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Abstract

The analysis of binaries has gotten an increasing amount of attention from the academic
community in the last decade. The results of binary analysis have been predominantly
used to answer questions about the properties of binaries. Another potential use of analysis
results is to rewrite the binary via semantic transformations. Semantics-based binary-
rewriting tools become particularly important when one wishes to modify the functionality
of the binary, and the source code and/or compiler toolchain for the binary is unavailable.
Semantics-based binary rewriting can be done for the purposes of binary optimization
(offline optimization, superoptimization), software reuse (partial evaluation, slicing, binary
translation), or software security (binary obfuscation, de-obfuscation).

This dissertation proposes various algorithms for synthesizing a machine-code imple-
mentation from a semantic specification of the desired behavior, and describes how one
can use a machine-code synthesizer to build different semantics-based binary-rewriting
tools.

The first part of this dissertation introduces the problem of machine-code synthesis,
proposes a framework for semantics-based binary rewriting via machine-code synthesis,
and presents several algorithms for machine-code synthesis. A key challenge in synthe-
sizing machine code is the enormous size of the synthesis search-space. Instruction sets
like Intel’s IA-32 have around 43,000 unique instruction schemas; this huge instruction
pool, along with the exponential cost inherent in enumerative synthesis, results in an
enormous search space for the synthesizer: even for relatively small specifications, a naïve
synthesizer might take several days to find an implementation. We have developed a
suite of techniques—ranging from pruning heuristics to machine learning—that assist
an enumerative synthesizer in combating the enormous search space, and speeding up
synthesis from the order of days to the order of seconds.

The second part of this dissertation describes how one can instantiate the aforemen-
tioned synthesizer-equipped framework to create different semantics-based binary rewrit-
ers. In particular, we have instantiated the framework to create two tools that rewrite
binaries for purposes of software reuse: a novel machine-code partial evaluator, and an
improved machine-code slicer. Among other potential uses, these tools can be used to
either modify or extract a component from a binary that lacks source code.
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1 Introduction

The analysis of binaries has gotten an increasing amount of attention from the research
community in the last decade (e.g., see references in [88, §7], [14, §1], [23, §1]). This
research has led to the development of several tools that analyze binaries, and answer
questions about their properties. These tools include static-analysis platforms [15, 23, 88],
symbolic-execution engines [39, 72], and verifiers [82, 95]. However, when it comes to
binary rewriting, the suite of state-of-the-art tools is limited to superoptimizers [16, 76],
patching tools [63, 77], and de-obfuscators [27, 81, 99]. Currently, there are no tools that can
rewrite binaries via semantic transformations, e.g., partial evaluators, slicers, program-repair
tools, etc. Semantics-based binary-rewriting tools become particularly important when
one wishes to modify the functionality of the binary, and the source code and/or compiler
toolchain for the binary is unavailable.

To rewrite a binary based on semantic criteria, an important primitive to have is a
machine-code synthesizer—a tool that emits machine-code instructions1 belonging to a
specific instruction-set architecture (ISA) for the transformed program semantics.

Framework 1.1. A machine-code synthesizer allows us to create multiple semantics-
based binary-rewriting tools that use the following recipe:

1. Convert instructions in the binary to a semantic representation, e.g., a quantifier-
free bit-vector (QFBV) logic formula.

2. Use binary-analysis results to transform QFBV formulas.

3. Use the synthesizer to produce an instruction sequence that implements each
transformed formula.

One simple tool that could be created using Framework 1.1 is an offline binary-optimizer
to improve unoptimized binaries. Analyses like value-set analysis (VSA) [14] and def-use
analysis (DUA) [53] could be used in Step 2 to optimize QFBV formulas using information
about constants, live registers and flags, etc. One can create different binary-rewriting tools

1We use the term “machine code” to refer generically to low-level code, and do not distinguish between actual
machine-code bits/bytes and the assembly code to which it is disassembled.
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by instantiating Framework 1.1 with different binary analyses and formula-transformation
mechanisms.

This dissertation advances the state-of-the-art in binary rewriting by applying program-
synthesis techniques to binary analysis and rewriting. In particular, the goals of this
dissertation are to

• develop algorithms that synthesize machine-code implementations from specifica-
tions, and

• instantiate Framework 1.1 to create binary-rewriting tools that can be used to either
modify or extract a reusable component from a binary (for purposes of software
reuse).

Each of the aforementioned goals is described in the rest of this section.

1.1 Algorithms for Machine-Code Synthesis

Machine-code synthesis is the problem of synthesizing an instruction sequence that im-
plements a semantic specification of the desired behavior, often given as a QFBV formula.
Currently, there are no tools that perform machine-code synthesis for a full ISA. Existing
approaches either (i) work on small bit-vector languages that do not have all the features of
an ISA [41], or (ii) superoptimize instruction sequences [16]. A peephole-superoptimizer
has the following type:

Superoptimize : InstrSequence→ InstrSequence

A machine-code synthesizer has the following type:

Synthesize : QFBVFormula→ InstrSequence

Because an instruction sequence can be converted to a QFBV formula via symbolic execution,
a machine-code synthesizer can be used for superoptimization; however, the converse is
not possible. (See the paragraph titled “Superoptimization” in §3.5.)

A key challenge in synthesizing machine code is the enormous size of the synthesis
search-space. Instruction sets like Intel’s IA-32 have around 43,000 unique instruction
schemas; this huge instruction pool, along with the exponential cost inherent in enumerative
synthesis, results in an enormous search space for the synthesizer: even for relatively small
specifications, a naïve synthesizer might take several days to find an implementation. The
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first part of this dissertation describes how we addressed this challenge while designing
an algorithm for machine-code synthesis and making subsequent improvements to the
algorithm. The techniques we developed to combat the size of the synthesis search-space
are not restricted to machine code in particular, and can be applied to other program
synthesizers as well.

Base algorithm. We developed an enumerative machine-code synthesizer called McSynth
[90], which is parameterized by the ISA of the target instruction-sequence, and is easily
adaptable to work on other semantic representations, such as a Universal Assembly Lan-
guage (UAL) [23]. McSynth uses (i) a divide-and-conquer strategy to split the input formula
into several independent smaller sub-formulas, (ii) footprint-based search-space pruning
heuristics to prune away candidates during synthesis, and (iii) a novel instantiation of the
counterexample-guided inductive synthesis (CEGIS) framework as the core synthesis loop. Ex-
periments with the IA-32 instruction set showed that McSynth is 3 to 5 orders of magnitude
faster than a baseline enumerative synthesizer.

Optimizations. McSynth brought down synthesis time from days to hours, but it was
still not fast enough: McSynth times out for several larger QFBV formulas; even for smaller
formulas, McSynth takes several minutes to find an implementation. Consequently, if a
binary-rewriter client supplies a formula as input to McSynth, the client has to wait several
minutes or hours before McSynth finds an implementation. This delay might not be tolerable
for a client that has to invoke the synthesizer multiple times to rewrite an entire binary
(e.g., a machine-code partial evaluator). We made several improvements to the synthesis
algorithm used in McSynth, and developed McSynth++ [92], which is an improved version
of McSynth. In addition to a novel bits-lost-based pruning heuristic, the improvements
incorporate a number of ideas known from the literature, which we adapted in novel ways
for the purpose of speeding up machine-code synthesis. Experiments for IA-32 showed
that the improvements enable synthesis of code for 12 out of 14 formulas on which McSynth
times out, speeding up the synthesis time by at least 1981X, and for the remaining formulas,
speeds up synthesis by 3X.

Model-assisted synthesis. McSynth and McSynth++ perform a linear search over the
space of instruction sequences, i.e., after exhausting all one-instruction sequences, they
search through all two-instruction sequences, and so on (modulo pruning). One can see that
this search strategy is not very efficient because not all k-instruction sequences are equally
likely to implement the input specification. (For example, if the specification computes the



4

sum of the contents of two registers, then an instruction that performs integer multiplication
is clearly not relevant.) We converted the linear search in McSynth++ into a best-first search
over the space of instruction sequences, and developed McSynth-ML [93], which is a model-
assisted version of McSynth++. The cost heuristic for the best-first search comes from
two models built from a corpus of equivalent 〈QFBV-formula, instruction-sequence〉 pairs.
(Note that it is straightforward to build such a corpus by harvesting several instruction
sequences from binaries, and converting them into QFBV formulas via symbolic execution.)
One model is a language model, which favors useful instruction sequences (i.e., instruction
sequences that occur more frequently in the corpus). The other model correlates features
of instruction sequences with features of QFBV formulas, and favors instruction sequences
that are more likely to implement the input formula. Experiments for IA-32 showed that
McSynth-ML enables synthesis of code for 6 out of 50 formulas on which McSynth++ times
out, speeding up the synthesis time by at least 549X, and for the remaining formulas, speeds
up synthesis by 4.55X.

In summary, the first part of this dissertation introduces the problem of machine-code
synthesis, and describes a suite of approaches—ranging from pruning heuristics to machine
learning—that assist an enumerative synthesizer to combat the enormous search space,
and quickly find a machine-code implementation for a given specification.

1.2 Binary Rewriting via Synthesis

Our principal motivation for developing algorithms for machine-code synthesis is to
develop a general framework for semantics-based binary rewriting (Framework 1.1), and
subsequently instantiate Framework 1.1 to create binary-rewriting tools that can be used
to either modify or extract a component from a binary. Existing tools can de-obfuscate
[27, 81, 99], superoptimize [16, 76], or harden [6, 33, 83] binaries, but they cannot extract
a component from a binary. To this end, we developed two binary-rewriting tools by
instantiating Framework 1.1: a novel machine-code partial evaluator, and an improved
machine-code slicer. Apart from component extraction, these tools have other potential
applications (see below). In the remainder of this sub-section, we describe the tools in
greater detail.

Machine-code partial evaluation Partial evaluation [48] is a program-specialization frame-
work that can be used to specialize a program Pwith respect to some of its inputs to produce
a version of P that is specialized/optimized for those inputs. For example, partially evalu-
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ating the power program with the value 2 for the exponent produces an optimized square
program. Currently, there are no tools that can partially evaluate machine code.

We developed the first machine-code partial evaluator.2 The partial evaluator WiPEr [89]
performs off-line partial evaluation of binaries. WiPEr’s algorithm follows the classical two-
phase approach of binding-time analysis (BTA) followed by specialization. WiPEr’s specializer
specializes an explicit representation of the semantics of an instruction, and emits residual
code via machine-code synthesis. Moreover, to create code that allows the stack and
heap to be at different positions at run-time than at specialization-time, the specializer
represents specialization-time addresses using symbolic constants, and uses a symbolic
state for specialization. WiPEr can be used to specialize binaries with respect to commonly
used inputs to produce faster binaries (e.g., a file-write routine optimized for a certain
file descriptor), as well as to extract an executable component from a bloated binary (e.g.,
extract compress from the gzip binary).

Machine-code slicing. One of the most useful primitives in program analysis is slicing
[46, 98]. A slice consists of the set of program points that affect (or are affected by) a
given program point called the slicing criterion. Slicing has many applications, and is used
extensively in program analysis and software-engineering tools. A machine-code slicer is
often used as a key primitive in several binary analysis and rewriting tools. Improvements
in machine-code slicing could significantly increase the precision and/or performance of
several existing tools, such as partial evaluators [89], taint trackers [22], and fault localizers
[100]. Moreover, a machine-code slicer could be used as a black box to build new binary
analysis and rewriting tools.

However, it is not easy to create a machine-code slicer that exhibits a high level of
precision. Most instructions in instruction sets such as Intel’s IA-32 and ARM are multi-
assignments: they have several inputs and several outputs (registers, flags, and memory
locations). This aspect of the instruction set introduces a granularity issue during slicing:
there are often instructions at which we would like the slice to include only a subset of
the instruction’s semantics, whereas the slice is forced to include the entire instruction.
Moreover, small amounts of such local imprecision can be amplified via cascade effects.
Consequently, the slice computed by state-of-the-art tools is very imprecise, often including
essentially the entire program.

We developed a tool called McSlice [91] that slices machine code more accurately. To
counter the granularity issue, McSlice performs slicing at the microcode level, instead of the
instruction level, and obtains a more precise microcode slice. McSlice uses QFBV formulas

2Confirmed by personal communication with Neil Jones, Robert Glück, and Saumya Debray.
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to represent microcode. To reconstitute a machine-code program from a microcode slice,
McSlice uses machine-code synthesis.

The granularity issue in machine-code slicing has been addressed in prior work by
Bernat et al. in the context of instrumenting x86 binaries [18]. To address the granularity
issue and compute precise slices, Bernat et al. use special-case instruction splitting: each
node in the system-dependence graph (SDG)3 corresponding to an instruction that performs
multiple operations is split into multiple nodes, each of which performs a single operation.
In contrast, McSlice splits multi-operation instruction nodes into microcode nodes, and
performs slicing on a microcode-level SDG. Each microcode node represents a single
microcode update, specified by a QFBV formula. Splitting instruction nodes based on
microcode has the following advantages over the approach used by Bernat et al.:

• Special-case instruction splitting is tied to a specific ISA and binary-analysis platform:
one needs to specify the target single-operation nodes that should be created for each
multi-operation instruction in a new ISA, and this mapping is tailored for a specific
binary-analysis platform. However, QFBV-based microcode slicing in McSlice is not
tied to a specific binary-analysis platform or ISA. (See §7.2.2.)

• If a client of the slicer wishes to render a backward slice as an executable machine-code
program, then one needs to provide the slicer—as an additional input—a mapping
from each single-operation node to an equivalent instruction-sequence in the target
ISA. Again, this mapping needs to be supplied for each binary-analysis platform and
target ISA. In contrast, McSlice obtains instruction sequences from microcode nodes
automatically via machine-code synthesis.

Experiments on IA-32 binaries of FreeBSD utilities show that, in comparison to slices
computed by a state-of-the-art tool (CodeSurfer/x86), McSlice reduces the size of backward
slices by 33%, and forward slices by 70%. The backwards executable-slicing functionality
of McSlice can also be used to extract executable components from binaries (e.g., extract a
line-count program from the wc binary).

In summary, the second part of this dissertation describes two instantiations of Frame-
work 1.1—a machine-code partial evaluator and a machine-code slicer—that can be used
to extract an executable component from a binary for purposes of software reuse. Note
that one can potentially instantiate Framework 1.1 to also create other semantics-based
binary-rewriting tools.

3The system-dependence graph is an intermediate representation used for slicing. See Chapter 7.
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Contributions

The contributions of this dissertation include the following:

1. We have created the first machine-code synthesizer that works on the integer subset
of a full ISA (Chapter 3).

2. We have proposed a general framework for semantics-based binary rewriting. Our
framework can be used to create novel binary-rewriting tools, and also to improve
existing tools.

3. We have proposed several optimizations for speeding up machine-code synthesis.
Our optimizations speeds up our baseline synthesis algorithm by several orders of
magnitude. Our optimizations are not restricted to machine code in particular, and
can be used to speed up other program synthesizers as well (Chapter 4).

4. We have created the first low-level-code synthesizer that uses machine learning to
assist synthesis (Chapter 5).

5. We have created the first machine-code partial evaluator, which can be used to opti-
mize binaries with respect to common inputs, and to extract components from bloated
binaries (Chapter 6).

6. Our machine-code slicing algorithm significantly improves slicing accuracy with
respect to state-of-the-art tools. Our slicer can be used to extract components from
binaries, and also to aid other binary analyses, for example, by excluding from
consideration portions of the binary that are irrelevant to the analysis (Chapter 7).

The dissertation also makes the following more general contributions that go beyond
the realms of binary analysis and rewriting:

1. We have proposed a divide-and-conquer approach to enumerative program synthesis
that facilitates breaking a larger synthesis task into a sequence of independent smaller
sub-tasks.

2. We have proposed lightweight pruning strategies that use abstractions/overapproxi-
mations of enumerated candidates to rapidly prune away useless candidates during
synthesis.

3. Our model-assisted synthesis algorithm is the first program-synthesis technique
to use models learned from both specifications and implementations to assist the
synthesis search.
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4. We have shown, via program synthesis, how one can reconstitute a program that is
at a higher level from an intermediate representation (IR) that is at a lower level. (We
have demonstrated this synthesis-based approach to program reconstitution in the
context of partial evaluation and slicing.) This approach to program reconstitution
becomes particularly useful when translation from low-level IR fragments to high-
level code constructs is not straightforward, and the search space of high-level code
constructs is enormous.

5. We have proposed a symbolic approach to program specialization. This approach to
specialization becomes particularly useful when the specializer wants to treat certain
inputs as static inputs, but somehow suppress their residuation.

The remaining chapters expand on these contributions. Chapter 2 presents background
material required for the remainder of the thesis. Chapter 8 presents conclusions and
opportunities for future work.
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2 Background

This chapter presents a primer on Intel’s IA-32 ISA (§2.1), and a logic in which specifications
and semantics of instruction sequences are expressed (§2.2).

2.1 IA-32 Primer
IA-32 is the 32-bit subset of Intel’s x86 ISA. This section briefly describes the syntax and
concrete operational semantics of IA-32 instructions.

2.1.1 Syntax
IA-32 has some general-purpose registers (EAX, EBX, etc.), and some special-purpose
registers: ESP is the stack pointer, EBP is the frame pointer, and EIP is the program counter.
Some common IA-32 instructions are given in Fig. 2.1. The push instruction pushes an

1: push ebp 3: sub esp, 16 5: lea eax, [esp+4] 7: jmp 1000
2: mov ebp, esp 4: mov [esp], 1 6: cmp eax, ebx 8: jz 1000

Figure 2.1: Some common IA-32 instructions.

operand on top of the stack; the IA-32 stack grows upwards. In many instructions with
more than one operand, the operand on the left is the destination. For example, instruction
2 in Fig. 2.1 copies a 32-bit value from ESP to EBP, and instruction 3 decrements ESP by
16 (and sets flags suitably). An exception is the cmp instruction, in which both operands
are source operands; for example, instruction 6 in Fig. 2.1 compares the values in registers
EAX and EBX. Square brackets denote memory operands; for example, instruction 4 in
Fig. 2.1 writes the value 1 in the memory location pointed to by ESP. An exception is the
lea instruction, in which square brackets denote “the effective address of." For example,
instruction 5 in Fig. 2.1 loads the effective address of ESP + 4 in the EAX register. The
effective address is computed as base+ index∗scale+offset, where base and index are registers,
and scale and offset are integers. The jmp instruction (instruction 7 in Fig. 2.1) jumps to the
operand target-address unconditionally, while the jz instruction (instruction 8 in Fig. 2.1)
jumps to the operand target-address only if the zero flag (ZF) is set.
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I [[push ebp]]σ ≡ let σ ′ = updatereg(σ, [[esp]], accessreg(σ, [[esp]])− 4)
in updatemem(σ

′, accessreg(σ
′, [[esp]]), accessreg(σ, [[ebp]]))

I [[mov ebp, esp]]σ ≡ updatereg(σ, [[ebp]], accessreg(σ, [[esp]]))

I [[sub esp, 16]]σ ≡ let σ ′ = updatereg(σ, [[esp]], accessreg(σ, [[esp]])− 16)
in updateflag(σ

′, [[ZF]], accessreg(σ
′, [[esp]]) = 0)

I [[mov [esp], 1]]σ ≡ updatemem(σ, accessreg(σ, [[esp]]), 1)
I [[lea eax, [esp+4]]]σ ≡ updatereg(σ, [[eax]], accessreg(σ, [[esp]])+ 4)

I [[cmp eax, ebx]]σ ≡ updateflag(σ, [[ZF]], (accessreg(σ, [[eax]])− accessreg(σ, [[ebx]])) = 0)
I [[jmp 1000]]σ ≡ updatereg(σ, [[eip]], 1000)
I [[jz 1000]]σ ≡ updatereg(σ, [[eip]], accessflag(σ, ZF) ? 1000 : accessreg(σ, [[eip]])+ 4)

Figure 2.2: Valuation functions for instructions in Fig. 2.1.

2.1.2 Semantics
The primitive domains of the IA-32 semantics include 32-bit integers, Booleans, regis-
ters, and flags. The primitive domains and their operators are given below. Note that
the domains and their elements are in boldface to distinguish them from their syntactic
counterparts in the logic that will be defined in §2.2.

i ∈ INT = Z32 b ∈ BOOL = {True, False}

r ∈ Register = {EAX, ESP, . . .} f ∈ Flag = {CF, SF, . . .}

op ∈ ArithOp = {+, −, ...} bop ∈ BoolOp = {∧, ∨, ...}

rop ∈ RelOp = {=, 6=, <, ...} cop ∈ CondOp = {? :}

Store is a compound domain that denotes an IA-32 state. (In all chapters except Chapter
6, the term “state" will be used to refer to an IA-32 Store.) Store is a triple consisting of three
maps: a register map, a flag map, and a memory map. Store has operators to access and
update the maps. The Store domain is defined below.

σ ∈ Store = RegMap× FlagMap×MemMap

RegMap : Register→ INT FlagMap : Flag→ BOOL MemMap : INT→ INT

The valuation function I [[·]] has the type I : Instruction → Store → Store, where
Instruction is the type for a syntactic instruction. I takes an instruction i and a pre-state,
and returns a post-state that reflects the updates made by the execution of i. The valuation
functions for the instructions in Fig. 2.1 are given in Fig. 2.2. In the valuation functions, the
overloaded function [[·]] returns primitive semantic objects for their syntactic counterparts.
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T ∈ Term, ϕ ∈ Formula, FE ∈ FuncExpr
c ∈ Int32 = {..., -1, 0, 1, ...} b ∈ Bool = {True, False}

IInt32 ∈ Int32Id = {EAX, ESP, EBP, ... , m, n, ... }
IBool ∈ BoolId = {CF, SF, ... , x, y, ... } F ∈ FuncId = {Mem}

op ∈ BinOp = {+, −, ...} bop ∈ BoolOp = {∧, ∨, ...} rop ∈ RelOp = {=, 6=, <, >, ...}

T ::= c | IInt32 | T1 op T2 | ite(ϕ, T1, T2) | F(T1)

ϕ ::= b | IBool | T1 rop T2 | ¬ϕ1 | ϕ1 bopϕ2 | F = FE
FE ::= F | FE1[T1 7→ T2]

Figure 2.3: Syntax of L[IA-32].

Instructions 1 through 6 in Fig. 2.1 also increment the program counter EIP by the
length of the instruction. For brevity, we do not show this increment explicitly in Fig. 2.2.
We also do not show all the flags updates done by the cmp and sub instructions.

2.2 Quantifier-Free Bit-Vector (QFBV) Logic Formulas

Input specifications to a machine-code synthesizer can be expressed formally by QFBV
formulas. In this section, we describe the syntax and semantics of such formulas.

2.2.1 Syntax

Consider a quantifier-free bit-vector logic L over finite vocabularies of constant symbols
and function symbols. We will be dealing with a specific instantiation of L, denoted by
L[IA-32]. (L can also be instantiated for other ISAs.) In L[IA-32], some constants represent
IA-32’s registers (EAX, ESP, EBP, etc.), some represent flags (CF, SF, etc.), and some are free
constants (m, n, x, y, etc.). L[IA-32] has only one function symbol “Mem,” which denotes
memory. The syntax of L[IA-32] is defined in Fig. 2.3. A term of the form ite(ϕ, T1, T2)

represents an if-then-else expression. A FuncExpr of the form FE[T1 7→ T2] denotes a
function-update expression.

To write formulas that express state transitions, all Int32Ids, BoolIds, and FuncIds can
be qualified by primes (e.g., Mem ′). The QFBV formula for a specification is a restricted
2-vocabulary formula that specifies a state transformation. It has the form∧

m

(I ′m = Tm)∧
∧

n

(J ′n = ϕn)∧ Mem ′ = FE, (2.1)
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where I ′m and J ′n range over the constant symbols for registers and flags, respectively. The
primed vocabulary is the post-state vocabulary, and the unprimed vocabulary is the pre-
state vocabulary. For example, the QFBV formula for the specification “push the 32-bit
value in the frame-pointer register EBP onto the stack" is given below.

ESP ′ = ESP − 4 ∧ Mem ′ = Mem[ESP − 4 7→ EBP] (2.2)

In this section, and in the rest of the dissertation, we will show only the portions of QFBV
formulas that express how the state is modified. QFBV formulas actually contain identity
conjuncts of the form I ′ = I, J ′ = J, and Mem ′ = Mem for constants and functions that are
unmodified. Because we do not want the synthesizer output to be restricted to an instruction
sequence that is located at a specific address, specifications do not contain conjuncts of the
form EIP ′ = T. (Recall that EIP is the program counter for IA-32.)

Expressing semantics of instruction sequences. In addition to input specifications, one
can use L[IA-32] formulas to express the semantics of instruction sequences. The function
〈〈·〉〉 encodes a given IA-32 instruction sequence as a QFBV formula. The QFBV formulas
for the instructions in Fig. 2.1 are given below. Note that the formulas given below are
merely QFBV transcriptions of the valuation functions given in Fig. 2.2.

〈〈push ebp〉〉 ≡ ESP ′ = ESP − 4 ∧ Mem ′ = Mem[ESP − 4 7→ EBP]

〈〈mov ebp, esp〉〉 ≡ EBP ′ = ESP

〈〈sub esp, 16〉〉 ≡ ESP ′ = ESP − 16 ∧ ZF ′ = (ESP − 16 = 0)

〈〈mov [esp], 1〉〉 ≡Mem ′ = Mem[ESP 7→ 1]

〈〈lea eax, [esp+4]〉〉 ≡ EAX ′ = ESP + 4

〈〈cmp eax, ebx〉〉 ≡ ZF ′ = (EAX − EBX = 0)

〈〈jmp 1000〉〉 ≡ EIP ′ = 1000

〈〈jz 1000〉〉 ≡ EIP ′ = ite(ZF, 1000, EIP + 4)

While others have created such encodings by hand (e.g., [74]), the tools described in this
dissertation use a method that takes a specification of the concrete operational semantics
of IA-32 instructions and creates a QFBV encoder automatically. The method reinterprets
each semantic operator as a QFBV formula-constructor or term-constructor (see [54]).

Certain IA-32 string instructions contain an implicit “microcode loop", e.g., instructions
with the rep prefix, which perform an a priori unbounded amount of work determined by
the value in the ECX register at the start of the instruction. In other applications that use
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the infrastructure on which our tools are built, this implicit microcode loop is converted
into an explicit loop whose body is an instruction that performs the actions performed by
the body of the microcode loop. (More details about this conversion is available elsewhere
[54, §6].) However, the semantics of such instructions cannot be expressed as a single QFBV
formula. Because of this expressibility limitation, the synthesis algorithms described in
this dissertation do not try to synthesize instructions that use the rep prefix.

2.2.2 Semantics

QFBV formulas in L[IA-32] are interpreted as follows: elements of Int32, Bool, BinOp, RelOp,
and BoolOp are interpreted in the standard way. An unprimed (primed) constant symbol is
interpreted as the value of the corresponding register or flag from the pre-state (post-state).
An unprimed (primed) Mem symbol is interpreted as the memory array from the pre-state
(post-state). (To simplify the presentation, we pretend that each memory location holds a
32-bit integer; however in our tools, memory is addressed at the level of individual bytes.)
The meaning of a QFBV formula in L[IA-32] is a set of machine-state pairs (〈pre-state,
post-state〉) that satisfy the formula. Recall that an IA-32 machine-state is a triple of the
form:

〈RegMap, FlagMap, MemMap〉,

where RegMap, FlagMap, and MemMap map each register, flag, and memory location in the
state, respectively, to a value. A 〈pre-state, post-state〉 pair that satisfies Eqn. (2.2) is

σ ≡ 〈[ESP 7→ 100][EBP 7→ 200], [ ], [ ]〉

σ ′ ≡ 〈[ESP 7→ 96][EBP 7→ 200], [ ], [96 7→ 200]〉.

By convention, all locations for which the range value is not shown explicitly in a state have
the value 0.
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Part I

Algorithms
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3 Synthesis of Machine Code from Semantics

This chapter presents (i) a technique to synthesize a straight-line machine-code instruction
sequence from a semantic specification of the desired behavior, given as a QFBV formula,
and (ii) a tool called McSynth that implements the aforementioned technique. The synthe-
sized instruction-sequence implements the input QFBV formula (i.e., is equivalent to the
QFBV formula). McSynth is parameterized by the ISA of the target instruction-sequence,
and is easily adaptable to work on other semantic representations, such as a Universal
Assembly Language (UAL) [23].

The synthesis algorithm used in McSynth is the baseline machine-code-synthesis algo-
rithm presented in this dissertation. Successive chapters explore improvements to this
baseline algorithm.

Contributions

The contributions of this chapter include the following:

• Our machine-code-synthesis technique is the first of its kind to be applied to the
integer subset of a full ISA.

• The core synthesis loop of our technique is a new instantiation of the counterexample-
guided inductive synthesis (CEGIS) framework (§3.2.1).

• We have developed footprint-based pruning heuristics to prune away useless candi-
dates, and reduce the synthesis search-space (§3.2.2).

• To counter the exponential cost of enumerative strategies, we have developed a divide-
and-conquer strategy to divide a QFBV formula into independent sub-formulas, and
synthesize instructions for the sub-formulas (§3.2.3). This strategy has been shown to
reduce the synthesis time by several orders of magnitude.

Our methods have been implemented in McSynth, a machine-code synthesizer for Intel’s
IA-32 ISA. We tested McSynth on QFBV formulas obtained from basic blocks in the SPECINT
2006 benchmark suite. We found that, on an average, McSynth’s footprint-based search-
space-pruning heuristic reduces the synthesis time by a factor of 473, and McSynth’s divide-
and-conquer strategy reduces synthesis time by a further 3 to 5 orders of magnitude (§3.4).
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Figure 3.1: Master-slave architecture of McSynth.

In comparison to the x86 peephole superoptimizer [16] (the only tool whose search space
is comparable to that of McSynth), which takes several hours to synthesize an instruction
sequence of length up to 3, McSynth can synthesize certain instruction sequences of length
up to 10 in a few minutes. We have also built an IA-32 partial evaluator (Chapter 6), and an
IA-32 slicer (Chapter 7) as clients of McSynth.

3.1 Overview

McSynth uses enumerative strategies for synthesis. However, an ISA like IA-32 has around
43,000 unique instruction schemas, which, when combined with the exponential cost
inherent in enumeration, results in an enormous search space for synthesis. McSynth
attempts to cope with the enormous search space using a master-slave architecture. The
design of McSynth is depicted in Fig. 3.1. Given a QFBV formula ϕ, McSynth synthesizes an
instruction sequence for ϕ in the following way:

1. The master uses a divide-and-conquer strategy to split ϕ into independent sub-
formulas, and hands over each sub-formula to a slave synthesizer.

2. The slave uses enumeration, along with an instantiation of the CEGIS framework and
footprint-based search-space pruning heuristics to synthesize code for a sub-formula.

3. If a slave times out, the master uses an alternative split. (For example in Fig. 3.1,
if synthesis of code for ϕm, 1 times out, the master tries out an alternative split for
ϕm-1, 1.) If all candidate splits for a sub-formula time out, the master hands over the
entire sub-formula to a slave. (For example in Fig. 3.1, if all candidate splits of ϕm-1, 1

time out, the master supplies ϕm-1, 1 as an input to a slave.)
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4. The master concatenates the results produced by the slaves, and returns the final
instruction sequence.

In the remainder of this section, we present an example to illustrate McSynth’s algorithm.
In procedure calls, a common idiom in the prologue of the callee is to save the frame

pointer of the caller, and initialize its own frame pointer. A QFBV formula ϕ for this idiom
is

ϕ ≡ ESP ′ = ESP − 4 ∧ EBP ′ = ESP − 4 ∧ Mem ′ = Mem[ESP − 4 7→ EBP]. (3.1)

A naïve enumerative synthesizer will take a few days to find an implementation for ϕ.
Using ϕ as a running example, we will first illustrate how McSynth’s master works. We
will then illustrate how the slave works.

Master

The divide-and-conquer strategy tries to split the updates in ϕ across a sequence of sub-
formulas 〈ϕ1,ϕ2, ... ,ϕk〉 such that if one were to synthesize an instruction sequence Ii for
each ϕi independently, and concatenate the synthesized instruction-sequences in the same
order, the result will be equivalent to ϕ. Such a split is called a legal split. A sufficient
condition for a legal split is flow independence—if we can split the updates in ϕ across the
sequence 〈ϕ1,ϕ2, ... ,ϕk〉 such that there is no flow dependence from ϕi to any successor
sub-formulaϕj (i < j), the split is legal. The reason for this sufficiency is as follows: because
Ij is equivalent to some sub-formula ϕj of ϕ, and Ij does not read any of the locations that
could be modified by any predecessor instruction-sequence Ii (i < j), I1; I2; ... ; Ik performs
the same state transformations as ϕ.

McSynth uses the following one-sided decision procedure to check if a split 〈ϕ1,ϕ2, ... ,
ϕk〉 is flow-independent. The decision procedure returns MAYBE if either (or both) of the
following conditions hold:

C1: ϕj might use a register or flag, and a predecessor sub-formulaϕi (i<j) might modify
the same register or flag

C2: ϕj might use some memory location, and a predecessor sub-formula ϕi (i<j) might
modify some memory location

If neither of the conditions hold, the decision procedure returns NO (meaning the split is
flow-independent). One can see that the one-sided decision procedure is very conservative
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in the way it handles flow dependences through memory. This limitation is addressed in
Chapter 4.

One possible way to split ϕ is as 〈ϕ1, ϕ2, ϕ3〉, where

ϕ1 ≡ ESP ′ = ESP − 4 ϕ2 ≡ EBP ′ = ESP − 4 ϕ3 ≡Mem ′ = Mem[ESP − 4 7→ EBP].

However, McSynth’s decision procedure returns MAYBE for the split because ϕ2 and ϕ3

both use ESP, which is killed by ϕ1. Consequently McSynth discards this split.
Another possible way to split ϕ is as 〈ϕ1, ϕ2, ϕ3〉, where

ϕ1 ≡Mem ′ = Mem[ESP − 4 7→ EBP] ϕ2 ≡ EBP ′ = ESP − 4 ϕ3 ≡ ESP ′ = ESP − 4.

This split does not introduce any extraneous flow dependences, and consequently, McSynth’s
decision procedure returns NO for this split (meaning that the split is flow-independent).
McSynth’s master supplies the sub-formulas ϕ1, ϕ2, and ϕ3, respectively, to slave synthesiz-
ers.

Slave

Given a sub-formula ϕi and—for pragmatic reasons—a timeout value, McSynth’s slave
synthesizer either synthesizes an instruction sequence that implements ϕi, or returns FAIL
if it could not find such an instruction sequence before the timeout expires. The slave
synthesizes an instruction sequence for ϕi using the following method:

1. The slave enumerates templatized instruction-sequences of increasing length. A tem-
platized instruction-sequence is a sequence of instructions with template operands
(or holes) instead of one or more constant values.

2. The slave attempts to find an instantiation of a candidate templatized instruction-
sequence that is logically equivalent to ϕi using CEGIS. If an instantiation is found,
the slave returns it. Otherwise, the next templatized sequence is considered.

3. The slave uses heuristics based on the footprints of QFBV formulas (see below) to
prune away useless candidates during enumeration.

In the remainder of this section, we illustrate the working of a slave synthesizer using ϕ2

as an example.
The slave starts enumerating templatized one-instruction sequences. To prune away

candidates during enumeration, McSynth uses an overapproximation of locations that
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could potentially be touched by a formula. We define the abstract semantic use-footprint
SFP#

USE (kill-footprint SFP#
KILL) as an overapproximation of the locations used (modified) by

a formula. Concretely, an abstract semantic-footprint of a formula ϕ is a subset of the set
of constant symbols in ϕ (except symbolic constants) and a special symbol “Mem,” which
denotes the entire memory. The symbols in SFP#

KILL are primed.
Let us assume that the first candidate enumerated by the slave is C1 ≡ “mov eax,

〈Imm32〉.” The formula ψ1 for C1 is EAX ′ = m. The abstract semantic footprints for ϕ2 and
ψ1, respectively, are given below.

SFP#
USE(ϕ1) = {ESP} SFP#

KILL(ϕ1) = {EBP ′}

SFP#
USE(ψ1) = {} SFP#

KILL(ψ1) = {EAX ′}

One can see that the abstract semantic KILL-footprint of ψ1 is outside that of ϕ2, and
thus C1 can never implement ϕ2 without possibly modifying a value in a location that is
otherwise unmodified by ϕ2. Therefore, the slave prunes away C1 because it is a useless
candidate. Moreover, regardless of the instruction sequence that is appended to C1, the
resulting instruction sequence would always be discarded at this step. We call instruction
sequences such as C1 useless prefixes. By discarding useless prefixes, any future candidate
enumerated by the slave has only useful prefixes as its prefix.

Suppose that the next candidate is C2 ≡ “mov ebp, [esp].” The formula ψ2 for C2 is
EBP ′ = Mem(ESP). The abstract semantic footprints for ψ2 are given below.

SFP#
USE(ψ1) = {ESP, Mem} SFP#

KILL(ψ1) = {EBP ′}

The abstract semantic USE-footprint of ψ2 is outside that of ϕ2 because ψ2 might use some
memory location, but ϕ2 does not use any memory location. Therefore, the slave also
prunes away the useless candidate C2.

Suppose that the next candidate is C3 ≡ “mov ebp, 〈Imm32〉.” The formula ψ3 for C3 is
EBP ′ = m. The abstract semantic USE/KILL-footprints of ψ3 are within those of ϕ2. So the
slave uses a CEGIS-based loop to check if there exists an instantiation of the candidate that
implements ϕ2. The CEGIS loop says that no such instantiation exists, and so the slave
discards C3.

The slave eventually enumerates the candidate C4 ≡ “lea ebp, [esp-〈Imm32〉] The
CEGIS loop returns the instantiation “lea ebp, [esp-4]” of C4 as the synthesized code
for ϕ2.

In a similar manner, the slave synthesizes the instruction sequences “mov [esp-4], ebp”
and “lea esp, [esp-4]” forϕ1 andϕ2, respectively. McSynth concatenates the results pro-
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duced by the slaves and returns “mov [esp-4],ebp; lea ebp,[esp-4]; lea esp,[esp-4]”
as the implementation. McSynth completes the overall synthesis task in a few seconds; that
is a four-orders-of-magnitude speedup compared to a naïve enumerative synthesizer.

3.1.1 The Role of Templatized Instruction-Sequences

In other work on synthesis, “templates” are sometimes used to restrict the set of possible
outcomes, and thereby cause synthesis algorithms to be incomplete. In our work, a templa-
tized instruction-sequence is merely a sequence of templatized instructions, where the set of
templatized instructions spans the full IA-32 instruction set. For example, the templatized
instruction “mov eax, 〈Imm32〉” represents four billion instructions “mov eax, 0”, “mov eax,

1”, ... “mov eax, 4294967295”. Each templatized instruction is created by lifting a single
instruction from an immediate operand to a template operand.

Because the templatized instructions still span the full IA-32 instruction set, the templa-
tized instruction-sequences span the full set of IA-32 instruction sequences, hence the use
of templates in our work does not cause our algorithms to be incomplete.

3.2 Algorithm

In this section, we describe the algorithms used by McSynth. First, we present the algorithm
for McSynth’s synthesis loop. Second, we present the heuristics used by McSynth to prune
the synthesis search-space. Third, we describe McSynth’s divide-and-conquer strategy, and
present the full algorithm used by McSynth.

3.2.1 Synthesis Loop

We start by presenting a naïve algorithm for synthesizing machine code from a QFBV
formula; we then present a few refinements to obtain the algorithm actually used in
McSynth.

Base Algorithm

Given an input QFBV formulaϕ, a naïve first cut is to enumerate every concrete instruction-
sequence in the ISA, convert the instruction sequence into a QFBV formula ψ, and use an
SMT solver to check the validity of the formula ϕ⇔ ψ. The unhighlighted lines of Alg. 3.2
show this strawman algorithm.
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Input: ϕ
Output: Cconc

1: T ← ∅
2: for each concrete instruction-sequence Cconc in the ISA do
3: ψ← 〈〈Cconc〉〉
4: if not TestsPass(ψ, T ) then
5: continue
6: end if
7: model← SAT(¬(ϕ⇔ ψ))
8: if model = ⊥ then
9: return Cconc

10: else
11: T ← T ∪model
12: end if
13: end for

Algorithm 3.2: Strawman algorithm to synthesize instructions from a QFBV formula

McSynth uses an SMT solver to check the satisfiability of a QFBV formula. (Validity
queries are expressed using negated satisfiability queries.) SMT queries are represented in
the algorithms by calls to the function SAT. If a formula is satisfiable, the SMT solver returns
a model. If the query posed to the SMT solver is a satisfiability query, the model is treated
as a satisfying assignment. If the query is a validity query, the model is a counterexample
to validity.

One optimization is to use the counterexamples produced by the SMT solver as test
cases to reduce future calls to the solver. Evaluating a QFBV formula using a test case can be
performed much faster than obtaining an answer from an SMT solver. McSynth maintains a
finite set of test cases T . (Note that 〈σ , σ ′〉 |= ϕ, for all 〈σ , σ ′〉 ∈ T .) McSynth evaluates ψ
with respect to each test 〈σ , σ ′〉 in T to check if 〈σ , σ ′〉 |=ψ (i.e.,ϕ andψ produce identical
post-states for each test in T ). If all the tests pass, ψ is checked for equivalence with ϕ
(Line 7); otherwise, it is discarded. The strawman algorithm, along with this optimization,
is shown in Alg. 3.2. In Alg. 3.2, TestsPass evaluates ψwith respect to each test in T .

CEGIS
The search space of Alg. 3.2 is clearly enormous. Almost all ISAs support immediate
operands in instructions, and this results in thousands of distinct instructions with the
same opcode. To reduce the search space, instead of enumerating concrete instruction-
sequences, the synthesizer can enumerate templatized instruction-sequences. A templa-
tized instruction-sequence can be treated as a partial program, or a sketch [85]. CEGIS
is a popular synthesis framework that has been widely used in the completion of partial
programs. The basic idea of CEGIS is the following: Given (i) a specification ϕ, (ii) a finite
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set of tests T for the specification, and (iii) a partial program C that needs to be completed,
CEGIS tries to find a completion (values for holes in the partial program) Cconc that passes
the tests. Then, it checks if Cconc meets the specification using an SMT solver. If it does, Cconc

is returned. Otherwise, it adds the counterexample returned by the solver to T , and tries
to find another completion. This loop proceeds until no more completions are possible.
The rest of this sub-section describes how we have instantiated the CEGIS framework to
synthesize machine code in McSynth.

