
Slicing Machine Code ∗

Venkatesh Srinivasan
University of Wisconsin–Madison, USA

venk@cs.wisc.edu

Thomas Reps
University of Wisconsin–Madison

and GrammaTech, Inc., USA
reps@cs.wisc.edu

Abstract
Machine-code slicing is an important primitive for building binary
analysis and rewriting tools, such as taint trackers, fault localizers,
and partial evaluators. However, it is not easy to create a machine-
code slicer that exhibits a high level of precision. Moreover, the
problem of creating such a tool is compounded by the fact that a
small amount of local imprecision can be amplified via cascade
effects.

Most instructions in instruction sets such as Intel’s IA-32 and
ARM are multi-assignments: they have several inputs and several
outputs (registers, flags, and memory locations). This aspect of the
instruction set introduces a granularity issue during slicing: there
are often instructions at which we would like the slice to include
only a subset of the instruction’s multiple assignments, whereas
the slice is forced to include the entire instruction. Consequently,
the slice computed by state-of-the-art tools is very imprecise, often
including essentially the entire program. We present an algorithm
to slice machine code more accurately. To counter the granularity
issue, our algorithm attempts to include in the slice only the subset
of assignments in an instruction’s semantics that is relevant to the
slicing criterion. Our experiments on IA-32 binaries of FreeBSD
utilities show that, in comparison to slices computed by a state-of-
the-art tool, our algorithm reduces the number of instructions in
backward slices by 36%, and in forward slices by 82%.

1. Introduction
One of the most useful primitives in program analysis is slicing [14,
28]. A slice consists of the set of program points that affect (or are
affected by) a given program point p and a subset of the variables
at p.1 Slicing has many applications, and is used extensively in
program analysis and software-engineering tools (e.g., see pages
64 and 65 in [3]). Binary analysis and rewriting has received an
increasing amount of attention from the academic community in the
last decade (e.g., see references in [24, §7], [4, §1], [9, §1], [11, §7]),
leading to the widespread development and use of binary analysis

∗ Supported, in part, by a gift from Rajiv and Ritu Batra; by DARPA under cooper-
ative agreement HR0011-12-2-0012; by NSF under grant CCF-0904371; by AFRL
under DARPA MUSE award FA8750-14-2-0270 and DARPASTAC award FA8750-
15-C-0082; and by the UW-Madison Office of the Vice Chancellor for Research and
Graduate Education with funding from theWisconsin Alumni Research Foundation.
Any opinions, findings, and conclusions or recommendations expressed in this publi-
cation are those of the authors, and do not necessarily reflect the views of the sponsor-
ing agencies.
1 In the literature, program point p and the variable set are called the slicing criterion
[28]. In this paper, when the program point is clear from context, we typically will
specify just the variable set and refer to it as the “slicing criterion.”

[Copyright notice will appear here once ’preprint’ option is removed.]

and rewriting tools. Improvements in machine-code2 slicing could
significantly increase the precision and/or performance of several
existing tools, such as partial evaluators [25], taint trackers [8], and
fault localizers [29]. Moreover, a machine-code slicer could be used
as a black box to build new binary analysis and rewriting tools.

State-of-the-art machine-code-analysis tools [5, 9] recover a
system dependence graph (SDG) from a binary, and use an existing
source-code slicing algorithm [20] to perform slicing on the recov-
ered SDG. (The SDG is an intermediate representation used for
slicing; see §2.2) However, the computed slices are extremely im-
precise, often including the entire binary. Each node in a recovered
SDG is an instruction, and instructions in most Instruction Set Ar-
chitectures (ISAs) such as IA-32 and ARM are multi-assignments:
they have several inputs and several outputs (e.g., registers, flags,
and memory locations). The multi-assignment nature of instruc-
tions introduces a granularity issue during slicing: although we
would like the slice to include only a subset of an instruction’s as-
signments, the slice is forced to include the entire instruction. This
granularity issue can have a cascade effect: irrelevant assignments
included at an instruction can cause irrelevant instructions to be in-
cluded in the slice, and such irrelevant instructions can cause even
more irrelevant instructions to be included in the slice, and so on.
Consequently, straightforward usage of source-code slicing algo-
rithms at the machine-code level yields imprecise slices.

In this paper, we present an algorithm to perform more precise
context-sensitive interprocedural machine-code slicing. Our algo-
rithm is specifically tailored for ISAs and other low-level code that
have multi-assignment instructions. Our algorithm works on SDGs
recovered by existing tools, and is parameterized by the ISA of the
instructions in the binary.

Our improved slicing algorithm should have many potential
benefits. More precise machine-code slicing could be used to im-
prove the precision of other existing analyses that work on machine
code. For example, more precise forward slicing could improve
binding-time analysis (BTA) in a machine-code partial evaluator
[25]. More precise slicing could also be used to reduce the overhead
of taint trackers [8] by excluding from consideration portions of the
binary that are not affected by taint sources. Beyond improving ex-
isting tools, more precise slicers created by our technique could be
used as black boxes for the development of new binary analysis and
rewriting tools (e.g., tools for software security, fault localization,
program understanding, etc.). Our more precise backward-slicing
algorithm could be used in conjunction with a machine-code syn-
thesizer [26] to extract an executable component from a binary,
e.g., a word-count program from the wc utility. (See §9.) One could
construct more accurate dependence models for libraries that lack
source code by slicing the library binary. A machine-code slicer is

2 We use the term “machine code” to refer generically to low-level code, and do not
distinguish between actual machine-code bits/bytes and assembly code to which it is
disassembled.

1 2015/10/5

a useful tool to have when a slicer for a specific source language is
unavailable.

We have implemented our algorithm in a tool, called X, which
slices Intel IA-32 binaries. X uses the SDG recovered by an existing
tool, CodeSurfer/x86 [5]. Given a node nG and a set of variables
used at (defined at) nG as the slicing criterion, X “grows” the
backward (forward) slice from nG by iterating over the SDG nodes
using a worklist. For each worklist item n, X includes only the
“sub-portion” of the instruction in n that is relevant to the slicing
criterion, and puts only the predecessors (successors) of n that
are relevant to the included sub-portion in the worklist. When
the worklist iteration terminates, only sub-portions of instructions
that are transitively relevant to the slicing criterion are included
in the slice. The improved precision of X is due to its method for
identifying the sub-portion of the instruction in n that is relevant to
the slicing criterion, which addresses the slicing-granularity issue.
This concept is formalized in §4.
Contributions. The paper’s contributions include the following:
• We identify the granularity issue caused by using source-code

slicing algorithms at the machine-code level, and show how the
issue can lead to very imprecise slices (§3.1).
• We formalize the notion of a “sub-portion” of an instruction,

and state necessary and sufficient conditions for a sub-portion
to preserve the soundness of a slice with respect to a slicing
criterion, while making an effort to keep the slice as precise as
possible (§4).
• We present an algorithm for context-sensitive interprocedural

machine-code slicing. Our algorithm works on SDGs recovered
by existing tools, and is parameterized by the ISA of the instruc-
tions in the binary (§5).
• We provide formal guarantees for the termination and sound-

ness of our slicing algorithm, and for the precision of the slices
it computes in comparison to those computed by state-of-the-art
tools (Thms. 1, 2, and 3).

Our methods have been implemented in an IA-32 slicer called
X. We present experimental results with X, which show that, on
average, X reduces the sizes of slices obtained from a state-of-the-
art tool by 36% for backward slices, and 82% for forward slices.

2. Background
In this section, we briefly describe a logic to express the semantics
of IA-32 instructions, and how state-of-the-art tools recover from a
binary an SDG on which to perform machine-code slicing.

2.1 QFBV Formulas for IA-32 Instructions
The operational semantics of IA-32 instructions can be expressed
formally by QFBV formulas. In this section, we describe the syntax
and semantics of the QFBV formulas that are used in this paper.

Syntax. Consider a quantifier-free bit-vector logic L over finite
vocabularies of constant symbols and function symbols. We will
be dealing with a specific instantiation of L, denoted by L[IA-
32]. (L can also be instantiated for other ISAs.) In L[IA-32], some
constants represent IA-32’s registers (EAX, ESP, EBP, etc.), and
some represent flags (CF, SF, etc.). L[IA-32] has only one function
symbol “Mem,” which denotes memory. The syntax of L[IA-32]
is defined in Fig. 1. A term of the form ite(ϕ, T1, T2) represents
an if-then-else expression. A FuncExpr of the form FE[T1 7→ T2]
denotes a function-update expression.

The function 〈〈·〉〉 encodes an IA-32 instruction as a QFBV for-
mula. While others have created such encodings by hand (e.g.,
[21]), we use a method that takes a specification of the concrete
operational semantics of IA-32 instructions and creates a QFBV
encoder automatically. The method reinterprets each semantic op-
erator as a QFBV formula-constructor or term-constructor (see

T ∈ Term, ϕ ∈ Formula, FE ∈ FuncExpr

c ∈ Int32 = {..., -1, 0, 1, ...} b ∈ Bool = {True, False}
IInt32 ∈ Int32Id = {EAX, ESP, EBP, ...}

IBool ∈ BoolId = {CF, SF, ...} F ∈ FuncId = {Mem}
op ∈ BinOp = {+, −, ...} bop ∈ BoolOp = {∧, ∨, ...}

rop ∈ RelOp = {=, 6=, <, >, ...}
T ::= c | IInt32 | T1 op T2 | ite(ϕ, T1, T2) | F(T1)

ϕ ::= b | IBool | T1 rop T2 | ¬ϕ1 | ϕ1 bopϕ2 | F = FE

FE ::= F | FE1[T1 7→ T2]

Figure 1: Syntax of L[IA-32].

[16]). To write formulas that express state transitions, all Int32Ids,
BoolIds, and FuncIds can be qualified by primes (e.g., Mem’). The
QFBV formula for an instruction is a restricted 2-vocabulary for-
mula that specifies a state transformation. It has the form∧

m

(I′m = Tm) ∧
∧

n

(J′n = ϕn) ∧Mem′ = FE, (1)

where I′m and J′n range over the constant symbols for registers and
flags, respectively. The primed vocabulary is the post-state vocab-
ulary, and the unprimed vocabulary is the pre-state vocabulary.

