
Newtonian Program Analysis via Tensor Product

THOMAS REPS, University of Wisconsin and GrammaTech, Inc.
EMMA TURETSKY, University of Wisconsin
PRATHMESH PRABHU, Google, Inc.

Recently, Esparza et al. generalized Newton’s method—a numerical-analysis algorithm for finding
roots of real-valued functions—to a method for finding fixed-points of systems of equations over
semirings. Their method provides a new way to solve interprocedural dataflow-analysis problems.
As in its real-valued counterpart, each iteration of their method solves a simpler “linearized”
problem.

One of the reasons this advance is exciting is that some numerical analysts have claimed that
“ ‘all’ effective and fast iterative [numerical] methods are forms (perhaps very disguised) of New-
ton’s method.” However, there is an important difference between the dataflow-analysis and
numerical-analysis contexts: when Newton’s method is used on numerical-analysis problems, mul-
tiplicative commutativity is relied on to rearrange expressions of the form “c ∗ X + X ∗ d” into
“(c + d) ∗ X.” Such equations correspond to path problems described by regular languages. In
contrast, when Newton’s method is used for interprocedural dataflow analysis, the “multiplication”
operation involves function composition, and hence is non-commutative: “c ∗X +X ∗ d” cannot
be rearranged into “(c+ d) ∗X.” Such equations correspond to path problems described by linear
context-free languages (LCFLs).

In this paper, we present an improved technique for solving the LCFL sub-problems produced
during successive rounds of Newton’s method. Our method applies to predicate abstraction, on
which most of today’s software model checkers rely.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifi-
cation—formal methods; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—program analysis; F.4.2 [Mathematical Logic and Formal Lan-
guages]: Grammars and Other Rewriting Systems—grammar types; F.4.3 [Mathematical Logic
and Formal Languages]: Formal Languages—algebraic language theory

General Terms: Algorithms, Languages, Theory, Verification
Additional Key Words and Phrases: Newton’s method, polynomial fixed-point equation, interpro-
cedural program analysis, semiring, regular expression, tensor product

E. Turetsky is currently affiliated with GrammaTech, Inc.
Portions of this work appeared in the 2016 ACM SIGPLAN-SIGACT Symposium on Principles
of Program Analysis [Reps et al. 2016].
This work was supported in part by a gift from Rajiv and Ritu Batra; by NSF under grant CCF-
0904371; by ONR under grants N00014-{09-1-0510, 11-C-0447}; by DARPA under cooperative
agreement HR0011-12-2-0012; by ARL under grant W911NF-09-1-0413; by AFRL under grant
FA9550-09-1-0279, DARPA CRASH award FA8650-10-C-7088, DARPA MUSE award FA8750-
14-2-0270, and DARPA STAC award FA8750-15-C-0082; and by the UW-Madison Office of the
Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni
Research Foundation. Any opinions, findings, and conclusions or recommendations expressed in
this publication are those of the authors, and do not necessarily reflect the views of the sponsoring
agencies.
Thomas Reps has an ownership interest in GrammaTech, Inc., which has licensed elements of the
technology reported in this publication.
Corresponding author’s address: Thomas Reps, Computer Sciences Department, University of
Wisconsin, 1210 W. Dayton St., Madison, WI 53703, and GrammaTech, Inc., 440 Science Drive,
Suite 303, Madison, WI 53711; e-mail: reps@cs.wisc.edu.

1. INTRODUCTION

Many interprocedural dataflow-analysis problems can be formulated as the problem
of finding the least fixed-point of a system of equations ~X = ~f(~X) over a semiring
[Bouajjani et al. 2003; Reps et al. 2005; Reps et al. 2007]. Standard methods for
obtaining the solution to such an equation system are based on Kleene iteration ,
a successive-approximation method defined as follows:

~κ(0) = ~⊥
~κ(i+i) = ~f(~κ(i))

(1)

Recently, Esparza et al. [2008], [2010] generalizedNewton’s method—a numerical-
analysis algorithm for finding roots of real-valued functions—to a method for finding
fixed-points of systems of equations over semirings. Their method, Newtonian
Program Analysis (NPA), is also a successive-approximation method, but uses
the following iterative scheme:1

~ν(0) = ~⊥
~ν(i+1) = ~f(~ν(i)) t LinearCorrectionTerm(~f, ~ν(i))

(2)

where LinearCorrectionTerm(~f, ~ν(i)) is a correction term—a function of ~f and the
current approximation ~ν(i)—that nudges the next approximation ~ν(i+1) in the right
direction at each step. In essence, the insight behind the work of Esparza et al. is
that the high-level principle of Newton’s method, namely,

repeatedly, create a linear model of the function and use it to find a
better approximation of the solution

can be applied to programs, too. The sense in which the correction term in
Eqn. (2) is “linear” will be discussed in §2, but it is that linearity property that
makes it proper to say that Eqn. (2) is a form of Newton’s method.

NPA holds considerable promise for creating faster solvers for interprocedural
dataflow analysis. Most dataflow-analysis algorithms use classical fixed-point iter-
ation (typically worklist-based “chaotic-iteration”). In contrast, the workhorse for
fast numerical-analysis algorithms is Newton’s method, which usually converges
much faster than classical fixed-point iteration.2 In fact, Tapia and Dennis [Tapia
2008] have claimed that

‘All’ effective and fast iterative [numerical] methods are forms (perhaps
very disguised) of Newton’s method.

Can a similar claim be made about methods for solving equations over semirings?
As a first step toward an answer, it is important to discover the best approaches
for creating NPA-based solvers.

1For reasons that are immaterial to this discussion, Esparza et al. start the iteration via ~ν(0) =
~f(~⊥), rather than ~ν(0) = ~⊥. Our goal here is to bring out the essential similarities between
Eqns. (1) and (2).
2For some inputs, Newton’s method may converge slowly, converge only when started at a point
close to the desired root, or not converge at all; however, when it does converge to a solution, it
usually converges much faster than classical fixed-point iteration.

2

Like its real-valued counterpart, NPA is an iterative method: each iteration solves
a simpler “linearized” problem that is generated from the original equation system.
At first glance, one might think that solving each linearized problem corresponds to
solving an intraprocedural dataflow-analysis problem—a topic that has a fifty-year
history [Vyssotsky and Wegner 1963; Kildall 1973; Kam and Ullman 1976; Graham
and Wegman 1976; Tarjan 1981b]. Unfortunately, this idea does not hold up to
closer scrutiny. In particular, the sub-problems generated by NPA lie outside
the class of problems that an intraprocedural dataflow analyzer handles,
for a reason we now explain.

When Newton’s method is used in numerical-analysis problems, commutativity
of multiplication is relied on to rearrange an expression of the form “c ∗X +X ∗
d” in the linearized problem into one of the form “c ∗ X + d ∗ X,” which equals
“(c+ d) ∗X.” In contrast, in interprocedural dataflow analysis, a dataflow value is
typically an abstract transformer (i.e., it represents a function from sets of states
to sets of states) [Cousot and Cousot 1978; Sharir and Pnueli 1981]. Consequently,
the “multiplication” operation is typically the reversal of function composition—
v1 ∗ v2

def
= v2 ◦ v1—which is not a commutative operation. When NPA is used with

a non-commutative semiring, an expression “c∗X+X ∗d” in the linearized problem
cannot be rearranged: coefficients can appear on both sides of variables.

From a formal-languages perspective, the linearized equation systems that arise in
numerical analysis correspond to path problems described by regular languages.
However, when expressions of the form “c ∗ X + X ∗ d” cannot be rearranged,
the linearized equation systems correspond to path problems described by lin-
ear context-free languages (LCFLs). Conventional intraprocedural dataflow-
analysis algorithms solve only regular-language path problems, and hence cannot,
in general, be applied to the linearized equation systems considered on each round
of NPA. Consequently, we are stuck performing classical fixed-point iteration on
the LCFL equation systems. (Applying NPA’s linearization transformation to one
of the LCFL equation systems just results in the same LCFL equation system, and
so one would not make any progress.)

A preliminary study that we did indicated that (i) NPA was not an improvement
over conventional methods for interprocedural dataflow analysis, and (ii) 98% of the
time was spent performing classical fixed-point iteration to solve the LCFL equation
systems. If only we could apply a fast intraprocedural solver! In particular, Tarjan’s
path-expression method [Tarjan 1981a] finds a regular expression for each of the
variables in a set of mutually recursive left-linear equations. The regular expressions
are then evaluated using an appropriate interpretation of the regular operators +,
·, and ∗.

On the face of it, it seems impossible that our wish could be fulfilled. Formal-
language theory tells us that LCFL) Regular. In particular, the canonical example
of a non-regular language, {bici | i ∈ N}, is an LCFL. However, despite this
obstacle—and this is where the surprise value of our work lies—there
are non-commutative semirings for which we can transform the problem
so that Tarjan’s method applies (§4.6). Moreover, as discussed in §5, one of the
families of semirings for which our transformation applies is the set of predicate-
abstraction domains [Graf and Saïdi 1997], which are the foundation of most of

3

today’s software model checkers.3

Contributions. The paper’s contributions include the following:

—We show how to improve the performance of NPA for certain classes of inter-
procedural dataflow-analysis problems. The paper presents Newtonian Program
Analysis via Tensor Products (NPA-TP), a procedure for solving systems of mu-
tually recursive equations over certain classes of non-commutative semirings (§4.6
and §7).

—NPA-TP sidesteps the issue “LCFL) Regular” as follows (§4):
—We require semiring S to possess a tensor-product operation (Defn. 4.1).
The special properties of this operation allow each LCFL problem to be trans-
formed into a left-linear—and hence regular—system of equations over a
different semiring ST (§4.2).

—The ST equation system can be solved quickly using a fast intraprocedural
solver—in particular, Tarjan’s method for finding and evaluating path expres-
sions.

—The desired S answer can be read out of the ST answer.
—This sequence of steps does not create any loss of precision.

—We describe how to apply NPA-TP to predicate-abstraction problems (§5).
—We describe a new way for loops to be handled in NPA and NPA-TP (§6).
—We describe how to extend NPA and NPA-TP to analyze programs with local
variables (§8).

—We present the results of experiments with an implementation of NPA-TP for
sequential Boolean programs (§9).

§2 summarizes background material on which our work builds. §3 motivates the
approach presented in the paper by demonstrating a version of our method on a
simple problem. §10 discusses related work. §11 draws some conclusions. The
proofs of correctness for our extensions of NPA and the different variants of NPA-
TP discussed in the paper are found in Apps. A–C.

2. BACKGROUND

Semirings.

Definition 2.1. A semiring S = (D,⊕,⊗, 0, 1) consists of a set of elements
D equipped with two binary operations: combine (⊕) and extend (⊗). ⊕ and ⊗
are associative, and have identity elements 0 and 1, respectively. ⊕ is commutative,
and ⊗ distributes over ⊕. (A semiring is sometimes called a weight domain, in
which case elements are called weights.)
An ω-continuous semiring is a semiring with the following additional proper-

ties:

(1) The relation v def
= {(a, b) ∈ D ×D | ∃d : a⊕ d = b} is a partial order.

(2) Every ω-chain (ai)i∈N (i.e., for all i ∈ N ai v ai+1) has a supremum with
respect to v, denoted by supi∈N ai.

3Two other classes of semirings for which the transformation applies are based on abstract domains
of affine relations [Müller-Olm and Seidl 2004; 2005]; see [Lal et al. 2007, §6.2].

4

(3) Given an arbitrary sequence (ci)i∈N, define⊕
i∈N

ci
def
= sup{c0⊕ c1⊕ . . .⊕ ci | i ∈ N}.

The supremum exists by (2) above. Then, for every sequence (ai)i∈N, for every
b ∈ S, and every partition (Ij)j∈J of N, the following properties all hold:

b⊗

(⊕
i∈N

ai

)
=
⊕
i∈N

(b⊗ ai)(⊕
i∈N

ai

)
⊗ b =

⊕
i∈N

(ai⊗ b)

⊕
j∈J

⊕
i∈Ij

ai

 =
⊕
i∈N

ai

The notation ai denotes the ith term in the sequence in which a0 = 1 and ai+1 =
ai⊗ a. An ω-continuous semiring has a Kleene-star operator ∗ : D → D defined
as follows: a∗ =

⊕
i∈N

ai.

The set of all binary relations on a given finite set forms a semiring, and allows
each predicate-abstraction domain to be formalized as a semiring.

Definition 2.2. If A is a finite set, then the relational weight domain on A
is defined as (2A×A,∪, ; , ∅, id): weights are binary relations on A, ⊕ is union, ⊗ is
relational composition, 0 is the empty relation, and 1 is the identity relation on A.
The Kleene-star operation is reflexive transitive closure.

A Boolean program is a program whose only datatype is Boolean. A Boolean
program can be used as an abstraction of a real-world program [Ball and Rajamani
2000] using predicate abstraction [Graf and Saïdi 1997]. By instantiating A to
be the set of global states of a Boolean program P , we obtain a semiring that
can encode the state-transformers of P : the semiring value associated with an
assignment or assume statement st of P is the binary relation on A that represents
the effect of st on the global state of P .

In this paper, the focus is on semirings in which ⊕ is idempotent (i.e., for all
a ∈ D, a⊕ a = a). In an idempotent semiring, the order on elements is defined
by a v b iff a⊕ b = b. (Idempotence would be expected in the context of dataflow
analysis because an idempotent semiring is a join semilattice (D,⊕) in which the
join operation is ⊕.)

A semiring is commutative if for all a, b ∈ D, a⊗ b = b⊗ a. We work with
non-commutative semirings, and henceforth use the term “semiring”—and symbol
S—to mean an idempotent, non-commutative, ω-continuous semiring .

To simplify notation, we sometimes abbreviate a⊗ b as ab, and we assume the
following precedences for operators: ∗ > ⊗ > ⊕. We also sometimes use a ∈ S
rather than a ∈ D.

Remark 2.3. In general, we do not make a typographical distinction between
uses of ∗, ⊗, and ⊕ as syntactic symbols in expressions that are constructed, and

5

X2

proc X1

a

X2

proc X2

d

b

c

X2

proc Y2

ν2

d

b

c

Y2

Y2

b

c

ν2

ν2

b

c

ν2Y2

proc Y1

a

ν2

a

(a) (b)

Fig. 1. (a) Graphical depiction of the equation system given in Eqn. (3) as an interprocedural
control-flow graph. The three edges labeled “X2” represent calls to procedure X2. (b) Linearized
equation system over ~Y obtained from Eqn. (3) via Eqn. (5); see Ex. 2.6.

their semantic counterparts. The semantic operators are interpreted in S, and must
possess the various properties given in Defn. 2.1 and the text above. In one place it
is useful to make such a distinction (Defn. 4.5), and there we denote the semantic
operators by L∗M, L⊗M, and L⊕M, respectively.

Newtonian Program Analysis (NPA). Esparza et al. [2008], [2010] have given
a generalization of Newton’s method that finds the least fixed-point of a system of
equations over a semiring. In this section, we summarize their NPA method for the
case of idempotent, non-commutative, ω-continuous semirings.

Example 2.4. Consider the following program scheme, where X1 represents the
main procedure, X2 represents a subroutine, and sa, sb, sc, and sd represent four
program statements:

X1() {
sa;
X2()

}

X2() {
if (?) sd
else {

sb; X2(); X2(); sc
}

}
Suppose that we have a semiring that captures a suitable abstraction of the pro-
gram’s actions (such as the relational weight domain). Let a, b, c, and d denote
the semiring elements that abstract statements sa, sb, sc, and sd, respectively. The
(abstract) actions of procedures X1 and X2 can be expressed as the following set of
recursive equations:

X1 = a⊗X2 X2 = d⊕ b⊗X2⊗X2⊗ c. (3)

An equation system can also be viewed as a representation of a program’s interpro-
cedural control-flow graph (CFG). See Fig. 1(a).

In general, let S = (D,⊕,⊗, 0, 1) be a semiring and a1, . . . , ak+1 ∈ D be semiring
elements. Let X be a finite set of variables X1, . . . , Xk. A monomial is a finite

6

xi

f(xi)

xi+1

f(xi+1)

Fig. 2. The principle behind Newton’s method for finding roots of real-valued functions.

expression a1X1a2 . . . akXkak+1, where k ≥ 0. Monomials of the form X1a2, a1X1,
and a1X1a2 are left-linear , right-linear , and linear , respectively. (A monomial
that consists of a single semiring constant a1 is considered to be left-linear, right-
linear, and linear.) A polynomial is a finite expression of the form m1⊕ . . .⊕mp,
where p ≥ 1 and m1, . . . ,mp are monomials. A system of polynomial equations has
the form

X1 = f1(X1, . . . , Xn)
· · ·

Xn = fn(X1, . . . , Xn),

or, equivalently, ~X = ~f(~X), where ~X = 〈X1, . . . , Xn〉 and ~f =

λ ~X.〈f1(~X), . . . , fn(~X)〉. For instance, for Eqn. (3),
~f

def
= λ ~X.〈a⊗X2, d⊕ b⊗X2⊗X2⊗ c〉.

The jumping-off point for Esparza et al. is the observation that in numerical prob-
lems the workhorse for successive-approximation algorithms is Newton’s method.
Fig. 2 shows how Newton’s method can (sometimes) help identify where a root of
a function lies. (Newton’s method is not guaranteed to converge to a root.) The
general principle is to create a linear model of the function—in this case the tangent
line—and solve the problem for the linear model to obtain the next approximation
to the root.

Compared to the numerical setting, Esparza et al. had two points that they
needed to finesse:

(1) With numerical functions, the linear model is defined using derivatives, which
are defined in terms of limits. We have no analogues of such entities in semir-
ings.

(2) Newton’s method is for root-finding (i.e., find x such that f(x) = 0), whereas
in program analysis we are interested in finding a fixed-point (i.e., find x such
that f(x) = x). Although one can easily convert a fixed-point problem into

7

a root-finding problem—find x such that f(x)− x = 0—this approach creates
a new problem because there is no analogue of a subtraction operation in a
semiring.

Kleene iteration is the well-known technique for finding the least fixed-point of
~X = ~f(~X) via the sequence ~κ(0) = ~0; ~κ(i+i) = ~f(~κ(i)). The NPA method of Esparza
et al. [2008], [2010] provides an alternative method for finding the least fixed-point
of ~X = ~f(~X). With NPA, one solves the following sequence of problems for ~ν:

~ν(0) = ~f(~0)

~ν(i+1) = ~Y (i)
(4)

where ~Y (i) is the value of ~Y in the least solution of

~Y = ~f(~ν(i))⊕D ~f |~ν(i)(~Y) (5)

and D ~f |~ν(i)(~Y) is the multivariate differential of ~f at ~ν(i), defined below (see
Defn. 2.5). As discussed in §1, Eqns. (4) and (5) resemble Kleene iteration, except
that on each iteration ~f(~ν(i)) is “corrected” by the amount D ~f |~ν(i)(~Y).4

There is a close analogy between NPA and the use of Newton’s method in nu-
merical analysis to solve a system of polynomial equations ~f(~X) = ~0. In both
cases, one creates a linear approximation of ~f around the point (~ν(i), ~f(~ν(i))), and
then uses the solution of the linear system in the next approximation of ~X. The
sequence ~ν(0), ~ν(1), . . . , ~ν(i), . . . is called the Newton sequence for ~X = ~f(~X).
The process of solving Eqns. (4) and (5) for ~ν(i+1), given ~ν(i), is called a Newton
step or one Newton round . For polynomial equations over a semiring, the linear
approximation of ~f is created as follows:

Definition 2.5. [Esparza et al. 2008; 2010] Let fi(~X) be a component function
of ~f(~X). The differential of fi(~X) with respect to Xj at ~ν, denoted by DXj

fi|~ν(~Y),
is defined as follows:

DXjfi|~ν(~Y)
def
=



0 if fi = s ∈ S
0 if fi = Xk and k 6= j
Yj if fi = Xj⊕

k∈K
DXj

gk|~ν(~Y) if fi =
⊕
k∈K

gk(
DXj

g|~ν(~Y)⊗h(~ν)

⊕ g(~ν)⊗DXj
h|~ν(~Y)

)
if fi = g⊗h

(7)

4 Esparza et al. also show that if Eqn. (5) is changed to
~Y = ~f(~0)⊕D ~f |~ν(i) (~Y), (6)

the combinations Eqns. (4) and (5) and Eqns. (4) and (6) produce the same set of iterates
~ν(0), ~ν(1), . . . , ~ν(i), . . . [Esparza et al. 2010, Prop. 7.1]. Eqn. (5) has the benefit of presenting NPA
as a Kleene-like iteration, during which a linear correction is performed on each round, which pro-
vides better intuition about the connections with Newton’s method for numerical analysis. Our
implementation, however, is based on Eqn. (6), and we prove that the property of coinciding iter-
ation sequences carries over to the extensions of NPA that we make in this paper—see Thm. 8.6.

8

where K ⊆ N is some finite or infinite index set. Let ~f be a multivariate polynomial
function defined by ~f

def
= λ ~X.〈f1(~X), . . . , fn(~X)〉. The multivariate differential

of ~f at ~ν, denoted by D ~f |~ν(~Y), is defined as follows:

D ~f |~ν(~Y)
def
=

〈DX1
f1|~ν(~Y)⊕ . . .⊕DXn

f1|~ν(~Y),
...

DX1fn|~ν(~Y)⊕ . . .⊕DXnfn|~ν(~Y)

〉

Dfi|~ν(~Y)
def
=

n⊕
k=1

DXk
fi|~ν(~Y) denotes the ith component of D ~f |~ν(~Y).

The fourth case in Eqn. (7) generalizes the differential of a binary combine, i.e.,

DXj
g1|~ν(~Y)⊕DXj

g2|~ν(~Y) if fi = g1⊕ g2,

to infinite combines. Note how the fifth case, for “g⊗h”, resembles the product
rule from differential calculus

d

dx
(g ∗ h) =

dg

dx
∗ h+ g ∗ dg

dx
,

and in particular the differential form of the product rule:

d(g ∗ h) = dg ∗ h+ g ∗ dh.

