
Abstract Interpretation Over Bitvectors

by

Tushar Sharma

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2017

Date of final oral examination: 08/11/2017

The dissertation is approved by the following members of the Final Oral Committee:
Thomas Reps, Professor, Computer Sciences
Somesh Jha, Professor, Computer Sciences
Benjamin Liblit, Associate Professor, Computer Sciences
Aws Albarghouthi, Assistant Professor, Computer Sciences
Vadim Shapiro, Professor, Mechanical Engineering and Computer Sciences

© Copyright by Tushar Sharma 2017
All Rights Reserved

i

Dedicated to mummy, papa, didi, and bhaiya.

ii

acknowledgments

My graduate student journey was a memorable one, and several people
made it a meaningful experience. Without the help and support of mentors,
co-workers, friends, and family, this dissertation would not have been
possible.

First and foremost, I am indebted to my advisor, Prof. Thomas Reps,
who has motivated and advised me throughout my journey in the doctoral
program. Without his immense knowledge and expertise in program
analysis and abstract interpretation, none of my research projects would
have been successful. His passion and enthusiasm for research is unparal-
leled. Tom has given me so much freedom to pursue my research interests,
and helped me in converting my half-baked ideas into useful publica-
tions. Over the years, he cultivated me into an independent researcher by
teaching me the fine art of asking interesting research questions, reading
interesting related work, and building the research ideas into concrete
projects worthy of publication. Most importantly, he has treated me more
like a friend, than as a subordinate, and for that, I will be forever indebted.
I hope you enjoyed working with me, as much I did working with you.

I thank my dissertation committee for taking the time to read my
dissertation. I thank Prof. Somesh Jha, Prof. Ben Liblit, and Prof. Shan Lu
for reading my prelim document, attending my prelim talk, and providing
useful and constructive suggestions that guided me through my years as a
dissertator. I thank my undergrad mentor, Prof. Sundar Balasubramaniam,
who got me excited about static analysis and type systems, and motivated
me to pursue graduate school.

Over the last few years, I had the fortune of working and collaborating
with the best colleagues. I want to thank Junghee Lim, Matt Elder, Evan
Driscoll, and Aditya Thakur, for mentoring me at the earlier years of my
graduate school, and answering a whole variety of questions from the

iii

complex subtleties of static analysis to basic coding questions. I want to
thank Vijay Chidambaram, Venkatesh Srinivasan, and Tycho Andersen for
collaborating with me on several projects and making my graduate school
experience much more fun. I have had so many wonderful conversations
with Venkatesh Srinivasan, Peter Ohmann, and Jason Breck. It has been a
pleasure to have you guys around, on whom I can vent my pessimism and
nihilism. I am appreciative for David Bingham, Stephen Lee, Venkatesh
Srinivasan, Samuel Drews, Aditya Thakur, Evan Driscoll, Drew Davidson
and Jason Breck, who patiently listened to my boring presentations and
provided me constructive feedback.

The employees at GrammaTech have helped me tremendously over the
years to answer my queries, fix bugs, provide useful technical support in
the tools and infrastructure support for machine-code analysis. In partic-
ular, Junghee Lim, Evan Driscoll, Suan Yong, Brian Alliet, Tom Johnson,
Alexey Loginov and David Melski have promptly answered my questions
and provided helpful comments to improve my tools.

I thank my friends for making my life in Madison an exciting and happy
one. Suyash Singh was a friend before we started the graduate journey
and over our common graduate years at Madison, our friendship has
grown stronger (and quirky). Thank you for the laughs and the support!
Hemanth Pikkili, Gurdaman Khaira, Kushal Sinha, and Suyash Singh have
been amazing roommates over the years, and I have never felt bored in
Madison because of you guys. Thank you Suyash, Rishabh, Fulya, and
Kushal for being the ’chemical brothers/sisters’; Raja, Rohit, and Sankar
for being the ’doods’; Saili, Etienne, Cherry, Bang, Dipto, Saurabh, Keive,
Anand, and Amy for the ’spicy balls’; Selah, Obi, Manali, Jason, and Janina
for being the voice of reason; and Thanu, Venkatesh, Goldy and Dipto for
listening to my graduate school rants.

My mom and dad have unconditionally loved and supported me
throughout my life. They have always supported me in my graduate

iv

school journey, even though we have been thousands of miles away. My
sister, Sugandha, always provides me with moral support. Her innocence,
charisma, and kindness is unparalled. My brother has been my role model,
my mentor, my ally, and my competition. He has always believed in me,
and challenged me to dream bigger, higher, and better. Words would
never be enough to describe the gratitude I have for my family. I want
to thank Mrs. and Mr. Kulkarni and Shefali for being my family in US.
Thanks to them, thankgiving and christmas holidays have been full of life.

Finally, I want to thanks the love of my life, Saili Kulkarni, for being
there for me, for understanding me, and for believing in me, even when I
didn’t believe in myself.

This dissertation is supported, in part, by a gift from Rajiv and Ritu
Batra; by DARPA under cooperative agreement HR0011-12-2-0012; by
NSF under grant CCF-{0810053, 0904371}; by ONR under grants N00014-
{09-1-0510, 11-C-0447}; by AFRL under contract FA9550-09-1-0279 and
FA8650-10-C-7088; by ARL under grant W911NF-09-1-0413, by AFRL
under DARPA MUSE award FA8750-14-2- 0270, DARPA STAC award
FA8750-15-C-0082; and by the UW-Madison Office of the Vice Chancellor
for Research and Graduate Education with funding from the Wisconsin
Alumni Research Foundation. Any opinions, findings, and conclusions or
recommendations expressed in this dissertation are those of the author,
and do not necessarily reflect the views of the sponsoring agencies. The
author’s advisor Thomas Reps has an ownership interest in GrammaT-
ech, Inc., which has licensed elements of the technology reported in this
dissertation.

v

contents

Contents v

List of Tables vi

List of Figures vii

Abstract viii

1 Introduction 1
1.1 Motivation. 4
1.2 Thesis Contributions 6
1.3 Thesis Organization 14

2 Background 15
2.1 Concrete Semantics 15
2.2 Abstract Interpretation 17
2.3 Creation of Abstract Transformers. 21
2.4 Fixed-point computation 31
2.5 Weighted Pushdown Systems 32

3 Abstract Domains of Affine Relations 35
3.1 Abstract Domains for affine-relation analysis 37
3.2 Relating AG and KS Elements 46
3.3 Relating KS and MOS 48
3.4 Using KS for Interprocedural Analysis 55
3.5 Experiments 71
3.6 Related Work 89
3.7 Chapter Notes 94

4 A New Abstraction Framework for Affine Transformers 96

vi

4.1 Preliminaries 99
4.2 Overview 101
4.3 Affine-Transformer-Abstraction Framework 106
4.4 Discussion and Related Work 118
4.5 Chapter Notes 121

5 An Abstract Domain for Bit-vector Inequalities 122
5.1 Overview 124
5.2 Terminology 126
5.3 Base Domains 127
5.4 The View-Product Combinator 128
5.5 Synthesizing Abstract Operations for Reduced-Product Do-

mains 132
5.6 Experimental Evaluation 136
5.7 Related Work 137
5.8 Chapter Notes 139

6 Sound Bit-Precise Numerical Domains Framework for Inequali-
ties 140
6.1 Terminology 142
6.2 Overview 145
6.3 The BVSFD Abstract-Domain Framework 151
6.4 Experimental Evaluation 157
6.5 Chapter Notes 162

7 Conclusion and Future Work 163
7.1 Bit-vector-precise Equality Domains 165
7.2 Bit-vector-precise Inequality Domains 166

A Domain Conversions 168
A.1 Soundness of MOS to AG transformation 168

vii

A.2 Soundness of KS Without Pre-State Guards to MOS transforma-
tion 169

A.3 Soundness of KS Without Pre-State Guards to MOS transforma-
tion 169

B Howell Properties 172

C Correctness of KS Join 175

D Soundness of the Abstract-Domain Operations for Affine-
Transformers-Abstraction Framework 178

E Soundness of Abstract Composition for Affine-Transformers-
Abstraction Framework 180
E.1 Non-Relational Base Domain 180
E.2 Weakly-Convex Base Domain 182

F Soundness of The Merge Operation 188

References 191

viii

list of tables

2.1 Abstract-domain operations. 20
2.2 Truth table for multiplication and addition of two parity values. 25
2.3 Snapshots in the fixed-point analysis for Ex. 2.3. 32
2.4 Semiring operators in terms of abstract-domain operations. . 34

4.1 Abstract-domain operations. 100
4.2 Example demonstrating two ways of relating MOS and AG. . 101
4.3 Base abstract-domain operations. 107
4.4 Abstract-domain operations for the ATA[B]-domain. 108
4.5 Foundation-domain operations. 113

5.1 Machine-code analysis usingBVI. Columns 6–9 show the times
(in seconds) for the EZ2w -based analysis, and for the BVI-based
analysis; and the degree of improvement in precision measured
as the number of control points at which BVI-based analysis
gave more precise invariants compared to EZ2w -based analysis,
and the number of procedures for which BVI-based analysis
gave more precise summaries compared to EZ2w -based analysis.

. 136

6.1 Snapshots in the fixed-point analysis for Ex. 6.1 using the
BVSFD2(OCT) domain. Bv1,v2,..,vk are the bounding constraints
for the variables v1,v2,..vk. 150

6.2 Information about the loop benchmarks containing true asser-
tions, a subset of the SVCOMP benchmarks. 159

ix

list of figures

1.1 Each + represents a solution of the indicated inequality in 4-bit
unsigned bit-vector arithmetic. 5

2.1 Concrete semantics for L(SLANG). 18
2.2 Reinterpretation semantics for L(SLANG) for domain APar. 24

3.1 (a) The King-Søndergaard algorithm for symbolic abstrac-
tion (pαÒKS(ϕ)). (b) The Thakur-Elder-Reps bilateral algorithm
for symbolic abstraction, instantiated for the KS domain:pαÙTER[KS](ϕ). In both algorithms, lower is maintained in Howell
form throughout. 66

3.2 Some of the characteristics of the corpus of 19,066 (non-
privileged, non-floating point, non-mmx) instructions. . . . 71

3.3 Program information. All nine utilities are from Microsoft
Windows version 5.1.2600.0, except setup, which is from version
5.1.2600.5512. The columns show the number of instructions
(Instrs); the number of procedures (Procs); the number of basic
blocks (BBs); the number of branch instructions (Branches);
and the number of ∆0, ∆1, and ∆2 rules in the WPDS encoding
(WPDS Rules). 73

3.4 A fragment of the TSL specification of the concrete semantics
of the Intel IA32 instruction set. 76

3.5 Comparison of the performance of MOS-reinterpretation and
KS-reinterpretation for x86 instructions. 79

3.6 Comparison of the precision of MOS-reinterpretation and KS-
reinterpretation for x86 instructions. 79

x

3.7 Performance of WPDS-based interprocedural analysis. The
times, in seconds, for WPDS construction, performing inter-
procedural dataflow analysis (i.e., running post* and perform-
ing path-summary) and finding one-vocabulary affine rela-
tions at branch instructions, using MOS-reinterpretation, KS-
reinterpretation, pαKS, and pα+

KS to generate weights. The columns
labeled “t/o” report the number of WPDS rules for which
weight generation timed out during symbolic abstraction. . 83

3.8 Comparison of the precision of the WPDS weights computed us-
ing MOS-reinterpretation, KS-reinterpretation, and pαKS. (E.g.,
KS-reinterp MOS-reinterp reports the number of rules for
which the KS-reinterp weight was more precise than the MOS-
reinterp weight.) . 85

3.9 Comparison of the precision of the one-vocabulary affine re-
lations identified to hold at branch points via interprocedural
analysis, using weights created using MOS-reinterpretation,
KS-reinterpretation, and pαKS. (E.g., KS-reinterp MOS-
reinterp reports the number of branch points at which the
KS-reinterp results were more precise than the MOS-reinterp
results.) . 86

3.10 Comparison of the precision of the two-vocabulary affine
relations identified to hold at procedure-exit points via in-
terprocedural analysis, using weights created using MOS-
reinterpretation, KS-reinterpretation, and pαKS. (E.g., KS-
reinterp MOS-reinterp reports the number of procedure-exit
points at which the KS-reinterp results were more precise than
the MOS-reinterp results.) . 87

3.11 Simplified version of an example that caused KS results to be
less precise than MOS results, due to compose not distributing
over join in the KS domain. 88

xi

4.1 Abstract transformers and snapshots in the fixpoint analysis
with the MOS domain for Ex. 4.4. 103

4.2 Abstract transformers and fixpoint analysis with the
ATA[I

(k+1)2

Z2w
] domain for Ex. 4.4. 105

5.1 Example snippet of Intel x86 machine code. 125

6.1 Wrap-around on variable x, treated as an unsigned char. . . 143
6.2 Lazy abstract transformers with the BVSFD2(POLY) domain

for Ex. 6.1. ID refers to the identity transformation. 149
6.3 Abstract-domain interface for A. 152
6.4 Reinterpretation semantics for L(ELANG). 155
6.5 Precision and performance numbers for SV-COMP loop bench-

marks. 159
6.6 Precision and performance numbers for SV-COMP array bench-

marks with POLY as the base domain. 161

xii

abstract

Most critical applications, such as airplane and rocket controllers, need
correctness guarantees. Usually these correctness guarantees can be de-
scribed as safety properties in the form of assertions. Verifying an assertion
amounts to showing that the assertion holds true for all possible runs of an
application. Abstract interpretation is a method to automatically verify a
program by soundly abstracting the concrete executions of the program to
elements in an abstract domain, and checking the correctness guarantees
using the abstraction. However, traditional abstract domains treat the
machine integers as mathematical integers. As a result, the conclusions
drawn from such an abstract interpretation are, in general, unsound. In
other words, the assertions shown to be true by traditional abstract inter-
pretation approaches might actually be false because the underlying point
space does not faithfully model bit-vector arithmetic.

This dissertation advances the field of abstract interpretation by pro-
viding sound abstraction techniques and abstract-domain frameworks
that faithfully model bit-vector semantics. We focus on numerical ab-
stract domains for bitvectors, which can provide equality and inequality
invariants.

The first part of the dissertation focuses on abstract domains capable of
expressing bit-vector-sound equality invariants. The performance and pre-
cision of two equality domains is compared, and sound inter-conversion
methods are provided. Furthermore, we generalize one of the equality
domains to develop a new abstract-domain framework that is capable of
expressing a certain class of disjunctions over bit-vector-sound equality
constraints. This framework can be instantiated with any relational or
non-relational base abstract domain over bitvectors.

The second part of the dissertation focuses on abstract domains capa-
ble of expressing bit-vector-sound inequality invariants. We develop an

xiii

abstract domain that is capable of expressing a certain class of bit-vector-
sound inequalities over memory variables and registers. Furthermore, we
develop an abstract-domain framework that takes an abstract domain that
is sound with respect to mathematical integers, and creates an abstract do-
main whose operations and abstract transformers are sound with respect
to machine integers.

1

1 introduction

Nowadays, humans rely on computer systems in almost every aspect of
life. Reliance on critical systems such as automated banking systems,
flight-control systems, automated cruise control and braking systems, and
traffic-light control systems has increased as a result. The presence of bugs
in these critical systems have lead to embarrassing issues like the Excel
2007 bug [98] and overflow in youtube view limit [6], unnecessary human
intervention [31], losses in millions of dollars [38, 36] or worse, loss of
human life [28, 32].

Most critical applications, such as airplane and rocket controllers, need
correctness guarantees. Usually these correctness guarantees can be de-
scribed as safety properties in the form of assertions. Verifying an asser-
tion amounts to showing that the assertion’s condition holds true for all
possible runs of an application. Proving an assertion is, in general, an
undecidable problem. Nevertheless, there exist static-analysis techniques
that are able to verify automatically some kinds of program assertions.
One such technique is abstract interpretation [20], which soundly abstracts
the concrete executions of the program to elements in an abstract domain,
and checks the correctness guarantees using the abstraction.

Abstract interpretation has seen a lot of progress in last 40 years since
it was introduced by Cousot and Cousot in 1977. Many numeric abstract
domains have been introduced to verify the correctness of assertions by
the programmer, as well as divide-by-zero, array-bounds checks, buffer-
overflow behavior, etc. Arguably, abstract interpretation has made the
most progress in numeric program analysis, that is, discovering numerical
properties about the program. The material in this dissertation is centered
on discovering numerical properties on the machine integers through
abstract interpretation.

The building block for the abstraction of the program is an abstract

2

domain. An abstract domain defines the level and detail of the abstraction.
An abstract domain can be seen as a logic fragment [86] that is capable
of expressing only a certain class of constraints. For instance, an interval
value v P [0, 5], where v is a variable, expresses the constraint: 0 ¤ v ¤ 5.
The richer the abstract domain, the more intricate the constraints it can
express. Richer abstract domains can prove more assertions possibly at
the cost of worse performance.

Mathematically, abstract domains are (usually) partial orders, where
the order is given by set containment: the smaller the set denoted by an
abstract-domain element, the more precise it is. For instance, the interval
i1 : v P [0, 5] is more precise than the interval i2 : v P [�10, 10].

Often A is really a family of abstract domains, in which case A[U]

denotes the specific instance of A that is defined over vocabulary U. The
two important steps in abstract interpretation (AI) are:

1. Abstraction: The abstraction of the program is constructed using the
abstract domain and abstract semantics.

2. Fixpoint analysis: Iteration until a fixpoint is reached is performed on
the abstraction of the program to identify invariants of the program.

In the typical setup of AI, the set of states that can arise at each point in
the program is safely represented by the abstract-domain element found
for that program point in the fixed point. This setup can be used to prove
assertions. Let us denote the set of variables in a program by V . In this
case, the abstract-domain elements abstract the set of values at a program
point, thus they are abstracting the values for V , and therefore U = V . For
the purpose of this thesis, abstract-domain elements are abstract trans-
formers, that is, they are abstractions of concrete transformers describing
the control-flow graph edges in the program. When abstract-domain ele-
ments are abstract transformers, the results provide function summaries
or loop summaries [19, 92]. In principle, summaries can be computed
offline for large libraries of code so that client static analyses can use them

3

to obtain verification results more efficiently. Abstract transformers are
abstracting the set of values at two program points: one is represented
by the pre-transformation variables V , and the other is represented by
the post-transformation variables V 1, and therefore U = V Y V 1. A static
analyzer needs a way to construct abstract transformers for the concrete
operations in the programs. Semantic reinterpretation (see §2.3.1) and
symbolic abstraction (see §2.3.2) provide automatic ways to construct
abstract transformers.

Past literature has introduced many non-relational and relational ab-
stract domains. Examples of non-relational domains include constant
propagation [51] (vi = αi), signs [19] (�vi ¤ 0), intervals [19] (αi ¤ vi ¤
βi), congruences [39] (vi � αi mod βi), and interval congruences [65]
(vi P [αi,βi]mod γi). Here, vi refers to a variable in the program, and the
symbols αi,βi and γi refer to constants.

The classical example of a relational domain is the domain of linear
equalities introduced by Karr [49] (Σiαijvi = βj). Granger [40] introduced
the linear-congruence domain (Σiαijvi = βj mod γj). One of the most
widely used relational abstract domains is the polyhedral domain [23],
which is capable of expressing relational affine inequalities (Σiαijvi ¤ βj).
While the polyhedral domain is useful, it is also very slow, and not scalable
to large systems. With that in mind, previous research [68, 69, 97, 58, 89,
73] has also provided weaker variants of the polyhedra domain that are
capable of expressing some; but not all; affine inequalities. For instance,
the octagon abstract domain [68] can express only relational inequalities
involving at most two variables where the coefficients on the variables are
only allowed to be plus or minus one (�vi � vj ¤ αij).

4

1.1 Motivation.

These abstract domains suffer from one huge limitation: they treat the
program variables as mathematical integers or rationals. However, the
native machine-integer data-types used in programs (e.g., int, unsigned
int, long, etc.) perform bit-vector arithmetic, and arithmetic operations
wrap around on overflow. Thus, the underlying point space used in the
aforementioned abstract domains does not faithfully model bit-vector
arithmetic, and consequently the conclusions drawn from an analysis
based on these domains are, in general, unsound, unless special steps are
taken [96][15].

Example 1.1. The following C-program fragment incorrectly computes the av-
erage of two int-valued variables [9]:
int low , high , mid;
assume (0 <= low <= high);
mid = (low + high)/2;
assert (0<=low <=mid <= high);

A static analysis based on polyhedra or octagons would draw the wrong con-
clusion that the assertion always holds. In particular, assuming 32-bit ints,
when the sum of low and high is greater than 231-1, the sum overflows, and
the resulting value of mid is smaller than low. Consequently, there exist runs
in which the assertion fails. These runs are overlooked when the polyhedral do-
main is used for static analysis because the domain fails to take into account the
bit-vector semantics of program variables.

The problem that we wish to solve is not one of merely detecting
overflow—e.g., to restrain an analyzer from having to explore what hap-
pens after an overflow occurs. On the contrary, our goal is to be able to
track soundly the effects of arithmetic operations, including wrap-around
effects of operations that overflow. This ability is useful, for instance,
when analyzing code generated by production code generators, such as
dSPACE TargetLink [25], which use the “compute-through-overflow” tech-

5

15 + + + + + + + +
14 + + + + + + + +
13 + + + + + + + +
12 + + + + + + + +
11 + + + + + + + +
10 + + + + + + + +
9 + + + + + + + +
8 + + + + + + + +
7 + + + + + + + +
6 + + + + + + + +
5 + + + + + + + +
4 + + + + + + + +
3 + + + + + + + +
2 + + + + + + + +
1 + + + + + + + +
0 + + + + + + + +

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) x+ y+ 4 ¤ 7

15 + + + +
14 + + + +
13 + + + +
12 + + + +
11 + + + +
10 + + + +
9 + + + +
8 + + + +
7 + + + +
6 + + + +
5 + + + +
4 + + + +
3 + + + +
2 + + + +
1 + + + +
0 + + + +

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) x+ y ¤ 3

Figure 1.1: Each + represents a solution of the indicated inequality in
4-bit unsigned bit-vector arithmetic.

nique [35]. Furthermore, clever idioms for bit-twiddling operations, such
as the ones explained in [102], sometimes rely on overflow [24].

1.1.1 Challenges in dealing with bit-vectors.

Some of the ideas used in designing an inequality domain for reals do not
carry over to ones designed for bit-vectors. First, in bit-vector arithmetic,
additive constants cannot be canceled on both sides of an inequality, as
illustrated in the following example.

Example 1.2. Let x and y be 4-bit unsigned integers. Fig. 1.1 depict the solu-
tions in bit-vector arithmetic of the inequalities x + y + 4 ¤ 7 and x + y ¤ 3.
Although x+ y+ 4 ¤ 7 and x+ y ¤ 3 are syntactically quite similar, their so-
lution spaces are quite different. In particular, because of wrap-around of values
computed on the left-hand sides using bit-vector arithmetic, one cannot just sub-
tract 4 from both sides to convert the inequality x+y+4 ¤ 7 into x+y ¤ 3.

Second, in bit-vector arithmetic, positive constant factors cannot be
canceled on both sides of an inequality; for example, if x and y are 4-bit
bit-vectors, then (4, 4) is in the solution set of 2x + 2y ¤ 4, but not of
x+ y ¤ 2.

6

These properties do not carry over because bitvectors are not a field, but
rather a ring Zm of integers modulom = 2w forw ¡ 1. Moreover, the ring
has zero divisors, and consequently even numbers in bit-vector arithmetic
do not have a multiplicative inverse. Because of these properties, results
from linear algebra over fields do not apply to the abstract domains over
Zm.

While some simple domains do exist that are capable of representing
certain kinds of inequalities over bit-vectors (e.g., intervals with a congru-
ence constraint, sometimes called “strided-intervals” [83, 91, 5, 72]), such
domains are non-relational; that is, they are not capable of expressing
relations among several variables. On the other hand, there exist relational
bit-precise domains such as the domains introduced by Müller-Olm/Seidl
(denoted by MOS) [78] and King/Søndergaard (denoted by KS) [53], but
they cannot express inequalities. Moreover, it is not clear how MOS and
KS relate to each other.

1.2 Thesis Contributions

In this thesis, we provide sound abstract domains, and abstract-
transformer construction techniques, that allow one to prove assertions
and provide function summaries for programs with machine integers. The
communication with existing analyzers is done strictly through a generic
abstract-domain interface. Thus, our work should be compatible with
most existing analysis engines. As a result, our abstraction techniques can
be applied to source-code analysis as well as machine-code analysis.

1.2.1 Quick Summary

Broadly, our contributions to the numeric analysis of programs with ma-
chine integers fall into two categories: i) Bit-Vector Precise Equality Ab-

7

stract Domains, ii) Bit-Vector Precise Inequality Abstract Domains. The
thesis makes the following contributions:

• Bit-Vector Precise Equality Abstract Domains
– Abstract Domains of Affine Relations [29, 30]: An affine rela-

tion is a linear-equality constraint over a given set of variables
that hold machine integers. In this work, we compare the MOS
and KS abstract domains, along with several variants. These do-
mains are capable of expressing affine relations over bitvectors.
We show that MOS and KS are, in general, incomparable and
give sound interconversion methods for KS and MOS. We intro-
duce a third domain for representing affine relations, called AG,
which stands for affine generators. Furthermore, we present an
experimental study comparing the precision and performance
of analyses with the KS and MOS domains. (See §1.2.2 for more
details.)

– Abstraction Framework for Affine Transformers [93]: In this
work, we define the Affine-Transformers Abstraction Frame-
work, which represents a new family of numerical abstract do-
mains. This framework is parameterized by a base numerical
abstract domain, and allows one to represent a set of affine
transformers (or, alternatively, certain disjunctions of transition
formulas). Specifically, this framework is a generalization of the
MOS domain. The choice of the base abstract domain allows
the client to have some control over the performance/precision
trade-off. (See §1.2.3 for more details.)

• Bit-Vector Precise Inequality Abstract Domains
– An Abstract Domain for Bit-vector Inequalities [95]: This

work describes the design and implementation of a new ab-
stract domain, called the Bit-Vector Inequality domain, which is
capable of capturing certain inequalities over bit-vector-valued

8

variables (which represent a program’s registers and/or its
memory variables). This domain tracks properties of the val-
ues of selected registers and portions of memory via views, and
provides automatic heuristics to gather equality and inequal-
ity views from the program. Furthermore, experiments are
provided to show the usefulness of the Bit-Vector Inequality
domain. (See §1.2.4 for more details.)

– Sound Bit-Precise Numerical Domains Framework for In-
equalities [94]: This work introduces a class of abstract do-
mains, parameterized on a base domain, that is sound with
respect to bitvectors whenever the base domain is sound with
respect to mathematical integers. The base domain can be any
numerical abstract domain. We also describe how to create
abstract transformers for this framework that incorporate lazy
wrap-around to achieve more precision, without sacrificing
soundness with respect to bitvectors. We use a finite number of
disjunctions of base-domain elements to help retain precision.
Furthermore, we present experiments to empirically demon-
strate the usefulness of the framework. (See §1.2.5 for more
details.)

1.2.2 Abstract Domains of Affine Relations

As mentioned before, the abstract domains MOS and KS can express
relational equalities over bitvectors. An element in the King/Sønder-
gaard domain (KS) is an affine-closed set of linear-equality constraints
over bitvectors (Σiαijvi + Σiα 1

ijv
1
i = βj, where αij,α 1

ij,βj P Zm). An ele-
ment in the Müller-Olm/Seidl domain (MOS) is an affine-closed set of
affine transformers. An affine transformer is a relation on states, defined
by −Ñv 1 = −Ñv � C+

−Ñ
d , where −Ñv 1 and −Ñv are row vectors that represent the

post-transformation state and the pre-transformation state, respectively.

9

C is the linear component of the transformation and −Ñd is a constant vec-

tor. For example, [x 1 y 1] = [x y]

[
1 0
2 0

]
+ [10 0] denotes the affine

transformation (x 1 = x+2y+10^y 1 = 0) over variables tx,yu. We denote
such an affine transformation by C :

−Ñ
d . An element of these domains

represents a set of points that satisfies an affine relation over variables that
hold machine integers.

Chapter 3 considers MOS and KS abstract domains, along with several
variants, and studies how they relate to each other. We show that MOS
and KS are, in general, incomparable. In particular, we show that KS can
express transformers with affine guards, which MOS cannot express. On
the other hand, MOS can express some non-affine-closed sets, which are
not expressible by KS. We give sound interconversion methods for KS
and MOS. That is, we give an algorithm to convert a KS element to an
over-approximating MOS element, as well as an algorithm to convert an
MOS element to an over-approximating KS element.

We introduce a third domain for representing affine relations, called
AG, which stands for affine generators. Whereas an element in the KS do-
main consists of a set of constraints on the values of variables, AG represents
a collection of allowed values of variables via a set of generators. We show
that AG is the generator counterpart of KS: a KS element can be converted
to an AG element, and vice versa, with no loss of precision.

Furthermore, Chapter 3 presents an experimental study with the Intel
IA32 (x86) instruction set in which the symbolic abstraction (§2.3.2) method
and two reinterpretation methods (§2.3.1)—KS-reinterpretation and MOS-
reinterpretation —are compared in terms of their performance and preci-
sion. The precision comparison is done by comparing the affine invariants
obtained at branch points, as well as the affine procedure summaries ob-
tained for procedures. For KS-reinterpretation and MOS-reinterpretation,
we also compare the abstract transformers generated for individual x86
instructions.

10

1.2.3 A New Abstraction Framework for Affine
Transformers

Abstractions of affine transformers can be used to obtain affine-relation
invariants at each program point in the program [75]. An affine relation
is a linear-equality constraint between numeric-valued variables of the

form
n°
i=1
aivi + b = 0. For a given set of variables tviu, affine-relation

analysis (ARA) identifies affine relations that are invariants of a program.
The results of ARA can be used to determine a more precise abstract
value for a variable via semantic reduction [21], or detect the relationship
between program variables and loop-counter variables. While the MOS
domain is useful for finding affine-relation invariants in a program, the
join operation used at confluence points can lose precision in many cases,
leading to imprecise function summaries. Furthermore, the analysis does
not scale well as the number of variables in the vocabulary increases. In
other words, it has one baked-in performance-versus-precision aspect.

Chapter 4 provide analysis techniques to abstract the behavior of the
program as a set of affine transformations over bit-vectors. Remember
that an affine transformation has the following form: −Ñv 1 = −Ñv � C +
−Ñ
d). In this work, we generalize the ideas used in the MOS domain—
in particular, to have an abstraction of sets of affine transformers—but to
provide a way for a client of the abstract domain to have some control over
the performance/precision trade-off. Toward this end, we define a new
family of numerical abstract domains, denoted by ATA[B]. (ATA stands
for Affine-Transformers Abstraction.) Following our observation, ATA[B]

is parameterized by a base numerical abstract domain B, and allows one to
represent a set of affine transformers (or, alternatively, certain disjunctions
of transition formulas).

The overall contribution of our work is the framework ATA[B], for
which we present

11

• methods to perform basic abstract-domain operations, such as equal-
ity and join.

• a method to perform abstract composition, which is needed to per-
form abstract interpretation.

• a faster method to perform abstract composition when the base
domain is non-relational.

1.2.4 An Abstract Domain for Bit-vector Inequalities

Two of the biggest challenges in machine-code analysis are: (1) identifying
inequality invariants while handling overflow in arithmetic operations over
bit-vector data-types, and (2) identifying invariants that capture properties
of values in memory.

When analyzing machine code, memory is usually modeled as a flat
array. When analyzing Intel x86 machine code, for instance, memory is
modeled as a map from 32-bit bit-vectors to 8-bit bit-vectors. Consequently,
an analysis has to deal with complications arising from the little-endian
addressing mode and aliasing, as we now illustrate.

Example 1.3. Consider the following machine-code snippet:
mov eax, [ebp]
mov [ebp+2], ebx

The first instruction loads the four bytes pointed to by register ebp into the 32-bit
register eax. Suppose that the value in register ebp is A. After the first instruc-
tion, the bytes of eax contain, in least-significant to most-significant order, the
value at memory location A, the value at location A + 1, the value at location
A + 2, and the value at location A + 3. The second instruction stores the value
in register ebx into the memory pointed to by ebp+2. Due to this instruction,
the values at memory locationsA+2 throughA+5 are overwritten, after which
the value in register eax no longer equals (the little-endian interpretation of) the
bytes in memory pointed to by ebp.

12

These challenges lead to the following problem statement:

Design an abstract domain of relational bit-vector affine-inequalities
over memory-values and registers.

Chapter 5 expands the set of techniques available for abstract interpre-
tation and model checking of machine code. We describe the design and
implementation of a new abstract domain, called the Bit-Vector Inequal-
ity (BVI) domain, that is capable of capturing certain inequalities over
bit-vector-valued variables. We also consider some variants of the BVI

domain.
The key insight used to design BVI domain (and its variants) involves a

new domain combinator (denoted by V), called the view-product combinator.
V constructs a reduced product of two domains [21], using shared view-
variables to communicate information between the domains.

The Bit-Vector Memory-Equality Domain BVME, a domain of bit-vector
affine-equalities over variables and memory-values, is created by applying
the view-product combinator V to the bit-vector memory domain (§5.3)
and the bit-vector equality domain. The Bit-Vector Inequality Domain BVI,
a domain of bit-vector affine-inequalities over variables, is created by
applying V to the bit-vector equality domain and a bit-vector interval
domain. The Bit-Vector Memory-Inequality Domain BVMI, a domain of
relational bit-vector affine-inequalities over variables and memory, is then
created by applying V to the BVME domain and the bit-vector interval
domain. The latter construction illustrates that V composes: the BVMI

domain is created via two applications of V.
This work makes the following contributions:
• The bit-vector memory domain, a non-relational memory domain

capable of expressing invariants involving memory accesses.
• The view-product combinator V, a general procedure to construct

more expressive domains.
• Three domains for machine-code analysis constructed using V:

13

– The bit-vector memory-equality domainBVME, which captures
equality relations among bit-vector variables and memory.

– The bit-vector inequality domain BVI, which captures inequal-
ity relations among bit-vector variables.

– The bit-vector memory-inequality domain BVMI, which cap-
tures inequality relations among bit-vector variables and mem-
ory.

• A procedure for synthesizing best abstract operations for reduced
products of domains that meet certain requirements.

• Experimental results that illustrate the effectiveness of the BVI

domain applied to machine-code analysis. On average (geomet-
ric mean), our BVI-based analysis is about 3.5 times slower than
an affine-equality-based analysis, while finding improved (more-
precise) invariants at 29% of the branch points.

1.2.5 Sound Bit-Precise Numerical Domains Framework
for Inequalities

Chapter 6 describes a second approach to designing and implementing a
bit-precise relational domain capable of expressing inequality invariants.
This work presents the design and implementation of a new framework
for abstract domains, called the Bit-Vector-Sound Finite-Disjunctive (BVSFD)
domains, which are capable of capturing useful program invariants such
as inequalities over bit-vector-valued variables.

We introduce a class of abstract domains, called BVS(A), that is sound
with respect to bitvectors whenever A is sound with respect to mathemat-
ical integers. The A domain can be any numerical abstract domain. For
example, it can be the polyhedral domain, which can represent useful
program invariants as inequalities. We also describe how to create abstract
transformers for BVS(A) that are sound with respect to bitvectors. For
v � V and av P A, we denote the result by WRAPv(av); the operation

14

performs wraparound on av for variables in v. We give an algorithm
for WRAPv(av) that works for any relational abstract domain. We use
a finite number of disjunctions of A elements—captured in the domain
FDk(A)—to help retain precision. Our contributions are the following:

• We propose a framework for abstract domains, called BVSFDd(A), to
express bit-precise relational invariants by performing wrap-around
over abstract domain A and using disjunctions to retain precision.
This abstract domain is parameterized by a positive value d, which
provides the maximum number of disjunctions that the abstract
domain can make use of.

• We provide a generic technique via reinterpretation to create the
abstract transformer for the path through a basic block to a given
successor, such that the transformer incorporates lazy wrap-around.

• We present experiments to show how the performance and precision
of BVSFDd analysis changes with the tunable parameter d.

1.3 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 provides
background on concrete semantics, abstract interpretation and automatic
generation of abstract transformers via semantic reinterpretation and sym-
bolic abstraction. Chapter 3 presents the theoretical and experimental
comparison of MOS and KS domains. Chapter 4 presents the Affine-
Transformers Abstraction framework, which generalizes the MOS domain.
Chapter 5 describe the design and implementation of the Bit-Vector In-
equality (BVI) domain, that is capable of capturing certain inequalities
over bit-vector-valued variables (which represent a program’s registers
and/or its memory variables). Chapter 6 describes the design and imple-
mentation of the Bit-Vector-Sound Finite-Disjunctive framework. Chapter
7 concludes and describes possible future work.

15

2 background

This chapter presents a gentle introduction to concrete semantics (§2.1),
abstract interpretation (§2.2, §2.3, and §2.4) and weighted pushdown sys-
tems used to perform abstract interpretation (§2.5). The notion of the best
abstract transformer is also introduced (§2.3.2).

2.1 Concrete Semantics

A semantics is a mathematical characterization of program behavior. The
concrete semantics is the most precise semantics describing the actual
execution of the program. Let us consider a very simple concrete language
to illustrate concrete semantics. An SLang program is a sequence of ba-
sic blocks with execution starting from the first block. Each basic block
consists of a sequence of statements and a list of control-flow instructions.

The statements are restricted to an assignment of a linear expression.
A control-flow instruction consists of either a jump statement or a con-
ditional statement. The guard in the conditional statement can be true,
false, negation of a condition, conjunction/disjunction of two conditions,
an equality/inequality on two bitvector expressions, or a modulus check
operation. For the sake of simplicity, we assume that each variable in the
program is a 32-bit unsigned integer.

xSLangy :: (Block)�
xBlocky :: ł : (xStmty ;)� xNexty
xNexty :: jump ł;

| if φCond then jump ł1 else jump ł2
xExpry :: n | n � v+ xExpry
xStmty :: v = xExpry
xCondy :: True | False | Not(xCondy) | xBCondy | xECondy
xECondy :: xExpry xExprOpy xExpry | xExpry% xExpry == xExpry
xBCondy :: xCondy xCondOpy xCondy
xCondOpy :: And | Or
xExprOpy :: == | | ¤ |%

16

A concrete state σ for an SLang program is a tuple of concrete values,
σ : ΠvPVBV

s(v), where s(v) is the size of variable v in bits and BVb is a
bitvector with b bits. We use k to denote the size of the vocabulary V . We
use the row vector−Ñv = (v1, v2, . . . , vk) to denote the tuple of variables in the
vocabulary V (which makes explicit the implicit order in "σ : ΠvPVBV

s(v)").
A concrete state σ is described by the tuple of bitvectors (bv1,bv2, . . .bvk),
where the value of variable vi is bvi. The concrete states described by a
tuple of length k are one-vocabulary concrete states. Let C be the set of all
one-vocabulary concrete states.

The concrete transformer τE for a basic-block edge E = BÑ B 1 is de-
scribed by JEKBlock. A concrete transformer is a two-vocabulary transition
relation, denoted by R[−Ñv ;−Ñv 1], where −Ñv 1 = (v 11, v 12, . . . , v 1k) is a row vector
of length k. −Ñv and −Ñv 1 represent the pre-transformation state and the
post-transformation state, respectively. τE is set of tuples of bitvectors of
the form (bv1,bv2, . . .bvk,bv 11,bv 12, . . .bv 1k). Thus, a concrete transformer
is a set of two-vocabulary concrete states. A (two-vocabulary) concrete
state is sometimes called an assignment to the variables of the pre-state
and the post-state vocabulary. Let C be the set of all concrete transform-
ers. The concrete domain C = P[C] is the powerset of the set of concrete
transformers.

Fig. 2.1 provides the concrete semantics for the SLang program. The
concrete semantics for an edge B Ñ B 1 from the basic block B to basic
block B 1 is denoted by JB Ñ B 1K, where JK : C represents the concrete
evaluator. Rule 2.1 in Fig. 2.1 specifies how the concrete evaluation for
basic-block pairs feeds into concrete evaluation on a sequence of state-
ments. The concrete evaluator takes a one-vocabulary concrete state σ as
input. Note that l 1 is the label corresponding to the basic block B 1. Rule
2.2 states that the concrete evaluation of a sequence of instructions can
be broken down into a concrete evaluation of a smaller sequence of in-
structions, by recursively performing statement-level concrete evaluation

17

J.KStmt on the first instruction in the sequence. Rules 2.3, 2.4, 2.5, and 2.6
handle control-flow statements. Rule 2.3 delegates the responsibility of
executing the last instruction in the statement sequence to J.KNext. Rule
2.4 deals with unconditional-jump instructions. Rules 2.5 and 2.6 deal
with conditional-jump instructions; both delegate to the assume evalua-
tion function J.KAssume. The assume is given the guard condition φCond
for the true case and Not(φCond) for the false case. Rule 2.7 deals with
assumes. Assume operations filters out the concrete states that do not
match the assume condition. If the evaluation of φ on the concrete state σ
is true, then the state σ is returned; otherwise, a special empty concrete
state tu is returned. The result JEKBlockσ = tu specifies that the concrete
state σ cannot concretely execute along the edge E.

Rule 2.8 handles assignment statements. Assignment Jv = expKStmt
returns a concrete state that is the same as σ except the variable v is up-
dated with the evaluated value of exp. Rules 2.9-2.12 specify the concrete
evaluation of linear expressions. Similarly, 2.13-2.17 specify the concrete
evaluation of conditional expressions.

2.2 Abstract Interpretation

Abstract Interpretation is a process of discovering properties about the pro-
gram by “running” a safe approximation of the program [20]. This safe
approximation of the program is called an abstraction of the program. The
building block for the abstraction of the program is an abstract domain,
denoted by A. An abstract domain defines the level and detail of the
abstraction. The program properties inferred by means of abstract in-
terpretation are a safe approximation of actual program properties, and
hence they are invariants for the program.

18

Basic Block:

JBÑ B 1KBlockσ = J[s1; ...; sn;nxt]KSeq(σ, l 1) (2.1)

J[s1; ...; sn;nxt]KSeq(σ, l 1) = J[s2; ...; sn;nxt]KSeq((Js1KStmtσ), l 1) (2.2)

Control Flow:

J[nxt]KSeq(σ, l 1) = JnxtKNext(σ, l 1) (2.3)

Jjump l 1KNext(σ, l 1) = σ (2.4)

Jif φCond then jump l1 else jump l2KNext(σ, l1) =

Jassume(φCond)KAssumeσ (2.5)

Jif φCond then jump l 1 else jump l2KNext(σ, l2) =

Jassume(Not(φCond))KAssumeσ (2.6)

JφKAssignσ =

#
σ if JφKCondσ = True

tu otherwise
(2.7)

Assignments:

Jv = expKStmtσ = σ[vÐ JexpKExprσ] (2.8)

Expressions:

JnKExprσ = n (2.9)

JvKExprσ = σ[v] (2.10)

Jexp1 � exp2KExprσ = Jexp1KExprσ � Jexp2KExprσ (2.11)

Jexp1 + exp2KExprσ = Jexp1KExpra+ Jexp2KExprσ (2.12)

Conditions:

JTrue/FalseKCondσ = True/False (2.13)

Jexp1 Op exp2KCondσ = Jexp1KExprσ Op Jexp2KExprσ (2.14)

JNot (exp)KCondσ = Not(JexpKExprσ) (2.15)

Jexp1 % exp2 == exp3KCondσ = Jexp1KExprσ % Jexp2KExprσ == Jexp3KExprσ
(2.16)

Jcond1 Op cond2KCondσ = Jcond1KCondσ Op Jcond2KCondσ (2.17)

Figure 2.1: Concrete semantics for L(SLANG).