We use Id to denote the identity transformation:

Id def
=

∧
m

(I′m = Im) ∧
∧

n

(J′n = Jn) ∧Mem′ = Mem,

The QFBV formulas for a few IA-32 instructions are given
below. (Note that the IA-32 program counter is register EIP, and
the stack pointer is register ESP.)

〈〈mov eax, [ebp]〉〉 ≡ EAX′ = Mem(EBP) (2)

〈〈push 0〉〉 ≡ ESP′=ESP−4 ∧Mem′=Mem[ESP−4 7→0]

〈〈jz 1000〉〉 ≡ ite(ZF = 0,EIP′ = 1000, EIP′ = EIP + 4)

〈〈lea esp, [esp-4]〉〉 ≡ ESP′ = ESP− 4

In this section, and in the rest of the paper, we show only the
portions of QFBV formulas that express how the state is modified.
QFBV formulas actually contain identity conjuncts of the form
I′ = I, J′ = J, and Mem′ = Mem for constants and functions
that are unmodified.

Semantics. Intuitively, a QFBV formula represents updates made
to the machine state by an instruction. QFBV formulas in L[IA-
32] are interpreted as follows: elements of Int32, Bool, BinOp,
RelOp, and BoolOp are interpreted in the standard way. An un-
primed (primed) constant symbol is interpreted as the value of the
corresponding register or flag from the pre-state (post-state). An
unprimed (primed) Mem symbol is interpreted as the memory ar-
ray from the pre-state (post-state). (To simplify the presentation in
the paper, we pretend that each memory location holds a 32-bit in-
teger; however, in our implementation memory is addressed at the
level of individual bytes.)

An IA-32 machine-state is a triple of the form:

〈RegMap, FlagMap, MemMap〉

RegMap, FlagMap, and MemMap map each register, flag, and
memory location in the state, respectively, to a value. The meaning
of a QFBV formula ϕ in L[IA-32] (denoted by [[ϕ]]) is a set of
machine-state pairs (〈pre-state, post-state〉) that satisfy the formula.
For instance, a 〈pre-state, post-state〉 pair that satisfies Eqn. (2) is

σ ≡ 〈[EBP 7→ 100], [], [100 7→ 1]〉

2 2015/10/5

σ′ ≡ 〈[EAX 7→ 1][EBP 7→ 100], [], [100 7→ 1]〉.

Note that the location names in states are not italicized to distin-
guish them from constant symbols in QFBV formulas. By conven-
tion, all locations in a state for which the range value is not shown
explicitly have the value 0.
2.2 SDG Recovery and Slicing in State-of-the-Art Tools
Slicing is typically performed using an Intermediate Representa-
tion (IR) of the binary called a system dependence graph (SDG)
[12, 14]. To build an SDG for a program, one needs to know the set
of variables that might be used and killed in each statement of the
program. However in machine code, there is no explicit notion of
variables. In this section, we briefly describe how state-of-the-art
tools such as CodeSurfer/x86 [5] recover “variable-like” abstrac-
tions from a binary, and use those abstractions to construct an SDG
and perform slicing.

CodeSurfer/x86 uses Value-Set Analysis (VSA) [4] to compute
the abstract state (σVSA) that can arise at each program point. σVSA

maps an abstract location to an abstract value. An abstract location
(a-loc) is a “variable-like” abstraction recovered by the analysis
[4, §4]. (In addition to these variable-like abstractions, a-locs also
include IA-32 registers and flags.) An abstract value (value-set) is
an over-approximation of values that a particular a-loc can have at
a given program point. For example, Fig. 2 shows the VSA state
before each instruction in a small IA-32 code snippet. In Fig. 2, an
a-loc of the form (AR main, n) denotes the variable-like proxy at
offset −n in the activation record of function main, and > denotes
any value. In reality, the VSA state before instruction 4 contains
value-sets for the flags set by the sub instruction. However, to
reduce clutter, we have not shown the flag a-locs in the VSA
state. For each instruction i in the binary, CodeSurfer/x86 uses the
operational semantics of i, along with σVSA at i to compute USE#(i,
σVSA) (KILL#(i, σVSA)), which is the set of a-locs that might be used
(modified) by i. The USE# and KILL# sets for each instruction in
the code snippet are also shown in Fig. 2.

CodeSurfer/x86 uses this information to build a collection of
IRs, including an SDG. An SDG consists of a set of program
dependence graphs (PDGs), one for each procedure in the program.
A node in a PDG corresponds to a construct in the program, such
as an instruction, a call to a procedure, a procedure entry/exit, an
actual parameter of a call, or a formal parameter of a procedure.
The edges correspond to data and control dependences between the
nodes [12]. For example, in the system-dependence subgraph for
the code snippet in Fig. 2, there is a control-dependence edge from
the entry of main to instructions 1, 2, 3, and 4; there is a data-
dependence edge from instruction 1, which assigns to register ESP,
to instructions 2 and 3, which use ESP, as well as from instruction
3 to instruction 4.

In a PDG, a call to a procedure is associated with two nodes:
a call-expression node, which contains the call instruction, and a
call-site node, which is a control node. The PDGs are connected
together with interprocedural control-dependence edges between
call-site nodes and procedure entry nodes, and interprocedural data-
dependence-edges between actual parameters and formal parame-
ters/return values. (See Fig. 10 for an example SDG snippet with
interprocedural edges.)

CodeSurfer/x86 uses an existing interprocedural-slicing algo-
rithm [20] to perform machine-code slicing on the recovered SDG.
3. Overview
In this section, we use two example programs to illustrate the
granularity issue involved in slicing binaries using state-of-the-art
tools, and the improved slicing technique used in X.
3.1 Granularity Issue in Machine-Code Slicing
Consider the C program diff shown in Fig. 3. The main function
contains calls to functions add and square. main does not use the

int add(int a, int b){
int c = a + b;
return c;

}
int square(int a){
int b = a * a;
return b;

}

int main(){
int a = 10, b = 20;
int c = add(a, b);
int d = square(c);

return a - b ;
}

Figure 3: Source code for the diff program, and the backward slice with
respect to the return value of main.

add:
push ebp
mov ebp,esp
sub esp,4
mov eax,[ebp+12]
add eax,[ebp+8]
mov [ebp-4],eax
mov eax,[ebp-4]
leave
ret

square:
push ebp
mov ebp,esp
sub esp,4
mov eax,[ebp+8]
imul eax,[ebp+8]
mov [ebp-4],eax
mov eax,[ebp-4]
leave
ret

main:
push ebp
mov ebp,esp
sub esp,16
mov [ebp-16],10
mov [ebp-12],20
push [ebp-12]
push [ebp-16]
call add
add esp,8
mov [ebp-8],eax *
push [ebp-8] **
call square
add esp,4
mov [ebp-4],eax
mov eax,[ebp-16]
mov ebx,[ebp-12]

sub eax,ebx
leave
ret

Figure 4: Assembly listing for diff with the imprecise backward slice
computed by CodeSurfer/x86.

return values of the calls, and simply returns the difference between
two local variables a and b. Suppose that we want to compute the
program points that affect main’s return value (boxed in Fig. 3).
The backward slice with respect to main’s return value gets us the
desired result. The backward slice is highlighted in gray in Fig. 3.
(The slice is computed using CodeSurfer/C [2].)

Let us now slice the same program with respect to the analogous
slicing criterion at the machine-code level. The assembly listing
for diff is shown in Fig. 4. The corresponding slicing criterion
is the register a-loc {EAX} at the boxed instruction in Fig. 4.
The backward slice with respect to the slicing criterion includes
the lines highlighted in gray in Fig. 4. (The slice is computed
using CodeSurfer/x86.) One can see that entire body of the add
function—which is completely irrelevant to the slicing criterion—
is included in the slice. What went wrong?

Machine-code instructions are usually multi-assignments: they
have several inputs, and several outputs (e.g., registers, flags, and
memory locations). This aspect of the language introduces a gran-
ularity issue during slicing: in some cases, although we would like
the slice to include only a subset of an instruction’s semantics, the
slicing algorithm is forced to include the entire instruction. For ex-
ample, consider the push instruction marked by ** in Fig. 4. The
QFBV formula for the instruction is

〈〈push [ebp-8]〉〉 ≡ ESP′=ESP−4 ∧ (3)

Mem′=Mem[ESP−4 7→Mem(EBP−8)].

The instruction updates the stack-pointer register ESP along with a
memory location.

Just before ascending back to main from the square function,
the most recent instruction added to the slice is “push ebp” in
square. The QFBV formula for the instruction is given below.

〈〈push ebp〉〉 ≡ ESP′=ESP−4 ∧Mem′=Mem[ESP−4 7→EBP]

3 2015/10/5

main:

1: push ebp

2: mov ebp,esp

3: sub esp,10

4: mov [esp],1

5: ...

[ESP 7→(AR main,-4)][EBP7→ >], USE#={EBP, ESP}, KILL#={ESP, (AR main,0)}
[ESP7→(AR main,0)][EBP7→ >][(AR main,0)7→ >], USE#={ESP}, KILL#={EBP}
[ESP 7→(AR main,0)][EBP7→(AR main,0)][(AR main,0) 7→ >], USE#={ESP}, KILL#={ESP}
[ESP7→(AR main,10)][EBP7→(AR main,0)][(AR main,0) 7→ >], USE#={ESP}, KILL#={(AR main,10)}
[ESP7→(AR main,10)][EBP7→(AR main,0)][(AR main,0) 7→ >][(AR main,10)7→1] − , −

Figure 2: A VSA state before each instruction in a small code snippet, and USE# and KILL# sets for each instruction.

int add(int a, int b){
int c = a + b;
return c;

}
int mult(int a, int b){
int c = a * b;
return c;

}

int main(){

int a = 1 , b = 2;
int c = add(a, b);
int d = 3, e = 4;
int f = mult(d, e);
return f;

}

Figure 5: Source code for the multiply program, and the forward slice with
respect to a.

add:
push ebp
mov ebp,esp
sub esp,4
mov eax,[ebp+12]
add eax,[ebp+8]
mov [ebp-4],eax
mov eax,[ebp-4]
leave
ret

mult:
push ebp
mov ebp,esp
sub esp,4
mov eax,[ebp+12]
imul eax,[ebp+8]
mov [ebp-4],eax
mov eax,[ebp-4]
leave
ret

main:
push ebp
mov ebp,esp
sub esp,32

mov [ebp-24],1

mov [ebp-20],2
push [ebp-20]
push [ebp-24] **
call add
add esp,8
mov [ebp-16],eax
mov [ebp-12],3
mov [ebp-8],4
push [ebp-8]
push [ebp-12]
call mult
add esp,8
mov [ebp-4],eax
mov eax,[ebp-4]
leave
ret

Figure 6: Assembly listing for multiply with the imprecise forward slice
computed by CodeSurfer/x86.