The multivariate differential defined in Defn. 2.5 is how Esparza et al. addressed
the issue raised in item (1) above: the multivariate differential is a formal operator
on a polynomial expression over a semiring, and does not involve any notion of “the
limit as ∆X approaches 0.”

We refer to the creation of Eqn. (5) from ~X = ~f(~X) as the NPA linearizing
transformation .

Example 2.6. For Eqn. (3), the multivariate differential of ~f at the value ~ν =
〈ν1, ν2〉 is

D ~f |(ν1,ν2)
(~Y) =

〈
DX1f1|(ν1,ν2)

(~Y)⊕DX2f1|(ν1,ν2)
(~Y),

DX1
f2|(ν1,ν2)

(~Y)⊕DX2
f2|(ν1,ν2)

(~Y)

〉

=

〈
0⊕ a⊗Y2, 0⊕

 0
⊕ b⊗Y2⊗ ν2⊗ c
⊕ b⊗ ν2⊗Y2⊗ c

〉

=

〈
a⊗Y2,

(
b⊗Y2⊗ ν2⊗ c

⊕ b⊗ ν2⊗Y2⊗ c

)〉
(8)

From Eqn. (5), we then obtain the following linearized system of equations, which
is also depicted graphically in Fig. 1(b):

〈Y1, Y2〉 =

〈(
a⊗ ν2

⊕ a⊗Y2

)
,


d

⊕ b⊗ ν2⊗ ν2⊗ c
⊕ b⊗Y2⊗ ν2⊗ c
⊕ b⊗ ν2⊗Y2⊗ c


〉

(9)

On the i+1st Newton round, we need to solve Eqn. (9) for 〈Y1, Y2〉 with 〈ν1, ν2〉 set
9

to the value 〈ν(i)1 , ν
(i)
2 〉 obtained on the ith round, and then perform the assignment

〈ν(i+1)
1 , ν

(i+1)
2 〉 ← 〈Y1, Y2〉.

Kleene Iteration and Other Conventional Methods. Esparza et al. obtained
several results that compare NPA against Kleene iteration—in particular, for inter-
procedural dataflow analysis, the Newton iteration-sequence is never worse than the
Kleene iteration-sequence [Esparza et al. 2010, Thm. 3.9]. However, in practice, in-
terprocedural solvers do not perform Kleene iteration. Kleene iteration is like a fair
scheduler : each variable is considered on each round, no matter which components
of ~κ(i) changed value on the previous round. More commonly, solvers use chaotic
iteration , which uses a worklist to consider a variable Yi only when there has been
a change to the value of a variable Yj on which Yi depends. For intraprocedural
problems, there are other techniques, such as elimination methods [Cocke 1970; Ull-
man 1973; Graham and Wegman 1976] and Tarjan’s path-expression method [Tar-
jan 1981b; 1981a]. Tarjan’s method has also been harnessed for interprocedural
analysis [Lal and Reps 2006].

3. OVERVIEW

This section motivates our main improvement to the NPA method of Esparza et
al. by illustrating some of its key points on a simple problem (§3.1 and §3.2). The
method presented here is a simplification of our actual method. As shown in §3.3,
the simplified method returns a conservative solution to an equation system, but
not, in general, the least solution. This issue motivates the additional technical
aspects needed to obtain the least solution (see §4.6).

3.1 Linear, Non-Regular, Equation Systems

We will concentrate on the (recursive) equation for Y2:

Y2 =


d

⊕ b⊗ ν2⊗ ν2⊗ c
⊕ b⊗Y2⊗ ν2⊗ c
⊕ b⊗ ν2⊗Y2⊗ c

 (10)

Each monomial in Eqn. (10) is linear . In contrast, the equation for X2 in the
original equation system (Eqn. (3)), X2 = d⊕ b⊗X2⊗X2⊗ c, involves a monomial
that is quadratic. In general, as in the example above, NPA reduces the problem
of solving a polynomial equation system to solving a sequence of linear equation
systems.

Note that the third and fourth monomials in Eqn. (10) each extend Y2 by non-
trivial quantities on both the left and the right. Thus, we are truly working with a
linear equation system—not one that is left-linear or right-linear .

One can also consider Eqn. (10) as defining the following linear context-free
grammar over the set of nonterminals {Y2} and the set of terminals {b, c, d, ν2}:

Y2 ::= d | b ν2 ν2 c | b Y2 ν2 c | b ν2 Y2 c (11)

The linear context-free language (LCFL) generated by grammar (11) has a matching
condition that its strings are all of the form

(b[ν2])i(d⊕ b⊗ ν2⊗ ν2⊗ c)([ν2]c)i, (12)
10

where #ν2+2#d = i+2 and “ [ν2]” denotes an optional occurrence of ν2. Moreover,
except for a matched pair in the “center” of the form b⊗ ν2⊗ ν2⊗ c, in each matched
pair . . . b[ν2] . . . [ν2]c . . ., there is an occurrence of ν2 on the left side or the right
side, but not both.

Definition 3.1. An equation system over semiring S is an LCFL equation
system if each equation has the form

Yj = cj ⊕
⊕
i,k

(ai,j,k ⊗Yi⊗ bi,j,k),

where ai,j,k, bi,j,k, cj ∈ S.

3.2 Problem Statement: “Regularizing” an LCFL Equation System

As mentioned earlier, NPA performs a Kleene-like iteration, during which a linear
correction is applied on each round. Defn. 3.1 allows us to be more precise: the
correction value used on each round is the solution to an LCFL equation system.
Our first contribution to NPA is to address the following problem:

Given an LCFL equation system L, devise an efficient method for finding
the least solution of L.

Definition 3.2. An LCFL equation system over semiring S is a left-linear
equation system if each equation has the form

Zj = cj ⊕
⊕
i,k

(Zi⊗ bi,j,k),

where bi,j,k, cj ∈ S.

In contrast to a general LCFL equation system (Defn. 3.1), with a left-linear equa-
tion system one can always collect coefficients for a given Zi—i.e., di,j =

⊕
k bi,j,k—

so that equations can always be put in a form in which Zj has a single dependence
on each Zi:

Zj = cj ⊕
⊕
i

(Zi⊗ di,j),

where di,j , cj ∈ S.
A left-linear equation system corresponds to a left-linear grammar, and hence a

regular language. The fact that Tarjan’s path-expression method [Tarjan 1981a]
provides a fast method for solving left-linear equation systems led us to pose the
following question:

Is it possible to “regularize” the LCFL equation system L that arises on
each Newton round—i.e., transform L into a left-linear equation system
LReg?

If the extend (⊗) operation of the semiring is commutative, it is trivial to turn an
LCFL equation system into a left-linear equation system. However, in dataflow-
analysis problems, we rarely have a commutative extend operation; thus, our goal
is to find a way to regularize a non-commutative LCFL equation system.

11

On the face of it, this line of attack seems unlikely to pan out; after all, Eqn. (12)
resembles the language L = {bici | i ∈ N}, which is the canonical example of an
LCFL that is not regular. L can be defined via the linear context-free grammar

S ::= ε | b S c (13)

in which the second production allows matching b’s and c’s to be accumulated on
the left and right sides of nonterminal S. Moreover, if grammar (13) is extended to
have K matching rules

S ::= ε | bj S cj 1 ≤ j ≤ K (14)

the generated strings have bilateral symmetry, e.g.,

. . . b2 b1c1︸︷︷︸ c2︸ ︷︷ ︸ . . .
Any solution to the problem of regularizing a non-commutative LCFL equation
system has to accommodate such mirrored correlation patterns.

The challenge is to devise a way to accumulate matching quantities on both the
left and right sides, whereas in a regular language, we can only accumulate values
on one side. This observation suggests the strategy of using pairs in which left-
side and right-side values are accumulated separately but concurrently, so that the
desired correlation is maintained. Toward this end, we define extend and combine
on pairs as follows:

(a1, b1)⊗p(a2, b2) = (a2⊗ a1, b1⊗ b2) (15)
(a1, b1)⊕p(a2, b2) = (a1⊕ a2, b1⊕ b2) (16)

Note the order-reversal in the first component of the right-hand side of Eqn. (15):
“a2⊗ a1.”

Given a pair (a, b), we can read out a normal value via the operation R(a, b)
def
=

a⊗ b. Because of the order-reversal in Eqn. (15), we have

R((a1, b1)⊗p(a2, b2)) = R((a2⊗ a1, b1⊗ b2))
= a2⊗ a1⊗ b1︸ ︷︷ ︸⊗ b2︸ ︷︷ ︸ .

The braces highlight the fact that we have achieved the desired mirrored matching
of (i) a1 with b1, and (ii) a2 with b2.

Example 3.3. Using ⊗p and ⊕p, we can transform a linear equation (and more
generally a set of linear equations) by pairing semiring values that appear to the
left of a variable with the values that appear to the right of the variable, placing the
pair to the variable’s right. For instance, Eqn. (10) is transformed into

Z2 =


(1, d)

⊕p (1, b⊗ ν2⊗ ν2⊗ c)
⊕p Z2⊗p(b, ν2⊗ c)
⊕p Z2⊗p(b⊗ ν2, c)

 (17)

where Z2 is now a variable that takes on pairs of semiring values. After collecting
12

terms, we have an equation of the form

Z2 = A⊕p Z2⊗pB, (18)
where A = (1, d⊕ b⊗ ν2⊗ ν2⊗ c), (19)
and B = (b⊕ b⊗ ν2, ν2⊗ c⊕ c). (20)

Eqn. (18) is similar to the equation over formal languages

Z2 = A+ (Z2 ·B),

for which the regular expression A ·B∗ is a closed-form solution for Z2. Similarly,
the solution of Eqn. (18) for Z2 over paired semiring values is given by

Z2 = A⊗pB∗p , (21)

where B∗p denotes
⊕

p
i∈N

Bi (in which the repeated “multiplication” operation in Bi

is ⊗p). If the answer obtained for Z2 is the pair (w1, w2), we can read out the value
for Z2 as R((w1, w2)) = w1⊗w2.

The algorithm demonstrated above can be stated as follows:

Algorithm 3.4. To solve a linear equation system L,
(1) Convert L into a left-linear equation system LReg (with weights that consist of

pairs of semiring values).
(2) Find the least solution of equation system LReg.
(3) Apply the readout operation R to the least solution of LReg to obtain a solution

to L.
In our example, for step (2) we expressed the least solution of Eqn. (18) in closed

form, as a regular expression (Eqn. (21)), which means that the solution for Z2 can
be obtained merely by evaluating the regular expression. In general, when equation
system LReg has a larger number of variables, for step (2) we can use Tarjan’s path-
expression method [Tarjan 1981a], which finds a regular expression for each of the
variables in a set of mutually recursive left-linear equations.

This approach has a lot of promise for Newtonian program analysis because the
structure of LReg—and hence of the corresponding regular expressions—
remains fixed from round to round. Consequently, we only need to perform the
expensive step of regular-expression construction via Tarjan’s method once, before
the first round. The actions taken for step (2) on each Newton round are as follows:
(i) in each regular expression, replace the constant-valued leaves {νi}, which repre-
sent previous-round values, with updated constants, and (ii) reevaluate the regular
expression.

In our example, the original linearized system of Eqn. (9), transformed to left-
linear form, is

〈Z1, Z2〉 =

〈
(1, a⊗ ν2)⊕p Z2⊗p(a, 1),
A⊕p Z2⊗pB

〉
,

for which we have the closed-form solution

〈Z1, Z2〉 =

〈
(1, a⊗ ν2)⊕pA⊗pB∗p ⊗p(a, 1),
A⊗pB∗p

〉
. (22)

13

To solve the original system of equations given in Eqn. (3),

(1) First, set ν2 to 0 in Eqn. (22) and evaluate the right-hand side:

〈Z1, Z2〉 =

〈
(1, 0)⊕p(1, d)⊗p(b, c)∗p ⊗p(a, 1),
(1, d)⊗p(b, c)∗p

〉
. (23)

(2) Then, until convergence, repeat the following steps:
(a) Apply R to the value obtained for Z2 to obtain the value of ν2 to use

during the next round.
(b) Use that value in Eqns. (19) and (20), and evaluate the right-hand side of

Eqn. (22) to obtain new values for Z1 and Z2.

3.3 What Fails?

Unfortunately, the method given as Alg. 3.4 is not guaranteed to produce the desired
least-fixed-point solution to an LCFL equation system L. The reason is that the
read-out operationR does not, in general, distribute over⊕p. Consider the equation
system

X1 = 1 X2 = a1X1b1⊕ a2X1b2.

This system corresponds to a graph with exactly two paths:

proc X1

1

X1

proc X2

a1 a2

b2

X1

b1

The least solution for X2 is a1b1⊕ a2b2, where a1b1 and a2b2 are the contributions
from the two paths. However, when treated as a paired-semiring-value problem, we
have

Z1 = (1, 1) Z2 = Z1⊗p((a1, b1)⊕p(a2, b2)).

The least solution for Z2 is (a1, b1)⊕p(a2, b2), whose readout value is
R((a1, b1)⊕p(a2, b2)). However, the latter does not equal a1b1⊕ a2b2.

R((a1, b1)⊕p(a2, b2)) = R((a1⊕ a2, b1⊕ b2))
= (a1⊕ a2)⊗ (b1⊕ b2)
= a1b1⊕ a2b1⊕ a1b2⊕ a2b2
w a1b1⊕ a2b2
= R((a1, b1))⊕R((a2, b2)).

(24)

In other words, using combines of pairs leads to cross-terms, such as a2b1 and a1b2,
and consequently answers obtained by (i) solving Eqn. (18) over paired semiring
values for the combine-over-all-values answer, and (ii) applying R to the result,

14

could return an overapproximation (A) of the least solution of the original LCFL
equation system L.

In the case of Eqn. (18), A = (1, d⊕ bν2ν2c) and B = (b⊕ bν2, ν2c⊕ c). One of
the “strings” described by A⊗pB∗p is

AB = (1, d⊕ bν2ν2c)⊗p(b⊕ bν2, ν2c⊕ c)
= (b⊕ bν2, (d⊕ bν2ν2c)(ν2c⊕ c))
= (b⊕ bν2, dν2c⊕ dc⊕ bν2ν2cν2c⊕ bν2ν2cc),

and hence,

Eqn. (12)-term? i #ν2 + 2#d
R(AB) = bdν2c X 1 3

⊕ bdc χ n/a 2
⊕ bbν2ν2cν2c X 1 3
⊕ bbν2ν2cc χ n/a 2
⊕ bν2dν2c χ n/a 4
⊕ bν2dc X 1 3
⊕ bν2bν2ν2cν2c χ n/a 4
⊕ bν2bν2ν2cc X 1 3

(25)

Of the eight terms on the right-hand side of R(AB), only four meet the conditions
of Eqn. (12): bdν2c, bbν2ν2cν2c, bν2dc, and bν2bν2ν2cc. The remaining four terms
are undesired cross-terms that arise from the properties of R, ⊕p, ⊗, and ⊕.

Because of the presence of the four cross-terms, the answer computed by R(AB)
is an overapproximation of what we would like it to contribute to the answer;
similarly, R(A⊗pB∗p) is an overapproximation of the least-fixed-point solution of
Eqn. (3).

Discussion. It is worthwhile reiterating what the example above demonstrates.
The example involves a lot of expressions, but that is merely because we did not
base the example on a specific semiring. A semiring S = (D,⊕,⊗, 0, 1) supplies an
interpretation for ⊕ and ⊗, and thus each (variable-free) expression in the example
would actually be a specific semiring value. In particular, the closed-form solution
for Z2 given in Eqn. (21) would give a value for Z2—say Zp ∈ D×D—from which
we would read out the semiring value R(Zp) ∈ D.

We chose to present the derivation leading up to Eqn. (25) symbolically—rather
than for a specific semiring—for the following reason: the expressions obtained
for AB and R(A⊗pB) allow one to understand exactly how the properties of
the operators that work on pairs contribute undesirable cross-terms that cause
R(A⊗pB∗p) to overapproximate the least-fixed-point solution.

In terms of the steps of Alg. 3.4, the source of the difficulty is not so much the
R operation of step (3) per se. As we will see, the key issue is actually the choice
in step (1) to use weights that consist of pairs of semiring values.

4. “REGULARIZING” AN LCFL EQUATION SYSTEM REDUX

In light of the example presented in §3, the prospects for harnessing Tarjan’s path-
expression method for use during NPA look rather bleak. However, there is still

15

one glimmer of hope:

A transformation of the linearized problem to left-linear form is not actually
forced to use pairing : given a “coupled value” c = (a, b), we never need to
recover from c the value of either a or b alone; we only need to be able to
obtain the value a⊗ b.

Thus, by using some other binary operator to couple values together, it may still
be possible to perform a transformation similar to the conversion of Eqn. (10) into
Eqn. (17). Of course, the final answer read out of the solution to the left-linear
problem must not have contributions from undesired cross-terms.

4.1 A Different Kind of Pairing

We define the desired “coupling” operation in terms of two primitives: transpose
and tensor product :

Definition 4.1. Let S = (D,⊕,⊗, 0, 1) be a semiring. S has a transpose
operation, denoted by ·t : D → D, if for all elements a, a1, a2 ∈ D the following
properties hold:

(a1⊕ a2)t = at1⊕ at2 (26)

(a1⊗ a2)t = at2⊗ at1 (27)

(at)t = a. (28)

A tensor-product semiring over S is defined to be another semiring ST =
(DT ,⊕T ,⊗T , 0T , 1T), where S and ST support a tensor-product operation, de-
noted by � : D×D → DT , such that for all a, a1, a2, b1, b2, c1, c2 ∈ D, the following
properties hold:

0� a = a� 0 = 0T (29)
a1� (b2⊕ c2) = (a1� b2)⊕T (a1� c2) (30)
(b1⊕ c1)� a2 = (b1� a2)⊕T (c1� a2) (31)

(a1� b1)⊗T (a2� b2) = (a1⊗ a2)� (b1⊗ b2). (32)

A tensor-product semiring defined over a semiring with transpose has a (sequen-
tial) detensor-transpose operation, denoted by (t,·) : DT → D, if for all ele-
ments a1, a2 ∈ D and p1, p2 ∈ DT the following properties hold:

 (t,·)(a1� a2) = at1⊗ a2 (33)

 (t,·)(p1⊕T p2) = (t,·)(p1)⊕ (t,·)(p2). (34)

We assume that Eqns. (26), (30), (31), and (34) also hold for infinite combines.
In particular, for (t,·) we have

 (t,·)

(⊕
T

i∈I

pi

)
=
⊕
i∈I

 (t,·)(pi). (35)

For brevity, we say that S is an admissible semiring if (i) S has a transpose
operation, (ii) S has an associated tensor-product semiring ST , and (iii) ST has
a sequential detensor-transpose operation. Henceforth, we consider only admissible

16

semirings.
The operation to couple pairs of values from an admissible semiring, denoted by

C : D ×D → DT , is defined as follows:

C(a, b) def
= at� b.

Note that by Eqns. (27) and (32),

C(a1, b1)⊗T C(a2, b2) = (at1� b1)⊗T (at2� b2)
= (at1⊗ at2)� (b1⊗ b2)
= (a2⊗ a1)t� (b1⊗ b2)
= C(a2⊗ a1, b1⊗ b2)

(36)

The order-reversal vis à vis ⊗T and ⊗ in Eqn. (36) will substitute for the order-
reversal vis à vis ⊗p and ⊗ in Eqn. (15).

The operator that plays the role of R is (t,·). The superscript in (t,·) serves
as a reminder that Eqn. (33) performs an additional transpose on the first argu-
ment of a coupled value (at� b), so that (t,·) (at� b) becomes (at)

t⊗ b = a⊗ b.
Consequently,

 (t,·)(C(a2⊗ a1, b1⊗ b2)) = (t,·) ((a2⊗ a1)t� (b1⊗ b2))

= ((a2⊗ a1)t)
t⊗ (b1⊗ b2)

= a2⊗ a1⊗ b1︸ ︷︷ ︸⊗ b2︸ ︷︷ ︸
which has the desired matching of a1 with b1 and a2 with b2. Moreover, in contrast
with Eqn. (24), (t,·) does not produce cross-terms because of property (34):

 (t,·)((at1� b1)⊕T (at2� b2)) = (t,·)(at1� b1)⊕T (t,·)(at2� b2)
= a1b1⊕ a2b2.

In general, we require (t,·) to distribute over infinite combines—cf. Eqn. (35).
That property guarantees that the “readout” value produced by (t,·) is the combine-
over-all-LCFL-paths of the readout value of each individual path. (See also Re-
mark 4.16.)

4.2 The Regularizing Transformation

Definition 4.2. Given an LCFL equation system L over admissible semiring
S, the regularizing transformation τReg creates a left-linear equation system
LT = τReg(L) over ST by transforming each equation of L as follows:

Yj = cj ⊕
⊕
i,k

(ai,j,k ⊗Yi⊗ bi,j,k)

Zj =
(
1t� cj

)
⊕T

⊕
T

i,k

(
Zi⊗T

(
ati,j,k � bi,j,k

)) τReg

where Zi and Zj are variables that take on values from tensor-product semiring ST .
17

proc Z2

Z21
t
?

b
ν
2
ν
2 c

b
t
?

ν
2 c

Z2

Z2

proc Z1

1
t
?

a
ν
2

1
t
?

d

Fig. 3. Graphical representation of Eqn. (38), the linearized equation system over ~Z obtained
from Eqn. (10) via Defn. 4.2.

We also use τReg as a function on right-hand-side terms:

τReg

cj ⊕⊕
i,k

(ai,j,k ⊗Yi⊗ bi,j,k)

 def
=
(
1t� cj

)
⊕T

⊕
T

i,k

(Zi⊗T (ati,j,k � bi,j,k)).

(37)
We use Coeffi(·) to select Zi’s coefficient in Eqn. (37):

Coeffi

τReg
cj ⊕⊕

i,k

(ai,j,k ⊗Yi⊗ bi,j,k)

 def
=
⊕
T

k

(
ati,j,k � bi,j,k

)
.