Givenϕ, McSynth bootstraps its test suite T with the test 〈σ0 , σ ′
0〉. σ0 is a machine-code

state in which all locations are mapped to 0. McSynth computes σ ′
0 by substituting σ0 in ϕ.

The inputs to McSynth’s CEGIS loop are ϕ, the test suite T , a templatized sequence C, and
its QFBV formula ψ ≡ 〈〈C〉〉.

Checking a candidate against T . Given ψ and T , McSynth simplifies ψ with respect to
T to create ψT as follows: Starting with ψT ≡ true, McSynth iterates through each test
〈σ,σ ′〉 ∈ T : McSynth simplifies ψwith respect to 〈σ,σ ′〉, and conjoins the simplified ψ to
ψT . McSynth then checks the satisfiability ofψT using an SMT solver. IfψT is unsatisfiable,
there exists no instantiation of C that passes all tests in T . If ψT is satisfiable, McSynth
substitutes the satisfying assignment returned by the SMT solver in C and ψ to obtain Cconc

and ψconc, respectively. For each test in T , Cconc and ψconc produce the same post-state as ϕ.
Because states have memory arrays, simplifying ψ with respect to T is not straightfor-

ward. In the rest of this sub-section, we describe how McSynth simplifies a formula with
respect to a set of tests. We present three approaches for simplification: (i) An ideal ap-
proach that cannot be implemented for states that have many memory locations, (ii) a naïve
approach that produces false-positives (it says that there exists an instantiation of C that is
equivalent to ϕwith respect to T , even when one does not exist), and (iii) the approach
used by McSynth, which does not produce false-positives, and can be implemented.

To illustrate these approaches, suppose that ϕ is

ϕ ≡ EAX ′ = Mem(ESP)∧ Mem ′ = Mem[EBP 7→ EBX].

Let us also assume that T has only one test case.1

σ : [[ESP 7→ 100][EBP 7→ 200][EBX 7→ 1], [ ], [100 7→ 2]]

σ ′ : [[EAX 7→ 2][ESP 7→ 100][EBP 7→ 200][EBX 7→ 1], [ ], [100 7→ 2][200 7→ 1]]

Consider our first candidate C1 ≡ “mov eax, [esp]; mov [esp], ebx.” C1 copies a 32-bit
1Recall that any location not shown in a state is mapped to the value 0.
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value from the location pointed to by the stack-pointer register ESP to the register EAX,
and a 32-bit value from the EBX register to the location pointed to by the frame-pointer
register EBP. The QFBV formula ψ1 for C1 is

ψ1 ≡ 〈〈C1〉〉 ≡ EAX ′ = Mem(ESP) ∧ Mem ′ = Mem[ESP 7→ EBX].

Our goal is to simplify ψ1 with respect to 〈σ,σ ′〉 to obtain the simplified formula ψ〈σ,σ ′〉
1 .

Approach 1. Suppose that we have a function χ that converts a state into a QFBV
formula. One way to obtain ψ〈σ,σ ′〉

1 is to convert σ and σ ′ into QFBV formulas (using the
function χ), and conjoin the resulting formulas with ψ1.

ψ
〈σ,σ ′〉
1 ≡ ψ1 ∧ χ(σ, 0)∧ χ(σ ′, 1) (3.2)

Note that χ also takes a vocabulary index as an input (the pre-state is vocabulary 0; the
post-state is vocabulary 1). The symbols in the QFBV formula produced by χ are in the
specified vocabulary. We can define χ as follows:

χ(σ, voc) = χRegFlag(σ, voc)∧ χMem(σ, voc)

χRegFlag converts the register and flag maps into a QFBV formula; χMem converts the memory
map into a QFBV formula.

The implementation of χRegFlag is straightforward: for each register (flag), generate a
constraint using the value of the register (flag) from the argument state. For example,

χRegFlag(σ, 0) ≡ ESP = 100 ∧ EBP = 200 ∧ EBX = 1.

One possible way of implementing χMem is the following: for every location l in the memory
array, generate a constraint on index l of an uninterpreted array symbol Mem.

χMem(σ, 0) ≡ Mem(0) = 0 ∧ Mem(4) = 0 ∧ . . . ∧ Mem(100) = 2 ∧ Mem(104) = 0 ∧ . . .

In most ISAs, addressable memory is usually 232 or 264 bytes long. One way to prevent χMem

from returning enormous formulas is to use a universal quantifier in the formula. However,
off-the-shelf SMT solvers cannot be used to check the satisfiability of the resulting formula.
Consequently, we need to devise a different approach.

Approach 2. We could use χRegFlag in place of χ.

ψ
〈σ,σ ′〉
1 ≡ ψ1 ∧ χRegFlag(σ, 0)∧ χRegFlag(σ

′, 1) (3.3)
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However, Eqn. (3.2) and Eqn. (3.3) are not equisatisfiable. This approach results in false pos-
itives. Because Eqn. (3.3) is satisfiable, this approach would conclude that ψ1 is equivalent
to ϕwith respect to 〈σ,σ ′〉, even though it is not.

Approach 3. To obtain a simplified formula that is equisatisfiable with the one in
Eqn. (3.2), McSynth uses a procedure SimplifyWithTest. SimplifyWithTest generates constraints
only for memory locations that are accessed or updated by a QFBV formula for a test case.
We illustrate SimplifyWithTest by simplifying ψ1 with respect to 〈σ,σ ′〉. First, SimplifyWith-
Test conjoins ψ1 with χRegFlag(σ, 0) and χRegFlag(σ

′, 1) to obtain the following formula:

2 = Mem(100) ∧ Mem ′ = Mem[100 7→ 1] (3.4)

The only memory location that is accessed or updated in Eqn. (3.4) is 100. For this location,
SimplifyWithTest generates the following constraints from 〈σ,σ ′〉.

Mem(100) = 2 ∧ Mem ′(100) = 2 (3.5)

SimplifyWithTest conjoins Eqn. (3.4) and Eqn. (3.5) to obtain

ψ
〈σ,σ ′〉
1 ≡ Mem ′ = Mem[100 7→ 1] ∧ Mem(100) = 2 ∧ Mem ′(100) = 2. (3.6)

The formulas in Eqn. (3.2) and Eqn. (3.6) are equisatisfiable because any memory location
other than 100 is irrelevant to the test case. McSynth checks the satisfiability of ψ〈σ,σ ′〉

1 using
an SMT solver. The solver says that ψ〈σ,σ ′〉

1 is unsatisfiable, which is the desired result.
Consider another candidate C2 ≡ “mov eax, [esp]; mov [〈Imm32〉], ebx.” C2 is a tem-

plate to copy a 32-bit value from the location pointed to by the stack-pointer registerESP
to the register EAX, and a 32-bit value from the EBX register to a memory location with a
constant address. The QFBV formula ψ2 for C2 is

ψ2 ≡ 〈〈C2〉〉 ≡ EAX ′ = Mem(ESP) ∧ Mem ′ = Mem[i 7→ EBX].

After conjoining ψ2 with χRegFlag(σ, 0) and χRegFlag(σ
′, 1), SimplifyWithTest produces the fol-

lowing formula:

2 = Mem(100) ∧ Mem ′ = Mem[i 7→ 1] (3.7)

Two locations are accessed or updated in the formula. One is the concrete location 100, and
another is the symbolic location i. The symbolic location can be any concrete location. To
constrain the pre-state value at location i, McSynth generates the following constraint from
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Input: ψ, 〈σ,σ ′〉
Output: ψ〈σ,σ ′〉

1: ψ〈σ,σ ′〉← Simplify(ψ ∧ χRegFlag(σ, 0) ∧ χRegFlag(σ ′, 1))
2: concLocs← ConcLocs(ψ〈σ,σ ′〉)
3: concMemConstr← true
4: for each a in concLocs do
5: val← Lookup(σ, a)
6: val ′← Lookup(σ ′, a)
7: concMemConstr← concMemConstr ∧ Mem(a) = val ∧ Mem ′(a) = val ′
8: end for
9: symLocs← SymLocs(ψ〈σ,σ ′〉)

10: if symLocs = ∅ then
11: return Simplify(ψ〈σ,σ ′〉 ∧ concMemConstr)
12: end if
13: return Simplify(ψ〈σ,σ ′〉 ∧ concMemConstr ∧ SymMemConstr (symLocs, σ, Mem) ∧

SymMemConstr(symLocs, σ ′, Mem ′))
Algorithm 3.3: Algorithm SimplifyWithTest

the memory map [100 7→ 2] in σ:

Mem(100) = 2 ∧ i 6= 100⇒Mem(i) = 0 (3.8)

To constrain the post-state value at location i, McSynth uses the memory map [100 7→
2][200 7→ 1] in σ ′ to generate

Mem ′(100) = 2 ∧ Mem ′(200) = 1 ∧ (i 6= 100 ∧ i 6= 200)⇒Mem ′(i) = 0. (3.9)

SimplifyWithTest conjoins Eqns. (3.7)–(3.9), and returns the resulting formula ψ〈σ,σ ′〉
2 . Mc-

Synth checks the satisfiability of ψ〈σ,σ ′〉
2 . The SMT solver says that ψ〈σ,σ ′〉

2 is satisfiable, and
produces the satisfying assignment [i 7→ 200]. Indeed,ϕ andψ2 are equivalent with respect
to 〈σ,σ ′〉when i = 200.

The algorithm for SimplifyWithTest is shown in Alg. 3.3. In the algorithm, the function
Simplify simplifies a formula by removing unnecessary conjuncts; ConcLocs identifies
the set of concrete memory locations that are accessed or updated by a QFBV formula;
SymLocs identifies the set of symbolic memory locations that are accessed or updated by a
QFBV formula; Lookup obtains the value present in a concrete memory location in a state;
SymMemConstr produces the memory constraint for a set of symbolic locations. Note that
ConcLocs and SymLocs collect concrete and symbolic memory locations, respectively, from
all nested terms and sub-formulas (e.g., Mem ′ = Mem[Mem(i) 7→ Mem(0)]) and not just
from those at the top level.
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Input: ϕ, C, ψ = 〈〈C〉〉, T
Output: Instantiation Cconc of C such that 〈〈Cconc〉〉 ⇔ ϕ, or FAIL

1: while true do
2: ψT ← true
3: for each test-case 〈σ,σ ′〉 ∈ T do
4: ψT ← ψT ∧ SimplifyWithTest(ψ, 〈σ,σ ′〉)
5: end for
6: model1 = SAT(ψT )
7: if model1 = ⊥ then
8: return FAIL
9: end if

10: ψconc← Substitute(ψ, model1)
11: model2 ← SAT(¬(ϕ⇔ ψconc))
12: if model2 = ⊥ then
13: return Substitute(C, model1)
14: end if
15: T ← T ∪model2
16: end while

Algorithm 3.4: Algorithm CEGIS

At this point, McSynth has either determined that no instance of templatized candidate
C passes all tests in T , or has a concrete instruction-sequence Cconc that passes all tests in
T .

The CEGIS loop. Once McSynth obtains Cconc (and its corresponding QFBV formulaψconc)
that is equivalent to ϕwith respect to T , McSynth checks if ψconc is equivalent to ϕ using
an SMT solver. If they are equivalent, McSynth returns Cconc. Otherwise, McSynth adds the
counterexample returned by the solver to T , and searches for another concrete instruction-
sequence that passes the tests. Alg. 3.4 show McSynth’s CEGIS loop. In Alg. 3.4, the
overloaded function Substitute substitutes a model in a templatized instruction-sequence
or QFBV formula.

The full CEGIS-based algorithm to synthesize instructions from a QFBV formula is
shown in the unhighlighted lines of Alg. 3.5. In the algorithm, ε denotes an instruction
sequence with no instructions, ReadInstrPool reads the templatized instructions in the
ISA from a file, and Append appends an instruction to an instruction sequence.

3.2.2 Pruning the Synthesis Search-Space

ISAs such as Intel’s IA-32 have around 43,000 unique templatized instructions. For IA-32,
Alg. 3.5 will make millions of calls to the SMT solver to synthesize instruction sequences
that have length 2 or more. A call to an SMT solver is expensive, and this cost makes
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Input: ϕ
Output: Cconc or FAIL

1: instrPool← ReadInstrPool( )
2: T ← {〈σ0,σ ′

0〉}
3: prefixes← {ε}
4: while prefixes 6= ∅ do
5: for each prefix p ∈ prefixes do
6: prefixes← prefixes − {p}
7: for each templatized instruction i ∈ instrPool do
8: C← Append(p, i)
9: ψ← 〈〈C〉〉

10: if SFP#
USE(ψ) 6⊆ SFP#

USE(ϕ) ∨ SFP#
KILL(ψ) 6⊆ SFP#

KILL(ϕ) then
11: continue
12: end if
13: prefixes← prefixes ∪ {C}
14: ret = CEGIS(ϕ, C, ψ, T )
15: if ret 6= FAIL then
16: return ret
17: end if
18: end for
19: end for
20: end while
21: return FAIL

Algorithm 3.5: Algorithm McSynthSlave

Alg. 3.5 very slow. We have devised heuristics to prune the synthesis search-space, and
speed up synthesis. Our heuristics have the guarantee that only useless candidates are
pruned away. In this sub-section, we describe our pruning heuristics.

Abstract Semantic-Footprints
First, we define semantic-footprints and abstract semantic-footprints of QFBV formulas. The
semantic-USE-footprint (SFPUSE) is the set of concrete locations (represented as constant
symbols) that are used by the QFBV formula for some input. The semantic-KILL-footprint
(SFPKILL) is the set of concrete locations that are modified by the QFBV formula for some
input. For the formula in Eqn. (3.1), SFPUSE and SFPKILL are shown below (with a minor
abuse of notation).

SFPUSE(ϕ) = {ESP, EBP} SFPKILL(ϕ) = {ESP ′, EBP ′, 0 ′, 1 ′, 2 ′, . . . }

0 ′, 1 ′, 2 ′, . . . are in SFPKILL because ϕmight modify any memory location for some input. If
a QFBV formula uses or modifies a memory location, the SFP sets could be large. Abstract
semantic-footprints are over-approximations of semantic-footprints. The abstract semantic-
USE-footprint (SFP#

USE) is an over-approximation of SFPUSE, and the abstract semantic-
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KILL-footprint (SFP#
KILL) is an over-approximation of SFPKILL. We identify SFP#

USE and
SFP#

KILL via a syntax-directed translation over a QFBV formula. In the following definitions,
RF (RF ′) is the set of unprimed (primed) constant symbols used for registers and flags, and
T is the set of QFBV terms.

Definition 3.1.

SFP#
USE(C) =

{C} if c ∈ RF

∅ otherwise

SFP#
USE(Mem(t)) = {Mem} ∪ SFP#

USE(t), where t ∈ T

SFP#
USE(C ′ = C) = ∅, where c ′ ∈ RF ′, c ∈ RF (3.10)

SFP#
USE(Mem ′ = Mem) = ∅ (3.11)

SFP#
KILL(C ′) =

{C ′} if c ′ ∈ RF ′

∅ otherwise

SFP#
KILL(Mem ′) = {Mem ′}

SFP#
KILL(C ′ = C) = ∅, where c ′ ∈ RF ′, c ∈ RF (3.12)

SFP#
KILL(Mem ′ = Mem) = ∅ (3.13)

For all other cases, SFP#
USE (SFP#

KILL) is the union of SFP#
USE (SFP#

KILL) of the constituents.

Eqns. (3.10)–(3.13) represent the computation of SFP#
USE and SFP#

KILL for the identify
conjuncts in a QFBV formula (representing the unmodified portions of the state). For an
input QFBV formula ϕ, consider the set of instruction sequences I# that has the following
property:

∀C ∈ I#, SFP#
USE(〈〈C〉〉) ⊆ SFP#

USE(ϕ) ∧ SFP#
KILL(〈〈C〉〉) ⊆ SFP#

KILL(ϕ)

The set I# is depicted in Fig. 3.6 as a hexagon. If McSynth restricts the synthesis search-
space to I#, McSynth will miss two types of candidates.

1. A candidate that is not equivalent toϕ. An example of such a candidate for the QFBV
formula in Eqn. (3.1) is “mov eax, ebx”.

2. A candidate C that satisfies the following properties:
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Figure 3.6: Depiction of the set I#.

a) 〈〈C〉〉 ⇔ ϕ

b) SFP#
USE(〈〈C〉〉) 6⊆ SFP#

USE(ϕ)∨ SFP#
KILL(〈〈C〉〉) 6⊆ SFP#

KILL(ϕ)

We call such a candidate superfluous. Although 〈〈C〉〉 semantically uses and modifies
the same locations as ϕ (because 〈〈C〉〉 ⇔ ϕ), the syntax of 〈〈C〉〉 suggests that it uses
(kills) a location that is not used (killed) by ϕ, and might not implement ϕ efficiently.
Therefore, McSynth prunes away superfluous candidates. For the QFBV formula
in Eqn. (3.1), “push ebp; lea ebp,[esp+eax]; lea ebp,[ebp-eax]” is an example of a
superfluous candidate; the final value of EBP depends on the value of ESP, but does
not depend on the value of EAX.

Useless-Prefix

Because a location modified (used) by a QFBV formula cannot be “un-modified” (“un-
used”), if a candidate C 6∈ I#, no matter what instruction sequence is appended to C, the
resulting instruction sequence must lie outside I#. Thus, if McSynth finds that a candidate
C 6∈ I# during enumeration, it will never enumerate any instruction sequence with C as a
prefix. (C is a useless-prefix.)

Theorem 3.7. For any pair of instruction sequences C1, C2, C1 6∈ I# implies C1;C2 6∈ I#.

The CEGIS-based synthesis algorithm, along with footprint-based search-space pruning
is given in Alg. 3.5. Search-space pruning is carried out in Line 10 of Alg. 3.5. Alg. 3.5
constitutes McSynthSlave, the algorithm used by McSynth’s slave synthesizer.

3.2.3 Divide-and-Conquer

The candidate enumeration in Alg. 3.5 has exponential cost. Synthesizing an instruction
sequence that consists of a single instruction takes less than a second; synthesizing a two-
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Input: ϕ, max
Output: Cconc or FAIL

1: splits← EnumerateSplits(ϕ)
2: for each split 〈ϕ1,ϕ2〉 ∈ splits do
3: if IsFlowDependent(ϕ1, ϕ2) = MAYBE then
4: continue
5: end if
6: ret1←McSynthMaster(ϕ1, max)
7: if ret1 = FAIL then
8: continue
9: end if

10: ret2←McSynthMaster(ϕ2, max)
11: if ret2 6= FAIL then
12: ret← Concat(ret1, ret2)
13: return ret
14: end if
15: end for
16: return McSynthSlave<max>(ϕ)

Algorithm 3.8: Algorithm McSynthMaster

instruction sequence takes a few minutes; synthesizing a three-instruction sequence takes
several hours.

Benchmarks previously used to study synthesis of loop-free programs usually consist of
a single input (or a few inputs), and a single output. However, machine-code instructions in
basic blocks of real programs typically have many inputs and many outputs. An important
observation is that the QFBV formulas of such basic blocks often contain many independent
updates. If a QFBV formula has independent updates, it can be broken into sub-formulas,
and the synthesizer can be invoked on the smaller sub-formulas.

McSynth’s master uses a recursive procedure (McSynthMaster) that splits ϕ into two sub-
formulas ϕ1 and ϕ2, and synthesizes instructions for ϕ1 and ϕ2. For pragmatic reasons, an
implementation of the splitting step would typically constructϕ1 andϕ2 from subformulas
of ϕ. The pseudo-code for McSynthMaster is shown in Alg. 3.8. McSynthMaster has an
unusual structure because the base case (Line 16) appears after the recursive calls (Lines 6
and 10). The base case is reached if either (i) EnumerateSplits returns an empty set of splits in
Line 1, or (ii) for each split, at least one recursive call returns FAIL. Let McSynthSlave<max>

be a version of Alg. 3.5 that is parameterized by the maximum length of candidates to
consider during enumeration (max). McSynthSlave<max> returns FAIL if Alg. 3.5 cannot
find an instruction sequence with length 6 max that implements ϕ. McSynthMaster uses
EnumerateSplits to enumerate all splits of ϕ, and IsFlowDependent to test if a candidate split
is illegal.
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Input: 〈ϕ1,ϕ2〉
Output: NO or MAYBE

1: killed← DropPrimes(SFP#
KILL(ϕ1))

2: used← SFP#
USE(ϕ2)

3: if killed ∩ used = ∅ then
4: return NO
5: else
6: return MAYBE
7: end if

Algorithm 3.9: Algorithm IsFlowDependent

Definition 3.2. Legal split. Suppose that DropPrimes removes the primes from constant
and function symbols. A split 〈ϕ1,ϕ2〉 of ϕ is legal iff

DropPrimes(SFP#
KILL(ϕ1)) ∩ SFP#

USE(ϕ2) = ∅.

Observation 1. Suppose that change_voc(ϕ, i, j) changes the vocabulary of constant and function
symbols from i to j in ϕ, and that the pre-state and post-state vocabularies of ϕ are 0 and 1,
respectively. If 〈ϕ1,ϕ2〉 is a legal split of ϕ, then

The formulas ϕ and (change_voc(ϕ1, 1, 2) ∧ change_voc(ϕ2, 0, 2)) are equisatisfiable.

Note that we use equisatisfiable instead of equivalent in Obs. 1 because the second formula
has an extra vocabulary. Alternatively, one can state Obs. 1 as follows, where voc2 is the set
of vocabulary-2 constant and function symbols:

The formulas ϕ and ∃ voc2 . (change_voc(ϕ1, 1, 2) ∧ change_voc(ϕ2, 0, 2)) are equivalent

McSynthMaster uses IsFlowDependent (Alg. 3.9) to check if a split is illegal. IsFlowDependent
tests if a candidate split satisfies the property given in Defn. 3.2.

For each legal split 〈ϕ1,ϕ2〉 of ϕ, McSynthMaster makes recursive calls to synthesize
instructions for ϕ1 and ϕ2. If the synthesis step succeeds in synthesizing instructions for
both ϕ1 and ϕ2, McSynthMaster concatenates the results (using Concat), and returns the re-
sulting instruction sequence. If 〈ϕ1,ϕ2〉were an illegal split, ϕ1 might kill a location whose
pre-state value might be used by ϕ2 (and thus, the split might not preserve correctness).
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Input: ϕ
Output: splits

1: splits← ∅
2: killedRegsFlags← KilledRegs(ϕ) ∪ KilledFlags(ϕ)
3: killedMem← KilledMem(ϕ)
4: regFlagSplits← SplitSet(killedRegsFlags)
5: memSplits← SplitSequence(killedMem)
6: for each 〈s1, s2〉 ∈ regFlagSplits do
7: for each 〈prefix, suffix〉 ∈memSplits do
8: if (s1 = ∅ ∧ prefix = 〈 〉) ∨ (s2 = ∅ ∧ suffix = 〈 〉) then
9: continue

10: end if
11: ϕ1← TruncateFormula(ϕ, s1, prefix)
12: ϕ2← TruncateFormula(ϕ, s2, suffix)
13: splits← splits ∪ 〈ϕ1,ϕ2〉
14: end for
15: end for
16: return splits

Algorithm 3.10: Algorithm EnumerateSplits

Pseudo-code for EnumerateSplits is shown in Alg. 3.10. We illustrate Alg. 3.10 with

ϕ ≡ ESP ′ = ESP − 12 ∧ EBP ′ = ESP − 4 ∧ EAX ′ = EBX∧

Mem ′ = Mem[ESP − 12 7→ EDI][ESP − 8 7→ ESI][ESP − 4 7→ EBP].

For ϕ, KilledRegs (Line 2) returns {ESP ′, EBP ′, EAX ′}, and KilledMem (Line 3) returns the
sequence 〈ESP − 4, ESP − 8, ESP − 12〉. Note that the sequence preserves the temporal order
of memory updates. SplitSet returns the set of disjoint subset pairs for the argument set.
For example, 〈{EBP ′}, {ESP ′, EAX ′}〉 and 〈{}, {EBP ′, ESP ′, EAX ′}〉 are in regFlagSplits (Line
4). SplitSequence returns the set of non-overlapping 〈prefix, suffix〉 pairs that partition
the argument sequence. For example, 〈〈ESP − 4, ESP − 8〉, 〈ESP − 12〉〉 is in memSplits
(Line 5), but 〈〈ESP − 4, ESP − 12〉, 〈ESP − 8〉〉 is not. TruncateFormula takes a formula, a
set of killed registers and flags, a sequence of memory locations, and returns a formula
that has updates only to the provided locations. For example, for 〈s1, s2〉 = 〈{ESP ′, EBP ′},
{EAX ′}〉 in Line 6 and 〈prefix, suffix〉 = 〈〈ESP − 4, ESP − 8〉, 〈ESP− 12〉〉 in Line 7, ϕ1 and
ϕ2 in Lines 11 and 12, respectively, are

ϕ1 ≡ESP ′ = ESP − 12 ∧ EBP ′ = ESP − 4 ∧ Mem ′ = Mem[ESP−8 7→ ESI][ESP−4 7→ EBP]

ϕ2 ≡EAX ′ = EBX ∧ Mem ′ = Mem[ESP − 12 7→ EDI]

Note that the split 〈ϕ1, ϕ2〉 shown above constitutes an illegal split, and is discarded.
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Input: ϕ
Output: Cconc or FAIL

1: ret = McSynthMaster(ϕ, 1)
2: if ret 6= FAIL then
3: return ret
4: end if
5: ret = McSynthMaster(ϕ, 2)
6: if ret 6= FAIL then
7: return ret
8: end if
9: return McSynthSlave(ϕ)

Algorithm 3.11: Algorithm McSynth

In addition to divide-and-conquer, our implementation of Alg. 3.8 uses memoization to
avoid processing a sub-formula more than once; the result for a sub-formula is either its
synthesized code-sequence or FAIL. Consequently, Alg. 3.8 really uses a form of dynamic
programming. Practical values for McSynthSlave’s parameter max are 1 or 2. For these
values, McSynthMaster will either return FAIL or the synthesized instruction-sequence in a
few minutes or hours (cf. Fig. 3.16). If McSynthMaster returns FAIL, McSynth uses Alg. 3.5
to synthesize instructions for ϕ. The full synthesis algorithm used by McSynth is given in
Alg. 3.11.

3.2.4 Correctness

In this sub-section, we present the soundness and completeness properties of McSynth.

Lemma 1. Alg. 3.5 is sound. (The instruction sequence returned by Alg. 3.5 is logically equivalent
to the input QFBV formula ϕ.)

Proof. By lines 11-14 of Alg. 3.4, the returned instruction sequence is logically equivalent
to ϕ.

Suppose that sym_exec(I, i, j) symbolically executes instruction sequence I with respect
to the identity state, producing a symbolic state with pre-state vocabulary i and post-state
vocabulary j. We overload χ from §3.2.1 to mean the operator that converts a symbolic state
into a QFBV formula. 〈〈I〉〉 can be defined as follows: 〈〈I〉〉 ≡ χ(sym_exec(I, i, j)). We assume
that sym_exec has the following composition property:

sym_exec(I1; I2, 0, 1) = sym_exec(I2, 2, 1) ◦ sym_exec(I1, 0, 2)

Lemma 2. For any legal split 〈ϕ1, ϕ2〉 of ϕ, if ϕ1⇔ 〈〈I1〉〉, and ϕ2 ⇔ 〈〈I2〉〉, then ϕ⇔ 〈〈I1; I2〉〉.
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Proof. 〈〈I1; I2〉〉 iff χ(sym_exec(I1; I2, 0, 1))

iff χ(sym_exec(I2, 2, 1) ◦ sym_exec(I1, 0, 2)),

iff ∃voc2 .χ(sym_exec(I2, 2, 1))∧ χ(sym_exec(I1, 0, 2))

(because vocabulary 2 acts as an intermediate vocabulary)

iff ∃voc2 . change_voc(ϕ1, 1, 2)∧ change_voc(ϕ2, 0, 2)

(because ϕ1 is equivalent to 〈〈I1〉〉, and ϕ2 is equivalent to 〈〈I2〉〉)

iff ϕ (because 〈ϕ1,ϕ2〉 is a legal split of ϕ)

Theorem 3.12. Soundness. Alg. 3.11 is sound.
Proof. Follows from Lemmas 1 and 2.

Theorem 3.13. Completeness. Modulo SMT timeouts, if there exists a non-superfluous instruc-
tion sequence I that is equivalent to ϕ, then Alg. 3.11 will find I and terminate.
Proof. McSynth enumerates templatized instruction-sequences of increasing length. Be-
cause the templatized instruction-sequences span the full set of IA-32 instruction sequences
(§3.1.1), McSynth searches through all non-superfluous instruction sequences in IA-32 to
find an instruction sequence I that is equivalent to ϕ.

Note that if such an instruction sequence does not exist (if all instruction sequences that
implement ϕ are superfluous), Alg. 3.11 might not terminate.

3.2.5 Variations on the Basic Algorithm
Scratch registers for synthesis. Certain clients—such as a code-generator client—might
want the synthesizer to be able to use “scratch” locations to hold intermediate values.
McSynth has the ability to use scratch registers during synthesis. The client can specify a set
of registers “Scratch” whose final value is unimportant. (For example, in a code-generator
client, Scratch would be the set of dead registers at the point where code is to be generated.)

The set Scratch ′ would be added to SFP#
KILL(ϕ) just before Line 10 of Alg. 3.5. Conse-

quently, instruction sequences that use registers in Scratch to hold temporary computations
would not be pruned away. (Note that instruction sequences that have upwards-exposed
uses of registers in Scratch would still be pruned away.) The only other change required
is that just before line 14 of Alg. 3.5, all conjuncts that update registers in Scratch ′ need
to be dropped from ϕ and ψ. (There is one additional minor technical point: to make the
Input/Output specification of Alg. 3.4 correct, all conjuncts of the form S ′ = T, for S ′ ∈
Scratch ′, should be dropped in the two occurrences of 〈〈·〉〉.)
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Input: ϕ, f, timeout
Output: Cconc or FAIL

1: seen← ∅
2: min← MaxFn(f )
3: minSeq← ε

4: while not TimeoutExpired(timeout) do
5: ret = McSynth(ϕ, seen)
6: if ret = FAIL then
7: return FAIL
8: end if
9: val← f (ret)

10: if val <min then
11: min← val
12: minSeq← ret
13: end if
14: seen← seen ∪ ret
15: end while
16: return minSeq

Algorithm 3.14: Algorithm Biased McSynth

Quality of synthesized code. Certain clients might want the synthesized code to possess
a certain “quality” (small size, short runtime, low energy consumption, etc.). For example, a
superoptimizer would like the synthesized code to have a short runtime. A client can obtain
the desired quality by supplying a quality-evaluation function that the synthesizer can use
to bias the search for suitable instruction sequences. For example, a superoptimizer could
instruct the synthesizer to bias the choice of instruction sequences to ones with shorter
runtimes by supplying an evaluation-function that computes the runtime of an instruction
sequence. The algorithm for a biased synthesizer is shown in Alg. 3.14. In Alg. 3.14, the
parameter f represents the quality-evaluation function, the parameter timeout represents
the timeout value for the biased synthesizer, the function MaxFn returns the maximum
value for a quality-evaluation function, and the call to the function TimeoutExpired returns
true if timeout has expired. Additionally, the following changes have to be made to Algs.
3.5, 3.8, and 3.11 to implement a biased synthesizer:

• Algs. 3.5, 3.8, and 3.11 should take an additional parameter seen, which is the set of
instruction sequences that have already been synthesized by McSynth.

• The following lines of code should be inserted after line 15 in Alg. 3.5, and after line
12 in Alg. 3.8, respectively:

if ret ∈ seen then
continue

end if
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Synthesizing code that satisfies properties. Certain clients might want the synthesized
code to satisfy a property expressed using a formula ϕ. For example, consider the formula
ϕ ≡ EAX ′ + EBX ′ = EAX + EBX + 4. Note that ϕ is not in the form shown in Eqn. (2.1).
McSynth can synthesize an instruction sequence that satisfies ϕ by replacing line 11 in
Alg. 3.4 with the following line:

model← SAT(¬(ψconc ⇒ ϕ))
Additionally, the output specification of Alg. 3.4 needs to be 〈〈Cconc〉〉 ⇒ϕ instead of 〈〈Cconc〉〉
⇔ ϕ. With this modification, McSynth synthesizes “lea eax,[eax+4]” for ϕ. The lea

instruction adds 4 to the contents of the EAX register. (“lea ebx,[ebx+4]” is another
instruction sequence that would satisfy ϕ.)

3.3 Implementation
McSynth uses Transformer Specification Language (TSL) [53] to convert instruction se-
quences into QFBV formulas. The concrete operational semantics of the integer subset of
IA-32 is written in TSL, and the semantics is reinterpreted to produce QFBV formulas [54].
McSynth uses ISAL [53, §2.1] to generate the templatized instruction pool for synthesis.
McSynth uses Yices [30] as its SMT solver. In the examples presented in this paper, we
have treated memory as if each memory location holds a 32-bit integer. However, in our
implementation, memory is addressed at the level of individual bytes.

McSynth deviates slightly from the idealized collection of templatized instructions
discussed in §3.1.1. It starts from a corpus of around 43,000 IA-32 concrete instructions and
creates templatized instructions by identifying each immediate operand in the abstract
syntax tree of an instruction in the corpus. For instance, from “mov eax, 1,” it creates the
template “mov eax, 〈Imm32〉.”

The corpus was created using ISAL, a meta-tool similar to SLED [66] for specifying the
concrete syntax of ISAs. The corpus was created by running ISAL in a mode in which the
input specification of the concrete syntax of the IA-32 instruction set is used to create a
randomized instruction generator. (Random choices are based on syntactic category, so
only a few instructions in the corpus lead to the template “mov eax,〈imm32〉.”) The random
generator produces a corpus with a wide variety of instructions ([53], Fig. 19).

In principle, one could have modified ISAL to generate all templates systematically;
however, we did not have access to the ISAL source.
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Figure 3.15: Comparison of synthesis time and search-space size with and without footprint-based
search-space pruning.

3.4 Experiments

We tested McSynth on QFBV formulas obtained from instruction sequences from the
SPECINT 2006 benchmark suite [44]. Our experiments were designed to answer the
following questions:

• What is the time taken by McSynth to synthesize instruction sequences of varying
length?

• What is the reduction in (i) synthesis time, and (ii) search-space size caused by
McSynth’s footprint-based search-space pruning heuristic (§3.2.2)?

• What is the reduction in synthesis time caused by McSynth’s divide-and-conquer
strategy (§3.2.3)?

All experiments were run on a system with a quad-core, 3GHz Intel Xeon processor;
however, McSynth’s algorithm is single-threaded. The system has 32 GB of memory.

For our experiments, we wanted to obtain a representative set of “important” instruction
sequences that occur in real programs. We harvested the five most frequently occurring
instruction sequences of lengths 1 through 10 from the SPECINT 2006 benchmark suite
(50 instruction sequences in total). We converted each instruction sequence into a QFBV
formula and used the resulting formulas as inputs for our experiments. Each instruction
sequence in this corpus is identified by an ID of the form m_n, where m is the length of the
instruction sequence, and n identifies the specific instruction sequence.

Pruning. The first set of experiments compared (i) the synthesis time, and (ii) the number
of candidates processed via CEGIS, with and without McSynth’s footprint-based search-
space pruning. The results are shown in Fig. 3.15. We have presented such results only
for QFBV formulas obtained from instruction sequences of length 1 because synthesis of
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Figure 3.16: Synthesis times using the divide-and-conquer strategy.

longer instruction sequences without footprint-based search-space pruning took longer
than 30 hours. For each QFBV formula, the reported time is the CPU time spent by Alg. 3.5.
The geometric means of the without-pruning/with-pruning ratios for (i) synthesis time, and
(ii) the number of candidates processed via CEGIS, respectively, are 473 and 273.

Divide-and-Conquer. The second set of experiments measured the synthesis times for
formulas created from instruction sequences of lengths 1 through 10 using McSynth’s
divide-and-conquer strategy (as well as footprint-based pruning). The results are shown
in Fig. 3.16. “Synthesis Time” is the total CPU time spent by Alg. 3.11. “Base Case Time” is
the time spent in the base case (Line 16 of Alg. 3.8). The QFBV formulas for which FAIL was
returned in Lines 1 and 5 of Alg. 3.11 do not have synthesis times reported in Fig. 3.16. The
QFBV formulas for which Alg. 3.11 returned a result in Line 3 (i.e., max = 1 was sufficient
for synthesis) are marked by *, and those for which Alg. 3.11 returned a result in Line 7
(i.e., max = 2 was sufficient for synthesis) are marked by **.

To measure the reduction in synthesis time caused by the divide-and-conquer strategy,
we measured the synthesis times for QFBV formulas obtained from instruction sequences
of lengths 1 and 2, with divide-and-conquer turned off. (We were unable to measure
the synthesis times for the other QFBV formulas because synthesis without divide-and-
conquer took longer than 4 days for such formulas.) In Fig. 3.17, the total CPU time
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Figure 3.17: Synthesis times with and without divide-and-conquer.

spent by Alg. 3.5 is compared with the total CPU time spent by Alg. 3.11. Points below
and to the right of the diagonal line indicate better performance for divide-and-conquer.
Synthesis without divide-and-conquer timed out on all QFBV formulas obtained from
instruction sequences of length 3. The right boundary of Fig. 3.17 represents 4 days. For
instruction sequences of length 1, synthesis with divide-and-conquer takes slightly longer
than synthesis without divide-and-conquer because all enumerated splits fail to synthesize
instructions. For instruction sequence 2_1, synthesis without divide-and-conquer finds a
shorter instruction sequence, leading to a lower synthesis time. For instruction sequences
of length 3, divide-and-conquer is 3 to 5 orders of magnitude faster.

McSynth failed to synthesize code for most formulas obtained from instruction sequences
of lengths 8 through 10 primarily because of the following reasons:

• The QFBV formula had a “deep” term or sub-formula (i.e., a term/sub-formula with a
deep abstract-syntax tree) that can be implemented only by three or more instructions.

• All terms and sub-formulas could be implemented by two instructions or less, but
the terms and sub-formulas access or update several independent memory locations.
However, because SFP#

USE and SFP#
KILL do not distinguish between memory locations,

splits that are actually legal are conservatively disregarded by Line 3 of Alg. 3.8.

These limitations in McSynth’s algorithm are addressed in the next chapter.
For the 36 QFBV formulas for which McSynth synthesized code, Table 3.18 compares

the length of the synthesized instruction-sequence to the length of the corresponding
original instruction-sequence. Table 3.18 shows that our vanilla divide-and-conquer syn-
thesis method often produces longer instruction sequences, but can sometimes produce a
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shorter instruction sequence (if the original instruction sequence performed redundant
computations).

Table 3.18: Comparison of the lengths of synthesized and original instruction-sequences.

Same 9
Different, but same length 4
Shorter 1
Longer 22

3.5 Related Work

Counter-Example Guided Inductive Synthesis (CEGIS). CEGIS is a synthesis frame-
work that has been widely used in synthesis tools. Sketching is a technique that uses CEGIS
for completing partial programs, or sketches [84–87]. The templatized instruction-sequences
enumerated by McSynth can be considered as sketches, with the template operands being
the holes. McSynth uses an instantiation of CEGIS for machine code to obtain concrete
instruction-sequences.

CEGIS has been used in the component-based synthesis of bit-vector programs in
Brahma [41]. Brahma synthesizes bit-vector programs from a library of 14 components.
Brahma takes a specification of the desired program, and an upper bound on the number
of times each component can be used in the synthesized program, as inputs. Brahma
encodes the interconnection between components as a synthesis constraint, and uses
CEGIS to solve the constraint. The goals of McSynth and Brahma are the same—namely,
to synthesize a straight-line program that is equivalent to a logical specification using a
library of components. However, in McSynth, the library is a full ISA, consisting of around
43,000 components. Brahma’s approach of offloading the exponential cost of enumerating
programs to an SMT solver might not work for an ISA like IA-32 due to the following
reasons:

• The inputs and outputs of instructions include registers, flags, and a large memory
array. Expressing interconnections between the inputs and outputs of instructions as
a synthesis constraint may be nontrivial.

• Because Brahma’s synthesis constraint is quadratic in the number of components, the
synthesis constraint for a full ISA may be too large for SMT solvers to handle.

CEGIS has also been used in the synthesis of protocols from concolic-execution frag-
ments [97].
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Superoptimization. Superoptimization aims to find an optimal instruction-sequence for
a target instruction-sequence [16, 17, 49, 55, 64, 65, 76]. Peephole superoptimization [16]
uses “peepholes” to harvest target instruction-sequences, and replace them with equivalent
instruction-sequences that have a lower cost. A superoptimizer can be implemented by
using a machine-code synthesizer that has been enhanced to bias its search toward short
instruction sequences. Recall that 〈〈·〉〉 converts an instruction sequence into a QFBV formula.
Suppose that SynthOptimize is a client of the synthesizer that is biased to synthesize short
instruction sequences. Then a superoptimizer can be constructed as follows:

Superoptimize(InstrSeq) = SynthOptimize(〈〈InstrSeq〉〉)

However, one cannot construct a synthesizer from a superoptimizer. Moreover, recent
superoptimizers sacrifice completeness for reduced superoptimization times by resorting
to stochastic search [64, 76]. In contrast, the techniques used in McSynth aim to reduce the
synthesis time as much as possible without losing its completeness properties.

From a practical standpoint, certain techniques used in modern superoptimizers like
STOKE [76] can be applied to machine-code synthesis. The following points outline how
one could potentially adapt STOKE for machine-code synthesis:

• The cost function in STOKE takes into account both correctness and performance.
If a client of the synthesizer does not care about performance, one could drop the
performance component of the cost function.

• STOKE uses Markov Chain Monte Carlo (MCMC) sampling to search through the
space of instruction sequences, and validates candidates by executing the input
and candidate instruction-sequences on bare metal using a finite set of test inputs.
Executing tests on bare metal allows STOKE to meet the sampling-rate requirements
of MCMC sampling. For machine-code synthesis, the specification of the input is a
QFBV formula and not an instruction sequence, and for candidate validation, one
needs to evaluate the input QFBV formula on test inputs. QFBV evaluation is much
slower than executing tests on bare metal, and might not meet the rate requirements
of MCMC sampling. However, one could evaluate the input formula using the test
inputs a priori, and just use the post-states for comparison inside the MCMC loop.