The instruction uses the registers ESP and EBP. When the slice
ascends back into main, it requires the definition of ESP from the
push instruction marked by ** in Fig. 4. However, the slice cannot
include only a part of the instruction, and is forced to include the
entire push instruction, which also uses the contents of the memory
location whose address is EBP− 8. The value in location EBP− 8
is set by the instruction marked by * in Fig. 4. That instruction also
uses the value of register EAX, which holds the return value of the
add function. For this reason, the instruction marked by *, and the
entire body of add, which are completely irrelevant to the slicing
criterion, are included in the slice. This granularity issue also has
a cascade effect—the irrelevant instructions cause more irrelevant
instructions to be included in the slice.

Consider another C program multiply, shown in Fig. 5. The
main function contains calls to functions add and mult. Suppose
that we want to compute the program points that are affected by the
local variable a (boxed in Fig. 5). The forward slice with respect
to a, highlighted in gray in Fig. 5, gets us the desired result. The
machine-code forward slice with respect to the analogous slicing
criterion (a-loc {(AR main, 24)} at the boxed instruction in Fig. 6)
includes the lines highlighted in gray in Fig. 6. One can see that the
entire body of the mult function—which is completely irrelevant
to the slicing criterion—is included in the slice.

The imprecision again creeps in at the push instruction marked
by ** in Fig. 6. The QFBV formula for the instruction is

〈〈push [ebp-24]〉〉 ≡ ESP′=ESP−4 ∧ (4)

Mem′=Mem[ESP−4 7→Mem(EBP−24)].

The instruction stores the contents of the memory location whose
address is EBP − 24 in a new memory location, and updates the
stack-pointer register ESP. The slice only requires the update that
uses the location EBP − 24. However, because of the granularity
issue, the slice also includes the update to ESP. Because all the
downstream instructions directly or transitively use ESP, the for-
ward slice includes all the downstream instructions.

3.2 Improved Machine-Code Slicing in X
Given the (i) SDG of a binary, (ii) the SDG node nG to slice from,
and (iii) the global slicing criterion S#

G after (before) nG (where
S#
G is a set of a-locs), the improved slicing algorithm in X “grows”

the backward (forward) slice from nG by iterating over the nodes
of the SDG using a worklist. X performs the following steps during
each iteration.
1. Given a node n from the worklist, the instruction i in n, and

the local slicing criterion S# after (before) n, if X reaches n
through a data-dependence edge, X includes in the slice only
the “sub-portion” ψ of the semantics ϕ of i that is just enough
to kill (use) S#. If X reaches n through a control-dependence
edge, X includes in the slice the entire instruction i(i.e., ψ is ϕ).

2. X adds to the worklist only the predecessors (successors) that
are relevant to ψ. The use (kill) set of ψ becomes the local
slicing criterion for the predecessors (successors) that were
added to the worklist.

3. For context-sensitive interprocedural slicing, X uses a callstack
to match calls and returns.

When worklist iteration terminates, only the instructions (and in-
struction sub-portions) that are transitively relevant to S#

G are in-
cluded in the slice.

This section illustrates the improved slicing algorithm in X
on our two examples from §3.1. We first use the program diff to
illustrate improved backward slicing. Then we use the program
multiply to illustrate improved forward slicing.

The local slicing criterion at instruction 17 of main in Fig. 7
is {EAX}. The semantics of instruction 17 can be explicitly repre-
sented by the following QFBV formula ϕ:

〈〈sub eax,ebx〉〉 ≡ EAX′ = EAX− EBX
∧ SF′ = ((EAX− EBX) < 0)
∧ . . .
∧ ZF′ = ((EAX− EBX) = 0)

The “sub-portion” ψ of the semantics ϕ that is just enough to kill
the local slicing criterion is given below. More precisely, ψ has the
same effect on EAX as the full formulaϕ. (We formally define what
a “sub-portion” of an instruction’s semantics is in §4. For now, the
reader should think of a “sub-portion” ψ of ϕ as a sub-formula of
ϕ.)

ψ ≡ EAX′ = EAX− EBX

4 2015/10/5

add:
1: push ebp
2: mov ebp,esp
3: sub esp,4
(ESP′ = ESP − 4)
4: mov eax,[ebp+12]
5: add eax,[ebp+8]
6: mov [ebp-4],eax
7: mov eax,[ebp-4]
8: leave
9: ret
(ESP′ = ESP − 4)

square:
1: push ebp
2: mov ebp,esp
3: sub esp,4
4: mov eax,[ebp+8]
5: imul eax,[ebp+8]
6: mov [ebp-4],eax
7: mov eax,[ebp-4]
8: leave
(EBP′ = Mem(EBP))
9: ret

main:
1: push ebp
(ESP′ = ESP − 4)
2: mov ebp,esp
3: sub esp,16
(ESP′ = ESP − 16)
4: mov [ebp-16],10
5: mov [ebp-12],20
6: push [ebp-12]
(ESP′ = ESP − 4)
7: push [ebp-16]
(ESP′ = ESP − 4)
8: call add
(ESP′ = ESP − 4)
9: add esp,8
(ESP′ = ESP − 8)
10: mov [ebp-8],eax
11: push [ebp-8]
(ESP′ = ESP − 4)
12: call square
(ESP′ = ESP − 4)
13: add esp,4
14: mov [ebp-4],eax
15: mov eax,[ebp-16]
16: mov ebx,[ebp-12]

17: sub eax,ebx
(EAX′ = EAX − EBX)
leave
ret

Figure 7: Assembly listing for diff with the backward slice computed by
X.

Instead of including the entire instruction in the slice, the improved
slicing algorithm in X includes only ψ. (If the slice includes only
a sub-portion of an instruction, the QFBV formula for the included
sub-portion is shown within parentheses below the instruction, e.g.,
instruction 17 in Fig. 7.) X uses the VSA state at instruction 17

(σmain,17
VSA) to compute the USE# set for ψ, and this set becomes the

local slicing criterion for the SDG predecessors of instruction 17.

USE#(ψ, σmain,17
VSA) = {EAX,EBX}

The slice includes instructions 15 and 16 in main because
they define a-locs EAX and EBX, respectively. The local slicing
criterion before instruction 15 is {EBP, (AR main, 12), (AR main,
16)}. (The a-locs (AR main, 12) and (AR main, 16) are used by
instructions 16 and 15, respectively.) To include the instructions
that define EBP, the slice descends into the square function. The
QFBV formula for instruction 8 in square is

〈〈leave〉〉 ≡ EBP′ = Mem(EBP) ∧ ESP′ = EBP− 4.

X includes in the slice only the sub-portion ψ of the formula
that is just enough to define EBP, and uses the VSA state before
instruction 8 (σsquare,8

VSA) to compute the USE# set for ψ.

ψ ≡ EBP′ = Mem(EBP)

USE#(ψ, σsquare,8
VSA) = {EBP, (AR square, 0)}

(AR square, 0) is the a-loc corresponding to the first slot in the
activation record of the square function, where the caller’s frame
pointer is saved by instruction 1 in square. The local slicing
criterion before instruction 8 in square is {EBP, (AR square, 0),
(AR main, 12), (AR main, 16)}. X includes in the slice instructions
1 and 2 in square because they define a-locs (AR square, 0) and
EBP, respectively. When the slice ascends back into main, the
local slicing criterion after instruction 12 in main is {EBP, ESP,
(AR main, 12), (AR main, 16)}.

X includes in the slice only the relevant sub-portion of the
call instruction (see the QFBV formula below instruction 12 in

main), and the local slicing criterion after instruction 11 is {EBP,
ESP, (AR main, 12), (AR main, 16)}. The QFBV formula ϕ of
instruction 11 in main is given in Eqn. (3). The sub-portion ψ of ϕ
that is relevant to the local slicing criterion is

ψ ≡ ESP′ = ESP− 4.

(The other sub-portion of ϕ kills the a-loc (AR main, 8), which is
irrelevant to the local slicing criterion.) X includes only ψ in the
slice, and the local slicing criterion before instruction 11 in main is
{EBP, ESP, (AR main, 12), (AR main, 16)}. In contrast, the naı̈ve
slicing technique discussed in §3.1 included the entire instruction
in the slice, and the local slicing criterion before instruction 11
was {EBP, ESP, (AR main, 8), (AR main, 12), (AR main, 16)}.
X does not include in the slice instruction 10 in main because it is
irrelevant to the local slicing criterion, and consequently, X does not
include the entire body of add in the slice. The final slice computed
by X is shown by the lines highlighted in Fig. 7 in gray. One can
see that the slice computed by X is more precise than the backward
slice computed by CodeSurfer/x86 (cf. Fig. 4).

X computes forward slices in a similar manner except that it
includes the sub-portion of a node’s instruction that is just enough
to use the local slicing criterion before the node. For example,
consider instruction 7 in main given in Fig. 8. The local slicing
criterion before the instruction is {(AR main, 24)}. The QFBV
formula ϕ of instruction 7 in main is given in Eqn. (4). The sub-
portion ψ of ϕ that is relevant to the local slicing criterion is

ψ ≡ Mem′ = Mem[ESP− 4 7→ EBP− 24].