Finally, we extend τReg to operate component-wise on vectors:

τReg(~E)
def
= 〈τReg(E1), . . . , τReg(En)〉.

Example 4.3. Using τReg, Eqn. (10) would be transformed into

Z2 =


(
1t� d

)
⊕T

(
1t� b⊗ ν2⊗ ν2⊗ c

)
⊕T Z2⊗T (bt� (ν2⊗ c))
⊕T Z2⊗T ((b⊗ ν2)t� c)

 (38)

which is depicted in Fig. 3. After collecting terms, we have

Z2 = A⊕T (Z2⊗T B), (39)
where A =

(
1t� (d⊕ b⊗ ν2⊗ ν2⊗ c)

)
and B =

(
bt�(ν2⊗ c)

)
⊕T

(
(b⊗ ν2)t� c

)
(40)

4.3 Solving an LCFL Equation System

We can now harness Tarjan’s path-expression algorithm to solve an LCFL equation
system.

Algorithm 4.4. To solve an LCFL equation system L over admissible semiring
S,

(1) Apply τReg to L to create the left-linear equation system LT over the tensor-
18

product semiring ST .5

(2) Use Tarjan’s path-expression algorithm to find a regular expression Regi for
each variable Zi in LT .

(3) Obtain ~Z, the least solution to LT : for each variable Zi, evaluate Regi; i.e.,
Zi ← [[Regi]]T , where [[·]]T denotes the interpretation of the regular-expression
operators in ST .

(4) Apply (t,·) to each component of ~Z to obtain the solution to the original LCFL
equation system L; i.e., Yi ← (t,·)(Zi).

The regular expressions created in step 2 are actually generalized regular expres-
sions that involve (i) ⊕T , ⊗T , and ∗T , which are interpreted in ST ; (ii) ⊕, ⊗, ∗,
and t, which are interpreted in S; (iii) �, which is interpreted in S to create a
value in ST ; (iv) the symbols {νi}, which are associated with values in S; and (v)
constants from the semirings S and ST .

Definition 4.5. Generalized regular expressions are defined by the follow-
ing grammar:6

expT ::= aT ∈ ST
| expt � exp
| expT ⊕T expT
| expT ⊗T expT
| exp∗TT

expt ::= expt exp ::= a ∈ S
| νi
| exp⊕ exp
| exp⊗ exp
| exp∗

Given a vector of values ~ν, the value of a generalized regular expression is obtained
in the expected manner, shown below, where LopM denotes the interpretation of op
in S or ST , as appropriate:

[[e]]T ~ν
def
=


aT if e = aT ∈ ST
([[e1]]~ν)LtML�M [[e2]]~ν if e = et1� e2
[[e1]]T ~ν L⊕T M [[e2]]T ~ν if e = e1⊕T e2
[[e1]]T ~ν L⊗T M [[e2]]T ~ν if e = e1⊗T e2
([[e1]]T ~ν)L∗T M if e = (e1)∗T

[[e]]~ν
def
=


a if e = a ∈ S
(~ν)i if e = νi
[[e1]]~ν L⊕M [[e2]]~ν if e = e1⊕ e2
[[e1]]~ν L⊗M [[e2]]~ν if e = e1⊗ e2
([[e1]]~ν)L∗M if e = (e1)∗

4.4 Discussion

It is instructive to consider what happens when Alg. 4.4 is applied to the LCFL
equation system that was the subject of Exs. 2.6 and 4.3.

—In step 2 of Alg. 4.4, the regular expression that would be obtained for variable
Z2—defined in Eqn. (39)—is Z2 = A⊗T B∗T . In this expression, B∗T denotes

5In essence, LT corresponds to an intraprocedural dataflow-analysis problem over ST .
6The case for exp ::= exp∗ is irrelevant in this section; however, it is needed for the version of
NPA-TP discussed in §6.2.

19

tensored Kleene-star: B∗T =
⊕
T

i∈N

Bi, where the repeated multiplication opera-

tion in Bi is the operation ⊗T .
—In step 4, to obtain the value Y2 that solves Eqn. (10), we would evaluate
 (t,·)(Z2) = (t,·)(A⊗T B∗T).

It is particularly instructive to consider the contributions of the different powers
of B to the value of (t,·)(A⊗T B∗T).

 (t,·)(A⊗T B∗T) = (t,·)(A⊕AB⊕ABB⊕ . . .)
= (t,·)(A)⊕ (t,·)(AB)⊕ (t,·)(ABB)⊕ . . .

To demonstrate why the use of tensor products and (t,·) avoids the cross-terms
that spoiled the approach described in §3, we focus on (t,·)(AB):

 (t,·)(AB) = (t,·)
(

(1t� (d⊕ bν2ν2c))
⊗T ((bt� (ν2c))⊕T ((bν2)t� c))

)
= (t,·)

(
(1t� (d⊕ bν2ν2c))⊗T (bt� (ν2c))

⊕T (1t� (d⊕ bν2ν2c))⊗T ((bν2)t� c)

)
(41)

= (t,·)
(

((1tbt)� ((d⊕ bν2ν2c)(ν2c)))
⊕T ((1t(bν2)t)� ((d⊕ bν2ν2c)c))

)
(42)

= (t,·)
(

(bt� (dν2c⊕ bν2ν2cν2c))
⊕T ((bν2)t� (dc⊕ bν2ν2cc))

)
= (t,·)

(
(bt� dν2c)⊕T (bt� bν2ν2cν2c)

⊕T ((bν2)t� dc)⊕T ((bν2)t� bν2ν2cc)

)
=

(
 (t,·)(bt� dν2c)⊕T (t,·)(bt� bν2ν2cν2c)

⊕T (t,·)((bν2)t� dc)⊕T (t,·)((bν2)t� bν2ν2cc)

)
(43)

= bdν2c⊕T bbν2ν2cν2c⊕T bν2dc⊕T bν2bν2ν2cc. (44)

In contrast to the eight summands that arose in Eqn. (25), the four summands
that appear in Eqn. (44) each meet the matching condition of Eqn. (12). Moreover,
these four terms are exactly the ones marked with X in Eqn. (25).

In general, (t,·)(A⊗T Bk) contributes summands of the form
(b[ν2])k(d⊕ b⊗ ν2⊗ ν2⊗ c)([ν2]c)k that satisfy the matching condition of Eqn. (12)
(e.g., #ν2 + 2#d = k + 2). Eqn. (44) shows the contribution of (t,·)(AB) (i.e.,
k = 1), and #ν2 + 2#d = 3 holds for each summand.

Compared to the derivation leading up to Eqn. (25) in §3.2, the derivation above
of the contribution of AB to (t,·)(A⊗T B∗T) illustrates how the properties of
transpose, tensor product, and detensor-transpose allow exactly the right pairings
of semiring values b and c to arise in Eqn. (44). The two summands in Eqn. (40)—
and hence the arguments on the right-hand sides of the two occurrences of ⊗T in
Eqn. (41)—are bt�(ν2⊗ c) and (b⊗ ν2)t� c. These terms capture the two recur-
sive summands that define Y2 in Eqn. (10): b⊗Y2⊗ ν2⊗ c and b⊗ ν2⊗Y2⊗ c. In
particular, in Eqn. (41) the position of “�” in bt�(ν2⊗ c) and (b⊗ ν2)t� c can be
viewed as marking the position of the recursive occurrences of Y2 in b⊗Y2⊗ ν2⊗ c
and b⊗ ν2⊗Y2⊗ c, respectively. The derivation of Eqn. (42) from Eqn. (41) is
where an LCFL-like “substitution” takes place in the “middle” of bt�(ν2⊗ c) and

20

(b⊗ ν2)t� c. The net effect is equivalent to the replacement of Y2 by d⊕ bν2ν2c.
Such “substitutions” are enabled by the key property of how coupled values at1� b1

and at2� b2 interact with ⊗T (Eqn. (36)). The sense in which Eqn. (36) acts as an
operation that performs a substitution into the middle of an expression is depicted
below:

(at1� b1)︸ ︷︷ ︸⊗T (at2� b2) = (a2⊗ a1)t� (b1︸ ︷︷ ︸⊗ b2).

−−−−−−−−−−−−−−−−−−−−−→

The right-hand-side term may appear to be a strange result to obtain from a “sub-
stitution” because the items identified by the right-hand-side underbrace are not
nested within the parenthesis structure of the right-hand side. However, the “sub-
stitution” is completed after (t,·) is applied:

 (t,·)((a2⊗ a1)t� (b1︸ ︷︷ ︸⊗ b2)) = a2⊗ a1⊗ b1︸ ︷︷ ︸⊗ b2.
−−−−−−−−−−−−−−−→

Compared with the similar derivation in §3.3, where “pairing” was used rather
than “coupling,” the key difference comes in the derivation of Eqn. (43) from the
preceding line. That is the point at which we apply Eqn. (34) to distribute (t,·)(·)
across ⊕T .

4.5 Correctness of Alg. 4.4

To prove that Alg. 4.4 finds the least solution of an LCFL equation system over an
admissible semiring, we make use of a formalism called grammar flow analysis
(GFA), which connects equation systems to tree and string grammars.

Definition 4.6. [Möncke and Wilhelm 1991; Ramalingam 1996] Let (D,⊕) be
a combine semilattice.7 An abstract grammar G over (D,⊕) is a collection of
context-free grammar productions, where each production θ has the form

X0 → gθ(X1, . . . , Xk).

Parentheses, commas, and gθ are terminal symbols. G also associates with each
production θ a production function that gives an interpretation of gθ: [[gθ]] : D

k →
D. Consequently, every string α of terminal symbols derived in this grammar (i.e.,
the yield of a complete derivation tree) denotes a composition of functions, and
corresponds to a unique value in D, which we call valG(α) (or simply val(α) when
G is understood).
Let LG(X) denote the strings of terminals derivable from a nonterminal X. The

grammar-flow-analysis problem is to compute, for each nonterminal X, the
value

mG(X) =
⊕

α∈LG(X)

valG(α).

The value mG(X) is called the combine-over-all-derivations value for nonter-

7When the semilattice is oriented according to the conventions of the abstract-interpretation liter-
ature, a combine-semilattice is a join-semilattice; when it is oriented according to the conventions
of the dataflow-analysis literature, it is a meet-semilattice.

21

minal X.
We can also associate G with a system of mutually recursive equations, where

each equation has the form

nG(X0) =
⊕

X0→g(X1,...,Xk)∈G

[[g]](nG(X1), . . . , nG(Xk)).

We will use nG(X) to denote the value of nonterminal X in the least fixed-point
solution of G’s equations.
A production function [[g]] is infinitely distributive in a given argument position

if

[[g]](. . . ,
⊕
j∈J

xj , . . .) =
⊕
j∈J

[[g]](. . . , xj , . . .)

for J a finite or infinite index set.

Theorem 4.7. [Möncke and Wilhelm 1991; Ramalingam 1996] If every produc-
tion function [[g]] ∈ G is infinitely distributive in each argument position, then for
all nonterminals X, mG(X) = nG(X).

Thm. 4.7 generalizes other similar theorems about the coincidence of the val-
uations obtained from a path-based semantics and an equational semantics when
dataflow functions distribute over the dataflow confluence operator. In particular,
see Kam and Ullman [Kam and Ullman 1977] and Sharir and Pnueli [Sharir and
Pnueli 1981].

An LCFL equation system over semiring S can always be formulated as a GFA
problem over S in which all productions are of the form X → g() with [[g]] = c ∈ S,
or X0 → g(X1) with [[g]] = λY.a⊗Y ⊗ b, where a, b ∈ S. Because there is at most
one nonterminal on each right-hand side, we say that such a grammar is linear.
The principle can be seen from the following example:

Example 4.8. Eqn. (10) can be formulated as the following GFA problem
[Knuth 1977]:

W2 → g1() | g2() | g3(W2) | g4(W2),

where [[g1]]
def
= d, [[g2]]

def
= b⊗ ν2⊗ ν2⊗ c, [[g3]]

def
= λY.b⊗Y ⊗ ν2⊗ c, and [[g4]]

def
=

λY.b⊗ ν2⊗Y ⊗ c.

If for each production X0 → g(X1), [[g]] has the form [[g]]
def
= λZ.Z a, where a ∈ D,

we say that the grammar is left-linear.

Definition 4.9. A linear GFA problem G over admissible semiring S can be
transformed into a left-linear GFA problem GT over tensor-product semiring ST .
G and GT have the same set of productions, but the production functions of GT
are defined as shown in column three below:

Production Function
Production G GT

X0 → g0() [[g0]]
def
= a [[g0]]T

def
= (1t� a)

X0 → g1(X1) [[g1]]
def
= λY.a⊗Y ⊗ b [[g1]]T

def
= λZ.Z ⊗T (at� b)

22

Observation 4.10. By Defn. 2.1(3),

—⊗ distributes over infinite combines (⊕), and

—⊗T distributes over infinite tensored combines (⊕T).

Consequently, the production functions in Defn. 4.9 meet the infinite-distributivity
requirement of Thm. 4.7, and hence Thm. 4.7 applies.

Observation 4.11. Suppose that GT is such a transformed, left-linear GFA
problem over the tensor-product semiring associated with admissible semiring S.
For all α ∈ LGT (X), valGT (α) can always be written in the form mt�n by re-
peated application of Eqn. (32).

Example 4.12. Defn. 4.9 transforms the GFA problem from Ex. 4.8 into the
following tensored, left-linear GFA problem:

W2 → g1() | g2() | g3(W2) | g4(W2),

where

[[g1]]T
def
= (1t� d)

[[g2]]T
def
= (1t�(b⊗ ν2⊗ ν2⊗ c))

[[g3]]T
def
= λZ.Z ⊗T (bt�(ν2⊗ c))

[[g4]]T
def
= λZ.Z ⊗T ((b⊗ ν2)t� c).

Note that we could also have arrived at this GFA problem by starting with
Eqn. (38) and directly creating the corresponding GFA problem over ST .

Because G and GT in Defn. 4.9 have exactly the same set of productions, they
have the same sets of complete derivation trees, and hence derive the same strings
of terminal symbols. In other words, for each nonterminal X,

α ∈ LG(X) iff α ∈ LGT (X). (45)

The interpretations that are given to α in the two GFA problems are different;
however, the interpretations are related, as shown in the following example:

Example 4.13. Consider the tree α = g4(g3(g1())) depicted in Fig. 4(a), which
is in both the languages LG(W2) (Ex. 4.8) and LGT (W2) (Ex. 4.12).
In LG(W2), α has the value

valG(α) = [[g4]]([[g3]]([[g1]]()))
= (λY.b⊗ ν2⊗Y ⊗ c)((λY.b⊗Y ⊗ ν2⊗ c)(d))
= (λY.b⊗ ν2⊗Y ⊗ c)(b⊗ d⊗ ν2⊗ c)
= b⊗ ν2⊗ b⊗ d⊗ ν2⊗ c⊗ c.

(46)

Note how the last line of Eqn. (46) is also the value of the path shown in Fig. 4(b),
which depicts the unrolled LCFL path that corresponds to valG(α) in the graphical
representation of variable Y2 from Eqn. (10) (see Fig. 1(b)).

23

��

��

��
c

b

ν
2

b

c

ν
2

d

Y
2

Y
2

Y
2

Z2 Z2 Z2

(��⨀ (ν2⊗c))

(1t⨀d)

(�⊗ν2
�⨀ c)

(a) (b) (c)

Fig. 4. Graphical representations of (a) the abstract-syntax tree of a string α = g4(g3(g1())) that is
in both LG(W2) (Ex. 4.8) and LGT (W2) (Ex. 4.12); (b) the unrolled LCFL path that corresponds
to valG(α) in the graphical representation of variable Y2 from Eqn. (10) (see Fig. 1(b)); and (c)
the unrolled regular-language path that corresponds to valGT (α) in the graphical representation
of variable Z2 from Eqn. (38) (see Fig. 3).

In LGT (W2), α has the value

valGT (α) = [[g4]]T ([[g3]]T ([[g1]]T ()))
= (λZ.Z ⊗T ((b⊗ ν2)t� c))

(
(λZ.Z ⊗T (bt�(ν2⊗ c)))

(
1t� d

))
= (λZ.Z ⊗T ((b⊗ ν2)t� c))

((
1t� d

)
⊗T (bt�(ν2⊗ c))

)
=
(
1t� d

)
⊗T (bt� (ν2⊗ c))⊗T ((b⊗ ν2)t� c)

=
(
1t⊗ bt⊗(b⊗ ν2)t

)
� (d⊗ ν2⊗ c⊗ c)

= (b⊗ ν2⊗ b⊗ 1)t� (d⊗ ν2⊗ c⊗ c).

(47)

One can clearly see how the fourth line of Eqn. (47) corresponds to the value of the
path shown in Fig. 4(c), which depicts the unrolled regular-language path that cor-
responds to valGT (α) in the graphical representation of variable Z2 from Eqn. (38)
(see Fig. 3).
Eqns. (46) and (47) are related by (t,·):

 (t,·)(valGT (α)) = (t,·) ((b⊗ ν2⊗ b⊗ 1)t� (d⊗ ν2⊗ c⊗ c))
= b⊗ ν2⊗ b⊗ 1⊗ d⊗ ν2⊗ c⊗ c
= valG(α).

The principle illustrated in Ex. 4.13 is captured by the following property:

Lemma 4.14. Let G be a linear GFA problem over semiring S. For every α ∈
LG(X) (and hence α ∈ LGT (X)),

 (t,·)(valGT (α)) = valG(α). (48)

Proof. By induction on the height h of the derivation tree of α.

Base case, h = 0. The derivation tree has the form g(). Let [[g]] be a, and thus
valGT (g()) = [[g]]T = (1t� a). Then (t,·)(1t� a) = 1⊗ a = a = [[g]] = valG(g()).
Induction step. Assume that Eqn. (48) holds for all derivation trees of height

h. Let α = g(β), where β is a string whose derivation tree has height h, so
that (t,·)(valGT (β)) = valG(β). By Obs. 4.11, valGT (β) = mt�n and valG(β)

24

= (t,·)(mt�n) = m⊗n. Further suppose that [[g]] is λY.a⊗Y ⊗ b, and thus [[g]]T
is λZ.Z ⊗T (at� b). Then

 (t,·)(valGT (α))
= (t,·)(valGT (g(β)))
= (t,·)([[g]]T (valGT (β)))
= (t,·)((λZ.Z ⊗T (at� b))(mt�n))
= (t,·)((mt�n)⊗T (at� b))
= (t,·)((mt⊗ at)� (n⊗ b))
= (t,·)((a⊗m)t� (n⊗ b))
= a⊗m⊗n⊗ b
= (λY.a⊗Y ⊗ b)(m⊗n)
= [[g]](valG(β))
= valG(g(β))
= valG(α).

Corollary 4.15. For each nonterminal X ∈ G,

 (t,·)(mGT (X)) = mG(X). (49)

Proof.

 (t,·)(mGT (X)) = (t,·)

 ⊕
α∈LGT (X)

valGT (α)

 (50)

=
⊕

α∈LGT (X)

 (t,·) (valGT (α)) by Eqn. (35) (51)

=
⊕

α∈LG(X)

valG(α) by Lem. 4.14

= mG(X)

Remark 4.16. The step from Eqn. (50) to Eqn. (51) is why the kind of cross-
terms that arise with pairing—cf. Eqns. (24) and (25)—do not arise with coupled
values created using tensor product. Both approaches can build up values with mir-
ror symmetry along a single path. However, it is necessary for the readout oper-
ation ((t,·)) to distribute across infinite combines (Eqn. (35)) so that we obtain
the combine-over-all-LCFL-paths of the readout value of each individual path (see
Eqn. (51)).

We are finally in position to present the proof of the correctness of Alg. 4.4:

Theorem 4.17. Given an LCFL equation system L over admissible semiring S,
Alg. 4.4 finds the least solution of L.

Proof. We are given an LCFL equation system L over admissible semiring S.
By the method illustrated in Ex. 4.8, L can be formulated equivalently as a linear
GFA problem G over S. We wish to show that Steps 1–4 of Alg. 4.4 compute the
least-fixed-point solution nG(X), for each nonterminal X ∈ G.

25

From equation system L, Step 1 creates a tensored equation system LT . When
LT is formulated as a GFA problem, it corresponds to the left-linear GFA problem
GT over ST obtained by applying Defn. 4.9 to G.

Steps 2 and 3 use Tarjan’s path-expression algorithm [Tarjan 1981b] to create an
appropriate regular expression for each variable Zi in LT , which are then evaluated.
Consequently, by [Tarjan 1981b, Thm. 5], these steps find the combine-over-all-
derivations solution to LT , and hence compute mGT (X) for each nonterminal X ∈
GT . Finally, Step 4 computes (t,·)(mGT (X)) for X ∈ GT . However, by the results
presented above, we have

 (t,·)(mGT (X)) = mG(X) by Cor. 4.15
= nG(X) by Obs. 4.10 and Thm. 4.7

4.6 Newtonian Program Analysis via Tensor Products

To sum up, Newtonian Program Analysis via Tensor Products (NPA-TP) is based
on a way to find the least solution to a system of equations over a semiring S. We
use Eqns. (4) and (5) of Esparza et al., but apply Alg. 4.4 to solve Eqn. (5).

Our approach can also be restated as follows: we solve the following sequence of
problems for ~ν:

~ν(0) = ~f(~0)

~ν(i+1) = 〈 (t,·)(Z
(i)
1), . . . , (t,·)(Z

(i)
n)〉

(52)

where ~Z(i) = 〈Z(i)
1 , . . . , Z

(i)
n 〉 is the least solution of the following equation system

over ST :

τReg(~Y = ~f(~ν(i))⊕D ~f |~ν(i)(~Y)) (53)

(Recall that τReg replaces Y ’s with Z’s.)
It may be helpful to see the overall transformation expressed using a single in-

ductive definition, rather than as the composition of the operators τReg and D.

