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1. INTRODUCTION

The work reported in this paper was motivated by our work on TSL [Lim and Reps
2008; 2013], which is a system for generating abstract interpreters for machine
code. With TSL, one specifies an instruction set’s concrete operational semantics
by defining an interpreter

interpInstr : instruction X state — state.

For a given abstract domain 4, a sound abstract transformer for each instruc-
tion of the instruction set is obtained by defining a sound reinterpretation of each
operation of the TSL meta-language as an operation over A. By extending the rein-
terpretation to TSL expressions and functions—including interpInstr—the set of
operator-level reinterpretations defines the desired set of abstract transformers for
the instructions of the instruction set.

TSL advances the state of the art in program analysis by providing a YACC-
like mechanism for creating the key components of machine-code analyzers. From
a description of (a) the concrete operational semantics of a given instruction set,
and (b) the operations of a desired abstract domain .4, TSL automatically creates
an implementation of an abstract-transformer generator: the abstract-transformer
generator maps a given instruction I to a sound abstract A-transformer for I.

However, the following characteristics of the reinterpretation method used in TSL
can cause a given abstract A-transformer to be not as precise as possible:

(1) The reinterpretation method abstracts each TSL meta-language operation in
isolation, and is therefore rather myopic.

(2) The operations that TSL provides to specify an instruction set’s concrete se-
mantics include arithmetic, logical, and “bit-twiddling” operations. The latter
include left-shift; arithmetic and logical right-shift; bitwise-and, bitwise-or, and
bitwise-xor; etc. Unfortunately, few abstract domains retain precision over the
full gamut of such operations.

Moreover, the myopia of item (1) can amplify the deficiencies of item (2) because
of cascade effects when reinterpretation is applied to a large expression (e.g., one
that captures the semantics of a complex machine-code instruction).

In contrast, a more global approach that considers the semantics of an entire
instruction—or, even better, an entire basic block or other loop-free program
fragment—can yield a more precise abstract transformer. In particular, Cousot
and Cousot [1979] gave a specification of the most-precise abstract interpretation
of a concrete transformer 7 that is possible in a given abstract domain A:

Given a Galois connection C &} A, the best abstract transformer,
@

# . A — A, is the most precise abstract operator possible that over-
approximates 7. 77 can be expressed as follows: 7% =a o T o 7.

The latter equation defines the limit of precision obtainable using abstraction A.
However, the definition does not provide a useful algorithm, either for applying 7#
or for finding a representation of the function 7#. In particular, in many cases, the
explicit application of v to an abstract value would yield an intermediate result—a
set of concrete states—that is either infinite or too large to fit in computer memory.
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The notion of symbolic abstraction [Reps et al. 2004] both (i) adopts a global
outlook, and (ii) provides an algorithm for obtaining abstract transformers.

—Abstract domain A is said to support a symbolic implementation of the o function
of a Galois connection if, for every logical formula 1) that specifies (symbolically)
a set of concrete stores [¢], there is a method & that finds a sound abstract
element &(¢) € A that over-approximates [¢]. That is, [¢] C v(a(v)), where
[«] denotes the meaning function for the logic.

—For some abstract domains, it is even known how to perform a best symbolic
implementation of «, denoted by @& [Reps et al. 2004]. For every 1, @ finds the
best element in A that over-approximates [¢].

Using symbolic abstraction, the issue of “myopia” can be addressed by first creating
a logical formula ¢; that captures the concrete semantics of each instruction I
(or basic block, or loop-free program fragment) in quantifier-free bit-vector logic
(QFBYV), and then performing &(¢r) or @(¢r). The generation of a QFBV formula
that, with no loss of precision, captures the concrete semantics of an instruction or
basic block is a problem that itself fits the TSL operator-reinterpretation paradigm
[Lim and Reps 2008, §3.4].

We explored these precision issues in the context of abstract domains for affine-
relation analysis (ARA) for modular arithmetic. In this setting, an affine relation
is a linear-equality constraint over a given set of variables that hold machine in-
tegers. An abstract-domain element represents a set of states that satisfy a con-
junction of affine relations. ARA finds, for each point in the program, a domain
element that over-approximates the set of states that can arise at that point. ARA
generalizes such analyses as linear-constant propagation [Sagiv et al. 1996] and
induction-variable analysis.

In our work, we made use of two existing ARA domains—one defined by Miiller-
Olm and Seidl [2005a], [2007] (MOS) and one defined by King and Sgndergaard
[2008], [2010] (KS). Both MOS and KS are based on an extension of linear algebra
to modules over a ring [Howell 1986; Hafner and McCurley 1991; Bach 1992; Storjo-
hann 2000; Miiller-Olm and Seidl 2005a; 2007]. In this paper, we describe our own
variant of the KS domain, which is inspired by—but different from, and arguably
easier to use than—the version of KS developed by King and Sgndergaard. Our
version is presented in §5 and §6.

The contributions of our work fall into two broad categories: “Comparing MOS
and KS” and “Employing KS”.

Comparing MOS and KS. For MOS, it was not previously known how to perform
anmos(®) in a non-trivial fashion (i.e., other than defining anos to be Af.T). In
contrast, King and Sgndergaard [2010, Fig. 2] gave an algorithm for axg, which led
us to examine more closely how MOS and KS are related.

With respect to the question of how the two abstract domains relate to each
other, our contributions include the following:

—We introduce a third domain for representing affine relations, called AG, which
stands for affine generators (§2.2). Whereas an element in the KS domain consists
of a set of constraints on the values of variables, AG represents a collection of
allowed values of variables via a set of generators. We show that AG is the
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generator counterpart of KS: a KS element can be converted to an AG element,
and vice versa, with no loss of precision (§3).

—We show that MOS and KS/AG are, in general, incomparable (§4.1). In particu-
lar, we show that KS and AG can express transformers with affine guards, which
MOS cannot express.

—We give sound interconversion methods between MOS and KS/AG (§4.2-§4.4):
—We show that an AG element vag can be converted to an over-approximating
MOS element vpos—i-e., Y(vag) € y(vmos)-
—We show that an MOS element wpyopg can be converted to an over-
approximating AG element wag—i.e., Y(wnmos) C y(wacg)-

—Consequently, by means of the conversion path ¢ — KS — AG — MOS, we
obtain a method for performing amos(p) (84.5).

Employing KS. The version of the KS domain that we work with is inspired by
the techniques described in two papers by King and Sgndergaard [2008], [2010].
In both this paper and their papers, the goal is to be able to create abstract
transformers automatically that are bit-precise, modulo the inherent limitation on
precision that stems from having to work with affine-closed sets of values. In the
approach described by King and Sgndergaard, it is necessary to perform bit-blasting
to express a bit-precise concrete semantics for a program’s statements or basic
blocks. A major drawback of bit-blasting is the huge number of variables that it
introduces (e.g., 32 or 64 Boolean-valued variables for each int-valued program
variable). Given that one needs to perform numerous cubic-time operations on the
matrices that arise, there is a question as to whether the bit-blasted version of KS
could ever be applied to problems of substantial size. The times reported by King
and Sgndergaard are quite high [2010, §7], although they state that there is room
for improvement by, e.g., using sparse matrices.

In this paper, we avoid the use of bit-blasting, and work directly with repre-
sentations of w-bit affine-closed sets. The motivation for bit-blasting in King and
Sgndergaard’s work was to track the effects of non-linear bit-twiddling operations,
such as shift operations, masking operations, and bitwise-complementation. How-
ever, symbolic abstraction provides a fully-automatic method for tracking the ef-
fects of bit-twiddling operations (§5.8 and §8.3). In §6.2.5, we show that, in some
circumstances, the operator-reinterpretation paradigm can also track some of the
effects of bit-twiddling operations.

With respect to the topic of employing KS, our contributions include the follow-
ing:

—We show that best KS transformers can be obtained without resorting to bit-
blasting. In place of bit-blasting, we work with QFBV formulas that capture
symbolically the precise bit-level semantics of each instruction or basic block,
and take advantage of the ability of axg—which invokes an SMT solver rather
than a Boolean SAT solver—to create best word-level transformers.’

IThe two methods are not entirely comparable because the bit-blasting approach works with
a great deal more variables (to represent the values of individual bits). However, for word-level
properties the two are comparable. For instance, both can discover that the action of an xor-based
swap is to exchange the values of two program variables.
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—The greatly reduced number of variables that comes from working at word level
opens up the possibility of applying our methods to much larger problems, and
in particular to performing interprocedural analysis. We show how to use the KS
domain as the basis for interprocedural ARA (§5).

—1In §5.2, we show that the algorithm for projection given by King and Sgndergaard
[2008, §3] does not always find answers that are as precise as the domain is capable
of representing. One consequence is that their algorithm for join does not always
find the least upper bound of its two arguments. In §5.2 and §5.4, these issues
are corrected by employing the Howell form of matrices [Howell 1986; Storjohann
2000] to normalize KS elements.

—We describe a greedy, operator-by-operator abstraction method for obtaining KS
abstract transformers (§6). (The material presented in §6 also serves as a model
for how an operator-by-operator abstraction method can be developed for almost
any relational numeric abstract domain.)

Experiments. §7 presents an experimental study with the Intel 1A32 (x86) instruc-
tion set in which the axs method and two greedy, operator-by-operator reinterpre-
tation methods—KS-reinterpretation (§6) and MOS-reinterpretation [Lim and Reps
2013, §4.1.2]—are compared in terms of their performance and precision. The pre-
cision comparison is done by comparing the affine invariants obtained at branch
points, as well as the affine procedure summaries obtained for procedures. For
KS-reinterpretation and MOS-reinterpretation, we also compare the abstract trans-
formers generated for individual x86 instructions. The experiments were designed
to answer the following questions:

—Which method of obtaining abstract transformers is fastest: axg, KS-
reinterpretation, or MOS-reinterpretation?

—Does MOS-reinterpretation or KS-reinterpretation yield more precise abstract
transformers for machine instructions?

—For what percentage of branch points and procedures does aks produce more
precise answers than KS-reinterpretation?

Organization. The paper is organized as follows: §2 summarizes relevant features
of the various ARA domains considered in the paper. §3 presents the AG domain,
and shows how an AG element can be converted to a KS element, and vice versa. §4
presents our results on the incomparability of the MOS and KS domains, but gives
sound methods to convert a KS element into an over-approximating MOS element,
and vice versa. §5 explains how to use the KS domain for interprocedural analysis.
86 describes a greedy, operator-by-operator abstraction method for obtaining KS
abstract transformers. §7 presents experimental results. §8 discusses related work.
89 concludes. Proofs can be found in the appendices.

2. TERMINOLOGY AND NOTATION

All numeric values in this paper are integers in Zow for some bit width w. That is,
values are w-bit machine integers with the standard operations for machine addition
and multiplication. Addition and multiplication in Zsw form a ring, not a field, so
some facets of standard linear algebra do not apply, and thus we must be cautious
about carrying over intuition from standard linear algebra. In particular, each odd
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element in Zgw has a multiplicative inverse (which may be found in time O(logw)
[Warren 2003, Fig. 10-5]), but no even element has a multiplicative inverse. The
rank of a value © € Zow is the maximum integer p < w such that 2P divides evenly
into z [Miiller-Olm and Seidl 2005a; 2007]. For example, rank(1) = 0, rank(24) = 3,
and rank(0) = w.

Throughout the paper, k is the size of the vocabulary, the variable-set under anal-
ysis. A two-vocabulary relation is a transition relation between values of variables
in the pre-state vocabulary and values of variables in the post-state vocabulary.

Matrix addition and multiplication are defined as usual, forming a matrix ring.
We denote the transpose of a matrix M by Mt. A one-vocabulary matriz is a matrix
with & + 1 columns. A two-vocabulary matriz is a matrix with 2k 4+ 1 columns. In
each case, the “+1” is for technical reasons (which vary according to what kind of
matrix we are dealing with). I denotes the (square) identity matrix (whose size
can be inferred from context). The rows of a matrix M are numbered from 1 to
rows(M); the columns of M are numbered starting from 1.

Because the MOS domain inherently involves pre-state-vocabulary to post-state-
vocabulary transformers (see §2.4), our definitions of the AG and KS domains (§2.2
and §2.3, respectively) are also two-vocabulary domains. Technically, AG and KS
can have an arbitrary number of vocabularies, including just a single vocabulary.
To be able to give simpler examples, some of the AG and KS examples use one-
vocabulary domain elements.

States in the various abstract domains are represented by row vectors of length

k4 1. The row space of a matrix M is defined by row M = {z|3w: wM = z}.
When we speak of the “null space” of a matrix, we actually mean the set of row
vectors whose transposes are in the traditional null space of the matrix. Thus, we

define null* M = {z | Ma® = 0}.
2.1 Matrices in Howell Form

One way to appreciate how linear algebra in rings differs from linear algebra in fields
is to see how certain issues are finessed when converting a matrix to Howell form
[Howell 1986]. The Howell form of a matrix is an extension of reduced row-echelon
form [Meyer 2000] suitable for matrices over Z,. Because Howell form is canonical
for matrices over principal ideal rings [Howell 1986; Storjohann 2000], it provides
a way to test whether two abstract-domain elements are equal—i.e., whether they
represent the same set of concrete values. Such an equality test is needed during
program analysis to determine whether a fixed point has been reached.

Definition 2.1. The leftmost nonzero value in a row vector is its leading value.
The leading value’s index is the leading index. A matrix M is in row-echelon
form if
—All all-zero rows are at the bottom.

—Each row’s leading index is greater than that of the row above it.
If M is in row-echelon form, let [M]; denote the matrix that consists of all rows of
M whose leading index is ¢ or greater.

A matrix M is in Howell form if

(1) M is in row-echelon form and has no all-zero rows,
6



(2) the leading value of every row is a power of two,
(3) each leading value is the largest value in its column, and

(4) for every row r of M, for any p € Z, if i is the leading index of 2Pr, then
2Pr € row([M];).

O
In Defn. 2.1, item (4) may be confusing, and thus warrants an example.

Ezxample 2.2. Suppose that w = 4, so that we are working in Zg. Consider the
following two matrices and their Howellizations:

M = [4 2 4] HOWELLIZE(M;) = B 2 3]
aet |4 2 4 4 2 4
My = [O 4 O} HowEgLLIZE(Ms) = {O 4 O]

First, notice that M; does not satisfy item (4). M; has only one row, [4 2 4], and
consider what happens when this row is multiplied by powers of 2:

21.[424] = [8438
22.[424] = [080]
23.[424] = [000]

In particular, the leading index of 2% - [4 2 4] = [0 8 0] is 2; however, because
row([M]2) = 0, [0 8 0] & row([M]z2). Consequently, [0 8 0] must be included in
HowELLIZE(M;). We say that a row like [0 8 0] is a logical consequence of [4 2 4]
that is added to satisfy item (4) of Defn. 2.1.

In contrast, matrix M satisfies item (4) (and, in fact, M is already in Howell
form). For matrix Ms to fail to satisfy item (4), there would have to be some row
r and power p for which (a) the leading index ¢ of 2Pr is strictly greater than the
leading index of r, (b) 2Pr # 0, and (c) 2Pr & row([M];). In this example, the only
interesting quantity of the form 2Pr is 22 - [4 2 4] = [0 8 0]. The leading index of
[080]is 2, but [080]=2-[040], and so [0 8 0] € row([M]z2). Consequently, Ms
satisfies item (4). O

The Howell form of a matrix is unique among all matrices with the same row space
(or null space) [Howell 1986]. As mentioned earlier, this property of Howell form
provides a way to test two MOS elements, two KS elements, or two AG elements
for equality.

The notion of a saturated set of generators used by Miiller-Olm and Seidl [2007]
is closely related to Howell form, but is defined for an unordered set of matrices
rather than row-vectors arranged in a matrix, and has no analogue of item (3). The
algorithms of Miiller-Olm and Seidl do not compute multiplicative inverses (see
§8.2), so a saturated set has no analogue of item (2). Consequently, a saturated set
is not canonical among generators of the same space.

Our technique for putting a matrix in Howell form is the procedure HOWELLIZE
(Alg. 1). Much of HOWELLIZE is similar to a standard Gaussian-elimination algo-
rithm, and it has the same overall cubic-time complexity as Gaussian elimination.
In particular, HOWELLIZE minus lines 15-19 puts G in row-echelon form (item (1)
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Algorithm 1 HOWELLIZE: Put the matrix G in Howell form.
1: procedure HOWELLIZE(G)

2 Let j =0 > 7 is the number of already-Howellized rows
3 for all i from 1 to 2k + 1 do

4 Let R = {all rows of G with leading index i}

5: if R# () then
6

7

8

9

Pick an r € R that minimizes rank r;
Pick the odd u and rank p so that u2P = r;

r—u"lr > Adjust r, leaving r; = 2P
: for all sin R\ {r} do

10: Pick the odd v and rank ¢ so that v2! =s;
11: s s— (v217P)r > Zero out s;
12: if row s contains only zeros then
13: Remove s from G
14: In G, swap r with G411 > Place r for row-echelon form
15: for all h from 1 to j do > Set values above r; to be 0 < - < r;
16: d<—Gp;>p > Pick d so that 0 < G, ; —dr; <7y
17: G« G —dr > Adjust row G}, leaving 0 < G ; <13
18: if r; # 1 then > Add logical consequences of  to G
19: Add 2*7Pr as last row of G > New row has leading index > 4
20: j—i+1

of Defn. 2.1) with the leading value of every row a power of two. (Line 8 enforces
item (2) of Defn. 2.1.) HOWELLIZE differs from standard Gaussian elimination in
how the pivot is picked (line 6) and in how the pivot is used to zero out other
elements in its column (lines 7-13). Lines 15-17 of HOWELLIZE enforce item (3)
of Defn. 2.1, and lines 18-19 enforce item (4). Lines 12-13 remove all-zero rows,
which is needed for Howell form to be canonical.