(The other sub-portion of ϕ kills the a-loc ESP, which is irrelevant
to the local slicing criterion.) X includes only ψ in the slice, and
the local slicing criterion after instruction 7 in main is {(AR main,
32)}. In contrast, the naı̈ve slicing technique discussed in §3.1 in-
cluded the entire instruction in the slice, and the local slicing crite-
rion after instruction 7 was {ESP, (AR main, 32)}. The slice com-
puted by X descends into add, and includes instruction 5 in add
because it uses the a-loc (AR add, −8). (The a-locs (AR main, 32)
and (AR add, −8) are aliases of each other, and X binds actual-
parameter a-locs to formal-parameter a-locs when it crosses a pro-
cedure boundary.) The final forward slice computed by X for the
multiply program is shown by the lines highlighted in Fig. 8 in gray.
Again, the slice computed by X is more precise than the forward
slice computed by CodeSurfer/x86 (cf. Fig. 6).

4. Projection Semantics
In addition to entire instructions, the improved slicing algorithm
in X also includes “sub-portions” of instructions in the slice. We
would like the slicing algorithm in X to be sound—i.e., it should
include in the slice all sub-portions of instructions that are tran-
sitively relevant to the global slicing criterion—while making an
effort to keep the slice as precise as possible. To achieve this goal,
at each instruction i, X must include in the slice a sub-portion ψ of
i that (i) is relevant to the local slicing criterion at i, and (ii) keeps
the slice as precise as possible. Let us first look at a few examples
that illustrate the desired behavior of the slicing algorithm.

Example 1. Consider the QFBV formula ϕ for the “push eax”
instruction, and the formulas ψ1 and ψ2 representing sub-portions
of ϕ.

ϕ ≡ ESP′ = ESP− 4 ∧Mem′ = Mem[ESP− 4 7→ EAX]

ψ1 ≡ ESP′ = ESP− 4 ψ2 ≡ Mem′ = Mem[ESP− 4 7→ EAX]

Suppose that we are computing a backward slice, and the local slic-
ing criterion S# after the push instruction is {ESP}. To compute
a sound slice, the slicing algorithm can include in the slice either
the sub-portion ψ1 of ϕ, or the entire formula ϕ because both ψ1

5 2015/10/5

add:
1: push ebp
2: mov ebp,esp
3: sub esp,4
4: mov eax,[ebp+12]
5: add eax,[ebp+8]
(EAX′ = EAX + Mem(EBP +
8))
6: mov [ebp-4],eax
7: mov eax,[ebp-4]
8: leave
9: ret

mult:
1: push ebp
2: mov ebp,esp
3: sub esp,4
4: mov eax,[ebp+12]
5: imul eax,[ebp+8]
6: mov [ebp-4],eax
7: mov eax,[ebp-4]
8: leave
9: ret

main:
1: push ebp
2: mov ebp,esp
3: sub esp,32

4: mov [ebp-24],1

5: mov [ebp-20],2
6: push [ebp-20]
7: push [ebp-24]
(Mem′ = Mem(ESP − 4 7→
Mem(EBP − 24))
8: call add
9: add esp,8
10: mov [ebp-16],eax
11: mov [ebp-12],3
12: mov [ebp-8],4
13: push [ebp-8]
14: push [ebp-12]
15: call mult
16: add esp,8
17: mov [ebp-4],eax
18: mov eax,[ebp-4]
19: leave
20: ret

Figure 8: Assembly listing for multiply with the forward slice computed
by X.

and ϕ kill S#. However, it should not include the sub-portion ψ2

of ϕ alone. ψ2 does not kill the local slicing criterion S#, and is
actually irrelevant to S#. If the slicing algorithm included only ψ2

in the slice, the resulting slice would be unsound.
If the slicing algorithm includes the entire formulaϕ in the slice,

ϕ would use irrelevant locations, making the slice imprecise. To
keep the slice as precise as possible, the slicing algorithm should
choose ψ1—and not the entire ϕ—to be included in the slice.

Example 2. Consider the push instruction and QFBV formulas
from Ex. 1. Suppose that we are computing a forward slice, and the
local slicing criterion S# before the push instruction is {ESP}.
The two sub-portions ψ1 and ψ2 both use the slicing criterion.
However, to be sound, the slicing algorithm should include the
entire formula ϕ in the slice.

Given a local slicing criterion S# at an instruction i, the prop-
erties of a sub-portion of i that preserves the soundness of the slice
with respect to S#, while keeping the slice as precise as possible,
are given in Defn. 7. X uses the criteria in Defn. 7 when choosing
what sub-portions of instructions to include in a slice. The sequence
of definitions in the remainder of this section build up to Defn. 7.
First we define what it means for a QFBV formula to represent a
“sub-portion” of an instruction’s semantics (Defn. 3). Second, we
state the properties of a sub-portion that preserves the soundness of
the slice with respect to a local slicing criterion (Defn. 6). Finally,
we state the criteria for preserving precision (Defn. 7).

4.1 Sub-Portion of an Instruction’s Semantics
Given the semantics ϕ of an instruction, we first provide semantic
criteria for a QFBV formula ψ to represent a sub-portion of ϕ
(Defn. 2). We then provide a syntactic way to obtain a satisfactory
formula ψ from ϕ (Defn. 3).

To simplify matters, we restrict ourselves to the case that arises
in the IA-32 instruction set, where the semantics of (most) instruc-
tions involves at most one memory update. Exceptions to this rule
are x86 string instructions, which have the rep prefix. In our im-
plementation, we do not attempt to find sub-portions for such in-
structions.

We now formulate the concept of when a formula ψ performs
less of a state transformation than a formula ϕ. Recall from §2.1

that the meaning of a QFBV formula is the set of machine-state
pairs that satisfy the formula.

Definition 1. [Ordering on QFBV formulas via the state trans-
formation performed.] The meaning of ψ transforms the state
less than the meaning of ϕ (denoted by [[ψ]] v [[ϕ]]) iff for all
〈σ, σ′′〉 ∈ [[ψ]], 〈σ, σ′〉 ∈ [[ϕ]], l ∈ dom(σ), the following proper-
ties hold:
1. (σ(l) = σ′(l))⇒ (σ(l) = σ′′(l))
2. (σ(l) 6= σ′′(l))⇒ (σ′′(l) = σ′(l))

The first property ensures that ψ does not modify any location
that is unmodified by ϕ. The second property ensures that ψ pro-
duces the same value as ϕ for each location modified by ψ.

Definition 2. Semantic Projection. A QFBV formula ψ is a se-
mantic projection of the semantics ϕ of an instruction i in a binary
B iff [[ψ]] v [[ϕ]].

Example 3. Consider the QFBV formulas given below. For this
example, let us suppose that the IA-32 ISA has only two registers:
EAX and EBX.

ϕ ≡ EAX′ = EAX + EAX ∧ EBX′ = 1

ψ ≡ EAX′ = EAX ∗ 2 ∧ EBX′ = EBX

Now consider the following states:

σ1 ≡ 〈[EAX 7→ 1][EBX 7→ 1]〉 σ2 ≡ 〈[EAX 7→ 1][EBX 7→ 2]〉
σ′1 ≡ 〈[EAX 7→ 2][EBX 7→ 1]〉 σ′2 ≡ 〈[EAX 7→ 2][EBX 7→ 1]〉

σ′′2 ≡ 〈[EAX 7→ 2][EBX 7→ 2]〉

ψ always produces the same value as ϕ for the EAX register. How-
ever, ψ never modifies the value in the EBX register, whereas ϕmay
or may not modify the value in EBX, depending on the pre-state.
For instance, we have 〈σ1, σ

′
1〉 |= ϕ and 〈σ1, σ

′
1〉 |= ψ. More-

over, 〈σ2, σ
′′
2 〉 |= ψ and 〈σ2, σ

′
2〉 |= ϕ. σ2(EAX) 6= σ′2(EAX) and

σ2(EBX) 6= σ′2(EBX), so property 1 holds; σ2(EAX) 6= σ′′2 (EAX)
but σ′′2 (EAX) = σ′2(EAX), so property 2 holds.

Therefore, [[ψ]] v [[ϕ]], and ψ represents a semantic projection
of ϕ.

A QFBV formula ϕ can have several semantic projections. Let
us see how we can obtain a subset of such ψs syntactically from ϕ.

Definition 3. Projection Sub-Formula. Suppose that ϕ is a QFBV
formula of the form shown in Eqn. (1). A projection sub-formula
ψ of ϕ is a QFBV formula (of the form shown in Eqn. (1)) that is
obtained from ϕ by any combination of the following actions:
• Replace a conjunct of the form I′m = Tm with the identity

conjunct I′m = Im.
• Replace a conjunct of the form J′n = ϕn with the identity

conjunct J′n = Jn.
• Replace the conjunct of the form Mem′ = FE (where FE is a

function-update expression) with the identity conjunct Mem′ =
Mem.

Trivially, Id and ϕ are projection sub-formulas of ϕ. (Id is
obtained by dropping all conjuncts from ϕ and replacing them by
identity conjuncts; ϕ is obtained by not dropping anything.) In the
rest of the paper, we use the terms “sub-portion” and “projection
sub-formula” interchangeably.

Example 4. Consider the push instruction and QFBV formulas
from Ex. 1.

ϕ ≡ ESP′ = ESP− 4 ∧Mem′ = Mem[ESP− 4 7→ EAX]

ψ1 ≡ ESP′ = ESP− 4 ψ2 ≡ Mem′ = Mem[ESP− 4 7→ EAX]

ψ1 and ψ2 are both projection sub-formulas of ϕ.

6 2015/10/5

Observation 1. If ψ is a projection sub-formula of ϕ, then ψ is a
semantic projection of ϕ.

Observation 2. The projection sub-formula Id transforms the state
the least among all projection sub-formulas of ϕ because Id does
not modify any location (i.e., for all 〈σ, σ′〉 ∈ [[Id]], σ = σ′). The
projection sub-formula ϕ of ϕ transforms the state most among all
projection sub-formulas of ϕ.

