose values cannot be changed by st.

The term “footprint of a statement” also appears in work on abstract in-
terpretation using separation logic (SL) [24, 15], but there it means a compact
characterization of the concrete semantics of a statement in terms of the re-
sources it accesses. In our terminology, footprints in the SL literature concern
the core relations—i.e., the independent variables in the analogy with differenti-
ation from §3. In this paper, when we refer to footprints, we mean the minimal
effects of the concrete transformer on the instrumentation relations—which play
the role of dependent variables.

The finite-differencing operators used in TVLA are most closely related to
work on logic and databases: finite-difference operators for the propositional case
were studied by Akers [1] and Sharir [73]. Work on (i) incrementally maintain-
ing materialized views in databases [33], (ii) first-order incremental evaluation
schemes [25], and (iii) dynamic descriptive complexity [59] have also addressed
the problem of maintaining one or more auxiliary relations after new tuples are
inserted into or deleted from base relations. In databases, view maintenance
is solely an optimization; the correct information can always be obtained by
reevaluating the defining formula. In the abstract-interpretation context, where
abstraction has been performed, this is no longer true: reevaluating a formula
in the local (3-valued) state can lead to a drastic loss of precision. Thus, the
motivation for the work is completely different, although the techniques have
strong similarities.

The method used in TVLA for finite differencing of formulas inspired some
follow-on work using numeric finite differencing for program analysis [26]. That
paper shows how to augment a numeric abstraction with numeric views, and
gives a technique based on finite differencing to maintain an over-approximation
of a view-variable’s value in response to a transformation of the program state.

The idea of augmenting domains with instrumentation values has been used
before in predicate-abstraction domains [31], which maintain the values of a given
set of Boolean predicates. Graf and Säıdi [31] showed that decision procedures
can be used to generate best abstract transformers for predicate-abstraction do-
mains, but with high cost. Other work has investigated more efficient methods to

6 (i) The correctness theorem for focus [70, Lems. 6.8 & 6.9]; (ii) the Embedding The-
orem [70, Thm. 4.9]; (iii) the correctness theorem for the finite-differencing scheme
for maintaining instrumentation relations [63, Thm. 5.3]; and (iv) the correctness
theorem for coerce [70, Thm. 6.28].

Automating Abstract Interpretation 29

generate approximate transformers that are not best transformers, but approach
the precision of best transformers [7, 16]. Ball et al. [7] use a “focus” operation
inspired by TVLA’s focus, which as noted in footnote 4, plays a role similar to
the splitting step in St̊almarck’s algorithm.

Scherpelz et al. [72] developed a method for creating abstract transformers
for use with parameterized predicate abstraction [17]. It performs WLP of a post-
state relation with respect to transformer τ , followed by heuristics that attempt
to determine combinations of pre-state relations that imply the WLP value.
Generating the abstract transformer for a (nullary) instrumentation relation
p ∈ I, defined by the nullary formula ψp(), involves two steps:

1. Create the formula ϕ = WLP(τ, ψp()).
2. Find a Boolean combination νp,τ of pre-state relations such that if νp,τ holds

in the pre-state, then ϕ must also hold in the pre-state (and hence p must
hold in the post-state).

The abstract transformer is a function that sets the value of p in the post-state
according to whether νp,τ holds in the pre-state.

Because WLP performs substitution on ψp(), the formula created by step (1)
is related to the substitution-based relation-maintenance formula defined in
Eqn. (4). Step (2) applies several heuristics to ϕ to produce one or more strength-
enings of ϕ; step (2) returns the disjunction of the strengthened variants of ϕ.
In contrast, the finite-differencing algorithm discussed in §3 does not operate by
trying to strengthen the substitution-based relation-maintenance formula; in-
stead, it uses a systematic approach—based on finite differencing of p’s defining
formula ψp()—to identify how τ changes p’s value. Moreover, the method is not
restricted to nullary instrumentation relations: it applies to relations of arbitrary
arity.

A special case of canonical abstraction occurs when no abstraction relations
are used at all, in which case all individuals of a logical structure are collapsed
to a single individual. When this is done, in almost all structures the only useful
information remaining resides in the nullary core and instrumentation relations.
Predicate abstraction can be seen as going one step further, retaining only the
nullary instrumentation relations (and no abstracted core relations). However,
to be able to evaluate a “Future” formula—as defined in Eqn. (7)—such as

Fτ [p]
def
= p ?¬∆−τ [p] : ∆+

τ [p], one generally needs the pre-state abstract structure
to hold (abstracted) core relations. From that standpoint, the finite-differencing
method and that of Scherpelz et al. [72] are incomparable; they have different
goals, and neither can be said to subsume the other.