Definition 4.18. The tensored differential of a component function fi(~x)

with respect to Xj at ~ν, denoted by DTXj
fi|~ν(~Z), is defined as follows:

DTXj
fi|~ν(~Z) =



0T if fi = s ∈ S
0T if fi = Xk and k 6= j
Zj if fi = Xj⊕

T
k∈K

DTXj
gk|~ν(~Z) if fi =

⊕
k∈K

gk(
DTXj

g|~ν(~Z)⊗T (1t�h(~ν))

⊕T DTXj
h|~ν(~Z)⊗T (g(~ν)t� 1)

)
if fi = g⊗h

Let ~f be a multivariate polynomial function defined by ~f def
= λ ~X.〈f1(~X), . . . , fn(~X)〉.

The tensored multivariate differential of ~f at ~ν, denoted by D ~f |~ν(~Z), is defined
26

as follows:

DT ~f |~ν(~Z) =

〈DTX1
f1|~ν(~Z)⊕ . . .⊕DTXn

f1|~ν(~Z),
...

DTX1
fn|~ν(~Z)⊕ . . .⊕DTXn

fn|~ν(~Z)

〉

An easy inductive argument shows that

DTXj
fi|~ν(~Z) = τReg(DXj

fi|~ν(~Y))

NPA-TP can now be restated as the following iterative algorithm: one solves the
sequence of problems defined by Eqn. (52) for ~ν, where ~Z(i) = 〈Z(i)

1 , . . . , Z
(i)
n 〉 is

the least solution of the following equation system over ST :

~Z = (
−→
1t � ~f(~ν(i)))⊕T DT ~f |~ν(i)(~Z) (54)

In practice, the LCFL equation systems that arise on successive rounds have a
great deal of structure in common, and it is possible to arrange to call Tarjan’s path-
expression algorithm only a single time to create parameterized regular expressions
that can be used to solve Eqn. (54) on each round. (See the discussion of Alg. 7.1
in §7.)

5. NPA-TP FOR PREDICATE-ABSTRACTION DOMAINS

In this section, we explain how NPA-TP applies to predicate-abstraction domains—
an instantiation denoted by NPA-TP[PA]. For a given predicate-abstraction do-
main, NPA-TP[PA] has the following ingredients:

Semiring:. A predicate-abstraction domain over predicate set P is a relational
weight domain (2A×A,∪, ; , ∅, id) (Defn. 2.2), where A is the set of Boolean assign-
ments to P ; that is, A = P → Bool. (P → Bool is isomorphic to 2P .) Let N denote
|A|. Each semiring element R can be thought of as an N ×N Boolean matrix

R =

 r1,1 · · · r1,N
...

. . .
...

rN,1 · · · rN,N

 .
We will write this as “R(A,A′)” when we wish to introduce names for the index
sets of the matrix.
Transpose:. The transpose operation is matrix transpose. Semantically, trans-

pose reverses a relation:

Rt = {(a′, a) | R−1(a′, a)} = {(a′, a) | R(a, a′)}.

Tensor Product:. The tensor-product operation is Kronecker product of Boolean
matrices:

R�S =

 r1,1S · · · r1,NS
...

. . .
...

rN,1S · · · rN,NS


27

which is an N2 ×N2 binary matrix whose entries are

(R�S)[(a− 1)N + b, (a′ − 1)N + b′] = R(a, a′) ∧ S(b, b′).

Semantically, tensor-product builds 4-ary relations:

R�S = {(a, b, a′, b′) | R(a, a′) ∧ S(b, b′)}.

Coupling:. The coupling of R and S is the tensor-transpose relation Rt�S;
hence, Rt�S = {(a′, b, a, b′) | R(a, a′) ∧ S(b, b′)},

Rt�S =

 r1,1S · · · rN,1S
...

. . .
...

r1,NS · · · rN,NS


and thus

(Rt�S)[(a′ − 1)N + b, (a− 1)N + b′] = R(a, a′) ∧ S(b, b′).

Detensor Transpose:. If T is a tensor-transpose relation,

 (t,·)(T (A′, B,A,B′))
def
= ∃A′, B : (T (A′, B,A,B′) ∧ A′ = B). (55)

Theorem 5.1. The transpose, tensor-product, and detensor-transpose opera-
tions defined above satisfy Eqns. (27)–(35).

Proof. Part I, Eqns. (27)–(32): Eqns. (27)–(32) are standard properties of
matrix transpose and Kronecker product.

Part II, Eqn. (33):

 (t,·)(Rt�S) = (t,·)({(a′, b, a, b′) | R(a, a′) ∧ S(b, b′)})
= {(a, b) | R(a, a′) ∧ S(b, b′) ∧ a′ = b}
= R⊗S

Part II, Eqn. (34): Because ⊕T for relations corresponds to logical-or (∨), the
conjunct “ . . . ∧A′ = B” distributes over ⊕T . Therefore,

 (t,·)(T1(A′, B,A,B′)⊕T T2(A′, B,A,B′))

= ∃A′, B : ((T1(A′, B,A,B′)⊕T T2(A′, B,A,B′)) ∧A′ = B)

= ∃A′, B :

(
(T1(A′, B,A,B′) ∧A′ = B)

⊕T (T2(A′, B,A,B′) ∧A′ = B)

)
=

(
(∃A′, B : T1(A′, B,A,B′) ∧A′ = B)

⊕T (∃A′, B : T2(A′, B,A,B′) ∧A′ = B)

)
= (t,·)(T1(A′, B,A,B′))⊕T (t,·)(T2(A′, B,A,B′))

Part II, Eqn. (35): The same argument that was used above for Eqn. (34) applies
when we replace the binary operator for combining tensored values (⊕T) with the

operator for infinite combines of tensored values

(⊕
T

i∈I

)
.

Remark 5.2. The semiring values that arise in interprocedural-analysis prob-
lems are generally abstractions of concrete functions that transform a set of pre-

28

X1

proc X1

b

a

c

d

d

proc X2

1

c

X1

X2

X2

proc X1

b

a

1

proc Y1

b

a

1 ν2 Y2

a

b

d

proc Y2

1

c

ν1

ν2

d

c

ν1

Y2

d

1

c

Y1

ν2

X1 = a(cX1d)∗b
X1 = a(1⊕X2)b
X2 = cX1d(1⊕X2)

Y1 = a(1⊕ ν2)b⊕ aY2b

Y2 =

 cν1d(1⊕ ν2)
⊕ cY1d(1⊕ ν2)
⊕ cν1dY2


(a) (b) (c)

Fig. 5. Three equation systems and their graphical representations. (a) A recursive program that
contains a loop. (b) “Loop-free” variant in which the loop is encoded by recursive procedure X2.
(c) Linearized equation system over ~Y obtained from (b) via Eqn. (5).

states to a set of post-states. For that reason, the semantic definitions given above
apply more broadly, because they can be interpreted in abstract domains other than
predicate-abstraction domains. However, we know of abstract domains, such as the
so-called KS domain of modular-arithmetic affine relations [Elder et al. 2014], that
support all of the operations used in the semantic definitions, yet do not satisfy all
of the properties Eqns. (27)–(35).

6. LOOPS

In this section, we summarize how programs with loops can be handled in the
method of Esparza et al., and then present an alternative method for handling
loops.

6.1 Loops for Esparza et al.

As presented by Esparza et al., NPA applies to a system of equations in which
each right-hand-side expression is a polynomial : semiring expressions consist of
semiring constants, variables, extend, and combine (where each occurrence of a
variable corresponds to a procedure call). The restriction to polynomials means that
each procedure must consist of loop-free code. Recursive equations are permitted,
and thus a program whose (original) procedures contain loops can be handled by
systematically replacing each loop with a call to an appropriate recursive, loop-free
procedure.

Example 6.1. Consider program (i) below, which is shown in graphical form in
Fig. 5(a).

29

X1() {
sa;
while (?) {
sc;
X1();
sd

}
sb

}

X1() {
sa;
if (?) X2()
sb

}

X2() {
sc;
X1();
sd;
if (?) X2()

}

(i) (ii)

Program (ii) shows one possible transformation of program (i) to put it in loop-
free form. Fig. 5(b) shows program (ii) in graphical form, and also as an equation
system. Fig. 5(c) shows the linearized equation system for ~Y that is obtained from
the equation system in Fig. 5(b) via Eqn. (5).

6.2 An Alternative Approach to Handling Loops

We now show how to extend NPA and NPA-TP to handle programs with loops in a
different way that (i) may be more convenient, and (ii) is somewhat different from an
operational standpoint. Our approach involves introducing a Kleene-star operator,
and allowing the right-hand side of each equation to be a regular expression:

Definition 6.2. Let S be an ω-continuous semiring and X a finite set of vari-
ables. The following grammar defines an equation system over S and X , with
regular right-hand sides:

equation system ::= set of equation
equation ::= var = exp

exp ::= a ∈ S | var ∈ X | exp⊕ exp
| exp⊗ exp | exp∗

Fig. 5(a) shows the recursive equation over S and {X1}, with regular right-hand
side “a(cX1d)∗b,” that corresponds to program (i) from Ex. 6.1.

Given a program, there may be some massaging required to create the correspond-
ing system of equations with regular right-hand sides. However, this transformation
can be performed automatically by applying Tarjan’s path-expression algorithm to
the CFG of each procedure of the program.8 The result of this pre-processing step
is a system of equations with regular right-hand sides.

The Differential of a Regular Expression. Because equation right-hand sides can
now include occurrences of Kleene-star, we need to be able to obtain the differential
of an expression of the form (g(~X))∗.

Theorem 6.3. Let f(~X) = (g(~X))∗, then

DXj
f |~ν(~Y) = (g(~ν))∗⊗DXj

g|~ν(~Y)⊗ (g(~ν))∗ (56)

8This application of Tarjan’s path-expression algorithm should not be confused with the later use
of the path-expression method to create parameterized regular expressions that are used to solve
Eqn. (53) on each round of NPA-TP. See steps 1 and 4 of Alg. 7.1.

30

Proof. First, consider the left-hand side of Eqn. (56).

DXjf |~ν(~Y) = DXj

(⊕
i∈N

gi

)
|~ν(~Y)

=
⊕
i∈N
DXjg

i|~ν(~Y)

=
⊕
i∈N

⊕
j+k=i–1
j, k ∈ N

(g(~ν))j ⊗DXjg|~ν(~Y)⊗ (g(~ν))k (57)

Because semiring multiplication (⊗) is non-commutative, the property used to de-
rive line (57) from the previous line is similar to the familiar rule from calculus(

d

dx
g(x)i

)∣∣∣∣
ν

= i g(ν)i−1
(
d

dx
g(x)

)∣∣∣∣
ν

,

re-expressed using i summands, as follows:∑
j+k=i–1
j, k ∈ N

g(ν)j
(
d

dx
g(x)

)∣∣∣∣
ν

g(ν)k.

Now consider the right-hand side of Eqn. (56).

(g(~ν))∗⊗DXj
g|~ν(~Y)⊗ (g(~ν))∗ =

⊕
j∈N

(g(~ν))j ⊗DXj
g|~ν(~Y)⊗

⊕
k∈N

(g(~ν))k

=
⊕
j,k∈N

(g(~ν))j ⊗DXj
g|~ν(~Y)⊗ (g(~ν))k (58)

We wish to show that (57) = (58).

(57) ⊇ (58). For each summand s of (58), we have 0 ≤ j and 0 ≤ k. Let
i = j + k + 1, and thus i ≥ 1, which means that s also occurs in (57).
(57) ⊆ (58). When i = 0, {(j, k) | j, k ∈ N∧j+k = −1} = ∅, and hence, because

the index is vacuous, the value in (57) of the sum⊕
j+k=i–1
j, k ∈ N

(g(~ν))j ⊗DXjg|~ν(~Y)⊗ (g(~ν))k (59)

is 0. For each i ≥ 1, Eqn. (59) is some non-vacuous sum s; moreover, j ∈ N and
k ∈ N, and hence s also occurs in (58).

For NPA, Thm. 6.3 implies that the differential of a component function fi(~X)
in an equation system with regular right-hand sides can be obtained by the rule
given in Defn. 2.5, extended with one more case for Kleene-star:

DXj
fi|~ν(~Y) = (g(~ν))∗⊗DXj

g|~ν(~Y)⊗ (g(~ν))∗ if fi = g∗ (60)

This rule, like the others given in Defn. 2.5, has a single recursive call on DXj
in

each summand. (There is only a single summand in Eqn. (60).) Consequently, when
31

(cν
1
d)*

proc Y1

b

a

b

a

Y1

(cν
1
d)*

(cν
1
d)*

proc Z1

Z1

1
t
?

a
(c
ν
1 d
)
*b

Y1 =
a(cν1d)

∗b
⊕ a(cν1d)∗Y1(cν1d)∗b

Z1 =
(1t� a(cν1d)∗b)

⊕T Z1⊗T
(

(a(cν1d)
∗)t

� (cν1d)
∗b

)
(a) (b)

Fig. 6. (a) NPA and (b) NPA-TP equation systems that result from the equation “X1 =

a(cX1d)∗b” (from Fig. 5(a)), when both NPA and NPA-TP are extended to handle Kleene-star.

Defn. 2.5 is augmented with the above rule, the NPA linearizing transformation is
still guaranteed to create an LCFL equation system over S. Therefore, for NPA-TP,
Thm. 6.3 implies that we can again create a left-linear equation system over ST by
applying τReg to the LCFL equation system. Alternatively, the tensored differential
of fi(~X) can be obtained by the rule given in Defn. 4.18, extended with one more
case for Kleene-star:

DTXj
fi|~ν(~Z)=DTXj

g|~ν(~Z)⊗T (((g(~ν))∗)t� (g(~ν))∗) if fi= g∗

Figs. 6(a) and (b) show, respectively, the LCFL and left-linear equations for Y1 and
Z1 obtained from Fig. 5(a) by these transformations.

There is an operational difference between the equation system used by Esparza
et al. (e.g., Fig. 5(c)) and the one described above (Fig. 6(a)). In particular, each
round of NPA creates successively better approximations of a set of procedure
summaries, one for each procedure in the program. Operationally, Y2 is improved
on each round of the Esparza et al. algorithm by pre-multiplying Y2 by cν1d (and
adding in some other terms, including one obtained by pre-multiplying Y1 by c and
post-multiplying by d(1⊕ ν2)). In contrast, on each round of the method described
above, Y2 is improved by pre-multiplying Y2 by a(cν1d)∗ and post-multiplying by
(cν1d)∗b.

7. ALGORITHM PRAGMATICS

NPA-TP can be implemented in a straightforward manner using Eqns. (52)
and (53). However, as mentioned in §4.6, the LCFL equation systems that arise
on successive rounds have a great deal of structure in common. To exploit these
commonalities, our implementation of NPA-TP implements Eqns. (52) and (53) as

32

described below.
In steps 4 and 5 of the algorithm, we work with regular expressions over an

alphabet whose symbols have the form 〈k, j〉. We use the notation R[〈k, j〉 ← E]
to denote R with regular expression E substituted in for all occurrences of 〈k, j〉.

Algorithm NPA-TP. The input is an interprocedural dataflow-analysis prob-
lem over admissible semiring S. Let ~X denote the set of n procedures of the program.

(1) Apply Tarjan’s path-expression algorithm to the CFG of each procedure in ~X
to create a system of recursive equations E in which
—each variable corresponds to one of the procedures in ~X
—the right-hand side of each equation is a regular expression over variables in
~X and constants in S.

That is, E = {Xj = Rhsj(~X) | Xj ∈ ~X}.
(2) For each equation Xj = Rhsj(~X) ∈ E, create the left-linear equation for Zj

over variables in ~Z and coefficients that are generalized regular expressions.

Zj = τReg(DRhsj |~ν(~Y)).

(Recall that τReg replaces Y ’s with Z’s.)
(3) Create a dependence graph G for the equation system created in step 2.

—G contains an edge Zk → Zj labeled 〈k, j〉 if the equation for Zj contains an
occurrence of Zk on the right-hand side.

—In addition, G contains a dummy vertex Λ, and for each Zj, an edge Λ→ Zj
labeled 〈0, j〉.

(4) Apply Tarjan’s path-expression algorithm to G (with entry vertex Λ) to create,
for each variable Zi ∈ ~Z, a regular expression Ri (with tensored operators) over
the alphabet {〈k, j〉 | 0 ≤ k ≤ n, 1 ≤ j ≤ n} (i.e., [0..n]× [1..n]).

(5) Create the map m, in which variable Zi, 1 ≤ i ≤ n, is mapped to the regular
expression

Ri[〈0, j〉 ← (1t�Rhsj(~ν))]

[〈1, j〉 ← Coeff1(τReg(DX1
Rhsj |~ν(~Y)))]

. . .

[〈n, j〉 ← Coeffn(τReg(DXn
Rhsj |~ν(~Y)))]

(6) i← 0; ~µ← ~f(~0)

(7) Repeat
(a) ~ν(i) = ~µ

(b) ~µ = 〈 (t,·)([[m(Zj)]]T ~ν
(i)) | Zj ∈ ~Z〉

(c) i← i+ 1

until (~ν(i−1) = ~µ)

(8) Return ~µ

Steps 6 and 7 create the Newton iterates. There are a few aspects of Alg. 7.1 that
are worth commenting on.

—Tarjan’s algorithm has two separate roles:
33

(1) In step 1, it is applied to each CFG of the program to create an equation
system with regular right-hand sides, which is the input to step 2. Because
this equation system can contain occurrences of Kleene-star, it was necessary
for us to extend the NPA linearizing transformation, as described in §6.2.

(2) In step 4, it is applied to dependence graph G. If you think of the symbols
〈k, j〉 on G’s edges as proxies for the regular expressions that replace the
symbols in step 5, G is a relatively straightforward encoding of Eqn. (53):
(i) The values (1t�Rhsj(~ν)) associated with edge-labels of the form 〈0, j〉
represent the (tensored) “seed values” (1t� fj(~ν)) from the first summand
“ ~f(~ν(i))⊕ . . .” of Eqn. (53). (ii) The remaining edges of G encode the regular
structure of the recursive portion of Eqn. (53), τReg(~Y = . . .⊕D ~f |~ν(i)(~Y)).

—Because of the calls to Coeffi in the substitutions performed in step 5, each
alphabet symbol 〈k, j〉 is replaced by a generalized regular expression. Note
that a generalized regular expression does not have any occurrences of a variable
Zk. Thus, the only variable-like quantities in each generalized regular expression
m(Zj) are occurrences of symbols, such as νk. These values are “constants” from
S during a given Newton round, but change value from round to round. In step
7b, rather than explicitly substituting the value (~ν(i))k—i.e., the kth component
of ~ν(i)—for νk in m(Zj) as a constant-valued leaf, we merely fetch (~ν(i))k by
look-up during regular-expression evaluation (Defn. 4.5).

—In the implementation, identical subexpressions of regular expressions are shared.
We use a variant of Defn. 4.5 that implements function caching to avoid redundant
evaluations in step 7b.

Example 7.2. Consider the equation system and corresponding graphical depic-
tion in Fig. 6(b). When Tarjan’s algorithm is applied to it in step 4 of Alg. 7.1,
the regular expression created for Z1 is 〈0, 1〉⊕〈0, 1〉(〈1, 1〉)∗. After step 5, m(Z1)
is the generalized regular expression

m(Z1) = (1t� a(cν1d)∗b)⊕T

 (1t� a(cν1d)∗b)

⊗T
(

(a(cν1d)∗)t

� (cν1d)∗b

)∗T
Steps 6 and 7 then repeat the following actions until convergence:

—Evaluate m(Z1) with respect to the current value of 〈ν1〉 to obtain, say, w1 ∈ ST .
—Set 〈ν1〉 to 〈 (t,·)(w1)〉.

Similarly, for Eqn. (38) and the corresponding graphical depiction in Fig. 3, the
regular expression created for Z2 is 〈0, 2〉⊕T 〈0, 2〉(〈2, 2〉)∗T . After step 5, m(Z2) is

m(Z2) =

(1t� (d⊕ b⊗ ν2⊗ ν2⊗ c))

⊕T
(

(1t� (d⊕ b⊗ ν2⊗ ν2⊗ c))
⊗T

(
(bt�(ν2⊗ c))⊕T ((b⊗ ν2)t� c)

)∗T)
The regular expression created for Z1 is 〈0, 1〉⊕T (〈0, 2〉⊕T 〈0, 2〉(〈2, 2〉)∗T)〈2, 1〉,
and m(Z1) is

m(Z1) = (1t� aν2)⊕T m(Z2)⊗T (at� 1).

Steps 6 and 7 then repeat the following actions until convergence:
34

—Evaluate m(Z1) and m(Z2) with respect to the current value of ~ν = 〈ν1, ν2〉 to
obtain, say, w1, w2 ∈ ST , respectively.

—Set 〈ν1, ν2〉 to 〈 (t,·)(w1), (t,·)(w2)〉.

Correctness. Let ~X? denote the least fixed-point of equation system E : ~X =
~f(~X). ~X? exists because we are working with an ω-continuous semiring. Our goal
is to relate Kleene iterate ~κ(i), Newton iterate ~ν(i), and ~X?. The following theorem
shows that each Newton iterate ~ν(i) is trapped between the corresponding Kleene
iterate ~κ(i) and the least solution ~X?.

Theorem 7.3. Let E : ~X = ~f(~X) be an equation system whose least fixed-point
is ~X?. Then for all i, ~κ(i) v ~ν(i) v ~X?.

Proof. Esparza et al. proved the theorem for NPA applied to an equation system
over a general semiring [Esparza et al. 2010, Thm. 3.9], but without occurrences
of Kleene-star. For the situation described in §6.1, where loops are handled by
transforming each procedure to eliminate all loops, Thm. 4.17 allows the theorem
of Esparza et al. to be carried over directly. Note that in Alg. 7.1, steps 6 and 7
create the Newton iterates using the set of regular expressionsm(Zi) created in step
5. These regular expressions can include occurrences of Kleene-star, but those uses
of Kleene-star are covered by Thm. 4.17: the regular expressions incorporate both
(a) the structure of the LCFL problems that need to be solved on each Newton
round (see steps 3 and 4), and (b) τReg-transformed versions of the LCFL right-
hand-side terms (see step 2).