• While generating candidates, STOKE restricts immediate operands in candidates to
take values only from a small set S. If the input formula ϕ contains values that are
not in S, STOKE might not find an implementation for ϕ. One possible workaround
is to add all constants occurring in ϕ to S, and sample immediate operands from the
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updated S in the MCMC loop. However, this strategy might preclude STOKE from
finding potentially better implementations. For example, suppose that ϕ ≡ EAX ′ =

(EAX + 2) + 2. The aforementioned strategy will not find the implementation “lea
eax, [eax + 4]” for ϕ.

It remains for future work to adapt STOKE for machine-code synthesis, evaluate on our set
of benchmarks, and compare empirical completeness and performance with McSynth.

Clients of a machine-code synthesizer. Partial evaluation [48] is a program specialization
technique that optimizes a program with respect to certain static inputs. A machine-code
partial evaluator [89] partially evaluates a binary either to specialize it with respect to certain
inputs, or to extract an executable component from a binary. In a machine-code partial
evaluator, a synthesizer is used to synthesize residual code from formulas of instructions
specialized with respect to static inputs. Machine-code partial evaluation is discussed in
detail in Chapter 6.

A machine-code synthesizer also plays a key role in a machine-code slicer [91]. For
purposes of precise slicing, a machine-code slicer converts a machine-code program into
an intermediate representation (IR) that is at the microcode level (microcode is at an even
lower level than machine code), and performs slicing on the microcode IR. However, if
a client of the slicer wants a machine-code slice instead of a microcode slice, the slicer
has to now reconstitute a machine-code program from the slice. To solve the program-
reconstitution issue, a machine-code synthesizer can be used to synthesize instructions
from the microcode fragments included in the slice. Machine-code slicing is discussed in
detail in Chapter 7.
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4 Speeding-up Machine-Code Synthesis

The previous chapter presented the design of the machine-code synthesizer McSynth. To
cope with the enormous synthesis search-space, recall that McSynth uses (i) a divide-and-
conquer strategy to split the synthesis task into several independent smaller sub-tasks,
and (ii) footprint-based search-space pruning heuristics to prune away candidates during
synthesis. However as we saw in §3.4, McSynth times out for several larger QFBV formulas;
even for smaller formulas, McSynth takes several minutes to find an implementation. Con-
sequently, if a binary-rewriter client supplies a formula as input to McSynth, the client has
to wait several minutes or hours before McSynth finds an implementation. This delay might
not be tolerable for a client that has to invoke the synthesizer multiple times to rewrite an
entire binary. For example, the machine-code partial evaluator WiPEr [89] uses McSynth for
the purpose of residual-code generation. For a small binary, WiPEr calls McSynth tens to
hundreds of times. If each formula supplied to McSynth is relatively large, partial evaluation
of an entire binary might take several hours or days.

This chapter presents several techniques to improve the synthesis algorithm used in
McSynth. Some of our techniques improve the “divide” phase of McSynth so that McSynth
can better split a synthesis task into smaller sub-tasks; the remaining techniques improve
the “conquer” phase of McSynth so that McSynth can find an implementation for a sub-task
faster. Our techniques are not restricted to machine code in particular, and can be applied
to speed up other enumerative program synthesizers as well. We have implemented our
techniques in McSynth to create a newer version of it called McSynth++[92]. Like McSynth,
McSynth++ can be parameterized by the ISA of the target instruction-sequence.

Because McSynth++ is much faster than McSynth (see §4.4), McSynth++ should improve
the speed of existing binary-rewriting clients that use McSynth [89, 91]. McSynth++ should
also allow existing clients to work on larger QFBV formulas for the purpose of obtaining
output binaries of better quality. For example, WiPEr currently specializes individual
instructions with respect to static inputs. With McSynth++, instead of residuating code
for several specialized instructions in a basic block, WiPEr could perform specialization
at a basic-block level, and thereby create more optimized code. McSynth++ should also
facilitate building of new clients that were impractical to build with McSynth.

Our techniques incorporate a number of ideas known from the literature, including
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• alias testing to check for flow independence between elements of an array [40, 56],

• flattening of an abstract-syntax tree (AST) via scratch-register allocation for code-
generation purposes [5],

• the observation that during synthesis, it is advantageous to try out sooner the com-
ponents that are more frequently used in a codebase [67, 68].

McSynth++ uses/adapts these ideas in novel ways for the purpose of speeding up machine-
code synthesis.

Contributions.

This chapter’s contributions include the following:

• We show how ideas related to array dependence-testing furnish a better method
for splitting a formula into independent sub-formulas for the purposes of synthesis
(§4.2.1).

• We show how one can use flattening and scratch locations to convert a single large
synthesis task involving a “deep” term into multiple smaller synthesis tasks involving
“flat” terms (§4.2.1).

• We propose a novel way of pruning candidates and prefixes during synthesis based
on information about the pre-state bits lost/destroyed by an instruction sequence
when it transforms a state (§4.2.2).

• We show how a simple “move-to-front” heuristic can be used to prioritize instructions
that are commonly used to implement operations in an instruction set (§4.2.3).

Our techniques have been implemented in McSynth++, an improved synthesizer for IA-32.
Our experiments show that McSynth++ synthesizes code for 12 out of 14 formulas on
which McSynth times out, speeding up the synthesis time by at least 1981X, and for the
remaining formulas, McSynth++ speeds up synthesis by 3X.

4.1 Overview

In this section, we use an example to highlight the key limitations of McSynth’s algorithm,
and illustrate the workings of McSynth++.
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4.1.1 Limitations of the McSynth Algorithm

Consider the following QFBV formula ϕ:

ϕ ≡ EAX ′=Mem(ESP + 4)∧ Mem ′=Mem[ESP 7→ EAX]∧ EBX ′=((EAX ∗ 2)�2)+EAX

ϕ performs three updates on an IA-32 state: (i) it copies the 32-bit value in the memory
location pointed to by ESP + 4 to the EAX register, (ii) copies the 32-bit value in the EAX
register to the memory location pointed to by the stack-pointer register ESP, and (iii) updates
the EBX register with a value computed using the value in the EAX register.

McSynth’s master tries to find a legal split of ϕ. Recall from §3.1 that a legal split of
an input formula ϕ is a sequence of sub-formulas 〈ϕ1,ϕ2, ... ,ϕk〉 such that if one were
to synthesize an instruction sequence Ii for each ϕi independently, and concatenate the
synthesized instruction-sequences in the same order, the result will be equivalent to ϕ.
Also recall that a sufficient condition for a legal split is flow independence. For our running
example, consider the candiate split 〈ϕ1,ϕ2〉 shown below.

ϕ1 ≡Mem ′ = Mem[ESP 7→ EAX]

ϕ2 ≡ EAX ′ = Mem(ESP + 4)∧ EBX ′ = ((EAX ∗ 2)� 2) + EAX

One can see that there are no flow dependences from ϕ1 to ϕ2, and the split 〈ϕ1,ϕ2〉 is
actually legal. However, McSynth uses a very conservative one-sided decision procedure for
flow dependence: because ϕ1 might modify some memory location, and ϕ2 might use some
memory location, McSynth deems the split illegal, and discards it. Consequently, several
such legal splits are missed by McSynth.

McSynth’s master identifies the following split 〈ϕ3,ϕ4〉 as the only possible legal split of
ϕ:

ϕ3 ≡ EBX ′ = ((EAX ∗ 2)� 2) + EAX

ϕ4 ≡ EAX ′=Mem(ESP + 4)∧ Mem ′=Mem[ESP 7→ EAX]

McSynth cannot split either ϕ3 or ϕ4 any further, so it hands over ϕ3 and ϕ4, respectively,
to slave synthesizers.

McSynth’s slave enumerates templatized instruction-sequences of increasing length,
and uses an instantiation of the CEGIS framework along with footprint-based search-space
pruning heuristics to synthesize code for a sub-formula. Consider the sub-formula ϕ3.
The slave exhausts all templatized one-instruction and two-instruction sequences, and
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eventually enumerates the candidate C ≡ “imul ebx,eax,〈Imm32〉; shr ebx,〈Imm32〉; lea
ebx,[ebx+eax].” (For this example, we pretend that the shr instruction does not set flags.)
The slave returns the instantiation “imul ebx,eax,2; shr ebx,2; lea ebx,[ebx+eax]” of
C as the synthesized code for ϕ3. Because of the depth of the AST of ϕ3, and the large
number of templatized instructions in IA-32 (around 43,000), the slave takes a few days to
synthesize this instruction sequence for ϕ3 via enumerative synthesis.

In a similar manner, the slave synthesizes the instruction sequence “mov [esp],eax;
mov eax,[esp+4]” for ϕ4. McSynth concatenates the results produced by the slaves and
returns the resulting instruction sequence. McSynth takes a few days to complete the overall
synthesis task.

In summary, McSynth suffers from the following limitations:

1. McSynth’s one-sided decision procedure for flow independence treats memory con-
servatively. Consequently, McSynth loses opportunities to find legal splits.

2. If a synthesis task involves a “deep” term (a term whose AST is deep), McSynth does
not attempt to split the task into smaller sub-tasks.

The overall effect of these limitations is the high synthesis time for even relatively small
QFBV formulas.

4.1.2 Overview of McSynth++

At a high level, McSynth++ has the same design as McSynth: McSynth++’s master splits the
input QFBV formula into a sequence of independent sub-formulas, and hands over each
sub-formula to a slave synthesizer. However, McSynth++’s master and slave are improved
versions of those of McSynth. McSynth++’s master uses an improved divide-and-conquer
strategy that addresses the limitations of McSynth in the following ways:

1. McSynth++ uses an improved one-sided decision procedure for flow independence.
McSynth++’s decision procedure is capable of reasoning about flow independence
between different memory locations.

2. If the input formula contains a conjunct with a “deep” term/sub-formula, McSynth++
flattens the deep term/sub-formula into a sequence of sub-formulas.

Compared to the master used in McSynth, the improved master identifies more and finer-
grained legal splits. Each of the sub-formulas in a split is given to a slave synthesizer, which
synthesizes an instruction sequence for the sub-formula. McSynth++’s improved slave uses
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an additional pruner based on the bits lost/destroyed by a candidate instruction-sequence
to prune away candidates during synthesis. Additionally, the slave uses a “move-to-front”
heuristic to boost the priority of instructions that have already been used in synthesized
code. McSynth++’s master concatenates the results produced by the slaves, and returns the
concatenated instruction-sequence as the synthesized code. Because of the aforementioned
improvements, McSynth++ typically finishes the synthesis task much faster than McSynth.1

This section illustrates the workings of McSynth++ using our running example ϕ from
§4.1.1.

ϕ ≡ EAX ′=Mem(ESP + 4)∧ Mem ′=Mem[ESP 7→ EAX]∧ EBX ′=((EAX ∗ 2)�2)+EAX

McSynth++’s master first flattens the EBX ′ = ... conjunct into a sequence of conjuncts using
interface constants. An interface constant is a symbolic constant that facilitates the flow of
data between conjuncts created by McSynth++. Each interface constant will be replaced
by a concrete location (register, flag, or memory location) in a later step. For example,
McSynth++ rewrites ϕ as ϕ ′ by adding interface constants m and n.

ϕ ′ ≡ EAX ′ = Mem(ESP + 4) ∧ Mem ′ = Mem[ESP 7→ EAX] ∧ (4.1)

m = EAX ∗ 2 ∧ n = m� 2 ∧ EBX ′ = n + EAX

Note that ϕ ′ and ϕ are equisatisfiable. (They are equisatisfiable instead of equivalent because
the vocabulary of ϕ ′ contains extra constant symbols. However, if we disregard these
constants in the meaning of ϕ ′, then ϕ ′ ⇔ ϕ.)

McSynth++’s master now uses the improved divide-and-conquer strategy to identify
legal splits of ϕ ′. Because the updates in ϕ ′ contain interface constant-symbols, flow
independence is no longer a sufficient condition for a legal split. If the following two
conditions hold, then a split 〈ϕ1,ϕ2, ... ,ϕk〉 is legal:

• Flow independence for registers, flags, and memory locations: there is no flow depen-
dence through registers, flags, or memory locations from a sub-formula ϕi to any
successor sub-formula ϕj (i < j)

• Mandatory flow dependence for interface constants: each interface constant that gets
used in a sub-formula ϕj is defined in some predecessor sub-formula ϕi (i < j)

Given a candidate split, it is straightforward to check the second property. To check the
first property, McSynth++ uses an improved one-sided decision procedure. We illustrate

1Note that McSynth++ is not guaranteed to be faster because it has more legal splits to consider.
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the improved decision-procedure using examples. Consider the candidate split 〈ϕ1,ϕ2〉
given below.

ϕ1 ≡ m = EAX ∗ 2 ∧ n = m� 2 ∧ EBX ′ = n + EAX ∧ EAX ′ = Mem(ESP + 4)

ϕ2 ≡ Mem ′ = Mem[ESP 7→ EAX]

The decision procedure for flow independence first checks whether condition C1 from §3.1
holds. If it does, the decision procedure returns MAYBE; otherwise, it moves to the next
step. C1 holds for 〈ϕ1,ϕ2〉 because of register EAX, and so the decision procedure returns
MAYBE. (Note that the one-sided decision procedure in McSynth also returns MAYBE for
this split.)

Consider another candidate split 〈ϕ3,ϕ4〉 given below.

ϕ3 ≡ Mem ′ = Mem[ESP 7→ EAX]

ϕ4 ≡ m = EAX ∗ 2 ∧ n = m� 2 ∧ EBX ′ = n + EAX ∧ EAX ′ = Mem(ESP + 4)

C1 does not hold for 〈ϕ3,ϕ4〉. The improved decision procedure now collects the terms
that denote the addresses of memory locations that might be modified by ϕ3 (denoted by
MemUpdateTerms(ϕ3)), and the set of terms that denote the addresses of memory locations
that might be used by ϕ4 (denoted by MemAccessTerms(ϕ4)). The sets are given below.

MemUpdateTerms(ϕ3) = {ESP} MemAccessTerms(ϕ4) = {ESP + 4}

If any term T1 in MemUpdateTerms might alias with any term T2 in MemAccessTerms,
the decision procedure returns MAYBE; otherwise, it returns NO. The decision procedure
checks if T1 and T2 might be aliases of each other by testing the satisfiability of T1 = T2. In
our example, ESP = ESP+4 is UNSAT, so the decision procedure returns NO, meaning that
there is no flow dependence from ϕ3 to ϕ4. (Note that the one-sided decision procedure in
McSynth returns MAYBE for this split.)

The master recursively splits ϕ4 in a similar manner. Ultimately, the master splits ϕ
into the following sequence of sub-formulas:

ϕ3 ≡Mem ′ = Mem[ESP 7→ EAX] ϕ5 ≡ m ′ = EAX ∗ 2 ϕ6 ≡ n ′ = m� 2

ϕ7 ≡ EBX ′ = n + EAX ϕ8 ≡ EAX ′ = Mem(ESP + 4)

Note that when the two occurences of an interface constant are put in different sub-formulas
of a split, the occurence on the left of the = operator is primed. The master adds the primes
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when it enumerates the candidate splits of a formula.
Before giving the sub-formulas in a legal split to slave synthesizers, McSynth++’s master

assigns concrete locations to the interface constants. We illustrate how McSynth++ assigns
concrete locations to the split 〈ϕ3,ϕ5,ϕ6,ϕ7,ϕ8〉. (Note that concrete-location assignment
is done on a per-split basis.) Suppose that the registers {EAX, EBX} are dead at the point
where code is to be synthesized, and these registers are supplied as scratch registers
to McSynth++. McSynth++ can assign an interface constant any scratch register that is
definitely not used in a downstream sub-formula. For example, McSynth++ cannot assign
m the register EAX because EAX might be used in ϕ7. If McSynth++ were to assign m the
register EAX, then it introduces a flow dependence that was originally not present in the
split, making the split illegal. So McSynth++ assigns m the register EBX. McSynth++ also
assigns the interface constant n the register EBX. The sub-formulas ϕ5, ϕ6, and ϕ7 after
register assignment are given below.

ϕ5 ≡ EBX ′ = EAX ∗ 2 ϕ6 ≡ EBX ′ = EBX� 2 ϕ7 ≡ EBX ′ = EBX + EAX

McSynth++ supplies the sub-formulas as inputs to the improved slave-synthesizers.
(Note that, as in McSynth, if synthesis for any sub-formula in a split times out, McSynth++’s
master tries an alternative split; if McSynth++ fails to synthesize code for all candidate
splits, the entire formula is given to a slave.) In the remainder of this sub-section, we
illustrate the working of the improved slave-synthesizer using ϕ7 as an example.

McSynth++’s slave—just like McSynth’s slave—enumerates templatized instruction-
sequences of increasing length, and prunes away candidates based on abstract semantic-
footprints. However unlike McSynth, candidates enumerated by McSynth++ pass through
an additional bits-lost-based pruner before reaching the CEGIS loop.

The role of the bits-lost-based pruner is illustrated by the following example: suppose
that the slave is currently enumerating templatized one-instruction candidates, and the
current candidate is C1 ≡ “mov ebx,eax.” The formula ψ1 for C1 is EBX ′ = EAX. (Note
that the abstract semantic-footprints of C1 are within those of ϕ7, and so C1 does not get
pruned away by the footprint-based pruner.) ϕ7 requires the pre-state bits in register EBX
for the computation it performs. However, when C1 transforms a pre-state to a post-state,
C1 loses the pre-state bits that were in EBX because they were overwritten by the pre-state
bits that were in register EAX. (Note that this overwrite is explicitly shown in the QFBV
formula ψ1.) This observation has two implications: (i) C1 cannot implement ϕ7 because
it has lost some of the pre-state bits that are required to implement ϕ7, and (ii) no matter
what instruction sequence we append to C1, we can never get back the pre-state bits in
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register EBX. Consequently, McSynth++ discards C1.
Suppose that the next candidate enumerated by the slave is C2 ≡ “sub ebx,eax.” The

formula ψ2 for C2 is EBX ′ = EBX − EAX. (To simplify the presentation of this example, we
pretend that the sub instruction does not set any flags.) One requires the pre-state bits in
registers EAX and EBX to implement ϕ7. When C2 transforms a pre-state to a post-state,
C2 overwrites the pre-state bits in register EBX with a value computed from the pre-state
bits in registers EAX and EBX. Even though C2 has overwritten the pre-state bits in register
EBX per se, those bits are latent in the post-state value in EBX (denoted by the term “EBX
− EAX”), and could be recovered from that post-state value. In this specific example, one
can restore the pre-state bits in register EBX by appending the instruction “add ebx,eax”
to C2. However, recovery of the pre-state bits is not always possible, e.g., consider C3 ≡
“and ebx,eax.” When the pre-state bits required to implement ϕ7 are possibly latent in the
current candidate, such as C2 or C3, McSynth++ conservatively assumes that they can be
recovered by additional instructions, and does not prune the candidate. (The algorithm
used in the bits-lost-based pruner is described in §4.2.2.)

Eventually, the slave enumerates C4 ≡ “add ebx,eax.” The formula ψ4 for C4 is EBX ′ =

EBX + EAX. (To simplify the presentation of this example, we pretend that the add instruc-
tion does not set any flags.) C4 is not discarded by the footprint-based pruner and the
bits-lost-based pruner, and enters the CEGIS loop. CEGIS tests equivalence and returns C4

as the implementation of ϕ7. McSynth++ also moves C4 to the front of the instruction pool
for the next synthesis task. In clients like partial evaluators where McSynth++ is invoked
multiple times, this heuristic allows McSynth++ to try out sooner the instructions that are
commonly used in synthesized code.

McSynth++’s slaves synthesize code for the remaining sub-formulas in a similar manner.
Each slave finishes the synthesis task in a few seconds, and McSynth++’s master returns
the concatenated instruction-sequence given below as the synthesized code.

mov [esp], eax; imul ebx, eax, 2;

shr ebx, 2; add ebx, eax;

mov eax, [esp + 4]

The entire synthesis task finishes in under a minute. For this example, in comparison to
McSynth, McSynth++ speeds up synthesis by over four orders of magnitude.
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4.2 Algorithm

In this section, we describe the algorithms used by McSynth++. First, we present the
algorithms for the improvements to the “divide” phase. Second, we present the algorithm
for the improvement to the “conquer” phase. Third, we describe the “move-to-front”
heuristic. Finally, we provide the correctness guarantees for McSynth++’s algorithm.

4.2.1 Divide Phase

McSynth++’s master implements the “divide” phase of synthesis. The goal of the “divide”
phase is to split the input formula into as many smaller independent sub-formulas as
possible. We first briefly summarize the base algorithm used by McSynth’s master, and we
then present the algorithms for the improvements to the “divide” phase in McSynth++.

Recall that the algorithm McSynthMaster used by McSynth’s master is given as Alg. 3.8.
This paragraph briefly summarizes the key aspects of McSynthMaster. McSynthMaster takes
a formula ϕ and a timeout value as inputs, and either returns an implementation Cconc or
FAIL. McSynthMaster first enumerates all possible splits 〈ϕ1,ϕ2〉 of ϕ via EnumerateSplits
(Line 1), and then uses the one-sided decision procedure IsFlowDependent to test if a split
is legal (Lines 3–5). (Recall from §4.1.1 that a sufficient condition for legality of a split in
McSynth is flow independence.) McSynthMaster discards illegal splits; for a given legal split
〈ϕ1,ϕ2〉, McSynthMaster tries to synthesize code for ϕ1 and ϕ2, respectively, by recursively
calling McSynthMaster (Lines 6–14). If McSynthMaster synthesizes code for all sub-formulas
in a split, it returns the concatenated instruction-sequence (Line 13). If none of the splits
work out, McSynthMaster hands over the entire formula to a slave synthesizer (Line 16). In
McSynthMaster, McSynthSlave invokes the slave synthesizer.

McSynth++’s master improves upon McSynth’s master in two ways:

• McSynth++ uses an improved one-sided decision procedure for flow dependence,
and

• McSynth++ flattens “deep” terms before splitting a formula into subformulas.

In the remainder of this section, we describe these improvements in greater detail.

Improved one-sided decision procedure for flow dependence. One can see that Is-
FlowDependent (Alg. 3.9) is overly conservative in its treatment of memory. Because Is-
FlowDependent uses abstract semantic-footprints, which in turn overapproximate all mem-
ory locations by a single symbol “Mem,” IsFlowDependent can return MAYBE for splits that
are actually flow-independent.
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Input: 〈ϕ1,ϕ2〉
Output: NO or MAYBE

1: killed← DropPrimes(SFP#
KILL(ϕ1))

2: used← SFP#
USE(ϕ2)

3: killedRegsFlags← killed − {Mem}

4: usedRegsFlags← used − {Mem}

5: if killedRegsFlags ∩ usedRegsFlags 6= ∅ then
6: return MAYBE
7: end if
8: killedMem← CollectMemUpdateTerms(ϕ1)
9: usedMem← CollectMemAccessTerms(ϕ2)

10: for T1 ∈ killedMem do
11: for T2 ∈ usedMem do
12: if SAT(T1 = T2) then
13: return MAYBE
14: end if
15: end for
16: end for
17: return NO

Algorithm 4.1: Algorithm ImprovedIsFlowDependent

McSynth++ uses a more precise one-sided decision procedure (ImprovedIsFlowDepen-
dent) to test split 〈ϕ1,ϕ2〉 for possible flow dependence. The decision procedure is given
as Alg. 4.1. To check for the absence of flow dependences via registers and flags, Alg. 4.1
uses abstract semantic-footprints (Lines 1–7). If there are no flow dependences introduced
through registers or flags, Alg. 4.1 collects the terms denoting memory locations that might
be modified by ϕ1 via CollectMemUpdateTerms (Line 8), and the terms denoting memory
locations that might be accessed by ϕ2 via CollectMemAccessTerms (Line 9). Alg. 4.1 then
uses an SMT solver to test if any modified location might overlap with any used location,
and returns MAYBE if that is the case; otherwise, it returns NO (Lines 10–17). Consequently,
ImprovedIsFlowDependent returns NO (meaning that the split is flow independent) only
when each memory location possibly modified by ϕ1 is guaranteed to not overlap with any
memory location that might be used by ϕ2.

Flattening “deep” terms. During the “divide” phase, McSynth splits the conjuncts (up-
dates to registers, flags, and memory locations) in ϕ between ϕ1 and ϕ2. However, the
master does not attempt to split the terms within a conjunct, and the smallest formula that
a McSynth slave can receive as input is an entire conjunct in ϕ. If such a conjunct contains a
term/sub-formula with a deep AST that can only be implemented by three or more (IA-32)
instructions, searching for an implementation by a slave might take days. Consequently
to speed up synthesis, the master must attempt to split such “deep” terms/sub-formulas
in ϕ. (In the remainder of this sub-section, we use “deep term” as shorthand for “deep
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Input: Flattened ϕ, ρ, L, Idef, timeout
Output: Cconc or FAIL, updated ρ

1: ϕ← Substitute(ϕ, ρ)
2: splits← EnumerateSplits(ϕ)
3: for each split 〈ϕ1,ϕ2〉 ∈ splits do
4: if ImprovedIsFlowDependent(〈ϕ1,ϕ2〉) = MAYBE then
5: continue
6: end if
7: I1

use← UsedInterfaceConsts(ϕ1)
8: I1

def← DefinedInterfaceConsts(ϕ1)
9: I2

use← UsedInterfaceConsts(ϕ2)
10: if I1

use − Idef 6= ∅ or I2
use − Idef − I1

def 6= ∅ then
11: continue
12: end if
13: L1 ← L ∪ UsedRegs(ϕ2)
14: 〈ret1, ρ1〉 ←McSynth++Master(ϕ1, ρ, L1, Idef, timeout)
15: if ret1 = FAIL then
16: continue
17: end if
18: 〈ret2,ρ2〉←McSynth++Master(ϕ2,ρ1,L,Idef ∪ I1

def,timeout)
19: if ret2 = FAIL then
20: continue
21: end if
22: ret← Concat(ret1, ret2)
23: return 〈ret, ρ2〉
24: end for
25: for each interface constant c ∈ ϕ do
26: r← PickRegister(L)
27: ρ[c] = r
28: end for
29: ϕ← Substitute(ϕ, ρ)
30: return 〈McSynth++Slave(ϕ, timeout), ρ〉

Algorithm 4.2: Algorithm McSynth++Master

term/sub-formula.”)
McSynth++ flattens such “deep” terms using interface constants. An interface constant

is an extra symbolic constant that McSynth++ adds to the vocabulary of ϕ. Given a “deep”
term T, McSynth++ iteratively picks a term/sub-formula t in T, replaces t by a fresh interface
constant n in T, and appends the conjunct n= t toϕ. After flattening all such “deep” terms
in ϕ, the resultant formula ϕ ′ and ϕ are equisatisfiable. (In fact, ϕ and ϕ ′ have identical
sets of models if we disregard interface constants in models.) An example of a flattened
formula ϕ ′ is given in Eqn. (4.1) in §4.1.2. McSynth++ supplies ϕ ′ as input to its master.

The algorithm for McSynth++’s master is given as Alg. 4.2. Because the input formula
now contains interface constants, McSynth++’s master must (i) take into account interface
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constants while checking if a split is legal (Lines 7–12), and (ii) assign interface constants
concrete locations before invoking slave synthesizers (Lines 25–28). (To simplify the presen-
tation of Alg. 4.2, we assume that McSynth++’s master assigns interface constants scratch
registers. It is straightforward to use memory locations as scratch locations in Alg. 4.2.) To
solve the aforementioned tasks, Alg. 4.2 has additional inputs and outputs in comparison
to Alg. 3.8. To solve task (i), Alg. 4.2 takes as input the set of interface constants defined in
predecessor sub-formulas (Idef). To solve task (ii), Alg. 4.2 takes as input a map ρ that maps
interface constants to assigned scratch registers, and the set of registers L that are live at
the point where code is to be synthesized. Alg. 4.2 also returns an updated version of ρ as
an additional output.

For each interface constant c that has been assigned a register r in predecessor sub-
formulas, Alg. 4.2 first substitutes r for c in ϕ via Substitute (Line 1). This step ensures
that each interface constant is uniformly replaced by the same register in all sub-formulas of
a split. Alg. 4.2 then enumerates the candidate splits ofϕ, and uses ImprovedIsFlowDependent
(Alg. 4.1) to check if a split 〈ϕ1,ϕ2〉 of ϕ is flow-independent (Line 4). Once Alg. 4.2 finds
a flow-independent split, it checks if each use of an interface constant is preceded by its
definition: each interface constant used inϕ1 must be defined in a predecessor sub-formula,
and each interface constant used inϕ2 must be defined either in a predecessor sub-formula
or ϕ1 (Line 10). (In Alg. 4.2, UsedInterfaceConsts returns the set of interface constants
used in a formula; DefinedInterfaceConstants returns the set of interface constants that
are defined in a formula.) At this point, Alg. 4.2 has found a legal split of ϕ.

Alg. 4.2 computes the set of registers L1 that are live after ϕ1 (Line 13). (In Line 13,
UsedRegs returns the set of unprimed registers in a formula.) Alg. 4.2 then recursively
calls itself on the sub-formulas ϕ1 and ϕ2, respectively, while passing the suitable sets of
live-after registers and defined interface-constants (Lines 14–21). If the algorithm fails to
synthesize code for all candidate splits of ϕ, Alg. 4.2 assigns dead registers to interface
constants via PickRegister, and records the assignments in ρ (Lines 25–28). (Note that
any register not in the live-after set L is dead at the point where code is to be synthesized.)
Finally, Alg. 4.2 replaces interface constants inϕwith the assigned registers via Substitute,
and invokes the slave synthesizer (Lines 29 and 30).

In summary Alg. 4.2 recursively splits the input formula into sub-formulas, while
assigning dead registers to interface constants, and ensuring legality of splits. If there are
sufficient dead registers available at the point where code is to be synthesized, one can also
use a more naïve register-assignment technique in Alg. 4.2, e.g., each interface constant
gets a unique dead register.



55

4.2.2 Conquer Phase

McSynth++’s slave implements the “conquer” phase of synthesis. The goal of the “conquer”
phase is to synthesize an instruction sequence for a given sub-formula. We first briefly
summarize the base synthesis-algorithm used by McSynth’s slave, and we then present the
algorithm for the improvement to the “conquer” phase in McSynth++.

Recall that the algorithm used by McSynth’s slave is given as Alg. 3.5. This paragraph
briefly summarizes the key aspects of McSynthSlave. Given a formula ϕ, the McSynthSlave
enumerates templatized instruction-sequences of increasing length, and uses CEGIS to
check if there exists an instantiation of a candidate instruction-sequence that implements
ϕ (Lines 14–17). Before the CEGIS loop, the slave tries to prune away candidates via
abstract semantic-footprints: if the abstract semantic-footprints of the candidate are outside
those of ϕ, the slave prunes the candidate away (Lines 10–12). The slave prunes away
only useless candidates (candidates that either do not implement ϕ, or implement ϕ but
superfluously use or modify locations that are otherwise unused/unmodified by ϕ). If an
instance of any of the remaining candidates implements ϕ, the slave returns that instance
as the implementation of ϕ.

McSynth++’s slave improves upon McSynth’s slave by using an additional pruner based
on the pre-state bits lost by an instruction sequence when it transforms a pre-state to a
post-state.

McSynth uses abstract semantic-footprints to prune away candidates that might either
use/modify a location that is otherwise unused/unmodified by the specification ϕ. While
this pruning heuristic prunes away candidates that might use extra information in compari-
son toϕ, it does not prune away candidates that do not have enough information to implement
ϕ. We now present a pruning heuristic that discovers when candidates have insufficient
information to implement ϕ.

Suppose that BITSrequired(ϕ) represents the set of registers and flags that are required to
implement a specification ϕ. (The bits-lost-based pruner in McSynth++ currently handles
only registers and flags. Extending this pruner to handle memory locations is a possible
direction for future work.) For example, consider the formula ϕ1 ≡ EAX ′ = EAX + EBX.
To implement ϕ1, one needs the pre-state bits in registers EAX and EBX, i.e., BITSrequired(ϕ1)
= {EAX, EBX}. Consider another formula ϕ2 ≡ EAX ′ = EAX & 0x0000ffff. To implement
ϕ2, one needs only the least-significant 16 pre-state bits in register EAX, i.e., BITSrequired(ϕ1)
= {AX}. (In IA-32, register AX denotes the least-significant half of register EAX.) One can
semantically characterize BITSrequired as follows:
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Definition 4.1. A bit b /∈ BITSrequired(ϕ) iff ∀m,m |= ϕ⇔ mb |= ϕ, wheremb ismwith
bit b flipped.

Recall from §2.2 that the QFBV formula that specifies the state transformation performed
by an instruction sequence is a restricted 2-vocabulary formula of the form∧

m

(I ′m = Tm)∧
∧
n

(J ′n = ϕn)∧ Mem ′ = FE,

where FE is a function-update expression of the form Mem[L1 7→ V1][L2 7→ V2] . . . [Lp 7→ Vp].
(Each Li is a term that denotes a memory location l, and each Vi is a term that denotes the
value in l in the post-state.) In such a 2-vocabulary formula, we call each term/formula Tm,
ϕn, and Vp an r-value term2 because they denote the post-state r-values. Given a candidate
C whose state transformation is represented by the formulaψc, let BITS#

available(ψc) represent
the set of unprimed register and flag constant-symbols that appear in r-value terms in ψc.
BITS#

available(ψc) is really an over-approximation of the registers and flags whose pre-state bits
can be recovered fromψc. For example, consider the candidate C1≡ “mov eax, ebx” whose
formulaψ1 is EAX ′ = EBX∧EBX ′ = EBX∧ . . .∧CF ′ = CF∧SF ′ = SF∧ . . . ∧ Mem ′ = Mem.
(Note that we have explicitly shown in ψ1 the identity conjuncts for parts of the state that
are unmodified by C1.) Then BITS#

available(ψ1) = {EBX, …, CF, SF, …}. (Note that EAX is not
in BITS#

available(ψ1).) McSynth++ computes BITS#
available for a formula ψ via a syntax-directed

translation over ψ. In the following definitions, RF is the set of unprimed constant symbols
used for registers and flags, T is the set of QFBV terms, and FE is the set of function-update
expressions over the function symbol Mem.

Definition 4.2.

BITS#
available(c) =

{c} if c ∈ RF

∅ otherwise

BITS#
available(Mem(t)) = ∅, where t ∈ T

BITS#
available(Mem) = ∅

BITS#
available(fe[l 7→ v]) = BITS#

available(v) ∪ BITS#
available(fe), where l, v ∈ T, and fe ∈ FE

For all other cases, BITS#
available is the union of BITS#

available of the constituents.

2In compiler parlance, the l-value of an assignment denotes the location that is assigned to by the
assignment; the r-value denotes the value that is assigned to the location.
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In the implementation, if a register R is in BITS#
available, McSynth++ adds the smaller

registers enclosed by R to BITS#
available. (For example, if EAX is in BITS#

available, McSynth++
adds AX, AL, and AH to BITS#

available.)
McSynth++ prunes away any candidate C (with QFBV formula ψc) that satisfies the

following property:

BITS#
available(ψc) + BITSrequired(ϕ).

Suppose that one can obtain BITSrequired(ϕ) precisely for an input formula ϕ. Even when
BITS#

available overapproximates the registers/flags whose pre-state bits are available in ψc,
if a candidate C satisfies the above property, then it could never implement ϕ, and thus
McSynth++ prunes away C. Moreover, no matter what instruction sequence we append to
C, we can never get back the lost bits. Consequently, McSynth++ also does not retain C as
a prefix for enumerating future candidates. If BITSrequired can be obtained precisely for an
input formula, then the bits-lost-based pruner does not affect the completeness properties
of the synthesizer.

Because it is difficult to obtain BITSrequired(ϕ) precisely for an input formulaϕ, McSynth++
uses an overapproximation of BITSrequired(ϕ): McSynth++ computes SFP#

USE( ϕ), and disre-
gards the symbol “Mem,” which denotes the entire memory in abstract semantic-footprints.
(i.e., BITS#

required(ϕ) = SFP#
USE(ϕ) − {Mem}). Even though this overapproximation makes

McSynth++’s synthesis algorithm incomplete (Thm. 4.4), the bits-lost-based pruner pro-
vides an additional 7–14% improvement on top of the improvements obtained by our other
techniques (see §6.5).

The algorithm used by McSynth++’s slave is identical to McSynthSlave given in Alg. 3.5,
except for the following pseudo-code apprearing after Line 12 in Alg. 3.5:

if BITS#
available(ψc) + BITS#

required(ϕ) then
continue

end if

4.2.3 Pragmatics

The principal use case of McSynth++ is that of a code generator in semantics-based binary-
rewriting clients (e.g., the residual-code generator in the machine-code partial evaluator
WiPEr [89]). Binary rewriters would typically convert instructions in a program into a
formula, modify the formula based on various semantic criteria, and supply the modified
formula as input to McSynth++. In programs, certain operations tend to occur more
frequently than others (e.g., increment/decrement the stack pointer, write to the stack, etc.)
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and certain instructions tend to be used more frequently than others to implement such
operations. It is beneficial to prioritize during synthesis the instructions that are used to
implement common operations in input formulas.

To prioritize useful instructions, McSynth++ uses a “move-to-front” heuristic: whenever
a slave finds an implementation, McSynth++ moves the templatized instructions that occur
in that implementation to the front of the list that serves as the instruction pool in the next
synthesis task; the next synthesis task could be the invocation of a slave on a different
sub-formula in the same input formula, or the invocation of a slave on a sub-formula in a
new input formula. This heuristic is implemented in McSynth++’s slave via the following
lines of pseudo-code appreaing after Line 15 in McSynthSlave (Alg. 3.5):

instrPool← MoveToFront(ret, instrPool)
WriteInstrPool(instrPool)

MoveToFront moves the instruction templates appearing in ret to the front of the instruc-
tion pool (instrPool); WriteInstrPool dumps the instruction pool to a file, which would
be read by the next synthesis task (Line 1 of Alg. 3.5).

Both McSynth and McSynth++ also incorporate function caching to reuse implementa-
tions of previously seen formulas.

4.2.4 Correctness

In this sub-section, we present the soundness and completeness properties of McSynth++.

Lemma 3. McSynth++’s slave is sound. (The formula 〈〈I〉〉 for instruction sequence I returned by
McSynth++’s slave is logically equivalent to the input QFBV formula ϕ.)

Proof. The CEGIS loop of the slave (Line 14 in Alg. 3.5) returns an instruction sequence I
only if 〈〈I〉〉 is equivalent to ϕ.

Lemma 4. For any legal split 〈ϕ1, ϕ2〉 of ϕ, if ϕ1 ⇔ 〈〈I1〉〉, ϕ2 ⇔ 〈〈I2〉〉, and l is a set of scratch
locations that appear in I1 and I2 but not in ϕ, then ϕ⇔ 〈〈I1; I2〉〉 disregarding scratch locations l.

Proof. If there are no interface constants in ϕ, then flow independence is the only criterion
for a legal split, and the proof for this lemma under the aforementioned case is available
elsewhere (Lemma 2 in [90]). Thus, we only have to prove that the lemma still holds
when interface constants are present in a flow-independent split 〈ϕ1, ϕ2〉. Without loss of
generality, let us assume that there is only one interface constant n, which replaces term
T in ϕ. Because 〈ϕ1, ϕ2〉 is a legal split, “n ′ = T” would appear in ϕ1, and n would be
used in ϕ2. McSynth++ assigns n a location l that is dead at the point where code is to be
synthesized, and I1 initializes the location l according to T. Because I2 follows I1, I2 always
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reads the value written by I1 in l. Consequently, ϕ and 〈〈I1; I2〉〉 are equisatisfiable, and ϕ
⇔ 〈〈I1; I2〉〉 disregarding l.

Theorem 4.3. Soundness. McSynth++ is sound.

Proof. Follows from Lemmas 3 and 4.
With the exception of candidates pruned away because of the imprecision introduced

while computing BITS#
required for an input formula, McSynth++ has the same completeness

guarantees as McSynth (Thm. 2 in [90]).

Theorem 4.4. Completeness. Modulo SMT timeouts and candidates that are pruned away because
of imprecision in BITS#

required(ϕ), if there exists an instruction sequence I that (i) is equivalent to ϕ,
and (ii) does not superfluously use/modify locations that are otherwise unused/unmodified by ϕ,
then McSynth will find I and terminate.

Proof. In comparison with McSynth, the only source of incompleteness in McSynth++ is
the bits-lost-based pruner. If BITS#

required(ϕ) is imprecise, then a candidate that actually has
enough information to implement ϕmight be pruned away. Apart from the bits-lost-based
pruner there are no other sources of incompleteness: the “move-to-front” heuristic does
not prune any candidate; McSynth++’s master tries out all candidate splits of ϕ, and if
McSynth++ fails to synthesize code for all candidate splits, McSynth++ supplies the entire
ϕ as input to a slave synthesizer.

4.3 Implementation

McSynth++ uses Transformer Specification Language (TSL) [53] to convert instruction
sequences into QFBV formulas. The concrete operational semantics of the integer subset of
IA-32 is written in TSL, and the semantics is reinterpreted to produce QFBV formulas [54].
McSynth++ uses ISAL [53, §2.1] to generate the templatized instruction pool for synthesis.
McSynth++ uses Yices [30] as its SMT solver. In the examples presented in this paper, we
have treated memory as if each memory location holds a 32-bit integer. However, in our
implementation, memory is addressed at the level of individual bytes. McSynth++, just
like McSynth, is capable of accepting scratch registers for synthesis [90, §4.4].

4.4 Experiments

We tested McSynth++ on QFBV formulas obtained from instruction sequences from the
SPECINT 2006 benchmark suite [44], and also in the context of a client—the machine-code
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partial evaluator WiPEr [89]. Our experiments were designed to answer the following
questions:

1. In comparison with McSynth, what is the speedup in synthesis time caused by each
individual improvement to the “divide” phase? What is the speedup when both
improvements are used together?

2. In comparison with McSynth, how many timeouts remain with each individual im-
provement to the “divide” phase? How many timeouts remain with both improve-
ments together?

3. With both improvements to the “divide” phase turned on, what is the speedup in
synthesis time caused by the bits-lost-based pruner and the “move-to-front” heuristic,
respectively? What is the speedup when both improvements are used together?