Alg. 1 is simple and easy to implement. For analyses over large vocabularies,
one should replace Alg. 1, which has cubic-time complexity with, say, the algo-
rithm of Storjohann [2000], which has the same asymptotic complexity as matrix
multiplication.

2.2  The Affine Generator Domain

An element in the Affine Generator domain (AG) is a two-vocabulary matrix whose
rows are the affine generators of a two-vocabulary relation.

An AG element is an r-by-(2k 4+ 1) matrix G, with 0 < r < 2k + 1. The
concretization of an AG element is

def

Yac (G) = {(z,2') | 2,2’ € Z§ A [l]z 2] € row G} .
The AG domain captures all two-vocabulary affine spaces, and treats them as re-
lations between pre-states and post-states.

The bottom element of the AG domain is the empty matrix, and the AG element
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O = =
~lO >
~lo ™

that represents the identity relation is the matrix { ] The AG element

r] xy T T

_~
o~

1
1
0
0
0

0
0
1
0

represents the transition relation in which 2 = z1, 9 can have any value, and 2
can have any even value.

To compute the join of two AG elements, stack the two matrices vertically and
Howellize the result.

2.3 The King/Sgndergaard Domain

An element in the King/Sgndergaard domain (KS) is a two-vocabulary matrix
whose rows represent constraints on a two-vocabulary relation. A KS element is an
r-by-(2k + 1) matrix M, with 0 < r < 2k + 1. The concretization of a KS element
M is
Yes (M) = {(z,2') | 2,2’ € Zko Az 2'|1] € null* G} .
Like the AG domain, the KS domain captures all two-vocabulary affine spaces,
and treats them as relations between pre-states and post-states.

It is easy to read out affine equalities from a KS element M (regardless of whether
M is in Howell form): if

[al ...oap ay ... aub]
is a row of M, then ) . a;z; + ) ,a;x; = —b is a constraint on vyxs (M). The
conjunction of these constraints describes s (M) exactly.
X X'
The bottom element of the KS domain is the matrix [0 0 [1], and the KS
X X' 1

element that represents the identity relation is the matrix [I —I|0]. Suppose
that w = 4, so that we are working in Z14. The KS element

1 X2 ac/l 93/2 1
{1 0 -1 om

00 0 8]0 (2)

represents the transition relation in which #{ = 1, 2 can have any value, and
x4 can have any even value. Thus, Eqns. (1) and (2) represent the same transition
relation in AG and KS, respectively.

A Howell-form KS element can easily be checked for emptiness: it is empty if and
only if it contains a row whose leading entry is in its last column. In that sense, an
implementation of the KS domain in which all elements are kept in Howell form has
redundant representations of bottom (whose concretization is ). However, such KS
elements can always be detected during HOWELLIZE and replaced by the canonical

X X' 1
representation of bottom, namely, [0 0 |1].
9



The original King and Sgndergaard paper [2008] gives polynomial-time algo-
rithms for join and projection; projection can be used to implement composition
(see §5.3).

2.4 The Miiller-Olm/Seidl Domain

An element in the Miiller-Olm/Seidl domain (MOS) is an affine-closed set of affine
transformers, as detailed in [Miiller-Olm and Seidl 2007]. An MOS element is

represented by a set of (k+1)-by-(k+1) matrices. Each matrix T is a one-vocabulary
transformer of the form T = [%}, which represents the state transformation
x' :==x- M +Db, or, equivalently, [1|z] := [1]|z]T.

An MOS element B consists of a set of (k+1)-by-(k+ 1) matrices, and represents
the affine span of the set, denoted by (B) and defined as follows:

(B) = {T

The meaning of B is the union of the graphs of the affine transformers in (B)

JweZh:T=Y wsBAT, 1}.
BeB

Yvios (B) = {(z,2") | 2,2" € Z§. AT € (B): [1]2] T = [1|2']} .
The bottom element of the MOS domain is (), and the MOS element that represents
the identity relation is the singleton set {I}. If w = 4, the MOS element B =

1[0 0 0l0 2
0[To|,|0[00 represents the affine span
0lo o 0lo o

1|0 0 1]0 2 1]0 4 1]0 14
(B) = ofto]|,|oft0of|,|0lT0]|,...,|0[T 0O )
0o 0 0o 0 olo o olo o

which corresponds to the transition relation in which ) = x;, 2 can have any
value, and z}, can have any even value—i.e., BB represents the same transition rela-
tion as Eqns. (1) and (2).

The operations join and compose can be performed in polynomial time.
If B and C are MOS elements, B U C = HOWELLIZE (BUC) and B;C =
HOWELLIZE { BC | B € BAC € C}. In this setting, HOWELLIZE of a set of (k + 1)-
by-(k + 1) matrices {Mj, ..., M,} means “Apply Alg. 1 to a larger, n-by-(k + 1)?
matrix, each of whose rows is the linearization (e.g., in row-major order) of one of
the M;.”

2.5 Domain Heights

In all three domains, an element can be represented via an appropriate matrix in
Howell form (where in the case of the MOS domain, we mean a matrix in the
extended sense discussed in §2.4). For a fixed bit width and a fixed number of
columns, there are only a constant number of Howell-form matrices. Consequently,
the KS, AG, and MOS domains are all finite domains, and hence of finite height.
Domain elements need not necessarily be maintained in Howell form; instead,
they could be Howellized on demand when it is necessary to check containment (see
§5.6). Our implementation maintains domain elements in Howell form using essen-
tially the “list of lists” sparse-matrix representation: each matrix is represented via
a C++ vector of rows; each row is a vector of (column-index, nonzero-value) pairs.
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3. RELATING AG AND KS ELEMENTS

AG and KS are equivalent domains. One can convert an AG element to an equiv-
alent KS element with no loss of precision, and vice versa. In essence, these are a
single abstract domain with two representations: constraint form (KS) and gener-
ator form (AG).

We use an operation similar to singular value decomposition, called diagonal
decomposition:

Definition 3.1. The diagonal decomposition of a square matrix M is a triple
of matrices, L, D, R, such that M = LDR; L and R are invertible matrices; and
D is a diagonal matrix in which all entries are either 0 or a power of 2. O

Miiller-Olm and Seidl [2007, Lemma 2.9] give a decomposition algorithm that
nearly performs diagonal decomposition, except that the entries in their D might
not be powers of 2. We can easily adapt that algorithm. Suppose that their method
yields LDR (where L and R are invertible). Pick w and r so that u,2™ = D, ; with
each u; odd, and define U as the diagonal matrix where U;; = u;. (If D;; = 0,
then u; = 1.) It is easy to show that U is invertible. Let L' = LU and D’ = U~'D.
Consequently, L'D'R = LDR = M, and L'D’'R is a diagonal decomposition.

From diagonal decomposition we derive the dualization operation, denoted by

-+, such that the rows of M generate the null space of M, and vice versa.

Definition 3.2. The dualization of M, denoted by M*, is defined as follows:

—PAD(M) is the (2k + 1)-by-(2k + 1) matrix [%ﬂ,
—L, D, R is the diagonal decomposition of PAD(M),

—T is the diagonal matrix with T; ; &f

M (Y T (RY
O

—rank(D;,;
qw—ran ( ,)’ and

This definition of dualization has the following useful property:
THEOREM 3.3. For any matriz M, null’ M = row M+ and row M = null’ M+,
PRrROOF. See App. A. [

We can therefore use dualization to convert between equivalent KS and AG ele-
ments. For a given (padded, square) AG matrix G = [c|Y Y], we seek a KS matrix
Z of the form [X X'|b] such that vxs (Z) = vag (G). We construct Z by letting

def

[b|X X'] = G+ and permuting those columns to Z = [X X’|b]. This works by

Thm. 3.3, and because
Yac (G) = {(z,2')|[1|z 2'] € row G}
{(z,2) | 1]z 2] € null’ G*}
= {(z,2) | [z 2/|1] € null' Z} = s (2) .

Furthermore, to convert from any KS matrix to an equivalent AG matrix, we reverse
the process. Reversal is possible because dualization is an involution: for any matrix
M, (MH)* = M.
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4. RELATING KS AND MOS
4.1 MOS and KS are Incomparable

The MOS and KS domains are incomparable: some relations are expressible in each
domain that are not expressible in the other. Intuitively, the central difference is
that MOS is a domain of sets of functions, while KS is a domain of relations.

KS can capture restrictions on both the pre-state and post-state vocabularies,
while MOS can capture restrictions only on its post-state vocabulary. For exam-
ple, when k£ = 1, the KS element for “assume & = 2” (in un-Howellized form) is

z oz 1
1 0]|-2
1 —1|0
In contrast, an MOS element cannot encode an assume statement. The smallest
MOS element that over-approximates “assume x = 2”7 is the identity transformer

{ [#%] } In general, an MOS element cannot encode a non-trivial condition on the

pre-state. If an MOS element contains a single transition, it encodes that transition
for every possible pre-state. Therefore, KS can encode relations that MOS cannot
encode.

On the other hand, an MOS element can encode two-vocabulary relations that

1]0 0 1]0 0
are not affine. One example is the matrix basis B = {[0 T1 } [0 0 0} } The

], ie, “e=2Ax=2".

0lo o 0|11
set that B encodes is

. _ / /
’YMOS(B): [SE y ZL'/ y/] Elw07w1'|:1‘x y] - [1‘1' Yy ]

ANwo+w =1
{[zy 2" ¢]|Fwo: 2’ =y = wox + (1 —wo)y}
[x y x' y'] |3w0:x’:y/:x+(17w0)(yfz)}
[y ] |Fp:a =y =x+ply—2)} (3)

={

={

Affine spaces are closed under affine combinations of their elements. Thus,
Yuos (B) is not an affine space because some affine combinations of its elements
are not in Yyes (B). For instance, let a = [1 -11 1], b = [2 -2 6 6], and
c=1[00 —4 —4]. By Eqn. (3), we have a € yyos (B) when p = 0 in Eqn. (3),
b € Yuos (B) when p = —1, and ¢ € Yyos (B) (the equation “—4 = 0+ p(0 — 0)”
has no solution for p). Moreover, 2a — b = ¢, so ¢ is an affine combination of a and
b. Thus, Yyos (B) is not closed under affine combinations of its elements, and so

Yuos (B) is not an affine space. Because every KS element encodes a two-vocabulary
affine space, MOS can represent Y05 (B) but KS cannot.

4.2  Converting MOS Elements to KS

Soundly converting an MOS element B to a KS element is equivalent to stating
two-vocabulary affine constraints satisfied by B.
To convert an MOS element B to a KS element, we
(1) rewrite B so that every matrix it contains has a 1 in its top-left corner,
(2) build a two-vocabulary AG matrix from each one-vocabulary matrix in B,
12



(3) join the resulting AG matrices, and

(4) convert the joined AG matrix to a KS element.

For Step (1), we rewrite B so that

B= {[%‘va—l} } , where ¢; € Z3X* and N; € Z5x*F.

If our original MOS element By fails to satisfy this property, we can construct an
equivalent B that does. Let C = HOWELLIZE(By); pick the unique B € C such that
Biip=1,and let B={B}U{B+C|C € (C\{B})}. B now satisfies the property,
and (B) = (By).

In Step (2), we construct the matrices

1007;
G:[ﬁ‘ﬁ}

Note that, for each matrix B; € B, Yuos ({Bi}) = 7ac (Gi). In Step (3), we
join the G; matrices in the AG domain to yield one matrix G. Thm. 4.1 states the
soundness of this transformation from MOS to AG, i.e., Yyos(B) C vac(G). Finally,
G is converted in Step (4) to an equivalent KS element by the method given in §3.

THEOREM 4.1. Suppose that B is an MOS element such that, for every B € B,
B = {2‘) J\C/Ii} for some cp € Z3X% and Mp € Z5X*. Define Gp = [H%} and
G =,c{GB|B € B}. Then, Yuos(B) € v.a(G).

PROOF. See App. B. O

Because we can easily read affine relations from KS elements (§2.3), this conver-
sion method also gives an easy way to create a quantifier-free formula that over-
approximates the meaning of an MOS element. In particular, the formula read out

of the KS element obtained from MOS-to-KS conversion captures affine relations
implied by the MOS element.

4.3  Converting KS Without Pre-State Guards to MOS

If a KS element is total with respect to pre-state inputs, then we can convert it to
an equivalent MOS element. First, convert the KS element to an AG element G.
When G expresses no restrictions on its pre-state, it has the form

110 b
G=|0[T 2|, (4)
0l0 R

where b € Z4x%; I, M € Z5X*; and R € Z5X" with 0 <r < k.

Definition 4.2. An AG matrix of the form

ofr]

such as the GG; matrices discussed in §4.2, is said to be in explicit form. An AG
matrix in this form represents the transition relation 2’ =z - M +b. O

13



Algorithm 2 MAKEEXPLICIT: Transform an AG matrix G in Howell form to
near-explicit form.
Require: G is an AG matrix in Howell form
1: procedure MAKEEXPLICIT(G)
2 for all i from 2 to K+ 1 do > Consider each col. of the pre-state voc.
3 if there is a row 7 of G with leading index 7 then
4 if rankr; > 0 then
5: for all j from 1 to 2k + 1 do > Build s from r, with s; =1
6
7
8
9

8j =1 > rankr;
Append s to G
G + Howellize(G)

for all ¢ from 2 to k+ 1 do
10: if there is no row r of G with leading index i then
11: Insert, as the i*" row of G, a new row of all zeroes

Explicit form is desirable because we can immediately convert the AG matrix of
Defn. 4.2 into the MOS element
11 b
oM | [

The matrix G in Eqn. (4) is not in explicit form because of the rows [0|0 R];
however, G is quite close to being in explicit form, and we can read off a set of
matrices to create an appropriate MOS element. We produce this set of matrices
via the SHATTER operation, where

SHATTER(G) d:“{[é ]\l}]}u{{g Ré*} ‘lgjgr}, where R; , is row j of R.

As shown in Thm. 4.3, Y4 (G) = Yuos (SHATTER(G)). Intuitively, this property
holds because the coefficients of the [0/0 R; .| rows in an affine combination of

the rows of G correspond to coefficients of the {{8 Ré’* } } matrices in an affine

combination of the matrices in SHATTER(G).

110 b
THEOREM 4.3. When G = [0 T M:|, then Ve (G) = Yuos (SHATTER(G)) .
ojo R
PROOF. See App. B. O
4.4  Converting KS With Pre-State Guards to MOS

If a KS element is not total with respect to pre-state inputs, then there is no
MOS element with the same concretization. However, we can find sound over-
approximations within MOS for such KS elements.

We convert the KS element into an AG matrix G as in §4.3 and put G in Howell
form. There are two ways that G can enforce guards on the pre-state vocabulary:
it might contain one or more rows whose leading value is even, or it might skip
some leading indexes in row-echelon form.

While we cannot put G in explicit form, we can run MAKEEXPLICIT to coarsen
G so that it is close enough to the form that arose in §4.3. Adding extra rows

14



to an AG element can only enlarge its concretization. Thus, to handle a leading
value 2P, p > 0 in the pre-state vocabulary, MAKEEXPLICIT introduces an extra,
over-approximating row constructed by copying the row with leading value 2P and
right-shifting each value in the copied row by p bits (lines 4-8). After the loop on
lines 2-8 finishes, every leading value in a row that generates pre-state-vocabulary
values is 1. MAKEEXPLICIT then introduces all-zero rows so that each leading
element from the pre-state vocabulary lies on the diagonal (lines 9-11).

1/0
Ezample 4.4. Suppose that £ = 3, w = 4, and G = 1

0

2 000
012 2 4 0.
4 08

After line 11 of MAKEEXPLICIT, all pre-state vocabulary leading values of G
have been made ones, and the resulting G’ has row G’ D rowG. In our case,

11020000
G = 1os g (1) 8 . To handle “skipped” indexes, lines 9-11 insert all-zero
8
rows into G’ so that each leading element from the pre-state vocabulary lies on the
020000
T03010
diagonal. The resulting matrix is 00000 o
gonat. g 000 |
200
8

THEOREM 4.5. For G € AG, Y. (G) C Yuyos (SHATTER (MAKEEXPLICIT(G))).
PrOOF. See App. B. O

Thus, we can use the KS—to—AG conversion method of §3, MAKEEXPLICIT, and
SHATTER to obtain an over-approximation of a KS element in MOS.

Ezample 4.6. The final MOS element for Ex. 4.4 is

1000 0[200 0/0 038
0010 0[000 0[0 00
0[000| [0/000]|”|0[000O
0j000 0/000 0j000

O

4.5 Symbolic Abstraction for the MOS Domain

As mentioned in the introduction, it was not previously known how to perform sym-
bolic abstraction for MOS. Using aks (see §5.8) in conjunction with the algorithms
from §3 and §4.4, we can soundly define apos(p) as

let G = CONVERTKSTOAG (aks(y)) in SHATTER (MAKEEXPLICIT (G)) .