2.2.1 Abstract Domain

As mentioned in §2.1, the concrete domain, denoted by C, is the powerset
of the set of concrete transformers. Often, but not always, the concrete

19

domain C and the abstract domain A form a Galois connection G = C ��ÑÐ��α
γ

A [20]. γ takes an abstract-domain elementA, and gives back the concrete-
domain element C P C, thatA represents. α takes a concrete domain value
C P C, and abstracts C to the least abstract-domain element A such that
the set of concrete elements represented by A is a superset of C. For a
given abstract domain A, A[V] denotes the specific instance of A that is
defined over vocabulary V .

Parity Abstract Domain

As an illustrative example of an abstract domain, consider the parity ab-
stract domain that only tracks whether each variable in the program is
even or odd. A parity map is a mapping from variables to their par-
ity, pm : V Ñ te,ou, where e represents the set of even integers and o
represents the set of odd integers. Thus, γ(e) = t0, 2, 4, . . . , 232 � 2u and
γ(o) = t1, 3, 5, . . . , 232 � 1u for 32-bit unsigned integers. The concretization
γ(pm) = t(bv1,bv2, . . . ,bvk) :

�
0¤i¤k

bvi P γ(pm(vi))u. Let us denote the

set of all parity maps by PM. We define the the parity abstract domain,
denoted by APar, as the powerset of PM. Therefore, APar = P[PM]. The
concretization γ(a) for an element a P APar is defined as the union over
the concretizations of the parity maps in a.

γ(a) =
¤
pmPa

γ(pm)

Example 2.1. Consider V = tv, v 1u and a P APar[V], such that a =

t(e, e), (o,o)u. The abstract element a represent all concrete states such that
parity(v) = parity(v 1). Consider the abstraction for the concrete state set css =
t(1, 3), (11, 13), (211, 215)u. α(css) = t(o,o)u. Notice that some precision is
lost in the abstraction process. For instance, the concrete state (1, 1) P γ(α(css)),
but (1, 1) R css.

20

Table 2.1: Abstract-domain operations.

Result Type Operation Description
A K bottom element
bool (a1 == a2) equality
A (a1 \ a2) join
A (a1∇a2) widen
A Id identity element
A (a1 � a2) composition

2.2.2 Abstract-Domain Operations

A static analyzer needs a way to construct abstract transformers for the
concrete operations in the programs. Semantic reinterpretation and symbolic
abstraction provide automatic ways to construct abstract transformers. We
provide a more detailed discussion of these automatic techniques in §2.3.

For an analysis that provides function summaries or loop summaries,
the fixpoint analysis is performed using equality, join (\), and abstract-
composition (�) operations on abstract transformers. We provide a more
detailed description of the fixpoint analysis in §2.4.

For the analyses discussed in this dissertation, the program is ab-
stracted to a control-flow graph, where each edge in the graph is labeled
with an abstract transformer. As described in §2.1, an abstract transformer
is a two-vocabulary transition relation R[−Ñv ;−Ñv 1], where −Ñv and −Ñv 1 are row
vectors of length k that represent the pre-transformation state and the
post-transformation state, respectively.

Tab. 2.1 lists the abstract-domain operations needed to generate the
program abstraction and perform fixpoint analysis on it. The bottom ele-
ment is the abstract-domain element at the bottom of the abstract domain.
The concretization of the bottom element is the empty set: γ(K) = H.
Equality is the standard lattice equality operation. Join is the least upper
bound operation on the abstract-domain elements, that is, a1\a2 � a1,a2

and @a3 : a3 � a1,a2ña3 � a1 \ a2. The widen operation is needed

21

for domains with infinite ascending chains to ensure termination [23].
For abstract domains with finite ascending chains, the widen operation
can be safely replaced with the join operation. Id is the identity element,
which represents the identity transformation (

�k
i=1 v

1
i = vi). Finally, the

abstract-composition operation a1 �a2 returns a sound overapproximation
of the composition of abstract transformer a1 with abstract transformer a2.

For the parity abstract domain, join is set union and meet is set in-
tersection. The empty set tu is the bottom element for APar. Consider
−Ñv = (v, v 1). The abstract-domain element t(e, e), (o,o)u is the identity
transformer, specifying that the parity of the variable v is preserved.

Example 2.2. Consider a1 = t(e, e), (o,o)u and a2 = t(e,o), (o, e)u. The
abstract transformer a1 states that the parity of the variable v is preserved. Sim-
ilarly, the abstract transformer a2 states that the parity of variable v2 is flipped.
The join of a1 and a2, denoted by a1\a2 is t(e, e), (o,o), (e,o), (o, e)u. a1\a2

represents the set of all concrete states because all the permutations of parity
transformations are possible. The meet of a1 and a2, denoted by a1 [a2 is tu.

Consider the abstract composition of a1 � a2. Intuitively, the abstract trans-
former a1 � a2 takes the parity of the variable v and,

1. applies the abstract transformation a1 to v’s parity (which preserves the
parity) to get a temporary parity tp,

2. applies the abstract transformation a2 to the parity tp (which flips the par-
ity).

The overall effect is that the parity of the variable v is flipped. Thus, a1 � a2 =

t(e,o), (o, e)u = a2.

2.3 Creation of Abstract Transformers.

To perform program analysis, the program-state transitions that are associ-
ated with the edges of a control-flow graph also need to be abstracted. We
will use the map JK7 : EÑ A to denote the map that specifies abstract trans-

22

formers for each edge in the CFG. We say that JK7 is a sound approximation
of JK if the following condition holds for every edge e P E:

γ(JeK7) � γ(JeK)

Example 2.3. The following example is used to illustrate abstract interpretation
with the parity abstract domain:

L0: v=v+1
L1: while (*) {
L2: v=v+2

}
L3: if(v %4==2) {
L4: v=v+1
L5: }
END:

For instance, the abstract transformer for the concrete operation v = v + 2
starting from node L2 and ending at node L1, denoted by τ7L2ÑL1, is defined as
t(e, e), (o,o)u. Thus, the abstract transformer τ7L2ÑL1 is the identity function on
parity maps because v = v+ 2 does not change the parity of variable v.

More interesting is the abstract transformer for v = v + 1 which flips the
parity of v. τ7L0ÑL1 is defined as t(e,o), (o, e)u.

2.3.1 Semantic Reinterpretation

In this section, we describe how the abstract transformers are generated
using semantic reinterpretation [47, 79, 81, 64, 60, 30]. Semantic reinter-
pretation is an automatic and efficient method to create abstract trans-
formers. Semantic reinterpretation makes use of abstract components of
each of the concrete operations and concrete data types used to specify
the semantics of a programming language. These abstract components
are collectively referred to as the semantic core [60] (sometimes called
a semantic algebra [90]). Specifically, the reinterpretation consists of a
domain of abstract transformers A[V ,V 1], a domain of abstract integers
AINT[t,V], and operations to lookup a variable’s value in the post-state

23

of an abstract transformer and to create an updated version of a given
abstract transformer. Here t denotes a temporary variable not in V or V 1.
Given blocks B : [l : s1; ...sn;nxt] and B 1 : [l 1 : s 11; ...s 1n;nxt 1] in an SLang
program (see §2.1), where B 1 is a successor of B, reinterpretation of B can
provide an abstract transformer for the transformation that starts from
the first instruction in B and ends in the first instruction in B 1, denoted by
BÑ B 1.

Fig. 2.2 provide the reinterpretation semantics for the APar domain.
Rule 2.18 specifies how abstract-transformer evaluation for basic-block
pairs feeds into abstract-transformer evaluation on a sequence of state-
ments. The evaluation on a sequence of statements starts with the identity
abstract transformer, denoted by Id. Rule 2.19 states that the abstract trans-
former for a sequence of instruction can be broken down into an abstract
transformer for a smaller sequence of instruction, by recursively perform-
ing statement-level abstract interpretation J.K7Stmt on the first instruction
in the sequence. In this rule and subsequent J.K7Next and J.K7Stmt rules, “a”
denotes the intermediate abstract transformer value. It starts as Id at the
beginning of the instruction sequence, and gets updated or accessed by
assignment and control-flow statements in the sequence.

Rules 2.20, 2.21, 2.22 and 2.23 handle control-flow statements. Rule
2.20 delegates the responsibility of executing the last instruction in
the statement sequence to J.K7Next. Rule 2.21 deals with unconditional-
jump instructions. Rules 2.22 and 2.23 handle conditional branch-
ing by delegating the responsibility to Jassume(φCond)K7Assumea and
Jassume(Not(φCond))K7Assumea respectively. Rule 2.24 handles assume
by delegating the abstract execution of the conditional φ to J.K7Cond (see
rules 2.32-2.35) and then performing a meet operation.

Rule 2.25 handles the assignment statement by merely performing a
post-state-vocabulary update on the current abstract transformer “a.”

Rules 2.26-2.29 handle reinterpretation of expressions. The abstract

24

Basic Block:

JBÑ B 1K7Block = J[s1; ...; sn;nxt]K7Seq(Id, l 1) (2.18)

J[s1; ...; sn;nxt]K7Seq(a, l 1) = J[s2; ...; sn;nxt]K7Seq((Js1K7Stmt(a), l
1) (2.19)

Control Flow:

J[nxt]K7Seq(l 1) = JnxtK7Next(l 1) (2.20)

Jjump l 1K7Next(a, l 1) = a (2.21)

Jif φCond then jump l1 else jump l2K7Next(a, l1) =

Jassume(φCond)K7Assumea (2.22)

Jif φCond then jump l 1 else jump l2K7Next(a, l2) =

Jassume(Not(φCond))K7Assumea (2.23)

JφK7Assumea = a[JφK7Conda (2.24)

Assignments:

Jv = expK7Stmta = update(a, v 1, JexpK7Expra) (2.25)

Expressions:

JnK7Expra = t(parity(n),p1,p2, . . . ,pk) : pi P te,ouu (2.26)

JvK7Expra = lookup(a, v 1) (2.27)

Jexp1 � exp2K7Expra = Jexp1K7Expra �7 Jexp2K7Expra (2.28)

Jexp1 + exp2K7Expra = Jexp1K7Expra+7 Jexp2K7Expra (2.29)

Abstract Integers:

i �7 i 1 = t(parity(pt) �
7 parity(p 1t),p1,p2, . . . ,pk) :

(pt,p1,p2, . . . ,pk) P i, (p 1t,p1,p2, . . . ,pk) P i 1u (2.30)

i+7 i 1 = t(parity(pt) +
7 parity(p 1t),p1,p2, . . . ,pk) :

(pt,p1,p2, . . . ,pk) P i, (p 1t,p1,p2, . . . ,pk) P i 1u (2.31)

Conditions:

JTrue/FalseK7Conda = J/K (2.32)

Jexp% 2 == 0K7Conda = t(p1, . . . ,pk,p1, . . . ,pk) :

(e,p1, . . . ,pk) P JexpKExprau (2.33)

Jexp% 2 == 1K7Conda = t(p1, . . . ,pk,p1, . . . ,pk) :

(o,p1, . . . ,pk) P JexpKExprau (2.34)

JφOtherK7Conda = J (2.35)

Variable lookup and update:

lookup(a, v 1i) = t(p 1i,p1, . . . ,pk) : (p1, . . . ,pk,p 11, . . . ,p 1k) P au (2.36)

update(a, v 1i,ai) = t(p1,p2, . . . ,pk,p 11,p 12, . . . ,pi�1,pt,pi+1 . . . ,p 1k) :

(p1,p2, . . . ,pk,p 11,p 12, . . . ,p 1k) P a, (pt,p1,p2, . . . ,pk) P aiu (2.37)

Figure 2.2: Reinterpretation semantics for L(SLANG) for domain APar.

25

p1 p2 �7 +7

e e e e
e o e o
o e e o
o o o e

Table 2.2: Truth table for multiplication and addition of two parity values.

interpretation of an expression gives back an abstract integer. An abstract
integer is an abstract-domain element over (t,−Ñv), where t is the temporary
variable not in −Ñv referring to the value of abstract integer. For example,
the abstract integer i = t(e, e), (o,o)u, with−Ñv = tv1u, is an abstract integer
whose parity is the same as tviu. Rule 2.26 creates an abstract integer from
a constant integer n by setting the parity of the t variable to parity(n) in all
possible pre-vocabulary-state parity combinations. Rule 2.27 creates an
abstract integer from a variable by performing a variable “lookup” opera-
tion in a. Rules 2.28 and 2.29 delegate computation to the corresponding
abstract-integer operations.

Rules 2.30 and 2.31 are abstract-multiplication and abstract-addition
operations respectively. The operators �7 and +7 for te,ou are defined in
Tab. 2.2.

Rules 2.32-2.35 provide abstract interpretation of conditionals. The
result of these operations is an abstract transformer that overapproximates
the set of values satisfied by the conditional for the given input abstract
transformer a. Rule 2.32 handles the true and false conditionals. Rules
2.33 and 2.34 handles the conditionals which check for the parity of an
expression “exp”. Rule 2.33 filters the tuples in the abstract integers for
“exp”, where the parity for “exp” is even. Similarly, rule 2.34 only considers
tuples where the parity for “exp” is odd. Rule 2.35 safely handles all the
other expression to returnJ. For brevity, we do not explicitly give rules for
the Boolean operators AND, OR and NOT, but they can be implemented

26

as set intersection, set union, and set complementation, respectively.
Rules 2.36 and 2.37 are variable lookup and update operations. Lookup

takes an abstract transformer a and a variable vi, and returns the abstract
integer ai such that the relationship of twith −Ñv in ai is the same as the
relationship of v 1i with−Ñv in a. The variable-update operation works in the
opposite direction. Update takes an abstract transformer a, a variable v 1i,
and ai, and returns a 1 such that the relationship of v 1i with −Ñv in a 1 is the
same as the relationship of t with −Ñv in ai, and all the other relationships
that do not involve v 1 remain the same.

Example 2.4. For instance, consider the abstract transformer for the concrete
operation v = v + 1, denoted by τ7L0ÑL1, Remember that the desired answer is
t(e,o), (o, e)u. Semantic reinterpretation can arrive at this answer by perform-
ing J[v = v+ 1; jmp L1]K7Seq(Id,L1), where Id = t(e, e), (o,o)u. First, it will
perform Jv = v + 1K7Stmt, which in turn will obtain JvK7Expr = t(e, e), (o,o)u
(through rule 2.36) and J1K7Expr = t(o, e), (o,o)u (through rule 2.26). Using
these values, Jv + 1K7Expr = JvK7Expr +

7 J1K7Expr = t(e +
7 o, e), (o +7 o,o)u =

t(o, e), (e,o)u. Then, update(Id, v 1, t(o, e), (e,o)u) is performed to obtain
Jv = v + 1K7Stmt = t(e,o), (o, e)u. Finally, this value is left unchanged by
the unconditional jump to L1 to obtain τ7L0ÑL1 = t(e,o), (o, e)u.

2.3.2 Symbolic Abstraction

Symbolic abstraction (denoted by pα) [84] provides an automatic way of
obtaining the best abstract transformer, given the concrete semantics of
the transformer as a formula (for abstract domains and logics that meet
certain properties [84]).

Best Abstract Transformer For every concrete operation (concrete trans-
former) in the actual program, the corresponding over-approximating
abstract operation (abstract transformer) needs to be provided to perform

27

abstract interpretation (§2.2). Cousot and Cousot [21] give the notion of
a best abstract transformer, but do not provide an algorithm to either (i)
apply the best transformer, or (ii) create a representation of the best trans-
former. Their notion is as follows: If τ is a concrete transformer, let τs be
τ lifted to operate on a set pointwise (i.e., τs(S) = tτ(s)|s P Su). Then the
best abstract transformer τ7 equals α � τs � γ.

An abstract transformer can be viewed as an element in an abstract
domain in which each element represents an input-output relation. The ad-
vantage of adopting this viewpoint is that it allows symbolic abstraction —
and in particular algorithms for symbolic abstraction — to be applied to the
problem of creating best abstract transformers. That is, if ϕτ is a formula
in L that captures the semantics of concrete transformer τ, A is the abstract
domain of abstract transformers, and pαA is a symbolic-abstraction algo-
rithm for mapping an L formula to the smallest over-approximating value
in A, then pαA(ϕτ) yields the best abstract transformer for τ. pαA(ϕτ) is the
symbolic version of the α function, referred as the symbolic-abstraction
operation. Similarly, the symbolic-concretization operation, denoted bypγA(a), is the symbolic version of the γ function; it takes an abstract value
a P A and returns a formula ϕ P L describing the abstract value symbol-
ically as a logical formula. Thus, a and pγA(a) represent the same set of
concrete states (i.e., γA(a) = JpγA(a)K). Usually, symbolic concretization is
straightforward to implement for abstract domains. For instance,

pγAPar(a) =
ª

(p1,p2,...,pk,p 11,p 12,...,p 1k)Pa

(k©
i=0

(vi%2 = (pi = e)?0 : 1)

^ (v 1i%2 = (p 1i = e)?0 : 1)
)

I now discuss two approaches to symbolic abstraction, namely, sym-
bolic abstraction from below [84] and the bilateral approach to symbolic abstrac-
tion [100].

28

Symbolic Abstraction From Below

Symbolic Abstraction From Below (pαbe) [84] starts from K (the abstract
value that denotes the empty set), and climbs up the abstract-domain
lattice using models obtained from a succession of calls to a Satisfiability
Modulo Theory (SMT) solver (Alg. 1). A satisfiability modulo theories
(SMT) solver [74, 26] is a decision procedure for logical formulas with
respect to combinations of background theories expressed in classical
logic. For instance, the logic can be Quantifier Free Bit-Vector logic (QFBV).
The SMT solver takes a logical formula and returns SAT (or UNSAT) if the
formula is satisfiable (or unsatisfiable). The beta (β) function, also referred
as the representation function, obtains an abstract-domain element given
a concrete state or model (M). The algorithm refines the search space
after each SMT call to ensure progress by using pγ(ans) as a blocking
clause. Once the SMT call returns unsatisfiable, ans contains an over-
approximation of [[ϕ]].

This algorithm is not guaranteed to terminate when the abstract-
domain lattice has infinite ascending chains. Moreover, because ans is
initialized to K and always has a value that is � the desired final answer,
the algorithm is unable to give back a non-trivial abstract value, i.e., a
value other than J, in case the SMT solver times out.

Algorithm 1 Symbolic Abstraction From Below pαbe(ϕ)
1: ansÐ K
2: while r = SMTCall(ϕ^ pγ(ans)) is Sat do
3: MÐ GetModel(r)
4: ansÐ ans\ β(M)

5: return ans

Example 2.5. Consider the abstraction of the concrete transformer τL3ÑL4. The
symbolic formula for this transformer isϕτL3ÑL4 = (v 1 = v)^(mod(v 1, 4) = 2),
wheremod is the modulus operator. First, ans = K and SMTCall returns true.

29

Suppose the model M is (v = 2, v 1 = 2). β(v = 2, v 1 = 2) = (e, e), because
that is the best value that overapproximates model M. Thus, ans = t(e, e)u
and pγ(ans) = (mod(v 1, 2) = 0 ^ mod(v, 2) = 0) and consequently, the
next SMT query is given as (v 1 = v) ^ (mod(v 1, 4) = 2) ^ (mod(v 1, 2) =
0^mod(v, 2) = 0). This time the query is unsatisfiable and ans = t(e, e)u is
returned.

Note that the value obtained via semantic reinterpretation is JL3 Ñ

L4K7Block = J. This answer is returned because the reinterpretation semantics
is myopic and greedy, and is incapable of obtaining the best abstract transformer
in the general case.

Bilateral Approach to Symbolic Abstraction

The bilateral algorithm for symbolic abstraction (pαbi) [100] starts from
both below (K) and above (J). (See Alg. 2.) At any point in the com-
putation, it maintains two values, lower (an under-approximation of the
best abstract transformer) and upper (an over-approximation of the best
abstract transformer). When lower is equal to upper, the algorithm stops
and returns upper. For lower and upper such that lower � upper, an abstract
consequence is any value p, such that p � lower and p � upper. These
restrictions on p guarantee that the algorithm makes progress on each
step. For conjunctive domains, p can be chosen as any conjunct in lower
not implied by upper.

Like pαbe, this algorithm is not guaranteed to terminate when the
abstract-domain lattice has infinite ascending chains. The key advan-
tage of this algorithm over pαbe is that pαbi can return upper as a safe
over-approximation in case of a timeout. This safe over-approximation
of the symbolic abstraction (pα) is denoted by rα. Thus, for any given ϕ,pα(ϕ) � rα(ϕ).
Example 2.6. Consider the abstraction of the concrete transformer τL3ÑL4 again.
First, lower = K, upper = J and SMTCall returns true. Suppose that the model

30

Algorithm 2 Bilateral Symbolic Abstraction pαbi(ϕ)
1: lower Ð K
2: upper Ð J
3: while lower � upper do
4: pÐ AbstractConsequence(lower, upper)
5: rÐ SMTCall(ϕ^ pγ(p)
6: if r is Sat then
7: MÐ GetModel(r)
8: lower Ð lower\ β(M)
9: else

10: upper Ð upper[p
11: return upper

M is (v = 2, v 1 = 2). Thus, β(v = 2, v 1 = 2) = (e, e), lower = t(e, e)u
and pγ(lower) = (mod(v 1, 2) = 0 ^mod(v, 2) = 0). The bilateral algorithm
calls the AbstractConsequence operation. Note that the abstract consequence p
can be created automatically by adding 0 or more tuples to lower such that p is
a subset of upper. Suppose that AbstractConsequence adds the tuple (e,o), so
that p = t(e,o), (e, e)u. Consequently, the next SMT query is given as (v 1 =
v)^(mod(v 1, 4) = 2)^ (mod(v, 2) = 0). This time the query is unsatisfiable
and upper is set to J [p = t(e,o), (e, e)u. Because upper is still not equal to
lower, AbstractConsequence p is called again. This time, there is only one option
for p; namely t(e, e)u. The next SMT query is given as (v 1 = v)^(mod(v 1, 4) =
2)^ (mod(v 1, 2) = 0^mod(v, 2) = 0). The query is unsatisfiable and upper
is set to t(e,o), (e, e)u [p = t(e, e)u. upper is now equal to lower, and upper
is returned.

Note that the advantage of this approach is that a sound non-trivial value of
upper = t(e,o), (e, e)u could be returned if the third SMT call timed out.

31

2.4 Fixed-point computation

To obtain program summaries, an iterative fixed-point computation needs
to be performed. Tab. 2.3 provides the fixpoint analysis for Ex. 2.3. Each
row in the table shows the value of path summaries PSn(L0 Ñ L�) starting
from the beginning of the program L0 to different program points in the
program, where n is the iteration number of the path summary. The inter-
mediate path summary at the first iteration (i), denoted by PS7(i)(L0 Ñ L1),
is obtained from τ7L0ÑL1. The intermediate path summary at the first it-
eration (ii), denoted by PS7(ii)(L0 Ñ L1) is calculated as the join of the
path summary at the previous iteration PS7(i)(L0 Ñ L1) with the abstract
composition of τ7L2ÑL1 and PS7(i)(L0 Ñ L1). Quiescence is discovered
during the second iteration, because PS7(ii)(L0 Ñ L1) � PS7(i)(L0 Ñ L1).
Therefore, PS7(ii)(L0 Ñ L1) is the path summary from L0 to L1. Using
this path summary for program point L1, path summary at L3, denoted
by PS7(i)(L0 Ñ L3) can be calculated by abstract composition of τ7L1ÑL3

and PS7(ii)(L0 Ñ L1). In a similar manner, PS7(i)(L0 Ñ L4) is calculated as
τ7L3ÑL4 � PS

7
(i)(L0 Ñ L3). Because node L5 is the confluence point of edges

L3 Ñ L5 and L4 Ñ L5, the fixpoint iteration needs to perform a join op-
eration of the path summaries obtained from abstract composition along
these two edges. Finally, PS7(i)(L0 Ñ END) = t(e,o), (o, e), (o,o)u is ob-
tained by composing PS7(i)(L0 Ñ L5) with the abstract semantics τL5ÑEND

of the edge from L5 to END, which has the identity transformation Id.
The abstract interpretation with the parity abstract domain APar is able

to show that if the input value of v is even, then the output value of v will
always be odd; if the input value is odd, then nothing is known about the
parity of the output value of v.

32

Table 2.3: Snapshots in the fixed-point analysis for Ex. 2.3.

Iteration Equation Value
PS7(i)(L0 Ñ L1) τ7L0ÑL1 t(e,o), (o, e)u
PS7(ii)(L0 Ñ L1) PS7(i)(L0 Ñ L1)\ t(e,o), (o, e)u \ t(e,o), (o, e)u

(τ7L1ÑL2 � PS
7
(i)(L0 Ñ L1)) = t(e,o), (o, e)u

PS7(i)(L0 Ñ L3) τ7L1ÑL3 � PS
7
(ii)(L0 Ñ L1) t(e, e), (o,o)u � t(e,o), (o, e)u

= t(e,o), (o, e)u
PS7(i)(L0 Ñ L4) τ7L3ÑL4 � PS

7
(i)(L0 Ñ L3) t(e, e)u � t(e,o), (o, e)u

= t(o, e)u
PS7(i)(L0 Ñ L5) (τ7L4ÑL5 � PS

7
(i)(L0 Ñ L4))\ t((e,o), (o, e)u � t(o, e)u)\

(τ7L3ÑL5 � PS
7
(i)(L0 Ñ L3)) t(e, e), (o,o)u � t(e,o), (o, e)u

= t(o,o)u \ t(e,o), (o, e)u
= t(e,o), (o, e), (o,o)u

PS7(i)(L0 Ñ END) (τ7L5ÑEND � PS
7
(i)(L0 Ñ L5)) Id � t(e,o), (o, e), (o,o)u

= t(e,o), (o, e), (o,o)u

2.5 Weighted Pushdown Systems

Weighted PushDown Systems (WPDSs) are a modern formalism for solv-
ing flow-sensitive, context-sensitive, interprocedural dataflow-analysis
problems [10, 85].

A weighted pushdown system is a pushdown system whose rules
are given values from some domain of weights. The weight domains of
interest are bounded idempotent semirings.

2.5.1 Bounded Idempotent Semiring

Definition 2.7. A bounded idempotent semiring is a quintuple
(D,`,b, 0, 1), where D is a set, 0 and 1 are elements of D, and ` (the
join operation) and b (the extend operation) are binary operators on D such that

1. (D, `) is a commutative monoid with 0 as its neutral element, and where
` is idempotent (i.e., for all a P D, a ` a = a).

2. (D, b) is a monoid with the neutral element 1.

33

3. b distributes over `, i.e., for all a,b, c P D we have

ab (b` c) = (ab b)` (ab c) and

(a` b)b c = (ab c)` (bb c).

4. 0 is an annihilator with respect to b, i.e., for all a PD, ab 0 = 0 = 0ba.
5. In the partial order � defined by: @a,b P D,a � b iff a ` b = b, there

are no infinite ascending chains.

Defn. 2.7(1) and Defn. 2.7(5) mean that (D,`) is a join semilattice with
no infinite ascending chains.

Note that the distributivity property (Property 3 in Defn. 2.7) holds only
if the extend operation distributes over the join operation. The analysis is
still sound if the semiring is not distributive. If the semiring is distribu-
tive, then the WPDS-based dataflow analysis gives the join-over-all-paths
solution.

2.5.2 Application of WPDS to Interprocedural Dataflow
Analysis

For our interprocedural-analysis experiments, we use the WALi sys-
tem [50] for WPDSs to perform abstract interpretation (§2.2). To construct
the WPDS from a given control flow graph (CFG), each edge in the CFG
(which represents a concrete transformer) is converted to a rule in WPDS.
The semiring weight on an edge in the CFG is calculated by abstracting the
concrete transformer for the edge to an abstract transformer. Hence, the
WPDS weights are abstract transformers, represented as semiring weights.
The asymptotic cost of weight generation is linear in the size of the pro-
gram: to generate the weights, each basic block in the program is visited
once, and a weight is generated by the relevant method.

34

Table 2.4: Semiring operators in terms of abstract-domain operations.

Semiring Operator Abstract-domain Operation Description
0 K bottom element
1 Id identity element
(a1 ` a2) (a1 \ a2) join
(a1 ` a2) (a1∇a2) widen at loop headers
(a1 b a2) (a2 � a1) composition

Tab. 2.4 provides the relationship between the semiring operators and
the corresponding abstract-domain operations. 0 is the bottom element. 1
is the identity operation. The join operation (a1 ` a2) is implemented as
the join of the abstract transformers, except at the loop headers where it is
implemented as widening operation to ensure termination. The extend
operation (a1 b a2) is implemented as abstract-composition operation
(a2 � a1). Notice that the order of the arguments in abstract composition
has changed.

Semiring EWPDS merge functions [56] are used to preserve caller-save
and callee-save registers across call sites. Running a WPDS-based analysis
to find the least fixed-point value for a given set of program points involves
calling two operations, “post*” and “path summary”, as detailed in [85].
The post* queries use the FWPDS algorithm [55].

35

3 abstract domains of affine relations

This chapter considers some known abstract domains for affine-relation
analysis, along with several variants, and studies how they relate to each
other. An affine relation is a linear-equality constraint over a given set
of variables that hold machine integers. An abstract-domain element
represents the set of states that satisfies a conjunction of affine relations.
ARA finds, for each point in the program, a domain element that over-
approximates the set of states that can arise at that point. ARA generalizes
such analyses as linear-constant propagation [87] and induction-variable
analysis.

We show that the abstract domains for ARA of Müller-Olm/Seidl
(MOS) and King/Søndergaard (KS) are, in general, incomparable. How-
ever, we give sound interconversion methods. That is, we give an algorithm
to convert a KS element vKS to an over-approximating MOS element vMOS—
i.e., γ(vKS) � γ(vMOS)—as well as an algorithm to convert an MOS element
wMOS to an over-approximating KS element wKS—i.e., γ(wMOS) � γ(wKS).

We describe our own variant of the KS domain, which is inspired by—
but different from, and arguably easier to use than—the version of KS
developed by King and Søndergaard. Our version is presented in §3.4.

For MOS, it was not previously known how to perform rαMOS(ϕ) in a
non-trivial fashion (i.e., other than defining rαMOS to be λf.J). In contrast,
[53, Fig. 2] gave an algorithm for pαKS, which led us to examine more closely
how MOS and KS are related.

Contributions This chapters contributions include the following:
• We introduce a third domain for representing affine relations, called

AG, which stands for affine generators (§3.1.3). Whereas an element
in the KS domain consists of a set of constraints on the values of
variables, AG represents a collection of allowed values of variables

36

via a set of generators. We show that AG is the generator counterpart
of KS: a KS element can be converted to an AG element, and vice
versa, with no loss of precision (§3.2).

• We show that MOS and KS/AG are, in general, incomparable (§3.3.1).
In particular, we show that KS and AG can express transformers
with affine guards, which MOS cannot express.

• We give sound interconversion methods between MOS and KS/AG
(§3.3.2–§3.3.4):

– We show that an AG element vAG can be converted to an over-
approximating MOS element vMOS—i.e., γ(vAG) � γ(vMOS).

– We show that an MOS element wMOS can be converted to an
over-approximating AG element wAG—i.e., γ(wMOS) � γ(wAG).

• Consequently, by means of the conversion path ϕ Ñ KS Ñ AG Ñ

MOS, we obtain a method for performing rαMOS(ϕ) (§3.3.5).

Experiments §3.5 presents an experimental study with the Intel IA32

(x86) instruction set in which the pαKS method and two greedy, operator-
by-operator reinterpretation methods—KS-reinterpretation (§2.3.1) and
MOS-reinterpretation [62, §4.1.2]—are compared in terms of their perfor-
mance and precision. The precision comparison is done by comparing the
affine invariants obtained at branch points, as well as the affine procedure
summaries obtained for procedures. For KS-reinterpretation and MOS-
reinterpretation, we also compare the abstract transformers generated for
individual x86 instructions. The experiments were designed to answer
the following questions:

• Which method of obtaining abstract transformers is fastest: pαKS,
KS-reinterpretation, or MOS-reinterpretation?

• Does MOS-reinterpretation or KS-reinterpretation yield more pre-
cise abstract transformers for machine instructions?

• For what percentage of branch points and procedures does pαKS pro-

37

duce more precise answers than KS-reinterpretation?

Organization The chapter is organized as follows: §3.1 summarizes
relevant features of the various ARA domains. §3.2 presents the AG
domain, and shows how an AG element can be converted to a KS element,
and vice versa. §3.3 presents our results on the incomparability of the
MOS and KS domains, but gives sound methods to convert a KS element
into an over-approximating MOS element, and vice versa. §3.4 explains
how to use the KS domain for interprocedural analysis. §3.5 presents
experimental results. §3.6 discusses related work. Proofs can be found in
the appendices.

3.1 Abstract Domains for affine-relation
analysis

The two existing ARA domains—one defined by [76, 78] (MOS) and one
defined by [52, 53] (KS) are introduced in this section. Both MOS and KS
are based on an extension of linear algebra to modules over a ring [44, 43,
1, 99, 76, 78]. §3.1.1 introduces terminology used in describing the ARA
domains. §3.1.2 introduces Howell form, which can be used as a normal
form in the MOS and KS domains. §3.1.3 defines the affine-generator (AG)
domain, which is a generator representation of the KS domain. §3.1.4 and
§3.1.5 define the KS domain and MOS domain, respectively. Finally, we
discuss the domain heights of AG, KS, and MOS domains in §3.1.6.

3.1.1 Terminology

All numeric values are integers in Z2w for some bit widthw. That is, values
are w-bit machine integers with the standard operations for machine
addition and multiplication. Addition and multiplication in Z2w form a

38

ring, not a field, so some facets of standard linear algebra do not apply,
and thus we must be cautious about carrying over intuition from standard
linear algebra. In particular, each odd element in Z2w has a multiplicative
inverse (which may be found in time O(logw) [102, Fig. 10-5]), but no
even element has a multiplicative inverse. The rank of a value x P Z2w is
the maximum integer p ¤ w such that 2p divides evenly into x [76, 78].
For example, rank(1) = 0, rank(24) = 3, and rank(0) = w.

Throughout the paper, k is the size of the vocabulary, the variable-set
under analysis. A two-vocabulary relation is a transition relation between
values of variables in the pre-state vocabulary and values of variables in
the post-state vocabulary.

Matrix addition and multiplication are defined as usual, forming a ma-
trix ring. We denote the transpose of a matrixM byMt. A one-vocabulary
matrix is a matrix with k+ 1 columns. A two-vocabulary matrix is a matrix
with 2k+ 1 columns. In each case, the “+1” is for technical reasons (which
vary according to what kind of matrix we are dealing with). I denotes the
(square) identity matrix (whose size can be inferred from context). The
rows of a matrixM are numbered from 1 to rows(M); the columns ofM
are numbered starting from 1.

Because the MOS domain inherently involves pre-state-vocabulary to
post-state-vocabulary transformers (see §3.1.5), our definitions of the AG
and KS domains (§3.1.3 and §3.1.4, respectively) are also two-vocabulary
domains. Technically, AG and KS can have an arbitrary number of vo-
cabularies, including just a single vocabulary. To be able to give simpler
examples, some of the AG and KS examples use one-vocabulary domain
elements.

States in the various abstract domains are represented by row vectors
of length k + 1. The row space of a matrix M is defined by rowM def

=

t−Ñv | Dw : wM = −Ñv u. When we speak of the “null space” of a matrix, we
actually mean the set of row vectors whose transposes are in the traditional

39

null space of the matrix. Thus, we define nulltM def
=
 −Ñv ��M−Ñv t = 0

(
.

3.1.2 Matrices in Howell Form

One way to appreciate how linear algebra in rings differs from linear
algebra in fields is to see how certain issues are finessed when converting
a matrix to Howell form [44]. The Howell form of a matrix is an extension
of reduced row-echelon form [67] suitable for matrices over Zn. Because
Howell form is canonical for matrices over principal ideal rings [44, 99], it
provides a way to test whether two abstract-domain elements are equal—
i.e., whether they represent the same set of concrete values. Such an
equality test is needed during program analysis to determine whether a
fixed point has been reached.

Definition 3.1. The leftmost nonzero value in a row vector is its leading value.
The leading value’s index is the leading index. A matrixM is in row-echelon
form if

• All all-zero rows are at the bottom.
• Each row’s leading index is greater than that of the row above it.

If M is in row-echelon form, let [M]i denote the matrix that consists of all rows
ofM whose leading index is i or greater.

A matrixM is in Howell form if
1. M is in row-echelon form and has no all-zero rows,
2. the leading value of every row is a power of two,
3. each leading value is the largest value in its column, and
4. for every row r of M, for any p P Z, if i is the leading index of 2pr, then

2pr P row([M]i).
l

In Defn. 3.1, item (4) may be confusing, and thus warrants an example.

40

Example 3.2. Suppose that w = 4, so that we are working in Z16. Consider the
following two matrices and their Howellizations:

M1
def
=
[
4 2 4

]
Howellize(M1) =

[
4 2 4
0 8 0

]

M2
def
=

[
4 2 4
0 4 0

]
Howellize(M2) =

[
4 2 4
0 4 0

]

First, notice thatM1 does not satisfy item (4). M1 has only one row, [4 2 4], and
consider what happens when this row is multiplied by powers of 2:

21 � [4 2 4] = [8 4 8]
22 � [4 2 4] = [0 8 0]
23 � [4 2 4] = [0 0 0]

In particular, the leading index of 22 � [4 2 4] = [0 8 0] is 2; however, because
row([M]2) = H, [0 8 0] R row([M]2). Consequently, [0 8 0] must be included
in Howellize(M1). We say that a row like [0 8 0] is a logical consequence of
[4 2 4] that is added to satisfy item (4) of Defn. 3.1.

In contrast, matrixM2 satisfies item (4) (and, in fact,M2 is already in Howell
form). For matrixM2 to fail to satisfy item (4), there would have to be some row
r and power p for which (a) the leading index i of 2pr is strictly greater than the
leading index of r, (b) 2pr � 0, and (c) 2pr R row([M]i). In this example, the
only interesting quantity of the form 2pr is 22�[4 2 4] = [0 8 0]. The leading index
of [0 8 0] is 2, but [0 8 0] = 2�[0 4 0], and so [0 8 0] P row([M]2). Consequently,
M2 satisfies item (4). l

The Howell form of a matrix is unique among all matrices with the
same row space (or null space) [44]. As mentioned earlier, this property of
Howell form provides a way to test two MOS elements, two KS elements,
or two AG elements for equality.

41

Algorithm 3 Howellize: Put the matrix G in Howell form.
1: procedure Howellize(G)
2: Let j = 0 � j is the number of already-Howellized rows
3: for all i from 1 to 2k+ 1 do
4: Let R = tall rows of Gwith leading index iu
5: if R � H then
6: Pick an r P R that minimizes rank ri
7: Pick the odd u and rank p so that u2p = ri
8: rÐ u�1r � Adjust r, leaving ri = 2p
9: for all s in Rz tru do

10: Pick the odd v and rank t so that v2t = si
11: sÐ s� (v2t�p) r � Zero out si
12: if row s contains only zeros then
13: Remove s from G

14: In G, swap rwith Gj+1 � Place r for row-echelon form
15: for all h from 1 to j do � Set values above ri to be 0 ¤ � ri
16: dÐ Gh,i " p � Pick d so that 0 ¤ Gh,i � dri ri
17: Gh Ð Gh � dr � Adjust row Gh, leaving 0 ¤ Gh,i ri

18: if ri � 1 then � Add logical consequences of r to G
19: Add 2w�pr as last row of G � New row has leading

index ¡ i
20: jÐ j+ 1

The notion of a saturated set of generators used by [78] is closely related
to Howell form, but is defined for an unordered set of matrices rather than
row-vectors arranged in a matrix, and has no analogue of item (3). The
algorithms of Müller-Olm and Seidl do not compute multiplicative inverses
(see §3.6.2), so a saturated set has no analogue of item (2). Consequently, a
saturated set is not canonical among generators of the same space.

Our technique for putting a matrix in Howell form is the procedure
Howellize (Alg. 3). Much of Howellize is similar to a standard Gaussian-
elimination algorithm, and it has the same overall cubic-time complexity as
Gaussian elimination. In particular, Howellize minus lines 15–19 putsG in
row-echelon form (item (1) of Defn. 3.1) with the leading value of every row

42

a power of two. (Line 8 enforces item (2) of Defn. 3.1.) Howellize differs
from standard Gaussian elimination in how the pivot is picked (line 6)
and in how the pivot is used to zero out other elements in its column
(lines 7–13). Lines 15–17 of Howellize enforce item (3) of Defn. 3.1, and
lines 18–19 enforce item (4). Lines 12–13 remove all-zero rows, which is
needed for Howell form to be canonical.

Alg. 3 is simple and easy to implement. For analyses over large vocab-
ularies, one should replace Alg. 3, which has cubic-time complexity with,
say, the algorithm of [99], which has the same asymptotic complexity as
matrix multiplication.

3.1.3 The Affine Generator Domain

An element in the Affine Generator domain (AG) is a two-vocabulary
matrix whose rows are the affine generators of a two-vocabulary relation.

An AG element is an r-by-(2k+ 1) matrix G, with 0 r ¤ 2k+ 1. The
concretization of an AG element is

γAG (G)
def
=

(−Ñv ,−Ñv 1) | −Ñv ,−Ñv 1 P Zk2w ^

[
1|−Ñv −Ñv 1

]
P rowG

(
.

The AG domain captures all two-vocabulary affine spaces, and treats them
as relations between pre-states and post-states.

The bottom element of the AG domain is the empty matrix, and the AG

element that represents the identity relation is the matrix
[1 −Ñv −Ñv 1

1 0 0
0 I I

]
.

The AG element 

1 v1 v2 v 11 v 12

1 0 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 0 2

 (3.1)

43

represents the transition relation in which v 11 = v1, v2 can have any value,
and v 12 can have any even value.

To compute the join of two AG elements, stack the two matrices verti-
cally and Howellize the result.

3.1.4 The King/Søndergaard Domain

An element in the King/Søndergaard domain (KS) is a two-vocabulary
matrix whose rows represent constraints on a two-vocabulary relation.
A KS element is an r-by-(2k + 1) matrix M, with 0 ¤ r ¤ 2k + 1. The
concretization of a KS elementM is

γKS (M)
def
=

(−Ñv ,−Ñv 1) | −Ñv ,−Ñv 1 P Zk2w ^

[−Ñv −Ñv 1|1
]
P nulltG

(
.

Like the AG domain, the KS domain captures all two-vocabulary affine
spaces, and treats them as relations between pre-states and post-states.

It is easy to read out affine equalities from a KS elementM (regardless
of whetherM is in Howell form): if

[v1 ... vk v 11 ... v 1k 1

a1 . . . ak a 11 . . . a 1k b
]

is a row ofM, then
°
i aivi+

°
i a

1
iv

1
i = �b is a constraint on γKS (M). The

conjunction of these constraints describes γKS (M) exactly.

The bottom element of the KS domain is the matrix
[−Ñv −Ñv 1

1

0 0 1
]
,

and the KS element that represents the identity relation is the matrix

[−Ñv −Ñv 1

1

I �I 0
]
. Suppose that w = 4, so that we are working in Z16. The

44

KS element [v1 v2 v 11 v 12 1

1 0 �1 0 0
0 0 0 8 0

]
(3.2)

represents the transition relation in which v 11 = v1, v2 can have any value,
and v 12 can have any even value. Thus, Eqns. (3.1) and (3.2) represent the
same transition relation in AG and KS, respectively.

A Howell-form KS element can easily be checked for emptiness: it is
empty if and only if it contains a row whose leading entry is in its last
column. In that sense, an implementation of the KS domain in which all
elements are kept in Howell form has redundant representations of bottom
(whose concretization is H). However, such KS elements can always be
detected during Howellize and replaced by the canonical representation

of bottom, namely,
[−Ñv −Ñv 1

1

0 0 1
]
.

The original King and Søndergaard paper 2008 gives polynomial-time
algorithms for join and projection; projection can be used to implement
composition (see §3.4.3).