Cousot et al. [20, §7] define a method of abstract interpretation based on using
particular sets of logical formulas as abstract-domain elements (so-called logical
abstract domains). They face the problems of (i) performing abstraction from
unrestricted formulas to the elements of a logical abstract domain [20, §7.2], and
(ii) creating abstract transformers that transform input elements of a logical
abstract domain to output elements of the domain [20, §7.3]. Their problems
are particular cases of α̂(ϕ). They present heuristic methods for creating over-
approximations of α̂(ϕ).

30 Thomas Reps and Aditya Thakur

7.3 Symbolic Abstraction

Work on symbolic abstraction falls into three categories:

1. algorithms for specific domains [61, 47, 13, 8, 40, 27, 77, 43]
2. algorithms for parameterized abstract domains [31, 85, 71, 53]
3. abstract-domain frameworks [64, 82, 78].

What distinguishes category 3 from category 2 is that each of the results cited
in category 2 applies to a specific family of abstract domains, defined by a
parameterized Galois connection (e.g., with an abstraction function equipped
with a readily identifiable parameter for controlling the abstraction). In contrast,
the results in category 3 are defined by an interface; for any abstract domain
that satisfies the requirements of the interface, one has a method for symbolic
abstraction. The approaches presented in §5 fall into category 3.

Some of the work mentioned above has already been discussed in §7.1.

Algorithms for specific domains. Brauer and King [13] developed a method
that works from below to derive abstract transformers for the interval domain.
Their method is based on an approach due to Monniaux [53] (see below), but
they changed two aspects:

1. They express the concrete semantics with a Boolean formula (via “bit-
blasting”), which allows a formula equivalent to ∀x.ϕ to be obtained from
ϕ (in CNF) by removing the x and ¬x literals from all of the clauses of ϕ.

2. Whereas Monniaux’s method performs abstraction and then quantifier elim-
ination, Brauer and King’s method performs quantifier elimination on the
concrete specification, and then performs abstraction.

The abstract transformer derived from the Boolean formula that results is a
guarded update: the guard is expressed as an element of the octagon domain
[48]; the update is expressed as an element of the abstract domain of rational
affine equalities [38]. The abstractions performed to create the guard and the
update are optimal for their respective domains. The algorithm they use to create
the abstract value for the update operation is essentially the King-Søndergaard
algorithm for α̂ [40, Fig. 2], which works from below. Brauer and King show that
optimal evaluation of such transfer functions requires linear programming. They
give an example showing that an octagon-closure operation on a combination of
the guard’s octagon and the update’s affine equality is sub-optimal.

Barrett and King [8] describe a method for generating range and set ab-
stractions for bit-vectors that are constrained by Boolean formulas. For range
analysis, the algorithm separately computes the minimum and maximum value
of the range for an n-bit bit-vector using 2n calls to a SAT solver, with each
SAT query determining a single bit of the output. The result is the best over-
approximation of the value that an integer variable can take on (i.e., α̂).

Li et al. [43] developed a symbolic-abstraction method for LRA, called
SYMBA. The scenario considered by [43] is the following: Given a formula ϕ
in LRA logic and a finite set of objectives {t1, t2, . . . , tn}, where ti is a linear-
rational expression, SYMBA computes the lower and upper bounds l1, l2, . . . , ln
and u1, u2, . . . , un such that ϕ⇒

(∧
1≤i≤n li ≤ ti ≤ ui

)
. Similar to the bilat-

Automating Abstract Interpretation 31

eral framework described in §5, the SYMBA algorithm maintains an under-
approximation and an over-approximation of the final answer.

McMillan [47] presents an algorithm for performing symbolic abstraction for
propositional logic and the abstract domain of propositional clauses of length up
to k. The algorithm can be viewed as an instance of the RSY algorithm: a SAT
solver is used to generate samples, and a trie data structure is used to perform
the join of abstract values. The specific application for which the algorithm is
used is to compute don’t-care conditions for logic synthesis.

Algorithms for parameterized abstract domains. Template Constraint
Matrices (TCMs) are a parametrized family of linear-inequality domains for ex-
pressing invariants in linear real arithmetic. Sankaranarayanan et al. [71] gave
a meet, join, and set of abstract transformers for all TCM domains. Monni-
aux [53] gave an algorithm that finds the best transformer in a TCM domain
across a straight-line block (assuming that concrete operations consist of piece-
wise linear functions), and good transformers across more complicated control
flow. However, the algorithm uses quantifier elimination, and no polynomial-time
elimination algorithm is known for piecewise-linear systems.