Suppose that ϕ is a projection sub-formula or a QFBV formula
denoting the semantics of an instruction, and σVSA is a VSA state.
In the remainder of the paper, USE#(ϕ, σVSA) denotes the set of
a-locs possibly used by ϕ, and KILL#(ϕ, σVSA) denotes the set of
a-locs possibly modified by ϕ.

Observation 3. Suppose that ϕ is the QFBV formula of an instruc-
tion i in a binary B, and σVSA is the VSA state at i. If ψ is a projec-
tion sub-formula of ϕ, then KILL#(ψ, σVSA) ⊆ KILL#(ϕ, σVSA),
and USE#(ψ, σVSA) ⊆ USE#(ϕ, σVSA).

4.2 Soundness
Now that we have formally defined a “sub-portion” of the seman-
tics of an instruction, we can provide a sufficient condition for a
sub-portion that “kills (uses) enough locations” with respect to a
local slicing criterion to preserve the soundness of the slice. Before
stating the condition, we define the prerequisite notion of projec-
tion complement. We first provide a semantic criterion for a QFBV
formula ψ

ϕ

to represent the projection complement of a projection
sub-formula ψ of ϕ (Defn. 4). We then provide a way to obtain a
suitable formula syntactically from ψ and ϕ (Defn. 5).

Definition 4. Semantic Projection Complement. Suppose that ψ
is a projection sub-formula of the semantics ϕ of an instruction
i in a binary B. A QFBV formula ψ

ϕ

is a semantic projection
complement of ψ with respect to ϕ iff ψ

ϕ

satisfies the following
properties:
1. ψ

ϕ

is a semantic projection of ϕ
2. for all 〈σ, σ′〉 ∈ [[ϕ]], 〈σ, σ′′〉 ∈ [[ψ]], 〈σ, σ′′′〉 ∈ [[ψ

ϕ

]],
l ∈ dom(σ),
(σ(l) 6= σ′(l) ∧ σ(l) = σ′′(l))⇒ (σ′(l) = σ′′′(l))

The first property ensures that the meaning of ψ
ϕ

transforms the
state less than the meaning of ϕ. The second property ensures that,
for each location l that was modified by ϕ and not modified by ψ,
ψ

ϕ

modifies l, producing the same value produced by ϕ. Together,
ψ and ψ

ϕ

perform all state transformations performed by ϕ.
A projection sub-formula ψ of ϕ can have several semantic

projection complements. It always has one, namely, ϕ itself.
Just as we obtained a projection sub-formula ψ syntactically

from ϕ, we can also obtain a projection complement of ψ syntacti-
cally from ψ and ϕ.

Definition 5. Projection Sub-Formula Complement. Suppose that
ψ is a projection sub-formula of the semantics ϕ of an instruction
i in a binary B. The projection sub-formula complement ψϕ

of ψ
with respect to ϕ is a formula of the form shown in Eqn. (1) that
only contains the conjuncts that were dropped from ϕ to create ψ.

Note that a projection sub-formula ψ of ϕ has only one projec-
tion sub-formula complement with respect to ϕ.

Observation 4. Note that ϕϕ = Id and Id
ϕ
= ϕ.

Observation 5. If ψ
ϕ

is the projection sub-formula complement of
ψ with respect to ϕ, then ψ

ϕ
is a semantic projection complement

of ψ with respect to ϕ.

Figure 9: Visualization of sets S#, KILL#(ψ, σVSA), KILL#(ψ
ϕ
, σVSA),

and KILL#(ϕ, σVSA).

Example 5. The projection sub-formula complements of ψ1 and
ψ2 with respect to ϕ (from Ex. 4) are given below.

ψ1
ϕ≡Mem′=Mem[ESP−4 7→ EAX] ψ2

ϕ≡ESP′=ESP−4

Given an instruction with semantics ϕ, and a local slicing cri-
terion S#, the next definition provides a sufficient condition for a
sub-portion ψ of ϕ to preserve the soundness of the slice even if ψ
were included in the slice instead of ϕ.

Definition 6. Restricted Projection Sub-Formula. Suppose that ϕ
is the QFBV formula of an instruction i in a binary B, σVSA is the
VSA state at i, and S# is the local slicing criterion after (before)
i. Also suppose that ψ is a projection sub-formula of ϕ, and ψ

ϕ
is

the projection sub-formula complement of ψ with respect to ϕ. ψ is
kill-restricted (use-restricted) with respect to S# iff ψ satisfies the
following properties:

Kill-restricted Use-restricted
1. (S# ∩ KILL#(ϕ, σVSA)) 1. (S# ∩ USE#(ϕ, σVSA))
⊆ KILL#(ψ, σVSA) ⊆ USE#(ψ, σVSA)

2. KILL#(ψ
ϕ
, σVSA) ∩ S# 2. USE#(ψ

ϕ
, σVSA) ∩ S#

= ∅ = ∅

The first property ensures that the projection sub-formula ψ
restricted with respect to S# includes conjuncts from ϕ that are
just enough to kill (use) as much of S# as ϕ. The second property
ensures that ψ includes all conjuncts of ϕ that kill (use) as much
of S# as ϕ. We use the Venn diagrams in Fig. 9 to illustrate
the two properties. (The Venn diagrams depict KILL# sets. The
diagrams for USE# sets look similar.) In the first diagram, we have
a projection sub-formulaψ that violates property 1—ψ does not kill
enough a-locs to meet property 1. In the second diagram, we have a
projection sub-formula ψ that kills enough a-locs to meet property
1, but we have not included in ψ all conjuncts of ϕ that kill S#.
(This is evident from the fact that KILL#(ψ

ϕ
, σVSA) overlaps with

S#.) In the third diagram, we have a projection sub-formula ψ that
kills enough a-locs to meet property 1, and we have not left out any
conjuncts of ϕ that kill as much of S# as ϕ.

Example 6. Consider the push instruction, QFBV formulas, and
local slicing criterion S# = {ESP} from Ex. 1.

ϕ ≡ ESP′ = ESP− 4 ∧Mem′ = Mem[ESP− 4 7→ EAX]

ψ1 ≡ ESP′ = ESP− 4 ψ2 ≡ Mem′ = Mem[ESP− 4 7→ EAX]

Also suppose that the VSA state σVSA at the push instruction is
[ESP 7→ (AR main, -4)][EAX 7→ 1]. The KILL# sets of ϕ, Id, ψ1,

7 2015/10/5

and ψ2 are given below.

KILL#(ϕ, σVSA) = {ESP, (AR main, 0)} KILL#(Id, σVSA) = ∅
KILL#(ψ1, σVSA) = {ESP} KILL#(ψ2, σVSA) = {(AR main, 0)}

ψ1 and ϕ are projection sub-formulas of ϕ kill-restricted with
respect to S#, but ψ2 and Id are not. Both ψ2 and Id violate
property 1 given in Defn. 6.

Example 7. Consider the push instruction, QFBV formulas, and
VSA state from Ex. 6. Suppose that the local slicing criterion S#

before the push instruction is {ESP}, and we want to compute a
forward slice. The USE# sets of ϕ, Id, ψ1, and ψ2 are given below.

USE#(ϕ, σVSA) = {ESP, EAX} USE#(Id, σVSA) = ∅
USE#(ψ1, σVSA) = {ESP} USE#(ψ2, σVSA) = {ESP, EAX}

ϕ is the only projection sub-formula of ϕ that is use-restricted with
respect to S#. Id violates property 1 given in Defn. 6. ψ1 and ψ2

satisfy property 1, but not property 2.

4.3 Precision
Given the local slicing criterion S# after (before) an instruction
i with semantics ϕ, if X includes in the slice any projection sub-
formula of ϕ that is kill-restricted (use-restricted) with respect to
S#, the computed backward (forward) slice will be sound. For
a given S#, there can be more than one projection sub-formula
of ϕ that is restricted with respect to S# (e.g., Ex. 6). Under
such circumstances, X should choose a projection sub-formula that
keeps the slice as precise as possible. What are the properties of a
projection sub-formula that maximizes precision? Intuitively, if we
are computing a backward slice, and are given a set of projection
sub-formulas that are all sound with respect to a local slicing
criterion, we would choose the one that uses minimal locations, so
that the local slicing criteria for the predecessors will be minimal.
(For the precision of a backward slice, we don’t really care about
the kill sets of the candidate sound projection sub-formulas.) This
intuition is formalized by the next definition.

Definition 7. Minimal Restricted Projection Sub-Formula. Sup-
pose that ϕ is the QFBV formula of an instruction i in a binary
B, σVSA is the VSA state at i, and S# is the local slicing crite-
rion after (before) i. A projection sub-formula ψ of ϕ is minimally
kill-restricted (minimally use-restricted) with respect to S# iff ψ
satisfies the following properties:
1. ψ is kill-restricted (use-restricted) with respect to S#.
2. There does not exist another projection sub-formula ψ′ of
ϕ that satisfies property 1 such that USE#(ψ′, σVSA) ⊆
USE#(ψ, σVSA) (KILL#(ψ′, σVSA) ⊆ KILL#(ψ, σVSA)).

A minimal kill-restricted (use-restricted) projection sub-
formula gives us a sub-portion of an instruction’s semantics that
is just enough to kill (use) the local slicing criterion, and also uses
(kills) as few locations as possible.

Example 8. Consider the formulas and the local slicing criterion
S# from Ex. 6. ψ1 is the projection sub-formula of ϕ that is mini-
mally kill-restricted with respect to S#, whereas ϕ is not.

Example 9. Consider the formulas and the local slicing criterion
S# from Ex. 7. Because ϕ is the only projection sub-formula that is
use-restricted with respect to S#, ϕ trivially becomes the projection
sub-formula that is minimally use-restricted with respect to S#.

Given the local slicing criterion S# at instruction i with seman-
tics ϕ, the slicing algorithm in X includes in the slice only a pro-
jection sub-formula of ϕ that is minimally use/kill restricted with
respect to S#.