3.1.5 The Müller-Olm/Seidl Domain

An element in the Müller-Olm/Seidl domain (MOS) is an affine-closed set
of affine transformers, as detailed in [78]. An MOS element is represented
by a set of (k+ 1)-by-(k+ 1) matrices. Each matrix T is a one-vocabulary

transformer of the form T =

[
1 b

0 M

]
, which represents the state transfor-

mation −Ñv 1 := −Ñv �M+ b, or, equivalently,
[
1|−Ñv 1

]
:= [1|−Ñv] T .

An MOS element B consists of a set of (k+ 1)-by-(k+ 1) matrices, and
represents the affine span of the set, denoted by 〈B〉 and defined as follows:

〈B〉 def
=

#
T

����� Dw P Z|B|
2w : T =

¸
BPB

wBB^ T1,1 = 1

+
.

45

The meaning of B is the union of the graphs of the affine transformers in
〈B〉

γMOS (B)
def
=

(−Ñv ,−Ñv 1)

��−Ñv ,−Ñv 1 P Zk2w ^ DT P 〈B〉 : [1|−Ñv] T =
[
1|−Ñv 1

](
.

The bottom element of the MOS domain isH, and the MOS element that
represents the identity relation is the singleton set tIu. If w = 4, the MOS

element B =

#[
1 0 0
0 1 0
0 0 0

]
,

[
0 0 2
0 0 0
0 0 0

]+
represents the affine span

〈B〉 =

#[
1 0 0
0 1 0
0 0 0

]
,

[
1 0 2
0 1 0
0 0 0

]
,

[
1 0 4
0 1 0
0 0 0

]
, . . . ,

[
1 0 14
0 1 0
0 0 0

]+
,

which corresponds to the transition relation in which v 11 = v1, v2 can have
any value, and v 12 can have any even value—i.e., B represents the same
transition relation as Eqns. (3.1) and (3.2).

The operations join and compose can be performed in polynomial
time. If B and C are MOS elements, B \ C = Howellize (BY C) and
B ;C = Howellize tbc |b P B^ c P Cu. In this setting, Howellize of a set
of (k + 1)-by-(k + 1) matrices tM1, . . . ,Mnu means “Apply Alg. 3 to a
larger, n-by-(k+ 1)2 matrix, each of whose rows is the linearization (e.g.,
in row-major order) of one of theMi.”

3.1.6 Domain Heights

In all three domains, an element can be represented via an appropriate
matrix in Howell form (where in the case of the MOS domain, we mean a
matrix in the extended sense discussed in §3.1.5). For a fixed bit width and
a fixed number of columns, there are only a constant number of Howell-
form matrices. Consequently, the KS, AG, and MOS domains are all finite
domains, and hence of finite height.

46

Domain elements need not necessarily be maintained in Howell form;
instead, they could be Howellized on demand when it is necessary to
check containment (see §3.4.6). Our implementation maintains domain
elements in Howell form using essentially the “list of lists” sparse-matrix
representation: each matrix is represented via a C++ vector of rows; each
row is a vector of (column-index, nonzero-value) pairs.

3.2 Relating AG and KS Elements

AG and KS are equivalent domains. One can convert an AG element to an
equivalent KS element with no loss of precision, and vice versa. In essence,
these are a single abstract domain with two representations: constraint
form (KS) and generator form (AG).

We use an operation similar to singular value decomposition, called
diagonal decomposition:

Definition 3.3. The diagonal decomposition of a square matrixM is a triple
of matrices, L, D, R, such that M = LDR; L and R are invertible matrices; and
D is a diagonal matrix in which all entries are either 0 or a power of 2. l

[78, Lemma 2.9] give a decomposition algorithm that nearly performs
diagonal decomposition, except that the entries in their D might not be
powers of 2. We can easily adapt that algorithm. Suppose that their
method yields LDR (where L and R are invertible). Pick u and r so that
ui2ri = Di,i with each ui odd, and define U as the diagonal matrix where
Ui,i = ui. (If Di,i = 0, then ui = 1.) It is easy to show that U is invertible.
Let L 1 = LU and D 1 = U�1D. Consequently, L 1D 1R = LDR = M, and
L 1D 1R is a diagonal decomposition.

From diagonal decomposition we derive the dualization operation,
denoted by �K, such that the rows ofMK generate the null space ofM, and
vice versa.

47

Definition 3.4. The dualization ofM, denoted byMK, is defined as follows:
• Pad(M) is the (2k+ 1)-by-(2k+ 1) matrix

[
M−Ñ0
]
,

• L,D,R is the diagonal decomposition of Pad(M),
• T is the diagonal matrix with Ti,i

def
= 2w�rank(Di,i), and

• MK def
=
(
L�1)t T (R�1)t

l

This definition of dualization has the following useful property:

Theorem 3.5. For any matrix M, nulltM = rowMK and rowM =

nulltMK.

Proof. For any matrix M, it is a common lemma that
(
M�1)t = (Mt)

�1.
Thus, the notationM�t denotes

(
M�1)t.

Lemma 3.6. Let D and T be square, diagonal matrices, where Dii = 2pi and
Tii = 2w�pi for all i. Then, nullt T = rowD and nulltD = row T .

Proof. Let z be any row vector. To see that nullt T = rowD:

z P nullt Tô Tzt = 0ô@i : zi2w�pi = 0

ô@i : 2pi |ziôDv : @i : vi2pi = zi
ôDv : vD = zô z P rowD.

One can show that nulltD = row T by essentially the same reasoning.

Again, let L,D, andR be the diagonal decomposition ofM (see Defn. 3.3,
and construct T from D as in Lem. 3.6. Recall that L is invertible. To see
that rowM = nulltMK,

rowM = rowLDR = rowDR, so x P rowDRô xR�1 P rowD

ô xR�1 P nullt Tô TR�txt = 0ô x P nullt TR�t.

48

We know that L�t is also invertible, so

nullt TR�t = nullt L�tTR�t = nulltMK.

Thus, rowM = nulltMK. One can show that nulltM = rowMK by essen-
tially the same reasoning.

We can therefore use dualization to convert between equivalent KS
and AG elements. For a given (padded, square) AG matrix G = [c|Y Y 1],
we seek a KS matrix Z of the form [X X 1|b] such that γKS (Z) = γAG (G).
We construct Z by letting [b|X X 1] = GK and permuting those columns to
Z

def
= [X X 1|b]. This works by Thm. 3.5, and because

γAG (G) = t(x, x 1) | [1|x x 1] P rowGu

=

(x, x 1)

�� [1|x x 1] P nulltGK
(

=

(x, x 1)

�� [x x 1|1] P nullt Z
(
= γKS (Z) .

Furthermore, to convert from any KS matrix to an equivalent AG matrix,
we reverse the process. Reversal is possible because dualization is an
involution: for any matrixM,

(
MK

)K
=M.

3.3 Relating KS and MOS

3.3.1 MOS and KS are Incomparable

The MOS and KS domains are incomparable: some relations are express-
ible in each domain that are not expressible in the other. Intuitively, the
central difference is that MOS is a domain of sets of functions, while KS is
a domain of relations.

KS can capture restrictions on both the pre-state and post-state vocab-
ularies, while MOS can capture restrictions only on its post-state vocab-

49

ulary. For example, when k = 1, the KS element for “assume v = 2” (in

un-Howellized form) is
[v v1 1

1 0 �2
1 �1 0

]
, i.e., “v = 2^ v = v 1”.

In contrast, an MOS element cannot encode an assume statement. The
smallest MOS element that over-approximates “assume v = 2” is the iden-

tity transformer
"[

1 0
0 1

]*
. In general, an MOS element cannot encode a

non-trivial condition on the pre-state. If an MOS element contains a single
transition, it encodes that transition for every possible pre-state. Therefore,
KS can encode relations that MOS cannot encode.

On the other hand, an MOS element can encode two-vocabulary
relations that are not affine. One example is the matrix basis B =#[

1 0 0
0 1 1
0 0 0

]
,

[
1 0 0
0 0 0
0 1 1

]+
. The set that B encodes is

γMOS (B) =

$'''&
'''%

[
v1 v2 v 11 v 12

] ���������
Dw0,w1 :

[
1 v1 v2

] 1 0 0
0 w0 w0

0 w1 w1

 =
[

1 v 11 v 12

]
^ w0 +w1 = 1

,///.
///-

=
![
v1 v2 v 11 v 12

] ��� Dw0 : v
1

1 = v
1

2 = w0v1 + (1�w0)v2

)

=
![
v1 v2 v 11 v 12

] ��� Dw0 : v
1

1 = v
1

2 = v1 + (1�w0)(v2 � v1)
)

=
![
v1 v2 v 11 v 12

] ��� Dp : v 11 = v 12 = v1 + p(v2 � v1)
)

(3.3)

Affine spaces are closed under affine combinations of their elements.
Thus, γMOS (B) is not an affine space because some affine combinations
of its elements are not in γMOS (B). For instance, let a =

[
1 �1 1 1

]
,

b =
[
2 �2 6 6

]
, and c =

[
0 0 �4 �4

]
. By Eqn. (3.3), we have

a P γMOS (B) when p = 0 in Eqn. (3.3), b P γMOS (B) when p = �1, and
c R γMOS (B) (the equation “�4 = 0 + p(0 � 0)” has no solution for p).
Moreover, 2a � b = c, so c is an affine combination of a and b. Thus,
γMOS (B) is not closed under affine combinations of its elements, and so
γMOS (B) is not an affine space. Because every KS element encodes a two-

50

vocabulary affine space, MOS can represent γMOS (B) but KS cannot.

3.3.2 Converting MOS Elements to KS

Soundly converting an MOS element B to a KS element is equivalent to
stating two-vocabulary affine constraints satisfied by B.

To convert an MOS element B to a KS element, we
1. rewrite B so that every matrix it contains has a 1 in its top-left corner,
2. build a two-vocabulary AG matrix from each one-vocabulary matrix

in B,
3. join the resulting AG matrices, and
4. convert the joined AG matrix to a KS element.
For Step (1), we rewrite B so that

B =

#[
1 ci

0 Ni

]+
, where ci P Z1�k

2w and Ni P Zk�k2w .

If our original MOS element B0 fails to satisfy this property, we can con-
struct an equivalent B that does. Let C = Howellize(B0); pick the unique
B P C such that B1,1 = 1, and let B = tBu Y tB+ C |C P (Cz tBu)u. B now
satisfies the property, and 〈B〉 = 〈B0〉.

In Step (2), we construct the matrices

Gi =

[
1 0 ci

0 I Ni

]
.

Note that, for each matrixBi P B, γMOS (tBiu) = γAG (Gi). In Step (3), we join
theGi matrices in the AG domain to yield one matrixG. Thm. 3.7 states the
soundness of this transformation from MOS to AG, i.e., γMOS(B) � γAG(G).
Finally, G is converted in Step (4) to an equivalent KS element by the
method given in §3.2.

Thm. 3.7 states that the transformation from MOS to AG is sound.

51

Theorem 3.7. Suppose that B is an MOS element such that, for every B P B,

B =

[
1 cB

0 MB

]
for some cB P Z1�k

2w and MB P Zk�k2w . Define GB =[
1 0 cB

0 I MB

]
and G =

�
AG tGB |B P Bu. Then, γMOS(B) � γAG(G).

Proof. See App. A.

Because we can easily read affine relations from KS elements (§3.1.4),
this conversion method also gives an easy way to create a quantifier-free
formula that over-approximates the meaning of an MOS element. In
particular, the formula read out of the KS element obtained from MOS-to-
KS conversion captures affine relations implied by the MOS element.

3.3.3 Converting KS Without Pre-State Guards to MOS

If a KS element is total with respect to pre-state inputs, then we can convert
it to an equivalent MOS element. First, convert the KS element to an AG
element G. When G expresses no restrictions on its pre-state, it has the
form

G =

 1 0 b

0 I M

0 0 R

 , (3.4)

where b P Z1�k
2w ; I,M P Zk�k2w ; and R P Zk�r2w with 0 ¤ r ¤ k.

Definition 3.8. An AG matrix of the form[
1 0 b

0 I M

]
,

such as the Gi matrices discussed in §3.3.2, is said to be in explicit form. An
AG matrix in this form represents the transition relation x 1 = x �M+ b. l

52

Explicit form is desirable because we can immediately convert the AG
matrix of Defn. 3.8 into the MOS element#[

1 b

0 M

]+
.

The matrixG in Eqn. (3.4) is not in explicit form because of the rows [0|0 R];
however, G is quite close to being in explicit form, and we can read off a
set of matrices to create an appropriate MOS element. We produce this set
of matrices via the Shatter operation, where

Shatter(G) def
=

#[
1 b

0 M

]+
Y

#[
0 Rj,�

0 0

] ����� 1 ¤ j ¤ r
+

,

where Rj,� is row j of R.
As shown in Thm. 3.9, γAG (G) = γMOS (Shatter(G)). Intuitively,

this property holds because the coefficients of the [0|0 Rj,�] rows in
an affine combination of the rows of G correspond to coefficients of

the
#[

0 Rj,�

0 0

]+
matrices in an affine combination of the matrices in

Shatter(G).

Theorem 3.9. When G =

[
1 0 b

0 I M

0 0 R

]
, then γAG (G) = γMOS (Shatter(G)) .

Proof. See App. A.

3.3.4 Converting KS With Pre-State Guards to MOS

If a KS element is not total with respect to pre-state inputs, then there is no
MOS element with the same concretization. However, we can find sound
over-approximations within MOS for such KS elements.

We convert the KS element into an AG matrix G as in §3.3.3 and put
G in Howell form. There are two ways that G can enforce guards on the

53

Algorithm 4 MakeExplicit: Transform an AG matrix G in Howell form to
near-explicit form.
Require: G is an AG matrix in Howell form

1: procedure MakeExplicit(G)
2: for all i from 2 to k+ 1 do � Consider each col. of the pre-state

voc.
3: if there is a row r of Gwith leading index i then
4: if rank ri ¡ 0 then
5: for all j from 1 to 2k+ 1 do � Build s from r, with si = 1
6: sj Ð rj " rank ri
7: Append s to G
8: GÐ Howellize(G)
9: for all i from 2 to k+ 1 do

10: if there is no row r of Gwith leading index i then
11: Insert, as the ith row of G, a new row of all zeroes

pre-state vocabulary: it might contain one or more rows whose leading
value is even, or it might skip some leading indexes in row-echelon form.

While we cannot put G in explicit form, we can run MakeExplicit
to coarsen G so that it is close enough to the form that arose in §3.3.3.
Adding extra rows to an AG element can only enlarge its concretization.
Thus, to handle a leading value 2p,p ¡ 0 in the pre-state vocabulary,
MakeExplicit introduces an extra, over-approximating row constructed
by copying the row with leading value 2p and right-shifting each value in
the copied row by p bits (lines 4–8). After the loop on lines 2–8 finishes,
every leading value in a row that generates pre-state-vocabulary values is 1.
MakeExplicit then introduces all-zero rows so that each leading element
from the pre-state vocabulary lies on the diagonal (lines 9–11).

Example 3.10. Suppose that k = 3, w = 4, and G =

[
1 0 2 0 0 0 0

4 0 12 2 4 0
4 0 8

]
.

After line 11 of MakeExplicit, all pre-state vocabulary leading values ofG have
been made ones, and the resulting G 1 has rowG 1 � rowG. In our case, G 1 =

54

 1 0 2 0 0 0 0
1 0 3 0 1 0

2 0 0
8

. To handle “skipped” indexes, lines 9–11 insert all-zero

rows into G 1 so that each leading element from the pre-state vocabulary lies on

the diagonal. The resulting matrix is


1 0 2 0 0 0 0

1 0 3 0 1 0
0 0 0 0 0

0 0 0 0
2 0 0

8

. l

Theorem 3.11. For G P AG, γAG (G) � γMOS (Shatter (MakeExplicit(G))).

Proof. See App. A.

Thus, we can use the KS–to–AG conversion method of §3.2,
MakeExplicit, and Shatter to obtain an over-approximation of a KS ele-
ment in MOS.

Example 3.12. The final MOS element for Ex. 3.10 is
$''''&
''''%


1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ,


0 2 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 8
0 0 0 0
0 0 0 0
0 0 0 0


,////.
////-

.

l

3.3.5 Symbolic Abstraction for the MOS Domain

As mentioned in the introduction, it was not previously known how to
perform symbolic abstraction for MOS. Using pαKS (see §2.3.2 and §3.4.8)
in conjunction with the algorithms from §3.2 and §3.3.4, we can soundly
define rαMOS(ϕ) as

let G = ConvertKStoAG (pαKS(ϕ)) in Shatter (MakeExplicit (G)) .

55

3.4 Using KS for Interprocedural Analysis

This section presents a two-vocabulary version of the KS abstract domain,
focusing on the operations that are useful in a program analyzer. Unlike
previous work by [52, 53], it is not necessary to perform bit-blasting to
use the version of KS presented here. §3.4.1–§3.4.7 describe the suite of
operations needed to use the KS domain in an interprocedural-analysis
algorithm in the style of [92] or [54], or to use the KS domain as a weight
domain in a weighted pushdown system (WPDS) [10, 85, 56, 50].

§3.4.8 discusses symbolic abstraction for the KS domain, which pro-
vides one way to create two-vocabulary KS elements that represent ab-
stract transformers needed by a program analyzer. (§2.3.1 provides an
alternative method for creating KS abstract transformers, based on the
operator-reinterpretation paradigm.)

§3.4.9 shows how to compute the number of tuples that satisfy a KS
element.

3.4.1 Meet

As discussed in §3.1.4, the meaning of a KS matrix X can be expressed
as a formula by forming a conjunction that consists of one equality for
each row of X. We can obtain a KS element that precisely represents the
conjunction of any number of such formulas by stacking the rows that
represent the equalities, and putting the resulting matrix in Howell form.
Consequently, we can compute the meet X [Y of any two KS elements
X and Y by putting the block matrix [XY] into Howell form. The resulting
matrix exactly represents the intersection of the meanings of X and Y:

γKS(X[Y) = γKS(X)X γKS(Y).

56

3.4.2 Project and Havoc

[52, §3] describe a way to project a KS element X onto a suffix xi, . . . , xk
of its vocabulary: (i) put X in row-echelon form to create X 1; (ii) create X2

by removing from X 1 every row a in which any of a1, . . . ,ai�1 is nonzero
(i.e., X2 = [X 1]i); and (iii) remove columns 1, . . . , i � 1. (Note that the
resulting matrix has only a portion of the original vocabulary; we have
projected away tx1, . . . , xi�1u.) However, although their method works for
Boolean-valued KS elements (i.e., KS elements over Zk2), when the leading
values of X are not all 1, as can occur in KS elements over Zk2w for w ¡ 1,
step (ii) is not guaranteed to produce the most-precise projection of X onto
xi, . . . , xk, although the KS element obtained is always sound.

Example 3.13. Suppose that X =
[v1 v2 1

4 2 6
]
, with w = 4, and the goal is

to project away the first column (for v1). When the King/Søndergaard projection
algorithm is applied to X, we obtain the empty matrix, which represents no con-
straints on v2—i.e., v2 P t0, 1, . . . , 15u. However, closer inspection reveals that
v2 cannot be even; if v2 were even, then both of the terms 4v1 and 2v2 would both
be divisible by 4, and hence both values would have at least two zeros as their
least-significant bits. Such a pair of values could not sum to a value congruent
to 6 because the binary representation of 6 ends with . . . 10. l

Instead, we put X in Howell form before removing rows. By Thm. 3.14,
step (ii) above returns the exact projection of the original KS element onto
the smaller vocabulary.

Theorem 3.14. Suppose thatM has c columns. If matrixM is in Howell form,
−Ñv P nulltM if and only if @i : @y1, . . .yi�1 :

[
y1 � � �yi�1 vi � � � vc

]
P

nullt([M]i).

Proof. See App. B.

57

Example 3.15. The Howell form of X from Ex. 3.13 is
[v1 v2 1

4 2 6
0 8 8

]
, and thus

we obtain the following answer for the projection of X onto v2:
[v2 1

8 8
]
, which

represents v2 P t1, 3, . . . , 15u.
This example illustrates that while the answer produced in Ex. 3.13 by the

King/Søndergaard projection algorithm is a sound over-approximation, it is not
as precise as the most-precise answer that can be represented in the KS domain.
l

Given KS elementM, it is also possible to project away a set of variables
V that does not constitute a prefix of the vocabulary: create M 1 by per-
muting the columns of M so that the columns for the variables in V come
first—the order chosen for the V columns themselves is unimportant—and
then project away V fromM 1 as described earlier.

The havoc operation removes all constraints on a set of variables V . To
havoc V from KS element M, project away V and then (i) add back an
all-0 column for each variable in V , and (ii) permute columns to restore
the original variable order. Because of the all-0 columns, the resulting KS
element has no constraints on the values of the variables in V .

Example 3.16. Suppose that we wish to havoc v2 from the KS value

[v1 v2 1

2 4 6
]
. We permute columns and Howellize to create

[v2 v1 1

4 2 6
0 8 8

]
,

project onto the vocabulary suffix v1, obtaining
[v1 1

8 8
]
, add back an all-0 col-

umn for v2,
[v2 v1 1

0 8 8
]
, and permute columns back to the original order to

58

obtain
[v1 v2 1

8 0 8
]
. l

3.4.3 Compose

[53, §5.2] present a technique to compose two-vocabulary affine relations.
For completeness, that algorithm follows. Suppose that we have KS ele-
ments Y =

[
Ypre Ypost y

]
and Z =

[
Zpre Zpost z

]
, where Ypre, Ypost,

Zpre, and Zpost are k-column matrices, and y and z are column vectors. We
want to compute the relational composition “Y ;Z”; i.e., find some X such
that (−Ñv ,−Ñv 2) P γKS (X) if and only if D−Ñv 1 : (−Ñv ,−Ñv 1) P γKS (Y) ^ (−Ñv 1,−Ñv 2) P

γKS (Z).
Because the KS domain has a projection operation, we can create Y ;Z

by first constructing the three-vocabulary matrixW,

W =

[
Ypost Ypre 0 y

Zpre 0 Zpost z

]
,

and then projecting away the first vocabulary of W. Any element
(−Ñv 1,−Ñv ,−Ñv 2) P γKS (W) has (−Ñv ,−Ñv 1) P γKS (Y) and (−Ñv 1,−Ñv 2) P γKS (Z); conse-
quently, the projection yields a matrix X such that γKS (X) = γKS (Y) ;γKS (Z),
as required.

Alternatively, we can think of abstract composition as happening in
three steps: (i) adding 0-columns and reordering vocabularies in Y and Z;
(ii) computing the meet W of the resulting matrices; and (iii) projecting
onto the initial and final vocabulary ofW. Thus, because reordering, meet,
and projection are all exact operations, abstract composition is also an
exact operation:

γKS(Y ;Z) = γKS(Y) ;γKS(Z).

Note that the steps of the abstract-composition algorithm mimic a standard

59

way to express the composition of concrete relations, i.e.,

Y ;Z = DU : Y[pre, post]^ Z[pre, post]^U = Y.post^U = Z.pre.

3.4.4 Join

To join two KS elements Y and Z, we first construct the matrix
[
�Y Y

Z 0

]
and then project onto the last 2k+ 1 columns.

[52, §3] give a method to compute the join of two KS elements by
building a (6k + 3)-column matrix and projecting onto its last 2k + 1
variables. We improve their approach slightly, building a (4k+ 2)-column
matrix and then projecting onto its last 2k+ 1 variables.

If Y and Z are considered as representing linear spaces, rather than

affine spaces, this approach works because
[
�Y Y

Z 0

][
u

v

]
= 0 is true just

if (Y(v � u) = 0) ^ (Zu = 0). Because (v � u) P null Y, and u P nullZ,
we know that v is the sum of values in null Y and nullZ, and so v is
in their linear closure. Thm. 3.17 demonstrates the correctness of the
same algorithm in affine spaces; that proof is driven by roughly the same
intuition.

Theorem 3.17. If Y and Z are bothN+ 1-column KS matrices, and γKS(Y) and

γKS(Z) are both non-empty sets, then Y \ Z is the projection of
[
�Y Y

Z 0

]
onto

its right-most N+ 1 columns.

Proof. See App. C.

Join is not exact in the same sense that meet, project, and compose are
above: affine spaces are not closed under union. However, this algorithm
does return the least upper bound of Y and Z in the space of KS elements.

Neither meet nor compose distribute over join, as illustrated in the
following examples:

60

Meet over join 1

“(v1 = v
1

1)” =
[v1 v11 1

1 �1 0
]
= J[

[v1 v11 1

1 �1 0
]

=

 [v1 v11 1

1 0 0
]
\

[v1 v11 1

0 1 0
][[v1 v11 1

1 �1 0
]

�

 [v1 v11 1

1 0 0
]
[

[v1 v11 1

1 �1 0
]

\

 [v1 v11 1

0 1 0
]
[

[v1 v11 1

1 �1 0
]

=

[v1 v11 1

1 0 0
0 1 0

]
\

[v1 v11 1

1 0 0
0 1 0

]
=

[v1 v11 1

1 0 0
0 1 0

]
= “(v1 = 0)^ (v 11 = 0)”

Compose over join

(i) “(v1 = v2)” =
[v1 v2 v11 v12 1

1 �1 0 0 0
]
=

[v1 v2 v11 v12 1

1 0 �1 0 0
0 1 0 �1 0

]
;

[v1 v2 v11 v12 1

1 �1 0 0 0
]

=




v1 v2 v11 v12 1

1 0 0 0 0
0 1 0 �1 0
0 0 1 0 0

\


v1 v2 v11 v12 1

1 0 �1 0 0
0 1 0 0 0
0 0 0 1 0


 ;

1In this example, we use the fact thatJ =
[v1 v11 1

1 0 0
]
\

[v1 v11 1

0 1 0
]
. Although

technically we are not working with a vector space over a field, the intuition is that the

KS element
[v1 v11 1

1 0 0
]

represents the “line” v1 = 0, the KS element
[v1 v11 1

0 1 0
]

represents the “line” v 11 = 0, and their affine closure is the whole “plane” (i.e., J).

61

[v1 v2 v11 v12 1

1 �1 0 0 0
]

�




v1 v2 v11 v12 1

1 0 0 0 0
0 1 0 �1 0
0 0 1 0 0

 ;
[v1 v2 v11 v12 1

1 �1 0 0 0
]


\




v1 v2 v11 v12 1

1 0 �1 0 0
0 1 0 0 0
0 0 0 1 0

 ;
[v1 v2 v11 v12 1

1 �1 0 0 0
]


=

[v1 v2 v11 v12 1

1 0 0 0 0
0 1 0 0 0

]
\

[v1 v2 v11 v12 1

1 0 0 0 0
0 1 0 0 0

]

=

[v1 v2 v11 v12 1

1 0 0 0 0
0 1 0 0 0

]
= “(v1 = 0)^ (v2 = 0)”

(ii) “(v 11 = v 12)” =
[v1 v2 v11 v12 1

0 0 1 �1 0
]

=
[v1 v2 v11 v12 1

0 0 1 �1 0
]

;

[v1 v2 v11 v12 1

1 0 �1 0 0
0 1 0 �1 0

]

=
[v1 v2 v11 v12 1

0 0 1 �1 0
]

;


v1 v2 v11 v12 1

0 0 1 0 0
0 �1 0 1 0
1 0 0 0 0

\


v1 v2 v11 v12 1

�1 0 1 0 0
0 0 0 1 0
0 1 0 0 0




62

�

[v1 v2 v11 v12 1

0 0 1 �1 0
]

;




v1 v2 v11 v12 1

0 0 1 0 0
0 �1 0 1 0
1 0 0 0 0




\
[v1 v2 v11 v12 1

0 0 1 �1 0
]

;




v1 v2 v11 v12 1

�1 0 1 0 0
0 0 0 1 0
0 1 0 0 0




=

[v1 v2 v11 v12 1

0 0 1 0 0
0 0 0 1 0

]
\

[v1 v2 v11 v12 1

0 0 1 0 0
0 0 0 1 0

]

=

[v1 v2 v11 v12 1

0 0 1 0 0
0 0 0 1 0

]
= “(v 11 = 0)^ (v 12 = 0)”

Similarly, join does not distribute over either meet or compose, as illus-
trated in the following examples:

Join over meet

“(v1 = v 11)” =
[v1 v11 1

1 �1 0
]
=

[v1 v11 1

1 0 0
0 1 0

]
\

[v1 v11 1

1 �1 0
]

=

 [v1 v11 1

1 0 0
]
[

[v1 v11 1

0 1 0
]\ [v1 v11 1

1 �1 0
]

�

 [v1 v11 1

1 0 0
]
\

[v1 v11 1

1 �1 0
][

 [v1 v11 1

0 1 0
]
\

[v1 v11 1

1 �1 0
]

= J[J = “true”

63

Join over compose

“(v 11 = v1 + 1)” =
[v1 v11 1

1 �1 1
]
=

[v1 v11 1

1 �1 1
]
\

[v1 v11 1

1 �1 1
]

=

Id ;
[v1 v11 1

1 �1 1
]\ [v1 v11 1

1 �1 1
]

=

 [v1 v11 1

1 �1 0
]

;
[v1 v11 1

1 �1 1
]\ [v1 v11 1

1 �1 1
]

�

 [v1 v11 1

1 �1 0
]
\

[v1 v11 1

1 �1 1
] ;

 [v1 v11 1

1 �1 1
]
\

[v1 v11 1

1 �1 1
]

= J ;
[v1 v11 1

1 �1 1
]
= J = “true”

3.4.5 Assuming Conditions

By “assuming” a condition ϕ on a KS element X, we mean to compute a
minimal KS element Y such that

γKS(Y) � γKS(X)X tv |ϕ(v)u .

This operation is needed to compute the transformer for an assume edge
in a program graph (i.e., the true-branch or false-branch of an if-then-else
statement). It can also be used to create transformers for assignments; for
instance, the transformer for the assignment xÐ 3u+ 2v can be created
by starting with the KS element for the identity relation on vocabulary

64

−Ñ
V ,

[−ÑV −Ñ
V

1

1

I �I 0
]
, havocking x 1 P −ÑV

1
, and assuming the equality x 1 =

3u+ 2v.
Assuming a w-bit affine constraint is straightforward: rewrite the con-

straint to isolate 0 on one side; form a matrix row from resulting constraint’s
coefficients; append the row to the KS element X; and Howellize. In other
words, when ϕ is an affine constraint, we create a one-row KS element
that represents ϕ exactly, and take the meet with X.

It is also possible to perform an assume with respect to an affine con-
gruence of the form “lhs = rhs (mod 2h)”, with h w. We rewrite the
congruence as an equivalent congruence modulo 2w, by multiplying the
modulus 2h and all of the coefficients by 2w�h, to obtain the w-bit affine
constraint “2w�hlhs = 2w�hrhs”. We then proceed as before.

3.4.6 Containment

Two KS elements X and Y are equal if their concretizations are equal:
γ(X) = γ(Y). However, when each KS element is in Howell form, equality
checking is trivial because Howell form is unique among all matrices with
the same row space (or null space) [44]. Consequently, containment can
be checked using meet and equality: X � Y iff X = X[Y.

3.4.7 Merge Functions

[54] extended the Sharir and Pnueli algorithm 1981 for interprocedural
dataflow analysis to handle local variables. At a site where procedure P
calls procedure Q, the local variables of P are modeled as if the current
incarnations of P’s locals are stored in locations that are inaccessible to
Q and to procedures transitively called by Q. Because the contents of
P’s locals cannot be affected by the call to Q, a merge function is used to
combine them with the element returned byQ to create the state in P after

65

the call toQ has finished. Other work using merge functions includes [75]
and [56].

To simplify the discussion, assume that all scopes have the same num-
ber of locals L. Each merge function is of the form

Merge(CallSiteVal, CalleeExitVal) def
=

CallSiteVal ; ReplaceLocals(CalleeExitVal).

Suppose that the ith vocabulary consists of sub-vocabularies −Ñgi and −Ñli .
The operation ReplaceLocals(CalleeExitVal) is defined as follows:

1. Project away vocabulary −Ñl2 from CalleeExitVal.
2. Insert L all-0 columns for vocabulary −Ñl2 . The KS element now has

no constraints on the variables in −Ñl2 .

3. Append L rows,
[−Ñg1

−Ñ
l1

−Ñg2
−Ñ
l2 1

0 I 0 �I 0
]
, so that in

ReplaceLocals(CalleeExitVal) each variable in vocabulary −Ñl2
is constrained to have the value of the corresponding variable in
vocabulary −Ñl1 .

3.4.8 Symbolic Abstraction (pα(ϕ))

[53, Fig. 2] gave an algorithm for the problem of symbolic abstraction(§2.3.2)
with respect to the KS domain: given a quantifier-free bit-vector (QFBV)
formula ϕ, the algorithm returns the best element in KS that over-
approximates [[ϕ]]. The algorithm given by King and Søndergaard, which
we will denote by pαÒKS(ϕ), needs the minor correction of using Howell
form instead of row-echelon form for the projections that take place in its
join operations, as discussed in §3.4.4.

Pseudo-code for pαÒKS(ϕ) is shown in Fig. 3.1(a). The matrix lower is
maintained in Howell form throughout. In line 6, pαÒKS(ϕ) uses the symbolic
concretization of p, denoted by pγ(p). For most abstract domains, including

66

Require: ϕ: a QFBV formula
Ensure: pα(ϕ) for the KS domain

1: lower Ð K
2: iÐ 1
3:
4: while i ¤ rows(lower) do
5: p Ð lower[rows(lower) �
i+ 1]

{p � lower}
6: SÐ Model(ϕ^ pγ(p))
7: if S is TimeOut then re-

turn J
8: else if S is None then

{ϕñ pγ(p)}
9: iÐ i+ 1

10:
11: else {S �|= pγ(p)}
12: lower Ð lower\β(S)
13: ans Ð lower
14: return ans

Require: ϕ: a QFBV formula
Ensure: pα(ϕ) for the KS domain

1: lower Ð K
2: iÐ 1
3: upper Ð J
4: while i ¤ rows(lower) do
5: pÐ lower[rows(lower)� i+ 1]

{p � lower, p � upper}
6: SÐ Model(ϕ^ pγ(p))
7: if S is TimeOut then return

upper
8: else if S is None then {ϕñ pγ(p)}
9: iÐ i+ 1

10: upper Ð upper[p
11: else {S �|= pγ(p)}
12: lower Ð lower\ β(S)
13: ans Ð lower
14: return ans

(a) (b)

Figure 3.1: (a) The King-Søndergaard algorithm for symbolic abstraction
(pαÒKS(ϕ)). (b) The Thakur-Elder-Reps bilateral algorithm for symbolic ab-
straction, instantiated for the KS domain: pαÙTER[KS](ϕ). In both algorithms,
lower is maintained in Howell form throughout.

KS, it is easy to write a pγ function. As mentioned in §3.1.4, affine equalities
can be read out from a KS element M (regardless of whether M is in
Howell form) as follows:

If
[v1 ... vk v 11 ... v 1k 1

a1 . . . ak a 11 . . . a 1k b
]

is a row of M, then°
i aivi +

°
i a

1
iv

1
i = �b is a constraint on γKS (M).

The conjunction of these constraints describes γKS (M) exactly. Conse-

67

quently, pγ(M) can be defined as follows:

pγ(M)
def
=

©
[a1 � � � ak a

1

1 � � � a
1

k |b]

is a row ofM

¸
i

aivi +
¸
i

a 1iv
1
i = �b

The algorithm pαÒKS(ϕ) is a successive-approximation algorithm: it com-
putes a sequence of successively larger approximations to [[ϕ]]. It maintains
an under-approximation of the final answer in the variable “lower”, which
is initialized to K on line 1. On each iteration, the algorithm selects p, a
single row (constraint) of lower (line 5), and calls a decision procedure to
determine whether there is a model that satisfies the formula “ϕ^ pγ(p)”
(line 6). When ϕ ^ pγ(p) is unsatisfiable, ϕ implies pγ(p). In this case,
p cannot be used to figure out how to make lower larger, so variable i is
incremented (line 9), which means that on the next iteration of the loop,
the algorithm selects the row immediately above p (line 5).

On the other hand, if the decision procedure returns a model S, the
under-approximation lower is updated to make it larger via the join per-
formed on the right-hand side of the assignment in line 12

lower Ð lower\ β(S). (3.5)

Because KS elements represent two-vocabulary relations, S is an assign-
ment of concrete values to both the pre-state and post-state variables:

S = [. . . , vi ÞÑ vi, . . . , v 1i ÞÑ v 1i, . . .],

or, equivalently,
S = [

−Ñ
X ÞÑ −Ñv ,−ÑX

1
ÞÑ −Ñv 1]. (3.6)

The notation β(S) in line 12 denotes the abstraction of the singleton state-
set tSu to a KS element. tSu can always be represented exactly in the KS

68

domain as follows (where the superscript t denotes the operation of vector
transpose):

β(S)
def
=

[−ÑX −Ñ
X

1

1

I 0 (�−Ñv)t

0 I (�−Ñv 1)t

]
(3.7)

An Improvement to pαÒKS

Algorithm pαÒKS from Fig. 3.1(a) is related to, but distinct from, an earlierpα algorithm, due to [84] (RSY), which applies not just to the KS domain,
but to all abstract domains that meet a certain interface. (In other words,pαRSY is the cornerstone of a framework for symbolic abstraction.) The two
algorithms resemble one another in that they both find pα(ϕ) via successive
approximation from below. However, there is a key difference in the nature
of the satisfiability queries that are passed to the decision procedure by the
two algorithms. Compared to pαRSY, pαKS issues comparatively inexpensive
satisfiability queries in which only a single affine equality is negated2—i.e.,
line 6 of Fig. 3.1(a) calls Model(ϕ^ pγ(p)), where p is a single constraint
from lower.

This difference—together with the observation that in practice pαKS was
about ten times faster than pαRSY when the latter was instantiated for the
KS domain—led Thakur, Elder, and Reps 2012 (TER) to investigate the
fundamental principles underlying pαRSY and pαKS. They developed a new
framework, pαÙTER, that transfers pαKS’s advantages from the KS domain to
other abstract domains [100].

In addition to generating less expensive satisfiability queries, the sec-
ond benefit of pαÙTER is that pαÙTER generally returns a more precise answer
than pαRSY and pαKS when a timeout occurs. Because pαRSY and pαKS main-
tain only under-approximations of the desired answer, if the successive-

2See [100, §3] for a more extensive explanation of the differences between pαKS andpαRSY.

69

approximation process takes too much time and needs to be stopped, they
must return J to be sound. In contrast, pαÙTER is bilateral, and can generally
return a nontrivial (non-J) element in case of a timeout. That is, pαÙTER main-
tains both an under-approximation and a (nontrivial) over-approximation
of the desired answer, and hence is resilient to timeouts: pαÙTER returns the
over-approximation if it is stopped at any point.

Fig. 3.1(b) shows the pαÙTER algorithm instantiated for the KS domain,
which we call pαÙTER[KS]. The differences between Fig. 3.1(a) and (b) are
highlighted in gray. pαÙTER[KS] initializes upper to J on line 3. At any stage
in the algorithm upper � pα(ϕ). It is sound to update upper on line 10 by
performing a meet with the row p that was selected in line 5. Because
p’s leading index, LI (p), is less than the leading index of every row in
upper, p constrains the value of variable vLI(p), whereas upper places no
constraints on variable vLI(p). Therefore, p � upper, which guarantees
progress because p[upper � upper. Termination is guaranteed.

In case of a decision-procedure timeout (line 7), pαÙTER[KS] returns upper
as the answer (line 7). If the algorithm finishes without a timeout, thenpαÙTER[KS] computes pα(ϕ); on the other hand, if a timeout occurs, the ele-
ment returned is generally an over-approximation of pα(ϕ)—i.e., pαÙTER[KS]

computes rα(ϕ).
In the KS instantiation of pαÙTER, upper can actually be represented im-

plicitly by lower[(rows(lower)� i+ 2) . . . rows(lower)]. Consequently, the
assignment upper Ð lower[(rows(lower)� i+ 2) . . . rows(lower)] need only
be performed if line 7 is reached, and neither of the assignments on lines 3
and 10 need to be performed explicitly.

3.4.9 Number of Satisfying Solutions

The size of a KS element X with k variables over Z2w is the number of
k-tuples that satisfy X. The size computation is inexpensive; the size of X

70

depends on the leading values in X, and the number of rows in X. (X is
assumed to be in Howell form.)

• If X is bottom, then Size(X) = 0.
• Otherwise, we can derive how to compute Size(X) by imagining

that we are building up a partial assignment for the variables, from
right to left. (In what follows, for simplicity we assume that we
have a one-vocabulary KS element and “right to left” means from
higher-indexed variables to lower-indexed variables.) In this case,
each variable vi is constrained by the current partial assignment to
the variables tvj | i ju, and by the row with leading index i:

– If the leading value of that row is 1, then for every partial assign-
ment to the variables tvj | i ju, there is exactly one consistent
value for vi, namely, whatever value for vi satisfies the equation
for the row when the values in the partial assignment are used
for the higher-indexed variables.

– If the leading value of a row is 2m for some value m, then for
every partial assignment to the variables tvj | i ju, there is
exactly one consistent value for 2mvi, namely, whatever value y
for 2mvi satisfies the equation for the row when the values in the
partial assignment are used for the higher-indexed variables.

However, there are 2m different ways to choose vi to obtain
the needed value y. That is, if v is a value such that 2mv = y,
then so are all 2m values in the set

t(v+ 2w�mp) (mod 2w) | 0 ¤ p ¤ 2m � 1u.

– Finally, if there is no row with leading index i, then vi is fully
unconstrained, and can take on any of the 2w available values.

Altogether, the product of these counts is the number of satisfying
solutions of KS element X. In particular, let u be the number of
indices that are not the leading index of any row of X. Then Size(X)

71

Instruction Characteristics
instruction # different

Kind instances opcodes
ordinary 12,734 164
lock prefix 2,048 147
rep prefix 2,143 158
repne prefix 2,141 154
full corpus 19,066 179

Figure 3.2: Some of the characteristics of the corpus of 19,066 (non-
privileged, non-floating point, non-mmx) instructions.

is the product of the leading values in X, times (2w)u.

Example 3.18. Consider again the KS element from Eqn. (3.2)

X0 =

[v1 v2 v 11 v 12 1

1 0 �1 0 0
0 0 0 8 0

]
,

wherew = 4, so that we are working inZ16. Then Size(X0) equals 1�8�(24)2 =

2, 048.

3.5 Experiments

In this section, we present the results of experiments to evaluate the costs
and benefits—in terms of time and precision—of the methods described
in earlier sections. The experiments were designed to shed light on the
following questions:

1. Which method of obtaining abstract transformers is fastest:pαKS (§2.3.2 and §3.4.8), KS-reinterpretation (§2.3.1), or MOS-
reinterpretation (§2.3.1, [62, §4.1.2])?

72

2. Does MOS-reinterpretation or KS-reinterpretation yield more pre-
cise abstract transformers for machine instructions?

3. For what percentage of program points does pαKS produce more
precise answers than KS-reinterpretation and MOS-reinterpretation?
This question actually has two versions, depending on whether we
are interested in

• one-vocabulary affine relations that hold at branch points
• two-vocabulary procedure summaries obtained at procedure-

exit points.
As shown in §3.3.1, the MOS and KS domains are incomparable. To

compare the final results obtained using the two domains, we converted
each MOS element to a KS element, using the algorithm from §3.3.2, and
then checked for equality, containment (§3.4.6), or incomparability. It
might be argued that this approach biases the results in favor of KS. How-
ever, if we have run an MOS-based analysis and are interested in using
affine relations in a client application, we must extract an affine relation
from each computed MOS element. In §3.3.1, we showed that, in general,
an MOS element B does not represent an affine relation; thus, a client ap-
plication needs to obtain an affine relation that over-approximates γMOS(B).
Consequently, the comparison method that we used is sensible, because
it compares the precision of the affine relations that would be seen by a
client application.

3.5.1 Experimental Setup

To address these questions, we performed two experiments. Both experi-
ments were run on a single core of a single-processor 16-core 2.27 GHz
Xeon computer running 64-bit Windows 7 Enterprise (Service Pack 1),
configured so that a user process has 4 GB of memory.