8 Conclusion

The algorithms developed in our research reduce the burden on analysis design-
ers and implementers by raising the level of automation in abstraction inter-
pretation. The work summarized in this paper focuses on the question “Given
the specification of an abstraction, how does one create an execution engine
for an analyzer that performs computations in an over-approximating fashion?”
We know of only four systematic ways to address this question, three of which
feature in our work:

1. Semantic reinterpretation and the related technique of syntax-directed rein-
terpretation (§4).

2. A strategy of splitting, propagation, and join à la the work on the generalized
St̊almarck procedure [82] and TVLA [70, 63].

3. The approach illustrated by our bilateral algorithm, which uses concept learn-
ing via sampling, generalization, and abstract consequence to bound the an-
swer from below and above.

4. Heuristic methods for formula normalization, for use with abstract domains
in which abstract values are formulas in some logic ([24, §5.1] and [20, §7.3]).

The availability of automated methods for creating abstract transformers pro-
vides help along the following four dimensions:

Soundness: Creation of analyzers that are correct by construction, while re-
quiring an analysis designer to implement only a small number of operations.
Consequently, one only relies on a small “trusted computing base.”

Precision: In contrast to most conventional approaches to creating abstract
transformers, the use of symbolic abstraction can achieve the fundamental
limits of precision that abstract-interpretation theory establishes.

Resource awareness: The algorithms for applying/constructing abstract
transformers that approach α̂(ϕτ) from above can be implemented as “any-

32 Thomas Reps and Aditya Thakur

time” algorithms—i.e., an algorithm can be equipped with a monitor, and if
the algorithm exhausts some time or space budget, the monitor can stop it
at any time, and a safe (over-approximating) answer can be returned.

Extensibility: If an additional abstract domain is needed in an analyzer, au-
tomation makes it easy to add. In addition, for techniques 2 and 3, informa-
tion can be exchanged automatically between domains via symbolic abstrac-
tion to improve the abstract values in each domain.

In terms of future research directions, we believe that because methods 2,
3, and 4 all provide a way to avoid the myopia of reinterpretation, they are all
worthy of future research. In particular, for method 2, more results on partial-
concretization and semantic-reduction operations are desirable, and for method
3, more results about abstract consequence are desirable. Finally, we believe that
it will be fruitful to continue to explore the connections between the problems
that arise in creating abstract transformers automatically and other areas of
computer science.

Acknowledgments. T. Reps would like to thank the many people with whom
he collaborated on the work described in the paper (as well as work that moti-
vated the work described): for shape analysis: M. Sagiv, R. Wilhelm, a long list
of their former students, as well as his own former students A. Loginov and D.
Gopan; for machine-code analysis: G. Balakrishnan, J. Lim, Z. Xu, B. Miller, D.
Gopan, A. Thakur, E. Driscoll, A. Lal, M. Elder, T. Sharma, and researchers
at GrammaTech, Inc.; for symbolic abstraction: M. Sagiv, G. Yorsh, A. Thakur,
M. Elder, T. Sharma, J. Breck, and A. Miné.

The work has been supported for many years by grants and contracts from
NSF, DARPA, ONR, ARL, AFOSR, HSARPA, and GrammaTech, Inc. Special
thanks go to R. Wachter, F. Anger, T. Teitelbaum and A. White.

Current support comes from a gift from Rajiv and Ritu Batra; DARPA under
cooperative agreement HR0011-12-2-0012; AFRL under DARPA MUSE award
FA8750-14-2-0270 and DARPA STAC award FA8750-15-C-0082; and the UW-
Madison Office of the Vice Chancellor for Research and Graduate Education
with funding from WARF. Any opinions, findings, and conclusions or recom-
mendations expressed in this publication are those of the authors, and do not
necessarily reflect the views of the sponsoring organizations.

References

1. S. Akers, Jr. On a theory of Boolean functions. J. SIAM, 7(4):487–498, Dec. 1959.

2. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, 1987.

3. K. Apt. The essence of constraint propagation. TCS, 221, 1999.

4. G. Arnold, R. Manevich, M. Sagiv, and R. Shaham. Combining shape analyses by
intersecting abstractions. In VMCAI, 2006.

5. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. SCP, 72(1–2):3–21, 2008.

6. G. Balakrishnan and T. Reps. WYSINWYX: What You See Is Not What You
eXecute. TOPLAS, 32(6), 2010.

Automating Abstract Interpretation 33

7. T. Ball, A. Podelski, and S. Rajamani. Boolean and Cartesian abstraction for
model checking C programs. In TACAS, 2001.