For the situation described in §6.2, the component functions of the equation sys-
tem can now contain regular operators. The proof of the theorem for this situation
is covered by the proof of a slightly more general version of the theorem, Thm. 8.5,
given in §8.1.

The significance of Thm. 7.3 is that because successive Kleene iterates approach
~X?, successive Newton iterates must also approach ~X?.

Corollary 7.4. Given an interprocedural dataflow-analysis problem over an
admissible semiring that has no infinite ascending chains, Alg. 7.1 terminates with
the least solution.

8. LOCAL VARIABLES

This section discusses how to extend NPA and NPA-TP to handle programs with
local variables. We adopt the approach introduced by Knoop and Steffen [1992].
At a call site at which procedure P calls procedure Q, the local variables of P are
modeled as if the current incarnations of P ’s locals are stored in locations that
are inaccessible to Q and to procedures transitively called by Q—consequently, the
contents of P ’s locals cannot be affected by the call to Q; we use special merge
functions to combine them with the value returned by Q to create the state after Q
returns. (Other work using merge functions includes [Müller-Olm and Seidl 2004;
Lal et al. 2005].)

Definition 8.1. [Lal et al. 2005] Given semiring S = (D,⊕,⊗, 0, 1), a binary
function M : D × D → D is an acceptable merge function for S if M obeys
the following properties:

35

(1) (0-strictness) For all a, b ∈ D, M(a, 0) = 0 and M(0, b) = 0.
(2) (Distributivity)M distributes over finite and infinite combines in both argument

positions;9 i.e., for all a, ai, b, bi ∈ D and I ⊆ N,

M

(⊕
i∈I

ai, b

)
=
⊕
i∈I

M(ai, b)

M

(
a,
⊕
i∈I

bi

)
=
⊕
i∈I

M(a, bi)

(3) (Path extension) For all a, b, c ∈ D, M(a⊗ b, c) = a⊗M(b, c).

The introduction of merge functions changes interprocedural dataflow analysis
to a problem of “combine-over-all-nested-word-paths” [Knoop and Steffen 1992;
Müller-Olm and Seidl 2004; Lal et al. 2005].

Note that by setting b = 1, the path-extension property becomes

For all a, c ∈ D,M(a, c) = a⊗M(1, c). (61)

In an interprocedural-dataflow analysis problem, a corresponds to the abstract value
at the call-site in the caller, and c corresponds to the abstract value at the exit-site
in the callee. Eqn. (61) shows that for a given procedure Q, much of the work
needed for the merge operation for different call-sites on Q can be factored out as
m = M(1, c). The merge needed at the ith call-site on Q can then be completed by
performing ai⊗m.

Example 8.2. Consider the following program scheme:

X1() {
if (?) {

sa
} else {

sb; X2(); X1()
}

}

X2() }
if (?) {

sc
} else {

sd; X3(); X2()
}

}

X3() {
if (?) {

sg;
} else {

se; X2(); sh
}

}
which, with merge functions, corresponds to the following equation system, depicted
in Fig. 7:

X1 = a⊕M(M(b,X2), X1)
X2 = c⊕M(M(d,X3), X2)
X3 = g⊕(M(e,X2)⊗h).

(62)

By the path-extension property (Defn. 8.1(3)), Eqn. (62) can be re-written as fol-
lows, which is depicted in Fig. 8:

X1 = a⊕(b⊗M(1, X2)⊗M(1, X1))
X2 = c⊕(d⊗M(1, X3)⊗M(1, X2))
X3 = g⊕(e⊗M(1, X2)⊗h).

(63)

9The binary case of Defn. 8.1 simplifies to: for all a, a1, a2, b, b1, b2 ∈ D,

M(a1⊕ a2, b) = M(a1, b)⊕M(a2, b)

M(a, b1⊕ b2) = M(a, b1)⊕M(a, b2)

36

proc X1

b

M

proc X2 proc X3

e

M

h

M

ga

d

M

M

c

Fig. 7. Graphical depiction of Eqn. (62). Each collection of dotted/dashed lines with the same
rendering represents a call, its matching return, and the application of merge function M .

b

M

proc X1 proc X2 proc X3

e

M

h
M

ga

d

M

M

c

Fig. 8. Graphical depiction of Eqn. (63).

We extend our language of regular expressions with the unary operator Project(·),
whose semantics is [[Project(e)]]~ν = M(1, [[e]]~ν). Eqn. (63) can be rewritten using
Project as follows:

X1 = a⊕(b⊗Project(X2)⊗Project(X1))
X2 = c⊕(d⊗Project(X3)⊗Project(X2))
X3 = g⊕(e⊗Project(X2)⊗h).

(64)

However, in depictions of call-sites in figures, we will continue to use M instead of
Project because at a call-site it is easier to give a graphical depiction of a⊗M(1, c)
than a⊗Project(c)—see Figs. 8, 9, and 10.

37

8.1 Merge/Project for a Relational Weight Domain

When the state of a Boolean program has contributions from both global states G
and local states L, we use the relational weight domain on G×L, defined as ((G×
L)× (G×L)→ B,∪, ; , ∅, Id). A typical element will be denoted by R(G,L,G′, L′).

In this case, the following is an acceptable merge function:

M(R1, R2) = R1⊗M(1, R2)
= R1⊗Project(R2)

Project(R(G,L,G′, L′)) = (∃L,L′ : R) ∧ (L = L′).
(65)

Lemma 8.3. The M operation defined in Eqn. (65) is an acceptable merge func-
tion for S, in the sense of Defn. 8.1.

Proof. See App. B.

The Differential of Project. We extend the definition from §2 of the differential
DXjfi|~ν(~y) of a component function fi(~x) with a case for Project:

DXj
fi|~ν(~y) = Project(DXj

g|~ν(~y)) if fi = Project(g)

The intuition behind this definition is as follows:

—NPA is a kind of sampling method for the state space of the program: if procedure
P has multiple call-sites, then the linearized program used during a given round
of Newton’s method allows the analyzer to sample the state space of P by taking
the ⊕ of various paths through P . Along each such path through P , the abstract
values for the call-sites encountered are held fixed, except for possibly one call-
site on the path, which is explored by visiting (the linearized version of) the
called procedure. The abstract value for P and all the other procedures are
updated according to the results of this state-space exploration, and the algorithm
proceeds to the next Newton round.

—Each call-site on each of the paths in P is still just a call-site, regardless of
whether its value is held fixed, or whether the (linearized) called procedure is
explored. For each such call-site, the merge function still needs to be invoked.

Example 8.4. Fig. 9 depicts the equation system that results from applying the
NPA linearizing transformation to Eqn. (64), which creates the following equation
system:

Y1 =

a ⊕ (b⊗Project(ν2)⊗Project(ν1))
⊕ (b⊗Project(ν2)⊗Project(Y1))
⊕ (b⊗Project(Y2)⊗Project(ν1))


Y2 =

c ⊕ (d⊗Project(ν3)⊗Project(ν2))
⊕ (d⊗Project(ν3)⊗Project(Y2))
⊕ (d⊗Project(Y3)⊗Project(ν2))


Y3 =

(
g ⊕ (e⊗Project(ν2)⊗h)
⊕ (e⊗Project(Y2)⊗h).

)
(66)

Correctness. With the extension given here for local variables and in §6.2 for
loops, the component functions of an equation system E : ~X = ~f(~X) can now

38

proc Y1

b

proc Y3

e

M

h

ga

b

M

P
ro
je
ct(ν

2)

M

b

proc Y2

d

c

d

M

P
ro
je
ct(ν

3)

M

d e

h

P
ro
je
ct(ν

2)

1 1

111

Fig. 9. Graphical depiction of the equation system that results from applying the NPA linearizing
transformation to Eqn. (64).

contain both regular operators and occurrences of the operator Project. Let ~X?

denote the least fixed-point of E . The following theorem extends Thm. 7.3 to this
situation:

Theorem 8.5. Let E : ~X = ~f(~X) be an equation system whose right-hand-side
terms can contain both regular operators and occurrences of the operator Project,
and whose least fixed-point is ~X?. Then for all i, ~κ(i) v ~ν(i) v ~X?.

Proof. See App. A.1.

As mentioned earlier, Esparza et al. proved a similar theorem for NPA applied
to an equation system over a general semiring [Esparza et al. 2010, Thm. 3.9], but
without occurrences of Kleene-star and Project.

Thm. 8.5 concerns the variant of NPA defined by Eqns. (4) and (5), where D ~f |~ν(i)

is extended so that Eqn. (7) of Defn. 2.5 incorporates both (i) the rule for Kleene-
star from §6.2, and (ii) the rule for Project from §8.1. As mentioned in footnote 4,
Esparza et al. also show that if Eqn. (5) is changed to Eqn. (6) (repeated here for
the reader’s convenience),

~Y = ~f(~0)⊕D ~f |~ν(i)(~Y), (6)

the combinations Eqns. (4) and (5) and Eqns. (4) and (6) produce the same set
of iterates ~ν(0), ~ν(1), . . . , ~ν(i), . . . [Esparza et al. 2010, Prop. 7.1]. The following
theorem shows that this property carries over to our extensions of NPA, as well:

Theorem 8.6. Let E : ~X = ~f(~X) be an equation system whose right-hand-side
terms can contain both regular operators and occurrences of the operator Project.
Let the sequence N def

= [~ν(i) | i ∈ N] be defined by Eqns. (4) and (5), and the sequence
M

def
= [~µ(i) | i ∈ N] be defined by Eqns. (4) and (6). Then M = N .

39

Proof. See App. A.2.

8.2 Merge Functions and NPA-TP[PA]

To use NPA-TP[PA] to solve an equation system over a predicate-abstraction do-
main that involves local variables, we will focus on a special kind of equation system,
whose solution provides a projection value for each variable in the original equation
system. For instance, Eqn. (63) is rewritten as follows:

W1 = Project(X1) = Project(a⊕(b⊗W2⊗W1))
W2 = Project(X2) = Project(c⊕(d⊗W3⊗W2))
W3 = Project(X3) = Project(g⊕(e⊗W2⊗h)).

(67)

In a program-analysis problem, the value of Wi serves as a summary of procedure
Xi suitable for use in a caller of Xi. Once the

−→
W values are in hand, one can

obtain the ~X values by evaluating the right-hand side of the original equation. We
introduce a name for an equation system of this form:

Definition 8.7. An equation system over predicate-abstraction domain PA is a
projection-equation system if it has the form10

E :
−→
W = Project(~e(

−→
W)),

where each component function is defined by an expression of the form Project(ek),
and ek is an expression over variables in

−→
W , constants from PA, and the operators

⊕, ⊗, and ∗.
We use

−→
W ? to denote the least solution of E.

The introduction of the Project(·) operator creates an impediment to applying
Tarjan’s algorithm, which is limited to equation systems over the standard regular
operators. Fortunately, we are able to sidestep this difficulty because in an equa-
tion system like Eqn. (67) the locations of Project(·) are always associated with
the bodies of procedures. When the NPA linearizing transformation is applied to
projection-equation system

E :
−→
W = Project(~e(

−→
W)),

for the ith Newton round, we obtain the equation system

~Y = Project
(
~e(~ν(i))

)
⊕Project

(
D~e|~ν(i)(~Y)

)
,

and thus each equation has the form

Yk = Project
(
a
(i)
k

)
⊕Project

⊕
j

⊕
l

(
b
(i)
j,k,l⊗Yj ⊗ c

(i)
j,k,l

)
= Project

a(i)k ⊕⊕
j

⊕
l

(
b
(i)
j,k,l⊗Yj ⊗ c

(i)
j,k,l

) , (68)

10When Project (or ProjectT) is applied to a vector, our convention is that the operator is applied
componentwise.

40

where the superscript (i) serves as a reminder that the value depends on the value
of ~ν(i). In other words, the result of applying the NPA linearizing transformation
to a projection-equation system is a linear projection-equation system.

We extend the definition of regularizing transformation τReg from Defn. 4.2 as
follows:

Yk = Project

a(i)k ⊕⊕
j

⊕
l

(
b
(i)
j,k,l⊗Yj ⊗ c

(i)
j,k,l

)
Zk = ProjectT


(

1t� a(i)k
)

⊕T
⊕
T

j

⊕
T

l

(
Zj ⊗T

(
(b

(i)
j,k,l)

t� c(i)j,k,l
))

τReg

where Zk and Zj are variables that take on values from tensor-product semiring
ST .11

Turning to the case of tensor-transpose relational weights for use with a predicate-
abstraction domain, a suitable merge function can be defined as follows:

MT (T1, T2) = T1⊗T ProjectT (T2)
ProjectT (T (G′1, L

′
1, G2, L2, G1, L1, G

′
2, L
′
2))

= (∃L′1, L2, L1, L
′
2 : (T ∧ (L′1 = L2)))

∧ (L1 = L′1) ∧ (L2 = L′2)

(69)

The intuition behind Eqn. (69) is as follows:

—The conjunction . . .∧ (L′1 = L2) inside the existential quantifier performs a kind
of “eager” detensor-transpose on the portion of the relation that summarizes the
callee’s transformation on its local variables.

—The existential quantification of L′1, L2, L1, and L′2, havocs the locals (in a
manner similar to the existential quantification of L and L′ in Eqn. (65)).

—The conjuncts . . . ∧ (L1 = L′1) ∧ (L2 = L′2) set the summary relation for the
callee’s effect on the caller’s locals to the identity relation (in a manner similar
to the conjunct . . . ∧ (L = L′) in Eqn. (65)).

Lemma 8.8. TheMT operation defined in Eqn. (69) is an acceptable merge func-
tion for ST , in the sense of Defn. 8.1. In addition, ProjectT has the following
properties, for all a, ai, b ∈ ST and I ⊆ N:

ProjectT

(⊕
T

i∈I

ai

)
=
⊕
T

i∈I

ProjectT (ai) (70)

ProjectT (ProjectT (a)) = ProjectT (a) (71)
ProjectT (a)⊗T ProjectT (b) = ProjectT (a⊗T ProjectT (b)) (72)

11An alternative way to express the tensored regularizing transformation is that the tensored
differential of fi(~X) can be obtained by the rule given in Defn. 4.18, extended with one more case
for Project:

DTXj
fi|~ν(~Z) = ProjectT (DTXj

g|~ν(~Z)) if fi = Project(g)

41

= ProjectT (ProjectT (a)⊗T b) (73)

Proof. See App. C.

These properties allow us to push occurrences of ProjectT down to tensor-
product-semiring constants, as shown in the following lemma:

Lemma 8.9. For all Z defined by an equation of the form

Z = ProjectT

(
a⊕T

⊕
T

i

(Zi⊗T bi)

)
,

(1) ProjectT (Z) = Z

(2) ProjectT can be pushed down to semiring constants to obtain

Z = ProjectT (a)⊕T
⊕
T

i

(Zi⊗T ProjectT (bi)) .

Proof. Part (1):

Z = ProjectT

(
a⊕T

⊕
T

i

(Zi⊗T bi)

)

= ProjectT

(
ProjectT

(
a⊕T

⊕
T

i

(Zi⊗T bi)

))
by Eqn. (71)

= ProjectT (Z) by assumption

Part (2):

Z = ProjectT

(
a⊕T

⊕
T

i

(Zi⊗T bi)

)
= ProjectT (a)⊕T

⊕
T

i

ProjectT (Zi⊗T bi) by Eqn. (70)

= ProjectT (a)⊕T
⊕
T

i

ProjectT (ProjectT (Zi)⊗T bi) by Part (1)

= ProjectT (a)⊕T
⊕
T

i

(ProjectT (Zi)⊗T ProjectT (bi)) by Eqn. (73)

= ProjectT (a)⊕T
⊕
T

i

(Zi⊗T ProjectT (bi)) by Eqn. (71)

Thus, Lem. 8.9(2) allows each equation of the form

Zk = ProjectT


(

1t� a(i)k
)

⊕T
⊕
T

j

⊕
T

l

(
Zj ⊗T

(
(b

(i)
j,k,l)

t� c(i)j,k,l
))

to be rewritten so that all occurrences of ProjectT have been pushed down to
the tensor-product-semiring constants to obtain an equation system in which all

42

P
ro
je
ct
�
((b
⊗
ν
2)
t
?
1
)

proc Z1

Z2Z1

P
ro
je
ct
�
(1

t
?

(a
⊕
(b
⊗
ν
2 ⊗

ν
1)))

P
ro
je
ct
�
((d
⊗
ν
3)
t
?
1
)

proc Z2

Z3Z2

P
ro
je
ct
�
(1

t
?

(c
⊕
(d
⊗
ν
3 ⊗

ν
2)))

proc Z3

Z2

P
ro
je
ct
�
(1

t
?

(g
⊕
(e
⊗
ν
2 ⊗

h
)))

Fig. 10. Graphical depiction of the equation system that is produced for Eqn. (66) after occurrences
of ProjectT are introduced after step 2 of Alg. 7.1.

equations have the form12

Zk =

ProjectT
(

1t� a(i)k
)

⊕T
⊕
T

j

⊕
T

l

(
Zj ⊗T ProjectT

(
(b

(i)
j,k,l)

t� c(i)j,k,l
)) (74)

The significance of having an equation system in which all equations have the form
shown in Eqn. (74) is two-fold: (i) ProjectT is applied exclusively to constants in ST ,
and (ii) the equation system is left-recursive. Consequently, one can apply Tarjan’s
algorithm to this system of equations over ~Z, as is done in step 4 of Alg. 7.1.

Example 8.10. For Eqn. (66), we would obtain the following equations (see also
Fig. 10):

12Alternatively, for tensor-transpose relational weights, the act of pushing down of occurrences of
ProjectT can be built into τReg:

Yk = Project

a(i)k ⊕⊕
j

⊕
l

(
b
(i)
j,k,l⊗Yj ⊗ c

(i)
j,k,l

)
Zk =

ProjectT
(
1t� a(i)k

)
⊕T

⊕
T

j

⊕
T

l

(
Zj ⊗T ProjectT

(
(b

(i)
j,k,l)

t� c(i)j,k,l
)) τReg

43

Z1 =

 ProjectT (1t�(a⊕(b⊗ ν2⊗ ν1)))
⊕T Z1⊗T ProjectT ((b⊗ ν2)t� 1)
⊕T Z2⊗T ProjectT (bt� ν1)


Z2 =

 ProjectT (1t�(c⊕(d⊗ ν3⊗ ν2)))
⊕T Z2⊗T ProjectT ((d⊗ ν3)t� 1)
⊕T Z3⊗T ProjectT (dt� ν2)


Z3 =

(
ProjectT (1t�(g⊕(e⊗ ν2⊗h)))

⊕T Z2⊗T ProjectT (et�h).

)
Equivalently, one can elide all occurrences of Project in the original equation

system E , and in steps 1–4 of Alg. 7.1 work with an equation system with no oc-
currences of Project(·). Then, in step 5, occurrences of ProjectT can be introduced
by using the following method to create map m: each variable Zi, 1 ≤ i ≤ n, is
mapped to the regular expression

Ri[〈0, j〉 ← ProjectT (1t�Rhsj(~ν))]

[〈1, j〉 ← ProjectT (Coeff1(τReg(DX1
Rhsj |~ν(~Y))))]

. . .

[〈n, j〉 ← ProjectT (Coeffn(τReg(DXn
Rhsj |~ν(~Y))))]

Example 8.11. Consider again Ex. 7.2. The regular expression created for Z2

in step 4 is 〈0, 2〉⊕T 〈0, 2〉(〈2, 2〉)∗T . After step 5, m(Z2) becomes

ProjectT (1t� (d⊕ b⊗ ν2⊗ ν2⊗ c))

⊕T
(

ProjectT (1t� (d⊕ b⊗ ν2⊗ ν2⊗ c))
⊗T

(
ProjectT ((bt�(ν2⊗ c))⊕T ((b⊗ ν2)t� c))

)∗T)
Similarly, the regular expression created for Z1 is
〈0, 1〉⊕T (〈0, 2〉⊕T 〈0, 2〉(〈2, 2〉)∗T)〈2, 1〉, and m(Z1) is

ProjectT (1t� aν2)⊕T m(Z2)⊗T ProjectT (at� 1).

In practice, to use NPA-TP[PA] to solve a projection-equation system E :
−→
W =

Project(~e(
−→
W)), one would employ a variant of Alg. 7.1. However, for the purpose

of arguing correctness, we will use the following more straightforward breakdown
of NPA-TP[PA]:

(1) Alg. 8.12—given below—is used for solving linear projection-equation systems.
(Alg. 8.12 is essentially Alg. 4.4 with a few minor wording changes.)

(2) We create the Newton sequence ~ν(i), defined by

~ν(0) = Project(~e(~0))

~ν(i+1) = (t,·)(~Z(i))
(75)

where ~Z(i) is the least solution of Eqn. (74), and (t,·)(~Z(i)) is obtained via
Alg. 8.12.

Algorithm 8.12. To solve a linear projection-equation system L over predicate-
abstraction domain PA,

44

(1) Apply the version of τReg for projection-equation systems to L to create a left-
linear projection-equation system LT over the tensor-product semiring PAT .

(2) Use Tarjan’s path-expression algorithm to find a regular expression Regk for
each variable Zk in Eqn. (74).

(3) Obtain ~Z, the least solution to Eqn. (74): for each variable Zk, evaluate
Regk; i.e., Zk ← [[Regk]]T , where [[·]]T denotes the interpretation of the regular-
expression operators in PAT .

(4) Apply (t,·) to each component of ~Z; i.e., ~ν(i+1)
k ← (t,·)(Zk).

Theorem 8.13. Given a linear projection-equation system L over predicate-
abstraction domain PA, Alg. 8.12 finds the least solution of L.

Proof. See App. A.3.