73

Measures of Size
Program WPDS Rules
Name Instrs Procs BBs Branches ∆0 ∆1 ∆2

write 232 10 134 26 10 151 5
finger 532 18 298 48 18 353 20
subst 1093 16 609 74 16 728 13
chkdsk 1468 18 787 119 18 887 32
convert 1927 38 1013 161 38 1266 22
route 1982 40 931 243 40 1368 63
comp 2377 35 1261 224 35 1528 30
logoff 2470 46 1145 306 46 1648 72
setup 4751 67 1862 589 67 2847 121

Figure 3.3: Program information. All nine utilities are from Microsoft Win-
dows version 5.1.2600.0, except setup, which is from version 5.1.2600.5512.
The columns show the number of instructions (Instrs); the number of pro-
cedures (Procs); the number of basic blocks (BBs); the number of branch
instructions (Branches); and the number of ∆0, ∆1, and ∆2 rules in the
WPDS encoding (WPDS Rules).

Per-Instruction Experiment On a corpus of 19,066 instances of x86 in-
structions, we measured (i) the time taken to create MOS and KS trans-
formers via the operator-by-operator reinterpretation method supported
by TSL [61, 62], and (ii) the relative precision of the abstract transformers
obtained by the two methods.

This corpus was created using the ISAL instruction-decoder genera-
tor [62, §2.1] in a mode in which the input specification of the concrete
syntax of the x86 instruction set was used to create a randomized instruc-
tion generator—instead of the standard mode in which ISAL creates an
instruction recognizer. By this means, we are assured that the corpus has
substantial coverage of the syntactic features of the x86 instruction set
(including opcodes, addressing modes, and prefixes, such as “lock”, “rep”,
and “repne”); see Fig. 3.2.

74

Interprocedural-Analysis Experiment We performed flow-sensitive,
context-sensitive, interprocedural affine-relation analysis on the executa-
bles of nine Windows utilities, using four different sets of abstract trans-
formers:

1. MOS transformers for basic blocks, created by performing operator-
by-operator MOS-reinterpretation.

2. KS transformers for basic blocks, created by performing operator-by-
operator KS-reinterpretation.

3. KS transformers for basic blocks, created by symbolic abstraction of
quantifier-free bit-vector (QFBV) formulas that capture the precise
bit-level semantics of register-access/update operations in the dif-
ferent basic blocks. We denote this symbolic-abstraction method bypαKS.

4. KS transformers for basic blocks, created by symbolic abstraction
of quantifier-free bit-vector (QFBV) formulas that, in addition to
register-access/update operations, also capture the precise bit-level
semantics of all memory-access/update and flag-access/update opera-
tions. We denote this symbolic-abstraction method by pα+

KS.
For these programs, the generated abstract transformers were used as
“weights” in a weighted pushdown system (WPDS).

Fig. 3.3 lists several size parameters of the executables (number of
instructions, procedures, basic blocks, branches, and number of WPDS
rules). WPDS rules can be divided into three categories, called ∆0, ∆1, and
∆2 rules [10, 85]. The number of ∆1 rules corresponds roughly to the total
number of edges in a program’s intraprocedural control-flow graphs; the
number of ∆2 rules corresponds to the number of call sites in the program;
the number of ∆0 rules corresponds to the number of procedure-exit sites.pα+

KS has the potential to create more precise KS weights than pαKS be-
cause pα+

KS can account for transformations of register values that involve
a sequence of memory-access/update and/or flag-access/update opera-

75

tions within a basic block B. For example, suppose that B contains a store
to memory of register eax’s value, and a subsequent load from memory
of that value into ebx. Because pα+

KS uses a formula that captures the two
memory operations, it can find a weight that captures the transformation
ebx’ = eax. A second type of example involving a store to memory fol-
lowed by a load from memory within a basic block involves a sequence of
the form “push constant; . . . pop edi”, and thus represents the transforma-
tion edi’ = constant. Such sequences occur in several of the programs
listed in Fig. 3.3.

Fig. 3.4 shows a TSL specification for the MOV and ADD instructions of the
Intel IA32 instruction set. As illustrated in line 13 of Fig. 3.4, the top-level
function that is reinterpreted in TSL is interpInstr, which is of type

interpInstr : instruction� state Ñ state.

To use semantic reinterpretation to implement CreateAbsTrans for the
KS domain, interpInstr is reinterpreted as a KS[V ;V 1] transformer; that is,
interpInstrKS has the type

interpInstrKS : instruction� KS[V ;V 1]Ñ KS[V ;V 1].

Let Id denote the KS[V ;V 1] identity relation,
[−ÑV −Ñ

V
1

1

I �I 0
]
. To reinterpret

an individual instruction ι, one invokes interpInstrKS(ι, Id).
For a basic block B = [ι1, . . . , ιm], there are two approaches to perform-

ing KS[V ;V 1] reinterpretation:
• Composed reinterpretation:

wBKS Ð interpInstrKS(ι1, Id) ; interpInstrKS(ι2, Id) ; . . . ; interpInstrKS(ιm, Id).

76

[1] // Abstract-syntax declarations
[2] reg: EAX() | EBX() | . . . ;
[3] flag: ZF() | SF() | . . . ;
[4] operand: Indirect(reg reg INT8 INT32) | DirectReg(reg) | Immediate(INT32) | ...;
[5] instruction: MOV(operand operand) | ADD(operand operand) | . . . ;
[6] state: State(MAP[INT32,INT8] // memory-map
[7] MAP[reg,INT32] // register-map
[8] MAP[flag,BOOL]); // flag-map
[9] // Interpretation functions
[10] INT32 interpOp(state S, operand op) { . . . };
[11] state updateFlag(state S, INT32 v1, INT32 v2, INT32 v3) { . . . };
[12] state updateState(state S, operand op, INT32 val) { . . . };
[13] state interpInstr(instruction I, state S) {
[14] with(I) (
[15] MOV(dstOp, srcOp):
[16] let srcVal = interpOp(S, srcOp);
[17] in (updateState(S, dstOp, srcVal)),
[18] ADD(dstOp, srcOp):
[19] let dstVal = interpOp(S, dstOp);
[20] srcVal = interpOp(S, srcOp);
[21] result = dstVal + srcVal;
[22] S2 = updateFlag(S, dstVal, srcVal, result);
[23] in (updateState(S2, dstOp, result)),
[24] . . .
[25]);
[26] };

Figure 3.4: A fragment of the TSL specification of the concrete semantics
of the Intel IA32 instruction set.

• Chained reinterpretation:

wBKS Ð interpInstrKS(ιm, . . . interpInstrKS(ι2, interpInstrKS(ι1, Id)) . . .).

Our experiments use chained reinterpretation for two reasons:

77

1. There are cases in which chained reinterpretation creates a more
precise KS[V ;V 1] element. For instance, consider the following code
fragment, which zeros the two low-order bytes of register eax and
does a bitwise-or of eax into ebx (ax denotes the two low-order bytes
of register eax):

ι1 : xor ax, ax
ι2 : or ebx, eax

The semantics of this code fragment can be expressed as follows:

ebx’ = (ebx | (eax & xFFFF0000))^ eax’ = (eax & xFFFF0000),

where “&” and “|” denote bitwise-and and bitwise-or, re-
spectively. interpInstrKS(ι1, Id) creates the KS element

[eax ebx eax 1 ebx 1 1

0 1 0 �1 0
0 0 216 0 0

]
, which captures (ebx’ = ebx)^(216eax’ =

0). The two approaches to reinterpretation produce the following
answers:

• Composed reinterpretation:

interpInstrKS(ι1, Id) ; interpInstrKS(ι2, Id)

=

[eax ebx eax 1 ebx 1 1

0 1 0 �1 0
0 0 216 0 0

]
;
[eax ebx eax 1 ebx 1 1

1 0 �1 0 0
]

=
[eax ebx eax 1 ebx 1 1

0 0 216 0 0
]

= (216eax 1 = 0).

78

• Chained reinterpretation:

interpInstrKS(ι2, interpInstrKS(ι1, Id))

= interpInstrKS(ι2,

[eax ebx eax 1 ebx 1 1

0 1 0 �1 0
0 0 216 0 0

]
)

=

[eax ebx eax 1 ebx 1 1

0 216 0 �216 0
0 0 216 0 0

]
= (216ebx 1 = 216ebx)^ (216eax 1 = 0).

In particular, the reinterpretation of “ι2: or ebx, eax” takes place
in a context in which the two low-order bytes of eax are partially
constant (216eax = 0). Because of this additional piece of infor-
mation, the reinterpretation technique recovers the additional
conjunct “216ebx 1 = 216ebx”.

2. In the case of pαKS, a formula ϕB is created that captures the concrete
semantics ofB (via symbolic execution), and then the KS weight forB
is obtained by performingwBKS Ð pαKS(ϕB). Letting QFBV denote the
type of quantifier-free bit-vector formulas, the QFBV reinterpretation
of interpInstr has the type

interpInstrQFBV : instruction�QFBV Ñ QFBV.

Symbolic execution is performed by chained reinterpretation:

ϕB Ð interpInstrQFBV(ιm, . . . interpInstrQFBV(ι2, interpInstrQFBV(ι1, Id)) . . .).

The pα+
KS weight for B is created similarly, except that we also arrange

for ϕB to encode all memory-access/update and flag-access/update
operations.

79

Total MOS-reinterpretation KS-reinterpretation
instructions time (seconds) time (seconds)

19,066 23.3 348.2

Figure 3.5: Comparison of the performance of MOS-reinterpretation and
KS-reinterpretation for x86 instructions.

Identical MOS-reinterpretation KS-reinterpretation Total
precision more precise more precise

18,158 0 908 19,066

Figure 3.6: Comparison of the precision of MOS-reinterpretation and
KS-reinterpretation for x86 instructions.

For our experiments, we wanted to control for any precision improvements
that might be due solely to the use of chained reinterpretation; thus, we
use chained reinterpretation for all of the weight-generation methods.3

Due to the high cost in §3.5.3 of constructing WPDS weights via pαKS

and pα+
KS, we ran all WPDS analyses without the code for libraries. Val-

ues are returned from x86 procedure calls in register eax, and thus in
our experiments library functions were modeled approximately (albeit
unsoundly, in general) by “havoc(eax’)”.

To implement pαKS and pα+
KS, we used the Yices solver [26], version 1.0.19,

with the timeout for each invocation set to three seconds.
We compared the precision of the one-vocabulary affine relations at

branch points, as well as two-vocabulary affine relations at procedure exits,
which can be used as procedure summaries.

80

3.5.2 Reinterpretation of Individual Instructions

Figs. 3.5 and 3.6 summarize the results of the per-instruction experiment.
They answer questions (1) and (2) posed at the beginning of §3.5.

• KS-reinterpretation created an abstract transformer that was more
precise than the one created by MOS-reinterpretation for about
4.76% of the instructions. MOS-reinterpretation never created an
abstract transformer that was more precise than the one created by
KS-reinterpretation.

• However, MOS-reinterpretation is much faster: to generate ab-
stract transformers for the entire corpus of instructions, MOS-
reinterpretation is about 14.9 times faster than KS-reinterpretation.

Example 3.19. One instruction for which the abstract transformer created
by KS-reinterpretation is more precise than the transformer created by MOS-
reinterpretation is ι def

= “add bh,al”. This instruction adds the value of al, the
low-order byte of register eax, to the value of bh, the second-to-lowest byte of
register ebx, and stores the result in bh. The semantics of this instruction can be
expressed as a QFBV formula as follows:

ϕι
def
= ebx’ =

(
(ebx & 0xFFFF00FF)
| ((ebx + 256 � (eax & 0xFF)) & 0xFF00)

)
^ (eax’ = eax).

(3.8)
Eqn. (3.8) shows that the semantics of the instruction involves non-linear bit-
masking operations.

The abstract transformer created via MOS-reinterpretation corresponds to
havoc(ebx’); all other registers are unchanged. That is, if we only had the
three registers eax, ebx, and ecx, the abstract transformer created via MOS-

3MOS-reinterpretation of a basic block is performed by chained reinterpretation,
using interpInstrMOS : instruction�MOS Ñ MOS.

81

reinterpretation would be$''''&''''%


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 ,


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0


,////.////- ,

which captures the affine transformation “(eax 1 = eax) ^ (ecx 1 = ecx)”. In
contrast, the transformer created via KS-reinterpretation is


eax ebx ecx eax 1 ebx 1 ecx 1 1

1 0 0 �1 0 0 0
0 224 0 0 �224 0 0
0 0 1 0 0 �1 0

,

which corresponds to “(eax 1 = eax) ^ (224ebx 1 = 224ebx) ^ (ecx 1 = ecx)”.
Both transformers are over-approximations of the instruction’s semantics, but the
extra conjunct (224ebx 1 = 224ebx) in the KS element captures the fact that the
low-order byte of ebx is not changed by executing “add bh,al”.

In contrast, pαKS(ϕι), the most-precise over-approximation of ϕι that can be
expressed as a KS element is (the Howellization of)


eax ebx ecx eax 1 ebx 1 ecx 1 1

1 0 0 �1 0 0 0
224 216 0 0 �216 0 0
0 0 1 0 0 �1 0

,

which corresponds to “(eax’ = eax)^(216ebx’ = 216ebx+224eax)^(ecx’ =

ecx)”. Multiplying by a power of 2 serves to shift bits to the left; because it is
performed in arithmetic mod 232, bits shifted off the left end are unconstrained.
Thus, the second conjunct captures the relationship between the low-order two
bytes of ebx’, the low-order two bytes of ebx, and the low-order byte of eax. l

82

3.5.3 Interprocedural Analysis

Fig. 3.7 shows the times for WPDS construction (including constructing the
weights that serve as abstract transformers) and performing interprocedu-
ral dataflow analysis by performing post* and path summary. Columns 11
and 15 of Fig. 3.7 show the number of pα calls for which weight generation
timed out during pαKS and pα+

KS, respectively. During WPDS construction, if
Yices times out during pαKS or pα+

KS, the implementation uses a weight that
is less precise than the best transformer, but it always uses a weight that is
at least as precise as the weight obtained using KS-reinterpretation.4 The
number of WPDS rules is given in Fig. 3.3; a timeout occurred for about
1.0% of the pαKS calls (computed as a geometric mean5), and for about 1.65%

4This footnote explains more precisely how weights were constructed in the pαKS runs.
We used the following “chained” method for generating weights:

1. KS-reinterpretation is the method of §2.3.1.
2. “Stålmarck” is the generalized-Stålmarck algorithm of [101], starting with the el-

ement obtained via KS-reinterpretation. The generalized-Stålmarck algorithm suc-
cessively over-approximates the best transformer from above. By starting the
algorithm with the element obtained via KS-reinterpretation, the generalized-
Stålmarck algorithm does not have to work its way down from J; it merely con-
tinues to work its way down from the over-approximation already obtained via
KS-reinterpretation.

3. pαKS is actually pαÙTER[KS], from Fig. 3.1(b), which maintains both an under-
approximation and a (nontrivial) over-approximation of the desired answer, and
hence is resilient to timeouts—i.e., it returns the over-approximation if a timeout
occurs. In the chained method for generating weights, pαÙTER[KS] is started with the ele-
ment obtained via the Stålmarck method as an over-approximation as a way to accelerate
its performance.

The generalized-Stålmarck algorithm is a faster algorithm than pαÙTER[KS], but is not guar-
anteed to find the best abstract transformer [101]. pαÙTER[KS] is guaranteed to obtain the best
abstract transformer, except for cases in which an SMT solver timeout is reported. The
use of KS-reinterpretation accelerates Stålmarck, and the use of Stålmarck accelerates
pαÙTER[KS]. Moreover, pαÙTER[KS] � KS-reinterpretation is always guaranteed to hold for the
weights that are computed.

5We use “computed as a geometric mean” as a shorthand for “computed by converting
the data to ratios; finding the geometric mean of the ratios; and converting the result
back to a percentage”. For instance, suppose that you have improvements of 3%, 17%,
29% (i.e., .03, .17, and .29). The geometric mean of the values .03, .17, and .29 is .113.

83

Pe
rf

or
m

an
ce

of
In

te
rp

ro
ce

du
ra

lA
na

ly
si

s
M

O
S-

re
in

te
rp

K
S-

re
in

te
rp

p α KS
p α+ K

S
qu

er
y

at
qu

er
y

at
qu

er
y

at
qu

er
y

at
Pr

og
.

br
an

ch
br

an
ch

br
an

ch
br

an
ch

na
m

e
W

PD
S

po
st

*
po

in
ts

W
PD

S
po

st
*

po
in

ts
W

PD
S

po
st

*
po

in
ts

t/
o

W
PD

S
po

st
*

po
in

ts
t/

o
w

ri
te

0.
08

8
0.

07
3

0.
09

1
0.

58
0.

06
3

0.
25

7
59

.1
67

0.
06

7
2.

68
1

2(
1.

17
%

)
97

.7
32

0.
06

6
6.

04
7

2(
1.

17
%

)
fin

ge
r

0.
25

0.
88

9
0.

27
5

1.
40

5
0.

19
2

0.
36

6
80

.2
94

0.
20

8
3.

61
3(

0.
78

%
)

27
2.

93
9

0.
17

8
6.

21
7

7(
1.

82
%

)
su

bs
t

0.
38

0.
89

5
0.

25
7

2.
04

5
0.

41
2

0.
53

5
16

4.
03

3
0.

42
7

5.
26

6
2(

0.
29

%
)

26
1.

86
5

0.
43

3
8.

77
5

4(
0.

57
%

)
ch

kd
sk

0.
47

2
0.

18
7

0.
31

4
2.

57
7

0.
26

1
0.

83
1

35
9.

94
9

0.
26

7
61

.9
07

8(
0.

81
%

)
34

9.
51

9
0.

27
5

26
.8

28
11

(1
.1

1%
)

co
nv

er
t

0.
67

2
1.

64
3

0.
7

3.
48

1
0.

64
7

1.
09

1
20

6.
25

0.
62

9
22

.4
09

17
(1

.4
3%

)
31

7.
14

2
0.

62
7

30
.9

59
19

(1
.6

0%
)

ro
ut

e
1.

14
4

3.
58

1
1.

41
3

6.
39

3
0.

82
2.

07
3

39
6.

73
2

0.
95

9
87

.8
64

4(
0.

32
%

)
70

4.
81

6
0.

90
2

75
.3

48
28

(2
.2

7%
)

co
m

p
0.

8
2.

91
6

1.
11

2
4.

55
0.

73
8

1.
60

6
59

9.
27

2
0.

83
5

41
.0

13
6(

0.
39

%
)

91
2.

31
9

0.
80

6
54

.3
49

9(
0.

59
%

)
lo

go
ff

1.
11

1
4.

85
8

1.
93

6
7.

84
3

1.
01

2.
90

8
44

9.
85

1
1.

06
1

57
.2

76
24

(1
.5

8%
)

91
5.

49
3

1.
03

3
14

1.
98

1
32

(2
.1

0%
)

se
tu

p
2.

05
4

3.
25

9
1.

90
7

13
.5

98
0.

52
1

5.
73

1
11

91
.3

7
0.

59
1

27
7.

8
58

(2
.2

8%
)

18
52

.7
9

0.
59

9
46

4.
78

1
93

(3
.6

5%
)

Fi
gu

re
3.

7:
Pe

rf
or

m
an

ce
of

W
PD

S-
ba

se
d

in
te

rp
ro

ce
du

ra
la

na
ly

si
s.

Th
e

tim
es

,i
n

se
co

nd
s,

fo
r

W
PD

S
co

ns
tr

uc
tio

n,
pe

rf
or

m
in

g
in

te
rp

ro
ce

du
ra

ld
at

afl
ow

an
al

ys
is

(i.
e.

,r
un

ni
ng

po
st

*
an

d
pe

rf
or

m
in

g
pa

th
-

su
m

m
ar

y)
an

d
fin

di
ng

on
e-

vo
ca

bu
la

ry
affi

ne
re

la
tio

ns
at

br
an

ch
in

st
ru

ct
io

ns
,u

si
ng

M
O

S-
re

in
te

rp
re

ta
tio

n,
K

S-
re

in
te

rp
re

ta
tio

n,
p α KS,

an
d
p α+ K

S
to

ge
ne

ra
te

w
ei

gh
ts

.T
he

co
lu

m
ns

la
be

le
d

“t
/o

”
re

po
rt

th
e

nu
m

be
ro

f
W

PD
S

ru
le

sf
or

w
hi

ch
w

ei
gh

tg
en

er
at

io
n

tim
ed

ou
td

ur
in

g
sy

m
bo

lic
ab

st
ra

ct
io

n.

84

of the pα+
KS calls.

The experiment showed that the cost of constructing weights via pαKS

is high, which was to be expected because pαKS repeatedly calls an SMT
solver. Creating KS weights via pαKS is about 81.5 times slower than creating
them via KS-reinterpretation (computed as the geometric mean of the
construction-time ratios).

Moreover, creating KS weights via KS-reinterpretation is itself 5.9 times
slower than creating MOS weights using MOS-reinterpretation. The latter
number is different from the 14.9-fold slowdown reported in §3.5.2 for two
reasons: (i) §3.5.2 reported the cost of creating KS and MOS abstract trans-
formers for individual instructions, whereas in Fig. 3.7 the transformers
are for basic blocks, and (ii) the WPDS construction times in Fig. 3.7 include
the cost of creating merge functions for use at procedure-exit sites, which
was about the same for KS-reinterpretation and MOS-reinterpretation.

A comparison of the pαKS columns of Fig. 3.7 against the pα+
KS columns

reveals that
• Creating KS weights via pα+

KS is about 1.7 times slower than creating
weights via pαKS (computed as the geometric mean of the construction-
time ratios). The slowdown occurs because the formula created for
use by pα+

KS is more complicated than the one created for use by pαKS:
the former contains additional conjuncts that capture the effects of
memory-access/update and flag-access/update operations.

• The times for performing “post*” and “path summary” are almost
the same for both methods, because these phases do not involve any
calls to the respective pα procedures.

• Answering queries at branch points was 1.4 times slower for pα+
KS com-

pared to pαKS. The reason for the slowdown is that this phase must
Instead, we express the original improvements as ratios and take the geometric mean of
1.03, 1.17, and 1.29, obtaining 1.158. We subtract 1, convert to a percentage, and report
“15.8% improvement (computed as a geometric mean)”.

The advantage of this approach is that it handles datasets that include one or more
instances of 0% improvement, as well as negative percentage improvements.

85

WPDS Weights
Prog. ∆1 rules MOS-reinterp KS-reinterp
name Rules KS-reinterp MOS-reinterp pαKS KS-reinterp pα+

KS pαKS

write 151 0(0.00%) 0(0.00%) 11(7.28%) 0(0.00%)
finger 353 0(0.00%) 0(0.00%) 29(8.22%) 1(0.28%)
subst 728 0(0.00%) 0(0.00%) 59(8.10%) 0(0.00%)
chkdsk 887 0(0.00%) 0(0.00%) 86(9.70%) 1(0.11%)
convert 1266 0(0.00%) 2(0.16%) 131(10.35%) 0(0.00%)
route 1368 0(0.00%) 3(0.22%) 142(10.38%) 0(0.00%)
comp 1528 0(0.00%) 1(0.07%) 163(10.67%) 0(0.00%)
logoff 1648 0(0.00%) 4(0.24%) 191(11.59%) 1(0.06%)
setup 2847 0(0.00%) 20(0.70%) 432(15.17%) 8(0.28%)

Figure 3.8: Comparison of the precision of the WPDS weights computed us-
ing MOS-reinterpretation, KS-reinterpretation, and pαKS. (E.g., KS-reinterp
 MOS-reinterp reports the number of rules for which the KS-reinterp
weight was more precise than the MOS-reinterp weight.)

call the respective pα procedures once for each branch point: “post*”
and “path summary” return the weight that holds at the beginning
of a basic block B = [ι1, . . . , ιm]. To obtain the one-vocabulary affine
relation that hold just before branch point ιm at the end of B, we
need to perform an additional pα computation for [ι1, . . . , ιm�1] (i.e.,
for B, but without the branch instruction at the end of B).

Figs. 3.8, 3.9, and 3.10 present three studies that compare the precision
obtained via MOS-reinterpretation, KS-reinterpretation, pαKS, and pα+

KS.
Fig. 3.8 compares the precision of the WPDS weights computed by the

different methods for each of the example programs. It shows that pαKS cre-
ates strictly more precise weights than KS-reinterpretation for about 10.14%
of the WPDS rules (computed as a geometric mean). The “pαKS KS-
reinterp” column of Fig. 3.8 is particularly interesting in light of the fact
that a study of relative precision of abstract transformers created for indi-
vidual instructions via KS-reinterpretation and pαKS [62, §5.4.1], reported
that pαKS creates strictly more precise transformers than KS-reinterpretation
for only about 3.2% of the instructions that occur in the corpus of 19,066

86

1-Vocabulary Affine Relations at Branch Points
Prog. MOS-reinterp KS-reinterp
name Branches KS-reinterp MOS-reinterp pαKS KS-reinterp pα+

KS pαKS

write 26 0(0.00%) 0(0.00%) 4(15.38%) 0(0.00%)
finger 48 0(0.00%) 0(0.00%) 14(29.17%) 32(66.67%)
subst 74 1(1.35%) 0(0.00%) 15(20.27%) 0(0.00%)
chkdsk 119 0(0.00%) 0(0.00%) 13(10.92%) 0(0.00%)
convert 161 1(0.62%) 0(0.00%) 49(30.43%) 0(0.00%)
route 243 0(0.00%) 4(1.65%) 63(25.93%) 0(0.00%)
comp 224 0(0.00%) 0(0.00%) 7(3.12%) 0(0.00%)
logoff 306 0(0.00%) 0(0.00%) 91(29.74%) 20(6.54%)
setup 589 0(0.00%) 0(0.00%) 39(6.62%) 0(0.00%)

Figure 3.9: Comparison of the precision of the one-vocabulary affine rela-
tions identified to hold at branch points via interprocedural analysis, using
weights created using MOS-reinterpretation, KS-reinterpretation, and pαKS.
(E.g., KS-reinterp MOS-reinterp reports the number of branch points at
which the KS-reinterp results were more precise than the MOS-reinterp
results.)

instructions from §3.5.2. The numbers in Fig. 3.8 differ from that study in
two ways: (i) Fig. 3.8 compares the precision of abstract transformers for
basic blocks rather than for individual instructions; and (ii) Fig. 3.8 is a
comparison for the instructions that appear in specific programs, whereas
the corpus of 19,066 instructions used in the per-instruction study from
[62, §5.4.1] was created using a randomized instruction generator.pα+

KS creates strictly more precise weights than pαKS for only about 0.1%
of the WPDS rules (computed as a geometric mean). Improvements are
obtained in only four of the nine programs (finger, chkdsk, logoff, and
setup).

Figs. 3.9 and 3.10 answer question (3) posed at the beginning of this
section:

For what percentage of program points does pαKS produce
more precise answers than KS-reinterpretation and MOS-
reinterpretation?

87

2-Vocabulary Procedure Summaries
Prog. MOS-reinterp KS-reinterp
name Procs KS-reinterp MOS-reinterp pαKS KS-reinterp pα+

KS pαKS

write 10 0(0.00%) 0(0.00%) 5(50.00%) 0(0.00%)
finger 18 0(0.00%) 0(0.00%) 10(55.56%) 2(11.11%)
subst 16 0(0.00%) 0(0.00%) 6(37.50%) 0(0.00%)
chkdsk 18 0(0.00%) 0(0.00%) 9(50.00%) 0(0.00%)
convert 38 0(0.00%) 0(0.00%) 8(21.05%) 0(0.00%)
route 40 0(0.00%) 0(0.00%) 18(45.00%) 0(0.00%)
comp 35 1(2.86%) 0(0.00%) 13(37.14%) 0(0.00%)
logoff 46 0(0.00%) 0(0.00%) 14(30.43%) 1(2.17%)
setup 67 0(0.00%) 1(1.49%) 40(59.70%) 0(0.00%)

Figure 3.10: Comparison of the precision of the two-vocabulary affine
relations identified to hold at procedure-exit points via interprocedu-
ral analysis, using weights created using MOS-reinterpretation, KS-
reinterpretation, and pαKS. (E.g., KS-reinterp MOS-reinterp reports the
number of procedure-exit points at which the KS-reinterp results were
more precise than the MOS-reinterp results.)

Figs. 3.9 and 3.10 summarize the results obtained from comparing the
precision of the affine relations identified via interprocedural analysis
using the different weights.6

Compared to runs based on either KS-reinterpretation or MOS-
reinterpretation, the analysis runs based on pαKS weights identified more
precise affine relations at a substantial number of points (for both one-
vocabulary affine relations that hold at branch points—Fig. 3.9, col. 5—
and two-vocabulary affine relations that hold at procedure-exit points—
Fig. 3.10, col. 5). For one-vocabulary affine relations, the pαKS analysis
results are strictly better than the KS-reinterpretation results at 18.6% of
all branch points (computed as a geometric mean). For two-vocabulary

6Register eip is the x86 instruction pointer. There are some situations that cause the
MOS-reinterpretation weights and KS-reinterpretation weights to fail to capture the value
of the post-state eip value. Therefore, before comparing affine relations, we performed
havoc(eip’). This adjustment avoids biasing the results merely because of trivial affine
relations of the form “eip’ = constant”.

88

(a’ = a)

.... (b’ = a + 4)

(a’ = a)

.... (b’ = b)

(a’ = a)

.... (b’ = a)

1

2

3

Figure 3.11: Simplified version of an example that caused KS results to be
less precise than MOS results, due to compose not distributing over join
in the KS domain.

affine relations describing procedure summaries, the pαKS analysis results
are strictly better than the KS-reinterpretation results at 42% of all proce-
dures (computed as a geometric mean).

For one-vocabulary affine relations, the pα+
KS analysis results are strictly

better than the pαKS results at 7.3% of all branch points (computed as a geo-
metric mean). For two-vocabulary affine relations describing procedure
summaries, the pα+

KS analysis results are strictly better than the pαKS results
at 1.4% of all procedures (computed as a geometric mean). However, in
both cases improvements are obtained in only two of the nine programs
(finger and logoff).

3.5.4 Imprecision Due to Non-Distributivity of KS

Fig. 3.9 shows that in a couple of cases, one in subst and the other
in convert, the MOS-reinterpretation results were better than the KS-
reinterpretation results. (Although not shown in Fig. 3.9, the MOS-
reinterpretation results were also better than the pαKS results in the two
cases.) We examined these cases, and found that they were an artifact of
(i) the evaluation order chosen, and (ii) compose failing to distribute over

89

join in the KS domain (see §3.4.4).
Fig. 3.11 is a simplified version of the actual transformers in subst

and convert that caused the KS-based analyses to return a less-precise
element than the MOS-based analysis. In particular, if the join of the
transformers on the two edges from node 2 to node 3 is performed before
the composition of the individual 2 Ñ 3 transformers with the 1 Ñ 2
transformer, the combined 2 Ñ 3 KS transformer is “a 1 = a” (i.e., b and
b 1 are unconstrained). The loss of information about b and b 1 cascades to
the 1 Ñ 3 KS transformer, which is also “a 1 = a”. In particular, it fails to
contain the conjunct 230b 1 = 230a, which expresses that the two low-order
bits of b 1 at node 3 are the same as the two low-order bits of a at node 1.

In contrast, in the MOS domain, the combined 2 Ñ 3 transformer is the
affine closure of the transformers “a 1 = a^b 1 = b” and “a 1 = a^b 1 = a”,
which avoids the complete loss of information about b and b 1, and hence
the 1 Ñ 3 MOS transformer is able to capture the relation “a 1 = a^230b 1 =
230a”.

3.6 Related Work

3.6.1 Abstract Domains for Affine-Relation Analysis

The original work on affine-relation analysis (ARA) was an intraprocedural
ARA algorithm due to [49]. In Karr’s work, a domain element represents a
set of points that satisfy affine relations over variables that hold elements
of a field. Karr’s algorithms are based on linear algebra (i.e., vector spaces).

[75] gave an algorithm for interprocedural ARA, again for vector spaces
over a field. Later 2005, 2007, they generalized their techniques to work
for modular arithmetic: they introduced the MOS domain, in which an
element represents an affine-closed set of affine transformers over variables
that hold machine integers, and gave an algorithm for interprocedural

90

ARA. The algorithms for operations of the MOS domain are based on an
extension of linear algebra to modules over a ring.

The version of the KS domain presented in this paper was inspired by,
but is somewhat different from, the techniques described in two papers by
[52, 53]. Our goals and theirs are similar, namely, to be able to create ab-
stract transformers automatically that are bit-precise, modulo the inherent
limitation on precision that stems from having to work with affine-closed
sets of values. Compared with their work, we avoid the use of bit-blasting,
and work directly with representations of w-bit affine-closed sets. The
greatly reduced number of variables that comes from working at word
level opened up the possibility of applying our methods to much larger
problems, and as discussed in §3.4 and §3.5, we were able to apply our
methods to interprocedural program analysis.

As shown in §3.4.2, the algorithm for projection given by [52, §3] does
not always find answers that are as precise as the domain is capable of
representing. One consequence is that their join algorithm does not always
find the least upper bound of its two arguments. In this paper, these
issues have been corrected by employing the Howell form of matrices to
normalize KS elements (§3.1.2, §3.4.2, and §3.4.4; see also §3.6.2 below).

King and Søndergaard introduced another interesting technique that
we did not explore, which is to use affine relations over m-bit numbers,
form ¡ 1, to represent sets of 1-bit numbers. To make this approach sen-
sible, their concretization function intersects the “natural” concretization,
which yields an affine-closed set of tuples of m-bit numbers, with the set
txv1, . . . , vky | v1, . . . , vk P t0, 1uu. In essence, this approach restricts the
concretization to tuples of 1-bit numbers [53, Defn. 2]. The advantage of
the approach is that KS elements over Zk2m can then represent sets of 1-bit
numbers that can only be over-approximated using KS elements over Zk2 .

Example 3.20. Suppose that we have three variables tv1, v2, v3u, and want to
represent the set of assignments tx001y, x010y, x100yu. The best KS element over

91

Z3
2 is

[v1 v2 v3 1

1 1 1 1
]
, (3.9)

which corresponds to the affine relation v1 + v2 + v3 + 1 = 0. The set of satisfy-
ing assignments is tx001y, x010y, x100y, x111yu, which includes the extra tuple
x111y.

Now consider what sets can be represented when m = 2, so that arithmetic
is performed mod 4. In particular, instead of the matrix in Eqn. (3.9) we use the
following KS element over Z3

4:

[v1 v2 v3 1

1 1 1 3
]
, (3.10)

which corresponds to the affine relation v1 + v2 + v3 + 3 = 0. The matrix in
Eqn. (3.10) has sixteen satisfying assignments:

x001y x010y x100y x122y x212y x221y x032y x023y
x203y x230y x302y x320y x113y x131y x311y x333y

However, only three of the assignments are in the restricted concretization,
namely, the desired set tx001y, x010y, x100yu. l

To represent sets of tuples of w-bit numbers, as considered in this
paper, the analogous technique would use a y-bit KS domain, y ¡ w, in a
similar fashion. That is, the “natural” concretization would be intersected
with the set txv1, . . . , vky | v1, . . . , vk P t0, 1, . . . , 2w � 1uu. We leave the
exploration of these issues for possible future research.

Like some other relational domains, including polyhedra [23, 3, 45]
and grids [2], KS/AG fits the dual-representation paradigm of having
both a constraint representation (KS) and a generator representation (AG).
MOS is based on a generator representation. Whereas many implemen-

92

tations of domains with a dual representation perform some operations
in one representation and other operations in the other representation,
converting between representations as necessary, one of the clever as-
pects of both MOS and KS is that they avoid the need to convert between
representations.

[39] describes congruence lattices, where the lattice elements are cosets
in the group Zk. The generator form for a congruence-lattice element is
defined by a point and a basis. The basis is used to describe the coset.
The corresponding constraint form for a domain element is a system of
Diophantine linear congruence equations. Conversion from the “normal-
ized representation” (generator form) to an equation system is done by an
elimination algorithm. The reverse direction is carried out by solving a
set of equations. Granger’s normalized representation can be used as a
domain for representing affine relations over machine integers. However,
Granger’s approach does not have unique normalized representations,
because a coset space can have multiple bases. As a result, his method
for checking that two domain elements are equal is to check containment
in both directions (i.e., to perform two containment checks). Moreover,
checking containment is costly because a representation conversion is re-
quired: one has to compare the cosets, which involves converting one coset
into equational form and then checking if the other coset (in generator
form) satisfies the constraints of equational form. In contrast, for the KS
domain, one can easily check containment using the KS meet and equality
operations:

γ(X) � γ(Y) iff X � Y iff X = (X[Y).

Similarly, containment checking in AG can be performed using the AG
join and equality operations. Thus, in both KS and AG, the costly step of
converting between generator form and constraint form (or vice versa) is
avoided.

93

Gulwani and Necula introduced the technique of random interpre-
tation (for vector spaces over a field), and applied it to identifying both
intraprocedural 2003 and interprocedural 2005 affine relations. The fact
that random interpretation involves collecting samples—which are similar
to rows of AG elements—suggests that the AG domain might be used as
an efficient abstract datatype for storing and manipulating data during
random interpretation. Because the AG domain is equivalent to the KS do-
main (see §3.2), the KS domain would be an alternative abstract datatype
for storing and manipulating data during random interpretation.

3.6.2 Howell Form

In contrast with both the Müller-Olm/Seidl work and the King/Sønder-
gaard work, our work takes advantage of the Howell form of matrices.
Howell form can be used with each of the domains KS, AG, and MOS
defined in §3.1. Because Howell form is canonical for non-empty sets
of basis vectors, it provides a way to test pairs of elements for equality
of their concretizations—an operation needed by analysis algorithms to
determine when a fixed point is reached. In contrast, [78, §2] and [52, Fig.
1], [53, Fig. 2] use “echelon form” (called “triangular form” by King and
Søndergaard), which is not canonical.

The algorithms given by Müller-Olm and Seidl avoid computing multi-
plicative inverses, which are needed to put a matrix in Howell form (line 8
of Alg. 3). However, their preference for algorithms that avoid inverses
was originally motivated by the fact that at the time of their original 2005
work they were unaware [77] of Warren’s O(logw) algorithms [102, §10-
15] for computing the inverse of an odd element, and only knew of an
O(w) algorithm [76, Lemma 1].

94

3.6.3 Symbolic Abstraction for Affine-Relation Analysis

[52], 2010 defined the KS domain, and used it to create implementations
of best KS transformers for the individual bits of a bit-blasted concrete se-
mantics. They used bit-blasting to express a bit-precise concrete semantics
for a statement or basic block. The use of bit-blasting let them track the
effect of non-linear bit-twiddling operations, such as shift and xor.

In this paper, we also work with a bit-precise concrete semantics; how-
ever, we avoid the need for bit-blasting by working with QFBV formulas
expressed in terms of word-level operations; such formulas also capture
the precise bit-level semantics of each instruction or basic block. We take
advantage of the ability of an SMT solver to decide the satisfiability of
such formulas, and use pαKS to create best word-level transformers.

Prior to our SAS 2011 paper [29], it was not known how to performrαMOS(ϕ) in a non-trivial fashion (other than defining rαMOS to be λf.J). The
fact that [53, Fig. 2] had been able to devise an algorithm for pαKS caused us
to look more closely at the relationship between MOS and KS. The results
presented in §3.3.1 establish that MOS and KS are different, incomparable
abstract domains. We were able to give sound interconversion methods
(§3.3.2–§3.3.4), and thereby obtained a method for performing rαMOS(ϕ)

(§3.3.5).

3.7 Chapter Notes

A more detailed discussion of this project can be found in our journal
paper [30]. Matt Elder and Thomas Reps developed the improvement
to the symbolic abstraction algorithm (§3.4.8). They also designed and
implemented the KS reinterpretation. A detailed discussion of KS rein-
terpretation and its associated implementation can be found in [30, §6].
Junghee Lim and Thomas Reps developed the TSL infrastructure [62] on
which our implementation is based on. They also implemented an earlier

95

version of the MOS domain, which I modified so that Howell matrices are
now used as the underlying representation. Junghee Lim, Tycho Ander-
sen, and Thomas Reps helped me in the setup and implementation of the
analysis infrastructure used in the experiments.

96

4 a new abstraction framework for affine
transformers

This chapter addresses the problem of abstracting a set of affine transform-
ers−Ñv 1 = −Ñv �C+−Ñd , where−Ñv and−Ñv 1 represent the pre-state and post-state,
respectively. C is the linear component of the transformation and −Ñd is

a constant vector. For example, [x 1 y 1] = [x y]

[
1 0
2 0

]
+ [10 0] de-

notes the affine transformation (x 1 = x+ 2y+ 10^ y 1 = 0) over variables
tx,yu. We denote an affine transformation by C :

−Ñ
d .

We introduce a framework to harness any base abstract domain B in an
abstract domain of affine transformations. Abstract domains are usually
used to define constraints on the variables of a program. In this work,
however, abstract domain B is re-purposed to constrain the elements of C
and −Ñd—thereby defining a set of affine transformers on program states.
This framework facilitates intra- and interprocedural analyses to obtain
function and loop summaries, as well as to prove program assertions.

We provide analysis techniques to abstract the behavior of the program
as a set of affine transformations over bit-vectors. This work is based on
the following observation:

Observation 1. Abstract domains are usually used to define constraints on the
variables of a program. However, they can be re-purposed to constrain the ele-
ments of C :

−Ñ
d—thereby defining a set of affine transformers on program states.

Chapter 3 compared two abstract domains for affine-relation analysis
over bitvectors: (i) an affine-closed abstraction of relations over program
variables (AG/KS), and (ii) an affine-closed abstraction of affine transform-
ers over program variables (MOS). We observed that the MOS domain can
encode two-vocabulary relations that are not affine-closed even though
the affine transformers themselves are affine closed. (See §3.3.1 for an

97

example.) Thus, moving the abstraction from affine relations over pro-
gram variables to affine relations over affine transformations possibly
offers some advantages because it allows some non-affine-closed sets to
be representable.

Problem Statement. Our goal is to generalize the ideas used in the MOS
domain—in particular, to have an abstraction of sets of affine transformers—
but to provide a way for a client of the abstract domain to have some control
over the performance/precision trade-off. Toward this end, we define a
new family of numerical abstract domains, denoted by ATA[B]. (ATA
stands for Affine-Transformers Abstraction.) Following Obs. 1, ATA[B] is
parameterized by a base numerical abstract domain B, and allows one to
represent a set of affine transformers (or, alternatively, certain disjunctions
of transition formulas).

Summary of the Approach. Let the (k + k2)-tuple (d1,d2, . . .,
dk, c11, c12, . . ., c1k, c21, c22, ..., ckk) denote the affine transformation
k�
j=1

(
v 1j =

k°
i=1

(cijvi) + dj

)
, also written as “C :

−Ñ
d .” The key idea is that we

will use (k+ k2) symbolic constants to represent the (k+ k2) coefficients
in a transformation of the form C :

−Ñ
d , and use a base abstract domain

B—provided by a client of the framework—to represent sets of possible
values for these symbolic constants. In particular, B is an abstract domain
for which, for all b P B, γ(b) is a set of (k + k2)-tuples—each tuple of
which provides values for tdiu Y tciju, and can thus be interpreted as an
affine transformation C :

−Ñ
d .

With this approach, a given b P B represents the disjunction
�
t(C :

−Ñ
d) P γ(b)u. When B is a non-relational domain, each b P B constrains
the values of tdiu Y tciju independently. When B is a relational domain,
each b P B can impose intra-component constraints on the allowed tuples
(d1,d2, . . . ,dk, c11, c12, . . . , c1k, c21, c22, . . . , ckk).