4. What is the speedup in residual-code-synthesis time when McSynth++ is used in the
place of McSynth in WiPEr?

All experiments were run on a system with a quad-core, 3GHz Intel Xeon processor;
however, McSynth++’s algorithm is single-threaded. The system has 32 GB of memory.

To answer the first three questions, we used the same benchmark suite that was used to
test McSynth: QFBV formulas obtained from a representative set of “important” instruction
sequences that occur in real programs. We harvested the five most frequently occurring
instruction sequences of lengths 1 through 10 from the SPECINT 2006 benchmark suite
(50 instruction sequences in total). We converted each instruction sequence into a QFBV
formula and used the resulting formulas as inputs for our experiments.

Note that in general there is no restriction on the source of the input formula, and the
formula can come from any client; we simply chose to obtain the input formulas from
instruction sequences for experimental purposes.

To answer the first two questions, we measured the synthesis time with (i) only the
improved decision-procedure for flow independence turned on, (ii) only flattening of
“deep” terms turned on, and (iii) both improvements turned on. We compared the numbers
against the baseline synthesis-time numbers obtained from McSynth.

The results are shown in Fig. 4.5(i), (ii), and (iii), respectively. In Fig. 4.5, the blue lines
represent the diagonals of the scatter plots. If a point lies below and to the right of the
diagonal, the baseline performs worse. All axes in Fig. 4.5 use logarithmic scales. McSynth
timed out on 14 formulas. (The timeout value was three days.) With only the improved
decision-procedure turned on, the number of timeouts was 10; with only flattening turned
on, the number of timeouts was 6; with both improvements to the “divide” phase turned
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Figure 4.5: Synthesis times obtained via improve-
ments to the “divide” phase in Mc-
Synth++ for the corpus of 50 QFBV
formulas.
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Figure 4.6: Synthesis times obtained via improve-
ments to the “conquer” phase in Mc-
Synth++ for the corpus of 50 QFBV
formulas.

on, the number of timeouts was 2. For the formulas that timed out in McSynth but did not
timeout in McSynth++, the average speedup in synthesis time was over 233X (computed
as a geometric mean). For 3 formulas, the speedup was over three orders of magnitude
(surrounded by a circle in Fig. 4.5(iii)). Among the formulas that did not timeout in McSynth,
the two improvements reduced the synthesis time considerably only for three formulas
(surrounded by a square in Fig. 4.5(iii)). For the formulas that did not timeout, the average
speedup in synthesis time caused by the two improvements was 1.34X.

To answer the third question, we turned on both improvements to the “divide” phase,
and we measured the synthesis time with (i) only the bits-lost-based pruner turned on,
(ii) only the “move-to-front” heuristic turned on, and (iii) both improvements turned on.
We compared the numbers against the synthesis times obtained when both improvements
to the “divide” phase were turned on. The results are shown in Fig. 4.6(i), (ii), and (iii),
respectively. The average speedup in synthesis time caused by the bits-lost-based pruner
was 1.07X (computed as the geometric mean). If we consider only formulas whose baseline
synthesis-time numbers are 100 seconds or more, the speedup is slightly higher: 1.14X.
We believe that the speedup is relatively small because McSynth’s footprint-based pruner
already prunes away most of the candidates that could potentially be pruned away by the
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Figure 4.7: Effect of all improvements in McSynth++ for the corpus of 50 QFBV formulas.

bits-lost-based pruner. For example, consider the input formula ϕ ≡ EBX ′ = EAX + EBX,
and the candidate C ≡ “mov eax, ebx” with the QFBV formula ψ ≡ EAX ′ = EBX. The
candidate loses the pre-state bits in register EAX when it transforms a state. Because ϕ
requires the pre-state bits in EAX for the computation it performs, C will be potentially
pruned away by the bits-lost-based pruner. However, SFP#

KILL(ϕ) = {EBX ′} and SFP#
KILL(ψ)

= {EAX ′}, and the abstract semantic kill-footprint ofψ is outside that ofϕ. Consequently, C
will be pruned away by the footprint-based pruner, and will never reach the bits-lost-based
pruner.

The “move-to-front” heuristic caused more pronounced speedup. The average speedup
in synthesis time caused by the heuristic was 3X (computed as a geometric mean). If we
consider only formulas whose baseline synthesis-time numbers are 100 seconds or more,
the speedup is 6X. Our corpus consists of formulas obtained from the most frequently-
occurring instruction sequences, and programs tend to perform certain computations
more frequently than others (e.g., increment/decrement the stack pointer, write to a stack
location, etc.). Consequently, many formulas in our corpus contain specifications for such
frequently performed computations. (Note that this would be the case even if a binary-
rewriter client like a partial evaluator were producing the corpus of formulas because the
rewriter originally obtains the base formulas from instructions in the binary.) The “move-
to-front” heuristic produced a sizeable speedup because it prioritizes instructions that
are used to implement common operations in the input formulas. The heuristic caused a
slowdown in two formulas because it moved some instructions to the front of the instruction
list, pushing later some more-infrequently-used instructions required to implement the
formulas.

The comparison of synthesis-time numbers produced by McSynth and McSynth++ is
shown in Fig. 4.7. In summary, with all the improvements turned on and in comparison
with McSynth, McSynth++ speeds up the synthesis time by over 1981X for formulas that
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Table 4.8: Comparison of residual-code-synthesis time using McSynth and McSynth++, respectively,
in WiPEr.

Application No. of calls
to the synthe-
sizer

Synthesis time
using McSynth
(seconds)

Synthesis
time using
McSynth++
(seconds)

Speedup

power 6 16 13.5 1.19
interpreter 19 30 22.8 1.32
sha1 23 25.4 21 1.21
filter 212 241 177 1.36
dotproduct 306 312 267 1.17

timed out in McSynth but did not timeout in McSynth++. For the formulas that did not
timeout in McSynth, McSynth++ speeds up the synthesis time by 3X. If we consider only
formulas whose baseline synthesis-time numbers are 100 seconds or more, the speedup is
11X.

To answer the fourth question, we measured the total time taken to synthesize resid-
ual code using McSynth and McSynth++, respectively, while partially evaluating the mi-
crobenchmarks used in [89] with WiPEr. The results are shown in Table 4.8. The average
speedup in residual-code-synthesis time caused by McSynth++ is 1.25X (computed as a
geometric mean). Note that the microbenchmarks are fairly small programs (see Table
1 in [89]); the specialized formulas given to the synthesizer are also small, and are often
implemented by one instruction.

4.5 Related Work

Dependence testing in arrays. A parallelizing compiler employs a series of tests to check
for flow dependences between array references [40, 56]. The tests are often ordered as a
sequence, ranging from cheapest (but approximate) to most expensive (but exact). If the
tests say that an 〈array-update, array-access〉 pair is flow-independent, the parallelizing
compiler proceeds to parallelize the sequential code.

The one-sided decision procedure in McSynth++ aims to solve the same problem as
the aforementioned work: test if an 〈array-update, array-access〉 pair is flow-independent.
However, instead of array variables in programs, McSynth++ deals with the memory array
in QFBV formulas. Also, because state-of-the-art SAT solvers are quite efficient, McSynth++
uses SAT for alias testing instead of the series of tests used in the aforementioned work.

Alternatives to machine-code synthesis: QFBV-to-IA-32 compiler. One could try to
build a QFBV-to-IA-32 compiler by (i) defining a set of patterns P that map basic QFBV
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fragments to IA-32 instruction sequences, and (ii) using a bottom-up rewriting system
[7, 36] that computes the least-cost IA-32 cover for the input QFBV formula. However, one
finds that the QFBV-to-IA-32 translation problem has some subtleties that make it difficult
to create such a compiler.

• Not all QFBV formulas would be straightforward to handle. The easy formulas would
be ones that specify a pre-state to post-state transformation (e.g., ϕ1 ≡ EAX ′ =

EAX + 2 ∧ EBX ′ = EBX + 2). Such a formula is said to be in explicit form. However, a
client can supply a formula that expresses a property over pre-states and post-states
(e.g.,ϕ2 ≡ EAX ′+EBX ′ = EAX+EBX+4). Such a formula is said to be in implicit form.
In such cases, the client would expect an instruction sequence whose pre-state-to-
post-state transformation satisfies the input formula. For example, “lea eax, [eax
+ 4]” is one instruction sequence that satisfies ϕ2. Both McSynth and McSynth++ are
capable of searching for an instruction sequence that satisfies a formula in implicit
form. (See [90, §4.4], “Synthesizing code that satisfies properties.”) However, it would
be difficult to create a compiler that handles formulas in implicit form.

• Formulas use operators that are associative and commutative, and consequently
different elements in a formula that are relevant for selecting a given instruction
can be arbitrarily far apart. This situation prevents one from creating a compiler for
formulas based on a bottom-up rewrite system (e.g., iburg [7], Twig [36], etc.).

• Certain clients might want the output instruction-sequence to possess a certain “qual-
ity” (small size, short runtime, low energy consumption, etc.). For example, a su-
peroptimizer would like the synthesized code to have a short runtime. Because a
QFBV-to-IA-32 compiler would have a fixed set of patterns P , the compiler would
not be able to produce instruction sequences with varying qualities: given input
formula ϕ, it would always return the instruction sequence specified by P . In con-
trast, because a synthesizer searches over the space of instruction sequences, it can
find different implementations of ϕwith varying qualities. The algorithm used by
McSynth and McSynth++ to find an implementation with a certain quality is given in
[90, §4.4], “Quality of synthesized code.”



65

5 Model-Assisted Machine-Code Synthesis

The previous chapter presented the optimizations that went into the improved machine-
code synthesizer McSynth++. McSynth++ was able to synthesize code for the formulas on
which McSynth timed out, speeding up synthesis by over three orders of magnitude; for the
remaining formulas, McSynth++ could speed up synthesis by 3X on an average. However,
for roughly one third of the formulas in our corpus of 50 formulas, McSynth++ takes more
than 180 seconds to synthesize an implementation. Further, McSynth++ times out for two
formulas, and takes more than 1000 seconds to find an implementation for one formula.
Such synthesis-time numbers are still quite high, and would become a bottleneck for binary
rewriters such as a machine-code partial evaluator [89] or a machine-code slicer [91], which
make multiple calls to a synthesizer.

McSynth++’s master incorporates several techniques to split the input formula as finely
as possible into subformulas. However when it comes to McSynth++’s slave, there is
still room for improvement. McSynth++’s slave performs a linear search over the space
of instruction sequences to find an implementation for a subformula ϕ: it first exhausts
one-instruction sequences, then moves to two-instruction sequences, and so on. The slave
tests every enumerated candidate for equivalence with ϕ via CEGIS, and does not attempt
to prioritize certain candidates. For example, it would be advantageous to prioritize
instruction sequences that are commonly used to implement idioms in programs; it might
also be advantageous to prioritize instruction sequences that contain instructions that are
highly likely to implement ϕ (e.g., if ϕ ≡ EAX ′ = EAX + 10, it would be advantageous to
prioritize instruction sequences that contain the add instruction).

This chapter describes how we use machine learning to make the search in McSynth++’s
slaves smarter. Given a huge corpus of specifications and implementations—in our case, a
corpus of 〈QFBV-formula, instruction-sequence〉 pairs—we learn (i) a language model for
instruction sequences in the instruction set, and (ii) a model that correlates features of a
QFBV formula with features of its equivalent instruction sequence. In particular, we use
an n-gram model for the former, and k-nearest-neighbor (k-NN) regression for the latter. We
have equipped McSynth++’s slaves with these models to build an improved machine-code
synthesizer, called McSynth-ML.

First, McSynth-ML uses features of the input formula ϕ along with k-NN regression to
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restrict the slave’s instruction pool to contain only instructions that are highly likely to
implement ϕ. McSynth-ML then performs a best-first search over the truncated instruction-
sequence space to find an implementation for ϕ. The cost heuristic for the search comes
from both the n-gram language model and the k-NN-regression model: the former allows
the search to prioritize useful instruction sequences that are commonly used to implement
idioms in binaries; the latter allows the search to prioritize instruction sequences that
contain instructions most likely to implementϕ, and steer the search away from instruction
sequences with instructions that are irrelevant to ϕ. The effect of the model-assisted
best-first search is potentially faster synthesis in slave synthesizers.

Contributions

This chapter’s contributions include the following:

• Our technique is the first of its kind to employ machine learning for the synthesis of
low-level code.

• While existing approaches for low-level-code synthesis employ enumerative, sym-
bolic, and stochastic search strategies [64, 76, 90, 92], we employ a novel best-first
search assisted by models learned from a corpus of specifications and implementa-
tions.

• Our technique makes novel usage of language models to steer the search towards
useful instruction sequences; existing approaches have used language models only
for purposes of finding most likely completions of partial programs [42, 67].

• Ours is the first synthesis technique that employs a model (specifically, k-NN regres-
sion) that correlates features of implementations with features of specifications; we
use the model to steer the search towards instruction sequences that are highly likely
to implement the input specification.

Our techniques have been implemented in McSynth-ML, a model-assisted synthesizer for
IA-32. Our experiments show that McSynth-ML synthesizes code for 6 out of 50 formulas on
which McSynth++ times out, speeding up synthesis by at least 549X, and for the remaining
formulas, McSynth-ML speeds up synthesis by 4.55X.
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5.1 Overview

In this section, we use an example to highlight the key limitations of McSynth++’s algorithm,
and illustrate the workings of McSynth-ML.

5.1.1 Limitations of McSynth++

The limitations of McSynth++ we present in this sub-section lie in McSynth++’s slave
synthesizers. Consider the following QFBV formula ϕ:

ϕ ≡ EAX ′ = Mem(ESP + 10)∧ ESP ′ = ESP + 18 ∧ ZF ′ = (ESP + 10 = 0)

ϕ performs three updates on an IA-32 state: (i) it copies the 32-bit value in the memory
location pointed to by ESP + 10 to the EAX register, (ii) increments the stack-pointer register
ESP by 18, and (iii) sets the zero flag ZF according to the test ESP + 10 = 0.

McSynth++’s master uses a combination of divide-and-conquer (§3.2.3) and flattening
(§4.2.1) strategies to split ϕ into a sequence of independent sub-formulas 〈ϕ1,ϕ2〉 shown
below. Note that 〈ϕ1,ϕ2〉 is a legal split of ϕ (§4.1.2).

ϕ1 ≡ EAX ′ = Mem(ESP + 10) ϕ2 ≡ ESP ′ = ESP + 18 ∧ ZF ′ = (ESP + 10 = 0)

McSynth++’s master then hands over ϕ1 and ϕ2, respectively, to slave synthesizers.
We now illustrate the limitations in McSynth++’s slave synthesizer using ϕ2 as an

example. Note that one implementation of ϕ2 is “add esp, 10; lea esp, [esp+8].” Mc-
Synth++’s slave enumerates templatized instruction-sequences of increasing length, and
uses an instantiation of the CEGIS framework along with two pruners—a footprint-based
pruner (§3.2.2) and a bits-lost-based pruner (§4.2.2)—to synthesize code for a sub-formula.
Additionally for pragmatic purposes, McSynth++ uses a “move-to-front” heuristic to pri-
oritize useful instructions1 in the instruction pool. However, the slave suffers from the
following limitations:

Retaining instructions that are irrelevant to ϕ in the instruction pool. The slave does
not attempt to prune its instruction pool based on the QFBV operators present in the input
formulaϕ. The existing pruners in McSynth++ prune from the instruction pool instructions
whose operands are inconsistent with those of ϕ. (For example, the existing pruners will

1In the remainder of this chapter, when we use the terms “instruction” or “instruction-sequence,” we
refer to a templatized instruction or templatized instruction-sequence, respectively. If we refer to a concrete
instruction-sequence, we will explicitly say so.
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prune the instruction “add ebp, 〈Imm32〉” because the instruction uses and modifies the
EBP register, which is untouched by ϕ2.) However, instructions whose opcode variants
(defined in §5.1.2) are highly unlikely to implement the input formula are left unpruned.
(For example, instructions belonging to the IMUL opcode variant could never be used to
implementϕ2; yet existing pruners do not prune instructions such as “imul esp, 〈Imm32〉”
from the instruction pool.) Consequently, candidate instruction-sequences containing such
instructions are wastefully enumerated and subsequently discarded by the slave.

Linear search. The basic search strategy used by McSynth++’s slave is linear search: the
slave first exhausts all one-instruction sequences, followed by two-instruction sequences,
and so on. During the search, it might be better to prioritize (i) commonly used instruction-
sequence prefixes (e.g., instruction sequences that implement common idioms), and (ii)
prefixes with instructions that are highly likely to implement ϕ. However, McSynth++’s
slave does not attempt to perform any prioritization. For example, when a McSynth++
slave searches for an implementation for ϕ2, let us assume that the slave encounters the
prefix P1 ≡ “ror esp, 〈Imm32〉” (rotate right instruction) before the prefix P2 ≡ “add esp,
〈Imm32〉” during its linear search; consequently, the slave expands P1 before P2, and takes a
much longer time to find the implementation “add esp, 10; lea esp, [esp+8]” for ϕ2.
However in comparison to P1, P2 is much more frequently found in binaries; furthermore,
P2 contains an add instruction, which is much more likely to implement ϕ2 than the ror
instruction in P1. The slave could have found the implementation much faster had it
expanded P2 first.

The slave’s “move-to-front” heuristic suboptimally performs some prioritization by
moving instructions that occurred in previously synthesized implementations to the front
of the instruction pool in the current synthesis task. However, the heuristic would not
always guarantee faster synthesis, e.g., if there were no prior synthesis tasks.

In effect, McSynth++ takes around 10 minutes to synthesize an implementation for our
example ϕ. Given the enormous size of the search space that McSynth++ has to deal
with, this number is not high by itself. (Note that a naïve enumerative synthesizer would
have taken a few days to find an implementation for ϕ.) However, in the context of a
binary-rewriting client that makes several calls to the synthesizer (e.g., the machine-code
partial evaluator WiPEr [89]), such synthesis times would cause the client to take hours or
days to rewrite an entire binary.
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5.1.2 Overview of McSynth-ML

This section presents an example to illustrate the workings of McSynth-ML. Along the way,
we also provide necessary background on the models used by McSynth-ML.

At a high level, McSynth-ML has the same design as McSynth++: McSynth-ML’s mas-
ter splits the input QFBV formula into a sequence of independent sub-formulas, and
hands over each sub-formula to a slave synthesizer. In fact, McSynth-ML uses the same
master as McSynth++. However, McSynth-ML’s slave is an improved version of that of
McSynth++. (McSynth-ML’s slave inherits the footprint-based and bits-lost-based pruners
from McSynth++.) McSynth-ML’s slave uses machine learning to address the limitations of
McSynth++’s slave in the following ways:

1. McSynth-ML uses features of the input formulaϕ along with k-NN regression to prune
from the instruction pool instruction templates that are least likely to implement ϕ.

2. McSynth-ML then uses best-first search instead of linear search as its core search strat-
egy. To prioritize instruction-sequence prefixes in the search, McSynth-ML uses a cost
heuristic that combines scores supplied by (i) an n-gram-based language model , and
(ii) the aforementioned k-NN-regression model. The former prioritizes common/use-
ful IA-32 instruction sequences, and the latter prioritizes instruction sequences con-
taining instructions that are highly likely to implement ϕ.

Step 1 is more of an optimization: instead of first enumerating a candidate C and then
postpone processing C because of C’s low value of the cost heuristic, step 1 eagerly truncates
the instruction pool so that C never gets enumerated.2 Because of the smarter model-
assisted search, McSynth-ML’s slave is typically much faster than McSynth++’s slave.3

Beacause McSynth-ML uses models to assist synthesis, the models need to be trained
on training inputs before the actual synthesis. In the remainder of this section, we first
describe how the models are trained, and then the actual synthesis using McSynth-ML.

Training Phase

To train models that assist machine-code synthesis, one needs a huge corpus of specifica-
tions (QFBV formulas) and their corresponding implementations (instruction sequences).
However, creating such a huge corpus via synthesis can take a very long time. (Recall from

2To preserve the McSynth-ML’s completeness guarantees (Thm. 5.5), if synthesis with the truncated
instruction pool fails to find an implementation, McSynth-ML subsequently attempts synthesis with the
untruncated instruction pool. (See §5.2.2.)

3Note that McSynth-ML’s slave is not guaranteed to be faster because its heuristics are sensitive to training
data.
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§5.1.1 that finding an implementation with McSynth++ can take a few minutes. Finding
implementations for hundreds of thousands of specifications can take several days.) An
important observation is that, while finding an instruction sequence for a QFBV formula
involves search/synthesis and is slow, converting an instruction sequence into a QFBV
formula can be done very quickly via symbolic execution. There are many readily available
tools that can perform this conversion [54]. We used this observation to create a corpus
of hundreds of thousands of equivalent 〈QFBV-formula, instruction-sequence〉 pairs as
follows: (i) we harvested several straight-line instruction sequences from binaries, (ii) con-
verted each instruction sequence I into a QFBV formula ϕ via symbolic execution, and (iii)
added 〈ϕ, I〉 to the corpus. It took almost 12 hours to create a corpus of 612,000 pairs by this
method. (This was the total time spent to harvest and canonicalize instruction sequences
from binaries, and perform symbolic execution.)

k-NN regression. Our intended use case for k-NN regression during synthesis is to
predict how likely it is for an IA-32 instruction to occur in an implementation of the input
formula. k-NN regression is a non-parametric regression technique that stores all available
training data and predicts a numerical target based on a metric4 over its input space. In the
next few paragraphs, we describe a specific instantiation of k-NN regression that we use in
our context.

Each pair 〈ϕ, I〉 in the corpus corresponds to a point in the input space. Each point in
the input space is identified bym binary features (features that take either 0 or 1 as their
value), and is associated with an output label, which is a numeric value. The input space is
the following mapping:

〈f1, f2, . . . , fm〉 7→ l,

where fi is the entry corresponding to the ith feature, and l is a numeric value.
In our case, the presence or absence of QFBV operators in the specification ϕ constitute

the features of the input space: an entry in the input feature-vector is 1 if ϕ contains the
QFBV operator corresponding to that entry; it is 0 otherwise. There are 70 QFBV operators
in the logic described in §2.2, and so the length of each input vector is 70 (i.e.,m = 70).

For a training-input pair 〈ϕ, I〉, the output label’s value denotes the probability that
instruction sequence I contains an instruction belonging to a specific opcode variant. (Note
that the label’s value is either 0 or 1.) An opcode variant is a conjunction of (i) the opcode
category (e.g., ADD, IMUL, OR, etc.), and (ii) the operands sizes. Some examples of opcode
variants include ADD_32_32, ADD_32_8, and IMUL_32_32_8.

4A metric or distance function is a function that defines a distance between two points in the input space.
An example of a metric commonly used in k-NN regression is Euclidean distance.
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For a given test-input formula, we are interested in predicting how likely it is for each
of the 87 opcode variants in IA-32 to implement that formula. So we associate each output
label with an opcode variant, i.e., the input space is now the following mapping:

〈f1, f2, . . . , fm〉 7→ 〈l1, l2, . . . , ln〉,

where fi is the entry corresponding to the ith feature, lj is the output label for the jth opcode
variant, and n is the number of opcode variants in IA-32. In the remainder of this chapter,
we use the term “label vector” to refer to the vector 〈l1, l2, . . . , ln〉. For example, if I of
some training input 〈ϕ, I〉 is “push ebp; add esp, 1,” the output labels corresponding to
opcode variants PUSH_32 and ADD_32_8 will be 1 in the label vector, and the remaining
labels will be 0. However, we emphasize that the labels are all independent, and our
procedure is equivalent to training 87 separate k-NN-regression models, one for each
opcode variant. In a discrete domain, there may be many training-set items that lie on the
same point in input space (e.g., two different formulas can contain the same set of QFBV
operators). In this case, we use the mean label count over all instances at that point.

The training phase of k-NN regression simply involves obtaining an input feature-vector
and label vector for each 〈ϕ, I〉 pair in the corpus, and adding the pair of vectors to the
input space of the model. Later on in this section, we describe how the model is actually
used to make predictions during synthesis.

n-gram model. Our intended use case for the n-gram model is to estimate the common-
ness of an IA-32 instruction sequence. Given a sequence of words X1,X2, . . . ,Xm whose
probability we would like to model, an n-gram model is a language model satisfying the
Markov assumption

P(X1,X2, . . . ,Xm) =
m∏
i=1

P(Xi|Xi−1,Xi−2, . . . ,X1) ≈
m∏
i=1

P(Xi|Xi−1,Xi−2, . . . ,Xi−(n−1)). (5.1)

The assumption is that the probability of observing the ith word Xi in the context history of
the preceding i− 1 words can be approximated by the probability of observing it in the
shortened context history of the preceding n− 1 words. The conditional probabilities in
the above equation can be calculated from frequency counts as follows:

P(Xi|Xi−1,Xi−2, . . . ,Xi−(n−1)) =
count(Xi,Xi−1,Xi−2, . . . ,Xi−(n−1))

count(Xi−1,Xi−2, . . . ,Xi−(n−1))
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Typically, n-gram probabilities are not directly derived from frequency counts, and incor-
porate some smoothing mechanism to account for unseen words or n-grams.5

In our context, an n-gram is an instruction subsequence of length n (e.g., a bigram is a
two-instruction subsequence, a trigram is a three-instruction subsequence, etc.), and a word
in an n-gram is an individual instruction. Training the model only requires the instruction-
sequence component I of the 〈ϕ, I〉 pairs in the corpus, and just involves recording frequency
counts for various n-grams.

Synthesis Phase

We now illustrate the workings of McSynth-ML using the same example that was used in
§5.1.1.

ϕ ≡ EAX ′ = Mem(ESP + 10)∧ ESP ′ = ESP + 18 ∧ ZF ′ = (ESP + 10 = 0)

McSynth-ML uses the same master as McSynth++, and so it splits ϕ into the same sub-
formulas ϕ1 and ϕ2 from §5.1.1.

ϕ1 ≡ ϕ ≡ EAX ′ = Mem(ESP + 10) ϕ2 ≡ ESP ′ = ESP + 18 ∧ ZF ′ = (ESP + 10 = 0)

McSynth-ML’s master then hands over ϕ1 and ϕ2, respectively, to slave synthesizers.
We now illustrate how McSynth-ML’s model-assisted slave synthesizes code for ϕ2.

McSynth-ML first obtains a feature vector forϕ2 based on the QFBV operators that appear in
ϕ2. Some QFBV operators that would have a 1 in their corresponding entries in the feature
vector for ϕ2 are + (QFBV_PLUS), ∧ (QFBV_AND), and = (QFBV_EQUALS). McSynth-ML
then gives the feature vector as input to the k-NN model, and obtains as output the label
vector, which contains a k-NN-regression probability for every opcode variant in IA-32.
Given a query point q (input feature-vector), k-NN predicts the probability distribution
over the opcode variants as follows: k-NN finds the k training-set items nearest to q using
Euclidean distance as the metric, averages their label values, and returns the resulting label
vector as the output. Intuitively, the probability value for an opcode variant represents the
likelihood of an implementation of ϕ2 to contain an instruction belonging to that opcode
variant. McSynth-ML discards opcode variants whose probabilities are below a certain
threshold (say, 0.1 for this example). For our running example, this step reduces the size
of the instruction pool from 240 to 20 instructions. (Note that the pruners inherited from

5n-gram models that estimate probabilities directly from frequency counts encounter problems when
confronted with any n-grams that have not explicitly been seen before. In practice it is necessary to smooth
the probability distributions by also assigning non-zero probabilities to unseen words or n-grams.
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McSynth++ had already reduced the size of the instruction pool from around 43,000 to
240.) Let us use P to denote this remnant instruction pool.

Once the instruction pool has been truncated, McSynth-ML starts best-first search. The
search maintains a fringe of instruction-sequence prefixes of varying lengths. The search
starts with the empty prefix (ε). At any given point during the search, the prefix p that has
the highest score according to the cost heuristic c gets expanded, i.e., McSynth-ML appends
every instruction in P to p, thus expanding the contour of the fringe. The cost heuristic c for
a prefix p is computed via a combination of (i) p’s n-gram probability according to Eqn. (5.1),
and (ii) the combined k-NN-regression probability for the opcode variants of individual
instructions in p. (c is defined in Line 25 in Alg. 5.3.) Because ε is the only prefix in the
initial fringe, McSynth-ML expands it by appending every instruction in P to it. McSynth-ML
then checks if any of the newly created candidates implements ϕ2 via CEGIS. (Note that
the pruners inherited from McSynth++ attempt to prune away a newly created candidate
before testing it via CEGIS.) None of the one-instruction sequences in the fringe implement
ϕ2, and so McSynth-ML looks for the next prefix to expand. Suppose that the one-instruction
prefix “mov esp, 〈Imm32〉” has the highest score according to the cost heuristic. McSynth-
ML expands it, and tests if any of the newly created two-instruction candidates implements
ϕ2; none of them do. Note that now the fringe of the search contains both one-instruction
and two-instruction prefixes. Suppose that the one-instruction prefix “add esp, 〈Imm32〉”
now has the highest score according to the cost heuristic. McSynth-ML expands it, and tests
the resulting candidates via CEGIS. The instantiation “add esp, 10; lea esp, [esp+8]”
of the candidate C ≡ “add esp, 〈Imm32〉; lea esp, [esp + 〈Imm32〉]” implements ϕ2,
and so the slave returns that concrete instruction-sequence as the implementation for ϕ2.

The slave similarly finds the implementation “mov eax, [esp+10]” for ϕ1. McSynth-
ML’s master concatenates the two instruction sequences and returns the final implementa-
tion. The entire synthesis task finishes in a few seconds.

5.2 Algorithm

In this section, we describe the algorithms used by McSynth-ML. First, we present the
algorithms for the training phase. Second, we present the algorithms for the synthesis
phase. Third, we provide correctness guarantees for McSynth-ML’s algorithms. Finally, we
present the threats to the validity of our algorithms.

5.2.1 Training Phase
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Input: Corpus, k, n
Output: 〈kNNModel, nGramModel〉

1: kNNModel← InitKNNModel(k)
2: nGramModel← InitNGramModel(n)
3: for each 〈ϕ, I〉 ∈ Corpus do
4: ipVector← GetQFBVOperators(ϕ)
5: labelVector← GetOpcodeVariants(I)
6: kNNModel.AddToModel(ipvector, labelVector)
7: nGramModel.UpdateCounts(I)
8: end for
9: return 〈kNNModel, nGramModel〉

Algorithm 5.1: Algorithm TrainModels

During the training phase, one needs to train the k-NN regression model and the n-
gram language model. Recall from §5.1.2 that the corpus for the training phase consists of
hundreds of thousands of equivalent 〈QFBV-formula, instruction-sequence〉 pairs produced
via symbolic execution. The algorithm for training the models is given as Alg. 5.1. The
algorithm takes as input the corpus, the hyperparameter k for k-NN regression, and the
length n of n-grams up to which the model should maintain n-gram counts. (For example,
if n = 3, the model maintains counts for unigrams, bigrams, and trigrams.) The output is a
pair of models: kNNModel and nGramModel.

In Alg. 5.1, InitKNNModel and InitNGramModel initialize parameters of the k-NN model
and the n-gram model, respectively (Lines 1 and 2). GetQFBVOperators(ϕ) returns an
ordered list of 〈opr, isPresent〉 pairs, where isPresent is 1 if operator opr is present in ϕ;
it is 0 otherwise (Line 4). GetQFBVOperators traverses the AST of ϕ, and collects QFBV
operators. GetQFBVOperators orders its output by QFBV operator. GetOpcodeVariants(I)
returns an ordered list of 〈opc, isPresent〉 pairs, where isPresent is 1 if instruction sequence
I contains an instruction belonging to the opcode variant opc; it is 0 otherwise (Line 5).
Recall from §5.1.2 that the opcode variant is a conjunction of opcode category and operand
sizes. GetOpcodeVariants inspects the ASTs of instructions in I to produce its output,
which is ordered by opcode variant. AddToModel adds an 〈input-vector, label-vector〉 pair
to the input space of the k-NN-regression model (Line 6). UpdateCounts teases apart the
various n-grams of length up to n from the instruction sequence I, and updates their counts
in the model (Line 7). Recall from §5.1.2 that in the context of McSynth-ML, an n-gram is an
instruction subsequence of length n. Alg. 5.1 finally returns the two models (Line 9).

5.2.2 Synthesis Phase

Recall from §5.1.2 that McSynth-ML uses the same master as McSynth++, and so in this
sub-section, we describe only the algorithm used by McSynth-ML’s slave. In this sub-section,
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Input: ϕ, instrPool, kNNModel, tp
Output: instrPool ′, labelVector

1: ipVector← GetQFBVOperators(ϕ)
2: labelVector← kNNModel.GetLabelVector(ipVector)
3: instrPool ′← ε

4: for each 〈opc, prob〉 ∈ labelVector do
5: if prob < tp then
6: continue
7: end if
8: instructions← instrPool.GetInstrByOpcodeVariant(opc)
9: instrPool ′.Concat(instructions)

10: end for
11: return 〈instrPool ′, labelVector〉

Algorithm 5.2: Algorithm TruncateInstrPool

we use ϕ to refer to a sub-formula given as input to a slave synthesizer.
Before presenting the algorithm used by the slave, we present a procedure called Trun-

cateInstrPool that uses features of ϕ along with k-NN regression to retain in the instruction
pool only those instructions that are highly likely to implement ϕ. The algorithm for Trun-
cateInstrPool is given as Alg. 5.2. The algorithm takes as inputs a formula ϕ, the instruction
pool, and the k-NN model built during the training phase. The role of the remaining
input (tp) will be explained in the next paragraph. TruncateInstrPool returns the remnant
instruction pool, along with the label vector for ϕ, as the output.

Alg. 5.2 first obtains the QFBV operators present in ϕ via GetQFBVOperators (Line 1). It
supplies that set of operators as the test vector to the k-NN-regression model, and queries for
the opcode-variant probabilities via GetLabelVector (Line 2). GetLabelVector produces as
output an ordered list of 〈opc, prob〉 pairs (ordered by opc), where opc is an opcode variant,
and prob is its corresponding k-NN-regression probability. Recall from §5.1.2 that prob
represents the likelihood of an implementation of ϕ to contain an instruction belonging
to the opcode variant opc. Starting with an empty instruction pool instrPool ′ (Line 3),
TruncateInstrPool repeatedly adds to instrPool ′ instructions from instrPool belonging to
opcode variants whose k-NN-regression probabilities are greater than a threshold value
tp (Lines 4–10). TruncateInstrPool finally returns the remnant instruction pool instrPool ′,
along with the label vector for ϕ (Line 11). instrPool ′ contains only the instructions that,
according to k-NN regression, are most likely to implement the input ϕ.

Now we are ready to present the algorithm used by McSynth-ML’s slave. Recall from
§5.1.2 that the slave performs the actual enumerative synthesis in McSynth-ML. The algo-
rithm used by the slave is given as Alg. 5.3. Alg. 5.3 takes the following inputs: (i) the
input formula ϕ, (ii) a k-NN-regression model, (iii) the threshold probability tp used in
TruncateInstrPool, (iv) an n-gram-based language model, and for pragmatic purposes (v)
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Input: ϕ, kNNModel, tp, nGramModel, max
Output: Cconc or FAIL

1: instrPool← ReadInstrPool( )
2: for each instruction i ∈ instrPool do
3: if PruneFootprint(ϕ, i) or PruneBitsLost(ϕ, i) then
4: instrPool← instrPool − {i}

5: end if
6: end for
7: 〈instrPool ′, labelVector〉 ← TruncInstrPool(ϕ, instrPool, kNNModel, tp)
8: prefixes← new PriorityQueue( )
9: prefixes.insert(〈ε, 0〉)

10: while prefixes 6= ∅ do
11: 〈p, prob〉 ← prefixes.PopMax( )
12: for each i ∈ instrPool ′ do
13: C← Append(p, i)
14: ψC← 〈〈C〉〉
15: if PruneFootprint(ϕ, C) or PruneBitsLost(ϕ, C) then
16: continue
17: end if
18: ret = CEGIS(ϕ, C, ψC)
19: if ret 6= FAIL then
20: return ret
21: end if
22: if C.length = max then
23: continue
24: end if
25: c← (1− λ)∗ nGramModel.GetProb(p) + λ ∗

∏
i∈p labelVector.GetProb(OpcodeVariant(i))

26: prefixes.insert(C, c)
27: end for
28: end while
29: if tp = 0 then
30: return FAIL
31: else
32: return McSynthMLSlave(ϕ, kNNModel, 0, nGramModel, max)
33: end if

Algorithm 5.3: Algorithm McSynthMLSlave

the maximum length max of instruction-sequence prefixes to enumerate during synthesis.
The slave also takes a timeout value as an additional input (not shown in Alg. 5.3). The
output of Alg. 5.3 is either a concrete instruction-sequence Cconc that implementsϕ, or FAIL
if the slave could not find an implementation before the timeout expires.

The slave first reads the list of instructions from a file (via ReadInstrPool) (Line 1), and
uses the footprint-based pruner and the bits-lost-based pruner inherited from McSynth++
to prune away useless instructions from the instruction pool via PruneFootprint and
PruneBitsLost, respectively (Lines 2–6). The slave then calls TruncateInstrPool, and obtains
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a smaller pool of instructions (Line 7), and subsequently begins its best-first search. The
fringe of the search is implemented as a priority queue, with instruction-sequence prefix
as key and the cost heuristic c (defined in Line 25) as priority. Recall from §5.1.2 that
the cost-heuristic value c for a prefix p is a combination of (i) the n-gram probability
of p according to the language model (obtained via nGramModel.GetProb), and (ii) the
combined k-NN-regression probability of the opcode variant of each instruction i in p
(obtained via labelVector.GetProb(OpcodeVariant(i))). In Line 25, λ denotes the weighting
parameter for the scores obtained from the two models. The slave initially inserts the
empty prefix into the queue (Line 9). At any given point in the search, the slave picks the
prefix with the highest priority, and expands it by appending to it every instruction in the
instruction pool (Lines 11–13). The slave then checks if a candidate instruction-sequence
obtained via expansion is useless, and thus can be pruned away using the footprint-based
and bits-lost-based pruners (Lines 14–17). Candidates that escape pruning are tested for
equivalence withϕ via CEGIS (Line 18). If CEGIS finds an instantiation Cconc of a candidate
C that implements ϕ, the slave returns that instantiation as the implementation (Lines
19–21). Otherwise, the slave adds the (useful) candidate as a prefix in the priority queue
(Line 26) provided that the length of the candidate is not greater than max (Lines 22–24).

To preserve the completeness guarantees of McSynth-ML (see Thm. 5.5), if the slave fails
to find an implementation for an inputϕwith the truncated instruction pool, then the slave
attempts to find an implementation without truncating the instruction pool. In Alg. 5.3, if
an implementation could not be found when tp > 0, Alg. 5.3 recursively calls itself with
tp = 0 (Line 32). Consequently in that recursive call, TruncateInstrPool will default to merely
returning the input instruction pool. If an implementation could not be found even in this
second attempt, the slave returns FAIL (Line 30).

5.2.3 Correctness

In this sub-section, we present the soundness and completeness guarantees of McSynth-ML.
Because McSynth-ML uses the same master as McSynth++, and correctness properties of Mc-
Synth++ have been proven elsewhere [92], we only discuss correctness of McSynthMLSlave
(Alg. 5.3) in this section.

Theorem 5.4. Soundness. Alg. 5.3 is sound. (The formula 〈〈I〉〉 for instruction sequence I returned
by Alg. 5.3 is logically equivalent to the input QFBV formula ϕ.)

Proof. The CEGIS loop of the slave (Line 18 in Alg. 5.3) returns an instruction sequence I
only if 〈〈I〉〉 is equivalent to ϕ.
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McSynth-ML’s slave has the same completeness guarantees as that of McSynth++ (Thm.
2 in [92]).

Theorem 5.5. Completeness. Modulo SMT timeouts and candidates that are pruned away
because of imprecision in BITS#

required(ϕ) ([92, §4.2.2]), if there exists an instruction sequence I
that (i) is equivalent to ϕ, and (ii) does not superfluously use/modify locations that are otherwise
unused/unmodified by ϕ, then Alg. 5.3 will find I and terminate.

Proof. McSynth-ML’s best-first search equipped with the n-gram-based and kNN-based
cost heuristic does not prune away instruction-sequence prefixes; it merely prioritizes them.
Although McSynth-ML initially tries to synthesize an implementation using a truncated
instruction pool produced by k-NN regression, if synthesis with the truncated pool fails,
McSynth-ML attempts synthesis with the untruncated instruction pool (Line 32 in Alg. 5.3).
Consequently, the only sources of incompleteness in McSynthMLSlave are the pruners
inherited from McSynth++ (Lines 3–5 and 15–17 in Alg. 5.3), and McSynth-ML’s slave has
the same completeness guarantees as that of McSynth++.

5.2.4 Threats to Validity

There are three threats to the validity of our algorithms.

1. The parameters of our models and algorithms need to be tuned for McSynth-ML
to synthesize code effectively. If the parameters are significantly off, one cannot
guarantee low synthesis times using McSynth-ML. (§5.3 describes how we did the
tuning for our experiments.)

2. The models used by McSynth-ML should be trained with sufficient training data;
failure to do so might result in higher synthesis times.

3. If one wishes to synthesize code that possesses a certain “quality" using McSynth-
ML, the implementations in the training data should also possess that “quality."
For example, if one wishes to find optimal implementations using McSynth-ML, one
should generate training examples using a superoptimizer [16, 17, 49, 55, 64, 65, 76].
For our experiments, the instruction sequences in our training data come from code
sequences generated by a standard compiler (gcc -O2), and so the implementations
produced by McSynth-ML resemble those produced by a compiler.
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5.3 Implementation

Because McSynth-ML is an extension of McSynth++, McSynth-ML has the same underlying
components as McSynth++: Transformer Specification Language (TSL) [53] to convert
instruction sequences into QFBV formulas; ISAL [53, §2.1] to generate the templatized
instruction pool for synthesis; and Yices [30] as its SMT solver. Just like McSynth++, in
McSynth-ML, memory is addressed at the level of individual bytes; McSynth-ML is also
capable of accepting scratch registers for synthesis [90, §4.4]. To implement k-NN regression,
we used the scikit-learn toolkit [4]. We used the MIT Language Modeling Toolkit (MITLM)
[3] for our n-gram model.