Theorem 8.14. Suppose that E :
−→
W = Project(~e(

−→
W)) is a projection-equation

system over predicate-abstraction domain PA, and we create the sequence ~ν(i) de-
fined by Eqn. (75). Then, for all i, ~κ(i) v ~ν(i) v

−→
W ?.

Proof. A projection-equation system over a predicate-abstraction domain is
just a special case of an equation system over an admissible semiring, and therefore
the assumptions of Thm. 8.14 meet the conditions of Thm. 8.5. Consequently, for
all i, ~κ(i) v ~ν(i) v

−→
W ?.

9. IMPLEMENTATION AND EXPERIMENTS

The Implemented Solvers. We experimented with implementations of NPA and
NPA-TP, along with two non-Newton solvers.

—One conventional solver used chaotic iteration (implemented using the post∗ al-
gorithm for EWPDSs [Lal et al. 2005], followed by “path_summary” [Reps et al.
2005]). The other used an adaptation of Tarjan’s path-expression algorithm [Tar-
jan 1981a] for interprocedural analysis (the post∗ algorithm for FWPDSs [Lal and
Reps 2006], followed by path_summary). We refer to these as “EWPDS” and
“FWPDS,” respectively.

—For the Newton solvers, we first applied Tarjan’s path-expression algorithm to
each CFG of the program to create a system of equations with regular right-hand
sides. We then applied the differential operator (Defn. 2.5)—with the extensions
presented in §6 and §8—and τReg for the NPA-TP version. The NPA solver used
FWPDS to solve each LCFL problem, whereas the NPA-TP solver used the steps
given in Alg. 7.1.

To control for beneficial/detrimental effects because of the use of Tarjan’s algorithm
in both FWPDS and NPA-TP, we used FWPDS in the calls to path_summary in
all runs of all four solvers.

EWPDS and FWPDS are standard solvers available in the Weighted Automaton
Library (WALi) [Kidd et al. 2007]; NPA and NPA-TP were implemented using
primitives available in WALi.
OBDD Variable-Ordering Issues. The predicate-transformer relations of the
predicate-abstraction domain are represented with Ordered Binary Decision Dia-
grams (OBDDs) [Bryant 1986]. As is well-known, the size of the OBDD for a

45

(a)
E
W

P
D
S
vs.N

PA
.

(b)
N
PA

-T
P

vs.N
PA

.
G
eom

etric
m
eans:

8.75
→

31.6
G
eom

etric
m
eans:

1.62
→

4
.61

F
ig.11.

E
xperim

entalresults
(first

ofthree
figures):

Log-log
scatter

plots
ofsolver

tim
es

on
B
oolean

program
s
from

SD
V
,w

ith
a

300-second
tim

eout.
(Spaceouts

are
also

plotted
at

300
seconds.)

T
he

solid
diagonalline

indicates
equalperform

ance;the
dotted

and
dashed

lines
indicate

2x
speedup/slow

dow
n.

For
each

plot,w
e
report

tw
o
geom

etric
m
eans

ofthe
sets

ofY
/X

values:
(i)

w
hen

Y
and

X
both

com
plete,and

(ii)
w
hen

non-com
pletion

counts
as

300
seconds.

46

(a
)
E
W

P
D
S
vs
.N

PA
-T

P.
(b
)
E
W

P
D
S
vs
.F

W
P
D
S.

G
eo
m
et
ri
c
m
ea
ns
:

5.
2
0
→

6.
84

G
eo
m
et
ri
c
m
ea
ns
:

2.
2
2
→

2
.1

5

F
ig
.1

2.
E
xp

er
im

en
ta
lr

es
ul
ts

co
nt
in
ue
d
(s
ec
on

d
of

th
re
e
fig

ur
es
).

47

(a)
F
W

P
D
S
vs.N

PA
.

(b)
F
W

P
D
S
vs.N

PA
-T

P.
G
eom

etric
m
eans:

4.62
→

14.7
G
eom

etric
m
eans:

1.94
→

3
.19

F
ig.13.

E
xperim

entalresults
continued

(third
of

three
figures).

48

Boolean function is sensitive to the order chosen for the Boolean variables. When
NPA-TP is applied to a predicate-abstraction problem, the nature of the operations
that need to be performed places multiple constraints on what constitutes a good
variable ordering. It is necessary to reconcile three competing issues; that is, the
variable ordering must be suitable for

(1) Representing untensored relations, such as ~ν(i) and ~µ.
(2) Performing ⊗T and ⊕T of tensored relations (e.g., for evaluating [[m(Zj)]]T ~ν

(i)

in step 7b).
(3) Performing (t,·) on a tensored relation—e.g., for applying (t,·) to the result of

[[m(Zj)]]T ~ν
(i) in step 7b)—in particular, for representing the constraint A′ = B

imposed during (t,·).

We use the following notation to talk about a limited family of variable orderings:

Definition 9.1. Let A = [a1, a2, . . . , aN] and B = [b1, b2, . . . , bN] be two dis-
joint, equal-size vocabularies of Boolean variables. The interleaved vocabulary
[a1, b1, a2, b2, . . . , aN , bN] is denoted by LA ./ BM.

Untensored relations are often nearly the identity relation (i.e., semiring identity
1); hence, LA′ ./ AM is a good ordering for addressing issue 1.

In general, a tensored value T (A′, B,A,B′) represents a ⊕T of multiple tensor-
product summands, where each tensor-product operation couples two untensored
relations, each of whose values equals an ⊗ over a sequence of relations:

T (A′, B,A,B′) =
⊕
T

j

(
(⊗[Rj,k(A,A′) | k ∈ [n..1]])t

� (⊗[Sj,k(B,B′) | k ∈ [1..n]])

)
(76)

For a tensored value T (A′, B,A,B′), we use the variable ordering L(A′ ./ A) ./
(B ./ B′)M. Because the respective bits of A′ and B are close together, it is a good
ordering for representing A′ = B and hence addresses issue 3.

The untensored values created by (⊗[Rj,k(A,A′) | k ∈ [n..1]]) and
(⊗[Sj,k(B,B′) | k ∈ [1..n]]) in Eqn. (76) capture abstract-state transformations
from widely separated parts of the program: typically, they represent the trans-
formation from the entry of a procedure P up to a procedure call C, and the
transformation after C to the exit of P , respectively). Because these transforma-
tions are not a priori related, L(A′ ./ A) ./ (B ./ B′)M may not be a particularly
good ordering. However, as observed above, untensored relations are often nearly
the identity relation, in which case interleaving (A′ ./ A) with (B ./ B′) will keep
OBDDs small, which addresses issue 2.
Equation-Solving Experiments. Our experiments were designed to determine
which method for solving a set of equations is the fastest. In particular, for solving
predicate-abstraction problems,

(1) How many Newton rounds do NPA and NPA-TP perform?
(2) Is NPA faster than chaotic iteration?
(3) Is NPA-TP faster than NPA?
(4) Is NPA-TP faster than chaotic iteration?
(5) What is the algorithm of choice?

49

#Newton
#Completed #Timeouts #Spaceouts Rounds

EWPDS 495 16 73 N/A
FWPDS 483 32 69 N/A
NPA 290 142 152 3.38
NPA-TP 386 16 182 3.67

Table I. Completion rates for the solvers, along with the average number of Newton rounds
(completed runs only).

Our test suite consisted of 584 Boolean programs from the 3,366 Boolean programs
distributed with Microsoft’s Static Driver Verifier [Static Driver Verifier]. The test
suite consisted of all of the programs for which any of the four analyzers took more
than 1 second to run (prior to some optimizations implemented in the final week
before the submission to POPL 2016). Timings were taken on a Dell OptiPlex 3020
with four Intel Core i5-4570 CPUs (3.20GHz), equipped with 16 GB of memory,
running Windows 7 Enterprise 64-bit (6.1, Build 7601) SP1.
Results. Completion rates for the solvers are shown in Tab. I. Note that NPA had
significantly more timeouts, although somewhat fewer spaceouts than NPA-TP.

As one might expect, NPA and NPA-TP generally performed only a small number
of Newton rounds: column 5 of Tab. I reports the average number of rounds (for
completed runs only), including the final round needed to determine quiescence.

Figs. 11, 12, and 13 present scatter plots that compare the times for running one
solver against another. In each of the plots, the solver on the x-axis has better
performance: there are more points in the upper-left triangle, and both geometric
means are ≥ 1.

—Fig. 11(a) shows that chaotic iteration (EWPDS) performs far better than NPA
(geometric means: 8.75 → 31.6). Thus, at least for this test suite of Boolean
programs, these results answer Question 2 in the negative.

—Fig. 11(b) shows that the implementation of NPA-TP performs better than NPA
(geometric means: 1.62 → 4.61). Thus, for this test suite, our results answer
Question 3 in the positive: for Boolean programs, Alg. 7.1 succeeds in extending
the capabilities of Newtonian Program Analysis.

—Fig. 12(a) shows that NPA-TP is still slower than chaotic iteration (geometric
means: 5.20 → 6.84), which answers Question 4 in the negative. However, we
see that NPA-TP did better against chaotic iteration than NPA did.

—Fig. 12(b) shows that EWPDS is about 2x faster than FWPDS (geometric means:
2.22→ 2.15), although FWPDS is faster for some of the more compute-intensive
problems.

—Fig. 13(a) shows that FWPDS is much faster than NPA (geometric means:
4.62→ 14.7).

—Fig. 13(b) shows that FWPDS is faster than NPA-TP (geometric means: 1.94→
3.19), but again we see that NPA-TP did better against FWPDS than NPA did.

Overall, our results indicate that, among the four algorithms tested, the answer
to Question 5 is that EWPDS is the algorithm of choice for predicate-abstraction
problems.

50

10. RELATED WORK

To the best of our knowledge, this work is the first to consider the problem of
solving LCFL equations on semirings. Yannakakis [1990] considered the Boolean
case (LCFL reachability). The technique of McNaughton and Yamada [1960] for
obtaining a regular expression that describes the paths in a finite labeled graph
can be generalized from regular languages to LCFLs, but is much more costly than
Tarjan’s path-expression algorithm [Tarjan 1981a].

Tarjan’s path-expression algorithm was used earlier by Lal and Reps [2006] in a
much more straightforward algorithm for interprocedural dataflow analysis. (Their
algorithm was referred to as FWPDS in §9.) As in our method, they apply
the path-expression algorithm to each CFG of the program to create a system of
recursive equations with regular right-hand sides. They then solve those equations
directly via chaotic iteration. In contrast, NPA-TP converts the equation system to
left-linear form, switching from S values to ST values in the process. Because the
equation right-hand sides that are the input to this step can contain occurrences of
Kleene-star, it was necessary for us to extend the NPA linearizing transformation,
as described in §6.2. The resulting equation system is left-linear and Tarjan’s
algorithm is applied a second time to find a closed-form solution for each of the ST -
valued variables. The resulting regular expressions specify the computation that is
performed on each Newton round.

The performance of Tarjan’s path-expression algorithm can degenerate on non-
reducible graphs. Although the graphs to which we apply the algorithm are not
guaranteed to be reducible, in our experiments we found that the algorithm did not
consume a significant amount of time.

As mentioned in §3.2, if the extend (⊗) operation is commutative, it is trivial
to turn a linear problem into a left-linear problem, after which the path-expression
algorithm can be applied directly (without having to introduce tensored values).
Moreover, Esparza et al. proved that for an idempotent and commutative semiring,
the least fixed-point of an equation system over N variables is obtained via NPA
in at most N rounds [Esparza et al. 2010, Thm. 7.7].

A different implementation of NPA is discussed in [Schlund et al. 2013]. The two
experiments reported were both with commutative semirings, for which NPA-TP
is not needed.

Grathwohl et al. [2014] developed an extension of Kleene algebra with tests to
allow a finite amount of mutable state. They noted that one model of their extension
could be represented using Kronecker products of 2× 2 Boolean matrices, but did
not make further use of that fact.

Tensor Product and Detensor-Transpose. Lal et al. [2007] gave an algo-
rithm for a variant of intersection of two weighted automata, which involved a side-
condition on weight-products that can be formulated using an LCFL [Lal et al.
2007, §4]. The problem can be recast using an LCFL equation system to which the
algorithm of the present paper can be applied.

Admissible semirings were used by Lal et al. [2008] for context-bounded analy-
sis of concurrent programs. Tensor product was used to support the intersection
of weighted transducers. Analyses of different processes were performed indepen-
dently, and the restructuring of values enabled by � allowed the different analysis

51

results to be stitched together via intersection of weighted transducers. An opera-
tion similar to (t,·) was used to read out answers from the combined transducer.

That work has a high-level point of similarity with our work, which might be
termed the tensor-product principle :

Tensor products—plus an appropriate detensor operation—allow com-
putations to be rearranged in certain ways; they can be used to delay
performing every multiplication in a sequence of multiplications, which
is useful if either (a) a value that is only obtainable at a later time needs
to be placed in the middle of the sequence, or (b) a subsequence of val-
ues in the middle of the sequence needs to be adjusted in certain ways
before contributing to the overall product.

In this paper, we use only one level of tensor products because that is all that is
needed for “regularizing” an LCFL equation system. Lal et al. use 2k + 1 levels of
tensor products to capture k + 1 execution contexts and k context switches. Each
execution context contributes a subsequence of values that must be reordered to
compute the correct answer.

11. CONCLUSION

Our work attempted to unleash the promise of Newtonian program analysis. Our
NPA-TP technique applies to equation systems over any semiring that meets the
conditions of Defn. 4.1. The main technical result is a method to transform an
LCFL equation system over semiring S into a left-linear—and hence regular—
system of equations over a tensor-product semiring ST . This transformation is
both novel and surprising: formal-language theory tells us that LCFL) Regular,
and the canonical example of a non-regular language, {bici | i ∈ N}, is an LCFL.
Nevertheless, we showed that there are non-commutative semirings for which we
can apply such a transform with no loss of precision. We are not aware of any
previous work that uses a similar “regularizing” transformation.

In addition, we showed how to extend Newtonian program analysis in two ways:
(i) to handle loops via Kleene-star, and (ii) to handle local variables by means of
merge functions.

The experiments, based on Boolean programs, show that NPA-TP is only a qual-
ified success. Our work was motivated by the observation that standard NPA is
slower than chaotic iteration (cf. Fig. 11(a)). Our goal of speeding up Newtonian
program analysis was achieved (Fig. 11(b)); however, NPA-TP is still slower than
EWPDS (Fig. 12(a)). NPA-TP is also slower than FWPDS (Fig. 13(b)), a more
straightforward way of using Tarjan’s algorithm for interprocedural dataflow anal-
ysis [Lal and Reps 2006]. The head-to-head comparison of FWPDS with EWPDS
shows that EWPDS is about 2x faster than FWPDS, although FWPDS is faster
for some of the more compute-intensive problems (Fig. 12(b)). Overall, our results
indicate that, among the four algorithms tested, EWPDS is the algorithm of choice
for predicate-abstraction problems.

Acknowledgments

We thank Z. Kincaid for his help in finding an improved method for inserting
ProjectT operators when using NPA-TP to analyze programs with local variables

52

(see §8); A. Lal for articulating what we have called the “tensor-product principle”
(§10); and the POPL 2016 reviewers for their feedback on Reps et al. [2016].

REFERENCES

Ball, T. and Rajamani, S. 2000. Bebop: A symbolic model checker for Boolean programs. In
Spin Workshop.

Bouajjani, A., Esparza, J., and Touili, T. 2003. A generic approach to the static analysis of
concurrent programs with procedures. In POPL.

Bryant, R. 1986. Graph-based algorithms for Boolean function manipulation. IEEE Trans. on
Comp. C-35, 6 (Aug.), 677–691.

Cocke, J. 1970. Global common subexpression elimination. Proc. Symp. on Compiler Optimiza-
tion.

Cousot, P. and Cousot, R. 1978. Static determination of dynamic properties of recursive
procedures. In Formal Descriptions of Programming Concepts. North-Holland.

Elder, M., Lim, J., Sharma, T., Andersen, T., and Reps, T. 2014. Abstract domains of
affine relations. Trans. on Prog. Lang. and Syst. 36, 4 (Jan.).

Esparza, J., Kiefer, S., and Luttenberger, M. 2008. Newton’s method for omega-continuous
semirings. In ICALP.

Esparza, J., Kiefer, S., and Luttenberger, M. 2010. Newtonian program analysis. J.
ACM 57, 6.

Graf, S. and Saïdi, H. 1997. Construction of abstract state graphs with PVS. In CAV.
Graham, S. and Wegman, M. 1976. A fast and usually linear algorithm for data flow analysis.

J. ACM 23, 1, 172–202.
Grathwohl, N., Kozen, D., and Mamouras, K. 2014. KAT + B! In CSL-LICS.
Kam, J. and Ullman, J. 1976. Global data flow analysis and iterative algorithms. J. ACM 23, 1,

158–171.
Kam, J. and Ullman, J. 1977. Monotone data flow analysis frameworks. Acta Inf. 7, 3, 305–318.
Kidd, N., Lal, A., and Reps, T. 2007. WALi: The Weighted Automaton Library.
www.cs.wisc.edu/wpis/wpds/download.php.

Kildall, G. 1973. A unified approach to global program optimization. In POPL.
Knoop, J. and Steffen, B. 1992. The interprocedural coincidence theorem. In CC.
Knuth, D. 1977. A generalization of Dijkstra’s algorithm. Inf. Proc. Let. 6, 1, 1–5.
Lal, A., Kidd, N., Reps, T., and Touili, T. 2007. Abstract error projection. In Static Analysis

Symp.
Lal, A. and Reps, T. 2006. Improving pushdown system model checking. In CAV.
Lal, A., Reps, T., and Balakrishnan, G. 2005. Extended weighted pushdown systems. In

CAV.
Lal, A., Touili, T., Kidd, N., and Reps, T. 2007. Interprocedural analysis of concurrent
programs under a context bound. Tech. Rep. TR-1598, Comp. Sci. Dept., Univ. of Wisconsin,
Madison, WI. July.

Lal, A., Touili, T., Kidd, N., and Reps, T. 2008. Interprocedural analysis of concurrent
programs under a context bound. In TACAS.

McNaughton, R. and Yamada, H. 1960. Regular expressions and state graphs for automata.
IRE Trans. on Elec. Computers 9, 39–47.

Möncke, U. and Wilhelm, R. 1991. Grammar flow analysis. In Attribute Grammars, Applica-
tions and Systems, (Int. Summer School SAGA). 151–186.

Müller-Olm, M. and Seidl, H. 2004. Precise interprocedural analysis through linear algebra.
In POPL.

Müller-Olm, M. and Seidl, H. 2005. Analysis of modular arithmetic. In ESOP.
Ramalingam, G. 1996. Bounded Incremental Computation. Springer-Verlag.
Reps, T., Lal, A., and Kidd, N. 2007. Program analysis using weighted pushdown systems. In

FSTTCS.

53

Reps, T., Schwoon, S., Jha, S., and Melski, D. 2005. Weighted pushdown systems and their
application to interprocedural dataflow analysis. SCP 58, 1–2 (Oct.), 206–263.

Reps, T., Turetsky, E., and Prabhu, P. 2016. Newtonian program analysis via tensor product.
In POPL.

Schlund, M., Terepeta, M., and Luttenberger, M. 2013. Putting Newton into practice: A
solver for polynomial equations over semirings. In LPAR.

Sharir, M. and Pnueli, A. 1981. Two approaches to interprocedural data flow analysis. In
Program Flow Analysis: Theory and Applications. Prentice-Hall.

Static Driver Verifier. Static driver verifier. msdn.microsoft.com/en-
us/library/windows/hardware/ff552808(v=vs.85).aspx.

Tapia, R. 2008. Inverse, shifted inverse, and Rayleigh quotient iteration as Newton’s method.
www.frequency.com/video/lecture-series-/18347021.

Tarjan, R. 1981a. Fast algorithms for solving path problems. J. ACM 28, 3, 594–614.
Tarjan, R. 1981b. A unified approach to path problems. J. ACM 28, 3, 577–593.
Ullman, J. 1973. Fast algorithms for the elimination of common subexpressions. Acta Inf. 2,

191–213.
Vyssotsky, V. and Wegner, P. 1963. A graph theoretical Fortran source language analyzer.

Unpublished technical report, Bell Labs, Murray-Hill NJ (as cited in Aho et al., “Compilers:
Principles, Techniques, and Tools”, Addison-Wesley, 1986).

Yannakakis, M. 1990. Graph-theoretic methods in database theory. In PODS.

A. CORRECTNESS PROOFS

The paper presents two extensions to NPA and three variants of NPA-TP, which
are discussed in the following sections of the paper:

Operators NPA NPA-TP
⊕,⊗ Esparza et al. [Esparza et al. 2008; 2010] §4
⊕,⊗, ∗ §6.2 §6.2
⊕,⊗, ∗,Project §8.1 §8.2

In general, we consider an equation system E : ~X = ~f(~X) over admissible semiring
S, possibly with occurrences of Kleene-star and Project in the component functions
of ~f .13 We use ~X? to denote the least solution of E (i.e., ~X? is the least fixed-point

of E and equals
∞⊕
i=0

~f i(~0)). ~X? exists because we are working with an ω-continuous

semiring. For the NPA cases, correctness means

—The Newton sequence obtained using the respective extended definition of the
multivariate differential converges to ~X?.

For the three NPA-TP cases, correctness needs to be argued in two parts:

13An interprocedural dataflow-analysis problem over admissible semiring S can be converted into
an equation system of the above form by applying Tarjan’s path-expression algorithm to the CFG
of each procedure—as is done in step 1 of Alg. 7.1. The result is an equation system E : ~X = ~f(~X)

in which

—the variables in ~X correspond to the procedures of the program, and
—the right-hand side of each equation is an expression over variables in ~X, constants from S, and

the operators ⊕, ⊗, ∗, and Project.

That is, E = {Xj = Rhsj(~X) | Xj ∈ ~X}. For NPA with Project, each expression Rhsj has an
occurrence of Project(Xk) for each call on procedure k in procedure j.