5. USING KS FOR INTERPROCEDURAL ANALYSIS

This section presents a two-vocabulary version of the KS abstract domain, focusing
on the operations that are useful in a program analyzer. Unlike previous work by
King and Sgndergaard [2008], [2010], it is not necessary to perform bit-blasting to
use the version of KS presented here. §5.1-85.7 describe the suite of operations
needed to use the KS domain in an interprocedural-analysis algorithm in the style
of Sharir and Pnueli [1981] or Knoop and Steffen [1992], or to use the KS domain as
a weight domain in a weighted pushdown system (WPDS) [Bouajjani et al. 2003;
Reps et al. 2005; Lal et al. 2005; Kidd et al. 2007].
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§5.8 discusses symbolic abstraction for the KS domain, which provides one way
to create two-vocabulary KS elements that represent abstract transformers needed
by a program analyzer. (§6 provides an alternative method for creating KS abstract
transformers, based on the operator-reinterpretation paradigm.)

85.9 shows how to compute the number of tuples that satisfy a KS element.

5.1 Meet

As discussed in §2.3, the meaning of a KS matrix X can be expressed as a formula
by forming a conjunction that consists of one equality for each row of X. We can
obtain a KS element that precisely represents the conjunction of any number of
such formulas by stacking the rows that represent the equalities, and putting the
resulting matrix in Howell form. Consequently, we can compute the meet X MY of
any two KS elements X and Y by putting the block matrix [ | into Howell form.
The resulting matrix exactly represents the intersection of the meanings of X and
Y:

'YKS(X M Y) = 'YKS(X) n 'YKS(Y)-

5.2 Project and Havoc

King and Sgndergaard [2008, §3] describe a way to project a KS element X onto
a suffix z;,...,x of its vocabulary: (i) put X in row-echelon form to create X';
(ii) create X" by removing from X’ every row a in which any of aj,...,a;_1 is
nonzero (i.e., X’ = [X’];); and (iii) remove columns 1,...,4 — 1. (Note that the
resulting matrix has only a portion of the original vocabulary; we have projected
away {z1,...,z;—1}.) However, although their method works for Boolean-valued
KS elements (i.e., KS elements over Z%), when the leading values of X are not all
1, as can occur in KS elements over Z5, for w > 1, step (ii) is not guaranteed to
produce the most-precise projection of X onto z;, ..., zy, although the KS element
obtained is always sound.

z1 xo 1

Ezample 5.1. Suppose that X = [4 2|6], with w = 4, and the goal is to
project away the first column (for z1). When the King/Sgndergaard projection
algorithm is applied to X, we obtain the empty matrix, which represents no con-
straints on xo—i.e., x5 € {0,1,...,15}. However, closer inspection reveals that z
cannot be even; if zo were even, then both of the terms 4x; and 2x5 would both
be divisible by 4, and hence both values would have at least two zeros as their
least-significant bits. Such a pair of values could not sum to a value congruent to
6 because the binary representation of 6 ends with ...10. O

Instead, we put X in Howell form before removing rows. By Thm. 5.2, step
(ii) above returns the exact projection of the original KS element onto the smaller
vocabulary.

THEOREM 5.2. Suppose that M has ¢ columns. If matriz M is in Howell form,
x € null’ M if and only if Vi: Yy, ... yi_1: {yl Ceeyil1 T oo xc} € null’([M]);).

PrOOF. See App. C. O
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z1 wp 1
4 216
0 8|8
xo 1

obtain the following answer for the projection of X onto xs: [ 8 ‘8 ], which rep-
resents 29 € {1,3,...,15}.

This example illustrates that while the answer produced in Ex. 5.1 by the
King/Sgndergaard projection algorithm is a sound over-approximation, it is not
as precise as the most-precise answer that can be represented in the KS domain. O

Ezxample 5.3. The Howell form of X from Ex. 5.1 is {

}, and thus we

Given KS element M, it is also possible to project away a set of variables V' that
does not constitute a prefix of the vocabulary: create M’ by permuting the columns
of M so that the columns for the variables in V' come first—the order chosen for
the V' columns themselves is unimportant—and then project away V from M’ as
described earlier.

The havoc operation removes all constraints on a set of variables V. To havoc
V from KS element M, project away V and then (i) add back an all-0 column for
each variable in V| and (ii) permute columns to restore the original variable order.
Because of the all-0 columns, the resulting KS element has no constraints on the
values of the variables in V.

z1 wo 1

Ezample 5.4. Suppose that we wish to havoc x5 from the KS value [2 4 |6].

xo xp 1

We permute columns and Howellize to create { é z ‘g

xzy 1 zo x1 1

lary suffix z;, obtaining [ 8 |8], add back an all-0 column for zz, [0 8|8], and

} , project onto the vocabu-

xr] xgy 1
permute columns back to the original order to obtain [ 8 0[8]. O

5.3 Compose

King and Sgndergaard [2010, §5.2] present a technique to compose two-vocabulary
affine relations. For completeness, that algorithm follows. Suppose that we have KS
elements Y = [Ypre Ypost‘y} and Z = [Zpre Zpost ‘z], where Ypre, Ypost,; Zpre,
and Zpoe are k-column matrices, and y and z are column vectors. We want to
compute the relational composition “Y ; Z”; i.e., find some X such that (x,z") €
ks (X) if and only if 3z’: (z,2') € yxs (Y) A (2, 2") € ks (Z).
Because the KS domain has a projection operation, we can create Y ; Z by first

constructing the three-vocabulary matrix W,

]

z )

Ypost Ypre O

Zpre 0 Zpost
and then projecting away the first vocabulary of W. Any element (z/,z,2") €
Yxs (W) has (z,2') € s (V) and (2/,2") € ks (Z); consequently, the projection
yields a matrix X such that vxs (X) = vks (V) ; ks (£), as required.

Alternatively, we can think of abstract composition as happening in three steps:

(i) adding O-columns and reordering vocabularies in Y and Z; (ii) computing the
meet W of the resulting matrices; and (iii) projecting onto the initial and final
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vocabulary of W. Thus, because reordering, meet, and projection are all exact
operations, abstract composition is also an exact operation:

Yrs(Y52) = s (Y) ;7xs(2).

Note that the steps of the abstract-composition algorithm mimic a standard way
to express the composition of concrete relations, i.e.,

Y ;Z = 3U: Y|[pre, post] A Z[pre, post] AU = Y.post AU = Z.pre.

5.4 Join

To join two KS elements Y and Z, we first construct the matrix [ _ZY }6 } and then

project onto the last 2k + 1 columns.

King and Sgndergaard [2008, §3] give a method to compute the join of two KS
elements by building a (6k + 3)-column matrix and projecting onto its last 2k + 1
variables. We improve their approach slightly, building a (4k + 2)-column matrix
and then projecting onto its last 2k + 1 variables.

If Y and Z are considered as representing linear spaces, rather than affine spaces,

this approach works because [ 7ZY )6 } [ . ] = 0is true just if (Y(v—u) = 0)A(Zu =
0). Because (v —u) € nullY, and v € null Z, we know that v is the sum of values
in nullY and null Z, and so v is in their linear closure. In App. D, Thm. D.1
demonstrates the correctness of the same algorithm in affine spaces; that proof is
driven by roughly the same intuition.

Join is not exact in the same sense that meet, project, and compose are above:
affine spaces are not closed under union. However, this algorithm does return the
least upper bound of Y and Z in the space of KS elements.

Neither meet nor compose distribute over join, as illustrated in the following
examples:

Meet over join. 2

z o 1 z o 1
2In this example, we use the fact that T = [ 10 ‘0] [ [O 1 ‘0} Although technically we
z z' 1
are not working with a vector space over a field, the intuition is that the KS element [ 10 ‘ 0 }
z z’ 1
represents the “line” x = 0, the KS element [O 1 ‘0] represents the “line” 2’ = 0, and their
affine closure is the whole “plane” (i.e., T).
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$ z = 1
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1
0
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Compose over join.

/ ’
z1 ®2 xp Th 1

0]; [1-10 0]0]

0 xlxgm/lxél
0] ;[1-10 0]0]
0 0
z1 w2 7 oz 1
_10000_ z1 w2 xp wh 1
010 —1{0]|;[1 10 0]0]
001 0]0]
7é z1 x> Ty Th 1
(10 =1 0]0] o1 @ af o 1
Ul lo1 0 ofo|;[1-100]0]
00 0 1/0]
1 x2 T} TH 1 T1 T2 T av'21
_{10000u10000:|
010 0|0 010 olo



Ty T2 x] Ty 1
1 T m’l x’z 1 1 T2 x’l at; 1
o ; 1 0-10]0
@) G =ahr= [0 0 1 -1jo)= [0 0 1 —1jo]: [ ) 3 O f0]
z1 w2 ) wh 1 z1 w2 T ThH 1
o oy o ah 1 00 10]0 101 0|0
—J0oo01-10];] [0-101/0|u |0 00 1|0
1 0 0 010 0 1 0 010
_zlxgxllrél_
:1:1:021'19:'21 0 0 1 010
[00 1 —1|0]; 0 -10 1|0
1.0 0 0/0]
7& _wlxzw;wél_
xlng'lw/zl -1 0 1 010
U [00 1 -1/0]; 0 00 10
0 10 0/0]
1 T2 :v'l 1'2 1 1 T2 :c'l 1'2 1
. 00100u 0 01010
“ 1000 1]0 0 00 1/0
m1w2w'1w'21
~[oo1olo] .. F oy

Similarly, join does not distribute over either meet or compose, as illustrated in the
following examples:

Join over meet.

z x' 1
z x' 1 z x' 1
1 0]0
“e=2)y = [1-10]= [O 10}l_l [1-1]0]

z x' 1 z z 1 z x 1

[10jo]n [0 1]o]]u [1-1]0]

z z 1 xz 2 1 z z' 1 z oz’ 1

| [10[o]Ju [t =1jo]]m| [01]0]u [1-1[0]]|=Tn1T = “true’
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Join over compose.

xz x 1 | z x' 1

‘@ =x+1) = [1-1|1]= [1 -1]1]u [1 —1|1]
z 2z’ 1 z ' 1

=|1d; [1 —1[1] )0 [1 —1]1]

z z' 1 z z' 1 z z' 1

=| [1-1]0]; [T —1]1])u [1 —1|1]

’ ! ’ ’
z z 1 z z 1 z z 1 z z 1

1 [1-1j0]u [1=1|1] | [T -1f1]u [1 -11]

z oz’ 1

=T; [1-1|1] =T = “true”

5.5 Assuming Conditions

By “assuming” a condition ¢ on a KS element X, we mean to compute a minimal
KS element Y such that

'YKS(Y) ) 'YKS(X) n {’U | @(U)} :

This operation is needed to compute the transformer for an assume edge in a pro-

gram graph (i.e., the true-branch or false-branch of an if-then-else statement). It

can also be used to create transformers for assignments; for instance, the trans-

former for the assignment x < 3u + 2v can be created by starting with the KS
vV Vo

element for the identity relation on vocabulary V, [I —I|0], havocking 2’ € v/,

and assuming the equality 2’ = 3u + 2v.

Assuming a w-bit affine constraint is straightforward: rewrite the constraint to
isolate 0 on one side; form a matrix row from resulting constraint’s coeflicients;
append the row to the KS element X; and Howellize. In other words, when ¢ is
an affine constraint, we create a one-row KS element that represents ¢ exactly, and
take the meet with X.

It is also possible to perform an assume with respect to an affine congruence
of the form “lhs = rhs (mod 2")”, with h < w. (Examples in which we need to
assume such congruences are discussed §6.2.5.2.) We rewrite the congruence as an
equivalent congruence modulo 2%, by multiplying the modulus 2" and all of the
coefficients by 2*~", to obtain the w-bit affine constraint “2¥~"lhs = 2¥~"rhs”.
We then proceed as before.

5.6 Containment

Two KS elements X and Y are equal if their concretizations are equal: y(X) =
~v(Y). However, when each KS element is in Howell form, equality checking is trivial
because Howell form is unique among all matrices with the same row space (or null
space) [Howell 1986]. Consequently, containment can be checked using meet and
equality: X CY iff X =X MY.
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Require: ¢: a QFBV formula Require: ¢: a QFBV formula

Ensure: a(p) for the KS domain Ensure: a(p) for the KS domain

1: lower < L 1: lower + L

2: i+ 1 2: 41

3: 3: upper+ T

4: while ¢ < rows(lower) do 4: while ¢ < rows(lower) do

5 p + lower[rows(lower) — i + 1] 5: p + lower[rows(lower) — i + 1]

{p 3 lower} {p 3 lower, p 2 upper}

6: S < Model(p A —7(p)) 6: S < Model(p A —(p))

7 if S is TimeOut then return T 7 if S is TimeOut then return upper
8: else if S is None then {yp = J(p)} 8: else if S is None then {y = 7J(p)}
9: i 1+1 9: P41+ 1

10: 10: upper <— upper 1 p

11: else {S £ 7(p)} 11: else {S = 7(p)}

12: lower < lower U B(S) 12: lower < lower U 3(S)

13: ans < lower 13: ans < lower

14: return ans 14: return ans

(a) (b)

Fig. 1. (a) The King-Sgndergaard algorithm for symbolic abstraction (&%S (¢)). (b) The
Thakur-Elder-Reps bilateral algorithm for symbolic abstraction, instantiated for the KS domain:
&?FER[KS] (¢). In both algorithms, lower is maintained in Howell form throughout.

5.7 Merge Functions

Knoop and Steffen [1992] extended the Sharir and Pnueli algorithm [1981] for inter-
procedural dataflow analysis to handle local variables. At a site where procedure P
calls procedure @, the local variables of P are modeled as if the current incarnations
of P’s locals are stored in locations that are inaccessible to @ and to procedures
transitively called by Q). Because the contents of P’s locals cannot be affected by
the call to @, a merge function is used to combine them with the element returned
by @Q to create the state in P after the call to @ has finished. Other work using
merge functions includes Miiller-Olm and Seidl [2004] and Lal et al. [2005].

To simplify the discussion, assume that all scopes have the same number of locals
L. Each merge function is of the form

MERGE(CallSiteVal, CalleeExitVal) = CallSiteVal ; REPLACELOCALS(CalleeExitVal).

Suppose that the i** vocabulary consists of sub-vocabularies ¢; and l_; The
operation REPLACELOCALS(CalleeExitVal) is defined as follows:

(1) Project away vocabulary Iy from CalleeExitVal.

(2) Insert L all-0 columns for vocabulary l5. The KS element now has no constraints
on the variables in Is.
il gn la 1
(3) Append L rows, [go1 10 -1 |0], so that in REPLACELOCALS(CalleeExitVal)
each variable in vocabulary [y is constrained to have the value of the corre-
sponding variable in vocabulary ;.

5.8 Symbolic Abstraction (a(y))

King and Sgndergaard [2010, Fig. 2] gave an algorithm for the problem of sym-
bolic abstraction with respect to the KS domain: given a quantifier-free bit-vector
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(QFBV) formula ¢, the algorithm returns the best element in KS that over-
approximates [¢]. In §1, we denoted such an algorithm generically as @(y). The
algorithm given by King and Sgndergaard, which we will denote by aﬁs (), needs
the minor correction of using Howell form instead of row-echelon form for the pro-
jections that take place in its join operations, as discussed in §5.4.

Pseudo-code for aﬁs (¢) is shown in Fig. 1(a). The matrix lower is maintained in
Howell form throughout. In line 6, &ES(@) uses an operation to convert an element
p of the KS domain to a logical formula, called the symbolic concretization of p. In
general,

For all A € A, the symbolic concretization of A, denoted by F(A), maps
A to a formula 5(A) such that A and J(A) represent the same set of
concrete states (i.e., Y(A) = [Y(A)]) [Reps et al. 2004].

For most abstract domains, including KS, it is easy to write a 4 function. As
mentioned in §2.3, affine equalities can be read out from a KS element M (regardless
of whether M is in Howell form) as follows:

x1 ... TR :c/l xi 1
If [a1 ... ar ay ... ap|b]isarowof M, then > a;x; 4+, ajal = —b
is a constraint on yxs (M).

The conjunction of these constraints describes ~xs (M) exactly. Consequently,
(M) can be defined as follows:

A(M) = /\ } Z a;z; + Z aixh = —b

[ar -+ akay - - aj|b] ¢
is a row of M

The algorithm &{(S(go) is a successive-approximation algorithm: it computes a
sequence of successively larger approximations to [¢]. It maintains an under-
approximation of the final answer in the variable “lower”, which is initialized to L
on line 1. On each iteration, the algorithm selects p, a single row (constraint) of
lower (line 5), and calls a decision procedure to determine whether there is a model
that satisfies the formula “p A =5(p)” (line 6). When ¢ A =5(p) is unsatisfiable, ¢
implies 4(p). In this case, p cannot be used to figure out how to make lower larger,
so variable 7 is incremented (line 9), which means that on the next iteration of the
loop, the algorithm selects the row immediately above p (line 5).