For our n-gram model, we chose via cross-validation (i) the value 3 for the maximum
length n up to which the n-gram model has to maintain n-gram counts (see Alg. 5.1),
and (ii) Kneser-Ney smoothing. We set as 2 the hyperparameter k of k-NN regression
(see Alg. 5.1) through cross-validation. We determined the weighting parameter λ (see
Alg. 5.3) as follows: we created a separate test suite T of 50 formulas (different from the
test formulas used in our experiments, and the formulas in our training corpus), and for
different values of λ, we measured the average synthesis time obtained via McSynth-ML for
T . We were able to obtain the lowest average synthesis-time for the value λ = 0.25; so we
set λ = 0.25 in our experiments. We set the truncation threshold parameter tp = 0.1 in our
experiments (see Alg. 5.2).

5.4 Experiments

We tested McSynth-ML on QFBV formulas obtained from instruction sequences from the
SPECINT 2006 benchmark suite [44]. Our experiments were designed to answer the
following questions:

1. In comparison with McSynth++, what is the speedup in synthesis time caused by
McSynth-ML’s best-first search assisted only by the n-gram model (λ = 0.0)? What is
the speedup when McSynth-ML’s best-first search is assisted only by k-NN regression
(λ = 1.0)? What is the speedup when the search is assisted by both models (λ = 0.25)?

2. In comparison with McSynth++, on how many formulas does McSynth-ML timeout?

3. In comparison with McSynth++, what is the reduction in the size of the instruction
pool caused by McSynth-ML’s k-NN-based instruction-pool truncation?

4. As a limit study, how does McSynth++ perform when k-NN regression is used to
truncate instruction pools in its slaves?
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Figure 5.6: Effect of only the n-gram model assisting McSynth-ML’s best-first search for the corpus
of 50 QFBV formulas.

All experiments were run on a system with a quad-core, 3GHz Intel Xeon processor;
however, McSynth++’s algorithm is single-threaded. The system has 32 GB of memory.

To answer the questions, we used a benchmark suite that is slightly different from the
suite that was used in the previous chapters. We used QFBV formulas obtained from a
representative set of “important” instruction sequences that occur in real programs. We
harvested the most frequently occurring instruction sequence of length 6 through 10 from
each of the 10 binaries in the SPECINT 2006 benchmark suite (50 instruction sequences in
total). We converted each instruction sequence into a QFBV formula and used the resulting
formulas as inputs for our experiments.

Note that in general there is no restriction on the source of the input formula, and the
formula can come from any client; we simply chose to obtain the input formulas from
instruction sequences for experimental purposes.

In the remainder of this section, when we use the term “synthesis time,” we refer to the
time spent only by the slave synthesizers in McSynth++ and McSynth-ML, respectively; we
do not include the time spent by the masters because McSynth++ and McSynth-ML have
identical masters. However for all formulas in our test suite, the time spent by the master
is negligible: < 2% of the total synthesis time.

To answer the first two questions, we measured the synthesis time with (i) only the
n-gram-based language model supplying the cost heuristic for McSynth-ML’s best-first
search (λ = 0.0), (ii) only k-NN regression supplying the cost heuristic for McSynth-ML’s
best-first search (λ = 1.0), and (ii) both models supplying the cost heuristic for McSynth-ML’s
best-first search (λ = 0.25, determined by the method outlined in §5.3). We compared the
numbers against the baseline synthesis-time numbers obtained from McSynth++.
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Figure 5.7: Effect of only k-NN regression assisting McSynth-ML’s best-first search for the corpus of
50 QFBV formulas.
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Figure 5.8: Effect of both models assisting McSynth-ML’s best-first search for the corpus of 50 QFBV
formulas.

The results are shown in Figs. 5.6, 5.7, and 5.8, respectively. In the figures, the blue
lines represent the diagonals of the scatter plots. If a point lies below and to the right of the
diagonal, the baseline performs worse. All axes use logarithmic scales. McSynth++ timed
out on 6 formulas. (The timeout value was three days.) McSynth-ML did not timeout on
any formula in the test suite. For the formulas that timed out in McSynth++ but did not
timeout in McSynth-ML, the average speedup in synthesis time caused by improvements
(i), (ii), and (iii) are over 573X, 223X, and 549X, respectively (computed as a geometric
mean). For the formulas that did not timeout, the average speedup in synthesis time
caused by improvements (i), (ii), and (iii) are 4.5X, 4.57X, and 4.55X, respectively. If we
consider only formulas whose baseline synthesis-time numbers are 100 seconds or more,
the speedups are more pronounced: 12.3X, 13.2X, and 12.7X, respectively. One can see that
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Figure 5.9: Reduction in instruction-pool sizes caused by McSynth-ML’s k-NN-based truncation.

the n-gram model has a more pronounced effect on the speedup for formulas that timed
out in McSynth++, whereas k-NN regression has a more pronounced effect on the speedup
for the other formulas.

To answer the third question, we measured the sizes of the instruction pools used by
McSynth++ and McSynth-ML, respectively, for each formula in the test suite. The results
are shown in Fig. 5.9. The blue line represents the diagonal of the scatter plot. If a point
lies below and to the right of the diagonal, the baseline has a larger instruction pool. The
axes use logarithmic scales. Synthesis of code for each formula in the test suite requires
several slave invocations, and each slave invocation creates a new instruction pool, which
is represented by a single data point in Fig. 5.9. Consequently in Fig. 5.9, there are more
than 50 data points (369 exactly). The average reduction in instruction-pool size caused
by truncation based on k-NN-regression probabilities is 9.7X (computed as a geometric
mean). One can notice this order-of-magnitude improvement in Fig. 5.9: all the data points
roughly lie along the dotted line that represents an order-of-magnitude improvement over
the baseline.

To answer the fourth question, we performed a control experiment in which we used
k-NN regression to truncate the instruction pools in McSynth++’s slaves. The goal of
this experiment is to demonstrate how well the linear search in McSynth++ can perform
when it is presented with the same instruction pools as McSynth-ML. We compared the
numbers against the synthesis-time numbers obtained from McSynth++ and McSynth-ML.
The results are shown in Fig. 5.10 and Fig. 5.11, respectively. The blue lines represent the
diagonals of the scatter plot. If a point lies below and to the right of the diagonal, the
baseline performs worse. All axes use logarithmic scales. For the formulas that timed out
in McSynth++, the average speedup in synthesis time caused by the truncated instruction
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Figure 5.10: Effect of k-NN-based instruction-
pool truncation on McSynth++ for
the corpus of 50 QFBV formulas.
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Figure 5.11: Comparison of McSynth-ML against
McSynth++ with truncated instruc-
tion pools.

pool is over 218X (computed as a geometric mean), versus 549X speedup for McSynth-ML.
For 2 out of these 6 formulas, linear search performed better than model-assisted best-first
search. For the formulas that did not timeout, the average speedup in synthesis time
caused by the truncated instruction pool is 4X (computed as a geometric mean), versus
4.55X for McSynth-ML. For 6 out of these 44 formulas, linear search performed better than
model-assisted best-first search.

In summary, in comparison with McSynth++, McSynth-ML speeds up the synthesis
time by over 549X for the 6 formulas that timed out in McSynth++ but did not timeout
in McSynth-ML. Moreover, McSynth-ML does not timeout on any formula in our test suite.
For the formulas that did not timeout in McSynth++, McSynth++ speeds up the synthesis
time by 4.55X. If we consider only formulas whose baseline synthesis-time numbers are
100 seconds or more, the speedup is 12.7X.

5.5 Related Work

Search strategies in superoptimization. Superoptimization aims to find an optimal in-
struction sequence for a target instruction-sequence. While early attempts at superoptimiza-
tion used linear search as the core search strategy [16, 17, 49, 55], modern superoptimizers
use other approaches.

The stochastic superoptimizer STOKE [76] uses stochastic techniques for finding an
optimal instruction sequence. STOKE uses Markov Chain Monte Carlo (MCMC) sampling
to search through the space of instruction sequences, and encodes its cost heuristic in terms
of correctness and performance. To find implementations that are algorithmically different
from the input instruction-sequence, STOKE begins its search from random points in the
space of instruction sequences (instead of starting the search from the input instruction-
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sequence). The stochastic search strategy, along with the fast MCMC sampling allows
STOKE to quickly synthesize larger programs (10 - 15 x86 instructions).

The GreenThumb superoptimizer framework [64] employs a cooperative search strategy:
complementary enumerative, symbolic, and stochastic search strategies work in conjunc-
tion by exchanging the best programs each search instance has discovered so far. The
cooperative strategy, along with other improvements, allow instantiations of the Green-
Thumb framework to perform better than STOKE: the GreenThumb instantiations optimize
the benchmarks faster, and obtain better (faster) implementations.

STOKE and GreenThumb employ stochastic strategies for the search, which renders
the search incomplete. In comparison, McSynth-ML uses a model-assisted best-first search,
which merely prioritizes (reorders) the candidates during search, while maintaining com-
pleteness guarantees. Moreover, unlike McSynth-ML, superoptimizers only use information
obtained from the input instruction-sequence to guide the search; they do not use models
learned from superoptimized code-sequences to guide the search.

Model-assisted synthesis. Recent works in program synthesis have employed models
learned from a corpus of programs to assist synthesis.

• Slang is a code-completion tool that uses API calls to fill holes in a partial program [67].
Slang learns two language models from a corpus of API-call sequences harvested
from programs: an n-gram model and a recurrent neural-network (RNN) model.
Slang fills the holes in a test program with the most likely API calls according to the
models.

• anyCode synthesizes well-formed Java expressions from free-form queries containing
a mixture of English and Java [42]. anyCode uses a conjunction of the following to
synthesize and rank expressions: (i) natural-language processing (NLP) tools to
process the input English text, and (ii) language models and a probabilistic context-
free-grammar model built from corpus of Java programs.

• JSNice predicts names and types for identifiers in JavaScript programs [68]. JSNice
learns a probabilistic model (employing conditional random fields) for program
properties from a huge corpus of existing programs, and uses the model to predict
names and type annotations in a test program.

McSynth-ML advances the state-of-the-art in model-assisted synthesis in the following
ways:
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• While existing approaches commonly use language models to find most likely code
completions, McSynth-ML uses a language model to assist in synthesizing an entire
low-level code sequence.

• None of the existing model-assisted-synthesis techniques employ a model that corre-
lates features of implementations with features of specifications, and subsequently
use that model to find the most likely implementation for a test specification. To the
best of our knowledge, McSynth-ML is the first model-assisted synthesizer that learns
such a model to assist synthesis.
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Part II

Applications
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6 Partial Evaluation of Machine Code

This chapter presents the first instantiation of the semantics-based binary rewriting frame-
work (Framework 1.1) described in Chapter 1: a partial evaluator for IA-32.

One of the potential applications of machine-code analysis and rewriting is to facilitate
reuse of software binaries in the absence of source code. In particular, it would be desirable
to have a binary-rewriting tool that can (i) optimize a binary for the common case (e.g.,
a file-write routine optimized for a certain file descriptor), or (ii) extract an executable
component from a bloated binary (e.g., a small text encoder embedded in a web server).

Partial evaluation [48] is a program-specialization framework that can perform the afore-
mentioned tasks. However, there are no tools that partially evaluate machine code. Existing
binary-rewriting tools either de-obfuscate [27, 81, 99], superoptimize [16, 76], or harden
[6, 33, 83] binaries, but do not perform partial evaluation. Moreover, machine-code partial
evaluation presents a number of new challenges, and source-code partial-evaluation algo-
rithms [9, 26, 50] would not produce satisfactory results if they were applied to machine
code in a straightforward manner (see §6.2).

This chapter presents an algorithm for off-line partial evaluation of machine code. The
inputs to the algorithm are a binary B, and a division of B’s inputs as S (static inputs) and
D (dynamic inputs). Values for static inputs are known at specialization time; values for
dynamic inputs are unknown at specialization time. Our partial-evaluation algorithm
produces a binary BS that satisfies the equation

[[B]](S, D) = [[BS]](D),

where [[·]] denotes the meaning function for the instruction set in which the binary is written.
Executing BS with input D produces the same results as executing B with inputs S and D.
However, BS is specialized with respect to S, and can be significantly faster than B.

Partially evaluating a binary with respect to commonly used inputs produces specialized
versions of the binary that are optimized for the common inputs. (See §6.5.1.) Partially
evaluating with respect to a fixed value of an input flag can extract a smaller executable
component from a bloated binary. (See §6.5.2.) The extracted component can be used in
embedded systems where executable size matters, or be linked against other programs
that require the component. (See the experiment with lzfx in §6.5.2.)
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We have implemented our algorithm in a tool, called WiPEr (an acronym for the “Wis-
consin Partial Evaluator”), that partially evaluates Intel IA-32 binaries. WiPEr works on
the Intermediate Representations (IRs) recovered from machine code by an existing tool,
CodeSurfer/x86 [15]. WiPEr follows the classical two-phase approach of binding-time analy-
sis (BTA) followed by specialization. WiPEr’s BTA uses forward slicing to determine a priori
which instructions can be specialized away (static instructions), and which cannot (dy-
namic instructions). Given the values for static inputs in the form of a partial state, WiPEr’s
specializer evaluates static instructions, residuates code for static values that might be used
by dynamic instructions, and emits unmodified dynamic instructions.

As mentioned earlier, there are several new challenges that arise in the context of
machine-code partial evaluation. These issues, along with the strategies that WiPEr uses to
overcome them, distinguish WiPEr from other partial evaluators that have been described
in the literature.

• Machine-code instructions are usually multi-assignments: they have several inputs,
and several outputs (e.g., registers, flags, and memory locations). This aspect of the
language introduces a granularity issue during slicing: in some cases, although we
would like the slice to follow only a subset of an instruction’s semantics, the slicing
algorithm is forced to include the entire instruction. This effect can cascade, and cause
BTA to be very imprecise. The BTA algorithm in WiPEr makes use of a special-case
instruction-splitting method that decouples multiple updates performed by a single
instruction by splitting the assignments across multiple instructions. The decoupling
transformation increases the precision of WiPEr’s BTA significantly.

• An instruction’s abstract-syntax tree (AST) is often not parameterized by all of the
operands of the instruction: some operands are “baked into” the semantics. In
contrast with source-code partial evaluators that specialize the AST of a dynamic
statement, WiPEr specializes an explicit representation of the semantics of a dynamic
instruction, and uses a machine-code synthesizer [90] to produce residual code.

• In machine code, values in memory are accessed by explicit address computations,
followed by loading. The residual code produced by a naïve machine-code partial
evaluator will contain specialization-time addresses, and consequently would not
allow the stack and heap to be at different positions at run-time than at specialization-
time. WiPEr represents specialization-time addresses using symbolic constants, and
uses a symbolic state for specialization. The resulting code produced by WiPEr is
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independent of the layout of the specialization-time address space, and can be run
with, e.g., the stack base at a different address.1

Contributions

The contributions of this chapter include the following:

• We present an algorithm for machine-code partial evaluation. To the best of our
knowledge, WiPEr is the first partial evaluator that works on machine code.2

• We have developed an instruction-decoupling transformation to counter cascading
imprecision caused by the granularity issue in machine-code slicing. Chapter 7
presents a more principled approach to counter the granularity issue in machine-
code slicing.

• We have introduced an instruction-specialization technique that specializes an explicit
representation of the semantics of an instruction with respect to a partial state, and
residuates code via machine-code synthesis.

• We have developed a specialization algorithm that represents specialization-time
addresses using symbolic constants, and uses a symbolic state for specialization. The
residual code produced by our specializer is independent of the specialization-time
memory layout, and allows the stack and heap to be at different positions at run-time
than at specialization-time.

Our methods have been implemented in WiPEr, a partial evaluator for Intel IA-32. We par-
tially evaluated seven test applications using WiPEr, and found that, on average (computed
via geometric mean), the specialized binaries have a speedup of 1.3. We also used WiPEr to
extract executable components from bloated binaries such as bzip2.

6.1 Background

In this section, we briefly describe source-code partial evaluation, and slicing.
1Note that we are referring here to the ability to reposition the stack at the beginning of run-time, not the

relocatability of the residual code per se. The residual code produced WiPEr is also relocatable.
2Confirmed by personal communication with Neil Jones, Robert Glück, and Saumya Debray.
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int power(int a, int b, int n) {
1: int prod = 1;
2: while (n--) {
3: prod *= (a + b);
4: }
5: return prod;
}

Figure 6.1: Input power program—computes
(a+ b)n.

int power_r (int a) {
int prod = 1;
prod *= (a + 1);
prod *= (a + 1);
prod *= (a + 1);
prod *= (a + 1);
return prod;

}

Figure 6.2: Residual powerR program—
computes (a+ 1)4.

6.1.1 Partial Evaluation

Partial evaluation is a framework for specializing and optimizing programs [48]. Given
a program that takes some inputs, and given values for some of the inputs, the goal of
partial evaluation is to produce a program that is specialized (optimized) with respect
to the input values provided. Fig. 6.1 shows a program power that computes (a + b)n,
where a, b, and n are the inputs to the program. Suppose that power is frequently called
with the values b = 1, and n = 4. Given power, and the input values b = 1 and n = 4, a
partial evaluator produces the residual program powerR shown in Fig. 6.2. As we can see in
powerR, partial evaluation has compiled data (n = 4) into control. (See Eqn. (6.1).) In effect,
partial evaluation performs optimizations such as loop unrolling, constant propagation
and folding, function in-lining, etc. to produce the residual program—although a partial
evaluator does not have such optimizations built into it per se. In this section, and in the rest
of this chapter, when we say “source-code partial evaluator,” we refer to a partial evaluator
for an imperative language, such as C [9].

An off-line source-code partial evaluator works in two phases: binding-time analysis and
specialization.

The input to BTA is a division (or classification) of the input variables as static inputs
and dynamic inputs. Given a division of the input variables, the goal of BTA is to extend
the division to all program variables—i.e., classify each occurrence of a variable as either
static or dynamic. A division computed by BTA must be congruent, i.e., any variable that
depends on a dynamic variable must be classified dynamic. Using the computed division,
expressions and statements are classified as either static or dynamic [8]. For the power
program, BTA classifies variables a and prod, and statements 1, 3, and 5 as dynamic.

Given values for static inputs, in the form of a partial static-state σ, the specializer
specializes the input program with respect to σ, and produces the residual program. A
source-code specializer uses the following approach:
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int foo () {
1: int a = 1, b = 2;
2: int c, d, e;
3: scanf(’’%d’’, &c);
4: d = add(a, b);
5: e = add(c, c);
6: return d + e;
}

Figure 6.3: Example program foo to illustrate lifting.

int foo_r () {
1: int c, d, e;
2: scanf(’’%d’’, &c);
3: d = add (1, 2);
4: e = add(c, c);
5: return d + e;
}

Figure 6.4: Residual foo_r program.

Approach PES

• Evaluate static expressions and statements, and

• Specialize the AST of dynamic expressions and statements with respect to σ by
substituting values from σ for variables, simplifying, and emitting the resulting AST.

The second step is sometimes called residuation.
For the power program, σ is [n 7→ 4,b 7→ 1]. Because the loop condition (Line 2 in

Fig. 6.1) is static, the specializer unrolls the loop four times. The specializer residuates the
expression a + 1 by specializing the dynamic expression a + b with respect to σ.

Sometimes a static expression could be used in a dynamic context. For example, consider
the program foo given in Fig. 6.3. Because c’s value is established dynamically in line 3,
both of the formal parameters of add are classified dynamic by BTA. Although both actual
parameters of the call to add in line 4 of Fig. 6.3 are static, they appear in a dynamic context—
the static actuals will be bound to dynamic formals in add. To produce a residual program
that compiles and/or does not access uninitialized locations, the partial evaluator must
residuate code for the static actuals. Thus the partial evaluator “lifts” static expressions
that appear in dynamic contexts, and the specializer residuates code for lifted expressions
(e.g., line 3 in Fig. 6.4). The term “lifting” refers to the process of changing the binding
time of an expression from static to dynamic.

Suppose that each statement in the original program is uniquely identified by a label l,
and that each concrete state σ that arises during an execution is partitioned into σS and
σD according to the division established by BTA. Then an execution trace of the original
program is a sequence of elements of the form l : (σS,σD). (Each element of the trace
records the state (σS,σD) observed at an execution of a statement l.) The effect of partial
evaluation on an execution trace of the specialized program can be expressed by the
following reparenthesization:

l : (σS,σD) −→ (l,σS) : σD (6.1)
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Operationally, the partial evaluator creates a new residual statement for every unique (l,σS)
pair it observes at specialization time. Eqn. (6.1) shows how each element (l,σS) : σD in
an execution trace of the specialized program can be mapped back to the corresponding
element l : (σS,σD) in the trace of the original program.

6.1.2 Slicing

Slicing [46, 98] computes the set of program points that affect (or are affected by) a given
program point called the slicing criterion. (Backward slicing computes the set of program
points that might affect the slicing criterion; forward slicing computes the set of program
points that might be affected by the slicing criterion.) Slicing is typically performed using
an IR called a system dependence graph (SDG) [35, 46]. An SDG consists of a set of program
dependence graphs (PDGs), one for each procedure in the program. A node in a PDG
corresponds to a construct in the program, such as a statement, a condition, a call to a
procedure, a procedure entry/exit, an actual parameter of a call, or a formal parameter of
a procedure. The edges correspond to data and control dependences between the nodes
[35]. The PDGs are connected together with interprocedural control-dependence edges
between call-site nodes and procedure-entry nodes, and interprocedural data-dependence
edges between actual parameters and formal parameters/return values. Given an SDG
representation of the program and a slicing criterion, an interprocedural-slicing algorithm
includes in the slice the SDG nodes that reach (or can be reached from) the slicing criterion
by following data- and control-dependence edges. A context-sensitive interprocedural-
slicing algorithm uses context-free language (CFL) reachability [69] to reduce the number
of nodes in the slice [46, 71].

6.2 Overview

At a very high level, WiPEr is similar to the off-line source-code partial evaluator described in
§6.1.1: WiPEr’s algorithm works in two phases, BTA and specialization. However, because
WiPEr is dealing with machine code, WiPEr’s algorithm differs significantly from that of a
source-code partial evaluator. In this section, we present an example to illustrate WiPEr’s
algorithm, while highlighting the following: (i) the issues that arise in machine code, (ii)
why techniques used in a source-code partial evaluator are unsatisfactory to resolve the
issues, and (iii) how WiPEr resolves the issues.

Fig. 6.5 shows an IA-32 program sum that takes, a, v, and n as inputs, and computes
a+ b[n]. (Array b is statically allocated and has 5 elements. Lines 6–12 in Fig. 6.5 initialize
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1: push eax; a
2: push ebx; v
3: push ecx; n
4: push 4
5: sub esp ,20; b

; Initialization loop
6: L2:cmp [esp +20] ,0
7: jl L1
8: mov ebx ,[ esp +28]
9: mov edx ,[ esp +20]
10: mov [esp+edx *4], ebx
11: sub [esp +20] ,1
12: jmp L2

; Computation of a+b[n]
13: L1:mov eax ,[ esp +32]
14: mov ecx ,[ esp +24]
15: mov ebx ,[ esp+ecx *4]
16: add eax ,ebx
17: add esp ,36

Figure 6.5: Input sum program, which computes a+ b[n].

the elements of b to v.) n is assumed to be between 0 and 4. The inputs a, v, and n are
available in the EAX, EBX, and ECX registers, respectively, at the beginning of the program.
The output is available in the EAX register at the end of the program. Let us use WiPEr to
partially evaluate sum with respect to the input value v = 1.

No source-code variables. Recall from §6.1.1 that the goal of BTA is to compute the
division of all program variables as either static or dynamic. The abstraction of a source-
code “variable” is absent at the machine-code level. (We assume that the input binary
lacks symbol-table and debugging information.) Consequently, a division of source-code
variables cannot be obtained at the machine-code level.

However, there are tools [15] that recover “variable-like” abstractions [14] from machine
code, and use them to construct IRs such as an SDG, a control flow graph (CFG), etc. WiPEr
performs BTA via forward slicing over the SDG recovered from the binary [28]. �

The inputs to WiPEr’s BTA phase are: (i) the SDG of the binary, and (ii) the instructions
that initialize the dynamic inputs (the slicing criterion). The output is an annotated program,
whose instructions are annotated with binding times: static (S), or dynamic (D). In our
example, the dynamic inputs a and n are available in the EAX and ECX registers at
instructions 1 and 3, respectively. Consequently, instructions 1 and 3 constitute the slicing
criterion. All instructions that are in the forward slice depend on a and n, and hence are
classified dynamic; the remaining instructions are classified static.

Another feature of ISAs that makes them different from typical high-level languages is
that most instructions are multi-assignments: they have several inputs, and several outputs.
The next two issues discussed below arise in machine-code partial evaluation because
instructions have multiple outputs, and multiple inputs, respectively.

The granularity issue in slicing. Consider instruction 1 in the sum program. 1 modifies
the stack-pointer register ESP in addition to copying the value in the EAX register to
a memory location. Because all of the remaining instructions in sum either directly or



94

Figure 6.6: SDG snippet to illustrate decoupling.

1 ′:lea esp,[esp-4]
2 ′:mov [esp],eax ; a
3 ′:lea esp ,[esp -4]
4 ′:mov [esp],ebx; v

5 ′:lea esp,[esp-4]
6 ′:mov [esp],ecx ; n
7 ′:lea esp ,[esp -4]
8 ′:mov [esp ],4
9 ′:sub esp,20 ; b

; Initialization loop
10 ′:L2:cmp [esp +20] ,0
11 ′:jl L1
12 ′:mov ebx ,[ esp +28]
13 ′:mov edx ,[ esp +20]
14 ′:mov [esp+edx*4],ebx
15 ′:sub [esp +20] ,1
16 ′:jmp L2

; Computation of a+b[n]
17 ′:L1:mov eax,[esp+32]
18 ′:mov ecx,[esp+24]
19 ′:mov ebx,[esp+ecx*4]
20 ′:add eax,ebx
21 ′:add esp ,36

Figure 6.7: Rewritten program sum ′.

transitively use ESP, the slice with respect to instruction 1 consists of all the instructions in
sum, and thus every instruction in sum would be classified dynamic. This imprecision in
slicing is caused by a granularity problem: the push instruction independently updates ESP
and the memory location. Because the dynamic input is in EAX, the slice requires only the
memory update that push performs and not the update to the value of ESP. However, a
slice cannot include only a part of an instruction; it has to include the entire instruction.
Consequently, the entire push instruction, and the remaining instructions in sum are added
to the slice. This issue is illustrated by the SDG snippet on the left in Fig. 6.6.

To resolve this issue, WiPEr rewrites sum by decoupling each instruction that indepen-
dently updates the stack pointer along with another register or memory location l (e.g.,
push, pop, leave, etc.). For such instructions, WiPEr uses a machine-code synthesizer [90]
(a tool that synthesizes an instruction sequence from a semantic specification) to synthesize
an equivalent instruction sequence that updates ESP in one instruction and l in a different
instruction. The effect of decoupling on BTA is illustrated by the SDG snippet on the right
in Fig. 6.6. �

The rewritten binary sum ′ is shown in Fig. 6.7. In sum ′, the new slicing criterion includes
instructions 2 ′ and 6 ′. The new forward slice includes only the instructions highlighted in
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Fig. 6.7 in light gray, which are classified dynamic. The remaining instructions are classified
static.3

The inputs to the specialization phase of WiPEr are: (i) the interprocedural CFG of the
binary, (ii) the binding-time annotations, and (iii) an input partial static-store. The output
is the residual program. Recall from §2.1.2 that an IA-32 Store is a triple that consists of a
register map, a flag map, and a memory map. The input partial static-store ρ0 is

ρ0 ≡ 〈[ESP 7→ 1000][EBX 7→ 1], [ ], [ ]〉.

In the rest of the chapter, when we use the term “store,” we are referring to a partial static-
store. The input store has the value 1 for v, and 1000 for the stack pointer. Let us specialize
sum ′ with respect to ρ0.

Non-parameterized operands in instruction ASTs. Recall from §6.1.1 that PES substi-
tutes values for operands while specializing ASTs of dynamic expressions and statements.
However, WiPEr cannot use this simple approach for specializing dynamic instructions.
For an instruction that has multiple input operands, the instruction AST may not always
be parameterized by all operands. For example, the instruction “adc eax,ebx” adds the
values in registers EAX and EBX, and the value of the carry flag CF. The flag operand is
“baked into” the semantics, and is not an explicit syntactic operand. Another example
is the instruction “push eax,” which has the stack-pointer operand (ESP) baked into the
semantics.

To handle this issue, WiPEr specializes a representation of the semantics of an instruction
—instead of its syntax—with respect to a store. WiPEr uses a QFBV formula to represent an
instruction’s semantics. �

Now let us use the following approach to specialization:

1. Static instructions: Evaluate.

2. Dynamic instructions: Specialize the instruction’s QFBV formula with respect to the
pre-store, and residuate code. WiPEr uses a machine-code synthesizer to synthesize
an instruction-sequence that is equivalent to the specialized QFBV formula. The
synthesized instruction-sequence constitutes the residual code.

3The division produced by WiPEr’s BTA is pointwise, and monovariant for procedures (i.e., an instruction
in a procedure is classified as static or dynamic for all calling contexts).
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Let us specialize sum ′ with respect to ρ0 using this simple approach. The specializer
evaluates instruction 1 ′ in sum ′ because it is static. The post-store is ρ1.

ρ1 ≡ 〈[ESP 7→ 996][EBX 7→ 1], [ ], [ ]〉. (6.2)

The QFBV formula for instruction 2 ′ is

〈〈2 ′〉〉 ≡ Mem ′ = Mem[ESP 7→ EAX].

Because 2 ′ is dynamic, the specializer specializes 〈〈2 ′〉〉 with respect to ρ1 to obtain the
specialized formula

Mem ′ = Mem[996 7→ EAX],

and uses the synthesizer to synthesize the instruction “mov [996],eax.” After evaluating
static instructions 3 ′ and 4 ′, the resulting store is

ρ4 ≡ 〈[ESP 7→ 992][EBX 7→ 1], [ ], [992 7→ 1]〉. (6.3)

The residual program produced by this simple approach is given below.
mov [996] , eax
mov [988] , ecx
mov eax ,[996]

mov ecx ,[988]
mov ebx ,[964+ ecx *4]
add eax ,ebx

Lifting. The approach described above produces code that can access uninitialized loca-
tions. For example, one can see that the instruction “mov ebx,[964+ecx*4]” in the residual
program dereferences a dynamic pointer to access an element in the static array b. However,
the static array is not initialized by the residual code. This issue arises because our simple
specialization approach did not residuate code for static instructions that produce values
that might be consumed by a downstream dynamic instruction (a.k.a., a dynamic context).

To resolve this issue, WiPEr conservatively lifts static predecessors of a dynamic instruc-
tion. In Fig. 6.7, the boxed instructions are the lifted instructions. After lifted instructions
are identified, one can use the following approach to specialization:
Approach PE1

• Static instructions: Evaluate.

• Lifted instructions: Specialize the instruction’s QFBV formula with respect to the
pre-store, and residuate code. Then update the store by evaluating the instruction.
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11: mov esp , 996
21: mov [esp],eax
51: mov esp ,988
61: mov [esp],ecx
91: mov esp , 964

131
1: mov [980] , 1

132
1: mov [976] , 1

133
1: mov [972] , 1

134
1: mov [968] , 1

135
1: mov [964] , 1

161: mov eax ,[ esp +32]
171: mov ecx ,[ esp +24]
181: mov ebx ,[ esp+ecx *4]
191: add eax ,ebx

Figure 6.8: Residual program sum1.

• Dynamic instructions: Emit. Because all static locations that might be used by a
dynamic instruction d have been initialized by upstream residual lifted instructions,
there is no static data that needs to be infused into d via specialization, and the
unmodified d can be emitted. �

Let us specialize sum ′ with respect to ρ0 using PE1. Because 1 ′ is lifted, the specializer
residuates code for it. The QFBV formula for 1 ′ is 〈〈1 ′〉〉 ≡ ESP ′ = ESP − 4. The specializer
specializes 〈〈1 ′〉〉 with respect to ρ0 to obtain the specialized formula ESP ′ = 996, and uses
the synthesizer to synthesize instruction 11 in sum1 (shown in Fig. 6.8). The specializer
also evaluates 1 ′ to obtain ρ1 (Eqn. (6.2)). Because 2 ′ is dynamic, the specializer emits it as
21. Because 3 ′ is static, the specializer evaluates the instruction without residuating code.
The new residual program sum1 is shown in Fig. 6.8. In sum1, one can see that all the static
values required by emitted dynamic instructions (21, 61, etc.) have been set up by residual
lifted instructions (11, 51, etc.).

Residual specialization-time addresses. In sum1, one can see that the specialization-time
values of the stack pointer have been residuated as constants. Although sum1 is a correct
residual program for sum ′ partially evaluated with respect to ρ0, the specialization-time
stack layout is hard-wired into the residual code. (The stack begins at address 1000, and
grows toward lower addresses.) As a result, the residual code might crash if a different
address is used as the base of the runtime stack.

One way to prevent the specializer from emitting stack-pointer values is to make the
stack pointer dynamic by including instruction 1 ′ in the slicing criterion during BTA.
However, that would make all instructions in sum ′ dynamic.

To resolve this issue, WiPEr uses a symbolic store during specialization, instead of a
concrete store. In the initial symbolic store, specialization-time addresses (e.g., the initial
value of ESP) are represented using symbolic constants. Static non-address values are
represented using integer and Boolean constants. WiPEr uses PE2 for specialization.
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02: mov esi ,esp
12: lea esp ,[esi -4]
22: mov [esp],eax
52: lea esp ,[esi -12]
62: mov [esp],ecx
91

2: lea esp ,[esi -16]
92

2: sub esp ,20

131
2: mov [esi -20] ,1

132
2: mov [esi -24] ,1

133
2: mov [esi -28] ,1

134
2: mov [esi -32] ,1

135
2: mov [esi -36] ,1

162: mov eax ,[ esp +32]
172: mov ecx ,[ esp +24]
182: mov ebx ,[ esp+ecx *4]
192: add eax ,ebx

Figure 6.9: Residual program sum2.

Approach PE2

• Static instructions: Symbolically evaluate. Although specialization-time addresses
are symbolic, WiPEr can still access and update static values in memory.

• Lifted instructions: Specialize the instruction’s QFBV formula with respect to the sym-
bolic pre-store, and residuate code. Then update the symbolic store by symbolically
executing the instruction.

• Dynamic instructions: Emit. �

Let us illustrate PE2 on sum ′. The new initial store is

ρ
sym
0 ≡ 〈[ESP 7→ c][EBX 7→ 1], [ ], [ ]〉.

Note that the values in the store are not in boldface to indicate that they are logical terms,
and not semantic values. The value of the stack pointer ESP is the symbolic constant c to
indicate that we are not restricting ESP to a concrete value known at specialization-time.

Before starting specialization, WiPEr residuates instruction 02 in sum2 (shown in Fig. 6.9)
to save the initial value of the stack pointer ESP in a dedicated location. (In this example,
WiPEr uses the ESI register because ESI is not used in sum ′.) This location will be used
whenever downstream residual instructions need the initial value of ESP. To residuate code
for the lifted instruction 1 ′, WiPEr specializes 〈〈1 ′〉〉 with respect to ρsym

0 . The specialized
formula is ESP ′ = c − 4. Because at run-time the value of c will be available in ESI, WiPEr
replaces c with ESI to produce ESP ′ = ESI − 4. WiPEr uses the synthesizer to synthesize
instruction 12 for the specialized formula. WiPEr also symbolically evaluates 1 ′ to produce
ρ

sym
1 .

ρ
sym
1 ≡ 〈[ESP 7→ c − 4][EBX 7→ 1], [ ], [ ]〉.
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2 ′ is dynamic, and WiPEr emits it as 22. After symbolically evaluating static instructions 3 ′

and 4 ′, we obtain the store

ρ
sym
4 ≡ 〈[ESP 7→ c − 8][EBX 7→ 1], [ ], [c − 8 7→ 1]〉.

The final residual program sum2 produced by WiPEr is shown in Fig. 6.9. One can see
that WiPEr arranges for the initial stack-pointer value to be retrieved from ESI (12, 52, 92,
131

2, etc.) instead of residuating the stack-pointer value at residual lifted instructions (cf. 11,
51, 91, 131

1, etc. in sum1); consequently, sum2 will not crash when the stack base is initialized
to different addresses. In contrast, static non-address quantities are residuated at lifted
instructions (e.g., the value 1 in instructions 131

2 through 135
2).

Why do PE1 and PE2 work?

To formalize the effect of PE1 and PE2, we introduce the notion of an environment, which
makes explicit the starting address of the stack and heap blocks. An environment maps a
symbolic constant denoting the starting address of the stack or a heap block to a concrete
address (or “location”). A machine-code state σ consists of an environment η, and a store
ρ, which maps locations to values. For example, ρ4 in Eqn. (6.3) is actually part of a state σ4

σ4 ≡ 〈η4, ρ4〉 ≡ 〈Stack 7→ 1000, 〈[ESP 7→ 992][EBX 7→ 1], [ ], [992 7→ 1]〉〉.

η4 maps the start of the stack, denoted by the symbolic constant Stack, to the address 1000.
Suppose that η and ρ can be partitioned into ηS and ηD, and ρS and ρD, respectively.

The effect of PE1 on each execution trace of the binary can be expressed by the following
reparenthesization:

l : (ηS, ρS,ηD, ρD) −→ (l,ηS, ρS) : (ηD, ρD) (6.4)

Operationally, the partial evaluator creates a new residual instruction for every unique
(l,ηS, ρS) triple it observes at specialization time. Eqn. (6.4) shows how each element
(l,ηS, ρS) : (ηD, ρD) in an execution trace of a binary specialized using PE1 can be mapped
back to the corresponding element l : (ηS, ρS,ηD, ρD) in the trace of the original binary.
Consequently, the specialization-time memory layout (ηS) is hard-wired into the residual
code. If the run-time memory layout is different, the residual code produced by PE1 might
crash.

To describe the symbolic techniques used in PE2, we introduce a static symbolic store
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Input: Binary B
Output: Rewritten binary B ′

1: for each i ∈ B do
2: if UpdatesSPAndLoc(i) then
3: I← Synth(〈〈 i 〉〉)
4: B ′← Replace(B, i, I)
5: end if
6: end for
7: return B ′

Algorithm 6.10: Instruction Decoupling (Pre-processing step)

ρ
sym
S , which maps symbolic expressions to symbolic expressions, where each such symbolic

expression is parameterized on the symbolic constants found in ηS. (Note that the domain
of ρsym

S also contains registers and flags.) ρsym
S mirrors the static concrete store ρS, i.e.,

[[ρ
sym
S ]](ηS) = ρS, where the left-hand side denotes the simplification of each symbolic

expression in ρsym
S with respect to the values obtained from ηS. The principal effect of PE2

on each execution trace of the binary can be expressed by the following reparenthesization:

l : (ηS, ρS,ηD, ρD) −→ (l, ρsym
S ) : (ηS,ηD, ρD) (6.5)

Eqn. (6.5) shows how each element (l, ρsym
S ) : (ηS,ηD, ρD) in an execution trace of a binary

specialized using PE2 can be mapped back to the corresponding element l : (ηS, ρS,ηD, ρD)
in the trace of the original binary. In effect, the residual code is independent of ηS. (See
also §6.3.4.)

6.3 Algorithm

In this section, we describe the algorithms used by WiPEr. First, we present the algorithm
for a pre-processing step used prior to partial evaluation. Second, we present WiPEr’s
intraprocedural partial-evaluation algorithm. Third, we present extensions to handle
multiple procedures. Finally, we present correctness guarantees and threats to the validity
of our algorithms.

6.3.1 Pre-processing: Decoupling Instructions

Prior to performing BTA, WiPEr rewrites the input binary by decoupling each instruction i
that updates the stack-pointer register ESP along with another location l. WiPEr uses the
machine-code synthesizer McSynth [90] for decoupling. McSynth uses a divide-and-conquer
strategy that splits i’s QFBV formulaϕ into two independent sub-formulasϕ1 andϕ2, such
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Input: SDG, ID
Output: BTAMap

1: slice← ForwardSlice(SDG, ID)
2: for each I ∈ slice do
3: BTAMap← BTAMap[I 7→ Dynamic]
4: for each static predecessor S of I do
5: BTAMap← BTAMap[S 7→ Lifted]
6: end for
7: end for
8: for each I 6∈ Dom(BTAMap) do
9: if I is a call to malloc or an actual argument of a call to malloc then

10: BTAMap← BTAMap[I 7→ Lifted]
11: else
12: BTAMap← BTAMap[I 7→ Static]
13: end if
14: end for
15: return BTAMap

Algorithm 6.11: BTA algorithm in WiPEr

that the updates to ESP and l are split between ϕ1 and ϕ2. Then, McSynth synthesizes code
for ϕ1 and ϕ2, concatenates the results, and returns the resulting instruction sequence I.
ESP and l are updated in different instructions in I. The rewriting of the input binary via
instruction decoupling is shown as Alg. 6.10. In the algorithm, UpdatesSPAndLoc returns
true if an instruction updates the stack pointer along with another register or memory
location; Recall from §2.2 that 〈〈·〉〉 encodes an instruction (or instruction sequence) as a
QFBV formula; Synth invokes McSynth to synthesize an instruction sequence; Replace
replaces an instruction in a binary with an instruction sequence.

6.3.2 Intraprocedural Partial Evaluation
In this section, we present WiPEr’s intraprocedural partial-evaluation algorithm. First, we
present the BTA algorithm; then, we present the specialization algorithm.

BTA

The slicing-based BTA algorithm used in WiPEr is shown as Alg. 6.11. In the algorithm, ID is
the set of instructions that initialize dynamic inputs; ForwardSlice computes a forward slice
with respect to a slicing criterion; BTAMap is a data structure that maps each instruction
to its binding time. If a static instruction is control dependent on a dynamic branch, the
specialization algorithm might not terminate [48, Chap. 14]. To avoid the possibility of
non-termination, ForwardSlice follows both data and control dependences during slicing.
Lines 4–6 in Alg. 6.11 show the computation of lifted instructions during BTA. WiPEr
lifts all static calls to malloc (lines 9–11). This step is performed so that heap blocks that
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Input: CFG, ρ, BTAMap
Output: ρ ′

1: CFG ′← NewCFG()
2: bb← CFG.FirstBB()
3: worklist← 〈bb, ρ〉
4: processed← ∅
5: ρ ′← ρ

6: while worklist 6= ∅ do
7: 〈bb, ρ〉 ← RemoveItem(worklist)
8: if 〈bb, ρ〉 ∈ processed then
9: continue

10: end if
11: processed← processed ∪ {〈bb, ρ〉}
12: for each instruction i ∈ bb do
13: 〈i ′, ρ〉 ← specialize(i, ρ, BTAMap)
14: if i ′ 6= ε then
15: CFG ′.Emit(i ′)
16: end if
17: end for
18: if CFG.FinalBB(bb) then
19: ρ ′← ρ

20: end if
21: for each successor s of bb do
22: worklist←worklist ∪ {〈s, ρ〉}
23: end for
24: end while
25: return ρ ′

Algorithm 6.12: WiPEr’s specialization loop - IntraPE

are allocated at specialization-time also get allocated at run-time. (See PE2 specializer in
§6.3.2.)