54

(1) We need to show that our method for solving an LCFL equation system L over
an admissible semiring finds the least solution of L.

(2) We need to show that the Newton sequence obtained using
(a) the respective extended definition of the multivariate differential, and
(b) the LCFL equation solver
converges to ~X?.

The remainder of this appendix is structured around the entries in the following
table that do not follow immediately from Esparza et al. [Esparza et al. 2010, Thm.
3.9] and Thm. 4.17:

NPA-TP
Operators NPA Part 1 Part 2

⊕,⊗ [Esparza et al. 2010], Thm. 4.17 [Esparza et al. 2010],
Thm. 3.9 (§4.5) Thm. 3.9

⊕,⊗, ∗ Thm. 8.5 Thm. 8.5
⊕,⊗, ∗,Project (App. A.1) Thm. 8.14 (§8.2 (App. A.1)

and App. A.3)

Fortunately, matters boil down to two theorems:

—Thm. 8.5 (App. A.1), which extends NPA to equation systems that contain oc-
currences of Kleene-star and Project.

—Thm. 8.14 (§8.2), which extends NPA to projection-equation systems—equation
systems of the special form introduced in §8.2—over a predicate-abstraction do-
main.

Thm. 8.14 relies on Thm. 8.13, whose proof is given in App. A.3. Thm. 8.13 is
similar to Thm. 4.17—the proof of correctness of Alg. 4.4 for solving an LCFL
equation system over an admissible semiring—except that it applies to a linear
projection-equation system over a predicate-abstraction domain.

For the two NPA cases and Part 2 of each of the three NPA-TP cases, our
goal is to relate Kleene iterate ~κ(i), Newton iterate ~ν(i), and ~X?—in particular,
to show that ~κ(i) v ~ν(i) v ~X? holds. Esparza et al. proved a similar theorem
[Esparza et al. 2010, Thm. 3.9], but because we now allow an equation system to
contain occurrences of Kleene-star and Project, we need to prove the result for such
extended systems.

Note that the operators ⊕, ⊗, and Project all distribute over ⊕, in each argument
position:

—For ⊕, distributivity follows from associativity, commutativity, and idempotence.
—The distributivity of ⊗ over ⊕ is assumed in Defn. 2.1.
—The distributivity of Project over ⊕ follows from Defn. 8.1(2) and the definition
of Project(a) as M(1, a).

Distributivity implies that⊕, ⊗, and Project are all monotonic in each argument po-
sition. For instance, suppose that a v b and operation p(. . . , vi, . . .) is distributive in
the ith position. Then p(. . . , b, . . .) = p(. . . , a⊕ b, . . .) = p(. . . , a, . . .)⊕ p(. . . , b, . . .),
and hence p(. . . , a, . . .) v p(. . . , b, . . .).

55

Kleene-star does not distribute over ⊕, but is monotonic: let a v b; by the
monotonicity of ⊗, for all i ∈ N, ai v bi; then a∗ =

⊕
i∈N

ai v
⊕
i∈N

(ai⊕ bi) =
⊕
i∈N

bi

= b∗.
By the argument above, each subexpression of an expression over variables in

~X, constants from S, and the operators ⊕, ⊗, ∗, and Project is monotonic in
each argument. In particular, each subexpression of each component function fi is
monotonic, as are each subexpression of DXjfi|~ν(~Y), Dfi|~ν(~Y), and D ~f |~ν(~Y). In
addition, DXj

fi|~ν(~Y), Dfi|~ν(~Y), and D ~f |~ν(~Y) are each monotonic in ~ν.

A.1 NPA with Operators ⊕, ⊗, ∗, and Project

For brevity, we combine the proofs for (i) NPA with ⊕, ⊗, and ∗, and (ii) NPA
with ⊕, ⊗, ∗, and Project.

To be clear about the algorithm we are considering, we state here the algorithm
for NPA with ⊕, ⊗, ∗, and Project.

Algorithm A.1. The input is an equation system E : ~X = ~f(~X) over ad-
missible semiring S, possibly with occurrences of Kleene-star and Project in the
component functions of ~f . Let ~X denote the set of variables in E.

(1) i← 0; ~µ← ~f(~0)

(2) Repeat

(a) ~ν(i) = ~µ

(b) ~µ = the least solution of

~Y = ~f(~ν(i))⊕D ~f |~ν(i)(~Y), (5)

where D ~f |~ν(i) is extended so that Eqn. (7) of Defn. 2.5 incorporates both
(i) the rule for Kleene-star from §6.2, and (ii) the rule for Project from
§8.1.

(c) i← i+ 1

until (~ν(i−1) = ~µ)

(3) Return ~µ

Lemma A.2. For all ~w such that ~ν v ~w, DXj
fi|~ν(~w) v fi(~w).

56

Proof. By structural induction on the expression for fi.

if fi = s ∈ S : LHS = 0 v s = RHS
if fi = Xk and k 6= j : LHS = 0 v wk = RHS
if fi = Xj : LHS = wj = RHS

if fi = g⊗h : LHS =

(
DXj

g|~ν(~w)⊗h(~ν)
⊕ g(~ν)⊗DXj

h|~ν(~w)

)
v g(~w)⊗h(~ν)⊕ g(~ν)⊗h(~w) by the ind. hyp.
v g(~w)⊗h(~w)⊕ g(~w)⊗h(~w) by monotonicity
= g(~w)⊗h(~w)
= RHS

if fi =
⊕
k∈K

gk : LHS =
⊕
k∈K
DXj

gk|~ν(~w)

v
⊕
k∈K

gk(~w) by the ind. hyp.

= RHS
if fi = g∗ : LHS = g(~ν)∗⊗DXj

g|~ν(~w)⊗ g(~ν)∗

v g(~ν)∗⊗ g(~w)⊗ g(~ν)∗ by the ind. hyp.
v g(~w)∗⊗ g(~w)⊗ g(~w)∗ by monotonicity
=
⊕∞

i=1 g(~w)i

= 0⊕
(⊕∞

i=1 g(~w)i
)

for all a, 0⊕ a = a
=
⊕∞

i=0 g(~w)i

= RHS
if fi = Project(g) : LHS = Project(DXjg|~ν(~w))

v Project(g(~w)) by the ind. hyp.
= RHS

Corollary A.3. For all ~w such that ~ν v ~w, D ~f |~ν(~w) v ~f(~w).

Proof. Immediate from the definition of D ~f |~ν(~w) (Defn. 2.5) and Lem. A.2.

Lemma A.4. Let

(1) ~ν be a vector such that ~ν v ~X?.

(2) ~Y ? denote the least solution of ~Y = ~f(~ν)⊕D ~f |~ν(~Y).

Then ~Y ? v ~X?.

Proof. Let ~F denote the function λ~y. ~f(~ν)⊕D ~f |~ν(~y). By Kleene’s fixed-point

theorem, ~Y ? =

∞⊕
i=0

~F i(~0). We proceed by induction.

Base case. ~F 0(~0) = ~0 v ~X?.

Induction step. Assume that
~F k(~0) v ~X?. (77)

57

~F is monotonic, so by applying ~F to both sides of Eqn. (77), we have

~F k+1(~0) v ~F (~X?)

= ~f(~ν)⊕D ~f |~ν(~X?)

v ~f(~ν)⊕ ~f(~X?) by premise 1 and Cor. A.3
= ~f(~X?) by premise 1 and the monotonicity of ~f
= ~X? ~X? is a fixed-point of ~f

Thus, for all i ∈ N, ~F i(~0) v ~X?, and hence ~Y ? v ~X?.

Lemma A.5. Suppose that ~a v ~b, ~Y ?~a is the least solution to ~Y =
~f(~a)⊕D ~f |~a(~Y), and ~Y ?~b is the least solution to ~Y = ~f(~b)⊕D ~f |~b(~Y). Then
~Y ?~a v ~Y ?~b .

Proof. Let ~F~a and ~F~b denote the functions λ~y. ~f(~a)⊕D ~f |~a(~y) and
λ~y. ~f(~b)⊕D ~f |~b(~y), respectively. By the monotonicity of ~f and D ~f |~ν(~Y), ~F~a v ~F~b.
By an easy induction, for all j ∈ N, ~F j~a (~0) v ~F j~b

(~0), and hence

~Y ?~a =

∞⊕
j=0

~F j~a (~0) v
∞⊕
j=0

~F j~b
(~0) = ~Y ?~b .

Corollary A.6. The elements {~ν(k)} of the sequence obtained using Eqns. (4)
and (5) have the property that, for all i ∈ N, ~ν(i) v ~ν(i+1).

Proof. Base case. From the form of the equation ~Y = ~f(~ν)⊕D ~f |~ν(~Y) and
the monotonicity of ~f , we know that ~Y ? w ~f(~ν) w ~f(~0), and hence for all i ∈ N,
~ν(i) w ~f(~0). In particular,

~ν(1) w ~f(~0) = ~ν(0).

Induction step. Assume that ~ν(k−1) v ~ν(k); show that ~ν(k) v ~ν(k+1).
By Lem. A.5,

~ν(k) = ~Y ?
~ν(k−1) v ~Y ?

~ν(k) = ~ν(k+1).

Therefore, for all i ∈ N, ~ν(i) v ~ν(i+1).

Theorem 8.5. Let E : ~X = ~f(~X) be an equation system whose right-hand-side
terms can contain both regular operators and occurrences of the operator Project,
and whose least fixed-point is ~X?. Then for all i, ~κ(i) v ~ν(i) v ~X?.

Proof. Let ~Y ?k denote the least solution of

~Y = ~f(~ν(k))⊕D ~f |~ν(k)(~Y).

Part 1: Show that, for all i ∈ N, ~κ(i) v ~ν(i).

Base case. ~κ(0) = ~0 v ~f(~0) = ~ν(0).
58

Induction step. Assume that ~κ(k) v ~ν(k). Then ~κ(k+1) = ~f(~κ(k)) v ~f(~ν(k)) v
~Y ?k = ~ν(k+1).

Therefore, for all i ∈ N, ~κ(i) v ~ν(i).

Part 2: Show that, for all i ∈ N, ~ν(i) v ~X?.

Base case. ~ν(0) = ~f(~0) v
∞⊕
i=0

~f i(~0) = ~X?.

Induction step. Assume that ~ν(k) v ~X?. By the induction hypothesis and
Lem. A.4, ~Y ?k v ~X?. Consequently, ~ν(k+1) = ~Y ?k v ~X?.

Therefore, for all i ∈ N, ~ν(i) v ~X?.

A.2 NPA with Operators ⊕, ⊗, ∗, and Project, and Iterates Computed Via ~Y =
~f(~0)⊕D ~f |~ν(i)(~Y)

This section addresses NPA with the operators ⊕, ⊗, ∗, and Project, but where
Eqn. (5) in Alg. A.1 is changed to Eqn. (6):

~Y = ~f(~0)⊕D ~f |~ν(i)(~Y), (6)

The advantage of using Eqn. (6) is that it eliminates the need to compute ~f(~ν(i))
explicitly on each Newton round. In this section, we show that the combina-
tions Eqns. (4) and (5) and Eqns. (4) and (6) produce the same set of iterates
~ν(0), ~ν(1), . . . , ~ν(i), (See the proof of Thm. 8.6 at the end of this subsection.)

Lemma A.7. For all ~w such that ~ν w ~w, fi(~0)⊕Dfi|~ν(~w) w fi(~w).

59

Proof. By structural induction on the expression for fi.

if fi = s ∈ S : LHS = s⊕ 0 = s = RHS

if fi = Xj : LHS = 0⊕
n⊕
k=1

DXk
Xj |~ν(~w)

= wj
= RHS

if fi =
⊕
k∈K

gk : LHS =
⊕
k∈K

gk(~0)⊕
⊕
k∈K
Dgk|~ν(~w)

=
⊕
k∈K

(
gk(~0)⊕Dgk|~ν(~w)

)
w
⊕
k∈K

gk(~w)

= RHS

if fi = g⊗h : LHS = (g⊗h)(~0)⊕
(
Dg|~ν(~w)⊗h(~ν)
⊕ g(~ν)⊗Dh|~ν(~w)

)
=
(
g(~0)⊗h(~0)

)
⊕
(
Dg|~ν(~w)⊗h(~ν)
⊕ g(~ν)⊗Dh|~ν(~w)

)

=



(
g(~0)⊗h(~0)

)
⊕
(
Dg|~ν(~w)⊗h(~0)

⊕ g(~0)⊗Dh|~ν(~w)

)
⊕
(
Dg|~ν(~w)⊗h(~ν)
⊕ g(~ν)⊗Dh|~ν(~w)

)


=


(
g(~0)⊗h(~0)

)
⊕
(
Dg|~ν(~w)⊗h(~0)

)
⊕
(
g(~0)⊗h(~0)

)
⊕
(
g(~0)⊕Dh|~ν(~w)

)
⊕
(
Dg|~ν(~w)⊗h(~ν)
⊕ g(~ν)⊗Dh|~ν(~w)

)


=


(
g(~0)⊕Dg|~ν(~w)

)
⊗h(~0)

⊕ g(~0)⊗
(
h(~0)⊕Dh|~ν(~w)

)
⊕
(
Dg|~ν(~w)⊗h(~ν)
⊕ g(~ν)⊗Dh|~ν(~w)

)


w


g(~w)⊗h(~0)

⊕ g(~0)⊗h(~w)

⊕
(
Dg|~ν(~w)⊗h(~ν)
⊕ g(~ν)⊗Dh|~ν(~w)

)


w


g(~w)⊗h(~0)

⊕ g(~0)⊗h(~w)

⊕
(
Dg|~ν(~w)⊗h(~w)
⊕ g(~w)⊗Dh|~ν(~w)

)


=

 (
g(~w)⊗h(~0)

)
⊕
(
g(~w)⊗Dh|~ν(~w)

)
⊕
(
g(~0)⊗h(~w)

)
⊕
(
Dg|~ν(~w)⊗h(~w)

)


60

=

 g(~w)⊗
(
h(~0)⊕Dh|~ν(~w)

)
⊕
(
g(~0)⊕Dg|~ν(~w)

)
⊗h(~w)


w g(~w)⊗h(~w)
= RHS

if fi = g∗ : LHS = g∗(~0)⊕Dg∗|~ν(~w)

=

(
∞⊕
j=0

gj

)
(~0)⊕D

(
∞⊕
j=0

gj

)
|~ν(~w)

=

(
∞⊕
j=0

gj(~0)

)
⊕
∞⊕
j=0

(
Dgj |~ν(~w)

)
=
∞⊕
j=0

(
gj(~0)⊕Dgj |~ν(~w)

)
We now need to show by induction that for all j,

gj(~0)⊕Dgj |~ν(~w) w gj(~w). (78)

Note that Eqn. (78) does not follow immediately from the structural induction
because gj is not a syntactic constituent of fi (= g∗).

Base case, j = 0.

LHS = g0(~0)⊕Dg0|~ν(~w) = 1⊕ 0 = 1 = g0(~w) = RHS.

Induction step. Assume that gk(~0)⊕Dgk|~ν(~w) w gk(~w). We need to show that
gk+1(~0)⊕Dgk+1|~ν(~w) w gk+1(~w). However, gk+1 = gk ⊗ g, so the same argument
used in the case for “fi = g⊗h” in the structural induction can be reused:

LHS = (gk ⊗ g)(~0)⊕
(
Dgk|~ν(~w)⊗ g(~ν)
⊕ gk(~ν)⊗Dg|~ν(~w)

)
=
(
gk(~0)⊗ g(~0)

)
⊕
(
Dgk|~ν(~w)⊗ g(~ν)
⊕ gk(~ν)⊗Dg|~ν(~w)

)
= . . . intermediate steps omitted . . .

=

 gk(~w)⊗
(
g(~0)⊕Dg|~ν(~w)

)
⊕
(
gk(~0)⊕Dgk|~ν(~w)

)
⊗ g(~w)


w gk(~w)⊗ g(~w)
= RHS

Therefore, for all j ∈ N, gj(~0)⊕Dgj |~ν(~w) w gj(~w).
The case for “if fi = g∗” in the structural induction continues as follow:

∞⊕
j=0

(
gj(~0)⊕Dgj |~ν(~w)

)
w
∞⊕
j=0

gj(~w)

=

(
∞⊕
j=0

gj

)
(~w)

= g∗(~w)
= RHS

61

if fi = Project(g) : LHS = Project(g(~0))⊕Project(Dg|~ν(~w))

= Project(g(~0)⊕Dg|~ν(~w))
w Project(g(~w))
= RHS

Corollary A.8. for all ~w such that ~ν w ~w, ~f(~0)⊕D ~f |~ν(~w) w ~f(~w).

Proof. Immediate from the definition of D ~f |~ν(~w) (Defn. 2.5) and Lem. A.7.

Remark A.9. Cor. A.8 is almost, but not quite the dual of Cor. A.3:

Cor. A.3: ~ν v ~w implies that D ~f |~ν(~w) v ~f(~w)

Cor. A.8: ~ν w ~w implies that ~f(~0)⊕D ~f |~ν(~w) w ~f(~w)

The reason why Lem. A.7 is stated in terms of Dfi|~ν(~w) rather than DXjfi|~ν(~w),
as in Lem. A.2, is because in the “if fi = Xj” case of Lem. A.7, we need access to
all of the DXk

Xj |~ν(~w) terms, so that their combine yields wj.
Also, the reason we have “ ~f(~0)⊕ . . .” in Lem. A.7 is so that the “if fi = s ∈ S”

case works out correctly: the ~f(~0) term supplies the value s on the left-hand side,
which is needed to match the fi(w) = s that appears on the right-hand side.

Lemma A.10. Suppose that ~a v ~b, ~Y ?~a is the least solution to ~Y =
~f(~0)⊕D ~f |~a(~Y), and ~Y ?~b is the least solution to ~Y = ~f(~0)⊕D ~f |~b(~Y). Then
~Y ?~a v ~Y ?~b .

Proof. Let ~G~a and ~G~b denote the functions λ~y. ~f(~0)⊕D ~f |~a(~y) and
λ~y. ~f(~0)⊕D ~f |~b(~y), respectively. By the monotonicity of D ~f |~ν(~Y), ~G~a v ~G~b. By an
easy induction, for all j ∈ N, ~Gj~a(~0) v ~Gj~b

(~0), and hence

~Y ?~a =

∞⊕
j=0

~Gj~a(~0) v
∞⊕
j=0

~Gj~b
(~0) = ~Y ?~b .

Corollary A.11. The elements {~ν(k)} of the sequence obtained using Eqns. (4)
and (6) have the property that, for all i ∈ N, ~ν(i) v ~ν(i+1).

Proof. Base case. From the form of the equation ~Y = ~f(~0)⊕D ~f |~ν(~Y), we
know that ~Y ? w ~f(~0), and hence for all i ∈ N, ~ν(i) w ~f(~0). In particular,

~ν(1) w ~f(~0) = ~ν(0).

Induction step. Assume that ~ν(k−1) v ~ν(k); show that ~ν(k) v ~ν(k+1).
By Lem. A.10,

~ν(k) = ~Y ?
~ν(k−1) v ~Y ?

~ν(k) = ~ν(k+1).

Therefore, for all i ∈ N, ~ν(i) v ~ν(i+1).
62

The next theorem shows that it does not matter whether we compute the Newton
iterates using Eqn. (5) or Eqn. (6).

Theorem 8.6. Let E : ~X = ~f(~X) be an equation system whose right-hand-side
terms can contain both regular operators and occurrences of the operator Project.
Let the sequence N def

= [~ν(i) | i ∈ N] be defined by Eqns. (4) and (5), and the
sequence M def

= [~µ(i) | i ∈ N] be defined by Eqns. (4) and (6). Then M = N .

Proof. For all i ∈ N, ~µ(i) v ~µ(i+1) and ~ν(i) v ~ν(i+1), by Cors. A.6 and A.11,
respectively.

We now show by induction that, for all i ∈ N, ~µ(i) = ~ν(i).

Base case, i = 0. ~µ(0) = ~f(0) = ~ν(0).

Induction step. Assume that ~µ(i) = ~ν(i); show that ~µ(i+1) = ~ν(i+1).
~U?

def
= ~µ(i+1) is the least solution of ~U = ~f(~0)⊕D ~f |~µ(i)(~U), whereas ~ν(i+1)

is the least solution of ~Y = ~f(~ν(i))⊕D ~f |~ν(i)(~Y). Let ~Gi denote the function
λ~u. ~f(~0)⊕D ~f |~µ(i)(~u) and ~Fi denote the function λ~y. ~f(~ν(i))⊕D ~f |~ν(i)(~y). Because
~f(~0) v ~f(~ν) and ~µ(i) = ~ν(i), ~Gi v ~Fi. By an easy induction, for all j ∈ N
~Gji (~0) v ~F ji (~0), and hence

~µ(i+1) =

∞⊕
j=0

~Gji (~0) v
∞⊕
j=0

~F ji (~0) = ~ν(i+1). (79)

We now wish to show that ~µ(i+1) is a fixed-point of ~Fi.

~Fi(~µ
(i+1)) = ~Fi(~U

?)

= ~f(~ν(i))⊕D ~f |~ν(i)(~U?)

= ~f(~µ(i))⊕D ~f |~µ(i)(~U?) because ~ν(i) = ~µ(i)

= ~f(~µ(i))⊕ ~f(~0)⊕D ~f |~µ(i)(~U?) ~f(~0) v ~f(~µ(i))

= ~f(~µ(i))⊕ ~U? ~U? = ~f(~0)⊕D ~f |~µ(i)(~U?)

However,

~f(~µ(i)) v ~f(~0)⊕D ~f |~µ(i)(~µ(i)) by Cor. A.8, using ~µ(i) v ~µ(i)

v ~f(~0)⊕D ~f |~µ(i)(~µ(i+1)) by Cor. A.11 and monotonicity

= ~f(~0)⊕D ~f |~µ(i)(~U?) ~µ(i+1) = ~U?

= ~U? ~U? = ~f(~0)⊕D ~f |~µ(i)(~U?)