On the other hand, if the decision procedure returns a model S, the under-
approximation lower is updated to make it larger via the join performed on the
right-hand side of the assignment in line 12

lower < lower B(S). (5)

Because KS elements represent two-vocabulary relations, S is an assignment of
concrete values to both the pre-state and post-state variables:

S=[.,zi—=v,..., =0, ],
or, equivalently,
S=[X—7X 7] (6)
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The notation B(S) in line 12 denotes the abstraction of the singleton state-set {S'}
to a KS element. {S} can always be represented exactly in the KS domain as
follows (where the superscript ¢ denotes the operation of vector transpose):

= 7)

5.8.1 Correctness of &}{S, The argument that Fig. 1(a) is correct is somewhat
subtle. In particular, one of the tricky aspects of Fig. 1(a) is the indexing into
matrix lower via variable i: i is used to index rows of lower relative to the final row

X X' 1

of lower. Initially, lower is the one-row matrix [0 0 |1], which represents lxg,
and 7 = 1 indexes the final row of lower. However, assuming that ¢ is satisfiable, the
first iteration of the while loop finds an assignment S that satisfies “p A (0 = 1)”
(line 6), and performs the assignment “lower < Lkg U 3(S)” (line 12), after which
lower holds the value §(S). Thus, as can be seen from Eqn. (7), after the first
iteration lower has 2k rows.

Thereafter, each iteration of the while loop considers a single row p, selected by
the assignment p < lower{rows(lower) — i 4+ 1] on line 5. During each iteration,
either 7 is incremented and lower is left unchanged (line 9), or an update lower
lowerl 3(S) is performed (line 12 and Eqn. (5)). The latter step seems problematic
because, in general, the join operation will cause the number of rows in lower
to change. Fortunately, as we show in Lem. 5.8, the join on line 12 leaves the
bottommost i — 1 rows of lower unchanged—whereas the topmost (rows(lower) —
i+ 1) rows can be changed by the join. The fact that the bottommost ¢ — 1 rows
are not changed by “lower < lower 5(S)” is what makes it possible to index rows
of lower relative to the final row of lower.

Algorithm &;(S maintains two invariants:

(1) lower C a(yp)
(2) lower|(rows(lower) — i+ 2) ... rows(lower)] J a(p)

Note that both invariants are established before the loop is entered on line 4: (i) the
assignment “lower <— 1”7 on line 1 sets lower = L C @(y); and (ii) the assignment
“ < 1”7 on line 2 sets lower|[(rows(lower) — i+ 2) ... rows(lower)] = T 3 a(p).?

Henceforth, we abbreviate lower|(rows(lower)—i+2) ... rows(lower)] as “upper”,
and restate invariant (2) as upper J @(yp). The structure of lower is depicted in
Fig. 2.

Lemma 5.5. The assignment “i < i+ 1” on line 9 of Fig. 1(a) maintains invari-
ant (1).

PROOF. Assume that invariant (1) holds before the assignment on line 9. The
assignment does not change lower; hence invariant (1) continues to hold after the
assignment. [

3When i = 1, the range (rows(lower) — i+ 2) ... rous(lower) is empty, and lower{(rows(lower) —
i+ 2) ... rows(lower)] denotes the empty set of constraints, which equals T.
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> lower

Fig. 2. Depiction of the structure of lower during ags(ap). The shaded blocks running diagonally
represent the leading values of the different rows. The dotted block labeled @ represents a portion
of row p.

Lemma 5.6. The assignment “i < i+ 1” on line 9 of Fig. 1(a) maintains invari-
ant (2).

PROOF. Assume that invariant (2) holds before the assignment on line 9. By
line 6, p A —7(p) is unsatisfiable, and hence ¢ = 7(p), or equivalently, [¢] C [p].
Moreover, because abstraction function « is monotonic,

a(p) = a([#l) E a(lp]) = a(3(p))- (®)

Row p = lower[(rows(lower) — i+ 1)] is a single constraint from the Howell-form
matrix lower. p by itself is a KS element, although it might not be in Howell
form; the Howell-form matrix for a(5(p)) equals p, together with any additional
rows needed to satisfy Defn. 2.1. (Recall that additional rows are introduced by
Defn. 2.1(4).) However, because lower is in Howell form, so is the matrix that con-
sists of p and upper (i.e., lower{(rows(lower)—i+1) ... rows(lower)]). In particular,
by Defn. 2.1(4), the row space of upper already contains constraints that are equal
to or stronger than all of the logical consequences of p. The logical consequences of
p—which are all of the form 2™ for some m that is sufficiently large to zero out
all entries of p to the left of the region labeled « in Fig. 2—are exactly the ones
with which p is augmented when a(5(p)) is put in Howell form. Consequently, by
Eqn. (8) and invariant (2),

a(y) E a(y(p)) N upper
= lower|[(rows(lower) — i + 1) ... rows(lower)].

Hence, after the assignment “i <— i + 1”7 on line 9 of Fig. 1(a), invariant (2) again
holds: lower{(rows(lower) — i+ 2) ... rows(lower)] J a(p). O

Lemma 5.7. The assignment “lower < lower U $(S)” on line 12 of Fig. 1(a)
maintains invariant (1).

PROOF. Assume that invariant (1) holds before the assignment on line 12. S = ¢
implies 8(S) C @(y). This property, together with invariant (1), implies that
lowerJ B(S) C a(p), so invariant (1) holds after the assignment on line 12. [

Lemma 5.8. The assignment “lower < lowerd 3(S)” on line 12 of Fig. 1(a) does
not change upper.

PROOF. See App. E. O
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From Lem. 5.8, we conclude the following:

Corollary 5.9. The assignment “lower < lower U 8(S)” on line 12 of Fig. 1(a)
maintains invariant (2).

THEOREM 5.10. If algorithm a}s from Fig. 1(a) does not encounter a timeout,
(i) the algorithm terminates, and (ii) the element returned is a(p) with respect to
the KS domain.

PROOF. Property (i) follows from the observation that algorithm @LS makes
progress on each iteration of the while loop, as we now show:

(1) The assignment “; <— ¢ + 1”7 on line 9 increments ¢, which is used as an index
on rows. Because a Howell-form KS element with 2k 4+ 1 columns can have at
most 2k rows, the increment of 7 on line 9 can be executed no more than 2k
times.

(2) Row p is a single constraint from the Howell-form matrix lower. Thus, just
before line 12, we know that [lower] C [p]. We also know that S = ¢ A —5(p).
These two observations imply that S = 7(lower).

Consequently, the value of lower after the assignment “lower + lowerll (S)”
is strictly greater than (i.e., 1 in the KS lattice) the value of lower before the
assignment. Because the KS domain is finite-height, line 12 can be performed
at most a finite number of times.

Consequently, the algorithm must eventually terminate.
Property (ii) follows from invariants (1) and (2), which were shown to hold by

Lemmas 5.5-5.7 and Cor. 5.9. Thus, if algorithm a&s from Fig. 1(a) does not
encounter a timeout, it reaches line 14 with ¢ > rows(lower) + 1, in which case

invariant (2)

lower = lower[(rows(1) ... rows(lower)] J & (y) 3 lower,
—_——
invariant (1)
and hence ans = lower = a(p). O

5.8.2  An Improvement to a}s. Algorithm &?{S from Fig. 1(a) is related to,
but distinct from, an earlier & algorithm, due to Reps et al. [2004] (RSY), which
applies not just to the KS domain, but to all abstract domains that meet a certain
interface. (In other words, argy is the cornerstone of a framework for symbolic
abstraction.) The two algorithms resemble one another in that they both find a(yp)
via successive approximation from below. However, there is a key difference in
the nature of the satisfiability queries that are passed to the decision procedure
by the two algorithms. Compared to arsy, aks issues comparatively inexpensive
satisfiability queries in which only a single affine equality is negated*—i.e., line 6
of Fig. 1(a) calls Model(p A =7(p)), where p is a single constraint from lower.

This difference—together with the observation that in practice aks was about
ten times faster than arsy when the latter was instantiated for the KS domain—Iled

4See [Thakur et al. 2012, §3] for a more extensive explanation of the differences between akg and
QRsy-
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Thakur, Elder, and Reps [2012] (TER) to investigate the fundamental principles
underlying arsy and akxs. They developed a new framework, a%ER, that transfers
aks’s advantages from the KS domain to other abstract domains [Thakur et al.
2012].

In addition to generating less expensive satisfiability queries, the second benefit of
a?FER is that a%ER generally returns a more precise answer than argy and ks when
a timeout occurs. Because arsy and aks maintain only under-approximations of
the desired answer, if the successive-approximation process takes too much time
and needs to be stopped, they must return T to be sound. In contrast, &\%ER
is bilateral, and can generally return a nontrivial (non-T) element in case of a
timeout. That is, &?FER maintains both an under-approximation and a (nontrivial)
over-approximation of the desired answer, and hence is resilient to timeouts: &}FER
returns the over-approximation if it is stopped at any point.

Fig. 1(b) shows the a%ER algorithm instantiated for the KS domain, which we
call a?FER[KS]. The differences between Fig. 1(a) and (b) are highlighted in gray. In
particular, the over-approximation of @(y) is obtained by materializing the ghost
variable upper from invariant (2) of §5.8.1 as an actual variable. a?FER[KS] initializes
upper to T on line 3. At any stage in the algorithm upper J a(p). By exactly the
same argument given in Lem. 5.6, it is sound to update upper on line 10 by perform-
ing a meet with the row p that was selected in line 5. Because p’s leading index,
LI (p), is less than the leading index of every row in upper, p constrains the value of
variable (), whereas upper places no constraints on variable xp(,). Therefore,
p 2 upper, which guarantees progress because p N upper C upper. Termination is
guaranteed by the same argument used in Thm. 5.10.

In case of a decision-procedure timeout (line 7), a"irER[Ks] returns upper as the

answer (line 7). If the algorithm finishes without a timeout, then a%ER[KS] computes
a(p); on the other hand, if a timeout occurs, the element returned is generally an
over-approximation of a(y)—i.e., &?FER[KS] computes a(¢).

In the KS instantiation of &?FER, upper can actually be represented implicitly.
By invariant (2), we know that lower{(rows(lower) —i+2) ... rows(lower)] J a(p)
always holds. Consequently, the assignment upper < lower[(rows(lower) — i +
2) ... rows(lower)] need only be performed if line 7 is reached, and neither of the
assignments on lines 3 and 10 need to be performed explicitly.

5.9 Number of Satisfying Solutions

The size of a KS element X with k variables over Zsw is the number of k-tuples
that satisfy X. The size computation is inexpensive; the size of X depends on the
leading values in X, and the number of rows in X. (X is assumed to be in Howell
form.)

—If X is bottom, then S1ZE(X) = 0.

—Otherwise, we can derive how to compute S1zZE(X) by imagining that we are
building up a partial assignment for the variables, from right to left. (In what
follows, for simplicity we assume that we have a one-vocabulary KS element and
“right to left” means from higher-indexed variables to lower-indexed variables.)
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In this case, each variable v; is constrained by the current partial assignment to

the variables {v; |i < j}, and by the row with leading index i:

—If the leading value of that row is 1, then for every partial assignment to
the variables {v; |¢ < j}, there is exactly one consistent value for v;, namely,
whatever value for v; satisfies the equation for the row when the values in the
partial assignment are used for the higher-indexed variables.

—If the leading value of a row is 2™ for some value m, then for every partial
assignment to the variables {v; |7 < j}, there is exactly one consistent value for
2"v;, namely, whatever value y for 2™ v; satisfies the equation for the row when
the values in the partial assignment are used for the higher-indexed variables.

However, there are 2™ different ways to choose v; to obtain the needed value
y. That is, if T is a value such that 2% = y, then so are all 2™ values in the
set

{@+2“"p) (mod 2*) |0 <p < 2™ —1}.

—Finally, if there is no row with leading index i, then v; is fully unconstrained,
and can take on any of the 2" available values.

Altogether, the product of these counts is the number of satisfying solutions of

KS element X. In particular, let u be the number of indices that are not the

leading index of any row of X. Then S1zE(X) is the product of the leading values

in X, times (2*)".

Ezample 5.11. Consider again the KS element from Eqn. (2)

’ ’
1 xy T Ty 1

1 0-1010
Xo= {0 0 0 8‘0]’

where w = 4, so that we are working in Z;6. Then SizE(Xj) equals 1 x 8 x (2%)? =
2,048.

6. USING KS FOR REINTERPRETATION

Most program analyses that use abstract domains must compute an abstract trans-
former 77 for each concrete program transformer 7. There are actually two slightly
different but related problems that arise:

(1) Applying 7#: This process can be viewed as a function APPLY ABSTRANS that
takes an abstract state and a concrete transformer 7 as input, and yields a new
abstract state as output. For instance, the effect of the assignment z «+ x + 2y
on a state with current abstract value A would be computed as

APPLYABSTRANS(“z < x + 2y”, A).

APPLYABSTRANS may be computed in an ad-hoc, analysis-specific way, as long
as the resulting abstract state is a sound over-approximation of applying the
assignment “z <— z + 2y” to all concrete states in y(A).

(2) Creating a representation of 7#: This process can be viewed as a function
CREATEABSTRANS that takes a concrete transformer 7 as input, and yields
an abstract transformer as output. In this case, the abstract version of the
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assignment z < x + 2y would be computed as
CREATEABSTRANS(“z <z + 2y”).

CREATEABSTRANS may also be computed in an ad-hoc, analysis-specific way,
as long as the resulting abstract transformer is a sound over-approximation
of the concrete semantics of “z <— x + 2y”, viewed as a function from sets of
concrete states to sets of concrete states.

Semantic reinterpretation [Mycroft and Jones 1985; Jones and Mycroft 1986;
Nielson 1989; Malmkjeer 1993; Lim and Reps 2008] is a principled method for im-
plementing APPLYABSTRANS and CREATEABSTRANS. Semantic reinterpretation
is based on the idea of factoring the concrete semantics of a programming language
into two parts: (i) a client specification, and (ii) a semantic core. The interface
to the core consists of certain base-types, map-types, and operators (sometimes
called a semantic algebra [Schmidt 1986]), and the client is expressed in terms of
this interface. This organization permits the core to be reinterpreted to produce an
alternative semantics for the programming language.

To use semantic reinterpretation to implement APPLYABSTRANS, in addition
to an abstract type to represent sets of states, we also need an abstract type to
represents sets of values. We will refer to these two types as “abstract states” and
“abstract values”, respectively. To reinterpret the assignment “z < x + 2y” on
abstract state A, we

(1) Use the abstract state A to compute abstract-integer values for z and y.

(2) Use abstract multiplication and addition to compute abstract-integer values for
the expressions 2y and x + 2y, respectively.

(3) Use abstract assignment to create a new abstract state A’ in which z is con-
strained to have the abstract value that was computed for = + 2y in step (2).

Here the semantic core consists of integers, states, operations like multiplication
and addition, and operations to lookup a variable’s value in a state and to cre-
ate a variant of a given state in which a variable is bound to a new value. The
reinterpretation of the core consists of a domain of abstract integers, a domain of
abstract states, abstract multiplication and abstract addition of abstract integers,
and operations to lookup a variable’s value in an abstract state and to create an
updated version of a given abstract state.

In the remainder of this section, we describe the algorithms needed to cre-
ate a semantic reinterpretation based on the KS domain. The KS reinterpreta-
tion that we present creates an abstract transformer for an assignment statement
(§6.2.6); in other words, our KS reinterpretation implements CREATEABSTRANS.
It would also be possible to define a different KS reinterpretation that implements
APPLYABSTRANS—and the reader will see that some of the sub-pieces of the KS
CREATEABSTRANS have the flavor of APPLYABSTRANS.

The material presented in this section also serves as a model for how an operator-
by-operator abstraction method can be developed for almost any relational numeric
abstract domain.

TSL [Lim and Reps 2008; 2013] is a system that produces semantic reinterpre-
tations of machine-code instructions, given the abstract domains (in the form of
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types and operators) needed for a specific semantic reinterpretation. The needs of
TSL motivated the work described in this section, and we use two TSL examples
to illustrate our methods (Exs. 6.1 and 6.3); however, our presentation is intended
to be understandable without any prior knowledge of TSL.

For a reader interested solely in implementing a “traditional” abstract inter-
pretation using the KS domain, this section should still provide insight on details
that are useful in any implementation of APPLYABSTRANS and CREATEABSTRANS
for the KS domain. Such a reader may think of semantic reinterpretation as
just a particular way to organize the implementation of APPLYABSTRANS and
CREATEABSTRANS.

6.1 Types for Reinterpretation

The discussion of KS values in §4 and §5 focused primarily on abstract transformers.
In that discussion, we assumed that (i) a KS value describes a transition relation
between states, where each state is an assignment to some set of variables, and (ii)
both states have the same of variables. In this section, we use such abstract values
to represent state-to-state transformations; however, to describe the KS reinterpre-
tation we will also introduce a way to represent state-to-value transformations.

Notation for Varying Vocabularies. For a set of variables V, the type KS[V]
denotes the set of affine-closed sets of assignments to V. When V and V' are
disjoint sets of variables, the type KS[V;V’] denotes the set of KS values over
variables VUV’. KS[V; V'] could also be written as KS[V UV’], but because V and
V' generally denote the pre-state and post-state variables, respectively, the notation
KS[V; V'] emphasizes the different roles of V and V’. We extend this notation to
cover singletons: if 7 is a single variable not in V', then the type KS[V';i] denotes
the set of KS values over the variables V U {i}. (Operations sometimes introduce
additional temporary variables, in which case we have types like KS[V;i,'] and
KS[V;4,4,i"].)