Specialization

This section presents the specialization algorithm used in WiPEr. We first present the
skeleton of WiPEr’s specialization loop. We then present two versions of the core spe-
cialization function specialize, which gets called in the specialization loop. While the first
version produces correct residual code, the residual code cannot be executed with the stack
and heap blocks at different positions at run-time than at specialization-time. The second
version does not have this limitation, and is used in WiPEr.

Specialization loop. The skeleton of WiPEr’s specialization loop is similar to that of
a standard partial evaluator [48, p. 87], and is given as Alg. 6.12. specialize is the core
specialization function (line 13 of Alg. 6.12), which specializes an instruction with respect
to a pre-store to obtain the residual instruction and a post-store. In the algorithm, ε denotes
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Input: I, ρ, BTAMap
Output: 〈I ′, ρ ′〉

1: if BTAMap[I] = Dynamic then
2: return 〈I, ρ〉
3: else if BTAMap[I] = Lifted then
4: return 〈reduce1(I, ρ), eval1(I, ρ)〉
5: else
6: return 〈ε, eval1(I, ρ)〉
7: end if

Algorithm 6.13: specialize1

the empty sequence of instructions; NewCFG creates a new CFG; FirstBB returns the first
basic-block in a CFG; FinalBB returns true if the argument is the final basic-block in its
parent CFG; RemoveItem removes an item from the worklist; Emit appends an instruction
to a CFG. (We assume that Emit creates and connects nodes in the CFG.)

Recall that the register EIP is the IA-32 program counter. Alg. 6.12 follows CFG edges,
rather than the value of EIP, because we have no way to give consistent EIP values to
new instructions created via decoupling. Alg. 6.12 does not even track EIP in stores, and
consequently, it can propagate the same store to the two successors of a branch instruction
(lines 21–23).

PE1 Specializer. specialize1 is a specialization function that implements PE1. specialize1

has two constituent functions, eval1 and reduce1. eval1 evaluates instructions, and reduce1

residuates code. The algorithm for specialize1 is given as Alg. 6.13.

eval1. eval1 can be implemented by writing an interpreter for IA-32 instructions using the
concrete operational-semantics of IA-32. eval1 evaluates an instruction with respect to a
pre-store, and returns the post-store.

eval1 : Instruction→ Store→ Store eval1(I, ρ) = I [[I]] ρ

reduce1. reduce1 can be defined as follows:

reduce1 : Instruction→ Store→ Instruction-sequence

reduce1(I, ρ) = Synth(Subst0(〈〈I〉〉, ρ))

reduce1 converts an instruction into a QFBV formula, specializes the formula with re-
spect to the pre-store (using Subst0), and uses a machine-code synthesizer to synthesize
an instruction sequence that is equivalent to the specialized formula. The synthesized
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Figure 6.14: Call graph depicting the organization of WiPEr.

instruction-sequence constitutes the residual code. Recall from §2.2 that vocabulary-0 terms
and formulas in a QFBV formula represent pre-store locations and predicates, respectively.
Subst0 replaces vocabulary-0 terms and formulas in I’s QFBV formula with static values
from ρ. Because lifted instructions are originally static, they access only static locations.
Consequently, Subst0 replaces all vocabulary-0 terms and formulas in I’s QFBV formula
with static values from the store.

For example, suppose that I is the instruction “add [esp],eax.” I’s QFBV formula ϕ is
given below. (For brevity, we only show one of the flags updated by add.)

ϕ ≡Mem ′ = Mem[ESP 7→Mem(ESP)+ EAX] ∧ SF ′ = (Mem(ESP)+ EAX < 0)

Suppose that ρ is ρ ≡ 〈[ESP 7→ 1000][EAX 7→ 2], [ ], [1000 7→ 1]〉. Subst0 produces the
following formula:

Mem ′ = Mem[1000 7→ 3] ∧ SF ′ = False,

and reduce1(I, ρ) produces the residual instruction-sequence “mov [1000], 3; add [1000],
0.” (The second instruction in the sequence is necessary to set the SF flag.)

PE2 specializer. As discussed in §6.2, Alg. 6.13 specializes the binary with respect to
static addresses as well as static values (e.g., sum1 in Fig. 6.8). In this section, we present
the specialization algorithm that WiPEr uses to residuate code that is independent of the
specialization-time memory layout. In particular, we illustrate how the algorithm residuates
code that allows the stack and heap blocks to be at different positions at run-time than at
specialization-time.

WiPEr’s call-graph is represented in Fig. 6.14. WiPEr’s specializer is highlighted in
Fig. 6.14 in light gray. WiPEr uses specialize2 (Alg. 6.16) as the specialization function in
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1: mov [esp ],16 ;L
2: call malloc ;L
3: mov [eax ],1 ;S
4: mov [eax +4] ,2 ;L
5: add ebx ,[ eax +4] ;D

1R: mov [esp ],16
21
R: call malloc

22
R: mov edi ,eax

4R: mov [edi +4] ,2
5R: add ebx ,[ eax +4]

Figure 6.15: Code snippet, and residual program to illustrate specialize2 on heap blocks.

Alg. 6.12. specialize2 implements PE2. The remaining components of the specializer (Algs.
6.17, 6.18, and 6.20) will be described later in upcoming paragraphs and sections.

specialize2 uses symbolic addresses and a symbolic store to access and update memory
at specialization time. To represent symbolic addresses, we use symbolic constants in
L[IA-32] (m, n, etc.). A different constant is used to represent the starting address of the
stack and each heap block allocated at specialization-time. specialize2 uses a symbolic store
Storesym instead of Store.

ρsym ∈ Storesym = RegMapsym × FlagMapsym ×MemMapsym

RegMapsym : Int32Id→ Term FlagMapsym : BoolId→ Formula MemMapsym : Term→ Term

The residual code generated by specialize2 will use specific run-time addresses to access
and update memory using an extra level of indirection. To achieve this effect, specialize2

uses a memory-layout map µ ∈MemLayout. A memory-layout map µmaps the symbolic
starting-address m of the stack or a heap block to a location l (register or global address)
that holds the run-time counterpart of m.

µ ∈MemLayout : Int32Id→ (Register ∪ INT)

We will illustrate specialize2, and its constituent functions eval2 and reduce2, using the
code snippet shown in Fig. 6.15, which allocates and uses a heap block. (We describe how
specialize2 handles the stack and stack locations at the end of this sub-section.) The snippet
has a static call to malloc at instruction 2, and static values are written to the allocated
heap-block at instructions 3 and 4. The binding-time annotations for the instructions are
shown as comments on the left-hand column of Fig. 6.15. Because WiPEr lifts all static calls
to malloc, instructions 1 and 2 are lifted.

The algorithms for specialize2, eval2, and reduce2 are given as Algs. 6.16, 6.17, and
6.18, respectively. In Alg. 6.16, we overload ε to denote “no symbolic constant” (lines 4
and 13) and “no location” (line 5), respectively. In our example, because instruction 2
allocates memory (checked by Alloc), specialize2 adds [m 7→ EDI] to µ, where m is a fresh
symbolic constant (obtained using NewConst) that is used to represent the specialization-
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Input: I, ρ, BTAMap, µ
Output: 〈I ′, ρ ′, µ ′〉

1: if BTAMap[I] = Dynamic then
2: return 〈I, ρ, µ〉
3: else if BTAMap[I] = Lifted then
4: m← ε

5: l← ε

6: if Alloc(I) then
7: m← NewConst()
8: l← NewLoc()
9: µ ′← µ[m 7→ l]

10: end if
11: return 〈reduce2(I, ρ, µ, l), eval2(I, ρ, m), µ ′〉
12: else
13: return 〈ε, eval2(I, ρ, ε), µ〉
14: end if

Algorithm 6.16: specialize2

Input: I, ρ, m
Output: ρ ′

1: ρ ′← Isym [[I]] (ρ[NextBlock 7→ m])
2: return ρ ′

Algorithm 6.17: eval2

Input: I, ρ, µ, l
Output: I ′

1: I ′← Synth(Subst(Subst0(〈〈 I 〉〉, ρ), µ))
2: I ′′← ε

3: if Alloc(I) then
4: I ′′← EmitMove(l, EAX)
5: end if
6: return I ′; I ′′

Algorithm 6.18: reduce2

time starting address of the heap block, and EDI is a location that is not used in the residual
binary (obtained using NewLoc). This location can also be a global memory location that
is otherwise unused in the residual binary. specialize2 passes m to eval2, which stores m in
ρ under the key NextBlock. eval2 symbolically executes the instruction using Isym, which
reinterprets the semantics of an instruction I to symbolically execute I. If I allocates memory,
Isym uses the symbolic constant bound to NextBlock in ρ as the next address in the free
list. Consequently, in ρ ′ returned by eval2 for the call to malloc, EAX holds the symbolic
constant m—i.e., m is the starting address of the heap block allocated at instruction 2.

specialize2 then passes I, ρ, µ, and EDI to reduce2. Because instruction 2 allocates memory,
reduce2 residuates two instructions. The first instruction (21

R) is the call to malloc; the
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second instruction (22
R) saves the EAX register in EDI (emitted using EmitMove). After the

residual code executes instruction 22
R, the run-time starting address of the heap block will

be available in EDI.
specialize2 symbolically executes the static instruction 3, producing the post-store 〈[EAX

7→ m], [ ], [m 7→ 1]〉. While residuating code for lifted instruction 4, reduce2 uses Subst0 to
replace all vocabulary-0 terms and formulas in 4’s QFBV formula with terms and formulas,
respectively, from the symbolic store. This step produces the formula

Mem ′ = Mem[m + 4 7→ 2]. (6.6)

reduce2 then replaces each symbolic constant m in the resulting formula with [[µ(m)]]L using
Subst. For our example, for Eqn. (6.6), Subst produces Mem ′ = Mem[EDI+ 4 7→ 2]. Finally,
reduce2 uses the synthesizer to residuate instruction 4R for the specialized formula. One
can see that when the residual code executes, instructions 4R and 5R use the correct starting
address of the heap block.

Handling the stack. Suppose that n is the symbolic constant used to denote the special-
ization time base of the stack, and l is a dedicated location that will hold the address of the
base of the stack at run-time. Because the stack is typically allocated at the beginning of the
program, WiPEr adds [n 7→ l] to µ before specialization begins, and emits “mov l,esp” as
the first instruction in the residual program. Additionally, in the initial symbolic store, ESP
is bound to n. In our running example from §6.2, WiPEr adds [n 7→ ESI] to µ. Consequently,
reduce2 uses ESI instead of n in the QFBV formulas of all downstream lifted instructions.

In summary, to residuate code that is independent of the specialization-time memory
layout, specialize2 uses symbolic addresses, and residuates code that obtains the correspond-
ing run-time addresses from designated locations, using one level of indirection. In effect,
the binary is partially evaluated with respect to static values, but not specialization-time
addresses.

PE2-Safety. For PE2 to produce correct residual code for a binary B, B should be PE2-safe.
A binary B, along with a specific division of instructions in B as static and dynamic, are
PE2-safe if they satisfy the following properties:

P1 B does not contain a static branch condition that depends on the starting address of
the stack or heap blocks (e.g., cmp esp,1000).

P2 Every static instruction that accesses (updates) memory in block M only accesses
(updates) memory at a static offset from the base ofM, and within the bounds ofM.
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main:
:

A1: mov [esp],eax; S
C1: call foo
R1: mov [ebp -4], eax

:

:
A2: mov [esp],eax; D
C2: call foo
R2: mov [ebp -8], eax

:

foo:
push ebp
mov ebp , esp

R: mov eax ,[ebp -8]
pop ebp
ret

Figure 6.19: Code snippet to illustrate issues related to interprocedural BTA.

P1 implies that the partial evaluator does not encounter a symbolic branch condition
during specialization of B. P2 implies that every term in every store ρsym that arises during
specialization of B can be simplified to have the form c, or m + c, where c is an integer
constant, and m is a symbolic constant.

If a binary B violates P1 or P2, B might have different semantics for different layouts of
the stack and heap blocks. For example, consider the code snippet
1: mov [esp+1000],10 ;S
2: mov [esp*2],20 ;S
3: mov eax,[esp+1000] ;L
This snippet violates P2: after symbolically executing instruction 2, we obtain the store ρsym

2

ρ
sym
2 ≡ 〈[ESP 7→ n], [ ], [n + 1000 7→ 10][n ∗ 2 7→ 20]〉

In ρsym
2 , the term n ∗ 2 cannot be rewritten in the form m + c. Note that the value in the

EAX register after (concretely) executing instruction 3 depends on the initial value of ESP.
If we execute the snippet with the initial concrete store ρ0 ≡ 〈[ESP 7→ 1000], [ ], [ ]〉, the
value in EAX after executing instruction 3 will be 20. If we execute the code snippet with a
different value for ESP in ρ0, the value in EAX will be 10. Consequently, the snippet loads
different values into EAX for different stack layouts.

Binaries of memory-safe programs produced by a standard compiler are usually PE2-
safe. Apart from P1 and P2, we will also require that allocated memory chunks do not
overlap in the address space used at run-time. Allocated memory chunks also include the
chunk in which the residual code resides. (See §6.3.4.)

6.3.3 Interprocedural Partial Evaluation
In this section, we present the extensions to the algorithm to handle binaries with multiple
procedures.

BTA

For interprocedural partial-evaluation, WiPEr uses a monovariant division, i.e., the classifi-
cation of each instruction as static/dynamic holds for all calling contexts. This approach to
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BTA introduces the two issues discussed below, which will be illustrated using the code
snippet shown in Fig. 6.19. Procedure main contains two calls to foo. The actual parameter
of the first call is static, and that of the second call is dynamic. foo merely returns the
formal parameter.

One possible direction for future work is to investigate polyvariant BTA via specialization
slicing [12]. For every call to a procedure P with a different combination of static and
dynamic actual parameters, specialization slicing can be used to produce a different binding-
time annotation for P’s instructions. This technique could increase the number of static
instructions during specialization, leading to residual code that is more specialized than
the code currently residuated by WiPEr.

Parameter mismatches. A forward slice can include multiple calls to the same procedure,
with different subsets of actual parameters at different call-sites. However, the slice contains
the union of the corresponding formal-parameter sets, which causes a mismatch between
the actual parameters at a call-site and the procedure’s formal parameters [19, 46].

For the moment, assume that the forward slice used by BTA is context-sensitive. In the
code snippet shown in Fig. 6.19, suppose that the slice includes instructions A2, C2, R2, and
the entire body of foo. Note that there is a mismatch between the actual parameter A1,
and foo’s formal parameter. (The latter is in the slice, but the former is not.) WiPEr lifts
instructions A1 and C1 because they are interprocedural predecessors of foo’s instructions;
this step ensures that there will be no parameter mismatches in the residual code.

Return mismatches. If the forward slice used during BTA is context-sensitive, there is
also a return mismatch between the return value of foo, and the use of the return value at
instruction R1. The former is in the slice, but the latter is not, which violates congruence.
(At instruction R1, the specializer expects to find a return value for foo in the static store,
but there is no value.) To prevent return mismatches, WiPEr uses context-insensitive slicing,
which causes instruction R1 to be included in the slice.

In summary, for interprocedural BTA, WiPEr (i) lifts interprocedural static-predecessors
of dynamic instructions, and (ii) uses context-insensitive forward slicing. In addition,
to ensure that partial evaluation always terminates, WiPEr conservatively classifies all
instructions in a recursive procedure as dynamic. (This point is discussed further below.)

Specialization
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Input: CFG, ρ, BTAMap, specializedCFGs
Output: ρ ′

1: if 〈CFG, ρ〉 ∈ specializedCFGs then
2: return 〈specializedCFGs[〈CFG, ρ〉], specializedCFGs〉
3: end if
4: if Recursive(CFG) then
5: specializedCFGs[〈CFG, ρ〉] = ρ // See explanation in the text
6: end if
7: 〈ρ ′, specializedCFGs〉 ← IntraPE(CFG, ρ, BTAMap, specializedCFGs)
8: specializedCFGs[〈CFG, ρ〉] = ρ ′
9: return 〈ρ ′, specializedCFGs〉

Algorithm 6.20: specializeFn

To perform specialization for interprocedural partial-evaluation, the following lines are
added after line [16] of Alg. 6.12. IsCall returns true if the argument is a call instruction;
Callee returns the callee CFG for a call instruction.

if IsCall(i) then
〈ρ, specializedCFGs〉←specializeFn(Callee(i), ρ, BTAMap, specializedCFGs)

endif
In addition, Alg. 6.12 takes an additional argument, specializedCFGs, which is a map
whose entries are of the form 〈CFG, ρ〉 7→ ρ ′, where ρ is a partial static pre-store and
ρ ′ is a partial static post-store. Alg. 6.12 also returns specializedCFGs as an additional
return value. Procedure SpecializeFn is given as Alg. 6.20. Alg. 6.20 implements function
caching—if CFG has already been specialized with respect to ρ, Alg. 6.20 returns ρ ′ (lines
1–3).

To ensure that partial evaluation always terminates, WiPEr does not attempt to specialize
recursive functions. Recall that all instructions in a recursive procedure are classified as
dynamic (and the binding-time classification computed by BTA is congruent with respect
to that classification). Thus, for a recursive procedure P, the correct values for all variables
that are classified static at the return from P are found in the input partial static pre-store
ρ. Consequently, Alg. 6.20 can use ρ as the partial static post-store in the entry added to
specializedCFGs before IntraPE is called (lines 4–6). This trick ensures that Alg. 6.20 cannot
get into an infinite loop while specializing a recursive function.

If a function has not already been specialized, Alg. 6.20 calls Alg. 6.12 to specialize the
CFG with respect to ρ, and adds the partial static post-store to the map (lines 7–8).

6.3.4 Correctness

In this section, we present two theorems concerning: (i) termination of WiPEr, and (ii)
correctness of the residual code produced by WiPEr. The first theorem applies to binaries
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with instructions from the entire IA-32 instruction set. Because it would be difficult to prove
the correctness theorem for the entire IA-32 ISA, we prove correctness only for binaries
containing instructions from a small instruction subset. (See App. A.)

Theorem 6.21. Suppose that B is a PE2-safe binary, and ρsym
S is a partial static symbolic-store.

Then WiPEr(B, ρsym
S ) terminates.

Proof. WiPEr treats recursive functions conservatively, so WiPEr cannot enter into an infi-
nite loop while attempting to specialize a recursive function. WiPEr unrolls static loops
finitely many times depending upon the static loop bound. Moreover, the forward slice
performed during BTA follows both data and control dependences, which rules out the
possibility of there being a static instruction that is control dependent on a dynamic branch.
Consequently, WiPEr cannot create infinitely many specialized versions of the same basic
block. Thus WiPEr(B, ρsym

S ) is guaranteed to terminate.

In a standard semantics that formalizes the behavior of an IA-32 processor, an evaluation
function would take an IA-32 Store as an input, and produce an IA-32 Store as an output. In
§6.2, we introduced the notion of a state σ consisting of an environment η and an IA-32
store ρ. In this section, we use a non-standard semantics that uses an environment along
with an IA-32 store. The environment is really a ghost variable that makes explicit the
starting address of the stack and heap blocks, while the concrete part of the state is the
store.

Based on the congruent division established by BTA, a state can be partitioned into ηS,
ρS, ηD, and ρD. Thus the type for the evaluation function [[·]] (the function that evaluates an
instruction or a sequence of instructions with respect to a state, and returns the post-state)
can be written as

[[·]] : Instruction× EnvS × StoreS × EnvD × StoreD → EnvS × StoreS × EnvD × StoreD.

If we execute an instruction in a partially evaluated binary, ρS is never accessed or updated.
Thus we will overload [[·]] to also denote the meaning function for instructions in a partially
evaluated binary:

[[·]] : Instruction× EnvS × EnvD × StoreD → EnvS × EnvD × StoreD

It will always be clear from context which meaning of [[·]] is intended.
We assume that the memory map for a program that has been partially evaluated is

equipped with a special area in which the starting addresses of the stack and heap blocks
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allocated by lifted instructions are stored. Thus, strictly speaking, the memory maps for a
binary B and some residual binary B ′ of B will be different. However, the only differences
are in the special area, and we denote equality of two stores ρ and ρ modulo the special area
by ρ ≈ ρ.

For an input binary B that is PE2-safe, and an IA-32 state σ that can be partitioned
into ηS, ρS, ηD, and ρD based on a division of inputs to B, WiPEr produces a specialized
binary that, when executed, produces an answer that matches the answer that would be
produced by B (modulo the special area). The precise statement of the property is given in
the following theorem:

Theorem 6.22. Suppose that B is PE2-safe. Also suppose that ηS is an environment such that
there are no overlaps among (a) any of the chunks in Dom(ηS), (b) the chunk in which the residual
code produced by WiPEr is loaded, and (c) any of the chunks allocated during the execution of the
residual code. For all σ = (ηS, ρS,ηD, ρD) such that [[B]](ηS, ρS,ηD, ρD) terminates, suppose that
[[B]](ηS, ρS,ηD, ρD) = (η ′

S, ρ ′
S,η ′

D, ρ ′
D).

If ρsym
S is a symbolic store such that [[ρ

sym
S ]](ηS) = ρS, then [[WiPEr(B, ρsym

S )]](ηS,ηD, ρD) =

(η ′
S,η ′

D, ρ ′
D), where ρ ′

D ≈ ρ ′
D.

Proof. The proof for Thm. 6.22 is given in App. A.

Thm. 6.22 does not include ρS while comparing states because the residual code pro-
duced by WiPEr(B, ρsym

S ) does not contain static instructions, and consequently never ac-
cesses or updates the static store ρS.

6.3.5 Threats to Validity
There are two threats to the validity of our algorithms.

1. If the input binary is not PE2-safe, the residual code might violate Thm. 6.22.

2. The accuracy of BTA depends on the accuracy of the SDG for the binary. If the
methods used to construct the SDG are overly conservative, BTA can classify instruc-
tions as “dynamic” that do not depend on dynamic inputs. If the methods used to
construct the SDG are under-approximative, BTA can classify instructions as “static”
that actually do depend on dynamic inputs. In our experiments, we observed the
former behavior. The SDG that WiPEr uses is built using “variable-like abstractions”
recovered by machine-code variable-recovery analyses [14]. Each recovered variable-
like abstraction could be imprecise—it is often an agglomeration of some source-code
variables. Consequently, the SDG recovered from the program binary could be more
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foo:
push ebp
mov ebp ,esp
and esp ,0 xFFFFFF00
sub esp ,170

:

main:
push ebp
mov ebp ,esp
and esp ,0 xFFFFFF00
sub esp ,150

:
Figure 6.23: Code snippet to illustrate variable alignment.

imprecise than an SDG that is obtained from the program’s source code. As a result,
WiPEr’s BTA classifies more instructions dynamic than an analogous BTA that starts
from source code.

6.4 Implementation

WiPEr uses CodeSurfer/x86 [15] to obtain the SDG, CFG, and call graph for the binary.
WiPEr’s BTA uses CodeSurfer/x86’s forward-slicing operation. WiPEr’s specializer uses
CodeSurfer/x86’s rewriting API to create the sections, CFGs, and instructions in the residual
binary. WiPEr uses Transformer Specification Language (TSL) [53] to build its concrete and
symbolic interpreters. The concrete operational semantics of the integer subset of IA-32 is
written in TSL, and the semantics is interpreted for concrete evaluation, and reinterpreted
for symbolic evaluation. WiPEr also uses TSL [54] to convert an instruction into a QFBV
formula. WiPEr uses McSynth [91] to synthesize an IA-32 instruction sequence from a
QFBV formula. McSynth sometimes requires a set of scratch registers to hold results of
intermediate calculations in the residual code. WiPEr supplies dead registers to McSynth to
be used as scratch registers. If the number of dead registers at a point is not sufficient, WiPEr
supplies global addresses that are unused in the residual program as scratch locations to
McSynth.

In the examples presented in this chapter, we have treated memory as if each memory
location holds a 32-bit integer. However, our implementation supports the actual IA-32
memory model, in which each memory location holds an 8-bit integer.

The compiler might add instructions at the beginning of each procedure so that stack
variables are aligned on 4-byte, 8-byte, or 16-byte boundaries. For example, consider the
code snippet shown in Fig. 6.23. In procedures foo and main, the compiler aligns the stack
variables on a 16-byte boundary. To accommodate such alignment, we relax P2 of PE2-safety
properties to allow terms of the form m + p0 + p1 + . . . + c, where m is a symbolic constant
representing the specialization-time starting address of the stack or a heap block M, c is
an integer constant, and p0, p1, etc. are symbolic constants that represent the alignment
adjustments performed by the procedures Proc0, Proc1, . . . on the current call stack.
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Table 6.24: Characteristics of applications for optimization via specialization.
Application Domain LOC Description Static Input
Power Mathematical library functions 19 Computes xn n = 100
Dotproduct Linear algebra operations 29 Computes the dot product of two vectors with n dimensions n = 100, and co-efficients of the first vector
Interpreter Language interpreters 71 Interpreter for the minimalist language “Brainf*ck” Input program
Filter Image processing 107 Applies a convolution filter of sizem×m on an image of size n× n m = 3, n = 3, and elements of the filter
uuencode Text utilities 129 Base-64 encodes a string of size n n = 256, and the string
SHA1 Cryptographic operations 140 Computes the sha1 digest of a message of size n bits n = 1024, and contents of the first 512 bits
uudecode Text utilities 167 Decodes a base-64-encoded string of size n n = 256, and the encoded string

If the binary is statically linked, WiPEr does not need any additional input from the
user for partial evaluation. If the binary is not statically linked, the user needs to provide
a model for each library function as additional inputs to WiPEr. A model consists of the
following information: (i) an input-output dependence relation, and (ii) a procedure to
compute return values of library-function calls that are classified as static. WiPEr specializes
library-function calls in a bimodal manner: if any argument to a library-function call is
dynamic, all of the static arguments are lifted along with the call; if all arguments are static,
WiPEr uses the user-supplied model to compute a return value for the call (i.e., a fully static
call is specialized away.)

We are generally unable to use WiPEr’s fully automated end-to-end partial-evaluation
algorithm to extract components from a large binary. Binaries of large applications do
not have clearly demarcated inputs. They often have only one input—a buffer that stores
the entire command line. The binary interprets the contents of the buffer to assign values
to variables. If the buffer is classified dynamic, Alg. 6.11 classifies all instructions in the
binary dynamic.

For component extraction, we run WiPEr in an alternative experimental mode, called
Component Extraction (CE) mode. In CE-mode, WiPEr performs a restricted BTA. (The
specialization algorithm is the same in CE and non-CE modes.) In CE-mode, the user spec-
ifies a subset IS of instructions in the original binary to be treated as static instructions. The
remaining instructions in the binary are treated as dynamic instructions. WiPEr identifies
lifted instructions, and then specializes the binary using WiPEr’s original specialization
algorithm.

CE-mode is related to generalized partial computation [38], in which a program is special-
ized with respect to constraints. As will become clear below, in CE-mode we are specializing
a program P with respect to a condition, such as ϕ ≡ (EAX = 1), which must hold at a
given point p in the middle of the program. The goal is to produce a residual program
that is (i) a specialization of P, in which (ii) ϕ holds each time the points residuated from p

are reached.
For simple examples of the kind discussed below, CE-mode successfully extracts com-

ponents, even though congruence is violated. It remains for future work to devise a theory
of program specialization that covers CE-mode.
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Figure 6.25: Comparison of the execution times of the original and specialized binaries.

6.5 Experiments

The goal of our experiments was to test and evaluate the two primary use cases of WiPEr:
(i) optimization via specialization, and (ii) component extraction. Our experiments were
run on a system with a 64-core, 2.3 GHz AMD Opteron 6376 processor; however, WiPEr’s
algorithm is single-threaded. The system has 264 GB of memory and runs RHEL 6.6.

6.5.1 Optimization via Specialization

For this use case, we wanted to answer the following question:

• What is the speedup produced by partial evaluation for different applications?

For the first set of experiments, we used a suite of applications from application domains
that were suitable for partial evaluation. Table 6.24 presents the characteristics of the
applications. The first two applications listed in the table have been used in prior work
[61, 80]. There are four versions of the interpreter application in our test suite: (i) a standard
version, (ii) a version that uses indirect jumps (via switch statements), (ii) a version that
uses indirect calls (via function pointers), and (iv) a version that uses heap-allocated
storage. uuencode and uudecode are FreeBSD utilities [37]. We used CE-mode for partially
evaluating the FreeBSD utilities. The results are shown in Fig. 6.25. For these applications,
the average speedup produced by partial evaluation, computed via the geometric mean, is
1.3.

For Power, partial evaluation results in a slight slowdown. Power has a tight loop,
and we believe that the aggressive loop unrolling caused by partial evaluation disrupts
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Table 6.26: Characteristics of applications for component extraction.

Application KLOC Description Component
b64 0.544 Base64 encoder-decoder decoder
lzfx 0.914 LZF compression-decompression utility compress
bzip2 7 Compression-decompression utility compress

Table 6.27: Comparison of sizes and number of procedures in original binary and extracted compo-
nent.
Application Size of binary

(KB)
No. of procs.
in binary

Size of com-
ponent (KB)

No. of procs.
in component

b64 5.4 16 5.9 4
lzfx 7.6 24 6 8
bzip2 90.2 117 64.6 78

instruction caching.
At the other end of the spectrum, we measured a speedup in Filter of 1.9. Filter has four

nested for-loops. The inner two loops iterate over the filter elements. Partial evaluation
unrolls all four loops, and—because the filter elements are static—replaces almost all
instructions in the bodies of the inner two loops with just a few residual instructions.

6.5.2 Component Extraction

For this use case, we wanted to answer the following questions:

• How can we extract an executable component from a binary via partial evaluation?

• How does the size of the extracted component compare to the size of the original
binary?

For this set of experiments, we used three applications that bundle several components
into a bloated executable. Table 6.26 presents the characteristics of the applications. The
first and second applications were obtained from Google Code [1] and SourceForge [2],
respectively.

CE-mode of WiPEr was used for this set of experiments. The sizes of the original binary
and the extracted components are shown in Table 6.27.

b64. The decoder extracted from b64 is bigger than the b64 binary because our current
implementation does not optimize the layout of basic blocks in the residual code to reduce
the number of jump instructions. For example, b64 has 30 jmp instructions, and the extracted
decoder has 164 jmp instructions. The issues in partially evaluating b64 are similar to those
of bzip2, which is discussed below.
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lzfx. lzfx is a text-compression utility. In this case study, we present how WiPEr extracts
the compression component of lzfx. The decision about whether to call fx_create (which
compresses) or fx_read (which decompresses) is made in the following code snippet from
the binary:

_text :080499 D4 test eax ,eax ;S
_text :080499 D6 jnz loc_80499E2 ;S
_text :080499 D8 mov dword [esp +44] ,0 ;S

:
_text :08049 A3A mov eax ,dword [esp +44] ;L
_text :08049 A3E mov dword [esp +12] , eax ;D

:
_text :08049 A5E call fx_create ;D

:
loc_80499E2 :

:
_text :08049 A84 call fx_read ; D

If the value in the eax register is 0 at instruction 80499D4, lzfx calls fx_create. The user
specifies that instructions 80499D4 through 8049A3A should be treated as static instructions.
WiPEr lifts instruction 8049A3A because it supplies a static value to the dynamic instruction
8049A3E. WiPEr performs specialization and evaluates the static and lifted instructions
with respect to the partial store

ρ ≡ 〈[EAX 7→ 0][ESP 7→ n], [ ], [ ]〉,

and residuates the instruction mov eax,0 for the lifted instruction 8049A3A, and emits the
remaining dynamic instructions. Because eax is 0 at instruction 80499D4, the fall-through
branch is taken at 80499D6, which forces WiPEr to enter fx_create and to bypass fx_read.
Consequently, WiPEr residuates an executable that only performs compression.

With lzfx, we also went further by embedding the extracted compression component
in a different application. We created a small header file with the signature of fx_create,
and linked the new application with the compression component extracted by WiPEr.

bzip2. bzip2 is a large application that takes several auxiliary command-line inputs in ad-
dition to one that specifies whether to perform compression or decompression. Ultimately,
the decision about whether to call compress or uncompress is made in the following code
snippet of the binary:
_text :0805 B539 mov eax ,[ esp +40] ;S
_text :0805 B53E cmp eax ,1 ;S
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_text :0805 B541 jnz loc_805B5DB ;S
:

_text :0805 B558 call compress ;D
:

loc_805B5DB :
:

_text :0805 B5E4 call uncompress ;D

The memory location whose address is ESP + 40 holds a value computed from the com-
pression/decompression flag on the command line. If the value is 1, bzip2 calls compress;
otherwise, it calls uncompress.

The user specifies that instructions 805B539 through 805B541 should be treated as static
instructions. WiPEr performs specialization and evaluates the aforementioned instructions
with respect to the partial store

ρ ≡ 〈[ESP 7→ n], [ ], [n + 40 7→ 1]〉.

This partial store forces WiPEr to enter compress and bypass uncompress, and consequently
WiPEr residuates an executable that only performs compression.

6.6 Related Work

Partial evaluation. Partial evaluation has been used as a general framework for the spe-
cialization of programs belonging to different languages, and different domains. In addition
to several functional languages [48, 57], partial evaluation has been used to specialize a
flow-chart language [48], C [9, 26], FORTRAN [50], and Java [78, 80]. Partial evaluators can
either be on-line (performed in a single phase) [43], off-line (performed in two phases), or
hybrid [80]. WiPEr’s high-level architecture resembles that of an off-line partial evaluator
for an imperative language. However, the need to handle several machine-code-specific
issues makes WiPEr’s algorithm significantly different from those of source-code partial
evaluators.

Run-time specialization techniques. Run-time specialization (or dynamic compilation)
generates optimized code during program execution by partially evaluating user-annotated
regions of the program with respect to invariant data computed at run time [13, 25, 32, 52].

Like WiPEr, these tools perform specialization on machine code. However, the partial-
evaluator-like component in such tools is part of the compiler. BTA is performed with
respect to source-code variables, and carried out on an IR that is constructed from source
code. Run-time-specialization tools have to address an issue that does not arise in WiPEr,
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namely, the need to create code templates that can be reused at run-time. Some tools accom-
plish this task by jury-rigging an existing compiler’s code generator to inhibit optimizations,
such as code motion, by using the volatile type qualifier of C.

In contrast, WiPEr faced other issues, such as the need to decouple multiple updates
performed by a single instruction, and to create code that allows the stack and heap to be
at different positions at run-time than at specialization-time.

Specialization of Java bytecode. WiPEr is not the first partial evaluator that works on
low-level code. Lancet [73] performs partial evaluation of Java bytecode snippets that need
to be compiled by a just-in-time (JIT) compiler. JScp [51] performs supercompilation on
Java bytecode. Like WiPEr, the specializers in Lancet and JScp make use of a static partial
store. For Lancet and JScp, the static partial store is a Java virtual-machine (JVM) store,
while WiPEr’s is an IA-32 store. However, while those specializers work on low-level code,
WiPEr works at an “even lower level.” The following issues that arise in IA-32 and not in
bytecode justify the novel design choices made in WiPEr:

1. Because the JVM is a stack-based machine, specialization of bytecode instructions of-
ten involves loading constant values instead of locals/fields. In contrast, the operands
of IA-32 instructions vary widely, and the specialization of an instruction with re-
spect to a partial store need not be a variant of the instruction. Moreover, IA-32 has
around 43,000 unique opcodes, and WiPEr’s specializer must be able to specialize
any instruction with respect to any partial store. WiPEr addressed this issue by using
machine-code synthesis.

2. Address computation is not explicit in bytecode (variables are referenced using off-
sets). Consequently, bytecode specialization does not face the problem of residuating
specialization-time addresses. However in machine code, instructions compute ad-
dresses, and a naïve specializer, such as PE1, is unsatisfactory. For this reason, WiPEr
uses symbolic techniques for specialization.

Superoptimization and link-time optimization. Superoptimization aims at finding an
optimal instruction-sequence for a target instruction-sequence [16, 55, 76]. Peephole super-
optimization [16] uses “peepholes” to harvest target instruction-sequences, and replace
them with equivalent instruction-sequences that have a lower cost. Link-time optimizers
carry out whole-program optimizations at link time [59]. While these optimization tech-
niques optimize a binary for all possible inputs, WiPEr optimizes a binary for a specific
input.
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7 An Improved Algorithm for Slicing
Machine Code

This chapter presents the second instantiation of the semantics-based binary rewriting
framework (Framework 1.1) described in Chapter 1: an improved slicer for IA-32.

One of the most useful primitives in program analysis is slicing [46, 98]. A slice consists
of the set of program points that affect (or are affected by) a given program point p and a
subset of the variables at p.1 Backward slicing computes the set of program points that
might affect the slicing criterion; forward slicing computes the set of program points that
might be affected by the slicing criterion. Slicing has many applications, and is used
extensively in program analysis and software-engineering tools (e.g., see pages 64 and 65
in [12]). Binary analysis and rewriting has received an increasing amount of attention from
the academic community in the last decade (e.g., see references in [88, §7], [14, §1], [23, §1],
[31, §7]), which has led to the development and wider use of binary analysis and rewriting
tools. Improvements in machine-code slicing could significantly increase the precision
and/or performance of several existing tools, such as partial evaluators [89], taint trackers
[22], and fault localizers [100]. Moreover, a machine-code slicer could be used as a black
box to build new binary analysis and rewriting tools.

State-of-the-art machine-code-analysis tools [15, 23] recover an instruction-level system
dependence graph (SDG)2 from a binary, and use an existing source-code slicing algorithm
[46, 71] to perform slicing on the recovered SDG. (An instruction-level SDG is an SDG in
which nodes are entire instructions.) However, the computed slices are extremely imprecise,
often including the entire binary. Instructions in most ISAs such as IA-32 [47] and ARM
[11] are multi-assignments: they have several inputs and several outputs (e.g., registers,
flags, and memory locations). The multi-assignment nature of instructions introduces a
granularity issue during slicing: although we would like the slice to include only a subset
of an instruction’s microcode,3 the slice is forced to include the entire instruction. This
granularity issue can have a cascade effect: irrelevant microcode included at an instruction
can cause irrelevant instructions to be included in the slice, and such irrelevant instructions

1In the literature, program point p and the variable set are called the slicing criterion [98]. In this chapter, when we
refer to a program point p as the “slicing criterion,” we mean p and all the variables used at p.

2The SDG is an intermediate representation used for slicing; see §7.1.
3In this chapter, we use the term “microcode” as a synonym for a specification of an instruction’s concrete

operational-semantics.
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can cause even more irrelevant instructions to be included in the slice, and so on. Conse-
quently, straightforward usage of source-code slicing algorithms on an instruction-level
SDG yields imprecise machine-code slices. In Chapter 6, we sub-optimally addressed the
granularity issue via an ad-hoc instruction-decoupling strategy. This chapter proposes a
more principled approach to addressing the granularity issue.

In this chapter, we present an algorithm to perform more precise context-sensitive
interprocedural machine-code slicing. Our algorithm is specifically tailored for ISAs and
other low-level code that have multi-assignment instructions. Our algorithm works on
SDGs recovered by existing tools, and is parameterized by the ISA of the instructions in
the binary.

Our improved slicing algorithm should have many potential benefits. More precise
machine-code slicing could be used to improve the precision of other existing analyses that
work on machine code. For example, more precise forward slicing could improve binding-
time analysis (BTA) in a machine-code partial evaluator [89]. More precise slicing could
also be used to reduce the overhead of taint trackers [22] by excluding from consideration
portions of the binary that are not affected by taint sources. Beyond improving existing
tools, more precise slicers created by our technique could be used as black boxes for the
development of new binary analysis and rewriting tools (e.g., tools for software security,
fault localization, program understanding, etc.). Our more precise backward-slicing algo-
rithm could be used to extract an executable component from a binary, e.g., a word-count
program from the wc utility. (See §7.5.1.) One could construct more accurate dependence
models for libraries that lack source code by slicing the library binary. A machine-code
slicer is a useful tool to have when a slicer for a specific source language is unavailable.

We have implemented our algorithm in a tool, called McSlice, which slices Intel IA-32 bi-
naries. McSlice uses the instruction-level SDG recovered by an existing tool, CodeSurfer/x86
[15]. McSlice performs slicing at the microcode level instead of the instruction level. McSlice
first converts the instruction-level SDG into a microcode-level SDG or µ-SDG. (McSlice
uses QFBV formulas to explicitly represent the microcode at each node.) McSlice then uses
an existing interprocedural context-sensitive slicing algorithm [46, 71] to slice over the
constructed µ-SDG. The final slice includes only the microcode that is relevant to the slicing
criterion.

Some clients of the slicing algorithm might require the results to be reported as executable
machine code instead of a microcode slice (e.g., executable procedure/component extraction).
This requirement introduces a new issue: how to reconstitute a machine-code program
from a microcode slice; the slicing algorithm must now generate machine code, which is
at a higher level, from the microcode fragments included in the slice. McSlice addresses
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the program-reconstitution issue via machine-code synthesis: McSlice uses McSynth to
synthesize machine code for the microcode in the slice. By this means, McSlice obtains an
executable machine-code program from a precise microcode slice.

Contributions

This chapter’s contributions include the following:

• We identify the granularity issue caused by using source-code slicing algorithms
on an instruction-level SDG, and show how the issue can lead to very imprecise
machine-code slices (§7.2.1).

• We present an algorithm for machine-code slicing that is more precise than prior work.
Our algorithm overcomes the granularity issue by converting an instruction-level
SDG into a microcode-level SDG, and using an existing slicing algorithm over the
microcode-level SDG (§7.3.1).