98

ATA[B] generalizes the MOS domain, in the sense that the MOS do-
main is exactly ATA[AG/KS], where AG/KS is a relational abstract do-
main that captures affine equalities of the form

°
i aiki = b, where

ai,b P Z2w and Z2w is the set ofw-bit bitvectors (see §3.1.3 and §3.1.4). For
instance, an element in ATA[AG] can capture the set of affine transformers
“x 1 = k1 �x+k1 �y+k2, where k1 is odd, k2 is even, and k1 is the coefficient
of both x and y.” On the other hand, an element in the abstract domain
ATA[I

(k+k2)
Z2w

], where I
(k+k2)
Z2w

is the abstract domain of (k + k2)-tuples of
intervals over bitvectors, can capture a set of affine transformers such as
x 1 = k3 � x+ k4 � y+ k5, where k3 P [0, 1], k4 P [2, 2], and k5 P [0, 10].

This work addresses a wide variety of issues that arise in defining the
ATA[B] framework, including describing the abstract-domain operations
of ATA[B] in terms of the abstract-domain operations available in the base
domain B.

Contributions. The overall contribution of our work is the framework
ATA[B], for which we present

• methods to perform basic abstract-domain operations, such as equal-
ity and join.

• a method to perform abstract composition, which is needed to per-
form abstract interpretation.

• a faster method to perform abstract composition when the base
domain is non-relational.

Organization This chapter is organized as follows: §4.1 introduces the
terminology used in the chapter; and presents some needed background
material. §4.2 demonstrates the framework with the help of an example.
§4.3 formally introduces the parameterized abstract domain ATA[B]. §4.4
provides discussion and related work. Proofs are given in

99

4.1 Preliminaries

Matrix addition and multiplication are defined as usual, forming a matrix
ring. We denote the transpose of a matrix M by Mt. A one-vocabulary
matrix is a matrix with k+ 1 columns. A two-vocabulary matrix is a matrix
with 2k+ 1 columns. In each case, the “+1” is related to the fact that we
capture affine rather than linear relations. In denotes the n� n identity
matrix. Given a matrix C, we use C[i, j] to refer to the entry at the i-th
column and j-th row of C. Given a vector −Ñd , we use −Ñd [j] to refer to the
j-th entry in −Ñd .

4.1.1 Affine Programs

xBlocky :: ł : (xStmty ;)� xNexty
xNexty :: jump ł;

| jump xCondy ? ł1 : ł2

xCondy :: ? | xExpry Op xExpry
xOpy :: = | � | ¥ | ¤

xExpry :: c0 +
k°
i=1
ci � vi

xStmty :: vj := xExpry
| vj := ?

We borrow the notion of affine programs
from [78]. We restrict our affine pro-
grams to consist of a single procedure.
The statements are restricted to either
affine assignments or non-deterministic
assignments. The control-flow instruc-
tion consists of either an unconditional
jump statement, or a conditional jump
with an affine equality, an affine dise-
quality, an affine inequality, or unknown
guard condition.

4.1.2 Abstract-Domain Operations

Tab. 4.1 lists the abstract-domain operations needed to generate the pro-
gram abstraction and perform fixpoint analysis for an affine program.
Bottom, equality, and join are standard abstract-domain operations. The
widen operation is needed for domains with infinite ascending chains
to ensure termination. The two operations of the form α(Stmt) perform

100

Table 4.1: Abstract-domain operations.
Type Operation Description Type Operation Description
A K bottom element A α(vj :=?) abstraction for
bool (a1 == a2) equality nondeterministic assignments

A (a1 \ a2) join A α(vj := c0 +
k°
i=1
cij � vi) abstraction for

A (a1∇a2) widen affine assignments
A Id identity element A (a1 � a2) composition

abstraction on an assignment statement Stmt to generate an abstract trans-
former. Id is the identity element; which represents the identity transfor-
mation (

�k
i=1 v

1
i = vi). Finally, the abstract-composition operation a1 � a2

returns a sound overapproximation of the composition of the abstract
transformation a1 with the abstract transformation a2.

4.1.3 Relating MOS and AG

Since KS and AG are the same domain, we will use AG to refere to KS/AG
domain (See §3.2). There are two ways to relate the MOS and AG domains.
One way is to use them as abstractions of two-vocabulary relations and
provide (approximate) inter-conversion methods. The other is to use a
variant of the AG domain to represent the elements of the MOS domain
exactly.

Comparison of MOS and AG elements as abstraction of
two-vocabulary relations.

As shown in §3.3.1, the MOS and AG domains are incomparable: some
relations are expressible in each domain that are not expressible in the
other. Intuitively, the central difference is that MOS is a domain of sets of
functions, while AG is a domain of relations.

Soundly converting an MOS elementM to an overapproximating AG
element is equivalent to stating two-vocabulary affine constraints satisfied
byM §3.3.2.

101

Table 4.2: Example demonstrating two ways of relating MOS and AG.
MOS element Overapproximating Reformulation as abstraction
(M) AG element (A1) over affine transformers (A2)$''''&
''''%


1 x y

1 0 0
0 1 1
0 0 0

,


1 x y

1 0 0
0 0 0
0 1 1


,////.
////-

[1 x y x1 y1

1 0 0 0 0
1 0 0 1 1

] [1 a01 a02 a10 a11 a12 a20 a21 a22

1 0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 1 1

]

Reformulation of MOS elements as AG elements.

An MOS elementM = tM1,M2, ...,Mnu represents the set of (k+1)�(k+1)
matrices in the affine closure of the matrices in M. Each matrix can be
thought of as a (k+ 1)� (k+ 1) vector, and henceM can be represented
by an AG element of size n� ((k+ 1)� (k+ 1)).

Example 4.1. Tab. 4.2 shows the two ways MOS and AG elements can be related.
Column 1 shows the MOS element M, which represents the set of matrices in
the affine closure of the two (k+ 1)� (k+ 1) matrices, with k = 2. The second
column gives the AG elementA1 (a matrix with 2k+1 columns) representing the
affine-closed space over tx,y, x 1,y 1u satisfied by M. Consequently, γAG(A1) �

γMOS(M). Column 3 shows the two matrices ofM as the 2�((k+1)�(k+1))AG
elementA2. BecauseA2 is just a reformulation ofM, γAG(A2) = γMOS(M).

4.2 Overview

In this section, we motivate and illustrate the ATA[B] framework, with the
help of several examples. The first two examples illustrate the following
principle, which restates Obs. 1 more formally:

Observation 2. Each affine transformation C :
−Ñ
d in a set of affine transfor-

mations involves (k + 1)2 coefficients P Z2w : (1,d1,d2, . . . ,dk, 0, c11, c12, . . . ,
0, c21, ...ckk).1 Thus, we may use any abstract domain whose elements concretize

1k of the coefficients are always 0, and one coefficient is always 1 (i.e., the first column
is always (1| 0 0 ... 0)t). For this reason, we really need only k+ k2 elements, but we will
sometimes refer to (k+ 1)2 elements for brevity.

102

to subsets of Z(k+1)2

2w as a method for representing a set of affine transformers.

Example 4.2. The AG element A2 in column 3 of Tab. 4.2 illustrates how an
AG element with (k+ 1)2 columns represents the same set of affine transformers
as the MOS element M shown in column 1. For instance, the first row of A2

represents the first matrix inM.

Example 4.3. Consider the element E = ([1, 1], [0, 10], [0, 0], [0, 0], [1, 1], [2, 3], [0, 0], [0, 0],

[1, 1]) of I9
Z2w

. E can be depicted more mnemonically as the following matrix:


1 x y

[1, 1] [0, 10] [0, 0]
[0, 0] [1, 1] [2, 3]
[0, 0] [0, 0] [1, 1]

, where every element in E is an interval (IZ2w). E repre-

sents the point set t(x 1,y 1, x,y) : Di1, i2 P Z2w : x 1 = x+i1^y
1 = i2x+y^0 ¤

i1 ¤ 10^ 2 ¤ i2 ¤ 3u.

Examples 4.2 and 4.3 both exploit Observation 2, but use different
abstract domains. Ex. 4.2 uses the AG domain with (k + 1)2 columns,
whereas Ex. 4.3 uses the domain I

(k+1)2

Z2w
. In particular, an abstract-domain

element in our framework ATA[B] is a set of affine transformations −Ñv 1 =
−Ñv �C+

−Ñ
d , such that the allowed coefficients in the matrix C and the vector

−Ñ
d are abstracted by a base abstract domain B.

The remainder of this section shows how different instantiations of
Observation 2 allow different properties of a program to be recovered.

Example 4.4. In this example, the variable r of function f is initialized to 0 and
conditionally incremented by 2x inside a loop with 10 iterations.

ENT: int f(int x) {
L0: int i = 0, r = 0;
L1: while(i <= 10) {
L2: if(*)
L3: r = r + 2*x;
L4: i = i + 1;

}
L5: return r;

}

The exact function summary for function f,
denoted by Sf, is (Dk.r 1 = 2kx ^ 0 ¤

k ¤ 10). Note that Sf expresses two im-
portant properties of the function: (i) the re-
turn value r 1 is an even multiple of x, and
(ii) the multiplicative factor is contained in
an interval.

103

B = AG with (k+ 1)2 columns: Fig. 4.1(a) shows the abstract trans-
formers generated with the MOS domain.2 Each matrix of the form 1 d1 d2 d3

0 c11 c12 c13

0 c21 c22 c23

0 c31 c32 c33

 represents the state transformation (x 1 = d1 + c11x +

c21i+ c31r)^ (i 1 = d2 + c12x+ c22i+ c32r)^ (r 1 = d3 + c13x+ c23i+ c33r).
For instance, the abstract transformer for L3 Ñ L4 is an MOS-domain

element with a single matrix that represents the affine transformation:
(x 1 = x)^ (i 1 = i)^ (r 1 = 2x+ r). The edges absent from Fig. 4.1(a), e.g.,
L1 Ñ L2, have the identity MOS-domain element.

Edge Transformer

L0 Ñ L1

$'&
'%

 1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


,/.
/-

L3 Ñ L4

$'&
'%

 1 0 0 0
0 1 0 2
0 0 1 0
0 0 0 1


,/.
/-

L4 Ñ L1

$'&
'%

 1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1


,/.
/-

Iteration Node L1

(i)

$'&
'%

 1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


,/.
/-

(ii)

$'&
'%

 1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,

 1 0 1 0
0 1 0 2
0 0 0 0
0 0 0 0


,/.
/-

(iii)

$'&
'%

 1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,

 1 0 1 0
0 1 0 2
0 0 0 0
0 0 0 0

 ,

 1 0 2 0
0 1 0 4
0 0 0 0
0 0 0 0


,/.
/-

(a) (b)

Figure 4.1: Abstract transformers and snapshots in the fixpoint analysis
with the MOS domain for Ex. 4.4.

To obtain function summaries, an iterative fixed-point computation
needs to be performed. An abstract-domain element a is a summary at
some program point L, if it describes a two-vocabulary transition relation
that overapproximates the (compound) transition relation from the begin-
ning of the function to program point L. Fig. 4.1(b) provides the iteration
results for the summary at the program point L1. After iteration (i), the
result represents (x 1 = x)^ (i 1 = 0)^ (r 1 = 0). After iteration (ii), it adds
the affine transformer (x 1 = x) ^ (i 1 = 1) ^ (r 1 = 2x) to the summary.
Quiescence is discovered on the third iteration because the affine-closure

2We will continue to refer to the MOS domain directly, rather than “the instantiation
of Observation 2 with an AG element containing (k+ 1)2 columns” (à la Ex. 4.2).

104

of the three matrices is the same as the affine-closure of the two matrices
after the second iteration. As a result, the function summary that MOS
learns, denoted by SMOS, is Dk.r 1 = 2kx, which is an overapproximation
of the exact function summary Sf. Imprecision occurs because the MOS-
domain is not able to represent inequality guards. Hence, the summary
captures the evenness property, but not the bounds property.

B = I
(k+1)2

Z2w
: By using different Bs, an analyzer will be able to recover dif-

ferent properties of a program. Now consider what happens when the pro-
gram above is analyzed with ATA[B] instantiated with the non-relational
base domain of environments of intervals (I

(k+1)2

Z2w
). The identity trans-

formation for the abstract domain ATA[I
(k+1)2

Z2w
] is


1 [0, 0] [0, 0] [0, 0]
0 [1, 1] [0, 0] [0, 0]
0 [0, 0] [1, 1] [0, 0]
0 [0, 0] [0, 0] [1, 1]

.

The bottom element for the abstract domain ATA[I
(k+1)2

Z2w
], denoted by

K
ATA[I

(k+1)2
Z2w

]
is


1 KIZ2w

KIZ2w
KIZ2w

0 KIZ2w
KIZ2w

KIZ2w

0 KIZ2w
KIZ2w

KIZ2w

0 KIZ2w
KIZ2w

KIZ2w

.3

Fig. 4.2 shows the abstract transformers and the fixpoint analysis for the
node L1 with the ATA[I

(k+1)2

Z2w
] domain. One advantage of using intervals

as the base domain is that they can express inequalities. For instance, the
abstract transformer for the edge L1 Ñ L2 specifies the transformation
(x 1 = x)^ (0 ¤ i 1 ¤ 10)^ (r 1 = r). Consequently, the function summary
that ATA[I

(k+1)2

Z2w
] learns, denoted by S

ATA[I
(k+1)2
Z2w

]
, is r 1 = [0, 20]x. This sum-

mary captures the bounds property, but not the evenness property. Notice
that, Sf = SATA[I

(k+1)2
Z2w

]
^ SMOS.

3The abstract domain I
(k+1)2

Z2w
is the product domain of (k+ 1)2 interval domains, that

is, I(k+1)2

Z2w
= IZ2w � IZ2w � . . .� IZ2w . I(k+1)2

Z2w
uses smash product to maintain a canonical

representation for K
ATA[I

(k+1)2
Z2w

]
. Thus, if any of the coefficients in an abstract-domain

element b P ATA[I
(k+1)2

Z2w
] is KIZ2w

, then b is smashed to K
ATA[I

(k+1)2
Z2w

]
.

105

Edge Transformer

L0 Ñ L1

 1 [0, 0] [0, 0] [0, 0]
0 [1, 1] [0, 0] [0, 0]
0 [0, 0] [0, 0] [0, 0]
0 [0, 0] [0, 0] [0, 0]


L1 Ñ L2

 1 [0, 0] [0, 10] [0, 0]
0 [1, 1] [0, 0] [0, 0]
0 [0, 0] [0, 0] [0, 0]
0 [0, 0] [0, 0] [1, 1]


L3 Ñ L4

 1 [0, 0] [0, 0] [0, 0]
0 [1, 1] [0, 0] [2, 2]
0 [0, 0] [1, 1] [0, 0]
0 [0, 0] [0, 0] [1, 1]


L4 Ñ L1

 1 [0, 0] [1, 1] [0, 0]
0 [1, 1] [0, 0] [0, 0]
0 [0, 0] [1, 1] [0, 0]
0 [0, 0] [0, 0] [1, 1]



Iteration Node L1

(i)

 1 [0, 0] [0, 0] [0, 0]
0 [1, 1] [0, 0] [0, 0]
0 [0, 0] [0, 0] [0, 0]
0 [0, 0] [0, 0] [0, 0]



(ii)

 1 [0, 0] [0, 1] [0, 0]
0 [1, 1] [0, 0] [0, 2]
0 [0, 0] [0, 0] [0, 0]
0 [0, 0] [0, 0] [0, 0]


... ...

(xi)

 1 [0, 0] [0, 10] [0, 0]
0 [1, 1] [0, 0] [0, 20]
0 [0, 0] [0, 0] [0, 0]
0 [0, 0] [0, 0] [0, 0]


(a) (b)

Figure 4.2: Abstract transformers and fixpoint analysis with the
ATA[I

(k+1)2

Z2w
] domain for Ex. 4.4.

Consider the instantiation of the ATA framework with strided-intervals
over bitvectors [83], denoted by SI

(k+1)2

Z2w
. A strided interval represents a

set of the form tl, l + s, l + 2s, ..., l + (n � 1)su. Here, l is the beginning
of the interval, s is the stride, and n is the interval size. Consequently,
ATA[SI

(k+1)2

Z2w
] learns the function summary Dk.r 1 = kx^k = 2[0, 10], which

captures both the evenness property and the bounds property. Note that
a traditional (non-ATA-framework) analysis based on the strided-interval
domain alone would not be able to capture the desired summary because
the strided-interval domain is non-relational.

Widening concerns. In principle, abstract domains I(k+1)2

Z2w
and SI

(k+1)2

Z2w

do not need widening operations because the lattice height is finite. How-
ever, the height is exponential in the bitwidth w of the program variables,
and thus in practice we need widening operations to speed-up the fix-
point iteration. In the presence of widening, neither ATA[I

(k+1)2

Z2w
] nor

ATA[SI
(k+1)2

Z2w
] will be able to capture the bounds property for Ex. 4.4, be-

cause they are missing relational information between the loop counter
i and the variable r. However, the reduced product of ATA[I

(k+1)2

Z2w
] (or

106

ATA[SI
(k+1)2

Z2w
]) and MOS can learn the exact function summary.

4.3 Affine-Transformer-Abstraction Framework

In this section, we formally introduce the Affine-Transformer-Abstraction
framework (ATA) and describe abstract-domain operations for the frame-
work. We also discuss some specific instantiations.

ATA[B] Definition. Let C be a k-by-k matrix: [cij], where each cij is a
symbolic constant for the entry at i-th row and j-th column. Let −Ñd be a
k-vector, [di], where each di is a symbolic constant for the i-th entry in
the vector. As mentioned in Chapter 1, an affine transformer, denoted
by C :

−Ñ
d , describes the relation −Ñv 1 = −Ñv � C +

−Ñ
d , where −Ñv 1 and −Ñv are

row vectors of size k that represent the post-transformation state and the
pre-transformation state, respectively, on program variables.

Given a base abstract domain B, the ATA framework generates a corre-
sponding abstract domain ATA[B] whose elements represent a transition
relation between the pre-state and the post-state program vocabulary.
Each element a P ATA[B] is represented using an element base(a) P B,
such that:

γ(a) = t(−Ñv ,−Ñv 1)| D(C :
−Ñ
d) P γ(base(a)) : −Ñv 1 = −Ñv � C+

−Ñ
d u.

4.3.1 Abstract-Domain Operations for ATA[B]

In this subsection, we provide all the abstract-domain operations for
ATA[B], with the exception of abstract composition, which is discussed in
§4.3.2.

In the ATA[B] framework, the symbolic constants in the base
domain B are denoted by symbols(C:−Ñd), where symbols(C:−Ñd) =

(d1,d2, . . . ,dn, c11, c12, . . . , c1k, c21, c22, . . . , c2k, . . . , ckk) is the tuple of k+k2

107

Table 4.3: Base abstract-domain operations.

Type Operation Description
B K bottom element
B J top element
bool (b1 == b2) equality
B (b1 \ b2) join
B (b1∇b2) widen
B havoc(b1,S) remove all constraints on symbolic constants in S
B α(ct) abstraction for the concrete affine transformer ct,

where ct P symbols(C :
−Ñ
d)Ñ Z2w

symbolic constants in the affine transformation. Tab. 4.3 lists the abstract-
domain interface for the base abstract domain B needed to implement
these operations for ATA[B]. The first five operations in the interface are
standard abstract-domain operations. havoc(b1,S) takes an element b1

and a subset S � symbols(C:−Ñd) of symbolic constants, and returns an
element without any constraints on the symbolic constants in S. The last
operation in Tab. 4.3 defines an abstraction for a concrete affine transformer
ct. A concrete affine transformer is a mapping from the symbolic constants
in the affine transformer to bitvectors of size w. We represent concrete

state ctwith the (k+ 1)� (k+ 1) matrix:



1 ct(d1) ct(d2) ... ct(dk)

0 ct(c11) ct(c12) ... ct(c1k)

0 ct(c21) ct(c22) ... ct(c2k)

...
0 ct(ck1) ct(ck2) ... ct(ckk)


,

where ct(s) denotes the concrete value in Z2w of symbol s in the concrete
state ct.

Tab. 4.4 gives the abstract-domain operations for ATA[B] in terms of
the base abstract-domain operations in B. The first operation is the K
element, which is simply defined as KB, the bottom element in the base
domain. Similarly, equality, join, and widen operations are defined as
the equality, join, and widen operations in the base domain. The equality
operation is not the exact equality operation; that is, (a1�==a2) can return
false, even if γ(a1) = γ(a2). However, the equality operation is sound; that

108

Table 4.4: Abstract-domain operations for the ATA[B]-domain.
Type Operation Description
A K KB

bool (a1�==a2) (base(a1) == base(a2))
A (a1\̃a2) (base(a1)\ base(a2))
A (a1∇a2) (base(a1)∇base(a2))

A α(vj := dj +
k°
i=1
cij � vi) α




1 0 dj 0

0 Ij�1 [c1j, c2j, ...c(j�1)j]
t 0

0 0 cjj 0
0 0 [c(j+1)j, c(j+2)j, ...ckj]t Ik�j




A α(vj :=?) havoc(α(Ik+1), tdj, c1j, c2j, ..., ckju)
A Id α(Ik+1)

is, when (a1�==a2) returns true, then γ(a1) = γ(a2). The \̃ operation for
the ATA[B] is a quasi-join operation [34]. In other words, the least upper
bound does not necessarily exist for ATA[B], but a sound upper-bound
operation \̃ is available.

The abstraction operation for the affine-assignment statement α(vj :=

d0 +
k°
i=1
cij � vi) gives back an ATA[B]-element with a single transformer

where every variable v P V � tvju is left unchanged and the variable
vj is transformed to reflect the assignment by updating the coefficients
of the corresponding column. The abstraction operation for the non-
deterministic assignment statement α(vj :=?) gives back an ATA[B]-
element, such that every variable v P V � tvju is left unchanged but the
symbolic constant corresponding to the coefficients in the column j of the
affine transformation can be any value. This operation is carried out by
performing havoc on the identity transformation with respect to the set
tdj, c1j, c2j, ..., ckju of symbolic constants. The identity transformation Id
is obtained by abstracting the concrete affine transformer ct that repre-
sents the identity transformer. We provide proofs of soundness for these
abstract-domain operations in App. D.

109

4.3.2 Abstract Composition

We have shown that all the abstract-domain operations for ATA[B] can
be implemented in terms of abstract-domain operations in B, with the
exception of abstract composition. Let us consider the composition of two
abstract values a,a 1 P ATA[B], representing the two-vocabulary relations
R[−Ñv ;−Ñv 1] = γ(a) and R 1[−Ñv 1;−Ñv 2] = γ(a 1). An abstract operation �7 is a
sound abstract-composition operation if, for all a2 = a 1 �7 a, γ(a2) �
t (−Ñv ;−Ñv 2)| D−Ñv 1.R[−Ñv ;−Ñv 1]^ R 1[−Ñv 1;−Ñv 2] u. This condition translates to:

γ(base(a2)) �t(−Ñv ,−Ñv 2) | D(C :
−Ñ
d) P γ(base(a)), (C 1 :

−Ñ
d

1
) P γ(base(a 1)),

(4.1)

(C2 :
−Ñ
d

2
) : (−Ñv 2 = −Ñv � C2 +

−Ñ
d

2
)^ (C2 = C � C 1)

^ (
−Ñ
d

2
=
−Ñ
d � C 1 +

−Ñ
d

1
)u

The presence of the quadratic componentsC�C 1 and−Ñd �C 1 makes the im-
plementation of abstract composition non-trivial. One extremely expensive
method to implement abstract composition is to enumerate the set of all
concrete transformers (C :

−Ñ
d) P γ(base(a)) and (C 1 :

−Ñ
d

1
) P γ(base(a 1)),

perform matrix multiplication for each pair of concrete transformers, and
perform join over all pairs of them. This approach is impractical because
the set of all concrete transformers in an abstract value can be very large.

First, we provide a general method to implement abstract composition.
Then, we provide methods for abstract composition when the base domain
B has certain properties, like non-relationality and weak convexity. The
latter methods are faster, but are only applicable to certain classes of base
abstract domains.

110

General Case.

We present a general method to perform abstract composition by reduc-
ing it to the symbolic-abstraction problem. The symbolic abstraction of a
formula ϕ in logic L, denoted by pα(ϕ), is the best value in B that over-
approximates the set of all concrete affine transformers (C :

−Ñ
d) that satisfy

ϕ [84, 100]. For all b P B, the symbolic concretization of B, denoted by pγ(b),
maps b to a formula pγ(b) P L such that b and pγ(b) represent the same set
of concrete affine transformers (i.e., γ(b) = [[pγ(b)]]). We expect the base
domain B to provide the pγ operation. In our framework, there are slightly
different variants of pα and pγ according to which vocabulary of symbolic
constants are involved. For instance, we use pγ 1 to denote symbolic con-
cretization in terms of the primed symbolic constants symbols(C 1 :

−Ñ
d

1
).

Similarly, pα2 denotes symbolic abstraction in terms of the double-primed
symbolic constants symbols(C2 :

−Ñ
d

2
). The function dropPrimes shifts

the vocabulary of symbolic constants by removing the primes from the
symbolic constants that an abstract value represents.

We use L = QF_BV , i.e., quantifier-free bit-vector logic, to express
abstract composition symbolically as follows:

base(a2) = dropPrimes
(pα2(ϕ)

)
, where (4.2)

ϕ = (C2 = C � C 1)^ (
−Ñ
d

2
=
−Ñ
d � C 1 +

−Ñ
d

1
)

^ pγ(base(a))^ pγ 1(base(a 1)).
(Note that pγ(base(a)) and pγ 1(base(a 1)) are formulas over symbols(C :

−Ñ
d)

and symbols(C 1 :
−Ñ
d

1
) respectively.) Past literature [84, 100, 30] pro-

vides various algorithms to implement symbolic abstraction. Symbolic-
abstraction methods are usually slow because they make repeated calls
to an SMT solver. Specifically, the symbolic-abstraction algorithms
in [84, 100] require O(h2) calls to SMT , where h2 is the height of the
abstract-domain element — i.e., base(a2) in the lattice B.

111

Alg. 5 is a variant of the symbolic-abstraction algorithm from [84].
Alg. 5 needs a method to enumerate a generator set gs for each b P B.
Such a set can easily be obtained from the generator representation of B.
For instance, each row in an AG element is an affine transformer, and a
generator set for the AG element is the set of all rows in the AG matrix: the
affine combination of the rows generate the concrete affine transformers
that the AG element represents. Note that the generator set for an abstract
value b is usually much smaller than the set of all affine transformers in
b. For the AG domain, the generating set is worst-case polynomial size,
whereas the set of all affine transformers is worst-case exponential in the
number of variables k.

In Alg. 5, line 3 initializes the value lower to the product of each
pair of abstract transformers. The product t � t 1, where t =

[
1 −Ñ

d

0 C

]

and t 1 =

[
1 −Ñ

d
1

0 C 1

]
is
[

1 −Ñ
d � C 1 +

−Ñ
d
1

0 C � C 1

]
. Because lower is initialized to

tt� t 1 | t P gs1, t 1 P gs2u rather than K, the number of SMT calls in the
symbolic abstraction is significantly reduced, compared to the algorithm
from [84]. The function GetModel, used at line 5, returns the model
M P symbols(C2 :

−Ñ
d

2
) Ñ Z2w satisfying the formula (ϕ ^ pγ(lower))

given to the SMT solver at line 4. Thus, the modelM is a concrete affine
transformer in a2. The representation function β, used at line 6, maps a
singleton modelM to the least value in B that overapproximates tMu [84].
While the SMT call at line 4 is satisfiable, the loop keeps improving the
value of lower by adding the satisfying model M to lower via the repre-
sentation function β and the join operation. When line 4 is unsatisfiable,
the loop terminates and returns lower. This method is sound because the
unsatisfiable call proves that ϕñ pγ(lower). The loop terminates when the
height of the base domain B is finite.

112

Algorithm 5 Abstract Composition via Symbolic Abstraction
1: gs1 Ð tt1, t2, ..., tl1u �where base(a) =

�l1
i=0 ti

2: gs2 Ð

t 11, t 12, ..., t 1l2

(
�where base(a 1) =

�l2
i=0 t

1
i

3: lower Ð tt� t 1 | t P gs1, t 1 P gs2u
4: while rÐ SMTCall(ϕ^ pγ(lower)) is Sat do
5: MÐ GetModel(r)
6: lower Ð lower\ β(M)

7: return lower

Non-relational base domains.

In this section, we present a method to implement abstract composition
for ATA[B], when B is non-relational. We focus on the non-relational case
separately because it allows us to implement a sound abstract-composition
operation efficiently.

Foundation domain. Each element in the non-relational domain B is a
mapping from symbols S to a subset of Z2w . We introduce the concept
of a foundation domain, denoted by FB, to represent the abstractions of
subsets of Z2w in the base abstract-domain elements. We can define a
non-relational base domain in terms of the foundation domain as follows:
B
def
= SÑ FB. For instance, the non-relational domain of intervals I(k+1)2

Z2w

can be represented by SÑ IZ2w , where IZ2w represents the interval lattice
over Z2w , and S is a set of (k+ 1)2 symbolic constants that represent the
coefficients of an affine transformer.

A foundation domain F is a lattice whose elements concretize to sub-
sets of Z2w . Tab. 4.5 present the foundation-domain operations for F.
Bottom, equality, join, widen, and α(bv) are standard abstract-domain
operations. The abstract addition and multiplication operations provide
a sound reinterpretation of the collecting semantics of concrete addition
and multiplication. For instance, with the interval foundation domain,
[0, 7] +7 [�3, 17] = [�3, 24] and [0, 6]�7 [�3, 3] = [�18, 18].

113

Table 4.5: Foundation-domain operations.

Type Operation Description Type Operation Description
F K empty set F α(bv) abstraction for the
bool (f1 == f2) equality bitvector value bv P Z2w

F (f1 \ f2) join F (f1 +
7 f2) abstract addition

F (f1∇f2) widen F (f1 �
7 f2) abstract multiplication

Abstract composition for a non-relational domain is defined as follows:

a 1 �NR a =
!
(−Ñv ,−Ñv 1)|D(C :

−Ñ
d) : (−Ñv 1 = −Ñv � C+

−Ñ
d)^ b P (symbols(C :

−Ñ
d)Ñ F) (4.3)

^
(©

1¤i,j¤k
(b[cij] = Σ7

1¤l¤k
(base(a)[cil]�

7 base(a 1)[clj])
)

^
(©

1¤j¤k
b[dj] = Σ7

1¤l¤k
(base(a)[dl]�

7 base(a 1)[clj]) +
7 base(a 1)[dj]

))
.

The term b[s], where b P B and s P symbols(C :
−Ñ
d), refers to the

element in the foundation domain f P FB, that corresponds to the symbol
s. Σ71¤l¤k is calculated by abstractly adding the k terms indexed by l.
Abstract composition for a non-relational domain uses abstract addition
and abstract multiplication to soundly overapproximate the quadratic
terms occurring in Eqn. (4.1). We provide a proof of the soundness for
a 1 �NR a in App. E.1. The abstract-composition operation requires O(k3)

abstract-addition operations and O(k3) abstract-multiplication operations.

Examples of foundation domains. We now present a few foundation
domains that allow to construct the non-relational small-set, interval [19],
and strided-interval [83] base domains.

Small sets. FSSn
def
= tJu Y tS|S � Z2w ^ |S| ¤ nu. The join operation is

defined by: (f1 \ f2) =

$&
%
f1 Y f2 if |f1 Y fs| ¤ n

J otherwise
n denotes the maximum cardinality allowed in the non-top elements of
FSSn . Other abstract operators, including abstract addition and multipli-
cation, are implemented in a similar manner.

114

Intervals. FIZ2w

def
= tKu Y t[a,b]| a,b P Z2w ,a ¤ bu. Most abstract

operations are straightforward (See [19] for details). The abstract-addition
and abstract-multiplication operations need to be careful about overflows
to preserve soundness. For instance,

[a1,b1] +
7 [a2,b2] =

$'''&
'''%

[a1 + a2,b1 + b2] if neither a1 + a2 nor b1 + b2

overflows

[min,max] otherwise

Strided Interval. FSIZ2w

def
= tKu Y ts[a,b] | a,b, s P Z2w ,a ¤ bu, where

γ(s[a,b]) = ti | a ¤ i ¤ b, i � a(mod s)u . (See [83, 91] for the details of
the abstract-domain operations.)

Affine-Closed Base Domain.

We discuss the special case when the base domain B is affine-closed, i.e.,
B = AG. The abstract composition is defined as:

a 1 �AG a = a2, where base(a2) =
〈
ti � t

1
j| 1 ¤ i ¤ l, 1 ¤ j ¤ l 1

(〉
^ (4.4)

base(a) = 〈tt1, t2, ...tlu〉^ base(a 1) = 〈tt 11, t 12, ...t 1l 1u〉

Lemma 5.1 in [78] asserts that the above abstract composition method
is sound by linearity of affine-closed abstractions. The abstract composi-
tion has time complexity O(hh 1k3), h (respectively h 1) is the height of the
abstract-domain element base(a) (or base(a 1)) in the AG lattice. Because
the height of the AG lattice with (k+ 1)2 columns is O(k2), the time com-
plexity for the abstract composition operation translates to O(k7). Alg. 5
essentially implements Eqn. (4.4), but makes an extra SMT call to ensure
that the result is sound. Because Eqn. (4.4) is sound by linearity for the
AG domain, the very first SMT call in the while-loop condition at line 4 in
Alg. 5 will be unsatisfiable.

115

Weakly-Convex Base Domain

We present methods to perform abstract composition when the base do-
main B satisfies a property we call weak convexity. Base domain B is weakly
convex iff

• The abstraction of a single concrete affine transformer is exact:
γ(α(ti)) = ttiu.

• All abstract-domain elements b P B are contained in a convex
space over rationals: For any set of concrete affine transformers
tt0, t1, ..., tlu, such that b =

�l
i=0 ti, and any t P γ(b):

Dλ1, λ2, . . . , λl P Q.(0 ¤ λ1, λ2, ..., λl ¤ 1) ^
l

Σ
i=0
λi = 1^ castQ(t) =

l

Σ
i=0
λi castQ(ti).

The castQ function is used to specify the convexity property by mov-
ing the point space from bitvectors to rationals. For instance, the
expression Σli=0λi.castQ(ti) specifies the convex combination of the
concrete affine transformersmi in the rational space cast(k+k

2)
Q .

Any convex abstract domain over rationals, such as polyhedra [23]
or octagons [68], can be used to create a weakly-convex domain over
bitvectors [96, 94]. Abstract composition for weakly-convex base domains
is defined as follows:

a 1 �WC a = a2, where base(a2) = (4.5)$'''&'''%

ti � t

1
j| 1 ¤ i ¤ l, 1 ¤ j ¤ l 1

(
if there are no overflows in any

matrix multiplication ti � t 1j
JB otherwise

where base(a) = tt1, t2, ..., tlu and base(a 1) = tt 11, t 12, ..., t 1l 1u .

The intuition is that the weak-convexity properties are preserved under
matrix multiplication in the absence of overflows. This principle is similar
to the linearity argument used to show that abstract composition is sound

116

when the base domain is affine-closed. (See above for more details.) We
provide a proof of the soundness for a 1 �WC a in App. E.2. Similar to
the affine-closed case, abstract composition has time complexity O(H2k3),
where H is the height of the B lattice.

Practical concerns. With the exception of the non-relational base domain,
the complexity of the abstract-composition algorithms is dependent on
the height of the abstract-domain elements involved in the composition,
i.e., h and h 1. Practical implementations of abstract composition might
decide to return J for abstract composition if the number of matrices to
multiply is beyond some threshold, say t, so that the complexity of the
abstract composition is O(tk3).

4.3.3 Merge Function

Knoop and Steffen [54] extended the Sharir and Pnueli [92] algorithm for
interprocedural dataflow analysis to handle local variables. Suppose at a
call site CS, procedure P calls procedure Q. The global variables, denoted
by −Ñg , are accessible to Q, but the local variables, denoted by −Ñl , in P are
inaccessible to Q. Thus, the values of local variables after the call site
CS come from the values before the call point, and the values of global
variables after the call site CS come from the values at the return site in
procedure Q. A merge function is used to combine the abstract-domain
element before the call to Qwith the abstract-domain element returned
by Q to create the abstract-domain element to use in P after the call to Q
has finished.

We assume that in each function, the local variables are initialized to 0.
To simplify the discussion, assume that all scopes have the same number of
locals, and that each vocabulary−Ñv consists of subvocabularies−Ñg and−Ñl —
that is, −Ñv = (−Ñg ,−Ñl) Suppose that we have two relations, R[−Ñg ,−Ñl ;−Ñg 1,−Ñl

1
]

and R 1[−Ñg ,−Ñl ;−Ñg 1,−Ñl
1
], each of which is a subset of Zk2w�Zk2w , where R is the

117

transition relation from the start state of the calling procedure P to the call
siteCS, and R 1 is the transition relation from the start state to the return site
of the called procedure Q. Operationally, after completing the call at the
call site CS, we want Merge(R[−Ñg ,−Ñl ;−Ñg 1,−Ñl

1
],R 1[−Ñg ,−Ñl ;−Ñg 1,−Ñl

1
]) to act as a

modified relational composition in which R 1 acts like the identity function
on locals, so that −Ñl

1
values from R are passed through R 1 unchanged to

become the −Ñl
1

values of the result. This semantics can be specified as
follows:

Merge(R[−Ñg ,−Ñl ;−Ñg 1,−Ñl
1
],R 1[−Ñg ,−Ñl ;−Ñg 1,−Ñl

1
]) (4.6)

= RevertLocals(R 1[−Ñg ,−Ñl ;−Ñg 1,−Ñl
1
]) � R[−Ñg ,−Ñl ;−Ñg 1,−Ñl

1
]

We define RevertLocals(R 1[−Ñg ,−Ñl ;−Ñg 1,−Ñl
1
]) as follows:

RevertLocals(R 1[−Ñg ,−Ñl ;−Ñg 1,−Ñl
1
])
def
= t(−Ñg ,−Ñq ,−Ñg 1,−Ñq) | R 1[−Ñg ,−Ñl ;−Ñg 1,−Ñl

1
]u

(4.7)
Recall that the k+ k2 symbolic constants in an affine transformation,

symbols(C:−Ñd), can be padded with a one and k zeroes and arranged
as follows:

[
1 −Ñ

d

0 C

]
. We can partition symbols(C:−Ñd) into globals and

locals to write the matrix as


1 −Ñ

d g
−Ñ
dl

0 Cgg Cgl

0 Clg Cll

, which represents the affine

transformation

(−Ñg 1 = −Ñg � Cgg +
−Ñ
l � Clg +

−Ñ
dg)^ (

−Ñ
l
1
= −Ñg � Cgl +

−Ñ
l � Cll +

−Ñ
dl)

Let a,a 1 P ATA[B] be the abstract transformers that represents the
relations R[−Ñg ,−Ñl ;−Ñg 1,−Ñl

1
] and R 1[−Ñg ,−Ñl ;−Ñg 1,−Ñl

1
], respectively. Then the

merge function for a1 and a2 is defined as follows:

Merge(a,a 1) = a2, where (4.8)

118

base(a2) = (bg [havoc(base(Id),gsyms)) � a

bg = havoc(base(a 1), lsyms),

lsyms = symbols(Cgl)Y symbols(Cll)Y

symbols(dl)Y symbols(Clg)

gsyms = symbols(Cgg)Y symbols(dg)

lsyms are the symbols in the affine transformation that involve local vari-
ables. gsyms are the symbols in the affine transformation that are not in
lsyms. The expression bgi = (bg [havoc(base(Id),gsyms)) transforms

each affine transformer


1 −Ñ

d g
−Ñ
dl

0 Cgg Cgl

0 Clg Cll

P γ(base(a)) to


1 −Ñ

d g 0

0 Cgg 0
0 0 I

. In

this way, bgi ensures that the modifications of the globals at the return
point ofQ are accounted for, while the locals for P pass throughQ unmod-
ified. We provide the proof of soundness for the merge-function definition
(Eqn. (4.8)) in App. F.

4.4 Discussion and Related Work

The abstract-domain elements in our framework abstract two-vocabulary
relationships arising between the pre-transformation state and post-
transformation state. For the sake of simplicity, we assumed that the
variable sets in the pre-transformation and post-transformation state are
the same, and an affine transformer is represented by a (k+ 1)� (k+ 1)
matrix, where k is the number of variables in the pre-transformation state.
However, this requirement is not mandatory. We can easily adapt our
abstract-domain operations to work on (k+ 1)� (k 1 + 1) matrices where
k 1 is the number of variables in the post-transformation state.

The abstract-domain elements in our framework are not necessarily
closed under intersection. Consider the two abstract values a1 and a2

119

for the vocabulary V = tv1u. Let a1 represent the affine transformation
v 11 = 0 and a2 represent the identity affine transformation v 11 = v1. Thus,
a1 = α(

[
1 0
0 0

]
), anda2 = α(

[
1 0
0 1

]
). The intersection ofγ(a1) andγ(a2)

is the point p = (v 11 = 0, v1 = 0). There does not exist an abstract value
in ATA[B], that can exactly represent the point p, because any abstract
value containing pmust contain at least one affine transformer of the form
v 11 = v1 � c, and thus must contain all points of the form (v 11 = t � c, v1 = t),
where t P Z2w . As a consequence, there does not exist a Galois connection
between ATA[B] and the concrete domain C of all two-vocabulary relations
R[V ;V 1], which implies that there does not exist a best abstraction for
a set of concrete points. For instance, consider the abstraction of the
guard statement SG = tv1 ¤ 10u, with the ATA[I

(k+1)2

Z2w
] domain. Consider

a3 =
[

1 [0, 10]
0 [0, 0]

]
and a4 =

[
1 [0, 0]
0 [1, 1]

]
. a3 specifies the guard constraint

0 ¤ v 11 ¤ 10, while a4 is the identity transformation v 11 = v1. Note that
these abstract values are incomparable and can be used to represent the
abstract transformer for SG. Furthermore, a3 [a4 does not exist. Thus,
an analysis has to settle for either a3 or a4. (In §4.2, we used an abstract
transformer similar to a3 for the guard in the while statement in Ex. 4.4.
Using an identity transfer for the guard statement would not have been
useful to capture the desired bounds constraint.)

The ATA constructor preserves finiteness; that is, if the base domain B

is finite, then the domain ATA[B] is finite as well.
It is also possible to use the ATA constructor to infer affine transfor-

mations over rationals or reals. In these cases, the symbolic-composition
methods for weakly-convex base domains (see §4.3.2) will carry over to
affine transformations over rationals or reals for convex base domains
(e.g., polyhedra) with only slight modifications. For instance. abstract
composition for convex base domains over rationals or reals is defined as

120

follows:

a 1 � a = a2, where base(a2) =

ti � t

1
j| 1 ¤ i ¤ l, 1 ¤ j ¤ l 1

(
where base(a) = tt1, t2, ..., tlu and base(a 1) = tt 11, t 12, ..., t 1l 1u .

Chen et al. [18] devised the interval-polyhedra domain which can express
constraints of the form Σk[ak,bk]xk ¤ c over rationals. Interval polyhedra
are more expressive than classic convex polyhedra, and thus can express
certain non-convex properties. Abstract-domain operations for interval
polyhedra are constructed by linear programming and interval Fourier-
Motzkin elimination. The domain has similarities to the ATA[I

(k+1)2

Z2w
]

domain because the coefficients in the abstract values are intervals.
Miné [69] introduced weakly relational domains, which are a parameter-

ized family of relational domains, parameterized by a non-relational base
abstract domain. They can express constraints of the form (vj � vi) P F,
where F is an abstraction over P(Z). Similar to ATA[B], Miné’s framework
requires the base non-relational domain to provide abstract-addition and
abstract-unary-minus operations. These operations are used to propagate
information between constraints via a closure operation that is similar to
finding shortest paths.

Sankaranarayanan et al. [89] introduced a domain based on template
constraint matrices (TCMs) that is less powerful than polyhedra, but
more general than intervals and octagons. Their analysis discovers linear-
inequality invariants using polyhedra with a predefined fixed shape. The
predefined shape is given by the client in the form of a template matrix.
Our approach is similar because an affine transformer with symbolic con-
stants can be seen as a template. However, the approaches differ because
Sankaranarayanan et al. use an LP solver to find values for template pa-
rameters, whereas we use operations and values from an abstract domain
to find and represent a set of allowed values for template parameters.