Algorithm 1 Strawman backward intraprocedural slicing algorithm

Input: SDG, nG

Output: Slice
1: worklist← {nG}
2: Slice← ∅
3: while worklist 6= ∅ do
4: n← RemoveItem(worklist)
5: if n /∈ Slice then
6: Slice← Slice ∪ {n}
7: worklist← worklist ∪ n.predecessors
8: end if
9: end while

10: return Slice

We now define a primitive called GrowProjection that
“grows” an existing sub-portion φ of the semantics of an instruc-
tion, such that the grown sub-portion is just enough to kill (use)
the local slicing criterion, while using (killing) as few locations as
possible. X uses the GrowProjection primitive to grow the sub-
portions of instructions included in the slice.

Definition 8. GrowProjection(ϕ, φ, S#, σVSA). Suppose that
ϕ is the QFBV formula of an instruction i in a binary B, σVSA is the
VSA state at i, and S# is the local slicing criterion after (before) i.
Given a projection sub-formula φ of ϕ, GrowProjection returns
a QFBV formula ψ that satisfies the following properties:
1. φ is a projection sub-formula of ψ.
2. ψ is a projection sub-formula of ϕ that is minimally kill-

restricted (use-restricted) with respect to S#.
If there exists more than one ψ that satisfies properties 1 and
2, GrowProjection breaks ties by picking the projection sub-
formula whose USE# (KILL #) set comes earliest in the lexico-
graphic order of the sorted USE# (KILL#) sets.

Example 10. Consider the formulas and the local slicing criterion
from Ex. 6. If φ ≡ Id, GrowProjection returns ψ1.

Example 11. Consider the formulas and the local slicing crite-
rion S# from Ex. 6. If φ ≡ Mem′ = Mem[ESP − 4 7→ EAX],
GrowProjection returns ϕ because the only projection sub-
formula minimally kill-restricted with respect to S# that can be
obtained by “growing” φ is ϕ.

5. Algorithm
In this section, we describe the slicing algorithm used in X. First,
we present X’s intraprocedural-slicing algorithm. Then, we present
extensions to the algorithm for interprocedural slicing.

5.1 Intraprocedural Slicing
In this sub-section, we present the intraprocedural backward-
slicing algorithm used in X. It is straightforward to modify the
algorithm to perform forward slicing. We start by presenting the
intraprocedural-slicing algorithm used in CodeSurfer/x86; we then
present the improved slicing algorithm that is actually used in X.

5.1.1 Base Algorithm
Given the SDG of the binary, and the SDG node nG from which to
slice, the intraprocedural-slicing algorithm in CodeSurfer/x86 in-
cludes in the backward slice all nodes that reach nG by following
intraprocedural data-dependence and control-dependence edges.
This strawman algorithm is given as Alg. 1. In Alg. 1, RemoveItem
removes an item from the worklist, and n.predecessors returns the
set of intraprocedural data and control predecessors of n in the
SDG. The granularity issue inherent in the IA-32 ISA causes Alg. 1
to compute an imprecise backward slice as illustrated in §3.1.

8 2015/10/5

Algorithm 2 Backward intraprocedural slicing algorithm in X

Input: SDG, nG, S#
G

Output: Slice
1: for each node n ∈ SDG do
2: n.sliceBefore← ∅
3: n.sliceAfter← ∅
4: n.semantics← Id
5: end for
6: nG.sliceAfter← S#

G
7: worklist← {nG}
8: Slice← ∅
9: while worklist 6= ∅ do

10: n← RemoveItem(worklist)
11: for each s ∈ n.successors do
12: n.sliceAfter← n.sliceAfter ∪ s.sliceBefore
13: end for
14: prevSemantics← n.semantics
15: σVSA ← n.VSAState
16: if IsControlNode(n) then
17: n.semantics← 〈〈n.instruction〉〉
18: else
19: ϕ← 〈〈n.instruction〉〉
20: S#← n.sliceAfter ∩ KILL#(ϕ, σVSA)
21: if S# = ∅ then
22: continue
23: end if
24: n.semantics ← GrowProjection(ϕ, prevSemantics,

S#, σVSA)
25: end if
26: if n.semantics 6= prevSemantics then
27: n.sliceBefore← USE#(n.semantics, σVSA)
28: Slice← Slice ∪ {n}
29: worklist← worklist ∪ n.predecessors
30: end if
31: end while
32: return Slice

5.1.2 Improved Algorithm
The improved intraprocedural backward-slicing algorithm used in
X is given as Alg. 2. The inputs to Alg. 2 are the SDG of the
binary, the node nG from which to slice, and the global slicing
criterion S#

G given as a set of a-locs. For any given node n in
the SDG, n.instruction is the instruction associated with n, and
n.semantics denotes the sub-portion of the formula for the seman-
tics of n.instruction that is included in the slice; n.sliceBefore and
n.sliceAfter are sets of a-locs denoting the local slicing criteria be-
fore and after n, respectively. Alg. 2 initializes n.semantics to Id
(Line 4) because initially, the slice does not include any sub-portion
of any instruction. (Recall from Obs. 2 that Id transforms the state
the least.) Alg. 2 also initializes n.sliceBefore and n.sliceAfter to
empty sets (Lines 2–3).

Alg. 2 uses a worklist to process the nodes in the SDG.
Given a worklist item n, and the VSA state at n (obtained us-
ing n.VSAState), Alg. 2 performs the following steps during each
worklist iteration:
1. Alg. 2 computes n.sliceAfter as the union of the current
n.sliceAfter and the sliceBefore sets of n’s intraprocedural data
and control successors, which are obtained using n.successors
(Lines 11–13).

2. Alg. 2 includes entire control nodes (nodes containing jump in-
structions) when included downstream nodes are control depen-
dent on the control nodes (Lines 16–18).

3. The a-locs that are in both n.sliceAfter and the kill set of
n.instruction are added to the local slicing criterion S# (Line
20).

4. If S# is empty, then n.instruction kills locations that are irrel-
evant to the local slicing criterion. Alg. 2 does not add such
nodes to the slice (Lines 21–23).

5. Alg. 2 uses GrowProjection to “grow” n.semantics just
enough to kill S#, while using as few locations as possible
(Line 24).

6. If n.semantics “grew” in the previous step, Alg. 2 computes
n.sliceBefore as the use set of the new n.semantics, and
adds n.predecessors to the worklist (Lines 26–30). A prede-
cessor that kills locations that are irrelevant to the updated
n.sliceBefore will be discarded in Step 4 on a subsequent it-
eration.

One can see that n.semantics transforms the state more each time
it gets updated. When the algorithm terminates, only nodes that are
transitively relevant to the global slicing criterion S#

G are included
in the slice, and for each node n included in the slice, n.semantics
gives the sub-portion of the semantics of n.instruction that is tran-
sitively relevant to S#

G .

Theorem 1. Termination. Alg. 2 terminates.

Proof. Suppose that ϕ is the QFBV formula for the instruction
associated with a node n in the SDG, and σVSA is the VSA state
at n. By Obs. 3, ∅ ⊆ n.sliceBefore ⊆ USE#(ϕ, σVSA), and ∅ ⊆
n.sliceAfter ⊆ KILL#(ϕ, σVSA). USE# and KILL# sets are finite
sets of a-locs; thus, the height of the local slicing-criteria lattice is
finite. Also, the computations of sliceBefore and sliceAfter sets are
monotonic.
• sliceAfter: In Line 12 of Alg. 2, the new n.sliceAfter is com-

puted as the union of the current n.sliceAfter and the sliceBe-
fore sets of n’s successors. Because set union in monotonic, if
the sliceBefore sets of n’s successors grow, n.sliceAfter also
grows.
• sliceBefore: If n.sliceAfter grows, S# might grow. Thus
GrowProjection grows the current n.semantics using more
conjuncts such that the new n.semantics kills the larger S#. As
a result, the USE# set of the new n.semantics—and thus the
new n.sliceBefore—is larger.

sliceBefore and sliceAfter of all SDG nodes are initialized to ∅
(except nG.sliceAfter, which is initialized to the global slicing
criterion), and they become larger with each iteration until Alg. 2
reaches a fixed point. Consequently, Alg. 2 terminates.

Theorem 2. Soundness. If the SDG of a binary B is sound, Alg. 2
computes a sound slice with respect to the global slicing criterion
S#
G .

Proof. Suppose that ϕ is the QFBV formula of the instruction
associated with a node n in the SDG. During worklist iterations,
Alg. 2 replaces n.semantics with projection sub-formulas of ϕ that
are kill-restricted with respect to the local slicing criterion S#,
and such kill-restricted projection sub-formulas always kill S#

(by Defn. 3). Consequently, all instruction sub-portions that might
transitively affect S#

G are included in the final slice computed by
Alg. 2, and the slice is sound.

Theorem 3. Precision. Suppose that Slice′(SDG, S#
G) is the im-

precise backward slice of the SDG of binary B with respect to
global slicing criterion S#

G obtained using CodeSurfer/x86, and
Slice(SDG, S#

G) is the backward slice of the SDG of B with re-
spect to global slicing criterion S#

G obtained using Alg. 2. Then
Slice(SDG, S#

G) ⊆ Slice′(SDG, S#
G).

9 2015/10/5

Figure 10: An SDG snippet with the body of xchg, and a call-site to xchg.

Proof. If GrowProjection were to return ϕ in Line 24 of
Alg. 2, Alg. 2 would compute Slice′(SDG, S#

G). However, because
GrowProjection returns a projection sub-formulaψ ofϕ, by Obs.
3, Slice(SDG, S#

G) ⊆ Slice′(SDG, S#
G).

The maximum number of times a node n is processed on lines
27–29 of Alg. 2 is bounded by the number of times n.semantics can
grow, which in turn is bounded by the number of conjunctsm in an
IA-32 instruction. With the exception of the x86 string instructions
(instructions with the rep prefix),m is a constant. Thus lines 27–29
execute at most O(N) times. Line 29 involves a constant amount
of work per predecessor of n (assuming that sets are implemented
with hash tables and the cost of a single lookup, insert, or delete
is expected-time O(1)). That is, the cost of line 29 is proportional
to the number of incoming edges that n has. That number is not
bounded because each node in the SDG can have an unbounded
number of incoming edges. However, in total, the cost of line 29
is O(E), where E is the number of edges in the SDG. Thus the
running time of Alg. 2 is bounded by O(E).