• We show how machine-code synthesis can be used to reconstitute a machine-code
program from a microcode slice (§7.3.2).

• As a case study of an application of our slicing algorithm, we show how to use our
improved slicer to extract an executable component from a binary (§7.5.1).

• Our algorithm uses QFBV formulas to represent microcode, and thus is not tied
to a specific binary-analysis platform. Consequently, our algorithm can be used to
improve slicing in other binary-analysis platforms that suffer from the granularity
and program-reconstitution issues. (See §7.1.1.)

Our methods have been implemented in an IA-32 slicer called McSlice. We present exper-
imental results with McSlice, which show that, on average, McSlice reduces the sizes of
slices obtained from a state-of-the-art tool by 33% for backward slices, and 70% for forward
slices.

7.1 Background

In this section, we briefly describe how state-of-the-art tools recover from a binary an SDG
on which to perform machine-code slicing.

Slicing is typically performed using an IR of the binary called a system dependence graph
(SDG) [35, 46]. To build an SDG for a program, one needs to know the set of variables that
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main:
1: push ebp
2: mov ebp ,esp
3: sub esp ,10
4: mov [esp ],1
5: ...

[ESP7→(AR_main,-4)][EBP7→ >], USE#={EBP, ESP}, KILL#={ESP, (AR_main,0)}
[ESP7→(AR_main,0)][EBP7→ >][(AR_main,0) 7→ >], USE#={ESP}, KILL#={EBP}
[ESP7→(AR_main,0)][EBP7→(AR_main,0)][(AR_main,0)7→ >], USE#={ESP}, KILL#={ESP}
[ESP7→(AR_main,10)][EBP7→(AR_main,0)][(AR_main,0)7→ >], USE#={ESP}, KILL#={(AR_main,10)}
[ESP7→(AR_main,10)][EBP7→(AR_main,0)][(AR_main,0)7→ >][(AR_main,10)7→1] − , −

Figure 7.1: VSA state before each instruction in a small code snippet, and the USE# and KILL# sets
for each instruction.

might be used and killed in each statement of the program. However in machine code, there
is no explicit notion of variables. In this section, we briefly describe how CodeSurfer/x86
[15] (a state-of-the-art tool for machine-code analysis) recovers “variable-like” abstractions
from a binary, and uses those abstractions to construct an SDG and perform slicing.

CodeSurfer/x86 uses value-set analysis (VSA) [14] to compute the abstract state (σVSA)
that can arise at each program point. σVSA maps an abstract location to an abstract value.
An abstract location (a-loc) is a “variable-like” abstraction recovered by the analysis [14,
§4]. (In addition to these variable-like abstractions, a-locs also include IA-32 registers and
flags.) An abstract value (value-set) holds an over-approximation of the values that each
a-loc can have at a given program point. For example, Fig. 7.1 shows the VSA state before
each instruction in a small IA-32 code snippet. In Fig. 7.1, an a-loc of the form (AR_main,
n) denotes the variable-like proxy at offset −n in the activation record of function main,
and > denotes any value. In reality, the VSA state before instruction 4 contains value-sets
for the flags set by the sub instruction. However, to reduce clutter, we have not shown the
flag a-locs in the VSA state. For each instruction i in the binary, CodeSurfer/x86 uses the
abstract state to compute USE#(i, σVSA) (KILL#(i, σVSA)), which is the set of a-locs that might
be used (modified) by i. The USE# and KILL# sets for each instruction in the code snippet
are also shown in Fig. 7.1.

To perform VSA, use/kill analysis, and other analyses, CodeSurfer/x86 internally uses
a specification of the concrete operational-semantics of IA-32 instructions written in the
Transformer Specification Language (TSL) [53]. Writing a TSL specification for IA-32 in-
structions is similar to writing an IA-32 interpreter in first-order ML. (The TSL specification
for the instruction add eax,ebx is given as Fig. 7.2.) CodeSurfer/x86 reinterprets the TSL
specification of an instruction i’s semantics to create different abstract transformers for i,
which can be used in different analyses.

CodeSurfer/x86 uses the results of VSA and use/kill analysis to build a collection
of IRs, including an SDG and a control-flow graph (CFG). An SDG consists of a set of
program dependence graphs (PDGs), one for each procedure in the program. A node in a PDG
corresponds to a construct in the program, such as an instruction, a call to a procedure, a
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r eg : EAX | EBX | . . .
f l a g : ZF | SF | . . .
i n s t r u c t i o n : ADD(EAX,EBX) | . . .
s t a t e : S t a t e (MAP[ reg , INT32 ] , // r e g i s t e r s

MAP[ f l a g , BOOL] , // f l a g s
MAP[ INT32 , INT8 ] ) //memory

s t a t e i n t e r p I n s t r ( i n s t r u c t i o n I , s t a t e S) {
wi th (S) (

S t a t e ( regs , f l a g s , memory ) :
w i th ( I ) (
ADD(EAX,EBX) :

l e t v1 = r e g s [EAX ] ;
v2 = r e g s [EBX ] ;
r e s = v1+v2 ;
r e g s 1 = r e g s [EAX 7→ r e s ] ;
f l a g s 1 = f l a g s [ ZF 7→ r e s == 0 ] ;
f l a g s 2 = f l a g s 1 [ SF 7→ r e s <s 0 ] ;
f l a g s 3 = f l a g s 2 [ CF 7→ −1∗(v1−1) <u v2 ] ;
f l a g s 4 = f l a g s 3 [ AF 7→ −1∗(−16 | v1 & 15)

−1 <u v2 & 1 5 ] ;
f l a g s 5 = f l a g s 4 [OF 7→ ( v1 >=s0&&

v2 >=s0 | | EAX <s 0) &&
(EAX >=s0&& r e s <s0 | |
v1 <s0&& r e s >=s 0 ) ] ;

f l a g s 6 = f l a g s 5 [ PF 7→ ( ( r e s & 255 ^
( r e s & 255) >>l1 ^ ( r e s & 255 ^
( r e s & 255) >>l 1) >>l2 ^
( r e s & 255 ^ ( r e s & 255) >>l1 ^
( r e s & 255 ^ ( r e s & 255) >>l 1)
>>l 2) >>l 4) & 1) == 0 ] ;

i n S t a t e ( regs1 , f l a g s 6 , memory ) ,
. . .
)

)
}

Figure 7.2: TSL specification for the instruction
add eax,ebx.

addr 0x0 @asm ”add %eax,%ebx”
label pc_0x0
t:u32 = R_EBX:u32
R_EBX_74:u32 = R_EBX:u32 + R_EAX:u32
R_CF:bool = R_EBX_74:u32 < t:u32
temp:u32 = R_EBX_74:u32 ∧ t:u32
temp_77:u32 = temp:u32 ∧ R_EAX:u32
temp_78:u32 = 0x10:u32 & temp_77:u32
R_AF:bool = 0x10:u32 == temp_78:u32
temp_80:u32 = ∼R_EAX:u32
temp_81:u32 = t:u32 ∧ temp_80:u32
temp_82:u32 = t:u32 ∧ R_EBX_74:u32
temp_83:u32 = temp_81:u32 & temp_82:u32
R_OF:bool = high:bool(temp_83:u32)
temp_85:u32 = R_EBX_74:u32� 7:u32
temp_86:u32 = R_EBX_74:u32� 6:u32
temp_87:u32 = temp_85:u32 ∧ temp_86:u32
temp_88:u32 = R_EBX_74:u32� 5:u32
temp_89:u32 = temp_87:u32 ∧ temp_88:u32
temp_90:u32 = R_EBX_74:u32� 4:u32
temp_91:u32 = temp_89:u32 ∧ temp_90:u32
temp_92:u32 = R_EBX_74:u32� 3:u32
temp_93:u32 = temp_91:u32 ∧ temp_92:u32
temp_94:u32 = R_EBX_74:u32� 2:u32
temp_95:u32 = temp_93:u32 ∧ temp_94:u32
temp_96:u32 = R_EBX_74:u32� 1:u32
temp_97:u32 = temp_95:u32 ∧ temp_96:u32
temp_98:u32 = temp_97:u32 ∧ R_EBX_74:u32
temp_99:bool = low:bool(temp_98:u32)
R_PF:bool = ∼temp_99:bool
R_SF:bool = high:bool(R_EBX_74:u32)
R_ZF:bool = 0:u32 == R_EBX_74:u32

Figure 7.3: BIL code for add eax,ebx [24]. BIL
is the UAL used in BAP.

procedure entry/exit, an actual parameter of a call, or a formal parameter of a procedure.
The edges correspond to data and control dependences between the nodes [35]. For
example, in the system-dependence subgraph for the code snippet in Fig. 7.1, there is a
control-dependence edge from the entry of main to instructions 1, 2, 3, and 4; there is a
data-dependence edge from instruction 1, which assigns to the stack-pointer register ESP,
to instructions 2 and 3, which use ESP, as well as from instruction 3 to instruction 4.

In a PDG, a procedure call is associated with two nodes: a call-expression node, which
contains the call instruction, and a call-site node, which is a control node. PDGs are
connected together with interprocedural control-dependence edges between call-site nodes
and procedure-entry nodes, and interprocedural data-dependence edges between actual
parameters and formal parameters/return values. (See Fig. 7.10 for an example SDG with
interprocedural edges.)

CodeSurfer/x86 uses an existing interprocedural-slicing algorithm [46, 71] to perform
machine-code slicing on the recovered SDG.
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int add(int a, int b){
int c = a + b;
return c;

}
int square (int a){

int b = a * a;
return b;

}

int main (){
int a = 10, b = 20 ;
int c = add(a, b);
int d = square (c);
return a - b ;

}

Figure 7.4: Source code for the diff program, and the backward slice with respect to the return value
of main.

7.1.1 Other platforms for machine-code slicing.

Apart from CodeSurfer/x86, there are other machine-code analysis platforms, such as Vine
[88], REIL [29], and BAP [23]. Vine and BAP perform VSA, and recover an SDG from a
binary, on which slicing can be done.

These platforms use Universal Assembly Language (UAL) to represent the semantics
of instructions. (Typically, an instruction’s microcode is a sequence of UAL updates—
see Fig. 7.3.) The SDG recovered by BAP and Vine is similar to the one recovered by
CodeSurfer/x86 in that nodes of the SDG are entire instructions, and not individual UAL
updates. Because of the program-reconstitution issue—and because the “semantic gap”
between instructions and microcode could potentially confuse users—BAP and Vine report
information at the entire-instruction level. (If results were reported at the microcode level,
it would be a bit like having a source-level slicing tool report its results at the machine-code
level.) Consequently, BAP and Vine also face the granularity and program-reconstitution
issues during slicing.

One can think of UAL as a flattened variant of the QFBV representation of microcode
used in McSlice. Consequently, the techniques presented in this paper can be applied in
a straightforward manner to other binary-analysis platforms that use UAL. In particular,
because our work provides a solution to the program-reconstitution issue, it provides a
way to solve the analogous problem—and thereby improve—UAL-based systems.

7.2 Overview

In this section, we use two example programs to illustrate the granularity issue involved
in slicing binaries using state-of-the-art tools, and the improved slicing technique used in
McSlice.
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add:
1: push ebp
2: mov ebp,esp
3: sub esp,4
4: mov eax,[ebp+12]
5: add eax,[ebp+8]
6: mov [ebp-4],eax
7: mov eax,[ebp-4]
8: leave
9: ret

square :
10: push ebp
11: mov ebp ,esp
12: sub esp,4
13: mov eax ,[ ebp +8]
14: imul eax ,[ ebp +8]
15: mov [ebp -4], eax
16: mov eax ,[ebp -4]
17: leave
18: ret

main:
19: push ebp
20: mov ebp,esp
21: sub esp,16
22: mov [ebp-16],10
23: mov [ebp-12],20
24: push [ebp-12]
25: push [ebp-16]
26: call add
27: add esp,8

28: mov [ebp-8],eax
29: push [ebp-8]
30: call square
31: add esp ,4
32: mov [ebp -4], eax
33: mov eax,[ebp-16]
34: mov ebx,[ebp-12]
35: sub eax,ebx
36: leave
37: ret

Figure 7.5: Assembly listing for diff with the imprecise backward slice computed by
CodeSurfer/x86.

7.2.1 Granularity Issue in Machine-Code Slicing

Consider the C program diff shown in Fig. 7.4. The main function contains calls to functions
add and square. main does not use the return values of the calls, and simply returns the
difference between two local variables a and b. Suppose that we want to compute the
program points that affect main’s return value (boxed in Fig. 7.4). The backward slice with
respect to main’s return value gets us the desired result. The backward slice is highlighted
in gray in Fig. 7.4. (This source-code slice is computed using CodeSurfer/C [10].)

Let us now slice the same program with respect to the analogous slicing criterion at the
machine-code level. The assembly listing for diff is shown in Fig. 7.5. The corresponding
slicing criterion is the boxed instruction in Fig. 7.5. (The EAX register holds the return value
of main at the end of the program. Hence, we slice with respect to the final assignment
to EAX, which is performed by the boxed instruction in Fig. 7.5.) The backward slice
with respect to the slicing criterion includes the lines highlighted in gray in Fig. 7.5. (The
slice is computed using CodeSurfer/x86.) One can see that the entire body of the add
function—which is completely irrelevant to the slicing criterion—is included in the slice.
What went wrong?

Machine-code instructions are usually multi-assignments: they have several inputs,
several outputs (e.g., registers, flags, and memory locations), and several microcode updates.
This aspect of the language introduces a granularity issue during slicing: in some cases,
although we would like the slice to include only a subset of an instruction’s microcode
updates, the slicing algorithm is forced to include the entire instruction. For example,
consider instruction 29 in Fig. 7.5 whose QFBV formula is

〈〈push [ebp-8]〉〉 ≡ ESP ′ = ESP − 4 ∧ Mem ′ = Mem[ESP − 4 7→Mem(EBP − 8)].

The instruction updates the stack-pointer register ESP along with a memory location. Just
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int add(int a, int b ) {
int c = a + b ;
return c ;

}
int square (int a){

int b = a * a;
return b;

}

int main (){
int a = 10 , b = 20;
int c = add(a, b ) ;
int d = 30;
int e = square (d);
return e;

}

Figure 7.6: Source code for the square program, and the forward slice with respect to a.

add:
1: push ebp
2: mov ebp,esp
3: sub esp,4
4: mov eax,[ebp+12]
5: add eax,[ebp+8]
6: mov [ebp-4],eax
7: mov eax,[ebp-4]
8: leave
9: ret

square :
10: push ebp
11: mov ebp,esp
12: sub esp,4
13: mov eax,[ebp+8]
14: imul eax,[ebp+8]
15: mov [ebp-4],eax
16: mov eax,[ebp-4]
17: leave
18: ret

main:
19: push ebp
20: mov ebp ,esp
21: sub esp ,20
22: mov [ebp-20],10
23: mov [ebp -16] ,20
24: push [ebp -16]
25: push [ebp-20]
26: call add
27: add esp,8

28: mov [ebp-12],eax
29: mov [ebp-8],30
30: push [ebp-8]
31: call square
32: add esp,4
33: mov [ebp-4],eax
34: mov eax,[ebp-4]
35: leave
36: ret

Figure 7.7: Assembly listing for square with the imprecise forward slice computed by
CodeSurfer/x86.

before ascending back to main from the square function, the most recent instruction added
to the slice is instruction 10 in Fig. 7.5 whose formula is

〈〈push ebp〉〉 ≡ ESP ′ = ESP − 4 ∧ Mem ′ = Mem[ESP − 4 7→ EBP].

The instruction uses the registers ESP and EBP. When the slice ascends back into main, it
requires the definition of ESP from instruction 29 in Fig. 7.5. However, the slice cannot
include only a part of the instruction, and is forced to include the entire push instruction,
which also uses the contents of the memory location whose address is EBP − 8. The value
in location EBP − 8 is set by instruction 28 in Fig. 7.5. That instruction also uses the value in
register EAX, which holds the return value of the add function. For this reason, instruction
28, and the entire body of add, which are completely irrelevant to the slicing criterion, are
included in the slice. The granularity issue thus has a cascade effect—irrelevant instructions
included in the slice cause more irrelevant instructions to be included in the slice.

Consider another C program square, shown in Fig. 7.6. The main function contains calls
to functions add and square. Suppose that we want to compute the program points that are
affected by the local variable a (boxed in Fig. 7.6). The forward slice of the source code with
respect to a, highlighted in gray in Fig. 7.6, gets us the desired result. The machine-code
forward slice with respect to the analogous slicing criterion (boxed instruction in Fig. 7.7)
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includes the lines highlighted in gray in Fig. 7.7. One can see that the entire body of the
square function—which is completely irrelevant to the slicing criterion—is included in the
slice.

The imprecision creeps in at instruction 25 in Fig. 7.7. The QFBV formula for the
instruction is

〈〈push [ebp-20]〉〉≡ ESP ′ = ESP − 4 ∧ Mem ′ = Mem[ESP − 4 7→Mem(EBP − 20)].

The instruction stores the contents of the memory location whose address is EBP − 20 in a
new memory location, and updates the stack-pointer register ESP. The slice only requires
the microcode update that uses the location EBP − 20. However, because of the granularity
issue, the slice also includes the microcode update to ESP. Because all the downstream
instructions directly or transitively use ESP, the forward slice includes all the downstream
instructions.

In both examples, the root cause of the imprecision is the push instruction. (In our evalu-
ation, we found that the push instruction caused the second-highest amount of imprecision
in slices computed by CodeSurfer/x86—see Fig. 7.21.) In both examples, the imprecision
creeps in because the slice ends up including both microcode updates that are part of the
semantics of push, instead of including the only update that actually had to be included
in the slice. (In the backward-slicing example, only the update to the stack pointer ESP
actually had to be included in the slice; in the forward-slicing example, only the update to
a memory location actually had to be included in the slice.)

7.2.2 Improved Machine-Code Slicing in McSlice

Given the (i) instruction-level SDG of a binary, and (ii) the slicing criterion (SDG node to
slice from), McSlice uses the following steps to compute a more accurate slice:

1. McSlice converts the instruction-level SDG into a microcode-level SDG (µ-SDG): Mc-
Slice splits each SDG node containing a multi-assignment instruction into multiple
nodes, each containing a single microcode update, and recomputes data-dependence
edges between the newly created nodes. A µ-SDG is just a variant of an SDG in which
some instruction nodes are replaced by microcode nodes.

2. McSlice uses an existing interprocedural context-sensitive slicing algorithm [46, 71] to
compute the slice over the µ-SDG. The final slice includes only the microcode updates
that are relevant to the slicing criterion.
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Figure 7.8: SDG snippet illustrating the construction of µ-SDG.

3. McSlice uses an existing machine-code synthesizer [90] to reconstitute a machine-code
program from the microcode slice.

McSlice uses QFBV formulas as the explicit representation of microcode in SDG nodes.
We chose QFBV formulas to represent microcode because of the following reasons:

• QFBV provides a standard way of specifying microcode that is not tied to a specific
binary-analysis platform.

• Conversion of microcode specified in TSL, BIL, etc., to QFBV formulas is straightfor-
ward, and encoders that perform this conversion are readily available. Consequently,
it is straightforward to use our technique with any binary-analysis platform.

• The use of QFBV allows McSlice to be coupled with a machine-code synthesizer, which
synthesizes an instruction sequence from a QFBV formula. This approach allows
McSlice to reconstitute machine-code programs from microcode slices.

• Usage of QFBV allows McSlice to be extended in the future to use SMT-based tech-
niques for constructing more accurate SDGs.

This section illustrates the improved slicing algorithm on our two examples from §7.2.1.
We first use the program diff to illustrate improved backward slicing. Then we use the
program square to illustrate improved forward slicing.

To convert the given instruction-level SDG into a µ-SDG, McSlice first identifies nodes
with non-control-modifying multi-assignment instructions. Fig. 7.8(i) shows the SDG
snippet4 for the first few instructions in function main in the diff program, along with their
respective USE# and KILL# sets. Instruction 1 is a multi-assignment instruction with two
independent microcode updates. McSlice splits node 1 into two nodes 1_1 and 1_2, each
containing a single microcode update (Fig. 7.8(ii)). Initially, nodes 1_1 and 1_2 inherit the

4In Fig. 7.8 and the remaining SDGs and µ-SDGs in the paper, we label each node with its microcode. To
facilitate correspondence between SDGs/µ−SDGs and assembly listings, we also include the instruction
number in each node’s label. To reduce clutter, we do not show microcode nodes corresponding to flag
updates in µ-SDGs.
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Figure 7.9: SDG snippet illustrating the construction of µ-SDG.

USE# and KILL#sets, and the dependence edges of the parent node. McSlice then recomputes
the USE# and KILL# sets of each newly created node n by projecting n’s existing sets based
on the individual microcode update in n. McSlice then recomputes the data-dependence
edges based on the updated USE# and KILL# sets to create the final µ-SDG. (To recompute
data-dependence edges, McSlice performs reaching-definitions analysis, for which it also
uses the CFG built by CodeSurfer/x86 as an additional input—see §7.3.1.) The µ-SDG
snippet, along with the updated USE# and KILL# sets, is shown in Fig. 7.8(iii).

We illustrate McSlice’s µ-SDG construction algorithm on another SDG snippet. Fig. 7.9
(i) shows the SDG snippet for the instructions that were used to illustrate the granularity
issue for backward slicing in §7.2.1. Node 29 uses register ESP (defined by the instruction
in node 27) and the value in memory location EBP − 8 (defined by the instruction in node
28). Node 29 defines register ESP, which flows to the instruction in node 30 (and then
to the actual-in node ESP in), and a memory location, which flows to the actual-in node
Actual 1. McSlice splits node 29 into two nodes 29_1 and 29_2, computes the new USE#

and KILL# sets for 29_1 and 29_2, and recomputes the data-dependence edges. The final
µ-SDG snippet, along with the new USE# and KILL# sets, is shown in Fig. 7.9(ii).

McSlice computes the remainder of the µ-SDG in a similar manner, and the final µ-SDG
for the diff program is given as Fig. 7.10. (To reduce clutter in Fig. 7.10 and Fig. 7.12, some
intraprocedural control-dependence edges have been omitted. The omitted edges do not
cause additional nodes to be included in the slice.) McSlice now computes the backward
slice over the µ-SDG with node 35_1 as the slicing criterion. (Recall from §7.2.1 that we
are interested in the program points that might affect the return value of main, which is
available in the register EAX.) The nodes in the backward slice are highlighted in gray in
Fig. 7.10. Among the nodes included in the slice, nodes 22, 23, 33, 34, and 35_1 directly
affect the return value of main, and the remaining nodes set up the stack-pointer register
ESP and frame-pointer register EBP for downstream nodes. One can see that the slice
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Figure 7.10: Microcode slice over the µ-SDG for the diff program. The slicing criterion is node 35,
which is indicated by the dashed box.

computed by McSlice is more precise than the backward slice computed by CodeSurfer/x86
(cf. Fig. 7.5).

McSlice reconstitutes a machine-code program from the microcode slice by synthesiz-
ing machine-code instructions for each microcode node included in the slice. (If all the
microcode nodes corresponding to an old instruction node are included in the microcode
slice, McSlice simply reuses the instruction in the old node.) For synthesis purposes, McSlice
uses McSynth, a machine-code synthesizer that synthesizes machine-code instructions from
a QFBV formula. The machine-code program produced by McSlice from the microcode
slice in Fig. 7.10 is shown in Fig. 7.11. (To obtain executable code from a backward microcode
slice, McSlice performs a few additional steps—see §7.3.2.)
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add:
push ebp
mov ebp ,esp
leave
ret

square :
push ebp
mov ebp ,esp
leave
ret

main:
push ebp
mov ebp ,esp
lea esp,[esp-16]
mov [ebp -16] ,10
mov [ebp -12] ,20
lea esp,[esp-4]
lea esp,[esp-4]
call add

lea esp,[esp+8]
lea esp,[esp-4]
call square
mov eax ,[ebp -16]
mov ebx ,[ebp -12]
lea eax,[eax-ebx]
leave
ret

Figure 7.11: Code generated by McSlice from the microcode backward slice for diff. Highlighted
instructions are created by machine-code synthesis.

McSlice computes forward slices in a similar manner: McSlice converts the instruction-
level SDG into a µ-SDG, and uses an existing slicing algorithm to compute the forward slice.
For example, consider the square program from §7.2.1. The µ-SDG created by McSlice for
the program is given as Fig. 7.12. McSlice computes the forward slice over the µ-SDG with
node 22 as the slicing criterion. (Recall from §7.2.1 that we are interested in the program
points that might be affected by the local variable a in main.) The nodes in the forward
slice are highlighted in gray in Fig. 7.12. One can see that the slice computed by McSlice is
more precise than the forward slice computed by CodeSurfer/x86 (cf. Fig. 7.7).

7.3 Algorithm

In this section, we describe the slicing algorithm used in McSlice. First, we describe how
McSlice converts an instruction-level SDG into a µ-SDG on which slicing can be done (§7.3.1).
Then, we describe how McSlice reconstitutes an executable machine-code program from a
microcode slice (§7.3.2).

7.3.1 Construction of µ-SDG and Slicing

In this sub-section, we present the algorithm that McSlice uses to build a µ-SDG for mi-
crocode slicing. Apart from working with the SDG, the algorithms in this sub-section
also work with the CFGs of the procedures in the binary because the algorithm for µ-SDG
construction performs reaching-definitions analysis on the CFGs (described later in this
sub-section).

Before presenting the algorithm, we present a primitive called splitNode that splits a
node containing a multi-assignment instruction into multiple nodes, each of which contains
a single microcode assignment. For a given binary, splitNode takes as input a node m that
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Figure 7.12: Microcode slice over the µ-SDG for the square program. The slicing criterion is node
12, which is indicated by the dashed box.

contains a multi-assignment instruction, and the PDG5 and CFG of the procedure that
containsm. (We assume that the SDG and CFGs share a common set of instruction nodes.)
splitNode splits the instruction nodem into microcode nodes, updates the PDG and CFG,
and returns the updated PDG and CFG. splitnode effectively replaces an instruction node
with its microcode nodes in the PDG and CFG, and adds the required edges in the graphs.
In the PDG, this step results in more precise, finer-grained data dependences between
microcode nodes of different instructions.

To simplify matters, we restrict our presentation of splitNode to the case that arises in
the IA-32 instruction set, where the semantics of (most) instructions involves at most one

5We do not split actual-in/out nodes and formal-in/out nodes because they do not have multiple
assignments; we do not split call-expression nodes because they contain a control-modifying instruction.
Consequently, the effect of splitting an instruction node is localized to the procedure, and therefore, splitNode
does not need the entire SDG as input.
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Output: PDG, CFG,m
Input: Updated PDG, Updated CFG

1: conjuncts← GetConjuncts(m.microcode)
2: for each conjunct c ∈ conjuncts do
3: n← CreateNode( )
4: n.microcode← c

5: n.use← Project(n.microcode,m.use)
6: n.kill← Project(n.microcode,m.kill)
7: for each edge← 〈p,m, data〉 ∈ PDG.edges do
8: if p.kill ∩ n.use 6= ∅ then
9: PDG.edges← PDG.edges ∪ {〈p,n, data〉}

10: end if
11: end for
12: for each edge 〈m, s, data〉 ∈ PDG.edges do
13: if n.kill ∩ s.use 6= ∅ then
14: PDG.edges← PDG.edges ∪ {〈n, s, data〉}
15: end if
16: end for
17: for each edge 〈p,m, control〉 ∈ PDG.edges do
18: PDG.edges← PDG.edges ∪ {〈p,n, control〉}
19: end for
20: for each edge 〈m, s, control〉 ∈ PDG.edges do
21: PDG.edges← PDG.edges ∪ {〈n, s, control〉}
22: end for
23: for each edge 〈p,m〉 ∈ CFG.edges do
24: CFG.edges← CFG.edges ∪ {〈p,n〉}
25: end for
26: for each edge 〈m, s〉 ∈ CFG.edges do
27: CFG.edges← CFG.edges ∪ {〈n, s〉}
28: end for
29: end for
30: PDG.edges← PDG.edges −〈∗,m, ∗〉− 〈m, ∗, ∗〉
31: PDG.nodes← PDG.nodes − {m}

32: CFG.edges← CFG.edges − 〈∗,m〉 − 〈m, ∗〉
33: CFG.nodes← CFG.nodes − {m}

34: return 〈PDG, CFG〉
Algorithm 7.13: Algorithm SplitNode

memory access or update. Exceptions to this rule are x86 string instructions, which have
the rep prefix. In our implementation, splitNode does not attempt to split such instructions.

The algorithm for splitNode is given as Alg. 7.13. In Alg. 7.13, for a given node n,
n.microcode, n.use, and n.kill are the microcode, USE# set, and KILL# set, respectively,
associated with n; PDG.nodes and PDG.edges (CFG.nodes and CFG.edges) are the nodes
and edges in the input PDG (CFG). First, splitNode splits the microcode inm into individual
microcode assignments. Recall from §2.2 that the QFBV formula for an instruction’s
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Input: SDG, CFG set
Output: µ-SDG

1: for each 〈PDG, CFG〉 ∈ 〈SDG, CFG set〉 do
2: PDG← RemoveSummaryEdges(PDG)
3: for each nodem ∈ PDG do
4: if IsMultiUpdateNode(m) then
5: 〈PDG, CFG〉 ← splitNode(PDG, CFG,m)
6: end if
7: end for
8: RunReachingDefs(CFG)
9: for each node n ∈ PDG do

10: for each edge 〈p,n, data〉 ∈ PDG do
11: if p /∈ ReachingDefs(n) then
12: PDG.edges← PDG.edges − 〈p,n, data〉
13: end if
14: end for
15: end for
16: end for
17: SDG← RecomputeSummaryEdges(SDG)
18: return SDG

Algorithm 7.14: Algorithm for µ-SDG construction used in McSlice

microcode has the form shown in Eqn. (2.1). Each conjunct in Eqn. (2.1) is an individual
microcode assignment to a register, flag, or memory location. In Alg. 7.13, GetConjuncts
returns the set of conjuncts in a QFBV formula (Line 1). splitNode creates a new microcode
node for each conjunct using CreateNode (Line 3).

For each newly created node n, McSlice computes n.use (n.kill) by projecting m.use
(m.kill) with respect to the microcode assignment in n. For example, if n.microcode is
Mem ′ = Mem[ESP − 4 7→ EBP], and m.kill = {ESP, (AR_main, 0)} (node 1_2 in Fig. 7.8),
n.kill is {(AR_main, 0)}. Because the microcode in n can only kill a memory location, n.kill
gets only the memory a-locs from m.kill. In Alg. 7.13, Project performs this projection
operation (Lines 5 and 6).

For each microcode node n created from m, McSlice adds data-dependence edges
between n and the data-dependence predecessors and successors of m based on USE# and
KILL# sets (Lines 7–16). McSlice also adds control-dependence edges between n and the
control-dependence predecessors and successors ofm (Lines 17–22). In a similar manner,
n inherits the control-flow edges of m (Lines 23–29). Finally, McSlice removes m and its
edges from the PDG and CFG (Lines 30–33).

The algorithm used by McSlice for µ-SDG construction is given as Alg. 7.14. Alg. 7.14
takes as input the SDG and CFGs constructed by CodeSurfer/x86, and returns a µ-SDG.
For each PDG in the SDG, Alg. 7.14 first removes the summary edges from the PDG (via
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push 1
mov [esp ],2
mov eax ,[ esp]

Figure 7.15: Code snippet, and its corresponding SDG and µ-SDG snippets to illustrate removal of
data-dependence edges via reaching-definitions analysis.

RemoveSummaryEdges) because the existing summary edges in the SDG reflect imprecise
transitive dependences across procedure calls (Line 2). Alg. 7.14 uses IsMultiUpdateNode
to identify nodes that contain non-control-modifying, multi-assignment instructions. It
then splits each such instruction node into microcode nodes, and updates the PDG and
CFG via splitNode (Lines 3–7).

Sometimes, even after splitting instruction nodes via splitNode, the µ-SDG might still
have some imprecision that can be eliminated. Consider the code snippet given in Fig. 7.15,
and its corresponding SDG given in Fig. 7.15(i). After splitNode splits node 1, and recom-
putes data dependences, the µ-SDG obtained is given in Fig. 7.15(ii). On all program
paths, node 1_2 will always come before 2, and one can see that the data-dependence
edge from node 1_2 to node 3 can be eliminated. Reaching-definitions analysis tells us
that the definition of the memory a-loc in node 1_2 never reaches node 3, and thus the
data-dependence edge between the two nodes can be eliminated.

Alg. 7.14 performs intraprocedural reaching-definitions analysis on each CFG in the
binary via RunReachingDefs (Line 8). (For each call-site n that has actual-out nodes o1, o2,
… , om associated with it, RunReachingDefs uses the transformer

fn(S) = S− 〈∗, l1〉− 〈∗, l2〉− . . . − 〈∗, lm〉 ∪ {〈o1, l1〉, 〈o2, l2〉, . . . , 〈om, lm〉},

where l1, l2, … lm are the a-locs defined by the actual-out nodes o1, o2, … om, respectively.)
If there exists a data-dependence edge e between nodes p and n in the µ-SDG such that
no definition at p reaches n, Alg. 7.14 removes the edge e from the PDG (Lines 9–15). (In
Alg. 7.14, ReachingDefs returns the set of definitions that reach a node.)

At this point, we have a precise, fine-grained, microcode-level PDG for each procedure
in the binary. Alg. 7.14 uses an existing algorithm (Fig. 5 in [71]) to compute summary
edges for the SDG to capture context-sensitive transitive dependences across procedure
calls (Line 17 via RecomputeSummaryEdges), and returns the final SDG.

McSlice uses an existing context-sensitive interprocedural slicing algorithm (Fig. 9 in
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int g1, g2 ;
void foo(int a, int b) {

g1 = a ;
g2 = b ;

}

int main (){
int a = 10 , b = 20;
foo(a , b);
int c = 30, d = g1 ;
foo (c, d );
return g2 ;

}

Figure 7.16: Example program to illustrate the parameter-mismatch problem in slicing.

[46]) to compute a context-sensitive microcode slice over the computed µ-SDG.

7.3.2 Reconstituting an Executable Machine-Code Program

So far, we have described the algorithms used by McSlice to address the granularity issue,
and compute a context-sensitive, fine-grained slice. However, the result of a microcode
slice is at a lower level than machine code, and some clients of McSlice might require the
results to be reported as executable machine code. In this section, we describe how McSlice
reconstitutes an executable machine-code program from a microcode slice.

To create executable machine code, McSlice has to resolve three issues: (i) parameter
mismatches, (ii) allocation and de-allocation of activation records, and (iii) removal of
computations that manipulate uninitialized values. In particular, the latter two issues do
not arise in source-code executable slicing. In the remainder of this section, we describe
these issues in greater detail, and how McSlice resolves them.

Parameter mismatches [19, 46]. Although a backward microcode slice contains all pro-
gram points that might affect the slicing criterion, it might not be executable because of the
parameter-mismatch problem: a slice can include multiple calls to the same procedure, with
different subsets of actual parameters at different call-sites. However, the slice contains
the union of the corresponding formal-parameter sets, which causes a mismatch between
the actual parameters at a call-site and the procedure’s formal parameters [19, 46]. For
example, consider the program shown in Fig. 7.16. The slicing criterion is boxed in Fig. 7.16,
and the program points included in the slice are highlighted in light gray. On can see that
the slice includes only one of the two actual parameters at each call-site, but both formal
parameters in procedure foo.

To fix parameter mismatches, McSlice uses an existing algorithm for monovariant exe-
cutable slicing [19]. The algorithm fixes call-sites by conservatively including in the slice
additional actual parameters to match the formal parameters included in the slice. For
example, the additional program points included by the monovariant executable-slicing
algorithm are underlined in Fig. 7.16.
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add:
push ebp
mov ebp ,esp
leave
ret

square :
push ebp
mov ebp ,esp
leave
ret

main:
push ebp
mov ebp ,esp
sub esp ,16
mov [ebp -16] ,10
mov [ebp -12] ,20
push [ebp -12]
push [ebp -16]

call add
add esp ,8
push [ebp -8] *
call square
mov eax ,[ebp -16]
mov ebx ,[ebp -12]
sub eax ,ebx

Figure 7.17: Machine code generated from the microcode slice shown in Fig. 7.10 by a naïve method.

Note that the aforementioned monovariant executable-slicing algorithm is a suboptimal
way to fix parameter mismatches: the goal of slicing is to remove as many extraneous
program points as possible, but the monovariant executable-slicing algorithm re-introduces
removed program points to fix call-sites. Specialization slicing [12] is a polyvariant executable-
slicing algorithm that produces optimal executable slices by creating specialized copies of
procedures according to the sets of parameters included at various call-sites. One direction
for future work is to incorporate the specialization-slicing algorithm in McSlice to obtain
more precise executable machine code.

Allocation and de-allocation of activation records. To create executable machine-code,
activation records should be be correctly allocated and de-allocated in all procedures
included in the slice. McSlice includes in the slicing criterion the formal-outs corresponding
to the stack pointer ESP and frame pointer EBP of the main procedure so that all relevant
microcode that allocates and de-allocates activation records are included in the microcode
slice.

Removal of computations that manipulate uninitialized values. After fixing parameter
mismatches and including the relevant microcode that allocate and de-allocate activation
records in the microcode slice, the final step creating an executable machine-code program
is to generate machine code from the microcode slice. A naïve way to generate machine
code from a microcode slice is to add to the output machine-code program each instruction
for which any fragment of its microcode is included in the microcode slice. For example, if
we use this sub-optimal method to generate machine code from the microcode slice shown
in Fig. 7.10, we would obtain the machine-code program shown in Fig. 7.17. One can see
that the code in Fig. 7.17 performs computations on uninitialized values. For example, the
instruction marked by * in Fig. 7.17 pushes onto the stack the 32-bit value in the memory
location EBP − 8, which has not been initialized by upstream instructions.

Moreover, code that performs computations on uninitialized values in the executable
machine-code program can sometimes introduce exceptions that otherwise would never
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occur in the original program. Consider a program that contains the following instruction
sequence:
1: ...
2: mov eax, 10
3: mov edx, 0
4: mov ebx, 2
5: idiv ebx
6: ...
Suppose that EDX:EAX denotes the extended 64-bit register obtained from the 32-bit
registers EDX and EAX. The instruction sequence divides the contents of EDX:EAX (10) by
the contents of EBX (2), places the quotient (5) in EAX, remainder (0) in EDX, and affects
some flags. Suppose that a backward slice only requires the microcode that defines the
flags. McSlice will compute a precise slice that includes only the microcode that defines the
flags in instruction 5; instructions 2, 3, and 4 will not be included in the slice because the
microcode corresponding to the division“EDX:EAX / EBX” is not included in the slice.

In contrast, if McSlice were to emit the entire instruction 5, the output program might
look as follows:
1: ... // 2, 3, 4 not included
5: idiv ebx // EBX might be uninitialized here
...
When this program executes, if EBX contains 0 when the idiv instruction executes, then
the program fails with an exception, which does not match the behavior of the original
program. To avoid this issue, we want McSlice to generate code only for the microcode
included in the backward slice.

To reconstitute a machine-code program that does not contain computations that manip-
ulate uninitialized locations, McSlice uses machine-code synthesis. The algorithm used for
reconstitution in McSlice is given as Alg. 7.18. The input to Alg. 7.18 is a microcode slice s.
(Note that s does not have parameter mismatches, and all relevant microcode that allocate
and de-allocate activation records are included in s.) If all newly-created microcode nodes
of an instruction node m are included in the slice, McSlice simply generates back the in-
struction contained inm (Lines 5–7). (In Alg. 7.18, OldNode returns the original instruction
node corresponding to a microcode node; NewNodes returns the set of microcode nodes
that were created by splitting an original instruction node; m.instruction is the instruction
contained in the old instruction node m.) However, if only a subset of microcode nodes
created from m are included in the slice, then McSlice must generate an instruction (or
instruction sequence) that is equivalent to each included microcode node. For this purpose,
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Input: Microcode slice s
Output: Machine-code program s ′

1: s ′← ε

2: for each microcode node n ∈ s do
3: m← OldNode(n)
4: newNodes← NewNodes(m)
5: if newNodes ⊆ s then
6: s ′← AddToProgram(s ′,m.instruction)
7: s← s − newNodes
8: else
9: I←McSynth(n.microcode)

10: s ′← AddToProgram(s ′, I)
11: s← s− {n}

12: end if
13: end for
14: return s ′

Algorithm 7.18: Algorithm used by McSlice for generating machine code from a microcode slice

McSlice uses a machine-code synthesizer. For each microcode node n included in the slice,
McSlice supplies the microcode in n as input to the machine-code synthesizer McSynth
[90]. McSynth takes a QFBV formula as input, and synthesizes an instruction sequence that
is equivalent to the QFBV formula. McSlice inserts the synthesized instruction sequence
into the generated code (Lines 8–12). (In Alg. 7.18, McSynth invokes the synthesizer; we
assume that the procedure AddToProgram takes care of generating code in the correct order,
creating new procedures, etc.) Alg. 7.18 returns the final executable machine-code program
generated from the microcode slice.

For the microcode slice shown in Fig. 7.10, Alg. 7.18 produces the machine-code program
shown in Fig. 7.11.

7.4 Implementation
McSlice uses CodeSurfer/x86 [15] to obtain the SDG for a binary, and the USE#/KILL# sets
at each instruction.

McSlice uses Transformer Specification Language (TSL) [53] to obtain QFBV encodings
of instructions. We worked with a specification of the IA-32 instruction set that grouped
around 43,000 non-privileged, non-floating point, non-mmx instructions into 164 opcode
variants. (These opcode variants do not include the lock, rep, and repne prefixes.) McSlice
uses a concrete operational-semantics of these 164 opcode variants, written in TSL, which
provides McSlice with a microcode-level specification of each instruction that can be in-
stantiated from one of the 164 opcode variants (i.e., using different registers, addressing
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Table 7.19: Characteristics of applications in our test suite.