121

An abstract-domain element in ATA[B] can be seen as an abstraction
over sets of functions: Zk2w Ñ Zk2w . Jeannet et al. [46] provide a theoretical
treatment of the relational abstraction of functions. They describing ex-
isting and new methods of abstracting functions of signature: D1 Ñ D2,
resulting in a family of relational abstract domains. ATA[B] is not captured
by their framework of functional abstractions.

4.5 Chapter Notes

Thomas Reps supervised me in the writing of the paper, and provided
some key insights for this work. Jason Breck provided useful comments
about this work.

122

5 an abstract domain for bit-vector
inequalities

The chapter describes the design and implementation of a new abstract
domain, called the Bit-Vector Inequality (BVI) domain, that is capable of
capturing certain inequalities over bit-vector-valued variables. We also
consider some variants of the BVI domain.

Key Insight: The View-Product Combinator. The key insight used to
design BVI domain (and its variants) involves a new domain combinator
(denoted by V), called the view-product combinator. V constructs a reduced
product of two domains [21], using shared view-variables to communicate
information between the domains. The following example illustrates the
concept of a view-variable:

Example 5.1. Consider the equality constraintH := x+2mm[y+2] = 4, where x
and y are bit-vector variables and mm is the memory map. The term mm[e] denotes
the contents of mm at address e. Let EZ2w denote any of the abstract domains of
relational affine equalities over bit-vector variables (See Chapters 3 and 4). H
cannot be expressed using EZ2w alone. However, the formulas x+2mm[y+2] = 4
and u = mm[y + 2] ^ x + 2u = 4 are equisatisfiable. The variable u is called a
view-variable; the constraint u = mm[y+ 2] is the view-constraint associated
with u.

The equality x + 2u = 4 can be expressed using EZ2w ; therefore, what we
require is a second abstract domain capable of expressing invariants that involve
memory accesses, such as u = mm[y + 2]. This need motivates the bit-vector
memory domain M that we introduce in §5.3. The constraintH can then be ex-
pressed by (i) introducing view-variable u, (ii) representing u’s view-constraint
in M, (iii) extending EZ2w with u, and (iv) using M and EZ2w together.

123

The Bit-Vector Memory-Equality Domain BVME, a domain of bit-vector
affine-equalities over variables and memory-values, is created by applying
the view-product combinator V to the bit-vector memory domain (§5.3)
and the bit-vector equality domain. The Bit-Vector Inequality Domain BVI,
a domain of bit-vector affine-inequalities over variables, is created by
applying V to the bit-vector equality domain and a bit-vector interval
domain. The Bit-Vector Memory-Inequality Domain BVMI, a domain of
relational bit-vector affine-inequalities over variables and memory, is then
created by applying V to the BVME domain and the bit-vector interval
domain. The latter construction illustrates that V composes: the BVMI

domain is created via two applications of V.
The design of the view-product combinator V was inspired by the

Subpolyhedra domain [58] (SubPoly), a domain for inferring relational
linear inequalities over rationals. SubPoly is constructed as a reduced
product of an affine-equality domain K over rationals [49], and an interval
domain J over rationals [19] in which slack variables are used to commu-
nicate between the two domains. Such a design enables SubPoly to be as
expressive as Polyhedra, but more scalable. V provides a generalization of
the construction used in SubPoly. In fact, SubPoly can be constructed by
applying V to K and J (see Eqn. (5.1) in §5.7).

Enabling Technology: Automatic Synthesis of Best Abstract Opera-
tions. Using a symbolic abstraction method §2.3.2, we give a proce-
dure for synthesizing best abstract operations for general reduced-product
domains. In particular, we use this framework to ensure that the trans-
formers for the reduced-product domains constructed via V are sound and
precise, thereby guaranteeing that analysis results will be a conservative
over-approximation of the concrete semantics.

124

Contributions.

The contributions of the chapter are:
• The bit-vector memory domain, a non-relational memory domain

capable of expressing invariants involving memory accesses (§5.3).
• The view-product combinator V, a general procedure to construct

more expressive domains (§5.4).
• Three domains for machine-code analysis constructed using V:

– The bit-vector memory-equality domain BVME, which cap-
tures equality relations among bit-vector variables and memory
(Defn. 5.6).

– The bit-vector inequality domain BVI, which captures inequal-
ity relations among bit-vector variables (Defn. 5.7).

– The bit-vector memory-inequality domain BVMI, which cap-
tures inequality relations among bit-vector variables and mem-
ory (Defn. 5.8).

• A procedure for synthesizing best abstract operations for reduced
products of domains that meet certain requirements (§5.5).

• Experimental results that illustrate the effectiveness of the BVI do-
main applied to machine-code analysis (§5.6). On average (geomet-
ric mean), our BVI-based analysis is about 3.5 times slower than
an affine-equality-based analysis, while finding improved (more-
precise) invariants at 29% of the branch points.

§5.1 provides an overview of our solution. §5.2 defines terminology. §5.7
describes related work.

5.1 Overview

In this section, we illustrate the design of the bit-vector memory-inequality
domain. Consider the Intel x86 machine-code snippet shown in Fig. 5.1.
Pseudo-code for each instruction is shown at the right-hand side of each

125

mov ecx , [ebp�4] //ecx = mm[ebp�4]
add ecx , eax //ecx = ecx+ eax
cmp ecx , 10d // i f ecx ¡u 10
ja L // goto L
xor ecx , ecx // ecx = 0

0 ¤ mm[ebp� 4] + eax ¤ 10
L :

Figure 5.1: Example snippet of Intel x86 machine code.

instruction. Note that the ja instruction, “jump if above, unsigned”, treats
ecx as unsigned. Thus, control reaches the xor instruction only if the value
in ecx is greater than or equal to 0, and less than or equal to 10. Let
R := teax, ecx, ebpu denote the set of register variables, and mm denote the
memory map.

The highlighted text in Fig. 5.1 states the invariant H := 0 ¤ mm[ebp�
4] + eax ¤ 10 that holds after the xor instruction. Again, let EZ2w denote
any of the abstract domains of relational affine equalities over bit-vector
variables. The invariant H cannot be represented using EZ2w , because (i)
H involves an invariant about a value in memory mm, and (ii) H is an in-
equality. To handle memory, we introduce the bit-vector memory domain
M, which is capable of expressing certain constraints on memory accesses.
In particular, we can use M to express the constraint u = mm[ebp � 4],
where u is a fresh variable. We call u a view-variable and u = mm[ebp� 4]
a view-constraint for u. H can be written as the equisatisfiable formula
Hm := u = mm[ebp� 4]^ 0 ¤ u+ eax ¤ 10.

Notice there are no memory accesses in the constraint 0 ¤ u+eax ¤ 10.
The inequality 0 ¤ u + eax ¤ 10 and u + eax = s ^ 0 ¤ s ¤ 10 are
equisatisfiable, where s is a fresh variable. Similar to u, s is a view-variable
with u + eax = s is a view-constraint for s. Thus, Hm can be rewritten
as Hmi := u = mm[ebp � 4] ^ u + eax = s ^ 0 ¤ s ¤ 10. Furthermore,
u + eax = s can be expressed in EZ2w , and 0 ¤ s ¤ 10 can be expressed

126

using a bit-vector interval domain IZ2w . Thus, by introducing the view-
variables u and s, the invariantH can be expressed using M, EZ2w , and IZ2w

together. The following derivation illustrates the above decomposition of
the invariant H:

Memory
u = mm[ebp� 4]

u+ eax = s s P [0, 10]

0 ¤ u+ eax ¤ 10
Inequality

0 ¤ mm[ebp� 4] + eax ¤ 10

Note that the view-constraints u = mm[ebp � 4] and s = u + eax do
not directly constrain the values of R and mm; they only constrain the
view-variables u and s. The shared view-variables are used to exchange
information among the various domains. In particular, the view-variable u
is used to exchange information between memory domain M and equality
domain EZ2w , and the view-variable s is used to exchange information
between EZ2w and interval domain IZ2w .

5.2 Terminology

For a somewhat technical reason, we introduce the device of an abstract-
domain constructor. Given an abstract-domain family A and vocabularies
V1 and V2, an abstract-domain constructor for A, denoted by CA(V1,V2),
constructs A[V3], where V1 � V3 � V1 Z V2. In particular, CA is free to
decide what subset of V2 to use when constructing A[V3]. (In our appli-
cations, the abstract-domain constructors either use all of V2 or none of
V2.)

Let A P A[V]; we denote by AÓV1
the value obtained by projecting A

onto the vocabulary V1 � V . We use ` to denote a vocabulary-extension
operator over domains; in particular, given domain A[V1] and vocabulary
V2, A[V1]` V2 = A[V1 Z V2].

Let G1 = C ���ÑÐ���
α1

γ1
A1 and G2 = C ���ÑÐ���

α2

γ2
A2 be two Galois connections.

127

We use A1[V1] �A2[V2] to denote the reduced product of the domains [21,
§10.1], and xA1;A2y to denote an element of A1[V1] �A2[V2].

5.3 Base Domains

Let mm denote a memory map, and mm[t] denote thew-bit value at memory
address t. For instance, for Intel x86 machine code, mm[t] denotes (the
little-endian interpretation of) the four bytes in memory pointed to by
term t (cf. Ex. 1.3).

Bit-Vector Memory Domain (M). Domain M can capture a limited class
of invariants involving memory accesses. In particular, the domain is
capable of capturing the constraint that the value of a variable v equals
the value of the memory mm at address e: v = mm[e].

Definition 5.2. Given variables P and memory map mm, an elementM of the bit-
vector memory domain M[(mm,P)] is either (i) K, or (ii) a set of constraints,
where each constraint Ci is of the form vi = mm[Σjaijvj + bi], aij,bi P Z2w ,
vi, vj P P. The concretization ofM is

γ(M) = t(mm,−Ñv) |
�
CiPM

(mm,−Ñv) |= Ciu.

The join and meet operation are defined as intersection and union of
constraints, respectively. The join operation \M is: M1 \M M2

def
= tC |

C P M1 and C P M2u. The meet operation [M is: M1 [M M2
def
= tC |

C P M1 or C P M2u. The domain constructor for the bit-vector memory
domain is defined as CM(V1,V2)

def
= M[V1 Z V2].

Bit-Vector Equality Domain (EZ2w). Domain EZ2w = KS can capture re-
lational affine equalities over bit-vectors.

128

Bit-Vector Interval Domain (IZ2w). Domain IZ2w can capture non-
relational bit-vector interval constraints.

Definition 5.3. Given variables V , an element I of the bit-vector interval do-
main IZ2w [V] is either (i) K, or (ii) a set of interval constraints, where each con-
straint Ci is of the form li ¤ vi ¤ ui, li,ui P Z2w , vi P V . The concretization
of I is

γ(I) = t−Ñv |
�
CiPI
−Ñv |= Ciu.

The domain constructor for the bit-vector interval domain is defined as
CI(V1,V2)

def
= IZ2w [V1].

5.4 The View-Product Combinator

In this section, we define the view-product combinator V, and construct
three domains using different applications of V. V constructs a reduced-
product of domains A1 and A2 so that a set of shared view-variables
communicates information between the domains. V makes use of two
principles:

Principle 1: View-variables are constrained by view-constraints. Con-
sider abstract domain A1[V1], and let V1 X V2 = H. The variables in V2

are the view-variables. V will use the domain A1[V1]` V2 = A1[V1 Z V2] (cf.
§5.2). A view-constraint C for V2 is an element of A[V1 Z V2] that serves to
constrain the variable set V2.

Principle 2: A view-constraint does not constrain the values of vari-
ables in V1. Given abstract domain A[V1 Z V2], an acceptable view-
constraint C for V2 is an abstract value C P A[V1 Z V2] such that CÓV1

= J.

We are now in a position to describe how V works.

129

Arguments. V takes four arguments:
• A1[V1], an abstract domain defined over vocabulary V1,
• V2, a vocabulary such that V1 X V2 =H,
• C P A1[V1 Z V2], a view-constraint for V2, and
• CA2, an abstract-domain constructor for abstract domain A2,

Enforcement of view-constraint C. The view-constraint C constrains
the variables in V2. Therefore, V should only consider those elements
A[V1 Z V2] that satisfy C; that is, only elements A P A[V1 Z V2] such that
A �A[V1ZV2] C holds. Put another way, the view-constraint C can be seen
as an integrity constraint. The next definition formalizes this notion (for a
general integrity constraint D P A[V]):

Definition 5.4. Given an abstract domain A[V] and an element D P A[V], the
abstract domain A[V] modulo D, denoted by A[V] |D, is an abstract domain
A 1[V] that contains exactly the elements D[A, A P A; that is,

A[V] |D
def
= tD[A | D P A[V]u

Using the notation from Defn. 5.4, the domain that only contains ele-
ments that satisfy view-constraint C is A1[V1 Z V2] |C.

Reduced product. Let A 1
1[V1 Z V2] be (A1[V1]` V2) |C, where C is the

view-constraint for view-variables V2. All that is left is to perform a
reduced product of A 1

1 and A2. However, for A 1
1 and A2 to be able to

exchange information, the vocabulary of A2 should include at least the
view-variables V2. This condition is satisfied by the domain CA2(V2,V1)

constructed using the abstract-domain constructor for A2 supplied as the
fourth argument to V (cf. §5.2).

130

Summing up, the reduced product performed by V creates A3[V1 Z

V2] := A 1
1[V1 Z V2] � CA2(V2,V1).

Definition 5.5 (View-Product Combinator (V)). Given
• A1[V1], an abstract domain defined over vocabulary V1,
• V2, a vocabulary such that V1 X V2 =H,
• C P A1[V1 Z V2], a view-constraint for V2, and
• CA2, an abstract-domain constructor for abstract domain A2,

the view-product combinator V[A1[V1],V2,C,CA2] constructs a domain
A3[V1 Z V2] such that

A3[V1 Z V2]
def
= (A1[V1]` V2) |C � CA2(V2,V1)

Instantiations. We now describe three applications of V that use the
bit-vector domains defined in §5.3.

V applied to the bit-vector memory domain M and the bit-vector equal-
ity domain EZ2w constructs the Bit-Vector Memory-Equality Domain BVME,
a domain of bit-vector affine-equalities over variables and memory-values.

Definition 5.6 (Bit-Vector Memory-Equality Domain (BVME)).

BVME[(mm,P ZU)] def
= V[M[(mm,P)],U,Cm,CEZ2w

],

where
• M[(mm,P)], the bit-vector memory domain over memory map mm and vari-

ables P (cf. Defn. 5.2),
• U, a vocabulary of variables such that UX P =H,
• Cm PM[(mm,P ZU)], a view-constraint for U, and
• CEZ2w

(V1,V2)
def
= EZ2w [V1 Z V2].

131

V applied to the bit-vector equality domain EZ2w and the bit-vector
interval domain IZ2w constructs the Bit-Vector Inequality Domain BVI, a
domain of bit-vector affine-equalities over variables.

Definition 5.7 (The Bit-Vector Inequality Domain (BVI)).

BVI[P Z S]
def
= V[EZ2w [P],S,Cs,CI],

where
• EZ2w [P], the bit-vector equality domain over variables P,
• S, a vocabulary of variables such that SX P =H,
• Cs P EZ2w [P Z S)], a view-constraint for S, and
• CI(V1,V2)

def
= IZ2w [V1].

The combinator V applied to the bit-vector memory-equality domain
BVME, and a bit-vector interval domain IZ2w constructs the Bit-Vector
Memory-Inequality Domain BVMI, a domain of relational bit-vector affine-
inequalities over variables and memory.

Definition 5.8 (Bit-Vector Memory-Inequality Domain (BVMI)).

BVMI[(mm,P ZUZ S)] def
= V[BVME[(mm,P ZU)],S,Cs,CI]

where
• BVME[(mm,PZU)], the bit-vector memory-equality domain over memory

map mm and variables P Z S (cf. Defn. 5.6),
• S, a vocabulary of variables such that SX (P ZU) =H,
• Cs P BVME[(mm,P ZU)], a view-constraint for S, and
• CI(V1,V2)

def
= IZ2w [V1].

132

5.5 Synthesizing Abstract Operations for
Reduced-Product Domains

In this section, we first discuss a method for automatically synthesizing
abstract operations for a general reduced-product domain A3[V1 Z V2] :=

A1[V1] � A2[V2] using the abstract operations of A1 and A2, which them-
selves may be automatically synthesized. We then discuss some pragmatic
choices that we made for the reduced-product domains that the view-
product combinator V creates.

Semantic Reduction. The semantic reduction of xA1;A2y P A1 �A2 = A3

can be computed as pα3(ψ), where ψ is pγ1(A1) ^ pγ2(A2). Computing the
semantic reduction in this way can be computationally expensive. Instead
we assume there exists a weak semantic-reduction operator Reduce. Using
this weak semantic-reduction operator we can define the other abstract
operations for the reduced-product domain. Furthermore, because it can
be expensive to determine whether xA1;A2y � xA

1
1;A 1

2y holds, we define a
weaker approximation order r�:

Definition 5.9. The weak approximation order r� is defined as follows:
xA 1

1;A 1
2y r�xA2

1 ;A2
2 y if and only if A 1

1 �A1 A
2
1 and A 1

2 �A2 A
2
2 .

It is easy to show that if xA 1
1;A 1

2y r�xA2
1 ;A2

2 y, then xA 1
1;A 1

2y � xA
2
1 ;A2

2 y,
though the converse may not always hold.

We define quasi-join, an approximation to the join operator for reduced-
product domain, which is not guaranteed to return the least-upper bound,
but is sound and simple.

Definition 5.10. The quasi-join operator, denoted by r\, is defined as follows:
xA 1

1;A 1
2y r\xA2

1 ;A2
2 y

def
= Reduce(xA 1

1 \A1 A
2
1 ;A 1

2 \A2 A
2
2 y).

Theorem 5.11. [Soundness of Quasi-Join] Let xA1;A2y =

xA 1
1;A 1

2y r\xA2
1 ;A2

2 y. Then γ(xA1;A2y) � γ(xA
1
1;A 1

2y)Y γ(xA
2
1 ;A2

2 y).

133

The quasi-meet operation is similar in flavor to quasi-join:

Definition 5.12. The quasi-meet operator, denoted by r[, is defined as follows:
xA 1

1;A 1
2y r[xA2

1 ;A2
2 y

def
= Reduce(xA 1

1 [A1 A
2
1 ;A 1

2 [A2 A
2
2 y).

Theorem 5.13. [Soundness of Quasi-Meet] Let xA1;A2y =

xA 1
1;A 1

2y r[xA2
1 ;A2

2 y. Then γ(xA1;A2y) � γ(xA
1
1;A 1

2y)X γ(xA
2
1 ;A2

2 y).

We now define weak semantic-reduction operators for each of the pairs
of domains used in our constructions. The algorithms for these specific
domains have not been stated explicitly in the literature, and are stated
here for completeness. (Previous work tackled the rational-arithmetic
variants of these domains.)

Algorithm 6 Algorithm for weak semantic-reduction for M[V] � EZ2w [V].
1: for constraint v1 = mm[e1] PM do
2: for constraint v2 = mm[e2] PM do
3: if E �EZ2w

te1 = e2u then
4: EÐ E[EZ2w

tv1 = v2u

5: return xM;Ey

Weak Reduce forM�EZ2w . Alg. 6 computes the weak semantic-reduction
for the bit-vector memory domain and bit-vector equality domain. Given
xM;Ey P M[(mm,V)] � EZ2w [V], Reduce(xM;Ey) infers further equalities
among V . The key insight is to model the memory map mm as an uninter-
preted function; that is, t1 = t2 implies mm[t1] = mm[t2]. We are effectively
approximating the theory of arrays using the theory of uninterpreted
functions with equality (EUF) [14], thereby ensuring that the reduction
operation is efficient. As shown in lines 3 and 4, if e1 = e2 then the algo-
rithm infers that v1 = v2. The following example illustrates the working of
Alg. 6.

134

Example 5.14. Let V be tx,y, z,u1,u2u. Consider xM;Ey := xu1 =

mm[x],u2 = mm[y + 8]; x = y + z � 2, z = 10y. From E we can infer that
x = y + 8. Thus, mm[x] = mm[y + 8], and we can infer that u1 = u2. Thus, E
can be updated to E[EZ2w

tu1 = u2u.
No further reduction is possible; thus, ReduceM�EZ2w

(xM;Ey = xu1 =

mm[x],u2 = mm[y+ 8];u1 = u2, x = y+ z� 2, z = 10y.

The following example shows a case when ReduceM�EZ2w
fails to find

the most precise answer.

Example 5.15. Consider the situation when analyzing Intel x86 machine code.
The bit-width w is 32. The memory map mm is a map from 32-bit bit-vector to
8-bit bit-vectors, and the addressing mode is little-endian (cf. Ex. 1.3). Let V
be tr,u1,u2,u3u. Consider xM;Ey := xu1 = mm[r],u2 = mm[r + 2],u3 =

mm[r + 4];u1 = 0,u3 = 0;Jy. Because neither r = r + 2 nor r = r + 4
hold, Alg. 6 cannot infer any further equalities among u1, u2, and u3. Thus,
ReduceM�EZ2w

(xM;Ey) = xM;Ey.
However, xM;Ey is not the best reduction possible. Because u1 = 0 and

u3 = 0, we can infer that mm[r] and mm[r+ 4] are 0. Thus, the bytes at addresses
r through r + 7 are all 0, because we assumed little-endian addressing. Con-
sequently, mm[r + 2] = 0, and u2 = 0. Thus, the best reduction for xM;Ey is
xu1 = mm[r],u2 = mm[r + 2],u3 = mm[r + 4];u1 = 0,u2 = 0,u3 = 0y. The
reason the ReduceM�EZ2w

algorithm was unable to deduce this was because the
algorithm treats the memory map as an uninterpreted function. Thus, though
sound, Alg. 6 is not always able to deduce the best possible reduced value.

Theorem 5.16. [Soundness of Alg. 6] Let xM 1;E 1y =

ReduceM�EZ2w
(xM;Ey). Then γ(xM 1;E 1y) = γ(xM;Ey), and

xM 1;E 1y r�xM;Ey).

Weak Reduce for EZ2w �IZ2w . Alg. 7 computes a weak semantic-reduction
for the bit-vector equality domain and the bit-vector interval domain.

135

Algorithm 7 Algorithm for weak semantic-reduction for EZ2w [P Z S] �
IZ2w [S].

1: E 1 Ð EÓS
2: for s P S do
3: for constraint (s = c+

°
tPS^t�s att) P E

1 do
4: ιÐ [[c+

°
tPS^t�s att]](I)

5: IÐ I[IZ2w
J[s P ι]

6: return xE; Iy

Given xE; Iy P EZ2w [P Z S] � IZ2w [S], ReduceEZ2w �IZ2w
(xE; Iy) infers tighter

interval bounds on the variables in S. Reduction is performed by first
projecting E onto S to determine the affine relations E 1 that hold among
the variables in S (line 1). These affine relations are used in lines 2–5 to
infer tighter intervals for the variables in S. “[[expr]]” denotes the evaluation
of expression expr over interval domain IZ2w via interval arithmetic. New
interval constraints are identified by evaluating expressions of the form
c+

°
tPS^t�s att over IZ2w using the current interval value I (line 4). These

constraints are then incorporated into I via meet (line 5).

Example 5.17. Let P := tx,yu, and S := ts1, s2u, where the bit-width of the bit-
vector is 4. Consider xE; Iy := xs1 = 2x+ 2y, s2 = x+y; s1 P [4, 9], s2 P [3, 5]y.
By projecting E onto the variables S := ts1, s2u, we obtain E 1 = ts1 = 2s2u

on line 1. On line 4, we have ι = [[2s2]](I) = [6, 10]. Using this equation, I is
updated on line 5; that is, I = ts1 P [4, 9], s2 P [3, 5]u [ts1 P [6, 10], s2 P Ju =

ts1 P [6, 9], s2 P [3, 5]u. No further reduction is possible.
Thus, ReduceEZ2w �IZ2w

(xE; Iy) = xs1 = 2x+ 2y, s2 = x+y; s1 P [6, 9], s2 P

[3, 5]y. Note that Alg. 7 is not guaranteed to deduce the best possible interval
constraints. The best possible reduction of xE; Iy is xs1 = 2x+2y, s2 = x+y; s1 P

[6, 8], s2 P [3, 4]y.

Theorem 5.18. [Soundness of Alg. 7] Let xE 1; I 1y = ReduceEZ2w �IZ2w
(xE; Iy).

Then γ(xE 1; I 1y) = γ(xE; Iy), and xE 1; I 1y r�xE; Iy).

136

Program Measures of Size Performance (sec.) Precision (BVI � EZ2w)
Name Instrs CFGs BBs Branches EZ2w BVI Control-Point Procedure

Invariants Summaries
finger 532 18 298 48 185 639 24/48 3/18
subst 1093 16 609 74 303 1151 11/74 3/16
label 1167 16 573 103 236 986 24/103 2/16
chkdsk 1468 18 787 119 631 1675 12/119 3/18
convert 1927 38 1013 161 441 1744 101/161 0/38
route 1982 40 931 243 749 2497 78/243 2/39
comp 2377 35 1261 224 849 2740 22/224 0/35
logoff 2470 46 1145 306 861 3253 124/306 13/46

Table 5.1: Machine-code analysis using BVI. Columns 6–9 show the times
(in seconds) for the EZ2w -based analysis, and for the BVI-based analysis;
and the degree of improvement in precision measured as the number of
control points at which BVI-based analysis gave more precise invariants
compared to EZ2w -based analysis, and the number of procedures for which
BVI-based analysis gave more precise summaries compared to EZ2w -based
analysis.

5.6 Experimental Evaluation

In this section, we compare the performance and precision of the bit-vector
equality domain EZ2w with that of the bit-vector inequality domain BVI.
The abstract transformers for the BVI domain were synthesized using the
approach given in Section 6. The weak semantic-reduction operator de-
scribed in Alg. 7 was used in the implementation of the compose operation
needed for interprocedural analysis.

Experimental Setup. We analyzed a corpus of Windows utilities using
the WALi [50] system for weighted pushdown systems (WPDSs). Tab. 5.1
lists several size parameters of the examples (number of instructions, pro-
cedures, basic blocks, and branches).1 The weight on each WPDS rule
encodes the abstract transformer for a basic block B of the program, in-
cluding a jump or branch to a successor block. A formula ϕB is created

1Due to the high cost of the WPDS construction, all analyses excluded the code for
libraries. Because register eax holds the return value from a call, library functions were
modeled approximately (albeit unsoundly, in general) by “havoc(eax)”.

137

that captures the concrete semantics of B, and then the weight for B is
obtained by performing pα(ϕB). We used EWPDS merge functions [56] to
preserve caller-save and callee-save registers across call sites. The post*

query used the FWPDS algorithm [55].

View-selection Heuristic. Given the set of machine registers P, the view-
constraints Cs were computed as Cs :=

�
riPP

tsi1 = ri, si2 = ri + 231u. In
particular, the view-variable si2 allows us to keep track of whether ri, when
treated as a signed value, is less-than or equal 0.

Performance. Columns 6 and 7 of Tab. 5.1 list the time taken, in seconds,
for EZ2w -based analysis, and the BVI-based analysis. On average (geomet-
ric mean), BVI-based analysis is about 3.5 times slower than EZ2w -based
analysis.

Precision. We compare the procedure summaries, and the invariants for
each control point—i.e., the point just before a branch instruction. Column
8 lists the number of control points at which BVI-based analysis gave more
precise invariants compared to EZ2w -based analysis. BVI-based analysis
gives more precise invariants at up to 63% of control points, and, on
average, BVI-based analysis improves precision for 29% of control points.
Column 9 lists the number of procedures for which BVI-based analysis
gave more precise summaries compared to EZ2w -based analysis. BVI-
based analysis gives more precise summaries for up to 17% of procedures,
and, on average BVI-based analysis gave better summaries for 9.3% of
procedures.

5.7 Related Work

Other work on identifying bit-vector-inequality invariants includes Brauer
and King [11, 12] and Masdupuy [66]. Masdupuy proposed a relational

138

abstract domain of interval congruences on rationals. One limitation of his
machinery is that the domain represents diagonal grids of parallelepipeds,
where the dimension of each parallelepiped equals the number of variables
tracked (say n). In our work, we can have any number of view-variables,
which means that the point-spaces represented can be constrained by more
than n constraints.

Brauer and King employ bit-blasting to synthesize abstract transform-
ers for the interval and octagon [68] domains. One of their papers uses
universal-quantifier elimination on Boolean formulas [11]; the other avoids
quantifier elimination [12]. Compared with their work, we avoid the use
of bit-blasting and work directly with representations of sets of w-bit bit-
vectors. The greatly reduced number of variables that comes from working
at word level opens up the possibility of applying our methods to much
larger problems; as discussed in §5.6, we were able to apply our methods to
interprocedural program analysis. The equality domain EZ2w that we work
with can capture relations on an arbitrary number of variables, and thus
so can the domains that we construct using V. Compared with octagons,
which are limited to two variables and coefficients of �1, the advantage is
that our domains can express more interesting invariants and procedure
summaries. In particular, Octagon-based summaries would be limited to
one pre-state variable and one post-state variable.

The view-product combinator V is a compositional generalization of
the construction used in SubPoly. SubPoly is constructed as a reduced
product of an affine-equality domain K over rationals [49], and an interval
domain J over rationals [19] with slack view-variables S to communicate
between the two domains. SubPoly can be constructed by applying V to
K and J, as follows:

SubPoly[P Z S] def
= V[K[P],S,Cs, J], (5.1)

where Cs is the view-constraint for S and J(V1,V2)
def
= J[V1].

139

When an analysis system works with two or more reasoning techniques,
there is often an opportunity to share information to improve the precision
of both. The principle is found in the classic papers of Cousot and Cousot
[21] and Nelson and Oppen [80]. In practice, there are a range of choices as
to what might be shared, and our work represents one point in that design
space. The algorithms for weak semantic-reduction (Alg. 6 and 7) adapt
techniques for theory combination that have been used in Satisfiability
Modulo Theory (SMT) solvers [27, 33].

The work of Chang and Leino [16] is similar in spirit to ours. They
developed a technique for extending the properties representable by a
given abstract domain from schemas over variables to schemas over terms.
To orchestrate the communication of information between domains, they
designed the congruence-closure abstract domain, which introduces vari-
ables to stand for subexpressions that are alien to a base domain; to the
base domain, these expressions are just variables. Their scheme for propa-
gating information between domains is mediated by the e-graph of the
congruence-closure domain. In contrast, our method can make use of
past work on synthesizing best abstract operations [84, 100] to propagate
information between domains. As discussed in §5.5, we also employ less
precise, more pragmatic procedures that use information in one domain
to iteratively refine information in another domain. Cousot et al. [22] have
recently studied the iterated pairwise exchange of observations between
components as a way to compute an overapproximation of a reduced
product.

5.8 Chapter Notes

Aditya Thakur and Thomas Reps supervised me in this work. Aditya
Thakur was instrumental in providing the key insights and helped me in
the implementation of the view-combinator and reduced-product frame-
work.

140

6 sound bit-precise numerical domains
framework for inequalities

This chapter tackles the challenges of implementing a bit-precise relational
domain capable of expressing program invariants. The chapter describes
the design and implementation of a new framework for abstract domains,
called the Bit-Vector-Sound Finite-Disjunctive (BVSFD) domains, which are
capable of capturing useful program invariants such as inequalities over
bit-vector-valued variables.

The BVI domain in Chapter 5 can handle certain kind of bit-vector
inequalities, but it needs the client to provide a template for inequalities.
Moreover, the domain is incapable of expressing simple inequalities of
form x ¤ y, because they have variables on both side of the inequality.

Simon et al. [96] introduced sound wrap-around to ensure that the
polyhedral domain is sound over bit-vectors. The wrap-around opera-
tion is called selectively on the abstract-domain elements while calculat-
ing the fixpoint. The operation is called selectively to preserve precision
while not compromising on soundness with respect to the concrete seman-
tics. The Verasco static analyzer [48] provides a bit-precise parameterized
framework for abstract domains using the wrap-around operation. This
approach has two disadvantages:

• The wrap-around operation almost always loses information due
to calls on join: the convex hull of the elements that did not over-
flow with those that did usually does not satisfy many inequality
constraints.

• They do not show how to create abstract transformers automatically.
We introduce a class of abstract domains, called BVS(A), that is sound

with respect to bitvectors whenever A is sound with respect to mathemat-
ical integers. The A domain can be any numerical abstract domain. For
example, it can be the polyhedral domain, which can represent useful

141

program invariants as inequalities. We also describe how to create abstract
transformers for BVS(A) that are sound with respect to bitvectors. For
v � Var and av P A, we denote the result by WRAPv(av); the operation
performs wraparound on av for variables in v. We give an algorithm for
WRAPv(av) that works for any relational abstract domain (see §6.3.1). We
use a finite number of disjunction of A elements—captured in the domain
FDd(A)—to help retain precision. The finite disjunctive domain is param-
eterized by the maximum number of disjunctions allowed in the domain
(referred to as d). Note that d=1 is the same as convex polyhedra with
wrap-around [96].

Problem statement.

Given a relational numeric domain over integers, capable of express-
ing inequalities, (i) provide an automatic method to create a rela-
tional abstract domain that can capture inequalities over bit-vector-
valued variables; (ii) create sound bit-precise abstract transformers;
and (iii) use them to identify inequality invariants over a set of pro-
gram variables.

Related work and contributions. Our work incorporates a number of
ideas known from the literature, including

• the use of relational abstract domains [23, 71, 58, 69, 97, 82] that
are sound over mathematical integers and capable of expressing
inequalities.

• the use of a wrap-around operation [96, 13, 3] to ensure that the
abstraction is sound with respect to the concrete semantics of the
bitvector operations.

• the use of finite disjunctions [88, 4, 37] over abstract domains to
obtain more precision.

142

• the use of instruction reinterpretation [47, 79, 81, 64, 60, 30] to obtain
an abstract transformer automatically for an edge from a basic block
to its successor.

Our contribution is that we put all of these to work together in a pa-
rameterized framework, along with a mechanism to increase precision by
performing wrap-around on abstract values lazily.

• We propose a framework for abstract domains, called BVSFDd(A), to
express bit-precise relational invariants by performing wrap-around
over abstract domain A and using disjunctions to retain precision.
This abstract domain is parameterized by a positive value d, which
provides the maximum number of disjunctions that the abstract
domain can make use of.

• We provide a generic technique via reinterpretation to create the
abstract transformer for the path through a basic block to a given
successor, such that the transformer incorporates lazy wrap-around.

• We present experiments to show how the performance and precision
of BVSFDd analysis changes with the tunable parameter d.

§6.1 introduces the terminology and notation used in the rest of the chapter.
§6.2 demonstrates our framework with the help of an example. §6.3 intro-
duces the BVSFDd abstract-domain framework, and formalizes abstract-
transformer generation for the framework. §6.4 presents experimental
results.

6.1 Terminology

A[V] denotes the specific instance of A that is defined over vocabulary V ,
where V is a tuple of variables (v1, v2, ..., vk). Each variable vi also has an
associated size in bits, denoted by s(vi). The domain C is the powerset of
the set of concrete states.

143

6.1.1 Concretization.

Given an abstract value A P A[V], where V consists of n variables
(v1, v2, ..., vk), the concretization of A, denoted by γA[V](A), is the set of
concrete states covered by A.

A concrete state σ is a mapping from variables to their concrete values,
σ : V Ñ ΠvPVBV

s(v), where s(v) is the size of variable v in bits and BVb is
a bitvector with b bits.

γA[V](A) =
¤

(a1 ,a2 ,..,ak)PA

µV (bv1,bv2, ...,bvk), where bvi = ai%2s(vi) for i P 0..n

µV(bv1,bv2, ...,bvk) takes a tuple of bitvectors corresponding to vocabu-
lary V and returns all concrete stores where each variable vi in V has the
value bvi.

6.1.2 Wrap-around operation.

The wrap-around operation, denoted by WRAPtyV 1(A), takes an abstract-
domain value A P A[V], a subset V 1 of the vocabulary V , and the desired
type ty for vocabulary V 1. It returns an abstract value A 1 such that the
wrap-around behavior of the points in A is soundly captured. This opera-
tion is performed by displacing the concrete values in γA[V](A) that are
outside the bitvector range for ty in vocabulary V 1 to the correct bitvector
range by appropriate linear transformations.

x 0 -256 256 512

y

(i)

x 0 256

(ii)

 y

Figure 6.1: Wrap-around on variable x, treated as an unsigned char.

For example, in Fig. 6.1, the result of calling wrap-around on the line

144

xELangy :: (Block)�
xBlocky :: ł : (xStmty ;)� xNexty
xNexty :: jump ł;

| if v xOpyxTypey xExpry then jump ł ; xNexty
xOpy :: | ¤ | = | � | ¥ | ¡
xExpry :: n | n � v+ xExpry
xStmty :: v = xExpry

| v:xTypey = v:xTypey
xTypey :: (uint | int) xSizey
xSizey :: 1 | 2 | 4 | 8

in (i) for variable x leads to an abstract value that is the abstraction of
the points in the three line segments in (ii). For the abstract domain of
polyhedra, that abstraction is the shaded area in (ii).

6.1.3 Soundness.

An abstract valueA P A[V] is sound with respect to a set of concrete values
C P C, if γA[V] � C.

6.1.4 L(ELang): A Concrete language featuring finite
integer arithmetic.

We borrow the simple language featuring finite-integer arithmetic from
§ 2.1 of [96] (with minor syntactic changes). An ELang program is a
sequence of basic blocks with execution starting from the first block. Each
basic block consists of a sequence of statements and a list of control-flow
instructions.

The statements are restricted to an assignment of a linear expression
or a cast operation. The control-flow instruction consists of either a jump
statement, or a conditional that is followed by more control-flow instruc-
tions. The assignment and condition instructions expect the variable and
the expression involved to have the same type.

145

6.2 Overview

In this section, we motivate and illustrate the design of our analysis using
the BVSFD domain.

Example 6.1. This example illustrates a function f that takes two 32-bit integers
x and y at different rates, and resets their values to zero in case y is negative
or overflows to a negative value. The function summary that we would like to
obtain states that the relationship x 1 ¤ y 1 holds. Here, the unprimed and primed
variables denote the pre-state vocabulary variables and the post-state vocabulary
variables, respectively.

L0 : f (in t x , in t y) {
L1 : assume (x<=y)
L2 : while (∗) {
L3 : i f (∗)
L4 : x=x +1 , y=y+1
L5 : y=y+1
L6 : i f (y <=0)
L7 : x =0 , y=0
L8 : }

END: }

This example illustrates that merely detecting overflow would not be useful
to assert the x = y relationship at the end of the function.

6.2.1 Creation of Abstract Transformers

Consider the analysis for Ex. 6.1 with the abstract domain BVSFD2(OCT).
The first step involves constructing the abstraction of the concrete opera-
tions in the program as abstract transformers.

For instance, the abstract transformer for the concrete operations start-
ing from node L0 and ending at node L2, denoted by τ7L0ÑL2, is defined
as

tm ¤ x,y ¤M^ x 1 = x^ y 1 = y^ x 1 ¤ y 1u,

146

wherem andM represent the minimum and maximum values for a signed
32-bit integer, respectively. The constraints tm ¤ x,y ¤ Mu are the
bounding constraints on the pre-state vocabulary that are added because
L0 is the entry point of the function, and the function expects three 32-bit
signed values x and y as input. The equality constraints tx 1 = x,y 1 = yu
specify that the variables x and y are unchanged. Finally, the constraint
tx 1 ¤ y 1u is added as a consequence of the assume call.

Now consider other concrete transformations, such as L4 Ñ L5 and
L5 Ñ L6. For the transformation L4 Ñ L5, the values for x 1 and y 1 might
overflow because of the increment operations at L4. Consequently, the
value of the incoming variable y in the transformation L5 Ñ L6 might have
overflowed as well. There are two ways to design the abstract transformer
to deal with these kind of scenarios: 1) a naive eager approach, 2) a lazy
approach.

Eager Abstract Transformers.

In the naive eager approach, the abstract transformers are created such that
the pre-state vocabulary is always bounded as per the type requirements.
For this example, that would mean that the pre-state vocabulary variables
x and y are bounded in the range [m,M]. Consequently, the abstract
transformers for L4 Ñ L5 and L5 Ñ L6 are:

• τ7EL4ÑL5 = tm ¤ x,y ¤M^ x 1 = x+ 1^ y 1 = y+ 1u
• τ7EL5ÑL6 = tm ¤ x,y ¤M^ x 1 = x^ y 1 = y+ 1u.

Because the eager approach expects the pre-state vocabulary to be
bounded, an abstract-composition operation a1 � a2, where a1 and a2

are abstract transformers, needs to call the WRAP operation (§6.1.2) for
the entire post-state vocabulary of a2, for correctness. For instance, let
a1 = tm ¤ u ¤M^ u 1 = uu and a2 = tm ¤ u ¤M^ u 1 =M + 1u. The
abstract transformer a1 preserves u and a2 changes the value of u 1 toM+1.
The composition of these operations matches the pre-state vocabulary of a1

147

with the post-state vocabulary of a2, by renaming them to the same tempo-
rary variables and performing a meet. For this particular example, it will
perform tm ¤ u2 ¤M^u 1 = u2u[WRAPu2(tm ¤ u ¤M^u2 =M+1u),
where it has matched the pre-state vocabulary variable u of a1 with the
post-state vocabulary variable u 1 of a2, by renaming them both to a tem-
porary variable u2. Note that in the absence of the WRAP operation on
the post-state vocabulary of a2, the meet operation above will return the
empty element K. This result would be unsound because the value of u 1

in a2 should have overflowed tom.
Now consider the composition τ7EL5ÑL6 � τ

7E
L4ÑL5. After matching, com-

position will perform the meet of:
• tm ¤ x2,y2 ¤M^ x 1 = x2 ^ y 1 = y2 + 1u
• WRAPtx2,y2utm ¤ x,y ¤M^ x2 = x+ 1^ y2 = y+ 1u

The result of WRAP will be a join of four values. The four values are
the combinations of cases where x2 and y2 might or might not overflow.
As a result, the final composition will give an abstract transformer that
overapproximate those four values. For BVSFD2(OCT), it will result in a
loss of precision because it cannot express the disjunction of these four
values precisely.

Lazy Abstract Transformers.

The eager approach to creating abstract transformers forces a call to WRAP
at each compose operation. The lazy approach can avoid unnecessary calls
to WRAP by not adding any bounding constraints to the pre-state vocabu-
lary. The abstract transformer τ7LL4ÑL5 is defined as tx 1 = x+1^y 1 = y+1u
and τ7LL5ÑL6 is defined as tx 1 = x^ y 1 = y+ 1u. The abstract transformer
τ7LL4ÑL5 is sound, because the concretization of the abstract transformer,
denoted by γ(τ7LL4ÑL5), overapproximates the collecting concrete seman-
tics for L4 Ñ L5 (see proposition 1 in [96]). A similar argument can be
made for the abstract transformer τ7LL5ÑL6. The composition τ7LL5ÑL6 �τ

7L
L4ÑL5

148

gives tx 1 = x + 1 ^ y 1 = y + 2u. Thus, the lazy abstract transformer
can retain precision by avoiding unnecessary calls to WRAP. However,
one cannot avoid calling WRAP for every kind of abstract transformer
and still maintain soundness. Consider the abstract transformer τ7LL5ÑL7,
which is similar to τ7LL5ÑL6, but must additionally handle the branch con-
dition for L6 Ñ L7. Defining it in a similar vein as L4 Ñ L5 will result in
tx 1 = x^ y 1 = y+ 1^ y 1 ¤ 0u. While the first three constraints are sound,
the fourth constraint representing the branch condition, is unsound with
respect to the concrete semantics. The reason is that y 1 might overflow
to a negative value, in which case the condition evaluates to true and the
branch to L7 is taken. However, the abstract transformer does not capture
that behavior and is, therefore, unsound with respect to the concrete se-
mantics. To achieve soundness in the presence of a branch condition, the
following steps are performed for each variable v 1 involved in a branch
condition:

• A backward dependency analysis is performed to find the subset
Vb of the pre-state vocabulary on which v 1 depends. For the edge
L5 Ñ L6, only y 1 is involved in a branch condition. The backward-
dependency analysis yields Vb = tyu, because the only pre-state
vocabulary variable that y 1 depends on is y.