5.2 Interprocedural Slicing
In this sub-section, we describe the extensions to Alg. 2 to perform
interprocedural backward slicing. It is straightforward to adapt the
extensions to perform interprocedural forward slicing.

Recall from §2.2 that an SDG also has nodes for formal pa-
rameters of procedures, and actual parameters of procedure calls.
Specifically, each call-site has an actual-in node for each actual pa-
rameter, and an actual-out node for each return value; the PDG
of a procedure has a formal-in node for each formal parameter,
and a formal-out node for each return value. Formal-in/out and
actual-in/out nodes are also created for global variables and reg-
isters. Actual-in/out nodes are control dependent on the call-site
node. Formal-in/out nodes are control dependent on the procedure-
entry node. Data-dependence edges connect actual-in/out nodes
with formal-in/out nodes. (Recall from §2.2 that the SDG also
has interprocedural control-dependence edges between call-site
nodes and procedure-entry nodes.) An example SDG snippet is
shown in Fig. 10. In Fig. 10, control-dependence edges are bold,
whereas data-dependence edges are thinner; interprocedural edges
are dashed. Fig. 10 shows a call-site with a call to a procedure xchg,
which has only one node in its body. Let us assume that the vari-
ables a and b are globals. xchg swaps the values in a and b using a
single instruction. Except for ESP, we do not show the actual-in/out
nodes, formal-in/out nodes, and edges for other registers. To per-
form interprocedural slicing, X also follows interprocedural edges
in addition to intraprocedural edges.

5.2.1 Context Sensitivity
A context-sensitive interprocedural-slicing algorithm ensures that
infeasible paths involving mismatched calls and returns are not
included in the slice. The classical approach is based on context-
free language (CFL) reachability [19]. Operationally, the SDG
is augmented with summary edges [14]. Summary edges capture
dependence summaries between actual-in and actual-out nodes.
Because xchg uses only one instruction to use and kill both global
variables a and b, there are summary edges between (i) the actual-
ins for a and b, and the actual-out for a, (ii) the actual-ins for a
and b, and the actual-out for b, and (iii) the actual-in and actual-out
for ESP. Once summary edges are added to the SDG, the slicing
algorithm computes a context-sensitive interprocedural slice in two
phases:
• In the first phase, the algorithm grows the slice without de-

scending into procedures by “stepping across” call-sites via
summary edges. Bodies of called procedures are not included
in the slice in the first phase.
• In the second phase, the algorithm descends into procedures,

but does not ascend back at call-sites. Bodies of called proce-
dures are incorporated into the slice in the second phase.
Note that the dependences captured by summary edges do not

depend on the slicing criterion. Consequently, the set of summary-
edge predecessors of an actual-out n includes all the actual-ins that
might affect n regardless of the local slicing criterion after n. For
example, for the call-site shown in Fig. 10, the summary actual-ins
for the actual-outs for a and b are given below.

SummaryPreds({a ao}) = {a ai, b ai}
SummaryPreds({b ao}) = {a ai, b ai}

To make such an approach work for X, we would need summary
transformers instead of summary edges. For example, for the call-
site in Fig. 10, we would like to have the following transformers:

〈{a ao}, {a}〉→〈{b ai}, {b}〉
〈{a ao}, {other a-locs}〉→〈∅, ∅〉
〈{b ao}, {b}〉→〈{a ai}, {a}〉
〈{b ao}, {other a-locs}〉→〈∅, ∅〉

For each call-site, one could tabulate the summary transformers
(à la [23]) as they get computed. However, one might need such
tabulated facts for every subset of a-locs that could arise at a call-
site. Given that the number of a-locs in a program can be huge, this
approach might incur a lot of overhead.

The approach X uses for context-sensitive interprocedural slic-
ing is, in effect, equivalent to slicing an SDG in which procedures
have been expanded inline. (Inline expansion does not work for re-
cursive procedures; see below for how X handles recursion.)

X performs “virtual inlining” by qualifying each node n with
the calling context under which X visits n, and maintaining a call-
stack to keep track of the current calling context. This way, X can
differentiate between the different calling contexts under which it
visits n. X reslices the procedures for different calling contexts.
Consequently, X records different n.semantics, n.sliceBefore, and
n.sliceAfter for different calling contexts of n (i.e., n.semantics
from Alg. 2 becomes 〈n, context〉.semantics, n.sliceBefore be-
comes 〈n, context〉.sliceBefore, etc., where context is a unique con-
text under which X visits n). Also, when X descends into a proce-
dure body from a call-site C, the stack enables enables X to ascend
back to C.

This simple approach of slicing using a callstack does not work
for recursive procedures. If X descends from a call-site into the
body of a recursive procedure, X could become stuck in an infinite
loop. For this reason, at calls to recursive procedures, X “steps

10 2015/10/5

across” the call by following the summary edges computed by
CodeSurfer/x86. Following summary edges at calls to recursive
procedures causes a slight decrease in slicing precision because
summary edges do not take the slicing criterion into account, but
allows X to slice programs with recursion. (It is exactly for this
reason that we implemented virtual inline expansion in X, rather
than actual inline expansion.)

The context-sensitive interprocedural-slicing algorithm in X has
a minor defect—because the algorithm, in effect, is equivalent to
slicing an SDG with procedures expanded inline, the algorithm
might exhibit exponential behavior in the worst case.3 However,
in our experiments (§7), we did not observe this behavior.

6. Implementation
X uses CodeSurfer/x86 [5] to obtain the SDG for a binary, and the
VSA state at each instruction in the binary. X uses Transformer
Specification Language (TSL) [15] to obtain QFBV encodings
of instructions. The concrete operational-semantics of the integer
subset of IA-32 is written in TSL, and the semantics is reinterpreted
to produce QFBV formulas [16]. X reinterprets the semantics ϕ
expressed in QFBV logic with respect to a VSA state to compute
USE#(ϕ, σVSA) and KILL#(ϕ, σVSA).

In CodeSurfer/x86, the abstract transformers for the analyses
used to build an SDG are obtained using TSL [15, §4.2]. In princi-
ple, if one were to replace the IA-32 semantics written in TSL with
the semantics of another ISA, one could instantiate X’s toolchain
for the new ISA.

7. Experiments
We tested X on binaries of open-source programs. Our experiments
were designed to answer the following questions:
• In comparison to CodeSurfer/x86, what is the reduction in slice

size caused by X?
• In the slices computed by X, how many entire instructions are

included in the slice? (And how many instructions have only a
sub-portion of their semantics included in the slice?)
• What instructions have only a portion of their semantics in-

cluded in slices?
• Does X’s algorithm exhibit exponential behavior for our test

suite?
All experiments were run on a system with a quad-core, 3GHz
Intel Xeon processor running Windows 7; however, X’s algorithm
is single-threaded. The system has 32 GB of memory.

Our test suite consists of IA-32 binaries of FreeBSD utilities
[1]. Table 1 presents the characteristics of the applications. For each
application, we selected one slicing criterion for a backward slice
and one for a forward slice, respectively.

For backward slices, we selected as the slicing criterion one
or more actual parameters of the final call to an output procedure
(e.g., printf, fwrite, or any user-defined output procedure in the
application). Only for pr did we deviate from this rule and instead
chose a variable that gets used toward the end of the application,
but is not passed to an output procedure as an actual parameter.
Our rationale for choosing these slicing criteria was that variables
that are printed toward the end of the application are likely to be
important outputs computed by the application, and hence it would
be interesting to see which instructions affect these variables.

For forward slices, we selected variables or sets of variables that
were initialized near the beginning of the application.

3 Consider a non-recursive program in which procedure pk contains two
calls to pk−1; pk−1 contains two calls to pk−2; etc. Finally, p1 contains
a node n. Because there are 2k−1 unique calling contexts for reaching n,
node n could be processed 2k−1 times.

1

10

100

1000

N
o

.
o

f
in

st
ru

ct
io

n
s

in
 s

lic
e

<Application, slicing direction>

Slice-size comparison

CS/x86

X

Figure 11: Comparison of sizes of slices computed by CodeSurfer/x86 and
X (log-scale).

Opcode
Variant

Count

push 780

add 578

sub 481

call 442

cmp 301

test 257

and 580

shl 26

idiv 13

sar 13

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Split of partial and entire instructions

No. of partial
instructions
in slice

No. of entire
instructions
in slice

Figure 12: Split of partial and entire instructions in slices computed by X.

units and msgs each had one recursive procedure. The recur-
sive procedure in units was included in the backward slice, but
not included in the forward slice. The recursive procedure in msgs
was included in both forward and backward slices.

To answer the first question, we computed the slices using X
and CodeSurfer/x86. Fig. 11 shows the number of instructions in-
cluded in each slice. Note that the y-axis uses a logarithmic scale.
The average reduction in the slice sizes, computed as a geometric
mean, is 36% for backward slices and 82% for forward slices. For
the forward slices of write, units and pr, X reduces the number
of instructions in the slice by over two orders of magnitude. The
reduction in forward-slice sizes is more pronounced because the
imprecision-causing idiom for forward slices (imprecision caused
by the instruction marked ** in Fig. 6) occurs much more fre-
quently in practice than the idiom for backward slices (the instruc-
tion marked by ** in Fig. 7). For msgs, the forward slice computed
by X contains many instructions because a procedure call was con-
trol dependent on a node that was already in the slice. Because the
call contains push instructions, updates to the stack pointer were
added to the slice because of the control dependence, and conse-
quently, downstream instructions that used the stack pointer were
added to the slice.

To answer the second and third questions, for each slice com-
puted by X, we computed the number of instructions in the slice
that were included in their entirety for some context, and the num-
ber of instructions for which only a sub-portion was included in
the slice for all contexts. Fig. 12 shows the results. For backward
slices, it was surprising to see that, on an average, only 43% of
the slice consisted of entire instructions, and the remaining were
sub-portions of instructions. For forward slices, that number was
64.3%. We also identified the top ten opcode variants that consti-
tute the instructions that were not included in their entirety in the
slice. For the push opcode variant in the table in Fig. 12, either
the stack-pointer update or the memory update was included in the
slice. For the call opcode variant, the stack-pointer update was of-
ten the only update that was included in the slice. For the remaining

11 2015/10/5

Table 1: Characteristics of applications in our test suite.