Appln. LOC No.
of in-
struc-
tions

No. of
nodes in
instruction-
level SDG

No.
of
nodes
in µ-
SDG

Backward-slicing crite-
rion

Forward-slicing criterion

wc 295 790 1105 2173 Actual twordct of call to
printf in main

Locals linect, wordct, and
charct in cnt

md5 331 821 2210 3410 Actual p of final call to
printf in main

Actual optarg of call to
MDString in main

write 332 957 1825 3191 Actuals of final call to
do_write in main

Local atime in main

uuencode 392 862 1069 1909 Actual output of call to
do_write in encode

Initialization of global mode
in main

cksum 505 815 1309 2377 Actual len in final call to
pcrc in main

Local lcrc in csum1

units 783 2119 6045 9519 Actuals of final call to
showanswer in main

Local linenum in
readunits

msgs 951 2270 4769 8566 Actual nextmsg of final call
to fprintf in main

Local blast in main

pr 2207 4005 8548 14746 Local pagecnt in vertcol Local eflag in setup

modes, etc.). The semantics written in TSL is reinterpreted to produce the QFBV formulas
for individual instructions [54]. McSlice’s slicing algorithm will split any instruction that
(i) belongs to one of the 164 opcode variants, (ii) performs a multi-assignment, and (iii)
does not modify control. (Instructions that assign to only a single register, flag, or memory
location do not need splitting.) Many of the opcode variants are rarely used by compilers,
and our benchmark suite of the binaries of 8 FreeBSD utilities compiled with gcc (Table
7.19) included instructions belonging to 35 out of the 164 opcode variants.

McSlice uses the machine-code synthesizer McSynth [90] parameterized for IA-32 to
synthesize instruction sequences from QFBV formulas of microcode included in the slice.

In CodeSurfer/x86, the abstract transformers for the analyses used to build an SDG
are obtained using TSL [53, §4.2]. In principle, if one were to replace the IA-32 semantics
written in TSL with the semantics of another ISA, one could instantiate McSlice’s toolchain
for the new ISA.

7.5 Experiments

We tested McSlice on binaries of open-source programs. Our experiments were designed to
answer the following questions:

• In comparison to CodeSurfer/x86, what is the reduction in slice size caused by
McSlice?
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Figure 7.20: Comparison of sizes of slices computed by CodeSurfer/x86 and McSlice (log-scale).

• What percentage of the slice computed by McSlice consists of entire instructions?
(And what percentage consists of microcode subsets?)

• Which kinds of instructions have only a subset of their microcode included in slices?

All experiments were run on a system with a quad-core, 3GHz Intel Xeon processor running
Windows 7, and 32 GB RAM; however, McSlice’s algorithm is single-threaded.

Our test suite consisted of IA-32 binaries of FreeBSD utilities [37]. Table 7.19 presents
the characteristics of the applications. For each application, we selected one slicing criterion
for a backward slice and one for a forward slice, respectively.

For backward slices, we selected as the slicing criterion one or more actual parameters
of the final call to an output procedure (e.g., printf, fwrite, or any user-defined output
procedure in the application). Only for pr did we deviate from this rule and instead chose
a variable that gets used toward the end of the application, but is not passed to an output
procedure as an actual parameter. Our rationale for choosing these slicing criteria was
that variables that are printed toward the end of the application are likely to be important
outputs computed by the application, and hence it would be interesting to see which
instructions affect these variables.

For forward slices, we selected variables or sets of variables that were initialized in the
beginning of the application.

To answer the first question, we computed the slices using CodeSurfer/x86 and McSlice.
CodeSurfer/x86 computes machine-code slices, but McSlice computes microcode slices.
To facilitate meaningful comparison between the two slice sizes, we report the number
of instructions in the binary for which any microcode fragment was included in the slice
computed by McSlice as the slice size for McSlice. The results are shown in Fig. 7.20. Note
that the y-axis uses a logarithmic scale. The average reduction in slice size, computed
as a geometric mean, is 33% for backward slices and 70% for forward slices. For the
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Figure 7.21: Split of partial and entire instructions in slices computed by McSlice.

forward slices of write and units, McSlice reduces the number of instructions in the slice
by over two orders of magnitude. The reduction in forward-slice sizes is more pronounced
because the number of downtream instructions affected by the imprecision-causing idioms
for forward slices (e.g., imprecision caused by instruction 25 in Fig. 7.7) is much higher
in practice than their upstream counterparts in backward slices. For msgs and pr, the
forward slice computed by McSlice contains many instructions because a procedure call
was control dependent on a node that was already in the slice. Because the call contains
push instructions, updates to the stack pointer were added to the slice because of the control
dependence, and consequently, downstream instructions that used the stack pointer were
added to the slice.

To answer the second and third questions, for each slice computed by McSlice, we
performed the following computation: for each instruction in the binary whose microcode
update was in the microcode slice, we checked if all microcode updates of that instruction
were present in the slice, or only a subset of microcode updates were present in the slice.
The former case means that the entire instruction is effectively included in the microcode
slice, and the latter case means that only a subset of the instruction’s semantics is included
in the slice. Fig. 7.21 shows the results. For backward slices 60% of the slice consisted
of entire instructions, and the remaining came from microcode subsets of instructions.
For forward slices, that number was 84%. (The average percentages were computed as
geometric means.) We also identified the top opcode variants that constitute the instructions
that were not included in their entirety in the backward and forward slices, respectively.
For forward slices, instructions belonging to only three opcode variants caused all the
imprecision in CodeSurfer/x86 slices. For the push opcode variant in the table in Fig. 7.21,
either the stack-pointer update or the memory update was excluded from the slice. For the
remaining opcode variants, a subset of flag updates was generally excluded from the slice.
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Table 7.22: Comparison of sizes of original binary and extracted component.

Application No. of instructions in binary No. of instructions in extracted
component

wc-lite 295 64
wc 790 242
cksum 815 338

7.5.1 Extracting Executable Components from Binaries

For two of our benchmark programs and an additional micro-benchmark program, the
backward slice computed by McSlice extracts a meaningful component. For these three
programs, we used Alg. 7.18 to reconstitute a machine-code program for the extracted
component, and generated an executable slice (§7.3.2). Table 7.22 presents the characteristics
of the applications used for component extraction. wc-lite is a scaled down version of
the wc utility.6 For wc-lite, we extracted a component that only counts lines in input files;
for wc, we extracted a component that only counts the words in input files; for cksum, we
extracted a component that only computes the length of the input file. Table 7.22 shows
the number of instructions in the original binary, and the number of instructions in the
extracted component. For all three programs, there were no parameter mismatches in the
slice, and so McSlice did not have to fix call-sites as described in §7.3.2.

7.6 Related Work

Slicing. The literature on program slicing is extensive [20, 58, 96]. Slicing has been—
and continues to be—applied to many software-engineering problems [45]. For instance,
recently there has been work on language-independent program slicing [21], which re-
peatedly creates potential slices through statement deletion, and tests the slices against
the original program for semantics preservation. Specialization slicing [12] uses automata-
theoretic techniques to produce specialized versions of procedures such that the output
slice is an optimal executable slice without any parameter mismatches between procedures
and call-sites.

The slicing techniques discussed in the literature use an SDG or a suitable IR whose
nodes typically contain a single update (and not a multi-assignment instruction). Conse-
quently, the granularity issue never arises. The ways in which the program-reconstitution
issue for machine-code slicing differs from creating executable source-code from source-
code slices have been discussed in §7.3.2.

6The source code for this micro-benchmark is given as Fig. 2 in [70].
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Applications of more precise machine-code slicing. WiPEr is a machine-code partial
evaluator [89] that specializes binaries with respect to certain static inputs. As a first
step to partial evaluation, WiPEr performs binding-time analysis (BTA) to determine which
instructions in the binary can be evaluated at specialization time. For BTA, WiPEr uses
CodeSurfer/x86’s forward slicing. To sidestep the granularity issue, WiPEr “decouples”
the multiple updates performed by instructions that update the stack pointer along with
another location (e.g., push, pop, leave, etc.). The ad hoc instruction-decoupling algorithm
used in WiPEr is a sub-optimal solution to address the granularity issue because multi-
assignment instructions that do not update the stack pointer also make the forward slice
imprecise. McSlice computes more accurate forward slices, and could be used in WiPEr’s
BTA to increase BTA precision.

Taint trackers [60, 79, 94] use dynamic analysis to check if tainted inputs from taint
sources could affect taint sinks. Certain taint trackers such as Minemu [22] rely entirely on
dynamic analysis to reduce taint-tracking overhead. McSlice could be used to exclude from
consideration portions of the binary that are not affected by taint sources, thereby further
reducing taint-tracking overhead.

Conseq [100] is a concurrency-bug detection tool, which uses machine-code slicing to
compute the set of critical reads that might affect a failure site. McSlice could be used to
compute more accurate backward slices, effectively reducing the number of critical reads
that needs to be analyzed by Conseq.
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8 Conclusion and Future Directions

This dissertation (i) introduced the problem of machine-code synthesis, (ii) outlined a
general framework for semantics-based binary rewriting via machine-code synthesis, (iii)
described a suite of approaches—ranging from pruning heuristics to machine learning—
that can be used to speed up machine-code synthesis, and (iv) presented two instantiations
of the binary-rewriting framework—a machine-code partial evaluator and a machine-code
slicer—that can be used to extract an executable component from a binary for purposes of
software reuse. This dissertation makes the following contributions that go beyond the
realms of binary analysis and rewriting:

1. We have proposed a divide-and-conquer approach to enumerative program synthesis
that facilitates breaking a larger synthesis task into a sequence of independent smaller
sub-tasks.

2. We have proposed lightweight pruning strategies that use abstractions/overapproxi-
mations of enumerated candidates to rapidly prune away useless candidates during
synthesis.

3. Our model-assisted synthesis algorithm is the first program-synthesis technique
to use models learned from both specifications and implementations to assist the
synthesis search.

4. We have shown, via program synthesis, how one can reconstitute a program that is
at a higher level from an intermediate representation (IR) that is at a lower level. (We
have demonstrated this synthesis-based approach to program reconstitution in the
context of partial evaluation and slicing.) This approach to program reconstitution
becomes particularly useful when translation from low-level IR fragments to high-
level code constructs is not straightforward, and the search space of high-level code
constructs is enormous.

5. We have proposed a symbolic approach to program specialization. This approach to
specialization becomes particularly useful when the specializer wants to treat certain
inputs as static inputs, but somehow suppress their residuation.
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In the remainder of this chapter, we present concluding remarks and future directions for
the algorithms and applications, respectively, described in this dissertation.

Algorithms for Machine-Code Synthesis

In Chapter 3, we presented a technique to synthesize a straight-line machine-code instruc-
tion sequence from a semantic specification of the desired behavior, given as a QFBV
formula. We presented McSynth, a tool that implements our technique. McSynth is pa-
rameterized by the ISA of the target instruction-sequence, and is easily adaptable to work
on other semantic representations, such as a Universal Assembly Language (UAL) [23].
McSynth is the first machine-code synthesizer that works on the integer subset of a full
ISA. A key challenge that McSynth has to address is the enormous size of the synthesis
search-space: ISAs like IA-32 have around 43,000 unique instruction schemas. To counter
the enormous search space, McSynth uses (i) a divide-and-conquer strategy to split the input
formula into several independent smaller sub-formulas, (ii) footprint-based search-space
pruning heuristics to prune away candidates during synthesis, and (iii) a novel instantiation
of the CEGIS framework as the core synthesis loop. Experiments with the IA-32 instruction
set showed that McSynth is 3 to 5 orders of magnitude faster than a baseline enumerative
synthesizer.

McSynth brought down synthesis time from days to minutes, but it was still not fast
enough: McSynth times out for several larger QFBV formulas; even for smaller formulas,
McSynth takes several minutes to find an implementation. This delay might not be tolerable
for a binary-rewriting client (e.g., a machine-code partial evaluator) that has to invoke
McSynth several times to rewrite an entire binary. In Chapter 4, we made several improve-
ments to the synthesis algorithm used in McSynth, and developed McSynth++ , which is an
improved version of McSynth. In addition to a novel bits-lost-based pruning heuristic, the
improvements incorporate a number of ideas known from the literature, which we adapted
in novel ways for the purpose of speeding up machine-code synthesis. Experiments for
IA-32 showed that the improvements enable synthesis of code for 12 out of 14 formulas on
which McSynth timed out, speeding up the synthesis time by at least 1981X, and for the
remaining formulas, speeds up synthesis by 3X.

In Chapter 5, we presented McSynth-ML, the first low-level-code synthesizer that uses
machine learning to assist synthesis. Instead of the linear search used by McSynth and
McSynth++, McSynth-ML uses a novel model-assisted best-first search as the core search
strategy. The cost heuristic for the best-first search comes from two models trained over
a huge corpus of specifications (QFBV formulas) and implementations (instruction se-
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quences). One model is an n-gram-based language model, which steers the search towards
common/useful instruction sequences. The other is a k-NN-regression model that cor-
relates features of implementations with features of specifications, and steers the search
towards instruction sequences that are highly likely to implement the input formula. Ex-
periments for IA-32 showed that the McSynth-ML enables synthesis of code for 6 out of 50
formulas on which McSynth++ timed out, speeding up the synthesis time by at least 549X,
and for the remaining formulas, speeds up synthesis by 4.55X.

Future Directions

One possible direction for future work would be to adapt the algorithms discussed in this
dissertation to synthesize non-straight-line, but non-looping programs. One approach
to loop-free code is to use the ite terms in the QFBV formula to create a loop-free CFG
skeleton, and then synthesize an appropriate instruction sequence for each basic block.

A second direction would be to investigate how program verifiers can be used in
conjunction with machine learning to assist program synthesizers. Research in program-
verification technology over the last two decades has resulted in a large collection of tools
and techniques for program verification. Using existing program-verification tools, one
could build a large corpus of properties and programs that satisfy/violate the properties.
Subsequently, the corpus can be used to build models that relate features of properties to
features of programs that satisfy/violate the properties. One can then use such models to
assist the search performed by an enumerative program synthesizer.

Applications

Our principal motivation for developing algorithms for machine-code synthesis was to
develop a general framework for semantics-based binary rewriting, and subsequently
instantiate the framework to create binary-rewriting tools. In this dissertation, we pre-
sented two instantiations of the framework: a novel machine-code partial evaluator, and
an improved machine-code slicer. We outlined a number of potential uses of the two tools,
and in particular, we showed how these tools can be used to either modify or extract an
executable component from a binary.

In Chapter 6, we presented an algorithm for machine-code partial evaluation, and WiPEr,
the first machine-code partial evaluator. WiPEr performs off-line partial evaluation of
binaries. WiPEr’s algorithm follows the classical two-phase approach of BTA followed by
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specialization. WiPEr’s specializer specializes an explicit representation of the semantics
of an instruction, and emits residual code via machine-code synthesis. Moreover, to
create code that allows the stack and heap to be at different positions at run-time than at
specialization-time, the specializer represents specialization-time addresses using symbolic
constants, and uses a symbolic state for specialization. WiPEr can be used to specialize
binaries with respect to commonly used inputs to produce faster binaries (e.g., a file-write
routine optimized for a certain file descriptor), as well as to extract an executable component
from a bloated binary (e.g., extract compress from the gzip binary).

Future directions in machine-code partial evaluation. One possible direction for future
work is to investigate polyvariant BTA via specialization slicing [12]. For every call to a proce-
dure P with a different combination of static and dynamic actual parameters, specialization
slicing can be used to produce a different binding-time annotation for P’s instructions. This
technique could increase the number of static instructions during specialization, leading
to residual code that is more specialized than the code currently residuated by WiPEr. A
second direction is to use liveness information to reduce the number of specialized copies
of a basic block produced by WiPEr. �

In Chapter 7, we introduced the granularity issue caused by using source-code slic-
ing algorithms on an instruction-level SDG, and showed how the issue can lead to very
imprecise machine-code slices. We presented a tool called McSlice that slices machine
code more accurately. To counter the granularity issue, McSlice performs slicing at the
microcode level, instead of the instruction level, and obtains a more precise microcode slice.
To reconstitute a machine-code program from a microcode slice, McSlice uses machine-code
synthesis. Experiments on IA-32 binaries of FreeBSD utilities showed that, in comparison
to slices computed by a state-of-the-art tool (CodeSurfer/x86), McSlice reduces the size of
backward slices by 33%, and forward slices by 70%. We also showed how the backward
executable-slicing functionality of McSlice can be used to extract executable components
from binaries (e.g., extract line count from the wc binary).

Future directions in machine-code slicing. The monovariant executable-slicing algo-
rithm used in McSlice is a suboptimal way to fix parameter mismatches: the goal of slic-
ing is to remove as many extraneous program points as possible, but the monovariant
executable-slicing algorithm re-introduces removed program points to fix call-sites. Spe-
cialization slicing [12] is a polyvariant executable-slicing algorithm that produces optimal
executable slices by creating specialized copies of procedures according to the sets of
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parameters included at various call-sites. One direction for future work is to incorporate
the specialization-slicing algorithm in McSlice to obtain more precise executable machine
code. �

Future Directions

Approximate computing is a promising approach that trades quality of result for energy
efficiency [34, 62, 75]. Research in approximate computing has led to the development
of microarchitectures and high-level languages that support approximation. However,
there are no tools that can port existing binaries that run on deterministic hardware to
approximate hardware. A key property that such a tool has to enforce is that values
computed by approximate instructions should never affect deterministic instructions. One
possible direction for future work is to borrow the ideas explored by this dissertation on
machine-code slicing and partial evaluation, and use them in conjunction with machine-
code synthesis to develop a tool that can translate deterministic binaries into approximate
ones.
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A Appendix
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Theorem 6.22. Suppose that B is PE2-safe. Also suppose that ηS is an environment such that
there are no overlaps among (a) any of the chunks in Dom(ηS), (b) the chunk in which the residual
code produced by WiPEr is loaded, and (c) any of the chunks allocated during the execution of the
residual code. For all σ = (ηS, ρS,ηD, ρD) such that [[B]](ηS, ρS,ηD, ρD) terminates, suppose that
[[B]](ηS, ρS,ηD, ρD) = (η ′

S, ρ ′
S,η ′

D, ρ ′
D).

If ρsym
S is a symbolic store such that [[ρ

sym
S ]](ηS) = ρS, then [[WiPEr(B, ρsym

S ))]](ηS,ηD, ρD) =

(η ′
S,η ′

D, ρ ′
D), where ρ ′

D ≈ ρ ′
D.

Proof. We prove Thm. 6.22 for binaries whose instructions come from a small instruction
set, TinyIA32. TinyIA32 consists of a small subset of the IA-32 instruction set, augmented
with (i) an extra register, and (ii) two new instructions. We decided to exclude instructions
related to branches and function calls from TinyIA32 because if we were to prove Thm.
6.22 for the entire IA-32 ISA, the part of the proof concerning branches and function calls
would be similar to that of an analogous proof for a source-code partial evaluator. We
prove Thm. 6.22 using induction on the length of the trace of a run of the binary, and it
is straightforward to extend our trace-based proof to an ISA that includes branches and
function calls.

TinyIA32 has three registers, no flags, and seven instructions. The abstract syntax of
TinyIA32 is defined in Fig. A.1. In an indirect operand, the register holds the address of
the memory location. For instructions with two operands, the operand on the left is the
destination operand. For the stackalloc instruction, the single operand is the destination
operand. For the heapalloc instruction, the single operand is both a source and destination
operand.

The register rw1 is a work register that is used for holding the results of intermediate
calculations in residual code. A work register is used to simulate the fact that the real WiPEr
uses dead registers as scratch registers for such calculations. In the rest of this section,
we do not show the work register in TinyIA32 stores. Also, if a register is not used in a
TinyIA32 binary, it has the default value 0.

The first mov instruction loads a 32-bit constant into a register. The second mov instruction
performs a register-to-register move. The final two mov instructions move a 32-bit value
from a memory location to a register and from a register to a memory location, respectively.
The add instruction adds the 32-bit values in the two register operands, leaving the result in
the destination-operand register. The stackalloc(R) instruction allocates a stack of some
fixed, but arbitrarily large, size, whose starting address is available as an output in R. The
heapalloc(R) instruction allocates a heap block whose size is provided as an input in R,
and whose starting address is returned in R as the output. Because TinyIA32 has no flags,
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INT ::= {..., -1, 0, 1, ...} Reg ::= r1 | r2 | rw1
R ::= Direct(Reg) C ::= Imm(INT) M ::= Indirect(R)

I ::= mov(R, C) | mov(R1, R2) | mov(R, M) | mov(M, R) |
add(R1, R2) | stackalloc(R) | heapalloc(R)

Figure A.1: Abstract syntax of TinyIA32.

a TinyIA32 store consists of only a register map and a memory map.
We prove Thm. 6.22 by induction on the length n of a partial trace T of a run of binary

B.

Base Case n = 0

Thm. 6.22 trivially holds on a partial trace with no instructions.

Induction Hypothesis

Let us assume that Thm. 6.22 holds on a partial trace T ≡ I1, I2, . . . , In with n instructions.
Suppose that the corresponding residual trace produced by WiPEr for T is T ′ ≡ J1, J2, . . . , Jn,
where Ji is the residual instruction sequence produced by the Specialize phase of WiPEr
for Ii. (Note that Ji can be an empty sequence of instructions or can consist of several
instructions.) Suppose that the initial state is (ηS, ρS,ηD, ρD). (Recall from §6.2 that ηmaps
a symbolic constant denoting the starting address of the stack or a heap block to a concrete
address.) As the induction hypothesis, we assume the following:

[[I1, I2, . . . , In]](ηS, ρS,ηD, ρD) = (ηnS , ρnS ,ηnD, ρnD)
∧ [[J1, J2, . . . , Jn]](ηS,ηD, ρD) = (ηnS ,ηnD, ρnD)
∧ ρnD ≈ ρnD

(A.1)

To account for the actions of WiPEr on static and lifted instructions, we need to introduce
yet one more ghost variable, ghostStaticStore (gSS). At each point k in the trace T ′, this
variable holds the static symbolic store that was used by WiPEr to create the next residual
instruction-sequence in T ′, i.e., Jk+1 = Specialize(Ik+1, gSSk).

We strengthen the induction hypothesis with the following conjunct:

[[gSSn]]ηnS = ρnS , (A.2)

where the left-hand side denotes the simplification of each symbolic expression in gSS
with respect to the values obtained from ηnS . Because gSS0 is ρsym

S , by the hypothesis
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[[ρ
sym
S ]](ηS) = ρS in Thm. 6.22, we have [[gSS0]](ηS) = ρS, and thus Eqn. (A.2) holds for the

base case.

Induction Step

We now prove Thm. 6.22 on a partial trace I1, I2, . . . , In+1 with n+ 1 instructions. That is,
the goal is to show

[[I1, I2, . . . , In+1]](ηS, ρS,ηD, ρD) = (ηn+1
S , ρn+1

S ,ηn+1
D , ρn+1

D )

∧ [[J1, J2, . . . , Jn+1]](ηS,ηD, ρD) = (ηn+1
S ,ηn+1

D , ρn+1
D )

∧ ρn+1
D ≈ ρn+1

D

(A.3)

∧ [[gSSn+1]]ηn+1
S = ρn+1

S . (A.4)

Some additional intuition about the induction hypothesis can be obtained from the follow-
ing more precise restatement of reparenthesization (6.5):

l : (ηS, ρS,ηD, ρD) −→ (l, gSS) : (ηS,ηD, ρD),

where ρS = [[gSS]]ηS.
There are three subcases, for In+1 being static, lifted, or dynamic.

Static instructions. Because static-allocation sites are lifted—see line [10] of Alg. 6.11—a
static instruction cannot have the form stackalloc(R) or heapalloc(R). The argument for
each of the static-instruction cases for In+1 has the following form: Suppose that instruction
In+1 is static. Then

[[In+1]](η
n
S , ρnS ,ηnD, ρnD) = (ηnS , ρn+1

S ,ηnD, ρnD), (A.5)

where some update is made to ρnS to create ρn+1
S .

Specialize(In+1, gSSn) ≡ Jn+1 = ε,

where ε denotes the empty sequence of instructions. Because Jn+1 is empty, we have

[[Jn+1]](η
n
S ,ηnD, ρnD) = (ηnS ,ηnD, ρnD). (A.6)

Eqns. (A.5) and (A.6), together with Eqn. (A.1), show that Eqn. (A.3) holds.
The congruence property of BTA ensures that WiPEr can completely evaluate In+1 at

specialization time, and gSSn is updated by WiPEr to produce gSSn+1 in the same way as
ρnS is updated by [[In+1]] to produce ρn+1

S . Moreover, because ηnS is not updated by [[In+1]], by
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Eqn. (A.2) we have [[gSSn+1]]ηnS = ρn+1
S , and Eqn. (A.4) holds. Consequently, the induction

hypothesis holds on a trace with n+ 1 instructions, where the (n+ 1)st instruction is static.

Lifted and dynamic instructions. We now make an observation that is relied on in many
of the cases—namely, because static-allocation sites are lifted, if instruction Ii in T is an
allocation instruction, then Ji in T ′ also contains an allocation instruction, i.e., the allocations
in the two traces are in lock-step. For purposes of the proof, we can assume that B and
WiPEr(B, ρsym

S ) are run in environments that will perform storage allocation in the same
way. Consequently, if Ii allocates the stack or a heap blockM at addressm, an instruction
in Ji also allocatesM atm. In the respective semantics, such allocations will be recorded by
updating η to η[m 7→ m], where m is a symbolic constant that denotes the starting address
of M. (Lifted allocation instructions update ηS and ηD; dynamic allocation instructions
update ηD.)

Dynamic Instructions: The argument for each of the dynamic-instruction cases for In+1,
except stackalloc and heapalloc, has the following form: Suppose that instruction In+1

is dynamic. Then
[[In+1]](η

n
S , ρnS ,ηnD, ρnD) = (ηnS , ρnS ,ηnD, ρn+1

D ), (A.7)

where some update is made to ρnD to create ρn+1
D .

Specialize(In+1, gSSn) ≡ Jn+1 = In+1

Because Jn+1 is the same as In+1, we have

[[Jn+1]](η
n
S ,ηnD, ρnD) = (ηnS ,ηnD, ρn+1

D ), (A.8)

where, ρn+1
D ≈ ρn+1

D . Eqns. (A.7) and (A.8), together with Eqn. (A.1), show that Eqn. (A.3)
holds.

The static components of the state, ηnS , gSSn, and ρnS , are left unchanged, so Eqn. (A.4)
holds.

The cases for stackalloc and heapalloc are similar, except that those instructions
update ηnD in addition to ρnD. Moreover, because of our assumption about the storage
allocator, the updates to ηnD by [[In+1]] and [[Jn+1]] are identical, and the updates to ρnD by
[[In+1]] and [[Jn+1]] are also identical. Consequently, the induction hypothesis holds on a
trace with n+ 1 instructions, where the (n+ 1)st instruction is dynamic.

Lifted instructions: The semantics we use for evaluating static and dynamic instructions
is fairly standard—-static instructions access and update ρS, and dynamic instructions
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access and update ρD (in addition to updating ηD). However, the evaluation of lifted
instructions is non-standard: lifted instructions were originally classified static, so they
must be evaluated just like static instructions; however, they also take “snapshots" of
the current static state and dump them into ηD and ρD for use by downstream dynamic
instructions.

Lifted instructions access ρS, but produce values that might be consumed by dynamic
successors, so they must update ρD. In addition, lifted instructions can also have static
successors, so they must also update ρS. Thus, in the semantics used for the original
program, a lifted instruction performs the same update on both ρS and ρD. In the semantics
used for the residual program, it updates only ρD because ρS is not present in states.
However, for the purposes of this proof, an appropriate update is performed on gSS.

Similarly, if a lifted instruction allocates memory, both static and dynamic instructions
downstream might access or update locations in the allocated memory. Thus in both
semantics, if a lifted instruction allocates memory, it performs identical updates on ηS and
ηD.

The non-overlap hypothesis of Thm. 6.22, together with property P2 of PE2-safety, imply
that each specialization-time address can be represented canonically by a term of the form
m + c, where m is the symbolic constant that denotes the starting addressm of the stack or
a heap blockM, and c is a constant offset.

The actual symbolic constants used are essentially arbitrary (as long as each new sym-
bolic constant is fresh). However, for the purposes of the proof, we need to relate the
symbolic constants used by the original program to those in the residual program. Thus,
for the purposes of the proof, we assume that when WiPEr partially evaluates a lifted
instruction Ii in T that allocates memory, the symbolic constant m that should be used
in gSS to denote the starting address of the allocated stack or heap block is supplied by
an oracle. This oracle ensures that the same symbolic constant m gets added to the ghost
variables ηS and ηD when Ii and the allocation instruction in Ji are evaluated. (If the oracle
did not ensure this concordance, we cannot establish the equality in Eqn. (A.2).) WiPEr
binds m to a dedicated global address M-addr, and uses M-addr in the residual code to
save the concrete starting address m of the allocated memory. (M-addr is located in the
special area in the memory map of the residual program discussed in §6.3.4. Recall from
the discussion of the PE2 specializer in §6.3.2 that WiPEr uses a memory-layout map µ to
bind a symbolic constant to a dedicated location.)

We handle the lifted-instruction cases according to the form of the instruction. In the
cases below, we abbreviate an update to the register map as ρ[R1 7→ v] rather than let
〈rm, mm〉 = ρ in 〈rm[R1 7→ v], mm〉, and similarly use ρ[a 7→ v], to denote an update to the
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memory map at address a. Which kind of map-update operation is intended should be
clear from context.

1. In+1 = mov (Direct(R1), Imm(v)):

[[In+1]](η
n
S , ρnS ,ηnD, ρnD) = (ηnS , ρnS [R1 7→ v],ηnD, ρnD[R1 7→ v]) (A.9)

Specialize(In+1, gSSn) ≡ Jn+1 = mov r1,v

[[Jn+1]](η
n
S ,ηnD, ρnD) = (ηnS ,ηnD, ρnD[R1 7→ v]) (A.10)

Eqns. (A.9), (A.10), and (A.1) show that Eqn. (A.3) holds.

gSSn+1 = gSSn[R1 7→ v] (A.11)

ηn+1
S = ηnS and ρn+1

S = ρnS [R1 7→ v] (From (A.9)) (A.12)

Eqns. (A.11), (A.12), and (A.2) show that Eqn. (A.4) holds.

2. In+1 = mov (Direct(R1), Direct(R2)): There are two cases that can arise.

(a) Suppose that ρnS (R2) = u and gSSn(R2) = v.

[[In+1]](η
n
S , ρnS ,ηnD, ρnD) = (ηnS , ρnS [R1 7→ u],ηnD, ρnD[R1 7→ u]) (A.13)

specialize(In+1, gSSn) ≡ Jn+1 = mov r1,v

[[Jn+1]](η
n
S ,ηnD, ρnD) = (ηnS ,ηnD, ρnD[R1 7→ v]) (A.14)

u = ρnS (R2) = ([[gSSn]]ηnS )(R2) (By Eqn. (A.2))

= ([[gSSn(R2)]]ηnS ) = [[v]]ηnS = v (A.15)

Eqns. (A.13)–(A.15), and (A.1) show that Eqn. (A.3) holds.

gSSn+1 = gSSn[R1 7→ v] (A.16)

ηn+1
S =ηnS and ρn+1

S =ρnS [R1 7→u] (From (A.13) (A.17)

Eqns. (A.15)–(A.17), and (A.2) show that Eqn. (A.4) holds.
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(b) Suppose that ρnS (R2) = u and gSSn(R2) = m + c.

specialize(In+1, gSSn)≡ Jn+1=mov rw1,M-addr; mov r1,[rw1]; mov rw1,c;

add r1,rw1;mov rw1,0

[[Jn+1]](η
n
S ,ηnD, ρnD)=(ηnS ,ηnD, ρnD[R1 7→m+c]) (A.18)

u = ρnS (R2) = ([[gSSn]]ηnS )(R2) (By Eqn. (A.2))

= ([[gSSn(R2)]]ηnS ) = [[m + c]]ηnS = m+ c (A.19)

Eqns. (A.13), (A.18), (A.19), and (A.1) show that Eqn. (A.3) holds.

gSSn+1 = gSSn[R1 7→ m + c] (A.20)

ηn+1
S =ηnS and ρn+1

S =ρnS [R1 7→u] (From (A.13)) (A.21)

Eqns. (A.19)–(A.21), and (A.2) show that Eqn. (A.4) holds. Note that Jn+1 has the mov
rw1,0 instruction at the end of the residual code to restore the default value 0 in work
register rw1.

3. In+1 = mov (Direct(R1), Indirect(R2)): Because R2 must hold an address, there are
two cases that can arise.

(a) Suppose that ρnS (R2) = a and ρnS (a) = u, and gSSn(R2) = m + c and gSSn(m + c) = v.

[[In+1]](η
n
S , ρnS ,ηnD, ρnD) = (ηnS , ρnS [R1 7→ u],ηnD, ρnD[R1 7→ u]) (A.22)

specialize(In+1, gSSn) ≡ Jn+1 = mov r1,v

[[Jn+1]](η
n
S ,ηnD, ρnD) = (ηnS ,ηnD, ρnD[R1 7→ v]) (A.23)

u = ρnS (a) = ρ
n
S (ρ

n
S (R2))

= ρnS (([[gSSn]]ηnS )(R2)) (By Eqn. (A.2))

= ρnS ([[gSSn(R2)]]ηnS ) = ρnS ([[m + c]]ηnS )

= ([[gSSn]]ηnS )([[m + c]]ηnS ) (By Eqn. (A.2))

= ([[gSSn(m + c)]]ηnS ) = [[v]]ηnS = v (A.24)

Eqns. (A.22)–(A.24), and (A.1) show that Eqn. (A.3) holds.

gSSn+1 = gSSn[R1 7→ v] (A.25)

ηn+1
S =ηnS and ρn+1

S =ρnS [R1 7→u] (From (A.22) (A.26)
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Eqns. (A.24)–(A.26), and (A.2) show that Eqn. (A.4) holds.

(b) Suppose that ρnS (R2) = a and ρnS (a) = u, and gSSn(R2) = m1 +c1 and gSSn(m1 +c1) =

m + c.

specialize(In+1, gSSn)≡ Jn+1=mov rw1,M-addr; mov r1,[rw1]; mov rw1,c;

add r1,rw1; mov rw1,0

[[Jn+1]](η
n
S ,ηnD, ρnD)=(ηnS ,ηnD, ρnD[R1 7→m+c]) (A.27)

u = ρnS (a) = ρ
n
S (ρ

n
S (R2))

= ρnS (([[gSSn]]ηnS )(R2)) (By Eqn. (A.2))

= ρnS ([[gSSn(R2)]]ηnS ) = ρnS ([[m1 + c1]]η
n
S )

= ([[gSSn]]ηnS )([[m1 + c1]]η
n
S ) (By Eqn. (A.2))

= ([[gSSn(m1 + c1)]]η
n
S ) = [[m + c]]ηnS = m+ c (A.28)

Eqns. (A.22), (A.27), (A.28), and (A.1) show that Eqn. (A.3) holds.

gSSn+1 = gSSn[R1 7→ m + c] (A.29)

ηn+1
S =ηnS and ρn+1

S =ρnS [R1 7→u] (From (A.22)) (A.30)

Eqns. (A.28)–(A.30), and (A.2) show that Eqn. (A.4) holds.

4. In+1 = mov (Indirect(R1), Direct(R2)): Because R1 must hold an address, there are
two cases that can arise.

(a) Suppose that ρnS (R1) = a and ρnS (R2) = u, and gSSn(R1) = m + c and gSSn(R2) = v.

[[In+1]](η
n
S , ρnS ,ηnD, ρnD) = (ηnS , ρnS [a 7→ u],ηnD, ρnD[a 7→ u]) (A.31)

Specialize(In+1, gSSn) ≡ Jn+1 = mov rw1,M-addr; mov r1,[rw1]; mov rw1,c;

add r1,rw1; mov [r1],v; mov rw1,0

[[Jn+1]](η
n
S ,ηnD, ρnD)=(ηnS ,ηnD, ρnD[m+c 7→v]) (A.32)

Similar to the proof of Eqn. (A.15), we can prove that u = v. Similar to the proof of
Eqn. (A.19), we can prove that a = m+ c. These equalities, together with Eqns. (A.31),
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(A.32), and (A.1), show that Eqn. (A.3) holds.

gSSn+1 = gSSn[m + c 7→ v] (A.33)

ηn+1
S =ηnS and ρn+1

S =ρnS [a 7→u] (From (A.31)) (A.34)

The equalities u = v and a = m + c, along with Eqns. (A.33), (A.34), and Eqn. (A.2),
show that Eqn. (A.4) holds.

(b) Suppose that ρnS (R1) = a and ρnS (R2) = u, and gSSn(R1) = m1 + c1 and gSSn(R2) =
m2 + c2.

Specialize(In+1, gSSn)≡ Jn+1=mov rw1,M1-addr; mov r1,[rw1]; mov rw1,c1;

add r1,rw1; mov rw1,M2-addr; mov r2,[rw1]; mov rw1,c2; add r2,rw1;

mov [r1],r2; mov rw1,0

[[Jn+1]](η
n
S ,ηnD, ρnD)=(ηnS ,ηnD, ρnD[m1+c1 7→m2+c2]) (A.35)

Similar to the proof of Eqn. (A.19), we can prove that a = m1 + c1 and u = m2 + c2.
These equalities, together with Eqns. (A.31), (A.35), and (A.1), show that Eqn. (A.3)
holds.

gSSn+1 = gSSn[m1 + c1 7→ m2 + c2] (A.36)

ηn+1
S =ηnS and ρn+1

S =ρnS [a 7→u] (By Eqn. (A.31)) (A.37)

The equalities a = m1 + c1 and u = m2 + c2, along with Eqns. (A.36), (A.37), and
Eqn. (A.2), show that Eqn. (A.4) holds.

5. In+1 = add (Direct(R1), Direct(R2)) There are two cases that can arise.
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(a) Suppose that ρnS (R1) + ρnS (R2) = u, and gSSn(R1) + gSSn(R2) = v.

[[In+1]](η
n
S , ρnS ,ηnD, ρnD) = (ηnS , ρnS [R1 7→ u],ηnD, ρnD[R1 7→ u]) (A.38)

specialize(In+1, gSSn) ≡ Jn+1 = mov r1,v

[[Jn+1]](η
n
S ,ηnD, ρnD) = (ηnS ,ηnD, ρnD[R1 7→ v]) (A.39)

u = ρnS (R1) + ρnS (R2) =

= ([[gSSn]]ηnS )(R1) + ([[gSSn]]ηnS )(R2) (By Eqn. (A.2))

= ([[gSSn(R1)]]ηnS ) + ([[gSSn(R2)]]ηnS )

= ([[gSSn(R1) + gSSn(R2)]]ηnS ) = [[v]]ηnS = v (A.40)

Eqns. (A.38)–(A.40), and (A.1) show that Eqn. (A.3) holds.

gSSn+1 = gSSn[R1 7→ v] (A.41)

ηn+1
S =ηnS and ρn+1

S =ρnS [R1 7→u] (From (A.38) (A.42)

Eqns. (A.40)–(A.42), and (A.2) show that Eqn. (A.4) holds.

(b) Suppose that ρnS (R1) + ρnS (R2) = u, and gSSn(R1) + gSSn(R2) = m + c.

specialize(In+1, gSSn)≡ Jn+1=mov rw1,M-addr; mov r1,[rw1]; mov rw1,c;

add r1,rw1; mov rw1,0

[[Jn+1]](η
n
S ,ηnD, ρnD) = (ηnS ,ηnD, ρnD[R1 7→ m+ c]) (A.43)

u = ρnS (R1) + ρnS (R2) =

= ([[gSSn]]ηnS )(R1) + ([[gSSn]]ηnS )(R2) (By Eqn. (A.2))

= ([[gSSn(R1)]]ηnS ) + ([[gSSn(R2)]]ηnS )

= ([[gSSn(R1) + gSSn(R2)]]ηnS )

= [[m + c]]ηnS = m+ c (A.44)

Eqns. (A.38), (A.43), (A.44), and (A.1) show that Eqn. (A.3) holds.

gSSn+1 = gSSn[R1 7→ m + c] (A.45)

ηn+1
S =ηnS and ρn+1

S =ρnS [R1 7→u] (From (A.38) (A.46)

Eqns. (A.44)–(A.46), and (A.2) show that Eqn. (A.4) holds.
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6. In+1 = stackalloc (Direct(R1))

[[In+1]](η
n
S , ρnS ,ηnD, ρnD) = (ηnS [m 7→ m], ρnS [R1 7→ m],ηnD[m 7→ m], ρnD[R1 7→ m]) (A.47)

Specialize(In+1, gSSn) ≡ Jn+1 = stackalloc r1; mov rw1,M-addr;

mov [rw1],r1; mov rw1,0

[[Jn+1]](η
n
S ,ηnD, ρnD) = (ηnS [m 7→ m],ηnD[m 7→ m], ρnD[R1 7→ m][M-addr 7→ m]) (A.48)

ρn+1
D ≈ ρn+1

D because M-addr is in the special area of the memory map of the residual binary.
This observation, along with Eqns. (A.47), (A.48), and (A.1), show that Eqn. (A.3) holds.

gSSn+1 = gSSn[R1 7→ m] (A.49)

ηn+1
S = ηnS [m 7→ m] and ρn+1

S = ρnS [R1 7→ m]

(By Eqn. (A.47)) (A.50)

Note that the oracle supplies the correct m while updating gSS, and WiPEr uses m to obtain
the correct M-addr to use in the residual code. Eqns. (A.49), (A.50), and (A.2) show that
Eqn. (A.4) holds.

7. In+1 = heapalloc (Direct(R1))

[[In+1]](η
n
S , ρnS ,ηnD, ρnD) = (ηnS [m 7→ m], ρnS [R1 7→ m],ηnD[m 7→ m], ρnD[R1 7→ m]) (A.51)

Specialize(In+1, gSSn) ≡ Jn+1 = heapalloc r1; mov rw1,M-addr;

mov [rw1],r1; mov rw1,0

[[Jn+1]](η
n
S ,ηnD, ρnD) = (ηnS [m 7→ m],ηnD[m 7→ m], ρnD[R1 7→ m][M-addr 7→ m]) (A.52)

ρn+1
D ≈ ρn+1

D because M-addr is in the special area of the memory map of the residual binary.
This observation, along with Eqns. (A.51), (A.52), and (A.1), show that Eqn. (A.3) holds.

gSSn+1 = gSSn[R1 7→ m] (A.53)

ηn+1
S = ηnS [m 7→ m] and ρn+1

S = ρnS [R1 7→ m]

(By Eqn. (A.51)) (A.54)

Note that the oracle supplies the correct m while updating gSS, and WiPEr uses m to obtain
the correct M-addr to use in the residual code. Eqns. (A.53), (A.54), and (A.2) show that
Eqn. (A.4) holds.
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