For example, our implementation tracks affine relationships between processor
registers at different program points, e.g., p and p’. For analyzing machine code,
the abstraction of instructions is KS[R; R'], where R is the set of register names
in the processor (e.g., for Intel 1A32 machine code, {eax, ebx,...}), and R’ is the
same set of names, distinguished by primes ({eax’,ebx’,...}). R and R’ denote
the pre-state and post-state registers for executions that start at p and finish at p’.
(Typically, we think of the states at p as “initial states” and those at p’ as “current
states”.)

In a reinterpretation that yields abstractions of concrete transition relations,
the state type becomes a KS[R; R'] relation on pre-states to post-states, and a
machine-integer type becomes a relation on pre-states to machine integers. Thus,
for machine-integer types, we introduce a fresh variable ¢ to hold the “current value”
of a reinterpreted machine integer. Because R still refers to the pre-state registers,
we write the type of a KS-reinterpreted machine integer as KS[R;i]. Although
technically we are working with relations, for a KS[R;i] value it is often useful to
think of R as a set of independent variables and i as the dependent variable.

Ezxample 6.1. Fig. 3 shows a TSL specification for the MOV and ADD instructions
of the Intel IA32 instruction set. Consider the instruction “add eax,ebx”, which
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(1) // Abstract-syntax declarations

(2) reg: EAX() |EBX() | . . .;

(3) flag ZFOISFO | . . - |

(4) operand: Indlrect(reg reg INT8 INT32) | DirectReg(reg) | Immedlate(INT32) | ..
(5) instruction: MOV (operand operand) | ADD(operand operand) | .
(6) state: State(MAP[INT32,INT8] // memory-map

(7) MAP[reg,INT32] // register-map

(8) MAP[flag,BOOL]); // flag-map

(9) // Interpretation functions

(10) INT32 interpOp(state S, operand op) { . . . };

(11) state updateFlag(state S, INT32 v1, INT32 v2 INT32 v3) {... }h
(12) state updateState(state S, operand op, INT32val) { . . . };

(13) state interplnstr(instruction I, state S) {

(14)  with(l) (

(15) MOV(dstOp, srcOp):

(16) let srcVal = interpOp(S, srcOp);
(17) in ( updateState(S, dstOp, srcVal) ),
(1 ADD(dstOp, srcOp):

(1 let dstVal = interpOp(S, dstOp);

(20 srcVal = interpOp(S, srcOp);

8)

9)

)

(21) result = dstVal + srcVal,

(22) S2 = updateFlag(S, dstVal, srcVal, result);
(23) in ( updateState(S2, dstOp, result) ),

(24)

(25)

(26) 1

.

Fig. 3. A fragment of the T'SL specification of the concrete semantics of the Intel IA32 instruction
set.

(i) adds the value of register ebx to that of eax, (ii) stores the result in eax, and
(iii) sets the processor’s flags according to the result. The instruction would be
represented as the TSL term “ADD(DirectReg(EAX()),DirectReg(EBX()))”. The
semantics of ADD(-, -) terms is specified on lines (18)—(23) of Fig. 3.

To simplify the example, assume that R, the set of register names, is {eax, ebx}.
To translate “add eax,ebx” to a KS[{eax, ebx}; {eax’, ebx'}] value, we would eval-
uate

interpInstr(ADD(DirectReg(EAX()),DirectReg(EBX())), Sia)

under the KS-reinterpretation, where S;q is the identity relation for
KS[{eax, ebx}; {eax’, ebx’}], namely,

eax ebx eax’ ebx’ 1
1 0 -1 010
01 0 -1/0

As will be discussed in §6.2.1, §6.2.2, and §6.2.4, the variables used in lines (19)-
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(21) would have the following values of type KS[{eax, ebx};i]:

Line  Variable  Value of type KS[{eax, ebx};i] = Meaning

i eax ebx 1

(19)  dstVal [1 -1 0]0] i = eax
i eax ebx 1
(20)  srcval [1 0 —1]|0] i = ebx
i eax ebx 1
(21)  result [1 -1 71‘0} i = eax + ebx

d

6.2 Operations on KS-Reinterpreted Integers

Semantic reinterpretation computes the value of an expression by first evaluating
the constants and variables at the expression’s leaves, then evaluating the opera-
tion at each internal node, until it yields an abstract value for the entire expression.
Semantic reinterpretation is compositional, in the same way that the concrete in-
terpretation of expressions is compositional. Therefore, a reinterpretation is fully
defined by how it handles constants, variable accesses, operations in expressions,
and assignments. In this section, we show how these operations are carried out for
the KS domain.

6.2.1 Constants. The KS reinterpretation of a constant ¢ is the KS[V; 4] value
i |4 1
that encodes the equation i =c¢: [1 0...0|—c].

6.2.2 Variable-Access Expressions. The KS reinterpretation of a variable-access
expression “access(S,v,)”, where S’s value is a KS state-transformer of type
KS[V; V'] and v, € V, is the KS[V;] value obtained as follows:

(1) Extend S to be a KS[V;V’;4] value, adding an all-0 column for 7. (An all-0
column for ¢ means that there is no constraint on the value of 4.)

(2) Assume the constraint ¢ = v/, on the extended S value. (We wish to obtain the
value of variable v,, from the “current state”, which corresponds to vocabulary

V')
(3) Project away V', yielding a KS[V;1] value, as desired.
Assuming the constraint ¢ = v/, is straightforward, because it is represented exactly

i V ’Ull v! 'u;c 1

by the KS value [1 0 0 ... 1. 0]0].

6.2.3  Multiplication by a Constant. Suppose that we have the KS[V; ] value z,
and wish to compute the KS[V;i] value for the expression ¢ x x. We proceed as
follows:

(1) Extend z to be a KS[V;1,¢'] value, adding an all-0 column for 4’.
(2) Assume the constraint i’ = ¢i on the extended z value.
(3) Project away i, yielding a KS[V; '] value.

(4) Rename ¢’ to i, yielding a KS[V;14] value, as desired.
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A A A |
The constraint i’ = ci is represented exactly by the KS value [1 —c 0|0]. Because
projection and the added constraint are both exact, the resulting value is the most
precise value that the KS domain can represent.

6.2.4 Addition. Suppose that we have two KS[V;4] values x and y, and wish to
compute the KS[V; ] value for the expression x +y. We proceed as follows:

(1) Rename y’s 4 variable to i’; this makes y a KS[V;4] value.

(2) Extend both x and y to be KS[V;i,i,4"] values, adding all-0 columns for ¢’
and " to x, and all-0 columns for 7 and " to y. This step causes ¢’ and 7" to
be unconstrained in z, and i and " to be unconstrained in y.

(3) Compute z My.

(4) Assume the constraint i =i+ ¢’ on the KS[V';4,4,4"] value computed in step
(3).

(5) Project away ¢ and ¢/, yielding a KS[V;4"] value.

(6) Rename " to i, yielding a KS[V;i] value, as desired.

The vocabulary manipulations in the first two steps put the values into compara-
ble form (i.e., KS[V;i,i’,4"]), and are easy to perform. The constraint i/ = i+4’ is
i’ i Vo1
represented exactly by the KS value [ 1 —1 —1 0]0]. Because projection, meet,
and the added constraint are all exact, the resulting value is the most precise value
that the KS domain can represent.

Remark 6.2. Multiplication by a constant and addition are both examples of
linear operations. The KS domain can precisely compute any linear combination of
KS-value types (e.g., given two KS[V; ] values x and y, we can compute a KS[V';1]
value for the expression 3z + 8y). The steps are similar to those used for addition
except that step (4) would be, e.g., “Assume the constraint ¢ = 3i + 8i’ on xMy”.

However, semantic reinterpretation is compositional at the level of individual
operators. It creates an over-approximating abstract transformer for a state-
transformation expression via an over-approximating reinterpretation for each indi-
vidual operator, and thus 3x+8y would be treated as two instances of multiplication-
by-a-constant and one instance of addition. While in some cases this approach is
myopic—i.e., one could obtain a more precise transformer by considering the se-
mantics of an entire instruction (or, even better, an entire basic block or other
loop-free program fragment)—in the case of compositions of linear operators there
is no loss of precision. For instance, when we treat the expression 3z + 8y as
two multiplication-by-a-constant operators and an addition, we obtain the same
KS[V; 4] value that we would obtain by treating 3z + 8y as a single linear operator.
O

6.2.5 Non-Linear Operations. The KS domain cannot interpret most instances
of non-linear operations precisely. However, when a KS[V;i] value has the form
iV 1
[10...0]—c], the dependent variable i of a KS[V;i] value can have only a sin-
gle concrete value c¢, regardless of the values of the independent variables; i.e.,
the KS[V; ] value represents the constant ¢. When an operation’s input KS[V;
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values each denote a constant, the operation can be performed precisely by per-
forming it in concrete arithmetic on the identified constants. In essence, this ap-
proach uses special-case handling to identify constants, and then performs constant
propagation—including constant propagation over non-linear operators.

6.2.5.1 Identifying Partially-Constant Values. We can generalize the notion of
“constant value” to a class of partially-constant values. A variable is partially con-
stant if some bits of the dependent variable are constant across all valid assignments
to the independent variables, even though overall the dependent variable might take
on multiple values.

For instance, consider the following KS[{z, y};] value, in Zs:

i oz oy 1

X=[1128|13]

This value captures the congruence i + 12z + 8y = 3. If we consider these values
modulo 4, we would have i + 0z + 0y = 3 (mod 4), which means that the rightmost
two bits of ¢ must both be 1, even though the leftmost two bits of ¢ depend on the
values of x and y. Consequently, ¢ is partially constant.

Using projection, we can locate the right-hand constant portion of a partially-
constant KS variable, and determine the value of those constant bits:

Given a non-bottom KS[V;4] value X, project away the variables V and
Howellize the result. Call the Howellized matrix X’. If X’ is the empty
matrix, 4 is fully non-constant; it may be any value in Zgow. Otherwise,
for some m and ¢, Howellization leaves X’ in the following form:

i 1
X' = [2m]|-27¢].

X' denotes the congruence 2" = 2™¢ (mod 2%), which may be expressed equiv-
alently as i = ¢ (mod 2¥~™).> Consequently, the rightmost w — m bits of i are
constant, and their value is c.

Notice that 4 is (fully) constant exactly when m = 0.

6.2.5.2 Bitwise Operations on Partially-Constant Values. In this section, we
consider the case of binary bitwise operations, such as bitwise-and, bitwise-or, and
bitwise-xor, when we have information that the argument KS[V; 4] values are par-
tially constant. In such a case, we can obtain a non-trivial over-approximation of
the result of a bitwise operation by the method described below.

First, the partially-constant values for the two arguments are computed using the
technique described in §6.2.5.1. For the moment, assume that for each argument
exactly m bits are known to be partially constant. Let a denote the rightmost
m bits of the first argument, and b denote the rightmost m bits of the second
argument. Let < denote the operation to be performed (i.e., bitwise-and, bitwise-or,
or bitwise-xor). The exact value for the rightmost m bits of the answer is ¢ = a < b.
We then proceed as in §6.2.4, except that step (4) assumes the congruence i =

5As discussed in §5.5, a congruence of the form “lhs = rhs (mod 2")” can be expressed as the w-bit
affine constraint “2%~"lhs = 2@~ "rhs”. In the example above, m = w — h, and thus h = w — m.

34



L bits L bits

amid alow amid aIow
l . \r A | I . \[ L 1
| — | —
i £222222)0x1000000  Biow | i 2222222)00111111] 80w |

”[222222222220000000] = 2. 81| i

(a) (b)

Fig. 4. Bitwise-and when more bits are known to be partially constant for the first argument 3
than for the second argument i’. (a) apiq ends in L zeros; (b) apiq ends in L ones.

¢ (mod 2™) (as explained in §5.5). The latter constraint expresses the condition
that the rightmost m bits of ¢" are c.

When different numbers of bits are known for the two arguments, we can also
manage to retain precision for some of the bit-locations where only one of the two
operands is known to be partially constant. For example, suppose that we wish to
perform a bitwise-and operation, and we know the rightmost m’ + m bits of the
first argument and the rightmost m bits of the second argument. In particular,
suppose that the first argument’s partially-constant value is 2™ apyiq + @iow, Where
0 < alow < 2™ and 0 < apiq < 2. (That is, ajow is the value of the m “low”
bits of the first argument, and a,;q is the value of the m’ “middle” bits of the first
argument.) Let b denote the rightmost m bits of the second argument, and let
¢ = alow & .

The binary representation of an,;q must either end in a string of zeros or ones.
If amiq ends in L zeros, then we know that the corresponding L bits in the answer
are also 0 (see Fig. 4(a)). Thus, we can capture L + m constant bits in the answer
by using the method from §6.2.4, except that step (4) assumes the congruence

i" = ¢ (mod 2E+™).

On the other hand, if aiq ends in a string of L ones, then we know that the
corresponding L bits of the answer are equal to the corresponding L bits of the
second argument—which may vary. Usually, linear congruences cannot describe a
bit region that does not stretch to the least-significant end of the value. In this
case, though, the rightmost m bits of the second argument are known to be the
constant value b (see Fig. 4(b)). If ¢ represents the value of the second argument,
then the rightmost m bits of i’ — b are zeros, and the remaining bits are the bits of
7/. Thus, we can capture L + m bits in the answer using the method from §6.2.4,
except that step (4) assumes the congruence

i"" =i — b+ c (mod 25T™). (9)

Both bitwise-or and bitwise-xor can be handled in a similar fashion. The only
subtlety is that for bitwise-xor, when aniq ends in a string of L ones, the analogue
of Eqn. (9) must complement the L middle-region bits of the second argument. The
bitwise-complement of a value v is —v — 1, and hence can be expressed as an affine
constraint. Using ¢’ to represent the second argument, i’ — b is ¢’ with its rightmost
m bits replaced by zeros. Thus, —(i' — b) — 1 is the bitwise complement of i with
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its rightmost m bits replaced by ones. To eliminate those ones, we subtract 2™ — 1;
that is, —(¢’ — b) — 2™ is the bitwise complement of i’ with its rightmost m bits
replaced by zeros. Consequently, we can capture L + m bits in the answer using
the method from §6.2.4, except that step (4) assumes the congruence

i"" = —(i’ —b) — 2™ + ¢ (mod 2EF™),
where here ¢ = ajoy x0T b.

6.2.6 Assignments. We are now left with the question of how to reinterpret
the assignment of the value of an expression e to a variable (in a reinterpreted
state). Suppose that (i) we have the abstract transition relation S € KS[V; V'],
(ii) the reinterpretation of e produces the reinterpreted value X € KS[V;i], and
(iii) we want to create an abstract transition relation S” € KS[V;V’] that acts
like S, except that the post-state (“current-state”) variable v € V' holds the value
X € KS[V;i]. In other words, we want to perform the abstract state update

S" + updateState(S, v, X).
This operation can be carried out by the following sequence of steps:

(1) Let S’ be the result of havocking v’ from S. (As discussed in §5.2, to havoc v/,
project away v’ and then add back an all-0 column for v'.)

(2) Let X’ be the result of starting with X, renaming i to v/, and then adding an
all-0 column corresponding to every variable in the set V' \ {v'}. Note that
X' € KS[V; V'],

(3) Return 8”7 = ' M X',

In this method, S’ captures the state in which we “forget” the previous value
of v/, and X’ captures the assertion that v’ equals the value of the assignment’s
expression.

7

FEzample 6.3. Returning to Ex. 6.1, consider the “assignment” operation in the
interpretation of the instruction “add eax, ebx”. To create the abstract transformer
for “add eax, ebx”, the initial value of state S supplied to interpInstr in line (13)
of Fig. 3 would be the identity element of KS[{eax, ebx}; {eax’, ebx’}], namely,

eax ebx eax’ ebx’ 1
1 0 -1 010
0 1 0 —1(0]|"

In the KS reinterpretation of TSL, the function updateState would be reinter-

preted to perform an abstract assignment, using the method described above. As

i eax ebx 1

described in Ex. 6.1, variable result would have the KS[V;4] value [1 —1 —1|0].
The function call “updateState(S2,dstOp,result)” on line (23) of Fig. 3 would
return (the Howellization of) the following abstract transformer:

eax ebx eax’ ebx 1
1 1 -1 010
0 1 0 —1(0/|
which corresponds to the transition relation
(eax’ = eax + ebx) A (ebx’ = ebx).
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Instruction Characteristics
# instruction | # different
Kind instances opcodes

ordinary 12,734 164
lock prefix 2,048 147
rep prefix 2,143 158
repne prefix 2,141 154
full corpus 19,066 179

Fig. 5. Some of the characteristics of the corpus of 19,066 (non-privileged, non-floating point,
non-mmx) instructions.

7. EXPERIMENTS

In this section, we present the results of experiments to evaluate the costs and
benefits—in terms of time and precision—of the methods described in earlier sec-
tions. The experiments were designed to shed light on the following questions:

(1) Which method of obtaining abstract transformers is fastest: aks (§5.8), KS-
reinterpretation (§6), or MOS-reinterpretation ([Lim and Reps 2013, §4.1.2])?