• The bounding constraints for the vocabulary Vb are added to the ab-
stract transformer. For example, after adding bounding constraints,
τ7LL5ÑL6 becomes tm ¤ y ¤M^ x 1 = x^ y 1 = y+ 1^ y 1 ¤ 0u.

• The wrap operation is called on the abstract transformer for the
variable v 1. For the edge L5 Ñ L6, this step will soundly set the
abstract transformer to the disjunction of

– tm ¤ y ¤M� 1^ x 1 = x^ y 1 = y+ 1^ y 1 ¤ 0u
– ty =M� 1^ x 1 = x^ y 1 = mu

Note that the abstract domain BVSFD2(OCT) can precisely express
the above disjunction because the number of disjunctions is ¤ 2.

149

Our analysis uses the lazy approach to create abstract transformers,
because it can provide more precise function summaries. Fig. 6.2 illustrates
the lazy abstract transformers generated for Ex. 6.1.

END1

L01

L21

L41

L51

L71

L81

L31

L0→L2: (m≤ x,y≤M) ˄ (x’=x ˄ y’=y) ˄ x’≤y’
L2→L3: ID
L3→L4: ID
L3→L5: ID
L4→L5: x’=x+1 ˄ y’=y+1
L5→L7:

- (m≤ y≤M-1) ˄ (x’=x ˄ y’=y+1) ˄ y’≤0
- (y=M) ˄ (x’=x ˄ y’=m)

L5→L8: (m≤ y≤M-1) ˄ (x’=x ˄ y’=y+1) ˄ y’>0
L7→L8: x’=0 ˄ y’=0
L8→L2: ID
L2→END: ID

ID: x’=x ˄ y’=y

Figure 6.2: Lazy abstract transformers with the BVSFD2(POLY) domain
for Ex. 6.1. ID refers to the identity transformation.

6.2.2 Fixed-point computation

To obtain function summaries, an iterative fixed-point computation needs
to be performed. Tab. 6.1 provides some snapshots of the fixpoint analysis
with the BVSFD2(OCT) domain for Ex. 6.1.

To simplify the discussion, we focus only on three program points: L2,
L5, and L7. Each row in the table shows the intermediate value of path
summaries from L0 to each of the three program points. Quiescence is
discovered during the fifth iteration. The abstract value in row (i) and
column L2 shows the intermediate path summary for L2 calculated after
one iteration of the analysis. It states that the pre-state vocabulary variables
x and y are bounded and neither of them has been modified, because at
this iteration the analysis has not considered the paths that go through
the loop. At row (i) and column L5, the domain precisely captures the
disjunction of two paths arising at the conditional at L3. The abstract

150

Table 6.1: Snapshots in the fixed-point analysis for Ex. 6.1 using the
BVSFD2(OCT) domain. Bv1,v2,..,vk are the bounding constraints for the vari-
ables v1,v2,..vk.

Node L2 L5 L7

(i) • Bx,y ^ (x 1 = x) ^

(y 1 = y)

• Bx,y ^ (x 1 = x) ^

(y 1 = y)

• Bx,y ^ (x 1 = x+ 1) ^
(y 1 = y+ 1)

• Bx,y ^ (m ¤ y 1 ¤ 0) ^
(x ¤ x 1 ¤ x+ 1) ^
(y ¤ y 1 ¤ y+ 2) ^
(x 1 ¤ y 1)

• Bx,y ^

(m ¤ y 1 ¤ m+ 1) ^
(x ¤ x 1 ¤ x+ 1)

(ii) • Bx,y,y1 ^

(x ¤ x 1 ¤ x+ 1) ^
(y ¤ y 1 ¤ y+ 2) ^
(x 1 ¤ y 1)

• Bx,y ^ (x 1 = 0) ^
(y 1 = 0)

• Bx,y ^ (x ¤ x 1 ¤ x+ 2)
^ (y ¤ y 1 ¤ y+ 3) ^
(x 1 ¤ y 1)

• Bx,y ^ (0 ¤ x 1 ¤ 1) ^
(y 1 = x 1)

• Bx,y ^ (m ¤ y 1 ¤ 0) ^
(x ¤ x 1 ¤ x+ 2) ^
(y ¤ y 1 ¤ y+ 4) ^
(x 1 ¤ y 1)

• Bx,y ^

(m ¤ y 1 ¤ m+ 3) ^
(x ¤ x 1 ¤ x+ 2)

(iii) • Bx,y,y1 ^

(x ¤ x 1 ¤ x+ 2) ^
(y ¤ y 1 ¤ y+ 4) ^
(x 1 ¤ y 1)

• Bx,y ^ (0 ¤ x 1 ¤ 1)
^ (0 ¤ y 1 ¤ 2) ^
(x 1 ¤ y 1)

• Bx,y ^ (x ¤ x 1 ¤ x+ 3)
^ (y ¤ y 1 ¤ y+ 5) ^
(x 1 ¤ y 1)

• Bx,y ^ (0 ¤ x 1 ¤ 2) ^
(0 ¤ y 1 ¤ 4) ^
(x 1 ¤ y 1)

• Bx,y ^ (m ¤ y 1 ¤ 0) ^
(x ¤ x 1 ¤ x+ 3) ^
(y ¤ y 1 ¤ y+ 6) ^
(x 1 ¤ y 1)

• Bx,y ^

(m ¤ y 1 ¤ m+ 5) ^
(x ¤ x 1 ¤ x+ 3)

(iv) • Bx,y,y1 ^ (x ¤ x 1) ^

(y ¤ y 1) ^ (x 1 ¤ y 1)

• Bx,y,y1 ^ (0 ¤ x 1) ^
(x 1 ¤ y 1)

• Bx,y ^ (x ¤ x 1) ^

(y ¤ y 1) ^ (x 1 ¤ y 1)

• Bx,y ^ (0 ¤ x 1) ^
(x 1 ¤ y 1)

• Bx,y ^ (m ¤ y 1 ¤ 0) ^
(x ¤ x 1) ^ (y ¤ y 1) ^

(x 1 ¤ y 1)

• Bx,y,y1 ^ (m ¤ y 1 ¤ 0)

value at row (i), column L7 is obtained as the composition of the abstract
transformer L5 Ñ L7 with the path summary at L5 in row (i). The abstract-
composition operations for abstract values with disjunctions performs
abstract composition for all pairs of abstract transformers in the arguments,
and then does a join on that set of values. To obtain the abstract transformer
for L7 in row (i), it computes the join of the following values:

1. Bx ^ (m ¤ y ¤M� 1) ^ (x 1 = x) ^ (y 1 = y+ 1) ^ (y 1 ¤ 0)

2. Bx ^ (m ¤ y ¤M� 2) ^ (x 1 = x+ 1) ^ (y 1 = y+ 2) ^ (y 1 ¤ 0)

3. Bx ^ (y =M) ^ (x 1 = x) ^ (y 1 = m)

151

4. Bx ^ (M ¤ y ¤M� 1) ^ (x 1 = x) ^ (m ¤ y 1 ¤ m+ 1)

Our abstract-domain framework uses a distance heuristic (see §6.3.1) to
merge abstract values that are closest to each other. For this particular
case, the abstract transformers (1) and (2) describe the scenarios where
y 1 does not overflow, and are merged to give the first disjunct of row (i),
column L7. Similarly, the abstract transformers (3) and (4) describe the
scenarios where y 1 overflows, and are merged to give the second disjunct
of row (i), column L7.

In the second iteration, shown in row (ii), the first disjunct for L2 is the
join of the effect of first iteration of the loop, where x and y are incremented,
with the old value, where x and y are unchanged. Additionally, the second
disjunct in row (ii), column L2 captures the case where both x and y are
set to 0 at program point L7. Iteration (iii) proceeds in a similar manner,
and finally the value at L2 saturates due to widening. The value of L2 at
iteration (iv) is propagated to the end of the function to give the following
function summary:

• Bx,y,y1 ^ (x ¤ x 1) ^ (y ¤ y 1) ^ (x 1 ¤ y 1)

• Bx,y,y1 ^ (0 ¤ x 1) ^ (x 1 ¤ y 1)

Thus, the function summary enables us to establish that x 1 ¤ y 1 is true at
the end of the function.

6.3 The BVSFD Abstract-Domain Framework

In this section, we present the intuition and formalism behind the design
and implementation of the BVSFD abstract-domain framework.

6.3.1 Abstract-Domain Constructors

BVSFD uses of the following abstract-domain constructors:
• Bit-Vector-Sound Constructor: This constructor, denoted by BVS[A],

takes an arbitrary abstract domain and constructs a bit-precise ver-

152

Algorithm 8 Wrap for a single variable
1: function Wrap(a, v, ty)

2: if a isK then

3: returnK

4: (m,M)Ð Range(ty)

5: sÐ (M�m)+ 1

6: [l,u]ÐGetBounds(a,v)

7: if l��∞^u�∞ then

8: xql ,quy Ð x
X
(l�m)/s

\
,
X
(u�m)/s

\
y

9: bÐ C(m¤ v)[C(v¤M)

10: if l =�∞_u = ∞_ (qu �ql)¡ t then

11: return RMtvu(a)[b

12: else

13: return
�

qP[ql ,qu]

((aBv := v�qs)[b)

Type Operation Description
A J top element
A K bottom element
bool (a1 == a2) equality
A (a1 [a2) meet
A (a1 \ a2) join
A (a1∇a2) widen
A πW(a) project on vocabulary W
A RMW(a) remove vocabulary W
A ρ(a1, v1, v2) rename variable v1 to v2
A C(le1 op le2) construct abstract value
set[A] WRAPtyW(a1) wrap vocabulary W
D D(a1,a2) distance

Figure 6.3: Abstract-domain interface
for A.

sion of the domain that is sound with respect to the concrete seman-
tics. It needs the base domain A to provide a WRAP operator.

• Finite-Disjunctive Constructor: This constructor, denoted by FDd[A],
takes an abstract domain A and a parameter d, and constructs a finite-
disjunctive version of the domain, where the number of disjunctions
in any abstract value should not exceed d. This constructor uses a
distance measure, denoted by D, to determine which disjuncts are
combined when the number of disjunctions exceeds d.

The BVSFDd[A] domain is constructed as BVS[FDd[A]]. Fig. 6.3 shows the
interface that the base abstract domain A needs to provide to instantiate
the BVSFDd[A] framework.

The first seven operations are standard abstract-domain operations.
The remove-vocabulary operation RMW(A), can be implemented as
πV�W(A), where V is the full vocabulary. The rename operation
ρ(A, v1, v2) can be easily implemented in most abstract-domain imple-
mentations through simple variable renaming and/or variable-order per-
mutation. The construct operation, denoted by C, constructs an abstract
value from the linear constraint le1 = le2, where le1 and le2 are linear ex-

153

pressions, and operation op P t=,¤,¥u. This operation is available for any
numeric abstract domain that can capture linear constraints. If the domain
cannot express a specific type of linear constraint (for instance, the octagon
domain cannot express linear constraints with more than two variables),
it can safely return J. The WRAP operation is similar to the wrap opera-
tion in [96], except that it returns a set of abstract-domain values, whose
disjunction correctly captures the wrap-around behavior. The WRAP op-
eration from [96] is modified to return a set of abstract-domain values by
placing values in a set instead of calling join. Alg. 6.3.1 shows how wrap is
performed for a single variable. It takes the abstract value a and perform
wrap-around on variable v, treated as type ty. Line 4 obtains the range for
a type, and line 5 calculates the size of that range. Line 6 obtains the range
of v in abstract value a. This operation can be implemented by projecting
a on v and reading the resultant interval. Lines 7-8 calculate the range of
the quadrants for the variable v. Line 9 computes the bounding constraints
on v, treated as type ty. Line 10 compares the number of quadrants to a
threshold t. If the number of quadrants exceeds t, the result is computed
by removing constraints on v in a using the RM operation, and adding the
bounding constraints to the final result. Otherwise, for each quadrant, the
appropriate value is computed by displacing the quadrants to the correct
range. The displacing of the abstract value a for the quadrant q, denoted
by aB v := v� qs, is implemented as RMtuu(ρ(a, v,u)[C(v = u� qs)).
We used t = 16 in the experiments reported in §6.4.

We implement D(a1,a2) by converting a1 and a2 into the strongest
boxes b1 and b2 that overapproximate a1 and a2, and computing the dis-
tance between b1 and b2. A box is essentially a conjunction of intervals
on each variable in the vocabulary. We measure the distance between
two boxes as a tuple (d1,d2), where d1 is the number of incompatible in-
tervals, and d2 is the sum of the distances between compatible intervals.
Two intervals are considered to be incompatible if one is unbounded in

154

a direction that the other one is not. For example, intervals [0,∞] and
[�7,∞] are compatible, but [0, 17] and [�7,∞], and [�∞, 12] and [�7,∞]

are not. The distance between two compatible intervals is 0 if their inter-
section is non-empty; otherwise, it is the difference of the lower bound
of the higher interval and the upper bound of the lower interval. For
example, the distance between [0, 11] and [17, 21] is (17 � 11) = 6. Given
two distances d = (d1,d2) and d 1 = (d 11,d 12), d ¡ d 1 iff either (i) d1 ¡ d

1
1, or

(ii) d1 = d
1
1 ^ d2 ¡ d

1
2. If the number of disjunctions in an abstract value

exceeds parameter d, the abstract-domain constructor FDd[A] merges (us-
ing join) the pair of abstract-domain elements that are closest as measured
by the distance measure.

6.3.2 Abstract Transformers

In this section, we describe how the abstract transformers are generated
using reinterpretation (§2.3.1). The reinterpretation consists of a domain
of abstract transformers BVSFDd[A[V ;V 1]], a domain of abstract integers
BVSFDINT

d [A[t;V]], and operations to lookup a variable’s value in the post-
state of an abstract transformer and to create an updated version of a
given abstract transformer [30]. Here, V denotes the pre-state vocabulary
variables, V 1 denotes the post-state vocabulary variables, and t denotes
a temporary variable not in V or V 1. Given blocks B : [l : s1; ...sl;nxt]
and B 1 : [l 1 : t 1; ...tl;nxt] in an ELang program (see §6.1.4), where B 1 is a
successor of B, reinterpretation of B can provide an abstract transformer
for the transformation that starts from the first instruction in B and ends
in the first instruction in B 1, denoted by BÑ B 1.

Rule 1 in Fig. 6.4 specifies how abstract-transformer evaluation for
basic-block pairs feeds into abstract-transformer evaluation on a sequence
of statements. The evaluation on a sequence of statements starts with the
identity abstract transformer, denoted by id. Rule 2 states that the abstract
transformer for a sequence of instruction can be broken down into an

155

Basic Block:

JBÑ B 1K7Block = J[s1; ...; sl;nxt]K7Seq(id, l 1) (6.1)

J[s1; ...; sl;nxt]K7Seq(a, l 1) = J[s2; ...; sl;nxt]K7Seq((Js1K7Stmta), l
1) (6.2)

Control Flow:

J[nxt]K7Seq(a, l 1) = JnxtK7Next(a, l 1) (6.3)

Jjump l2K7Next(a, l 1) = if l2 is l 1 then a else K (6.4)

Jif v optype exp then jump l2;nxtK7Next(a, l 1) = (6.5)

if l2 is l 1 then a[p else a[n, where

p = vInt optype expInt, n = vInt !op expInt,

vInt = LazyWrap
type(JvK7Expra), expInt = LazyWrap

type(JexpK7Expra)

Assignments:

Jv = expK7Stmta = update(a, v 1, JexpK7Expra) (6.6)

Jv1 : t1 = v2 : t2K7Stmta = if s(t1) ¤ s(t2) (6.7)

then update(a, v 11, Jv2K7Expra)

else update(a, v 11,LazyWrapt1(Jv2K7Expra))

Expressions:

JnK7Expra = const_int(n) (6.8)

JvK7Expra = lookup(v 1,a) (6.9)

Jexp1 � exp2K7Expra = mult(Jexp1K7Expra, Jexp2K7Expra) (6.10)

Jexp1 + exp2K7Expra = add(Jexp1K7Expra, Jexp2K7Expra) (6.11)

Abstract Integers:

const_int(n) = C(t = n) (6.12)

get_const(i) = if πttu(i) is tt = nu then (true,n) else (false, 0),
(6.13)

mult(ii, i2) = let (b,n) = get_const(ii) in (6.14)

(if b then RMtt 1u(ρ(i1, t, t 1)[C(t = n � t 1)) else J)

add(ii, i2) = RMtt 1,t2u(ρ(i1, t, t 1)[ρ(i2, t, t2)[C(t = t 1 + t2)) (6.15)

ii op i2 = RMtt 1,t2u(ρ(i1, t, t 1)[ρ(i2, t, t2)[C(t 1 op t2)), (6.16)

where op P t=,¤,¥u

ii ¡ i2 = RMtt 1,t2u(ρ(i1, t, t 1)[ρ(i2, t, t2)[C(t 1 ¥ t2 + 1)) (6.17)

ii i2 = RMtt 1,t2u(ρ(i1, t, t 1)[ρ(i2, t, t2)[C(t 1 ¤ t2 � 1)) (6.18)

ii � i2 = (ii i2)\ (i1 ¡ i2) (6.19)

LazyWraptype(i) = WRAPtypettu (i[C(BW)), whereW = DependentVoct(i)

(6.20)

Variable lookup and update:

lookup(a, v 1) = πVYttu(a[tt = v 1u) (6.21)

update(a, v 1, i) = RMtv 1u(a)[RMttu(i[tv
1 = tu) (6.22)

Figure 6.4: Reinterpretation semantics for L(ELANG).

156

abstract transformer for a smaller sequence of instruction, by recursively
performing statement-level abstract interpretation J.K7Stmt on the first in-
struction in the sequence. In this rule and subsequent J.K7Next and J.K7Stmt
rules, “a” denotes the intermediate abstract transformer value. It starts
as id at the beginning of the instruction sequence, and gets updated or
accessed by assignment and control-flow statements in the sequence.

Rules 3,4, and 5 handle control-flow statements. Rule 3 delegates the
responsibility of executing the last instruction in the statement sequence
to J.K7Next. Rule 4 deals with unconditional-jump instructions. The label is
checked against a goal label and either K or the current transformer a is
returned accordingly. Rule 5 handles conditional branching. It conjoins the
input transformer with p in the true case and n in the false case. p and n
are calculated by performing abstract versions of op and !op, respectively,
on the sound abstract integers corresponding to vInt and vexp. Here,
!op denotes the negation of the op symbol. For example, negation of
¤ is ¡. The sound version of an abstract integer is created by calling
LazyWraptype (see rule 20). This function is the key component behind
lazy abstract-transformer generation (see §6.2.1). In our implementation,
we compute DependentVoct(i) by looking at the constraints in i and
returning the vocabulary subset W � V that depend on t. BW refers to
the bounding constraints on the variables in vocabularyW.

Rules 6 and 7 handle assignment statements. Assignment to a linear
expression merely performs a post-state-vocabulary update on the current
abstract transformer “a.” Note that this rule does not call WRAP even
though the result of computing exp can go out of bounds. Rule 7 handles
the cast operation. s(t1) and s(t2) gets the size for the types t1 and t2,
respectively. For a downcast operation, it performs simple update. In the
case of upcast, LazyWraptype is called to preserve soundness (see Section
6 of [96]).

Rules 8, 9, 10, and 11 handle reinterpretation of expressions. Rules

157

8, 10, and 11 delegate computation to the corresponding abstract-integer
operations. Rule 9 performs a variable lookup in the current value of
abstract transformer “a.”

Rules 12 to 20 deal with the operations on abstract integers in
BVSFDINT

d [A[t;V]]. Rule 12 constructs an abstract integer from a constant.
Rule 13 finds out if a variable is a constant. This operation is used by
abstract multiplication (Rule 14) to determine if the multiplication of two
abstract integers is linear or not. Rules 14-18 use vocabulary-removal(RM)
and variable-rename operations (ρ) to ensure that the vocabulary of the
output is ttu Y V .

Rules 21 and 22 are variable lookup and update operations. Lookup
takes an abstract transformer a P BVSFDd and a variable v 1 P V 1, and
returns the abstract integer i P BVSFDINT

d such that the relationship of t
with V in i is the same as the relationship of v 1 with V in a. The variable-
update operation works in the opposite direction. Update takes an abstract
transformer a P BVSFDd, a variable v 1 P V 1, and i P BVSFDINT

d , and returns
a 1 P BVSFDd such that the relationship of v 1 with V in a 1 is the same as
the relationship of twith V in i, and all the other relationships that do not
involve v 1 remain the same.

6.4 Experimental Evaluation

In this section, we compare the performance and precision of the bit-
precise disjunctive-inequality domain BVSFDd for different values of d.
We perform this comparison for the base domains of octagons and polyhe-
dra. The abstract transformers for the BVSFD domain were automatically
synthesized for each path through a basic block to one of its successor by
using reinterpretation (see §6.3.2). We also perform array-out-of-bounds
checking to quantify the usefulness of the precision gain for different val-
ues of d. The experiments were designed to shed light on the following

158

questions:
1. How much does the performance of the analysis degrade as d is

increased?
2. How much does the precision of the analysis increase as d is in-

creased?
3. What is the value of d beyond which no further precision is gained?
4. What is the effect of adding sound bit-precise handling of variables

on performance and precision?

6.4.1 Experimental Setup

Given a C file, we first create the corresponding LLVM bitcode [57, 63].
We then feed the bitcode to our solver, which uses the WALi [50] system
to create a Weighted Pushdown System (WPDS) corresponding to the
LLVM CFG. The transitions in the WPDS correspond to CFG edges from a
basic block to one of its successors. The semiring weights on the edges are
abstract transformers in the BVSFDd abstract domain. We then perform in-
terprocedural analysis by performing post* followed by the path-summary
operation [85] to obtain overapproximating function summaries and an
overapproximation of the reachable states at all branch points. We used
EWPDS merge functions [56] to preserve local variables across call sites.
We used the Pointset_Powerset [4] framework in the Parma Polyhedra
Library [3, 82] to implement the FDd[A] constructor. For each example
used in the experiments, we use a timeout of 200 seconds.

6.4.2 Assertion Checking

For this set of experiments, we picked the subset of the SVCOMP [7] loop
benchmarks for which all assertions hold. Because our analyzer is sound,
we are interested in the percentage of true assertions that it can verify.
Tab. 6.2 provides information about the benchmarks that we used. We

159

Table 6.2: Information about the loop benchmarks containing true asser-
tions, a subset of the SVCOMP benchmarks.

Benchmark examples instructions assertions
loop-invgen 18 2373 90
loop-lit 15 1173 16
loops 34 3974 32
loop-acceleration 19 1001 19
total 86 8521 158

performed the analysis on these examples and performed assertion check-
ing by checking whether the program points corresponding to assertion
failures had the bottom abstract state.

(a) (b)

(c) (d)

Figure 6.5: Precision and performance numbers for SV-COMP loop bench-
marks.

Fig. 6.5a and Fig. 6.5b show the performance and precision numbers,
respectively, for the loop SVCOMP benchmarks, with POLY as the base
domain. The results answer the experimental questions as follows:

1. With two exceptions, at d = 2 and d = 4, the performance steadily
decreases as the number of maximum allowed disjunctions d is

160

increased. The analysis times for d = 2 and d = 4 do not fit the trend
because one example times out for d = 2 or d = 4, but does not
time out for d = 3 or d = 5. This behavior can be attributed to the
non-monotonic behaviors of the finite-disjunctive join and widening
operations.

2. The precision, measured as the number of proved assertions, in-
creases from d = 1 to d = 6. From d = 7 onwards the change in
precision is haphazard.

3. The analysis achieves the best precision at d = 6, where it proves 40
out of 157 assertions.

4. The sound analysis using BVSFDd[POLY] is 1.1-4.6 times slower than
the unsound analysis usingFDd[POLY], and is able to prove 44-142%
of the assertions obtained with FDd[POLY].

Fig. 6.5c and Fig. 6.5d show the performance and precision numbers,
respectively, for the loop SVCOMP benchmarks, with OCT as the base
domain. The results answer the experimental questions as follows:

1. The performance steadily decreases with increase in d.
2. The precision, measured as the number of proved assertions, in-

creases from d = 1 to d = 5. From d = 5 onwards the precision is
essentially unchanged.

3. The analysis achieves the best precision at d = 8, where it proves 34
out of 157 assertions.

4. The sound analysis using BVSFDd[OCT] is 1.1-1.3 times slower than
the unsound analysis using FDd[OCT], and is able to prove 33-67%
of the assertions obtained with FDd[OCT].

In our experiments, we found the BVSFDd[OCT]-based analysis to be 1-3.3x
slower than BVSFDd[POLY]. This slowdown occurs because the maximum
vocabulary size in abstract transformers is ¤ 12, and abstract operations
for octagons are slower than that of polyhedra for such a small vocabulary
size.

161

Figure 6.6: Precision and performance numbers for SV-COMP array bench-
marks with POLY as the base domain.

6.4.3 Array-Bounds Checking

We perform array-bound checking using invariants from the BVSFDd
analysis. For each array access and update we create an error state that is
reached when an array bound is violated. These array-bounds checks are
verified by checking if the path summaries at the error states are K. There
are 88 examples in the benchmark, with a total of 14,742 instructions and
598 array-bounds checks. Fig. 6.6 lists the number of array-bound checks
proven for each application, for different values of d, for the SVCOMP
array benchmarks.

The results answer the experimental questions as follows:
1. The performance of the analysis increases by 9% from d = 1 to d = 2.

After d = 2, the performance stabilizes.
2. With one exception at d = 2, the precision—measured as the number

of array-bounds checks proven—increases from d = 1 to d = 4. From
d = 4 onwards the precision is essentially unchanged.

3. The analysis achieves the best precision at d = 4, where it proves 515
out of the 598 array-bounds checks.

4. The sound analysis using BVSFDd[POLY] is 1.18-1.26 times slower
than the unsound analysis using FDd[POLY], and is able to prove
95-101% of the array-bound checks obtained with FDd[POLY].

162

6.5 Chapter Notes

Thomas Reps supervised me in the writing, and provided useful comments
for this work.

163

7 conclusion and future work

This dissertation described novel abstract domains and abstract-domain
frameworks that can soundly provide bit-vector-sound program invari-
ants, that can be used to verify assertions and provide loop and function
summaries. This dissertation i) compared two abstract domains for bit-
vector-sound equalities, ii) extended one of the domains to provide a
novel framework of bit-vector-sound equalities, iii) introduced a bit-vector-
sound inequality domain capable of expressing memory variables, and iv)
introduced a bit-vector-sound numerical inequality domain framework.
The thesis makes the following contributions:

• Bit-Vector Precise Equality Abstract Domains
– Abstract Domains of Affine Relations: An affine relation is a

linear-equality constraint over a given set of variables that hold
machine integers. In this work, we compare the MOS and KS ab-
stract domains, along with several variants. We show that MOS
and KS are, in general, incomparable and give sound interconver-
sion methods for KS and MOS. We introduce a third domain for
representing affine relations, called AG, which stands for affine
generators. Furthermore, we present an experimental study com-
paring the precision and performance of analyses with the KS
and MOS domains.

– Abstraction Framework for Affine Transformers: In this work,
we define the Affine-Transformers Abstraction Framework,
which represents a new family of numerical abstract domains.
This framework is parameterized by a base numerical abstract
domain, and allows one to represent a set of affine transformers
(or, alternatively, certain disjunctions of transition formulas).
Specifically, this framework is a generalization of the MOS do-
main. The choice of the base abstract domain allows the client

164

to have some control over the performance/precision trade-off.
• Bit-Vector Precise Inequality Abstract Domains

– An Abstract Domain for Bit-vector Inequalities: This work
describes the design and implementation of a new abstract do-
main, called the Bit-Vector Inequality domain, which is capable
of capturing certain inequalities over bit-vector-valued variables
(which represent a program’s registers and/or its memory vari-
ables). This domain tracks properties of the values of selected
registers and portions of memory via views, and provides auto-
matic heuristics to gather equality and inequality views from
the program. Furthermore, experiments are provided to show
the usefulness of the Bit-Vector Inequality domain.

– Sound Bit-Precise Numerical Domains Framework for In-
equalities: This work introduces a class of abstract domains,
parameterized on a base domain, that is sound with respect to
bitvectors whenever the base domain is sound with respect to
mathematical integers. The base domain can be any numerical
abstract domain. We also describe how to create abstract trans-
formers for this framework that incorporate lazy wrap-around
to achieve more precision, without sacrificing soundness with
respect to bitvectors. We use a finite number of disjunctions of
base-domain elements to help retain precision. Furthermore,
we present experiments to empirically demonstrate the useful-
ness of the framework.

In the remainder of this chapter, we present conclusion for the the-
sis and future directions for the bit-vector-precise equality domains and
bit-vector-precise inequality domains, respectively, described in this dis-
sertation.

165

7.1 Bit-vector-precise Equality Domains

In Chapter 3, we considered MOS and KS abstract domains, along with
several variants, and studied how they relate to each other. We showed
that MOS and KS are, in general, incomparable, and introduced a third
domain for representing affine relations, called AG, which stands for affine
generators, and showed that it is the generator representation of the KS
domain.

In Chapter 4, we provided analysis techniques to abstract the behavior
of the program as a set of affine transformations over bit-vectors. While
the relationship between MOS and KS/AG is interesting, we realized
that there is a general framework that can allow one to build the MOS
domain from the KS/AG domain. Thus, we generalized the ideas used
in the MOS domain—in particular, to have an abstraction of sets of affine
transformers—but to provide a way for a client of the abstract domain to
have some control over the performance/precision trade-off. Toward this
end, we defined a new family of numerical abstract domains, denoted
by ATA[B]. (ATA stands for Affine-Transformers Abstraction.) Following
our observation, ATA[B] is parameterized by a base numerical abstract
domain B, and allows one to represent a set of affine transformers (or,
alternatively, certain disjunctions of transition formulas). Specifically, MOS
can be defined as ATA[KS/AG].

Future Directions. One obvious opportunity for future work is to pro-
vide an implementation of the ATA framework, and compare the perfor-
mance and precision of this framework for different base domains B. The
main challenge in this work would be to figure out the best way of generat-
ing abstract transformers for guard statements. The best method to use is
not obvious because there are multiple choices for implementing guards
and depending on the assertion, one choice might work better than the
other. A second direction would be to extend this generic framework so

166

that it can be applied for sound program analysis for floating-point num-
bers. There has been a lot of work on tracking floating-point arithmetic
soundly in an abstract domain [70, 72, 17]. Once the generic abstract-
transformation-abstraction framework is implemented for floating-point
numbers, these base domains can be used to provide new sound abstract
domains capable of expressing a certain class of disjunctions of affine
transformers over floating-point numbers. The biggest challenge is to pro-
vide floating-point-sound — yet precise — methods to perform abstract
composition.

7.2 Bit-vector-precise Inequality Domains

In Chapter 5, we expanded the set of techniques available for abstract
interpretation and model checking of machine code. This work described
the design and implementation of a new abstract domain, called the Bit-
Vector Inequality domain, which is capable of capturing certain inequalities
over bit-vector-valued variables (which represent a program’s registers
and/or its memory variables). This domain tracks properties of the values
of selected registers and portions of memory via views, and provides
automatic heuristics to gather equality and inequality views from the
program. Furthermore, experiments are provided to show the usefulness
of the Bit-Vector Inequality domain.

Chapter 6 described a second approach to designing and implementing
a bit-precise relational domain capable of expressing inequality invariants.
This work presents the design and implementation of a new framework
for abstract domains, called the Bit-Vector-Sound Finite-Disjunctive (BVSFD)
domains, which are capable of capturing useful program invariants such
as inequalities over bit-vector-valued variables. We introduced a class of
abstract domains, called BVS(A), that is sound with respect to bitvectors
whenever A is sound with respect to mathematical integers. The A do-

167

main can be any numerical abstract domain. We use a finite number of
disjunctions of A elements—captured in the domain FDd(A)—to help
retain precision, where d is the maximum number of disjunctions that the
abstract domain can make use of. We also described a generic technique
to create abstract transformers for BVS(A) that are sound with respect
to bitvectors. The abstract transformers incorporate a lazy wrap-around
mechanism to achieve more precision. Finally, we presented experiments
to show how the performance and precision of BVSFDd analysis changes
with the tunable parameter d.

Future Directions One interesting future research direction is improving
the lazy wrap-around method to improve precision. Intuitively, the wrap-
around operation performs join operations that leads to loss of precision.
Lazy wrap-around aims to improve the precision by only calling wrap-
around procedure at guard and cast statements. While calling wrap-
around at these points is essential for correctness, the result of a wrap-
around can be modified to a value that requires fewer disjunctions to
express by using a dual of the wrap-around operation, thus leading to
improved precision. The challenge is in implementing the dual operation
efficiently.

§2.3.2 introduced symbolic abstraction as one of the automatic methods
to create abstract transformers. However, this method is not applicable to
the polyhedral domain because the polyhedral domain has both infinite
ascending and descending chains. The symbolic abstraction method is
desirable because the concrete semantics of bit-twiddling operations can
be precisely described in Quantifier-Free Bit-Vector (QFBV) logic. Recent
improvements in SMT optimization techniques [59, 8] provides insights
in designing a symbolic-abstraction operation for the polyhedral domain.
Moreover, with the help of the dual of wrap-around operation, sound and
precise abstract transformers can be created for BVSFD domain.

168

a domain conversions

A.1 Soundness of MOS to AG transformation

Thm. 3.7 states that the transformation from MOS to AG given in §3.3.2
is sound. Suppose that B is an MOS element such that, for every B P B, B =[

1 cB

0 MB

]
for some cB P Z1�k

2w and MB P Zk�k2w . Define GB =

[
1 0 cB

0 I MB

]
and G =

�
AG tGB |B P Bu. Then, γMOS(B) � γAG(G).

Proof. First, recall that for any two AG elements E and F, E \AG F equals
Howellize ([EF]) . Because Howellize does not change the row space of
a matrix, γAG (E\AG F) equals γAG ([EF]) . By the definition of G, we know
that γAG(G) = γAG(G), where G is all of the matrices GB stacked vertically.
Therefore, to show that γMOS(B) � γAG(G), we show that γMOS(B) � γAG(G).

Suppose that (−Ñv ,−Ñv 1) P γMOS(B). Then, for some vector −Ñw ,

[
1 −Ñv

](¸
BPB

wBB

)
=
[

1 −Ñv 1
]

.

If we break this equation apart, we see that

¸
BPB

wB = 1 and
¸
BPB

wBcB +−Ñv

(¸
BPB

wBMB

)
= −Ñv 1.

Let b denote Kronecker product. Now consider the following product,
which uses (−Ñw b

[
1 −Ñv

]
) as a vector of coefficients for the rows of G:

(
−Ñw b

[
1 −Ñv

])
G =

¸
BPB

[
wB wB

−Ñv I wBcB +wB−Ñv MB

]
=

[¸
BPB

wB
−Ñv

(¸
BPB

wB

) ¸
BPB

wBcB +−Ñv

(¸
BPB

wBMB

)]
=

[
1 −Ñv −Ñv 1

]
.

169

Thus,
[

1 −Ñv −Ñv 1

]
is a linear combination of the rows of G, and so (x, x 1) P γAG(G). Therefore,

γMOS(B) � γAG(G).

A.2 Soundness of KS Without Pre-State
Guards to MOS transformation

When G =

 1 0 b

0 I M

0 0 R

, then γAG (G) = γMOS (Shatter(G)) .

Proof.

(x, x 1) P γAG(G)ôDv :
[

1 x v
]
G =

[
1 x x 1

]
ôDv : b+ xM+ vR = x 1

ôDv :
[

1 x
]([1 b

0 M

]
+
¸
i

vi

[
0 Ri

0 0

])
=
[

1 x 1
]

ô(x, x 1) P γMOS(Shatter(G))

A.3 Soundness of KS Without Pre-State
Guards to MOS transformation

Lemma A.1. Suppose that M and N are square matrices of equal dimension
such that

1. M has only ones and zeroes on its diagonal,
2. ifMi,i = 1, thenMh,i = 0 for all h � i, and
3. ifMi,i = 0, then Ni,h = 0 for all h.

Then,MN = N.

170

Proof. We know (MN)i,j =
°
hMi,hNh,j. By Items 2 and 3, if h � i then

either Mi,h = 0 or Nh,j = 0, so (MN)i,j = Mi,iNi,j. If Mi,i = 0, then by
Item 2, Ni,j = 0; otherwise,Mi,i = 1. In either case, (MN)i,j = Ni,j, as we
require.

Lemma A.2. When G =

[
1 a b

0 J M

0 0 R

]
, such that

[
1 a

0 J

]
and

[
1 b

0 M

]
sat-

isfy the conditions of Lem. A.1, then γAG(G) � γMOS (Shatter(G)).

Proof.

(x, x 1) P γAG(G)ñDv, v 1 :
[

1 v v 1
]
G =

[
1 x x 1

]
ñDv, v 1 :

[
1 v

] [1 a

0 J

]
=
[

1 x
]

^
[

1 v
] [1 b

0 M

]
+ v 1

[
0 R

]
=
[

1 x 1
]

By Lem. A.1,
[

1 v
] [1 b

0 M

]
=

[
1 v

] [1 a

0 J

][
1 b

0 M

]
=

[
1 x

] [1 b

0 M

]
, so

(x, x 1) P γAG(G)ñDv 1 :
[

1 x
] [1 b

0 M

]
+ v 1

[
0 R

]
=
[

1 x 1
]

ñDv 1 :
[

1 x
]([1 b

0 M

]
+
¸
i

v 1i

[
0 Ri

0 0

])
=
[

1 x 1
]

ñ(x, x 1) P γMOS(Shatter(G))

Now we prove Thm. 3.11. For G P AG, γAG (G) �

171

γMOS (Shatter (MakeExplicit(G))).

Proof. Without loss of generality, assume that G has 2k+ 1 columns and
is in Howell form.

MakeExplicit(G) consists of two loops. In the first loop, every row r

with leading index i ¤ k + 1 for which the rank of the leading value is
greater than 0 is generalized by creating from r a row s, which is added toG,
such that s’s leading index is also i, but its leading value is 1. Consequently,
after the call on Howellize(G) in line 8 of MakeExplicit, the leading value
of the row with leading index i is 1.

In the second loop, the matrix is expanded by all-zero rows so that any
row with leading index i ¤ k+ 1 is placed in row i.

Thus, for any AG element G, we can decompose MakeExplicit(G) into

the matrix

[
1 c b

0 J M

0 0 R

]
, where c,b P Z1�k

2w ; J,M P Zk�k2w ; and R P Zr�k2w for

some r ¤ k. Moreover, we know that
• J is upper-triangular,
• J has only ones and zeroes on its diagonal,
• if Jj,j = 1, then column j of J is zero everywhere else, and
• if Jj,j = 0, then row j of J and row j ofM are all zeroes.

By these properties, Lem. A.2 holds, so we know that

γAG (G) � γMOS (Shatter (MakeExplicit(G))) .

172

b howell properties

Definition B.1. Two module spaces R and S are perpendicular (denoted by
R K S) if

1. r P R^ s P Sñ rst = 0,
2. (@r P R : rst = 0)ñ s P S, and
3. (@s P S : rst = 0)ñ r P R.

l

Lemma B.2. If R K S and R K S 1, then S = S 1.

Lemma B.3. For any matrixM, rowM K nulltM.

These are standard facts in linear algebra; their standard proofs essen-
tially carry over for module spaces.

Lemma B.4. If R K R 1 and S K S 1, then R+ S K R 1 X S 1.

Proof. Pick GR and GS so that rowGR = R and rowGS = S. Because the
rows of a matrix are linear generators of its row space,

R+ S = row
[
GR
GS

]
, so, by Lem. B.3, R+ S K nullt

[
GR
GS

]
.

Because each row of a matrix acts as a constraint on its null space,

R+ S K nulltGR X nulltGS.

By Lem. B.3 again, we know that rowGR K nulltGR = R K R 1, so
nulltGR = R 1 by Lem. B.2. Similarly, nulltGS = S 1. Thus, R + S K

R 1 X S 1.

Note. Recall from §3.1 that [M]i is the matrix that consists of all rows of
M whose leading index is i or greater. For any row r, define LI(r) to be

173

the leading index of r. Define ei to be the vector with 1 at index i and 0
everywhere else.

Theorem B.5. If matrix M is in Howell form, and x P rowM, then x P
row([M]LI(x)).

Proof. Pick v so that x = vM, let j def
= LI (v), and let ` def

= LI (Mj,�). If
` ¥ LI (x), then we already know that x P row([M]LI(x)). Otherwise,
assume ` LI (x). Under these conditions, as depicted in the diagram
below,

Mw

v

Mj,*

0

0

0

j l

LI(v)

0 0

l

0

0

• (vM)` = 0, because LI (vM) = LI (x) ¡ `,
• Mh,` = 0 for any h ¡ j, by Rule 1 of Defn. 3.1, and
• vh = 0 for any h j, because j = LI (v).
Therefore, 0 = (vM)` =

°
h vhMh,` = vjMj,`. Thus, because j = LI (v),

we know that LI (vjMj,�) is strictly greater than ` = LI (Mj,�).
Because multiplication by invertible values can never change nonzero

values to zero, we have LI (vjMj,�) = LI
(
2rank(vj)Mj,�

)
. Thus, by Rule 4

of Defn. 3.1, we know that vjMj,� can be stated as a linear combination
of rows j + 1 and greater. That is, vjMj,� P row([M]j+1), or equivalently,
vjMj,� = uM with LI (u) ¥ j+ 1. We can thus construct v 1 = v� vjej + u
for which x = v 1M and LI (v 1) ¥ j+ 1.

By employing this construction iteratively for increasing values of j,
we can construct x = yM with LI

(
MLI(y),�

)
¥ LI (x). Consequently, x can

174

be stated as a linear combination of rows with leading indexes LI (x) or
greater; i.e., x P row([M]LI(x)).

Now we prove Thm. 3.14. Suppose that M has c columns. If ma-
trix M is in Howell form, x P nulltM if and only if @i : @y1, . . .yi�1 :[
y1 � � �yi�1 xi � � � xc

]
P nullt([M]i).

Proof. We know that rowM K nulltM, and that row([M]i) K nullt([M]i).
Let Ei be the module space generated by tej | j iu, and let Fi be the
module space generated by tej | j ¥ iu. Clearly, Ei K Fi. By Thm. B.5, we
have that row([M]i) = rowMX Fi. Thus,

nullt([M]i) K rowMX Fi.

By Lem. B.4, we therefore have

nullt([M]i) = nulltM+ Ei, (B.1)

Because (nulltM + Ei) is the set

x+ y

�� x P nulltM^ @h ¥ i : yh = 0
(

,
Eqn. (B.1) is an equivalent way of stating the property to be shown.

175

c correctness of ks join

We present the proof of Thm. 3.17 in this appendix. If Y and Z are both
N+1-column KS matrices, and γKS(Y) and γKS(Z) are both non-empty sets, then

Y \ Z is the projection of
[
�Y Y

Z 0

]
onto its right-most N+ 1 columns.

Proof. γKS (Y \ Z) is the affine closure of γKS(Y)Y γKS(Z). Thus, we need to
show that, for all −Ñv P ZN2w ,

D−Ñu P ZN2w ,σ P Z2w :

[
�Y Y

Z 0

]
u

σ
−Ñv
1

 = 0

ô−Ñv is an affine combination of values in γKS(Y) and γKS(Z).

Recall that an affine combination is a linear combination whose coefficients
sum to 1.