8. E. Barrett and A. King. Range and set abstraction using SAT. ENTCS, 267(1),
2010.

9. D. Beyer, A. Cimatti, A. Griggio, M. Keremoglu, and R. Sebastiani. Software
model checking via large-block encoding. In FMCAD, 2009.

10. D. Beyer, M. Keremoglu, and P. Wendler. Predicate abstraction with adjustable-
block encoding. In FMCAD, 2010.

11. E. Boerger and R. Staerk. Abstract State Machines: A Method for High-Level
System Design and Analysis. Springer, 2003.

12. I. Bogudlov, T. Lev-Ami, T. Reps, and M. Sagiv. Revamping TVLA: Making
parametric shape analysis competitive (tool paper). In CAV, 2007.

13. J. Brauer and A. King. Automatic abstraction for intervals using Boolean formulae.
In SAS, 2010.

14. W. Bush, J. Pincus, and D. Sielaff. A static analyzer for finding dynamic program-
ming errors. Software: Practice and Experience, 30:775–802, 2000.

15. C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Footprint analysis: A shape
analysis that discovers preconditions. In SAS, 2007.

16. E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate abstraction of
ANSI-C programs using SAT. FMSD, 25(2–3), 2004.

17. P. Cousot. Verification by abstract interpretation. In Verification: Theory and
Practice, 2003.

18. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, 1977.

19. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
POPL, 1979.

20. P. Cousot, R. Cousot, and L. Mauborgne. Theories, solvers and static analysis by
abstract interpretation. J. ACM, 59(6), 2012.

21. P. Cousot and N. Halbwachs. Automatic discovery of linear constraints among
variables of a program. In POPL, 1978.

22. P. Cousot and M. Monerau. Probabilistic abstract interpretation. In ESOP, 2012.
23. W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory

and proof theory. Journal of Symbolic Logic, 22(3), Sept. 1957.
24. D. Distefano, P. O’Hearn, and H. Yang. A local shape analysis based on separation

logic. In TACAS, 2006.
25. G. Dong and J. Su. Incremental and decremental evaluation of transitive closure

by first-order queries. Inf. and Comp., 120:101–106, 1995.
26. M. Elder, D. Gopan, and T. Reps. View-augmented abstractions. ENTCS, 267(1),

2010.
27. M. Elder, J. Lim, T. Sharma, T. Andersen, and T. Reps. Abstract domains of

affine relations. TOPLAS, 36(4), Jan. 2014.
28. Y. Futamura. Partial evaluation of computation process – an approach to a

compiler-compiler. Higher-Order and Symb. Comp., 12(4), 1999. Reprinted from
Systems · Computers · Controls 2(5), 1971.

29. D. Gopan and T. Reps. Lookahead widening. In CAV, 2006.
30. D. Gopan and T. Reps. Guided static analysis. In SAS, 2007.
31. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In CAV,

1997.
32. S. Gulwani and M. Musuvathi. Cover algorithms and their combination. In ESOP,

2008.

34 Thomas Reps and Aditya Thakur

33. A. Gupta and I. Mumick, editors. Materialized Views: Techniques, Implementa-
tions, and Applications. The M.I.T. Press, Cambridge, MA, 1999.

34. D. Jackson. Software Abstractions: Logic, Language, and Analysis. The M.I.T.
Press, 2006.

35. B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relational approach to inter-
procedural shape analysis. TOPLAS, 32(2), 2010.

36. S. Johnson. YACC: Yet another compiler-compiler. Technical Report Comp. Sci.
Tech. Rep. 32, Bell Laboratories, 1975.

37. N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice-Hall International, 1993.

38. M. Karr. Affine relationship among variables of a program. Acta Inf., 6:133–151,
1976.

39. M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learning
Theory. MIT Press, Cambridge, MA, USA, 1994.

40. A. King and H. Søndergaard. Automatic abstraction for congruences. In VMCAI,
2010.

41. D. Kozen. Semantics of probabilistic programs. JCSS, 22(3), 1981.
42. T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. In

SAS, 2000.
43. Y. Li, A. Albarghouthi, Z. Kincaid, A. Gurfinkel, and M. Chechik. Symbolic

optimization with smt solvers. In POPL, 2014.
44. J. Lim, A. Lal, and T. Reps. Symbolic analysis via semantic reinterpretation.