(2) Does MOS-reinterpretation or KS-reinterpretation yield more precise abstract
transformers for machine instructions?

(3) For what percentage of program points does axs produce more precise answers
than KS-reinterpretation and MOS-reinterpretation? This question actually
has two versions, depending on whether we are interested in
—one-vocabulary affine relations that hold at branch points
—two-vocabulary procedure summaries obtained at procedure-exit points.

As shown in §4.1, the MOS and KS domains are incomparable. To compare
the final results obtained using the two domains, we converted each MOS element
to a KS element, using the algorithm from §4.2, and then checked for equality,
containment (§5.6), or incomparability. It might be argued that this approach biases
the results in favor of KS. However, if we have run an MOS-based analysis and are
interested in using affine relations in a client application, we must extract an affine
relation from each computed MOS element. In §4.1, we showed that, in general,
an MOS element B does not represent an affine relation; thus, a client application
needs to obtain an affine relation that over-approximates yyos(B). Consequently,
the comparison method that we used is sensible, because it compares the precision
of the affine relations that would be seen by a client application.

7.1 Experimental Setup

To address these questions, we performed two experiments. Both experiments were
run on a single core of a single-processor 16-core 2.27 GHz Xeon computer running
64-bit Windows 7 Enterprise (Service Pack 1), configured so that a user process
has 4 GB of memory.

Per-Instruction Fxperiment. On a corpus of 19,066 instances of x86 instruc-
tions, we measured (i) the time taken to create MOS and KS transformers via the
operator-by-operator reinterpretation method supported by TSL [Lim and Reps
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Measures of Size

Program WPDS Rules

Name Instrs | Procs | BBs | Branches | Ag Aq Ao
write 232 10 134 26 10 151 5
finger 532 18 298 48 18 353 20
subst 1093 16 609 74 16 728 13
chkdsk 1468 18 787 119 18 887 32
convert 1927 38 | 1013 161 38 | 1266 22
route 1982 40 931 243 40 | 1368 63
comp 2377 35 | 1261 224 35 | 1528 30
logoff 2470 46 | 1145 306 46 | 1648 72
setup 4751 67 | 1862 589 67 | 2847 | 121

Fig. 6. Program information. All nine utilities are from Microsoft Windows version 5.1.2600.0,
except setup, which is from version 5.1.2600.5512. The columns show the number of instructions
(Instrs); the number of procedures (Procs); the number of basic blocks (BBs); the number of
branch instructions (Branches); and the number of Ag, Ay, and Ag rules in the WPDS encoding
(WPDS Rules).

2008; 2013], and (ii) the relative precision of the abstract transformers obtained by
the two methods.

This corpus was created using the ISAL instruction-decoder generator [Lim and
Reps 2013, §2.1] in a mode in which the input specification of the concrete syntax
of the x86 instruction set was used to create a randomized instruction generator—
instead of the standard mode in which ISAL creates an instruction recognizer.
By this means, we are assured that the corpus has substantial coverage of the
syntactic features of the x86 instruction set (including opcodes, addressing modes,
and prefixes, such as “lock”, “rep”, and “repne”); see Fig. 5.

Interprocedural-Analysis Experiment. We performed flow-sensitive, context-
sensitive, interprocedural affine-relation analysis on the executables of nine Win-
dows utilities, using four different sets of abstract transformers:

(1) MOS transformers for basic blocks, created by performing operator-by-operator
MOS-reinterpretation.

(2) KS transformers for basic blocks, created by performing operator-by-operator
KS-reinterpretation.

(3) KS transformers for basic blocks, created by symbolic abstraction of quantifier-
free bit-vector (QFBV) formulas that capture the precise bit-level semantics of
register-access/update operations in the different basic blocks. We denote this
symbolic-abstraction method by aks.

(4) KS transformers for basic blocks, created by symbolic abstraction of quantifier-
free bit-vector (QFBV) formulas that, in addition to register-access/update
operations, also capture the precise bit-level semantics of all memory-
access/update and flag-access/update operations. We denote this symbolic-
abstraction method by &yg.

“

For these programs, the generated abstract transformers were used as “weights”
in a weighted pushdown system (WPDS). WPDSs are a modern formalism for
solving flow-sensitive, context-sensitive interprocedural dataflow-analysis problems
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[Bouajjani et al. 2003; Reps et al. 2005]. The weight on each WPDS rule is the
MOS/KS transformer for a basic block of the program, including a jump or branch
to a successor block. The asymptotic cost of weight generation is linear in the size
of the program: to generate the weights, each basic block in the program is visited
once, and a weight is generated by the relevant method.

Fig. 6 lists several size parameters of the executables (number of instructions,
procedures, basic blocks, branches, and number of WPDS rules). WPDS rules
can be divided into three categories, called Ag, A, and A, rules [Bouajjani et al.
2003; Reps et al. 2005]. The number of A; rules corresponds roughly to the total
number of edges in a program’s intraprocedural control-flow graphs; the number of
Aj rules corresponds to the number of call sites in the program; the number of Ag
rules corresponds to the number of procedure-exit sites.

a;gs has the potential to create more precise KS weights than aks because
a;s can account for transformations of register values that involve a sequence of
memory-access/update and/or flag-access/update operations within a basic block
B. For example, suppose that B contains a store to memory of register eax’s value,
and a subsequent load from memory of that value into ebx. Because &;S uses a for-
mula that captures the two memory operations, it can find a weight that captures
the transformation ebx’ = eax. A second type of example involving a store to
memory followed by a load from memory within a basic block involves a sequence
of the form “push constant; ... pop edi”, and thus represents the transformation
edi’ = constant. Such sequences occur in several of the programs listed in Fig. 6.

As illustrated in line 13 of Fig. 3, the top-level function that is reinterpreted in
TSL is interplnstr, which is of type

interplnstr : instruction x state — state.

To use semantic reinterpretation to implement CREATEABSTRANS for the KS do-
main, interpInstr is reinterpreted as a KS[V'; V'] transformer; that is, interpInstrig
has the type

interplnstrgg : instruction x KS[V; V'] — KS[V; V']
vV Vo1
Let Id denote the KS[V; V'] identity relation, [I —I|0]. To reinterpret an indi-
vidual instruction ¢, one invokes interpInstrig(¢, Id).

For a basic block B = [t1,...,tm], there are two approaches to performing
KS[V; V'] reinterpretation:

—Composed reinterpretation:
wly < interpInstryg (11, 1d) ; interpInstryg(t2,Id) ;. . . ; interpInstryg (tm, Id).
— Chained reinterpretation:
wls < interpInstryg (¢, . . . interpInstryg (1o, interpInstrgg (e1,1d)) . . . ).
Our experiments use chained reinterpretation for two reasons:

(1) There are cases in which chained reinterpretation creates a more precise
KS[V; V'] element. For instance, consider the following code fragment, which

39



zeros the two low-order bytes of register eax and does a bitwise-or of eax into
ebx (ax denotes the two low-order bytes of register eax):

L1 : XOTr ax,ax
Lo : or ebx,eax

The semantics of this code fragment can be expressed as follows:
ebx’ = (ebx | (eax & xFFFF0000)) A eax’ = (eax & xFFFF0000),

where “&” and “/” denote bitwise-and and bitwise-or, respectively.

eax ebx eax’ ebx’ 1

interpInstryg(t1,Id) creates the KS element [ g (1) 2(1)6 _01 ‘8], which cap-
tures (ebx’ = ebx) A (2'%eax’ = 0). The two approaches to reinterpretation
produce the following answers:
—Composed reinterpretation:
interpInstryg (1, Id) ; interpInstrig (2, Id)
eax ebx eax’ ebx’ 1 , ,
0 1 0o —1lo eax ebx eax’ ebx’ 1
= [0 0 216 00};[1 0 -1 0]0]

eax ebx eax’ ebx’ 1
= [0 0 26 0 ‘0]
= (2'%ax’ = 0).
— Chained reinterpretation:

interpInstryg (o, interpInstrgg (e, 1d))
eax ebx eax’ ebx 1
01 0 -110 } )

:interpInstrKS(LQ, {0 0 2% 0 |0

eax ebx eax’ ebx’ 1
[0 216 o —216]p
o 0 0 2% 0 |0
= (2'%bx’ = 2'%bx) A (2'%ax’ = 0).

In particular, the reinterpretation of “i9: or ebx, eax” takes place in a context
in which the two low-order bytes of eax are partially constant (2'eax = 0).
Because of this additional piece of information, the reinterpretation technique
described in §6.2.5.2 recovers the additional conjunct “2'6ebx’ = 216ebx”.
(2) In the case of aks, a formula g is created that captures the concrete semantics
of B (via symbolic execution), and then the KS weight for B is obtained by
performing wy < aks(pp). Letting QFBV denote the type of quantifier-free
bit-vector formulas, the QFBV reinterpretation of interpInstr has the type

interpInstrgppy @ instruction x QFBV — QFBV.
Symbolic execution is performed by chained reinterpretation:

¢p < interpInstrqppy (tm, - - - interpInstrgpgy (L2, interpInstrgpgy (41, 1d)) .. . ).
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Total MOS-reinterpretation | KS-reinterpretation
instructions || time (seconds) time (seconds)
19,066 23.3 348.2

Fig. 7. Comparison of the performance of MOS-reinterpretation and KS-reinterpretation for x86
instructions.

Identical | MOS-reinterpretation | KS-reinterpretation || Total
precision | more precise more precise
18,158 0 908 || 19,066

Fig. 8. Comparison of the precision of MOS-reinterpretation and KS-reinterpretation for x86
instructions.

The a;s weight for B is created similarly, except that we also arrange for pp
to encode all memory-access/update and flag-access/update operations.

For our experiments, we wanted to control for any precision improvements that
might be due solely to the use of chained reinterpretation; thus, we use chained
reinterpretation for all of the weight-generation methods.®

The interprocedural-analysis experiments used the WAL system [Kidd et al.
2007] for WPDSs. EWPDS merge functions [Lal et al. 2005] were used to preserve
caller-save and callee-save registers across call sites. Running a WPDS-based anal-
ysis to find the join-over-all-paths value for a given set of program points involves
calling two operations, “post*” and “path summary”, as detailed in [Reps et al.
2005]. The post” queries used the FWPDS algorithm [Lal and Reps 2006].

Due to the high cost in §7.3 of constructing WPDS weights via axs and Q.
we ran all WPDS analyses without the code for libraries. Values are returned from
x86 procedure calls in register eax, and thus in our experiments library functions
were modeled approximately (albeit unsoundly, in general) by “havoc(eax’)”.

To implement aks and 62;;3, we used the Yices solver [Dutertre and de Moura
2006], version 1.0.19, with the timeout for each invocation set to three seconds.

We compared the precision of the one-vocabulary affine relations at branch points,
as well as two-vocabulary affine relations at procedure exits, which can be used as
procedure summaries.

7.2 Reinterpretation of Individual Instructions

Figs. 7 and 8 summarize the results of the per-instruction experiment. They answer
questions (1) and (2) posed at the beginning of §7.

—KS-reinterpretation created an abstract transformer that was more precise than
the one created by MOS-reinterpretation for about 4.76% of the instructions.
MOS-reinterpretation never created an abstract transformer that was more pre-
cise than the one created by KS-reinterpretation.

—However, MOS-reinterpretation is much faster: to generate abstract transformers
for the entire corpus of instructions, MOS-reinterpretation is about 14.9 times

6MOS-reinterpretation of a basic block is performed by chained reinterpretation, using
interpInstry;og : instruction x MOS — MOS.
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faster than KS-reinterpretation.

Ezample 7.1. One instruction for which the abstract transformer created by
KS-reinterpretation is more precise than the transformer created by MOS-
reinterpretation is ¢ 4 “add bh,al”. This instruction adds the value of al, the
low-order byte of register eax, to the value of bh, the second-to-lowest byte of reg-
ister ebx, and stores the result in bh. The semantics of this instruction can be
expressed as a QFBV formula as follows:

def s ebx & OxFFFFOOFF
P = ebxt = <| E(ebx + 256 * (eax &z 0xFF)) & OxFFOO)> A (eax’ = eax). (10)
Eqn. (10) shows that the semantics of the instruction involves non-linear bit-
masking operations.

The abstract transformer created via MOS-reinterpretation corresponds to
havoc(ebx’); all other registers are unchanged. That is, if we only had the three reg-
isters eax, ebx, and ecx, the abstract transformer created via MOS-reinterpretation
would be

o O OO

o Ol =
o oo
o O OO
=] Ne}
(=l e i) Na}
O O Ol
o O OO

0

which captures the affine transformation “(eax’ = eax)A(ecx’ = ecx)”. In contrast,
the transformer created via KS-reinterpretation is

’ ’ ’
eax ebx ecx eax ebx ecx

1 00 -1 0 0
0220 0 —2* 0
001 0 0 -1

o O O+

which corresponds to “(eax’ = eax) A (22Yebx’ = 2% ebx) A (ecx’ = ecx)”. Both
transformers are over-approximations of the instruction’s semantics, but the extra
conjunct (224ebx’ = 224ebx) in the KS element captures the fact that the low-order
byte of ebx is not changed by executing “add bh,al”.

In contrast, aks(y,), the most-precise over-approximation of ¢, that can be
expressed as a KS element is (the Howellization of)

’ ’

eax ebx ecx eax’ ebx’ ecx’ 1
1 0 0 -1 0 010
224216 0 0 —2' 0 |0,
0 0 1 O 0 -1|0
which corresponds to “(eax’ = eax) A(2'0ebx’ = 216ebx + 2%eax) A(ecx’ =

ecx)”. Multiplying by a power of 2 serves to shift bits to the left; because it is
performed in arithmetic mod 232, bits shifted off the left end are unconstrained.
Thus, the second conjunct captures the relationship between the low-order two
bytes of ebx’, the low-order two bytes of ebx, and the low-order byte of eax. O
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7.3 Interprocedural Analysis

Fig. 9 shows the times for WPDS construction (including constructing the weights
that serve as abstract transformers) and performing interprocedural dataflow anal-
ysis by performing post” and path summary. Columns 11 and 15 of Fig. 9 show
the number of & calls for which weight generation timed out during aks and ay,
respectively. During WPDS construction, if Yices times out during akgs or @;S,
the implementation uses a weight that is less precise than the best transformer,
but it always uses a weight that is at least as precise as the weight obtained using
KS-reinterpretation.” The number of WPDS rules is given in Fig. 6; a timeout
occurred for about 1.0% of the ag calls (computed as a geometric mean®), and for
about 1.65% of the @jq calls.

The experiment showed that the cost of constructing weights via akg is high,
which was to be expected because aks repeatedly calls an SMT solver. Creat-
ing KS weights via aks is about 81.5 times slower than creating them via KS-
reinterpretation (computed as the geometric mean of the construction-time ratios).

Moreover, creating KS weights via KS-reinterpretation is itself 5.9 times slower
than creating MOS weights using MOS-reinterpretation. The latter number is
different from the 14.9-fold slowdown reported in §7.2 for two reasons: (i) §7.2
reported the cost of creating KS and MOS abstract transformers for individual

7This footnote explains more precisely how weights were constructed in the dixg runs. We used
the following “chained” method for generating weights:

(1) KS-reinterpretation is the method of §6.

(2) “Stalmarck” is the generalized-Stalmarck algorithm of Thakur and Reps [2012], starting
with the element obtained via KS-reinterpretation. The generalized-Stalmarck algorithm
successively over-approximates the best transformer from above. By starting the algorithm
with the element obtained via KS-reinterpretation, the generalized-Stalmarck algorithm does
not have to work its way down from T; it merely continues to work its way down from the
over-approximation already obtained via KS-reinterpretation.

?FER[KS]’ from Fig. 1(b), which maintains both an under-approximation and
a (nontrivial) over-approximation of the desired answer, and hence is resilient to timeouts—

i.e., it returns the over-approximation if a timeout occurs. In the chained method for gener-

(3) aks is actually @

%‘ER[KS] is started with the element obtained via the Stalmarck method as an

over-approzrimation as a way to accelerate its performance.

ating weights, &
The generalized-Stalmarck algorithm is a faster algorithm than at but is not guaranteed
%

TER[KS]’
to find the best abstract transformer [Thakur and Reps 2012]. ATRRIKS
the best abstract transformer, except for cases in which an SMT solver timeout is reported. The

I is guaranteed to obtain

use of KS-reinterpretation accelerates Stalmarck, and the use of Stalmarck accelerates a?FER[KS].

Moreover, &?FER[KS] C KS-reinterpretation is always guaranteed to hold for the weights that are
computed.
8We use “computed as a geometric mean” as a shorthand for “computed by converting the data to
ratios; finding the geometric mean of the ratios; and converting the result back to a percentage”.
For instance, suppose that you have improvements of 3%, 17%, 29% (i.e., .03, .17, and .29).
The geometric mean of the values .03, .17, and .29 is .113. Instead, we express the original
improvements as ratios and take the geometric mean of 1.03, 1.17, and 1.29, obtaining 1.158. We
subtract 1, convert to a percentage, and report “15.8% improvement (computed as a geometric
mean)”.