Application LOC No. of instructions Backward-slicing criterion Forward-slicing criterion
wc 295 765 Actual twordct of call to printf in main Locals linect, wordct, and charct in cnt
md5 331 796 Actual p of final call to printf in main Actual optarg of call to MDString in main
write 332 932 Actuals of final call to do write in main Local atime in main
uuencode 392 837 Actual output of call to do write in encode Initialization of global mode in main
cksum 505 790 Actual len in final call to pcrc in main Local lcrc in csum1
units 783 2094 Actuals of final call to showanswer in main Local linenum in readunits
msgs 951 2245 Actual nextmsg of final call to fprintf in main Local blast in main
pr 2207 3980 Local pagecnt in vertcol Local eflag in vertcol

1

10

100

Max. no. of times a node was processed in X

Figure 13: Maximum number of times a node was added to the worklist in
X (log-scale).

1

10

100

Time (seconds)

Figure 14: Time taken by X to compute the slice (log-scale).

opcode variants, a subset of flag updates was frequently excluded
from the slice.

To answer the fourth question, for the computation of each slice,
we counted the maximum number of times a node was processed,
and the time taken to compute the slice. The results are shown
in Fig. 13 and Fig. 14, respectively. Note that the y-axes use a
logarithmic scale. X took the longest time to compute the backward
slice for units. For computing the slice, the maximum number of
times X processed a node on lines 27–29 of Alg. 2 was 78, and
the maximum number of unique contexts observed for that node
was 42. The number of procedures included in the slice was 17. pr
was the application that had the second longest slice-computation
time. For pr, the maximum number of unique contexts observed
was 52, and the number of procedures included in the slice was 15.
For these examples, one can see that the number of unique contexts
is nowhere near exponential in the number of procedures.

8. Related Work
Slicing. The literature on program slicing is extensive [6, 17, 27].
Slicing has been—and continues to be—applied to many software-
engineering problems [13]. For instance, recently there has been
work on language-independent program slicing [7], which repeat-
edly creates potential slices through statement deletion, and tests
the slices against the original program for semantics preserva-
tion. Specialization slicing [3] uses automata-theoretic techniques
to produce specialized versions of procedures such that the out-
put slice is an optimal executable slice without any parameter mis-
matches between procedures and call-sites. The slicing techniques
discussed in the literature use an SDG or a suitable IR whose nodes
typically contain a single update (and not a multi-assignment in-

struction). Consequently, the issue of including a “sub-portion” of
a node never arises.

IRs for machine-code analysis. Apart from CodeSurfer/x86, the
other IRs used for machine-code analysis include Vine [24], REIL
[10], and BAP [9]. These IRs use a Universal Assembly Language
(UAL) to represent the semantics of an instruction. (Typically, an
instruction’s semantics is a sequence of UAL updates.) The BAP
and Vine platforms also support building an SDG for a binary.
However, as in the case of CodeSurfer/x86, the nodes of the SDGs
in these IRs are entire instructions, and thus these IRs also face the
granularity issue during slicing.

UAL updates for an instruction i can be thought of as a lin-
earization of the QFBV formula for i, and thus the techniques
used by X can be easily adapted to perform more accurate slic-
ing in those platforms. (“Sub-portions” of instructions would then
be UAL updates instead of projection sub-formulas.)

Applications of more precise machine-code slicing. WIPER is a
machine-code partial evaluator [25] that specializes binaries with
respect to certain static inputs. As a first step to partial evalua-
tion, WIPER performs binding-time analysis (BTA) to determine
which instructions in the binary can be evaluated at specialization
time. For BTA, WIPER uses CodeSurfer/x86’s forward slicing.
To sidestep the granularity issue, WIPER “decouples” the multi-
ple updates performed by instructions that update the stack pointer
along with another location (e.g., push, pop, leave, etc.). One can
see that instruction decoupling is a sub-optimal solution to address
the granularity issue because multi-assignment instructions that do
not update the stack pointer also make the forward slice impre-
cise. X computes more accurate forward slices, and can be used in
WIPER’s BTA to increase BTA precision.

Taint trackers [18, 22] use dynamic analysis to check if tainted
inputs from taint sources could affect taint sinks. Certain taint
trackers such as Minemu [8] rely entirely on dynamic analysis to
reduce taint-tracking overhead. X could be used to exclude from
consideration portions of the binary that are not affected by taint
sources, thereby further reducing taint-tracking overhead.

Conseq [29] is a concurrency-bug detection tool, which uses
machine-code slicing to compute the set of critical reads that might
affect a failure site. X could be used to compute more accurate
backward slices, effectively reducing the number of critical reads
that needs to be analyzed by Conseq.

9. Conclusion and Future Work
In this paper, we described an algorithm to slice machine code more
accurately. We presented X, a tool that slices IA-32 binaries more
precisely than a state-of-the-art tool. Our experiments on binaries of
FreeBSD utilities show that, in comparison to slices computed by
CodeSurfer/x86, our algorithm reduces the number of instructions
in backward slices by 36%, and in forward slices by 82%. For some
binaries in our test suite, X reduces the number of instructions in
the slice by over two orders of magnitude.

12 2015/10/5

A possible direction for future work is to incorporate X into
the BTA of WIPER [25], and see if X increases the precision
of BTA, leading to better specialization opportunities. A second
direction is to incorporate X into a taint tracker such as Minemu
[8] to exclude from consideration portions of the binary that are
not affected by taint sources, and measure the reduction in taint-
tracking overhead caused by this optimization. A third direction is
to generate an executable from a backward slice S computed by
X. By using a machine-code synthesizer [26], one can synthesize
instruction sequences for the sub-portions of instructions included
in S. This approach can be used to extract an executable component
from a binary (e.g., a word-count program from the wc utility).

References
[1] http://www.opensource.apple.com/source/.
[2] P. Anderson, T. Reps, and T. Teitelbaum. Design and implementation

of a fine-grained software inspection tool. TSE, 29(8), 2003.
[3] M. Aung, S. Horwitz, R. Joiner, and T. Reps. Specialization slicing.

TOPLAS, 36(2), 2014.
[4] G. Balakrishnan and T. Reps. WYSINWYX: What You See Is Not

What You eXecute. TOPLAS, 32(6), 2010.
[5] G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum.

Codesurfer/x86 – A platform for analyzing x86 executables,
(tool demonstration paper). In CC, 2005.

[6] D. Binkley and K. Gallagher. Program slicing. In Advances in
Computers, Vol. 43. 1996.

[7] D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, and S. Yoo.
ORBS: Language-independent program slicing. In FSE, 2014.

[8] E. Bosman, A. Slowinska, and H. Bos. Minemu: The world’s fastest
taint tracker. In RAID, 2011.

[9] D. Brumley, I. Jager, T. Avgerinos, and E. Schwartz. BAP: A Binary
Analysis Platform. In CAV, 2011.

[10] T. Dullien and S. Porst. REIL: A platform-independent intermedi-
ate representation of disassembled code for static code analysis. In
CanSecWest, 2009.

[11] K. ElWazeer, K. Anand, A. Kotha, M. Smithson, and R. Barua. Scal-
able variable and data type detection in a binary rewriter. In PLDI,
2013.

[12] J. Ferrante, K. Ottenstein, and J. Warren. The program dependence
graph and its use in optimization. TOPLAS, 9(3), 1987.

[13] S. Horwitz and T. Reps. The use of program dependence graphs in
software engineering. In ICSE, 1992.

[14] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using
dependence graphs. TOPLAS, 12(1), 1990.

[15] J. Lim and T. Reps. TSL: A system for generating abstract interpreters
and its application to machine-code analysis. TOPLAS, 35(4), 2013.

[16] J. Lim, A. Lal, and T. Reps. Symbolic analysis via semantic reinter-
pretation. Softw. Tools for Tech. Transfer, 13(1):61–87, 2011.

[17] G. Mund and R. Mall. Program slicing. In The Compiler Design
Handbook: Optimizations and Machine Code Generation, chapter 14.
CRC Press, 2nd. edition, 2007.

[18] J. Newsome and D. Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software. In NDSS, 2005.

[19] T. Reps. Program analysis via graph reachability. Inf. and Softw. Tech.,
40(11–12), 1998.

[20] T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. Speeding up slicing. In
FSE, 1994.

[21] H. Saı̈di. Logical foundation for static analysis: Application to binary
static analysis for security. ACM SIGAda Ada Letters, 28(1):96–102,
2008.

[22] E. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to
know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In S&P, 2010.

[23] M. Sharir and A. Pnueli. Two approaches to interprocedural data
flow analysis. In Program Flow Analysis: Theory and Applications.
Prentice-Hall, 1981.

[24] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena. BitBlaze: A new approach
to computer security via binary analysis. In Int. Conf. on Information

Systems Security, 2008.
[25] V. Srinivasan and T. Reps. Partial evaluation of machine code. In

OOPSLA, 2015.
[26] V. Srinivasan and T. Reps. Synthesis of machine code from semantics.

In PLDI, 2015.
[27] F. Tip. A survey of program slicing techniques. JPL, 3(3), 1995.
[28] M. Weiser. Program slicing. TSE, SE-10(4), 1984.
[29] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz, G. Jin, S. Lu, and

T. Reps. Conseq: Detecting concurrency bugs through sequential
errors. In ASPLOS, 2011.

13 2015/10/5

http://www.opensource.apple.com/source/

	Introduction
	Background
	QFBV Formulas for IA-32 Instructions
	SDG Recovery and Slicing in State-of-the-Art Tools

	Overview
	Granularity Issue in Machine-Code Slicing
	Improved Machine-Code Slicing in X

	Projection Semantics
	Sub-Portion of an Instruction's Semantics
	Soundness
	Precision

	Algorithm
	Intraprocedural Slicing
	Base Algorithm
	Improved Algorithm

	Interprocedural Slicing
	Context Sensitivity

	Implementation
	Experiments
	Related Work
	Conclusion and Future Work