STTT, 13(1):61–87, 2011.
45. J. Lim and T. Reps. TSL: A system for generating abstract interpreters and its

application to machine-code analysis. TOPLAS, 35(1), 2013. Article 4.
46. K. Malmkjær. Abstract Interpretation of Partial-Evaluation Algorithms. PhD

thesis, Dept. of Comp. and Inf. Sci., Kansas State Univ., 1993.
47. K. McMillan. Don’t-care computation using k-clause approximation. IWLS, 2005.
48. A. Miné. The octagon abstract domain. In WCRE, 2001.
49. A. Miné. A few graph-based relational numerical abstract domains. In SAS, 2002.
50. A. Miné, J. Breck, and T. Reps. An algorithm inspired by constraint solvers to

infer inductive invariants in numeric programs. Submitted for publication, 2015.
51. T. Mitchell. Machine Learning. WCB/McGraw-Hill, Boston, MA, 1997.
52. D. Monniaux. Abstract interpretation of probabilistic semantics. In SAS, 2000.
53. D. Monniaux. Automatic modular abstractions for template numerical constraints.

LMCS, 6(3), 2010.
54. U. Montanari. Networks of constraints: Fundamental properties and applications

to picture processing. Information Science, 7(2):95–132, 1974.
55. M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear alge-

bra. In POPL, 2004.
56. A. Mycroft and N. Jones. A relational framework for abstract interpretation. In

Programs as Data Objects, 1985.
57. A. Mycroft and N. Jones. Data flow analysis of applicative programs using minimal

function graphs. In POPL, 1986.
58. F. Nielson. Two-level semantics and abstract interpretation. TCS, 69, 1989.
59. S. Patnaik and N. Immerman. Dyn-FO: A parallel, dynamic complexity class.

JCSS, 55(2):199–209, 1997.
60. M. Pelleau, A. Miné, C. Truchet, and F. Benhamou. A constraint solver based on

abstract domains. In VMCAI, 2013.
61. J. Regehr and A. Reid. HOIST: A system for automatically deriving static ana-

lyzers for embedded systems. In ASPLOS, 2004.

Automating Abstract Interpretation 35

62. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In POPL, 1995.

63. T. Reps, M. Sagiv, and A. Loginov. Finite differencing of logical formulas for static
analysis. TOPLAS, 6(32), 2010.

64. T. Reps, M. Sagiv, and G. Yorsh. Symbolic implementation of the best transformer.
In VMCAI, 2004.

65. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and
their application to interprocedural dataflow analysis. SCP, 58(1–2), Oct. 2005.

66. T. Reps and A. Thakur. Through the lens of abstraction. In HCSS, 2014.
67. T. Reps, E. Turetsky, and P. Prabhu. Newtonian program analysis via tensor

product. In POPL, 2016.
68. J. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS,

2002.
69. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages

with destructive updating. TOPLAS, 20(1):1–50, Jan. 1998.
70. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.

TOPLAS, 24(3):217–298, 2002.
71. S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalable analysis of linear systems

using mathematical programming. In VMCAI, 2005.
72. E. Scherpelz, S. Lerner, and C. Chambers. Automatic inference of optimizer flow

functions from semantic meanings. In PLDI, 2007.
73. M. Sharir. Some observations concerning formal differentiation of set theoretic

expressions. TOPLAS, 4(2):196–225, April 1982.
74. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.

In Program Flow Analysis: Theory and Applications. Prentice-Hall, 1981.
75. M. Sheeran and G. St̊almarck. A tutorial on St̊almarck’s proof procedure for

propositional logic. Formal Methods in System Design, 16(1):23–58, 2000.
76. A. Thakur. Symbolic Abstraction: Algorithms and Applications. PhD thesis, Comp.

Sci. Dept., Univ. of Wisconsin, Madison, WI, Aug. 2014. Tech. Rep. 1812.
77. A. Thakur, J. Breck, and T. Reps. Satisfiability modulo abstraction for separation

logic with linked lists. In Spin Workshop, 2014.
78. A. Thakur, M. Elder, and T. Reps. Bilateral algorithms for symbolic abstraction.

In SAS, 2012.
79. A. Thakur, A. Lal, J. Lim, and T. Reps. PostHat and all that: Automating abstract

interpretation. ENTCS, 311, 2015.
80. A. Thakur, J. Lim, A. Lal, A. Burton, E. Driscoll, M. Elder, T. Andersen, and

T. Reps. Directed proof generation for machine code. In CAV, 2010.
81. A. Thakur and T. Reps. A generalization of St̊almarck’s method. In SAS, 2012.
82. A. Thakur and T. Reps. A method for symbolic computation of abstract opera-

tions. In CAV, 2012.
83. L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.
84. E. Yahav. Verifying safety properties of concurrent Java programs using 3-valued

logic. In POPL, 2001.
85. G. Yorsh, T. Reps, and M. Sagiv. Symbolically computing most-precise abstract

operations for shape analysis. In TACAS, 2004.