Putting the above two derivations together, we have,
~Fi(~µ

(i+1)) = ~f(~µ(i))⊕ ~U? = ~U? = ~µ(i+1) (80)

Because ~ν(i+1) is the least fixed-point of ~Fi, Eqns. (79) and (80) imply that ~µ(i+1) =

~ν(i+1).

Thus, for all i ∈ N, ~µ(i) = ~ν(i), and hence M = N .

63

A.3 Correctness of Alg. 8.12 for Solving a Linear Projection-Equation System

This section proves the correctness of Alg. 8.12, our method for solving a linear
projection-equation system over a predicate-abstraction domain PA. As with the
proof of Alg. 4.4 (§4.5), the proof in this section is based on grammar flow analysis;
however, the details are different in certain places.

We first prove three lemmas that we will need shortly.

Lemma A.12. For all b, c ∈ PA and T ∈ PAT ,

 (t,·)(T ⊗T (bt� c)) = b⊗ (t,·)(T)⊗ c.

Proof. Let the vocabularies of b, c, and T be b(p, p′), c(q, q′), and T (p′, q, p, q′),
respectively.

RHS = b⊗{(p, q) | T (r, r, p, q)}⊗ c
= {(p, s) | b(p, s)}⊗{(s, t) | T (r, r, s, t)}⊗{(t, q′) | c(t, q′)}
= {(p, q′) | b(p, s) ∧ T (r, r, s, t) ∧ c(t, q′)}

LHS = (t,·)
(

{(p̄′, q̄, p̄, q̄′) | T (p̄′, q̄, p̄, q̄′)}
⊗T {(p′, q, p, q′) | b(p, p′) ∧ c(q, q′)}

)
= (t,·)

({
(p̄′, q̄, p, q′) | T (p̄′, q̄, p̄, q̄′) ∧ b(p, p′) ∧ c(q, q′)

∧ p̄ = p′ ∧ q̄′ = q

})
= {(p, q′) | b(p, p′) ∧ T (p̄′, q̄, p̄, q̄′) ∧ c(q, q′) ∧ p̄ = p′ ∧ q̄′ = q ∧ p̄′ = q̄}
= {(p, q′) | b(p, s) ∧ T (r, r, s, t) ∧ c(t, q′)}
= RHS

The next two lemmas, Lemmas A.14 and A.15, concern GFA problems related by
production functions that reflect the structure of the right-hand sides of Eqns. (68)
and (74). More precisely, we consider Eqn. (68) rewritten to the following form

Yk = Project
(
a
(i)
k

)
⊕
⊕
j

⊕
l

Project
(
b
(i)
j,k,l⊗Yj ⊗ c

(i)
j,k,l

)
(81)

so that the production functions of a GFA problems can be read out immediately:
each production function has one the two forms shown in column two of the table
in Fig. 14. The related GFA problems, for grammars G and GT , are defined by
columns two and three of the table in Fig. 14.

Observation A.13.

—By Defn. 2.1(3) and Lem. 8.3(2) (see App. B), a production function of the kind
that appears in column two of Fig. 14, namely, λY.Project(b⊗Y ⊗ c), distributes
over infinite combines (⊕).

—By Defn. 2.1(3), a production function of the kind that appears in column three
of Fig. 14, namely, λZ.Z ⊗T ProjectT (bt� c), distributes over infinite tensored
combines (⊕T).14

14In λZ.Z⊗T ProjectT (bt� c), ProjectT is applied to (bt� c), which is an ST constant, and thus
although ProjectT does distribute over infinite tensored combines (see Lem. 8.8(4) in App. C),
this property does not play any direct role in the correctness argument.

64

Production Function
Production G GT

X0 → g0() [[g0]]
def
= Project(a) [[g0]]T

def
= ProjectT (1t� a)

X0 → g1(X1) [[g1]]
def
= λY.Project(b⊗Y ⊗ c) [[g1]]T

def
= λZ.Z ⊗T ProjectT (bt� c)

Fig. 14. Linear GFA problems used in the proof of Lem. A.15.

Consequently, the production functions in Fig. 14 meet the infinite-distributivity
requirement of Thm. 4.7, and hence Thm. 4.7 applies.

Lemma A.14. For every α ∈ LGT (X),

valGT (α) = ProjectT (valGT (α)). (82)

Proof. By induction on the height h of the derivation tree of α.

Base case, h = 0. The derivation tree has the form g(). Let [[g]] be Project(a),
and thus [[g]]T is ProjectT (1t� a). Then

valGT (α) = valGT (g())
= [[g]]T
= ProjectT (1t� a) (†)
= ProjectT (ProjectT (1t� a)) by Eqn. (71)
= ProjectT (valGT (α)) by line (†)

Induction step. Assume that Eqn. (82) holds for all derivation trees of height
h. Let α = g(β), where β is a string whose derivation tree has height h, so that
valGT (β) = ProjectT (valGT (β)). Let [[g]] be λY.Project(b⊗Y ⊗ c), and thus [[g]]T
is λZ.Z ⊗T ProjectT (bt� c).

valGT (α) = valGT (g(β))
= [[g]]T (valGT (β))
= (λZ.Z ⊗T ProjectT (bt� c))(valGT (β))
= valGT (β)⊗T ProjectT (bt� c) (‡)
= ProjectT (valGT (β))⊗T ProjectT (bt� c) by the ind. hyp.
= ProjectT (valGT (β)⊗T ProjectT (bt� c)) by Eqn. (72)
= ProjectT (valGT (α)) by line (‡)

The next lemma, Lem. A.15, is similar to Lem. 4.14; however, because of the
occurrences of Project and ProjectT in Eqns. (81) and (74), respectively, we can
no longer assume that Obs. 4.11 holds—i.e., it is no longer true that valGT (α) can
always be written in the form mt�n by repeated application of Eqn. (32).

Lemma A.15. Let G and GT be linear GFA problems over PA and PAT , respec-
tively, with (i) the same set of productions, and (ii) production functions related
according to the table given in Fig. 14. Then for every α ∈ LGT (X),

 (t,·)(valGT (α)) = valG(α). (83)

Proof. By induction on the height h of the derivation tree of α.
65

Base case, h = 0. The derivation tree has the form g(). Let [[g]] be Project(a),
and thus [[g]]T is ProjectT (1t� a). Then

 (t,·)(valGT (α)) = (t,·)([[g]]T)
= (t,·)(ProjectT (1t� a))
= Project((t,·)(1t� a)) by Lem. C.1
= Project(1⊗ a)
= Project(a)
= [[g]]
= valG(g())
= valG(α).

Induction step. Assume that Eqn. (83) holds for all derivation trees of height
h. Let α = g(β), where β is a string whose derivation tree has height h, so that
 (t,·)(valGT (β)) = valG(β). Let [[g]] be λY.Project(b⊗Y ⊗ c), and thus [[g]]T is
λZ.Z ⊗T ProjectT (bt� c).

 (t,·)(valGT (α))
= (t,·)(valGT (g(β)))
= (t,·)([[g]]T (valGT (β)))
= (t,·)((λZ.Z ⊗T ProjectT (bt� c))(valGT (β)))
= (t,·)(valGT (β)⊗T ProjectT (bt� c))
= (t,·)(ProjectT (valGT (β))⊗T ProjectT (bt� c)) by Lem. A.14
= (t,·)(ProjectT (ProjectT (valGT (β))⊗T (bt� c))) by Eqn. (73)
= (t,·)(ProjectT (valGT (β)⊗T (bt� c))) by Lem. A.14
= Project((t,·)(valGT (β)⊗T (bt� c))) by Lem. C.1
= Project(b⊗ (t,·)(valGT (β))⊗ c))) by Lem. A.12
= Project(b⊗ valG(β)⊗ c))) by the ind. hyp.
= (λY.Project(b⊗Y ⊗ c))(valG(β))
= [[g]](valG(β))
= valG(g(β))
= valG(α).

For the linear GFA problems G and GT generated by a linear projection-equation
system L over PA, the proof of Cor. 4.15 carries over essentially verbatim. The only
change is to use Lem. A.15 instead of Lem. 4.14 to justify the step from the second
line to the third line in the proof.

Corollary A.16. For each nonterminal X ∈ G,

 (t,·)(mGT (X)) = mG(X). (84)

66

Proof.

 (t,·)(mGT (X)) = (t,·)(
⊕

α∈LGT (X)

valGT (α))

=
⊕

α∈LGT (X)

 (t,·)(valGT (α))

=
⊕

α∈LG(X)

valG(α) by Lem. A.15

= mG(X).

Theorem 8.13. Given a linear projection-equation system L over predicate-
abstraction domain PA, Alg. 8.12 finds the least solution of L.

Proof. We are given a linear projection-equation system L over predicate-
abstraction domain PA, which can be formulated equivalently as a linear GFA
problem G over PA, in which each of the production functions has one the two
forms shown in column two of the table in Fig. 14. We wish to show that Steps
1–4 of Alg. 8.12 compute the least-fixed-point solution nG(X), for each nonterminal
X ∈ G.

From equation system L, Step 1 creates a tensored equation system LT . When
LT is formulated as a GFA problem, it corresponds to the left-linear GFA problem
GT over PAT obtained by applying the transformation given by the table in Fig. 14.

Steps 2 and 3 use Tarjan’s path-expression algorithm [Tarjan 1981b] to create an
appropriate regular expression for each variable Zi in LT , which are then evaluated.
Consequently, by [Tarjan 1981b, Thm. 5], these steps find the combine-over-all-
derivations solution to LT , and hence compute mGT (X) for each nonterminal X ∈
GT . Finally, Step 4 computes (t,·)(mGT (X)) for X ∈ GT . However, by the results
presented above, we have

 (t,·)(mGT (X)) = mG(X) by Cor. A.16
= nG(X) by Obs. A.13 and Thm. 4.7

B. PROPERTIES OF M AND PROJECT

Lemma 8.3. TheM operation defined in Eqn. (65) is an acceptable merge function
for S, in the sense of Defn. 8.1.

Proof. (1) (M is 0-strict.)
(a) For all a ∈ S,

M(a, 0) = a⊗Project(0)
= a⊗((∃L,L′ : false) ∧ (L = L′))
= a⊗(false ∧ (L = L′))
= a⊗ false
= a⊗ 0
= 0

(b) For all b ∈ S, M(0, b) = 0⊗Project(b) = 0.

67

(2) (M is infinitely distributive in both argument positions.)
(a) For all ai, b ∈ S and I ⊆ N,

M

(⊕
i∈I

ai, b

)
=

(⊕
i∈I

ai

)
⊗Project(b)

=
⊕
i∈I

(ai⊗Project(b))

=
⊕
i∈I

M(ai, b)

(b) For all a, bi ∈ S and I ⊆ N,

M

(
a,
⊕
i∈I

bi

)
= a⊗Project

(⊕
i∈I

bi

)
.

The operation Project(R(G,L,G′, L′)) defined in Eqn. (65) constructs the
answer relation by considering each tuple in R independently; i.e.,

Project(R(G,L,G′, L′)) = {(g, k, g′, k) | R(g, l, g′, l′)}.

Consequently, Project distributes over set-union—the ⊕ operation of S—
including infinite set-unions. Therefore,

a⊗Project
(⊕
i∈I

bi

)
= a⊗

⊕
i∈I

Project(bi)

=
⊕
i∈I

(a⊗Project(bi))

=
⊕
i∈I

M(a, bi)

(3) (M has the path-extension property.) For all a, b, c ∈ S,

M(a⊗ b, c) = (a⊗ b)⊗Project(c)
= a⊗(b⊗Project(c))
= a⊗M(b, c)

C. PROPERTIES OF MT AND PROJECTT
Lemma 8.8. The MT operation defined in Eqn. (69) is an acceptable merge func-
tion for ST , in the sense of Defn. 8.1. In addition, ProjectT has the following
properties, for all a, ai, b ∈ ST and I ⊆ N:

ProjectT

(⊕
T

i∈I

ai

)
=
⊕
T

i∈I

ProjectT (ai) (70)

ProjectT (ProjectT (a)) = ProjectT (a) (71)

ProjectT (a)⊗T ProjectT (b) = ProjectT (a⊗T ProjectT (b)) (72)

= ProjectT (ProjectT (a)⊗T b) (73)

Proof. (1) (MT is 0T -strict.)
68

(a) For all a ∈ ST ,

MT (a, 0T) = a⊗T ProjectT (0T)

= a⊗T
(

(∃L′1, L2, L1, L
′
2 : (false ∧ (L′1 = L2)))

∧ (L1 = L′1) ∧ (L2 = L′2)

)
= a⊗T (false ∧ (L1 = L′1) ∧ (L2 = L′2))
= a⊗T false
= a⊗T 0
= 0

(b) For all b ∈ ST , MT (0T , b) = 0T ⊗T ProjectT (b) = 0T .

(2) (MT is infinitely distributive in both argument positions.)

(a) For all ai, b ∈ ST and I ⊆ N,

MT

((⊕
T

i∈I

ai

)
, b

)
=

(⊕
T

i∈I

ai

)
⊗T ProjectT (b)

=
⊕
T

i∈I

(ai⊗T ProjectT (b))

=
⊕
T

i∈I

MT (ai, b)

(b) For all a, bi ∈ ST and I ⊆ N,

MT

(
a,

(⊕
T

i∈I

bi

))
= a⊗T ProjectT

(⊕
T

i∈I

bi

)
.

The operation ProjectT (T (G′1, L
′
1, G2, L2, G1, L1, G

′
2, L
′
2)) defined in

Eqn. (69) constructs the answer relation by considering each tuple in T
independently. Consequently, ProjectT distributes over set-union—the ⊕T
operation of ST—including infinite set-unions. Therefore,

a⊗T ProjectT

(⊕
T

i∈I

bi

)
= a⊗T

⊕
T

i∈I

ProjectT (bi)

=
⊕
T

i∈I

(a⊗T ProjectT (bi))

=
⊕
T

i∈I

MT (a, bi)

(3) (MT has the path-extension property.) For all a, b, c ∈ ST ,

MT (a⊗T b, c) = (a⊗T b)⊗T ProjectT (c)
= a⊗T (b⊗T ProjectT (c))
= a⊗T MT (b, c)

(4) (Eqn. (70) holds.) The infinite distributivity of ProjectT was argued in the
proof of case (2) above.

(5) (Eqn. (71) holds.) First, because 1T is the identity relation
{(g1, l1, g2, l2, g1, l1, g2, l2)}, it is straightforward to show from Eqn. (69)

69

ProjectT (T1)⊗T ProjectT (T2)

=
{(g′1, a, g2, b, g1, a, g′2, b) | T1(g′1, l

′
1, g2, l2, g1, l1, g

′
2, l
′
2) ∧ l′1 = l2}

⊗T {(ḡ′1, ā, ḡ2, b̄, ḡ1, ā, ḡ′2, b̄) | T2(ḡ′1, l̄
′
1, ḡ2, l̄2, ḡ1, l̄1, ḡ

′
2, l̄
′
2) ∧ l̄′1 = l̄2}

=

(g′1, a, g2, b, ḡ1, ā, ḡ
′
2, b̄)

∣∣∣∣∣∣
T1(g′1, l

′
1, g2, l2, g1, l1, g

′
2, l
′
2) ∧ l′1 = l2

∧ T2(ḡ′1, l̄
′
1, ḡ2, l̄2, ḡ1, l̄1, ḡ

′
2, l̄
′
2) ∧ l̄′1 = l̄2

∧ g1 = ḡ′1 ∧ a = ā ∧ g′2 = ḡ2 ∧ b = b̄


=

(g′1, a, g2, b, ḡ1, a, ḡ
′
2, b)

∣∣∣∣∣∣
T1(g′1, l

′
1, g2, l2, g1, l1, g

′
2, l
′
2)

∧ T2(ḡ′1, l̄
′
1, ḡ2, l̄2, ḡ1, l̄1, ḡ

′
2, l̄
′
2)

∧ l′1 = l2 ∧ l̄′1 = l̄2 ∧ g1 = ḡ′1 ∧ g′2 = ḡ2


ProjectT (T1⊗T ProjectT (T2))

= ProjectT


{

(g′1, l
′
1, g2, l2, g1, l1, g

′
2, l
′
2)

| T1(g′1, l
′
1, g2, l2, g1, l1, g

′
2, l
′
2)

}
⊗T

{
(ḡ′1, e, ḡ2, f, ḡ1, e, ḡ

′
2, f)

| T2(ḡ′1, l̄
′
1, ḡ2, l̄2, ḡ1, l̄1, ḡ

′
2, l̄
′
2) ∧ l̄′1 = l̄2

}


= ProjectT





(g′1, l
′
1, g2, l2, ḡ1, e, ḡ

′
2, f)

| T1(g′1, l
′
1, g2, l2, g1, l1, g

′
2, l
′
2)

∧ T2(ḡ′1, l̄
′
1, ḡ2, l̄2, ḡ1, l̄1, ḡ

′
2, l̄
′
2)

∧ l̄′1 = l̄2
∧ g1 = ḡ′1 ∧ l1 = e
∧ g′2 = ḡ2 ∧ l′2 = f





=

(g′1, a, g2, b, ḡ1, a, ḡ
′
2, b)

∣∣∣∣∣∣∣∣∣∣
T1(g′1, l

′
1, g2, l2, g1, l1, g

′
2, l
′
2)

∧ T2(ḡ′1, l̄
′
1, ḡ2, l̄2, ḡ1, l̄1, ḡ

′
2, l̄
′
2)

∧ l′1 = l2 ∧ l̄′1 = l̄2
∧ g1 = ḡ′1 ∧ l1 = e
∧ g′2 = ḡ2 ∧ l′2 = f


=

(g′1, a, g2, b, ḡ1, a, ḡ
′
2, b)

∣∣∣∣∣∣∣∣
T1(g′1, l

′
1, g2, l2, g1, l1, g

′
2, l
′
2)

∧ T2(ḡ′1, l̄
′
1, ḡ2, l̄2, ḡ1, l̄1, ḡ

′
2, l̄
′
2)

∧ l′1 = l2 ∧ l̄′1 = l̄2
∧ g1 = ḡ′1 ∧ g′2 = ḡ2


Fig. 15. Proof of Eqn. (72).

that ProjectT (1T) = 1T . We then have, for all a ∈ ST ,

ProjectT (ProjectT (a))
= ProjectT (ProjectT (a)⊗T 1T) 1T is the identity for ⊗T
= ProjectT (a)⊗T ProjectT (1) by Eqn. (73)
= ProjectT (a)⊗T 1 ProjectT (1T) = 1T
= ProjectT (a) 1T is the identity for ⊗T

(6) (Eqn. (72) holds.) See Fig. 15.
(7) (Eqn. (73) holds.) See Fig. 16.

70

ProjectT (T1)⊗T ProjectT (T2) = 〈See Fig. 15〉

ProjectT (ProjectT (T1)⊗T T2)

= ProjectT


{

(g′1, c, g2, d, g1, c, g
′
2, d)

| T1(g′1, l
′
1, g2, l2, g1, l1, g

′
2, l
′
2) ∧ l′1 = l2

}
⊗T

{
(ḡ′1, l̄

′
1, ḡ2, l̄2, ḡ1, l̄1, ḡ

′
2, l̄
′
2)

| T2(ḡ′1, l̄
′
1, ḡ2, l̄2, ḡ1, l̄1, ḡ

′
2, l̄
′
2)

}


= ProjectT




(g′1, c, g2, d, ḡ1, l̄1, ḡ
′
2, l̄
′
2)

| T1(g′1, l
′
1, g2, l2, g1, l1, g

′
2, l
′
2) ∧ l′1 = l2

∧ T2(ḡ′1, l̄
′
1, ḡ2, l̄2, ḡ1, l̄1, ḡ

′
2, l̄
′
2)

∧ g1 = ḡ′1 ∧ l̄′1 = c ∧ g′2 = ḡ2 ∧ l̄2 = d




=

(g′1, a, g2, b, ḡ1, a, ḡ
′
2, b)

∣∣∣∣∣∣∣∣
T1(g′1, l

′
1, g2, l2, g1, l1, g

′
2, l
′
2) ∧ l′1 = l2

∧ T2(ḡ′1, l̄
′
1, ḡ2, l̄2, ḡ1, l̄1, ḡ

′
2, l̄
′
2)

∧ g1 = ḡ′1 ∧ l̄′1 = c ∧ g′2 = ḡ2 ∧ l̄2 = d
∧ c = d


=

(g′1, a, g2, b, ḡ1, a, ḡ
′
2, b)

∣∣∣∣∣∣∣∣
T1(g′1, l

′
1, g2, l2, g1, l1, g

′
2, l
′
2)

∧ T2(ḡ′1, l̄
′
1, ḡ2, l̄2, ḡ1, l̄1, ḡ

′
2, l̄
′
2)

∧ l′1 = l2 ∧ l̄′1 = l̄2
∧ g1 = ḡ′1 ∧ g′2 = ḡ2


Fig. 16. Proof of Eqn. (73).

Lemma C.1. For all b ∈ ST ,

 (t,·)(ProjectT (b)) = Project((t,·)(b)).

Proof.

LHS = (t,·)(ProjectT ({(g′1, l′1, g2, l2, g1, l1, g′2, l′2) |
b(g′1, l

′
1, g2, l2, g1, l1, g

′
2, l
′
2)}))

= (t,·)({(g′1, n, g2, r, g1, n, g′2, r) |
b(g′1, q, g2, q, g1, l1, g

′
2, l
′
2)})

= {(g1, n, g′2, n) | b(p, q, p, q, g1, l1, g′2, l′2)}

RHS = Project((t,·)({(g′1, l′1, g2, l2, g1, l1, g′2, l′2) |
b(g′1, l

′
1, g2, l2, g1, l1, g

′
2, l
′
2)}))

= Project({(g1, l1, g′2, l′2) | b(p, q, p, q, g1, l1, g′2, l′2)})
= {(g1, n, g′2, n) | b(p, q, p, q, g1, l1, g′2, l′2)}
= LHS

71