Proof of the “if” direction: Fix a particular −Ñv P ZN2w , and suppose that
we have specific values for λ P Z2w , −Ñy P γKS(Y), and −Ñz P γKS(Z), such that
−Ñv = λ−Ñy +−Ñz (1� λ). Pick σ = 1� λ, and −Ñu = (1� λ)−Ñz . Then,

[
�Y Y

Z 0

]
(1� λ)−Ñz

1� λ
−Ñv
1

 = 0

ô � Y

[
(1� λ)−Ñz

1� λ

]
+ Y

[
−Ñv
1

]
= 0 and Z

[
(1� λ)−Ñz

1� λ

]
= 0

ô Y

[
�(1� λ)−Ñz +−Ñx

λ

]
= 0 and (1� λ)Z

[
−Ñz
1

]
= 0

ô λY

[
−Ñy
1

]
= 0 and (1� λ)Z

[
−Ñz
1

]
= 0.

176

These last equations are true because−Ñy P γKS(Y) and−Ñz P γKS(Z). Thus,

if −Ñv is in the affine closure of γKS(Y) Y γKS(Z), then
[
−Ñv
1

]
is in the null

space of the projected matrix.
Proof of the “only if” direction: Suppose that x is in the null space of

the projected matrix. Pick −Ñu P ZN2w and σ P Z2w such that

[
�Y Y

Z 0

]
u

σ
−Ñv
1

 = 0.

We must show that −Ñv is in the affine closure of γKS(Y)Y γKS(Z).

Immediately, we know that Z
[
−Ñu
σ

]
= 0 and Y

[
−Ñv �−Ñu
1� σ

]
= 0. Because

γKS(Y) and γKS(Z) are nonempty, we can select an arbitrary−Ñy0 P γKS(Y) and
−Ñz0 P γKS(Z). Thus,

0 = Y

[−Ñv �−Ñu
1� σ

]
+ σY

[−Ñy0

1

]
= Y

[−Ñv �−Ñu + σ−Ñy0

1

]
, and

0 = Z

[−Ñu
σ

]
+ (1� σ)Z

[−Ñz0

1

]
= Z

[−Ñu + (1� σ)−Ñz0

1

]
.

Now define −Ñy and −Ñz to be the values that we have just shown to be in
γKS(Y) and γKS(Z):

−Ñy def
= −Ñv �−Ñu + σ−Ñy0 and −Ñz def

= −Ñu + (1� σ)−Ñz0 .

If we solve for −Ñv and eliminate −Ñu in these equations, we get:

−Ñv = −Ñy � σ−Ñy0 +
−Ñz + (σ� 1)−Ñz0 .

Because −Ñy ,−Ñy0 P γKS(Y), −Ñz ,−Ñz0 P γKS(Z), and 1 � σ + 1 + (σ � 1) = 1, we

177

have now stated−Ñv as an affine combination of values in γKS(Y) and γKS(Z),
as required.

178

d soundness of the abstract-domain operations
for affine-transformers-abstraction framework

In this section, we show that the abstract-domain operations for the ATA[B]

framework are sound with respect to the concrete semantics of the pro-
gramming language.

Lemma D.1. The bottom element represents the empty set.

γ(K) =H (D.1)

Proof.

γ(K) = t(−Ñv ,−Ñv 1) : −Ñv 1 = −Ñv � C+
−Ñ
d ^ (C :

−Ñ
d) P γ(KB)u

ñγ(K) = t(−Ñv ,−Ñv 1) : −Ñv 1 = −Ñv � C+
−Ñ
d ^ (C :

−Ñ
d) P H)u

ñγ(K) =H

Lemma D.2. The equality operation is sound.

(a1�==a2)ñ(γ(a1) == γ(a2)) (D.2)

Proof. We will prove Lemma D.2 by contradiction. Assume that a1�==a2

but γ(a1) � γ(a2). Without loss of generality, we can assume that there
exists (−Ñv ,−Ñv 1) such that:

(−Ñv ,−Ñv 1) P γ(base(a1))^ (−Ñv ,−Ñv 1) R γ(base(a2))

ñ −Ñv 1 = −Ñv � C+
−Ñ
d ^ (C :

−Ñ
d) P γ(base(a1))^ (C :

−Ñ
d) R γ(base(a2))

ñ Db. b P γ(base(a1))^ b R γ(base(a2))

ñ γ(base(a1)) � γ(base(a2)

179

ñ base(a1) � base(a2) (by soundness of equality on B)

ñ a1 � a2 (Contradiction!)

Lemma D.3. The join operation is sound.

γ(a1\̃a2) � γ(a1)Y γ(a2) (D.3)

Proof. Assume that Lemma D.3 is incorrect. Then there exists (−Ñv ,−Ñv 1) R

γ(a1\̃a2) such that:

(−Ñv ,−Ñv 1) P γ(a1)Y γ(a2)

ñ −Ñv 1 = −Ñv � C+
−Ñ
d ^ (C :

−Ñ
d) P γ(base(a1))

(Without loss of generality.)

ñ −Ñv 1 = −Ñv � C+
−Ñ
d ^ (C :

−Ñ
d) P γ(base(a1)\ base(a2))

ñ (−Ñv ,−Ñv 1) P γ(a1\̃a2) (Contradiction!)

The soundness of widening, statement abstractions, and identity func-
tion are easy to prove, and follow similar reasoning.

180

e soundness of abstract composition for
affine-transformers-abstraction framework

In this section, we show that the abstract-composition operations defined
in §4.3.2 are sound. From Eqn. (4.1), an abstract composition a2e = a 1 � a
is exact iff:

γ(a2e) = t(
−Ñv ,−Ñv 1) | D(C :

−Ñ
d) P γ(base(a)), (C 1 :

−Ñ
d

1
) P γ(base(a 1)), (C2 :

−Ñ
d

2
) :

(−Ñv 1 = −Ñv � C2 +
−Ñ
d

2
)^ (C2 = C � C 1)^ (

−Ñ
d

2
=
−Ñ
d � C 1 +

−Ñ
d

1
)u

E.1 Non-Relational Base Domain

In this section, we show that the fast abstract composition for ATA[B]

(Eqn. (4.3)), when B is non-relational, is sound. Remember that any non-
relational domain can be formulated as follows: B

def
= symbols(C :

−Ñ
d)Ñ FB. The term b[s], where b P B and s P symbols(C :

−Ñ
d), refers to

the element in the foundation domain f P FB corresponding to the symbol
s.

Axiom 1. Abstract addition is sound for FB.

e1 P γ(f1)^ e2 P γ(f2)ñ e1 + e2 P γ(f1 +
7 f2) (E.1)

Axiom 2. Abstract multiplication is sound for FB.

e1 P γ(f1)^ e2 P γ(f2)ñ e1 � e2 P γ(f1 �
7 f2) (E.2)

Theorem E.1.
γ(a2e) � γ(a

1 �NR a). (E.3)

181

Proof. We will prove Thm. E.1 by contradiction. Consider a model m =

(−Ñv ,−Ñv 2), such that m P γ(a2e) and m R γ(a 1 �NR a). We will show that
such a model cannot exists.

m P γ(a2e)

ô D(C :
−Ñ
d) P γ(base(a)), (C 1 :

−Ñ
d

1
) P γ(base(a 1)), (C2 :

−Ñ
d

2
) :

(−Ñv 1 = −Ñv � C2 +
−Ñ
d

2
)^ (C2 = C � C 1)^ (

−Ñ
d

2
=
−Ñ
d � C 1 +

−Ñ
d

1
)

ô D(C :
−Ñ
d), (C 1 :

−Ñ
d

1
), (C2 :

−Ñ
d

2
) : (−Ñv 1 = −Ñv � C2 +

−Ñ
d

2
)

^

(©
1¤i,j¤k

(C2[i, j] = Σ
1¤l¤k

(C[i, l]� C 1[l, j]))

)

^

(©
1¤j¤k

(
−Ñ
d

2
[j] = (Σ

1¤l¤k
(
−Ñ
d [l]� C 1[l, j] 1)) +−Ñd

1
[j])

)

^

(©
1¤i,j¤k

C[i, j] P γ(base(a)[cij])

)
^

(©
1¤j¤k

−Ñ
d [j] P γ(base(a)[dj])

)

^

(©
1¤i,j¤k

C 1[i, j] P γ(base(a 1)[cij])

)
^

(©
1¤j¤k

−Ñ
d

1
[j] P γ(base(a 1)[dj])

)
ñ D(C2 :

−Ñ
d

2
) : (−Ñv 1 = −Ñv � C2 +

−Ñ
d

2
)

^

(©
1¤i,j¤k

(C2[i, j] P Σ7
1¤l¤k

(base(a)[cil]�
7 base(a 1)[cl,j]))

)

^

(©
1¤j¤k

(
−Ñ
d

2
[j] P Σ7

1¤l¤k
(base(a)[dl]�

7 base(a 1)[cl,j]) +
7 base(a 1)[dj])

)
(by application of axioms 1 and 2 to the expressions

Σ
1¤l¤k

(C[i, l]� C 1[l, j]) and Σ
1¤l¤k

(
−Ñ
d [l]� C 1[l, j] 1) +−Ñd

1
[j])

ô D(C2 :
−Ñ
d

2
) : (−Ñv 1 = −Ñv � C2 +

−Ñ
d

2
)^ b P (symbols(C2 :

−Ñ
d

2
)Ñ F)

^

(©
1¤i,j¤k

(
b[c2ij] = Σ7

1¤l¤k
(base(a)[cil]�

7 base(a 1)[clj])

))

182

^

(©
1¤j¤k

b[d2j] = Σ7
1¤l¤k

(base(a)[dl]�
7 base(a 1)[clj]) +

7 base(a 1)[dj]

)
ôm P γ(a 1 �NR a) (by Eqn. (4.3))

E.2 Weakly-Convex Base Domain

In this section, we present a proof of soundness of abstract composition
for weakly-convex base domains, denoted by a 1 �WC a (Eqn. (4.5)).

We present some useful axioms and lemmas before presenting the
soundness theorem and its proof. LetminZ2w andmaxZ2w be the minimum
and maximum bitvector values in Z2w . LetminQ = minZ2w andmaxQ =

maxZ2w .

Axiom 3. castQ is distributive over bitvector addition in the absence of over-
flows: that is, if minQ ¤ castQ(bv1 + bv2) ¤ maxQ, where bv1,bv2 P Z2w ,
then

castQ(bv1) + castQ(bv2) = castQ(bv1 + bv2) (E.4)

Axiom 4. castQ is distributive over bitvector multiplication in the absence of
overflows: that is, ifminQ ¤ bv1 � bv2 ¤ maxQ, where bv1,bv2 P Z2w , then

castQ(bv1) � castQ(bv2) = castQ(bv1 � bv2) (E.5)

Lemma E.2. castQ is distributive over matrix multiplication for bitvectors, if
there are no overflows in the matrix multiplication. That is, for n � n matrices
M andM 1 where @1¤i,j¤nM[i, j],M 1[i, j] P Z2w ,

castQ(M)� castQ(M
1) = castQ(M�M 1). (E.6)

183

Proof. LetM2 = castQ(M)� castQ(M
1). Then,

@1¤i,j¤n :M2[i, j] = Σ1¤l¤ncastQ(M[i, l]) � castQ(M[l, j])

ñ @1¤i,j¤n :M2[i, j] = Σ1¤l¤ncastQ(M[i, l] �M[l, j]) (by Axiom 4)

ñ @1¤i,j¤n :M2[i, j] = castQ(Σ1¤l¤nM[i, l] �M[l, j]) (by Axiom 3)

ñ castQ(M)� castQ(M
1) = castQ(M�M 1)

Lemma E.3. A convex combination of a set of rationals is inside bitvector bound-
aries if each of the rational values in the set is inside bitvector boundaries. Given

any 1 ¤ λ1, λ2, . . . , λl ¤ 1, such that (
l

Σ
i=1
λi = 1).

minQ ¤ q1,q2, � � � ,ql ¤ maxQñminQ ¤
l

Σ
i=1
λiqi ¤ maxQ (E.7)

Proof. SupposeminQ ¡
l

Σ
i=1
λiqi.

minQ ¡
l

Σ
i=1
λiqi ñ (minQ ¡

l

Σ
i=1
λiminQ) (becauseminQ ¤ q1,q2, � � � ,ql)

ô minQ ¡
l

Σ
i=1
λiminQ ñ (minQ ¡ minQ) (because (

l

Σ
i=1
λi = 1).)

ô false

Consequently,minQ ¤
l

Σ
i=1
λiqi. The other inequality

l

Σ
i=1
λiqi ¤ maxQ can

be proved in a similar fashion.

Lemma E.4. There are no overflows in a matrix multiplication of a convex com-
bination of matrices, if there are no overflows in the matrix multiplications of the
underlying matrices involved in the convex combination.

@1¤i¤l,1¤j¤l 1 : (ti � t
1
j) does not overflow ñ (t� t 1) does not overflow, where

184

(
castQ (t) =

l

Σ
i=1
λi castQ(ti)

)
^

l©
i=1

(1 ¤ λi ¤ 1)^
l

Σ
i=1
λi = 1,

(E.8)

and,
(
castQ (t 1) =

l 1

Σ
j=1
λ 1j castQ(t

1
j)

)
^

l 1©
j=1

(1 ¤ λ 1j ¤ 1)^
l 1

Σ
j=1
λ 1j = 1.

(E.9)

Proof. Because (ti � t
1
j) does not overflow, we know that each entry in the

computation of the matrix multiplication does not overflow:

@1¤p,q¤o : minQ ¤ Σ
o
n=1castQ(ti[p,n]) � castQ(t 1j[n,q]) ¤ maxQ (E.10)

where ti and t 1j are o� omatrices.

Suppose that l2 = l � l 1 and
l2�
m=1

(1 ¤ (λ2m = λrm/l 1s � λ
1
(m�1)%l 1+1) ¤ 1).

Then,
l2

Σ
m=1

λ2m =
l 1

Σ
i=1
λi �

l 1

Σ
j=1
λ 1j = 1 �1 = 1. Then, by applying Lem. E.3 to Eqn. (E.10),

we get for all 1 ¤ p,q ¤ o:

minQ ¤ Σ
l2

m=1λ
2
m(Σ

o
n=1castQ(trm/ls[p,n]) � castQ(t 1m%l+1[n,q])) ¤ maxQ

ô minQ ¤ Σ
l
i=1Σ

l 1

j=1λiλ
1
j(Σ

o
n=1castQ(ti[p,n]) � castQ(t 1j[n,q])) ¤ maxQ

ô minQ ¤ (Σon=1(Σ
l
i=1λicastQ(ti[p,n])) � (Σl 1j=1λ

1
jcastQ(t

1
j[n,q]))) ¤ maxQ

(by distributivity of multiplication over addition for rationals)

ô minQ ¤ (Σon=1castQ(t[p,n]) � castQ(t 1j[n,q])) ¤ maxQ
(by the definition of castQ(t) and castQ(t 1) in Eqn. (E.8) and Eqn. (E.9))

Hence (t� t 1) does not overflow.

Theorem E.5.
γ(a2e) � γ(a

1 �WC a). (E.11)

185

Proof. Consider any modelm = (−Ñv ,−Ñv 2), such thatm P γ(a2e). To prove
Thm. E.1, we need to show that m P γ(a 1 �WC a). Eqn. (4.5) defines
a2 = a 1 �WC a as follows

base(a2) =

$'''&'''%

ti � t

1
j| 1 ¤ i ¤ l, 1 ¤ j ¤ l 1

(
if there are no overflows in any

matrix multiplication ti � t 1j
JB otherwise

where base(a) = tt1, t2, ..., tlu and base(a 1) = tt 11, t 12, ..., t 1l 1u .
(E.12)

We know that form = (−Ñv ,−Ñv 1),

D(C :
−Ñ
d) P γ(base(a)), (C 1 :

−Ñ
d

1
) P γ(base(a 1)), (C2 :

−Ñ
d

2
) : (E.13)

(−Ñv 1 = −Ñv � C2 +
−Ñ
d

2
)^ (C2 = C � C 1)^ (

−Ñ
d

2
=
−Ñ
d � C 1 +

−Ñ
d

1
).

By the properties of weakly-convex domains (see §4.3.2), we know that

castQ

([
1 −Ñ

d

0 C

])
=

l

Σ
i=1
λi castQ(ti), for some λ1, λ2, . . . , λl P Q such that

(E.14)
l©
i=1

(0 ¤ λi ¤ 1)^ (
l

Σ
i=1
λi = 1)^

l©
i=1

(
ti =

[
1 −Ñ

d i

0 Ci

])
, and

castQ

([
1 −Ñ

d
1

0 C 1

])
=

l 1

Σ
i=1
λ 1i castQ(t

1
i), for some λ 11, λ 12, . . . , λ 1l P Q such that

(E.15)
l 1©
i=1

(0 ¤ λ 1i ¤ 1)^ (
l 1

Σ
i=1
λ 1i = 1)^

l 1©
i=1

(
t 1i =

[
1 −Ñ

d
1

i

0 C 1i

])
.

To show thatm P γ(a 1 �WC a), we consider two cases.

186

Overflows in matrix multiplication. If there is an overflow encountered
in any matrix multiplication ti�t 1j, then base(a2) = JB and consequently,
m P γ(a 1 �WC a) is true trivially.

No overflows in matrix multiplication. If there is no overflow encoun-
tered in any of the matrix multiplications ti � t 1j, then it suffices to prove
that

(C2 :
−Ñ
d

2
) P

l§
i=1

l 1§
j=1
tti � t

1
ju. (E.16)

Eqn. (E.16) translates to proving that for some tλ21 , λ22 , ..., λ2l2u:

(castQ

([
1 −Ñ

d
2

0 C2

])
=

l2

Σ
i=1
λ2i castQ(t

2
i)), for some λ21 , λ22 , . . . , λ2l2 P Q such that

(E.17)
l2©
i=1

(0 ¤ λ2i ¤ 1)^ (
l2

Σ
i=1
λ2i = 1)^

l2©
i=1

(
t2i =

[
1 −Ñ

d
2

i

0 C2i

])
.

castQ

([
1 −Ñ

d
2

0 C2

])
= castQ

([
1 −Ñ

d

0 C

]
�

[
1 −Ñ

d
1

0 C 1

])
(by Eqn. (E.13))

= castQ

([
1 −Ñ

d

0 C

])
� castQ

([
1 −Ñ

d
1

0 C 1

])
(by Lem. E.4, because

[
1 −Ñ

d

0 C

]
�

[
1 −Ñ

d
1

0 C 1

]
does not overflow)

=
l

Σ
i=1
λi castQ(ti)�

l 1

Σ
j=1
λ 1j castQ(t

1
j)

(by Eqn. (E.14) and Eqn. (E.15).)

=
l

Σ
i=1

l 1

Σ
j=1
λiλ

1
j castQ(ti)� castQ(t

1
j)

(by distributivity of matrix multiplication over addition)

187

=
l

Σ
i=1

l 1

Σ
j=1
λiλ

1
j castQ(ti � t

1
j)

(by Lem. E.2)

=
l2

Σ
m=1

λ2m castQ(t
2
m)

where l2 = l � l 1,
l2�
m=1

(1 ¤ (λ2m = λrm/l 1s � λ
1
(m�1)%l 1+1) ¤ 1), and

l2

Σ
m=1

λ2m =
l 1

Σ
i=1
λi �

l 1

Σ
j=1
λ 1j = 1 � 1 = 1.

188

f soundness of the merge operation

In this section, we show that the merge operation defined in §4.3.3 is sound.
Recall that the merge function is defined as:

Merge(a,a 1) = a2, where (F.1)

base(a2) = (bg [havoc(base(Id),gsyms)) � a

bg = havoc(base(a 1), lsyms),

lsyms = symbols(Cgl)Y symbols(Cll)Y

symbols(dl)Y symbols(Clg)

gsyms = symbols(Cgg)Y symbols(dg)

As mentioned in Eqn. (4.6), the exact merge-function semantics are speci-
fied as follows:

Merge(γ(a),γ(a 1)) = RevertLocals(γ(a 1)) � γ(a) (F.2)

Theorem F.1.

Merge(γ(a),γ(a 1)) � γ(Merge(a,a 1)). (F.3)

Proof. We will prove Thm. F.1 by contradiction. Consider a model
m = (−Ñgm,−Ñlm;−Ñgm 1,−Ñlm

1
), such that m P Merge(γ(a),γ(a 1)) and m R

γ(Merge(a,a 1)). Let aRevLocs P ATA[B] be an abstract domain value such
that

base(aRevLocs) = havoc(base(a 1), lsyms)[havoc(base(Id),gsyms)
(F.4)

By the soundness of abstract composition, existence ofm implies ex-
istence of n = (−Ñgn,−Ñln;−Ñgn 1,

−Ñ
ln

1
), such that n P RevertLocals(γ(a 1)) and

n R γ(aRevLocs). We will show that n cannot exist. Consequently, m

189

cannot exist, and thus merge is sound.

n P RevertLocals(γ(a 1))

ô (−Ñgn,−Ñln;−Ñgn 1,
−Ñ
ln

1
) P t(−Ñg ,−Ñq ,−Ñg 1,−Ñq) | (−Ñg ,−Ñl ,−Ñg 1,−Ñl

1
) P γ(a 1)u (by Eqn. (4.7))

ô D

([
Cgg Cgl

Clg Cll

]
: (
−Ñ
dg,−Ñdl)

)
P γ(base(a 1)),−Ñl ,−Ñl

1
,−Ñq :

(−Ñgn 1 = −Ñgn � Cgg +
−Ñ
l � Clg +

−Ñ
dg)^ (

−Ñ
l
1
= −Ñgn � Cgl +

−Ñ
l � Cll +

−Ñ
dl),

^ (
−Ñ
ln = −Ñq)^ (

−Ñ
ln

1
= −Ñq)^ (

−Ñ
l =
−Ñ0)

(−Ñl are initialized to 0 in each function)

ô D

([
Cgg Cgl

Clg Cll

]
: (
−Ñ
dg,−Ñdl)

)
P γ(base(a 1)) :

(−Ñgn 1 = −Ñgn � Cgg +
−Ñ
dg)^ (

−Ñ
ln =

−Ñ
ln

1
)

(by removing the existential variables −Ñl , −Ñl ’ and −Ñq)

ô D

([
Cgg Cgl

Clg Cll

]
: (
−Ñ
dg,−Ñdl)

)
P γ(base(a 1)) :

havoc(
[

1 −Ñgn
−Ñ
ln

] 1 −Ñ
dg

−Ñ
dl

0 Cgg Cgl

0 0 Cll

 =
[

1 −Ñgn 1
−Ñ
ln

1
]

, lsyms)^ (
−Ñ
ln

1
=
−Ñ
ln)

(because (−Ñgn 1 = −Ñgn � Cgg +
−Ñ
dg) is the result of havoc on lsyms for

(−Ñgn 1 = −Ñgn � Cgg +
−Ñ
dg)^ (

−Ñ
ln

1
= −Ñgn � Cgl +

−Ñ
ln � Cll +

−Ñ
dl))

ô D

([
Cgg Cgl

Clg Cll

]
: (
−Ñ
dg,−Ñdl)

)
P γ(base(a 1)) :

havoc(
[

1 −Ñgn
−Ñ
ln

] 1 −Ñ
dg

−Ñ
dl

0 Cgg Cgl

0 Cgl Cll

 =
[

1 −Ñgn 1
−Ñ
ln

1
]

, lsyms)^ (
−Ñ
ln

1
=
−Ñ
ln)

(because −Ñln are initialized to zero)

190

ô D

([
Cgg Cgl

Clg Cll

]
: (
−Ñ
dg,−Ñdl)

)
P γ(base(a 1)) :

havoc(
[

1 −Ñgn
−Ñ
ln

] 1 −Ñ
dg

−Ñ
dl

0 Cgg Cgl

0 Cgl Cll

 =
[

1 −Ñgn 1
−Ñ
ln

1
]

, lsyms)^

havoc(
[

1 −Ñgn
−Ñ
ln

] 1 0 0
0 I 0
0 0 I

 =
[

1 −Ñgn 1
−Ñ
ln

1
]

,gsyms)

(because havoc of gsyms on the identity transformation yields −Ñln
1
=
−Ñ
ln)

ô

(
D

([
Cgg Cgl

Clg Cll

]
: (
−Ñ
dg,−Ñdl)

)
P γ(havoc(base(a 1), lsyms)) :

[
1 −Ñgn

−Ñ
ln

] 1 −Ñ
dg

−Ñ
dl

0 Cgg Cgl

0 Cgl Cll

 =
[

1 −Ñgn 1
−Ñ
ln

1
])©

(
D

([
Cgg Cgl

Clg Cll

]
: (
−Ñ
dg,−Ñdl)

)
P γ(havoc(base(Id),gsyms)) :

[
1 −Ñgn

−Ñ
ln

] 1 −Ñ
dg

−Ñ
dl

0 Cgg Cgl

0 Cgl Cll

 =
[

1 −Ñgn 1
−Ñ
ln

1
])

ô (−Ñgn,−Ñln,−Ñgn 1,
−Ñ
ln

1
) P γ(aRevLocs)

ô Model (−Ñgn,−Ñln,−Ñgn 1,
−Ñ
ln

1
) does not exist.

ñ Model (−Ñgm,−Ñlm,−Ñgm 1,−Ñlm
1
) does not exist. (Contradiction.)

(by soundness of abstract composition)

If the abstract composition operation is exact, then the implication in the
last step of the proof becomes biconditional. Thus, if abstract composition
is exact then the merge operation is exact.

191

references

[1] Bach, E. 1992. Linear algebra modulo n. Unpublished manuscript.

[2] Bagnara, R., K. Dobson, P.M. Hill, M. Mundell, and E. Zaffanella.
2006. Grids: A domain for analyzing the distribution of numerical
values. In Int. Workshop on Logic Based Prog. Dev. and Transformation.

[3] Bagnara, R., P. M. Hill, and E. Zaffanella. 2008. The Parma Polyhedra
Library: Toward a complete set of numerical abstractions for the
analysis and verification of hardware and software systems. Science
of Computer Programming 72(1–2):3–21.

[4] Bagnara, R., P.M. Hill, and E. Zaffanella. 2006. Widening operators
for powerset domains. Int. Journal on Software Tools for Technology
Transfer 8(4/5):449–466.

[5] Balakrishnan, G., and T. Reps. 2010. WYSINWYX: What You See Is
Not What You eXecute. Trans. on Prog. Lang. and Syst.

[6] BBC. 2014. Gangnam style music video ’broke’ youtube view limit.
http://www.bbc.com/news/world-asia-30288542.

[7] Beyer, D. 2015. Software verification and verifiable witnesses - (re-
port on sv-comp 2015). In Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems.

[8] Bjørner, N., A. Phan, and L. Fleckenstein. 2015. νz-an optimizing
smt solver. In Int. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems.

[9] Bloch, Joshua. Extra, extra - read all about it:
Nearly all binary searches and mergesorts are broken.
“googleresearch.blogspot.com/2006/06/extra-extra-read-all-
about-it-nearly.html”.

http://www.bbc.com/news/world-asia-30288542

192

[10] Bouajjani, A., J. Esparza, and T. Touili. 2003. A generic approach
to the static analysis of concurrent programs with procedures. In
Symposium on Principles of Programming Languages.

[11] Brauer, J., and A. King. 2010. Automatic abstraction for intervals
using Boolean formulae. In Static Analysis Symposium.

[12] ———. 2011. Transfer function synthesis without quantifier elimi-
nation. In European Symp. on Programming.

[13] ———. 2012. Transfer function synthesis without quantifier elimi-
nation. Logical Methods in Comp. Sci. 8(3).

[14] Burch, Jerry, and David Dill. 1994. Automatic verification of
pipelined microprocessor control. In Int. Conf. on Computer Aided
Verification.

[15] Bygde, S., B. Lisper, and N. Holsti. 2011. Fully bounded polyhedral
analysis of integers with wrapping. In Int. Workshop on Numerical
and Symbolic Abstract Domains.

[16] Chang, B.-Y.E., and K.R.M. Leino. 2005. Abstract interpretation with
alien expressions and heap structures. In Int. Conf. on Verification,
Model Checking, and Abstract Interpretation.

[17] Chen, L., A. Miné, and P. Cousot. 2008. A sound floating-point poly-
hedra abstract domain. In Asian Symp. on Prog. Lang. and Systems.

[18] Chen, L., A. Miné, J. Wang, and P. Cousot. 2009. Interval polyhedra:
An abstract domain to infer interval linear relationships. In Static
Analysis Symposium.

[19] Cousot, P., and R. Cousot. 1976. Static determination of dynamic
properties of programs. In Int. Symp on Programming.

193

[20] ———. 1977. Abstract interpretation: A unified lattice model for
static analysis of programs by construction of approximation of
fixed points. In Symposium on Principles of Programming Languages,
238–252.

[21] ———. 1979. Systematic design of program analysis frameworks.
In Symposium on Principles of Programming Languages, 269–282.

[22] Cousot, P., R. Cousot, and L. Mauborgne. 2011. The reduced product
of abstract domains and the combination of decision procedures.
In Int. Conf. on Foundations of Software Science and Computation Struc-
tures.

[23] Cousot, P., and N. Halbwachs. 1978. Automatic discovery of lin-
ear constraints among variables of a program. In Symposium on
Principles of Programming Languages, 84–96.

[24] Dietz, W., P. Li, J. Regehr, and V. Adve. 2012. Understanding integer
overflow in C/C++. In Int. Conf. on Software Engineering.

[25] dSPACE. dSPACE TargetLink. www.dspace.com/en/pub/home/
products/sw/pcgs/targetli.cfm.

[26] Dutertre, B., and L. de Moura. 2006. Yices: An SMT solver. http:
//yices.csl.sri.com.

[27] Dutertre, Bruno, and Leonardo de Moura. 2006. A fast linear-
arithmetic solver for dpll(t). In Int. Conf. on Computer Aided Veri-
fication.

[28] EDN Network. 2013. Toyota’s killer firmware: Bad design and
its consequences. http://www.edn.com/design/automotive/
4423428/Toyota-s-killer-firmware--Bad-design-and-its-
consequences.

www.dspace.com/en/pub/home/products/sw/pcgs/targetli.cfm
www.dspace.com/en/pub/home/products/sw/pcgs/targetli.cfm
http://yices.csl.sri.com
http://yices.csl.sri.com
http://www.edn.com/design/automotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences
http://www.edn.com/design/automotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences
http://www.edn.com/design/automotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences

194

[29] Elder, M., J. Lim, T. Sharma, T. Andersen, and T. Reps. 2011. Abstract
domains of affine relations. In Static Analysis Symposium.

[30] ———. 2014. Abstract domains of affine relations. Trans. on Prog.
Lang. and Syst.

[31] Engadget. 2015. To keep a boeing dreamliner flying, reboot once
every 248 days. https://www.engadget.com/2015/05/01/boeing-
787-dreamliner-software-bug.

[32] FDA. 2014. Fda statement on radiation overexposures in
panama. https://www.fda.gov/radiation-emittingproducts/
radiationsafety/alertsandnotices/ucm116533.htm.

[33] Ganesh, V., and D.L. Dill. 2007. A decision procesure for bit-vectors
and arrays. In Int. Conf. on Computer Aided Verification.

[34] Gange, G., J. Navas, P. Schachte, H. Søndergaard, and P. Stuckey.
2013. Abstract interpretation over non-lattice abstract domains. In
Static Analysis Symposium.

[35] Garner, H. L. 1978. Theory of computer addition and overflow. IEEE
Trans. on Computers C-27(4).

[36] GCN. 1998. Software glitches leave navy smart ship dead in the wa-
ter. https://gcn.com/Articles/1998/07/13/Software-glitches-
leave-Navy-Smart-Ship-dead-in-the-water.aspx.

[37] Ghorbal, K., F. Ivančić, G. Balakrishnan, N. Maeda, and A. Gupta.
2012. Donut domains: Efficient non-convex domains for abstract in-
terpretation. In Int. Conf. on Verification, Model Checking, and Abstract
Interpretation.

[38] Gleick, J. 1996. A bug and a crash. https://around.com/ariane.
html.

https://www.engadget.com/2015/05/01/boeing-787-dreamliner-software-bug
https://www.engadget.com/2015/05/01/boeing-787-dreamliner-software-bug
https://www.fda.gov/radiation-emittingproducts/radiationsafety/alertsandnotices/ucm116533.htm
https://www.fda.gov/radiation-emittingproducts/radiationsafety/alertsandnotices/ucm116533.htm
https://gcn.com/Articles/1998/07/13/Software-glitches-leave-Navy-Smart-Ship-dead-in-the-water.aspx
https://gcn.com/Articles/1998/07/13/Software-glitches-leave-Navy-Smart-Ship-dead-in-the-water.aspx
https://around.com/ariane.html
https://around.com/ariane.html

195

[39] Granger, P. 1989. Static analysis of arithmetic congruences. Int. J. of
Comp. Math.

[40] ———. 1991. Analyses semantiques de congruence. Ph.D. thesis,
Ecole Polytechnique.

[41] Gulwani, S., and G.C. Necula. 2003. Discovering affine equalities
using random interpretation. In Symposium on Principles of Program-
ming Languages.

[42] ———. 2005. Precise interprocedural analysis using random inter-
pretation. In Symposium on Principles of Programming Languages.

[43] Hafner, J., and K. McCurley. 1991. Asymptotically fast triangulariza-
tion of matrices over rings. SIAM J. Comput. 20(6).

[44] Howell, J.A. 1986. Spans in the module (Zm)s. Linear and Multilinear
Algebra 19.

[45] Jeannet, B. New Polka. http://pop-art.inrialpes.fr/
~bjeannet/newpolka/index.html.

[46] Jeannet, B., D. Gopan, and T. Reps. 2005. A relational abstraction for
functions. In Static Analysis Symposium.

[47] Jones, N.D., and A. Mycroft. 1986. Data flow analysis of applicative
programs using minimal function graphs. In Symposium on Principles
of Programming Languages, 296–306.

[48] Jourdan, Jacques-Henri, Vincent Laporte, Sandrine Blazy, Xavier
Leroy, and David Pichardie. 2015. A formally-verified c static ana-
lyzer. In Symposium on Principles of Programming Languages.

[49] Karr, M. 1976. Affine relationship among variables of a program.
Acta Inf. 6:133–151.

http://pop-art.inrialpes.fr/~bjeannet/newpolka/index.html
http://pop-art.inrialpes.fr/~bjeannet/newpolka/index.html

196

[50] Kidd, N., A. Lal, and T. Reps. 2007. WALi: The Weighted Automaton
Library. www.cs.wisc.edu/wpis/wpds/download.php.

[51] Kildall, G.A. 1973. A unified approach to global program optimiza-
tion. In Symposium on Principles of Programming Languages, 194–206.

[52] King, A., and H. Søndergaard. 2008. Inferring congruence equations
with SAT. In Int. Conf. on Computer Aided Verification.

[53] ———. 2010. Automatic abstraction for congruences. In Int. Conf.
on Verification, Model Checking, and Abstract Interpretation.

[54] Knoop, J., and B. Steffen. 1992. The interprocedural coincidence
theorem. In Int. Conf. on Compiler Construction.

[55] Lal, A., and T. Reps. 2006. Improving pushdown system model
checking. In Int. Conf. on Computer Aided Verification.

[56] Lal, A., T. Reps, and G. Balakrishnan. 2005. Extended weighted
pushdown systems. In Int. Conf. on Computer Aided Verification.

[57] Lattner, C., and V.S. Adve. 2004. LLVM: A compilation framework
for lifelong program analysis & transformation. In Int. Symp. on
Code Generation and Optimization.

[58] Laviron, V., and F. Logozzo. 2009. Subpolyhedra: A (more) scalable
approach to infer linear inequalities. In Int. Conf. on Verification,
Model Checking, and Abstract Interpretation.

[59] Li, Y., A. Albarghouthi, Z. Kincaid, A. Gurfinkel, and M. Chechik.
2014. Symbolic optimization with smt solvers. In Symposium on
Principles of Programming Languages.

[60] Lim, J. 2011. Transformer Specification Language: A system for
generating analyzers and its applications. Ph.D. thesis, Comp. Sci.
Dept., Univ. of Wisconsin, Madison, WI. Tech. Rep. 1689.

www.cs.wisc.edu/wpis/wpds/download.php

197

[61] Lim, J., and T. Reps. 2008. A system for generating static analyzers
for machine instructions. In Int. Conf. on Compiler Construction.

[62] ———. 2013. TSL: A system for generating abstract interpreters and
its application to machine-code analysis. Trans. on Prog. Lang. and
Syst. 35(1).

[63] llvm. LLVM: Low level virtual machine. llvm.org.

[64] Malmkjær, K. 1993. Abstract interpretation of partial-evaluation
algorithms. Ph.D. thesis, Dept. of Comp. and Inf. Sci., Kansas State
Univ., Manhattan, Kansas.

[65] Masdupuy, F. 1992. Array abstractions using semantic analysis of
trapezoid congruences. In Int. Conf. Supercomputing, 226–235.

[66] ———. 1992. Array abstractions using semantic analysis of trapezoid
congruences. In Int. Conf. Supercomputing.

[67] Meyer, C.D. 2000. Matrix analysis and applied linear algebra. Philadel-
phia, PA: SIAM.

[68] Miné, A. 2001. The octagon abstract domain. In Working Conference
on Reverse Engineering, 310–322.

[69] ———. 2002. A few graph-based relational numerical abstract do-
mains. In Static Analysis Symposium.

[70] ———. 2004. Relational abstract domains for the detection of
floating-point run-time errors. In European Symp. on Programming.

[71] ———. 2006. The octagon abstract domain. J. Higher-Order and
Symbolic Computation 19(1):31–100.

[72] ———. 2012. Abstract domains for bit-level machine integer and
floating-point operations. In Int. Joint Conf. on Automated Reasoning.

llvm.org

198

[73] Monniaux, D. 2010. Automatic modular abstractions for template
numerical constraints. Logical Methods in Comp. Sci.

[74] de Moura, L., and N. Bjørner. 2008. Z3: An efficient SMT solver. In
Int. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems.

[75] Müller-Olm, M., and H. Seidl. 2004. Precise interprocedural analysis
through linear algebra. In Symposium on Principles of Programming
Languages.

[76] ———. 2005. Analysis of modular arithmetic. In European Symp. on
Programming.

[77] ———. 2005. Personal communication.

[78] ———. 2007. Analysis of modular arithmetic. Trans. on Prog. Lang.
and Syst. 29(5).

[79] Mycroft, A., and N.D. Jones. 1985. A relational framework for ab-
stract interpretation. In Programs as data objects.

[80] Nelson, G., and D. Oppen. 1979. Simplification by cooperating
decision procedures. Trans. on Prog. Lang. and Syst. 1(2).

[81] Nielson, F. 1989. Two-level semantics and abstract interpretation.
Theor. Comp. Sci. 69:117–242.

[82] PPL. PPL: The Parma polyhedra library. Www.cs.unipr.it/ppl/.

[83] Reps, T., G. Balakrishnan, and J. Lim. 2006. Intermediate-
representation recovery from low-level code. In Part. eval. and
semantics-based prog. manip.

[84] Reps, T., M. Sagiv, and G. Yorsh. 2004. Symbolic implementation
of the best transformer. In Int. Conf. on Verification, Model Checking,
and Abstract Interpretation.

199

[85] Reps, T., S. Schwoon, S. Jha, and D. Melski. 2005. Weighted push-
down systems and their application to interprocedural dataflow
analysis. Science of Computer Programming 58(1–2).

[86] Reps, T., and A. Thakur. 2016. Automating abstract interpretation. In
Int. Conf. on Verification, Model Checking, and Abstract Interpretation.

[87] Sagiv, M., T. Reps, and S. Horwitz. 1996. Precise interprocedural
dataflow analysis with applications to constant propagation. Theor.
Comp. Sci. 167:131–170.

[88] Sankaranarayanan, S., F. Ivančić, I. Shlyakhter, and A. Gupta. 2006.
Static analysis in disjunctive numerical domains. In Static Analysis
Symposium.

[89] Sankaranarayanan, S., H.B. Sipma, and Z. Manna. 2005. Scalable
analysis of linear systems using mathematical programming. In Int.
Conf. on Verification, Model Checking, and Abstract Interpretation.

[90] Schmidt, D.A. 1986. Denotational semantics. Boston, MA: Allyn and
Bacon, Inc.

[91] Sen, R., and Y.N. Srikant. 2007. Executable analysis using abstract
interpretation with circular linear progressions. In Memocode.

[92] Sharir, M., and A. Pnueli. 1981. Two approaches to interprocedural
data flow analysis. In Program flow analysis: Theory and applications.
Prentice-Hall.

[93] Sharma, T., and T. Reps. 2017. A new abstraction framework for
affine transformers. In Static Analysis Symposium.

[94] ———. 2017. Sound bit-precise numerical domains. In Int. Conf. on
Verification, Model Checking, and Abstract Interpretation.

200

[95] Sharma, T., A. Thakur, and T. Reps. 2013. An abstract domain for
bit-vector inequalities. Tech. Rep. TR-1789, Comp. Sci. Dept., Univ.
of Wisconsin, Madison, WI.

[96] Simon, A., and A. King. 2007. Taming the wrapping of integer
arithmetic. In Static Analysis Symposium.

[97] Simon, A., A. King, and J.M. Howe. 2002. Two variables per linear
inequality as an abstract domain. In Int. Workshop on Logic Based
Prog. Dev. and Transformation, 71–89.

[98] Spolsky, Joel. 2007. Explaining the excel bug. https://www.
joelonsoftware.com/2007/09/26/explaining-the-excel-bug.

[99] Storjohann, A. 2000. Algorithms for matrix canonical forms. Ph.D.
thesis, ETH Zurich, Zurich, Switzerland. Diss. ETH No. 13922.

[100] Thakur, A., M. Elder, and T. Reps. 2012. Bilateral algorithms for
symbolic abstraction. In Static Analysis Symposium.

[101] Thakur, A., and T. Reps. 2012. A method for symbolic computation
of abstract operations. In Int. Conf. on Computer Aided Verification.

[102] Warren, H.S., Jr. 2003. Hacker’s delight. Addison-Wesley.

https://www.joelonsoftware.com/2007/09/26/explaining-the-excel-bug
https://www.joelonsoftware.com/2007/09/26/explaining-the-excel-bug

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Motivation.
	Thesis Contributions
	Thesis Organization

	Background
	Concrete Semantics
	Abstract Interpretation
	Creation of Abstract Transformers.
	Fixed-point computation
	Weighted Pushdown Systems

	Abstract Domains of Affine Relations
	Abstract Domains for affine-relation analysis
	Relating AG and KS Elements
	Relating KS and MOS
	Using KS for Interprocedural Analysis
	Experiments
	Related Work
	Chapter Notes

	A New Abstraction Framework for Affine Transformers
	Preliminaries
	Overview
	Affine-Transformer-Abstraction Framework
	Discussion and Related Work
	Chapter Notes

	An Abstract Domain for Bit-vector Inequalities
	Overview
	Terminology
	Base Domains
	The View-Product Combinator
	Synthesizing Abstract Operations for Reduced-Product Domains
	Experimental Evaluation
	Related Work
	Chapter Notes

	Sound Bit-Precise Numerical Domains Framework for Inequalities
	Terminology
	Overview
	The BVSFD Abstract-Domain Framework
	Experimental Evaluation
	Chapter Notes

	Conclusion and Future Work
	Bit-vector-precise Equality Domains
	Bit-vector-precise Inequality Domains

	Domain Conversions
	Soundness of MOS to AG transformation
	Soundness of KS Without Pre-State Guards to MOS transformation
	Soundness of KS Without Pre-State Guards to MOS transformation

	Howell Properties
	Correctness of KS Join
	Soundness of the Abstract-Domain Operations for Affine-Transformers-Abstraction Framework
	Soundness of Abstract Composition for Affine-Transformers-Abstraction Framework
	Non-Relational Base Domain
	Weakly-Convex Base Domain

	Soundness of The Merge Operation
	References