The advantage of this approach is that it handles datasets that include one or more instances
of 0% improvement, as well as negative percentage improvements.
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WPDS Weights

Prog. A1 rules MOS-reinterp KS-reinterp

name Rules < KS-reinterp | < MOS-reinterp | aks < KS-reinterp a;s < aks
write 151 0(0.00%) 0(0.00%) 11(7.28%) 0(0.00%)
finger 353 0(0.00%) 0(0.00%) 29(8.22%) 1(0.28%)
subst 728 0(0.00%) 0(0.00%) 59(8.10%) 0(0.00%)
chkdsk 887 0(0.00%) 0(0.00%) 86(9.70%) 1(0.11%)
convert 1266 0(0.00%) 2(0.16%) 131(10.35%) 0(0.00%)
route 1368 0(0.00%) 3(0.22%) 142(10.38%) 0(0.00%)
comp 1528 0(0.00%) 1(0.07%) 163(10.67%) 0(0.00%)
logoff 1648 0(0.00%) 4(0.24%) 191(11.59%) 1(0.06%)
setup 2847 0(0.00%) 20(0.70%) 432(15.17%) 8(0.28%)

Fig. 10. Comparison of the precision of the WPDS weights computed using MOS-reinterpretation,
KS-reinterpretation, and aks. (E.g., KS-reinterp < MOS-reinterp reports the number of rules for
which the KS-reinterp weight was more precise than the MOS-reinterp weight.)

instructions, whereas in Fig. 9 the transformers are for basic blocks, and (ii) the
WPDS construction times in Fig. 9 include the cost of creating merge functions for
use at procedure-exit sites, which was about the same for KS-reinterpretation and
MOS-reinterpretation.

A comparison of the akg columns of Fig. 9 against the a;s columns reveals that

—Creating KS weights via a;gs is about 1.7 times slower than creating weights
via aks (computed as the geometric mean of the construction-time ratios). The
slowdown occurs because the formula created for use by &;S is more complicated
than the one created for use by akgs: the former contains additional conjuncts that
capture the effects of memory-access/update and flag-access/update operations.

—The times for performing “post*” and “path summary” are almost the same for
both methods, because these phases do not involve any calls to the respective a

procedures.

—Answering queries at branch points was 1.4 times slower for af{'S compared to

aks. The reason for the slowdown is that this phase must call the respective a
procedures once for each branch point: “post*” and “path summary” return the
weight that holds at the beginning of a basic block B = [t1,...,tm]. To obtain
the one-vocabulary affine relation that hold just before branch point ¢, at the
end of B, we need to perform an additional & computation for [¢1, ..., tm—1] (i.e.,
for B, but without the branch instruction at the end of B).

Figs. 10, 11, and 12 present three studies that compare the precision obtained
via MOS-reinterpretation, KS-reinterpretation, aks, and &ES.

Fig. 10 compares the precision of the WPDS weights computed by the different
methods for each of the example programs. It shows that akg creates strictly
more precise weights than KS-reinterpretation for about 10.14% of the WPDS rules
(computed as a geometric mean). The “aks < KS-reinterp” column of Fig. 10 is
particularly interesting in light of the fact that a study of relative precision of
abstract transformers created for individual instructions via KS-reinterpretation
and aks [Lim and Reps 2013, §5.4.1], reported that akgs creates strictly more precise
transformers than KS-reinterpretation for only about 3.2% of the instructions that
occur in the corpus of 19,066 instructions from §7.2. The numbers in Fig. 10
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1-Vocabulary Affine Relations at Branch Points

Prog. MOS-reinterp | KS-reinterp <

name Branches < KS-reinterp | MOS-reinterp | aks < KS-reinterp &ﬁs < ks
write 26 0(0.00%) 0(0.00%) 4(15.38%) 0(0.00%)
finger 48 0(0.00%) 0(0.00%) 14(29.17%) | 32(66.67%)
subst 74 1(1.35%) 0(0.00%) 15(20.27%) 0(0.00%)
chkdsk 119 0(0.00%) 0(0.00%) 13(10.92%) 0(0.00%)
convert 161 1(0.62%) 0(0.00%) 49(30.43%) 0(0.00%)
route 243 0(0.00%) 4(1.65%) 63(25.93%) 0(0.00%)
comp 224 0(0.00%) 0(0.00%) 7(3.12%) 0(0.00%)
logoff 306 0(0.00%) 0(0.00%) 91(29.74%) 20(6.54%)
setup 589 0(0.00%) 0(0.00%) 39(6.62%) 0(0.00%)

Fig. 11. Comparison of the precision of the one-vocabulary affine relations identified to hold
at branch points via interprocedural analysis, using weights created using MOS-reinterpretation,
KS-reinterpretation, and aks. (E.g., KS-reinterp < MOS-reinterp reports the number of branch
points at which the KS-reinterp results were more precise than the MOS-reinterp results.)

2-Vocabulary Procedure Summaries

Prog. MOS-reinterp | KS-reinterp <

name Procs || < KS-reinterp | MOS-reinterp | aks < KS-reinterp a;s < aks
write 10 0(0.00%) 0(0.00%) 5(50.00%) 0(0.00%)
finger 18 0(0.00%) 0(0.00%) 10(55.56%) 2(11.11%)
subst 16 0(0.00%) 0(0.00%) 6(37.50%) 0(0.00%)
chkdsk 18 0(0.00%) 0(0.00%) 9(50.00%) 0(0.00%)
convert 38 0(0.00%) 0(0.00%) 8(21.05%) 0(0.00%)
route 40 0(0.00%) 0(0.00%) 18(45.00%) 0(0.00%)
comp 35 1(2.86%) 0(0.00%) 13(37.14%) 0(0.00%)
logoff 46 0(0.00%) 0(0.00%) 14(30.43%) 1(2.17%)
setup 67 0(0.00%) 1(1.49%) 40(59.70%) 0(0.00%)

Fig. 12. Comparison of the precision of the two-vocabulary affine relations identified to
hold at procedure-exit points via interprocedural analysis, using weights created using MOS-
reinterpretation, KS-reinterpretation, and axs. (E.g., KS-reinterp < MOS-reinterp reports the
number of procedure-exit points at which the KS-reinterp results were more precise than the
MOS-reinterp results.)

differ from that study in two ways: (i) Fig. 10 compares the precision of abstract
transformers for basic blocks rather than for individual instructions; and (ii) Fig. 10
is a comparison for the instructions that appear in specific programs, whereas the
corpus of 19,066 instructions used in the per-instruction study from [Lim and Reps
2013, §5.4.1] was created using a randomized instruction generator.

a;s creates strictly more precise weights than akg for only about 0.1% of the
WPDS rules (computed as a geometric mean). Improvements are obtained in only
four of the nine programs (finger, chkdsk, logoff, and setup).

Figs. 11 and 12 answer question (3) posed at the beginning of this section:

For what percentage of program points does axs produce more precise
answers than KS-reinterpretation and MOS-reinterpretation?

Figs. 11 and 12 summarize the results obtained from comparing the precision of the
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Fig. 13. Simplified version of an example that caused KS results to be less precise than MOS
results, due to compose not distributing over join in the KS domain.

affine relations identified via interprocedural analysis using the different weights.”

Compared to runs based on either KS-reinterpretation or MOS-reinterpretation,
the analysis runs based on aksg weights identified more precise affine relations at
a substantial number of points (for both one-vocabulary affine relations that hold
at branch points—Fig. 11, col. 5—and two-vocabulary affine relations that hold
at procedure-exit points—Fig. 12, col. 5). For one-vocabulary affine relations, the
aks analysis results are strictly better than the KS-reinterpretation results at 18.6%
of all branch points (computed as a geometric mean). For two-vocabulary affine
relations describing procedure summaries, the axs analysis results are strictly bet-
ter than the KS-reinterpretation results at 42% of all procedures (computed as a
geometric mean).

For one-vocabulary affine relations, the a;s analysis results are strictly better
than the akgs results at 7.3% of all branch points (computed as a geometric mean).
For two-vocabulary affine relations describing procedure summaries, the a;s anal-
ysis results are strictly better than the akg results at 1.4% of all procedures (com-
puted as a geometric mean). However, in both cases improvements are obtained in
only two of the nine programs (finger and logoff).

7.4 Imprecision Due to Non-Distributivity of KS

Fig. 11 shows that in a couple of cases, one in subst and the other in convert,
the MOS-reinterpretation results were better than the KS-reinterpretation results.
(Although not shown in Fig. 11, the MOS-reinterpretation results were also better
than the axg results in the two cases.) We examined these cases, and found that
they were an artifact of (i) the evaluation order chosen, and (ii) compose failing to
distribute over join in the KS domain (see §5.4).

Fig. 13 is a simplified version of the actual transformers in subst and convert
that caused the KS-based analyses to return a less-precise element than the MOS-

9Register eip is the x86 instruction pointer. There are some situations that cause the MOS-
reinterpretation weights and KS-reinterpretation weights to fail to capture the value of the post-
state eip value. Therefore, before comparing affine relations, we performed havoc(eip’). This
adjustment avoids biasing the results merely because of trivial affine relations of the form “eip’ =
constant”.
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based analysis. In particular, if the join of the transformers on the two edges from
node 2 to node 3 is performed before the composition of the individual 2 — 3
transformers with the 1 — 2 transformer, the combined 2 — 3 KS transformer is

[{Pw)

a' = a” (i.e., b and V' are unconstrained). The loss of information about b and b’
cascades to the 1 — 3 KS transformer, which is also “a’ = a”. In particular, it fails
to contain the conjunct 23°b’ = 23%a, which expresses that the two low-order bits
of b’ at node 3 are the same as the two low-order bits of a at node 1.

In contrast, in the MOS domain, the combined 2 — 3 transformer is the affine
closure of the transformers “a’ = aAb =" and “a’ = a AV = a”, which avoids the
complete loss of information about b and o', and hence the 1 — 3 MOS transformer

is able to capture the relation “a’ = a A 23°b’ = 23%a”,

8. RELATED WORK
8.1 Abstract Domains for Affine-Relation Analysis

The original work on affine-relation analysis (ARA) was an intraprocedural ARA
algorithm due to Karr [1976]. In Karr’s work, a domain element represents a set
of points that satisfy affine relations over variables that hold elements of a field.
Karr’s algorithms are based on linear algebra (i.e., vector spaces).

Miiller-Olm and Seidl [2004] gave an algorithm for interprocedural ARA, again
for vector spaces over a field. Later [2005a; 2007], they generalized their techniques
to work for modular arithmetic: they introduced the MOS domain, in which an
element represents an affine-closed set of affine transformers over variables that hold
machine integers, and gave an algorithm for interprocedural ARA. The algorithms
for operations of the MOS domain are based on an extension of linear algebra to
modules over a ring.

The version of the KS domain presented in this paper was inspired by, but is
somewhat different from, the techniques described in two papers by King and
Sendergaard [2008], [2010]. Our goals and theirs are similar, namely, to be able to
create abstract transformers automatically that are bit-precise, modulo the inher-
ent limitation on precision that stems from having to work with affine-closed sets
of values. Compared with their work, we avoid the use of bit-blasting, and work
directly with representations of w-bit affine-closed sets. The greatly reduced num-
ber of variables that comes from working at word level opened up the possibility of
applying our methods to much larger problems, and as discussed in §5 and §7, we
were able to apply our methods to interprocedural program analysis.

As shown in §5.2; the algorithm for projection given by King and Sgndergaard
[2008, §3] does not always find answers that are as precise as the domain is capable
of representing. One consequence is that their join algorithm does not always find
the least upper bound of its two arguments. In this paper, these issues have been
corrected by employing the Howell form of matrices to normalize KS elements (§2.1,
§5.2, and §5.4; see also §8.2 below).

King and Sgndergaard introduced another interesting technique that we did not
explore, which is to use affine relations over m-bit numbers, for m > 1, to represent
sets of 1-bit numbers. To make this approach sensible, their concretization function
intersects the “natural” concretization, which yields an affine-closed set of tuples
of m-bit numbers, with the set {{vy,...,vx) | v1,...,0x € {0,1}}. In essence,
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this approach restricts the concretization to tuples of 1-bit numbers [King and
Sendergaard 2010, Defn. 2]. The advantage of the approach is that KS elements over
7., can then represent sets of 1-bit numbers that can only be over-approximated
using KS elements over Z5.

Ezample 8.1. Suppose that we have three variables {z1, 2,23}, and want to
represent the set of assignments {(001), (010), (100)}. The best KS element over
73 is

xr1 T x3z 1

[1 1 1]1], (11)

which corresponds to the affine relation 1 + 22 + 3+ 1 = 0. The set of satisfying
assignments is {(001), (010), (100), (111)}, which includes the extra tuple (111).

Now consider what sets can be represented when m = 2, so that arithmetic is
performed mod 4. In particular, instead of the matrix in Eqn. (11) we use the
following KS element over Z3:

r1 T2 I3 1

[1 1 1]3], (12)

which corresponds to the affine relation z; + x2 + 3 + 3 = 0. The matrix in
Eqn. (12) has sixteen satisfying assignments:

(001) (010) (100 (122) (212) (221) (032) (023)
(203) (230) (302) (320) (113) (131) (311) (333)

However, only three of the assignments are in the restricted concretization, namely,
the desired set {(001), (010), (100)}. O

To represent sets of tuples of w-bit numbers, as considered in this paper, the
analogous technique would use a y-bit KS domain, y > w, in a similar fashion. That
is, the “natural” concretization would be intersected with the set {{vi,...,vg) |
U1y, €40,1,...,2% —1}}. We leave the exploration of these issues for possible
future research.

Like some other relational domains, including polyhedra [Cousot and Halbwachs
1978; PPL ; Jeannet | and grids [Bagnara et al. 2006], KS/AG fits the dual-
representation paradigm of having both a constraint representation (KS) and a gen-
erator representation (AG). MOS is based on a generator representation. Whereas
many implementations of domains with a dual representation perform some op-
erations in one representation and other operations in the other representation,
converting between representations as necessary, one of the clever aspects of both
MOS and KS is that they avoid the need to convert between representations.

Granger [1989] describes congruence lattices, where the lattice elements are cosets
in the group Z*. The generator form for a congruence-lattice element is defined by
a point and a basis. The basis is used to describe the coset. The corresponding
constraint form for a domain element is a system of Diophantine linear congruence
equations. Conversion from the “normalized representation” (generator form) to
an equation system is done by an elimination algorithm. The reverse direction
is carried out by solving a set of equations. Granger’s normalized representation
can be used as a domain for representing affine relations over machine integers.
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However, Granger’s approach does not have unique normalized representations,
because a coset space can have multiple bases. As a result, his method for checking
that two domain elements are equal is to check containment in both directions (i.e.,
to perform two containment checks). Moreover, checking containment is costly
because a representation conversion is required: one has to compare the cosets,
which involves converting one coset into equational form and then checking if the
other coset (in generator form) satisfies the constraints of equational form. In
contrast, for the KS domain, one can easily check containment using the KS meet
and equality operations:

VX)CHY) iff XCY iff X=(XnNY).

Similarly, containment checking in AG can be performed using the AG join and
equality operations. Thus, in both KS and AG, the costly step of converting be-
tween generator form and constraint form (or vice versa) is avoided.

Gulwani and Necula introduced the technique of random interpretation (for vec-
tor spaces over a field), and applied it to identifying both intraprocedural [2003]
and interprocedural [2005] affine relations. The fact that random interpretation
involves collecting samples—which are similar to rows of AG elements—suggests
that the AG domain might be used as an efficient abstract datatype for storing and
manipulating data during random interpretation. Because the AG domain is equiv-
alent to the KS domain (see §3), the KS domain would be an alternative abstract
datatype for storing and manipulating data during random interpretation.

8.2 Howell Form

In contrast with both the Miiller-Olm/Seidl work and the King/Sgndergaard work,
our work takes advantage of the Howell form of matrices. Howell form can be used
with each of the domains KS, AG, and MOS defined in §2. Because Howell form
is canonical for non-empty sets of basis vectors, it provides a way to test pairs
of elements for equality of their concretizations—an operation needed by analysis
algorithms to determine when a fixed point is reached. In contrast, Miiller-Olm
and Seidl [2007, §2] and King and Sgndergaard [2008, Fig. 1], [2010, Fig. 2] use
“echelon form” (called “triangular form” by King and Sendergaard), which is not
canonical.

The algorithms given by Miiller-Olm and Seidl avoid computing multiplicative
inverses, which are needed to put a matrix in Howell form (line 8 of Alg. 1). How-
ever, their preference for algorithms that avoid inverses was originally motivated
by the fact that at the time of their original 2005 work they were unaware [Miiller-
Olm and Seidl 2005b] of Warren’s O(logw) algorithms [Warren 2003, §10-15] for
computing the inverse of an odd element, and only knew of an O(w) algorithm
[Miiller-Olm and Seidl 2005a, Lemma 1].

8.3 Symbolic Abstraction for Affine-Relation Analysis

King and Sgndergaard [2008], [2010] defined the KS domain, and used it to create
implementations of best KS transformers for the individual bits of a bit-blasted
concrete semantics. They used bit-blasting to express a bit-precise concrete seman-
tics for a statement or basic block. The use of bit-blasting let them track the effect
of non-linear bit-twiddling operations, such as shift and xor.
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In this paper, we also work with a bit-precise concrete semantics; however, we
avoid the need for bit-blasting by working with QFBV formulas expressed in terms
of word-level operations; such formulas also capture the precise bit-level semantics
of each instruction or basic block. We take advantage of the ability of an SMT solver
to decide the satisfiability of such formulas, and use akg to create best word-level
transformers.

Prior to our SAS 2011 paper [Elder et al.], it was not known how to perform
amos(p) in a non-trivial fashion (other than defining anog to be Af.T). The fact
that King and Sgndergaard [2010, Fig. 2] had been able to devise an algorithm for
aks caused us to look more closely at the relationship between MOS and KS. The
results presented in §4.1 establish that MOS and KS are different, incomparable
abstract domains. We were able to give sound interconversion methods (§4.2-84.4),
and thereby obtained a method for performing anos(p) (§4.5).

9. CONCLUSION

This paper has explored a variety of issues pertaining to the MOS and KS do-
mains for affine-relation analysis over variables that hold machine integers. What
is particularly interesting about these domains is that they are based on arithmetic
performed modulo 2%, for some bit width w, which allows them to track machine
arithmetic exactly for linear transformations.

We showed that, in general, MOS and KS are incomparable abstract domains.
That is, some relations are expressible in each domain that are not expressible in the
other. The central difference is that MOS is a domain of sets of functions, while KS
is a domain of relations. However, we gave sound methods to convert a KS element
vks to an over-approximating MOS element vpos—i.e., Y(vks) C v(vmos)—and
to convert an MOS element wyps to an over-approximating KS element wgg—i.e.,
Y(wmos) € ¥(wks)-

The paper also contributes to a broader research objective of ours—namely, the
development of techniques to raise the level of automation in abstract interpreters.
86 presents an approach for obtaining KS abstract transformers based on semantic
reinterpretation—i.e., by a greedy, operator-by-operator approach. §5.8 discusses
symbolic abstraction for the KS domain, which provides not only a more global ap-
proach to creating KS abstract transformers, but one that attains the fundamental
limits on precision that abstract-interpretation theory establishes. §7 presents the
results of experiments to evaluate the costs and benefits of these methods. The
experiments showed that, compared with the semantic-reinterpretation approach,
it is considerably more costly to obtain KS abstract transformers via symbolic
abstraction (Gks and ajg). However, the transformers obtained via symbolic ab-
straction, as well as the one-vocabulary affine relations discovered to hold at branch
points and the two-vocabulary affine relations discovered as procedure summaries,
are often more precise than the ones obtained via semantic reinterpretation. More
precisely, 10.14% of the akg transformers, 18.6% of the one-vocabulary affine rela-
tions discovered to hold at branch points using the aks transformers, and 42% the
two-vocabulary affine relations discovered as procedure summaries using the aks
transformers are more precise than their KS-reinterpretation counterparts. (All
three numbers are computed as geometric means.)
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A. DUALIZATION
For any matrix M, it is a common lemma that (M_l)t = (Mt)_l. Thus, the
notation M ~* denotes (Mfl)t.

Lemma A.1. Let D and T be square, diagonal matrices, where D;; = 2P and
T;; = 2¥~Pi for all 5. Then, null’ T = row D and null’ D = row T

PROOF. Let z be any row vector. To see that null’ T' = row D:
zenull'T <= T2 =0 < Vi: 22" P =0
— Vi: 2P|z, <= Fu:Vi:iv2P =z
< Jv:vD =2z < ze€rowD.

One can show that null’ D = row T by essentially the same reasoning. [
Theorem 3.3 For any matriz M, null’ M = row M+ and row M = null’ M+. O

PROOF. Again, let L, D, and R be the diagonal decomposition of M (see
Defn. 3.1, and construct 7" from D as in Lem. A.1. Recall that L is invertible.
To see that row M = null’ M+,

row M = row LDR = row DR, so z € row DR <= xR~ ! € rowD
— R ' emll'T +< TR '2'=0 <= zenull'TR™".
We know that L~ is also invertible, so
null' TR = null’ L'TR™ = null’ M.

Thus, row M = null’ M+. One can show that null’ M = row M=+ by essentially the
same reasoning. []

B. DOMAIN CONVERSIONS

Thm. 4.1 states that the transformation from MOS to AG given in §4.2 is sound.
Theorem 4.1 Suppose that B is an MOS element such that, for every B € B,
B = {2‘) J\C/Ii} for some cp € Z3X% and Mp € ZEX*. Define Gg = [H%} and
G= |_|AG {GB|B € B}. Then, Yuos(B) C v40(G). O

PrROOF. First, recall that for any two AG elements E and F', E Upg F equals
HoweLLIZE ([ £]) . Because HOWELLIZE does not change the row space of a matrix,
Yac (EUac F) equals v ([£]). By the definition of G, we know that v,¢(G) =
Yac(G), where G is all of the matrices Gp stacked vertically. Therefore, to show
that Yuos(B) C 7ac(G), we show that yyos(B) C Yac(G).

Suppose that (x,z') € Yyos(B). Then, for some vector v,

1] (3 08) = 01

BeB

If we break this equation apart, we see that

ngzl and ZUBCB—FJZ(Z’UBMB):Z‘/.

BeB BeB BeB
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Let ® denote Kronecker product. Now consider the following product, which
uses (v [ 1 ‘  |) as a vector of coefficients for the rows of G:

(v@[l‘x])@ = Z [’UB‘UBLEI vBCB+vaMB]

sl (5] Sz
= [1|z 2].

Thus, |1 ‘ z '] is a linear combination of the rows of G, and so (z,2') € 71s(G).
Therefore, Yyos(B) C vac(G). O

110 b
Theorem 4.3 When G = | 0|1 M |, then vac (G) = Yuos (SHATTER(G)) . O
0/0 R

Proor.
(2,8") € 146(G) <= Fv: [1]z v]G=[1]|z 2']
— Fu:b+zM+vR=12'

— 3o: [1]z] ([(1) jf}] 3 {%D ~ 1]’

<= (2,7") € Yuos(SHATTER(G))
O

Lemma B.1. Suppose that M and N are square matrices of equal dimension
such that
(1) M has only ones and zeroes on its diagonal,
(2) if M;; =1, then My, =0 for all h # 4, and
(3) if M;,; =0, then N;; = 0 for all h.

Then, MN = N.

Proor. We know (MN);; = >, M; Ny ;. By Items 2 and 3, if h # i then
either M;p, =0 or Ny ; =0, s0 (MN);; = M,;;N; ;. If M;; = 0, then by Item 2,
N, ; = 0; otherwise, M; ; = 1. In either case, (M N), ; = N, ;, as we require. [

lla b
Lemma B.2. When G = {0 T M}, such that [é%ﬂ and [é“}} satisfy the
0j0 R
conditions of Lem. B.1, then y,¢(G) C Yyos (SHATTER(G)).
PROOF.

(2,8") € 7a6(G) = Fv,v": [1|v v |G =[1]z o]



By Lem. B.1, [ 1]v] H%} [1]v] H»} {%} [1]z] {%’%},so
(z,2') € Yae(G) = F': [1]|2] {«’—}—i—v [0|R] =[1]a"]
— 3 [19;]( é]@] 3 H%D — [1]e']

= (2,7") € Yuos(SHATTER(G))
U
Theorem 4.5 For G € AG, V¢ (G) C Yuos (SHATTER (MAKEEXPLICIT(G))). sO

PrOOF. Without loss of generality, assume that G has 2k + 1 columns and is in
Howell form.

MAKEEXPLICIT(G) consists of two loops. In the first loop, every row r with
leading index ¢ < k + 1 for which the rank of the leading value is greater than
0 is generalized by creating from r a row s, which is added to G, such that s’s
leading index is also ¢, but its leading value is 1. Consequently, after the call on
HOWELLIZE(G) in line 8 of MAKEEXPLICIT, the leading value of the row with
leading index 7 is 1.

In the second loop, the matrix is expanded by all-zero rows so that any row with
leading index 7 < k + 1 is placed in row 1.

Thus, for any AG element G, we can decompose MAKEEXPLICIT(G) into the
matrix [é 2 1\2] where ¢,b € Zyx®; J, M € Z5X*; and R € Z5X* for some r < k.
Moreover, we know that
—J is upper-triangular,

—J has only ones and zeroes on its diagonal,
—if J; ; = 1, then column j of J is zero everywhere else, and
—if J; ; =0, then row j of J and row j of M are all zeroes.

By these properties, Lem. B.2 holds, so we know that
Yac (G) € Yuos (SHATTER (MAKEEXPLICIT(G))) .
O

C. HOWELL PROPERTIES

Definition C.1. Two module spaces R and S are perpendicular (denoted by
R1S)if

(1) reRAs€S = rs' =0,
(2) (Vr€R:rst=0) = s€S, and
(3) (Vse€ S:rst=0) = reR.

O
Lemma C.2. T R 1 Sand R 1S, then S = 5"
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Lemma C.3. For any matrix M, row M L null’ M.

These are standard facts in linear algebra; their standard proofs essentially carry
over for module spaces.

Lemma C.4. W R1L R and S L S, then R+ S L R'NS".

PRrOOF. Pick Gr and Gg so that row Gg = R and row Gg = S. Because the
rows of a matrix are linear generators of its row space,

R+S:row[g’;], so, by Lem. C.3, RJrSJ_nullt[gg‘}.
Because each row of a matrix acts as a constraint on its null space,
R+ S L null'! G Nnull’ Gg.

By Lem. C.3 again, we know that row Gg L null' Gg = R L R/, so null' G = R’
by Lem. C.2. Similarly, null' Gg = §’. Thus, R+S L R'NS". O

Note. Recall from §2 that [M]; is the matrix that consists of all rows of M whose
leading index is i or greater. For any row r, define LI(r) to be the leading index of
r. Define e; to be the vector with 1 at index 7 and 0 everywhere else.

THEOREM C.5. If matric M is in Howell form, and x € row M, then z €
I‘OW([M]L](:C)).
def def

PrOOF. Pick v so that « = vM, let j = LI (v), and let £ = LI (M,.). If
¢ > LI (z), then we already know that x € row([M]y;(,)). Otherwise, assume
¢ < LI (x). Under these conditions, as depicted in the diagram below,

g

I LI(x)

—(vM)y =0, because LI (vM) = LI (z) > ¢,
—Myp, o =0 for any h > j, by Rule 1 of Defn. 2.1, and
—uyp, = 0 for any h < j, because j = LI (v).

Therefore, 0 = (vM); = Y, vaMpe = v;M; . Thus, because j = LI (v), we
know that LI (v; M, ) is strictly greater than ¢ = LI (M; ).

Because multiplication by invertible values can never change nonzero values to
zero, we have LI (v;M;,) = LI (2*%(“)0f; ). Thus, by Rule 4 of Defn. 2.1, we
know that v;M; . can be stated as a linear combination of rows j + 1 and greater.
That is, v; M, . € row([M];11), or equivalently, v;M; , = uM with LI (u) > j+ 1.
We can thus construct v = v — v;e; + u for which = v'M and LI (v') > j + 1.

o7



By employing this construction iteratively for increasing values of j, we can
construct x = yM with LI (MLI(y)’*) > LI (z). Consequently, z can be stated
as a linear combination of rows with leading indexes LI (x) or greater; i.e., x €
I"OW([M]L](JC)). O

Theorem 5.2 Suppose that M has ¢ columns. If matriz M is in Howell form,

x € null" M if and only if Vi: Yyq, ... yi—1: {yl Ceeil1 Ty e xc} € null’ ([M],).
O

PrROOF. We know that row M L null® M, and that row([M];) L null®([M];).
Let E; be the module space generated by {e;|j < i}, and let F; be the module
space generated by {e;|j >1i}. Clearly, E; L F;. By Thm. C.5, we have that
row([M];) = row M N F;. Thus,

null’([M];) L row M N F;.
By Lem. C.4, we therefore have

null’([M];) = null’ M + E;, (13)
Because (null’ M + E;) is the set {z 4+ y |z € null' M AVh > i:y, = 0}, Eqn. (13)

is an equivalent way of stating the property to be shown. []

D. CORRECTNESS OF KS JOIN

THEOREM D.1. IfY and Z are both N +1-column KS matrices, and v.s(Y') and
vxs(Z) are both non-empty sets, then Y U Z is the projection of {}Y lg} onto its
right-most N + 1 columns.

PROOF. ~ks (Y U Z) is the affine closure of vyxs(Y) Uyks(Z). Thus, we need to
show that, for all z € Z4,,

HUEZQL;,UEZQWZ |:Z)/ g:|

— &8 Q g

if and only if

x is an affine combination of values in ys(Y) and yxs(Z).

Recall that an affine combination is a linear combination whose coefficients sum to
1.

Proof of the “if” direction: Fix a particular x € ZJ.,, and suppose that we have
specific values for A\ € Zaw, y € vks(Y), and z € s(Z), such that © = Ady+2z(1—N).
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Pick 0 =1 — A, and uw = (1 — X)z. Then,

(1—N\)z]
-YY 1—A —0
Z 0 x -
1 -
. . (I-=X)z (2] 1=XNz]|
1fandonly1fY[ Y JrY_l =0and Z Y =0
—(1=XNz+z=z

A

if and only if Y [ 1

}anli—MZ{Z]:O

ifandonlyif)\Y{?} =0 and (I—A)Z{i] =0.

These last equations are true because y € yxs(Y) and z € yxs(Z). Thus, if x is in
the affine closure of ks (Y) Uks(Z), then [f ] is in the null space of the projected

matrix.
Proof of the “only if” direction: Suppose that x is in the null space of the
projected matrix. Pick u € Z%, and ¢ € Zyw such that

=0.

— &8 Q

We must show that z is in the affine closure of yxs(Y) Uvks(2).

Immediately, we know that Z [ g] =0and Y [ - g} = 0. Because vxs(Y) and
vxs(Z) are nonempty, we can select an arbitrary yo € Vxs(Y) and zg € Yks(Z2).
Thus,

OZY{T:;L] _ij{ylo] :Y{x—ul—&-ayo],and

oz{g]+u@2[?}z[“+“faﬂﬂ.

Now define y and z to be the values that we have just shown to be in yxs(Y) and
Yxs(Z):
yEz—u+oyand 2 = u+ (1 —0)z.
If we solve for x and eliminate v in these equations, we get:
xr=y—oyo+z+ (6 —1)z.

Because y,yo € vxs(Y), 2,20 € 7s(Z), and 1 —o + 1+ (6 — 1) = 1, we have now
stated x as an affine combination of values in vxs(Y') and yxs(Z), as required. [

E. JOIN WITH A KS ELEMENT THAT REPRESENTS A SINGLE STATE

Lemma 5.8 The assignment “lower < lower U B(S)” on line 12 of Fig. 1(a) does
not change upper. O
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PROOF. S is a state that satisfies ¢ A =7(p). From Eqns. (6) and (7), we have
S=[Xw—0,X +— 0] and
X’ 1

_ [T o=
Because the distinction between one-vocabulary and two-vocabulary KS elements
is unimportant for this proof, we will consider one-vocabulary KS elements with
X 1

k + 1 columns, abbreviating S as [X + @] and 5(S) as [ I |—v].

Let lower = [ Y|y | and upper = lower{(rows(lower) — i + 2) ... rows(lower)].

We will refer to portions of lower by the names shown in the diagram below (where
the shaded blocks represent the leading values of the different rows):

y

>

rest

p > lower

upper

Lllower(p)

K‘est

Yrest
Yupper

To perform lowerlI3(S) = [ Y ‘ y ] U [ I ‘ —v ] , we create the 2k +2-column matrix

wr | =Y -y Yy
M[ I —v 00}

For instance, lower =
Yupper

and Howellize M. Because [ is already in Howell form, we rearrange rows to form
I —v 00
Y -y Yy’
and then cancel the —Y block by multiplying [I —v 0 0] on the left by Y, and
adding the result to [ =Y —y Y y |, which produces

6 ro-mry) 14

is the only column that causes matrix (14) to
Yrest :| |:'U:|
Yupper 1

By invariant (2) from §5.8.1, we have upper J a(p), and hence [¢] C [a(p)] C

~v(upper). Moreover, S = ¢ A —=7(p) means that S € [¢], which implies that
60

—v
Note that the column
[ (=Yv—y) }

fail to be in Howell form. We can factor this column as follows:

[(Yv—y)]=[-Y —y] {H _—zower[ﬂ _ [Ymst

Yupper




1
1
1
0
1
1 X 0 0
0 1
1
1
1
N
rest
0 > lower
upper
J
_Yrest*v - yrest

Fig. 14. Depiction of the structure of the partially Howellized matrix (15) that arises during the
operation lower U B(S).

S € y(upper). The latter fact can be expressed as S |= J(upper), or in matrix terms,

as [Yupper‘yupper] [11}] = 0. Therefore, matrix (14) has the following structure

I —v 0 0
0 (7Y7‘est *U — yrest) Yiest  Yrest | (15>
0 0 Yupper Yupper

which is depicted in more detail in Fig. 14.

We now want to argue that none of the remaining steps carried out to finish
putting matrix (15) into Howell form can affect a row of upper. Obviously, none
of the steps of HOWELLIZE that resemble Gaussian elimination—used to enforce
items (1) and (2) of Defn. 2.1—can affect a row of upper, because all of the entries
in column k+ 1 of matrix (15) for rows of upper are 0. Nor can upper be affected by
the steps of HOWELLIZE that resemble back-substitution, which are used to enforce
Defn. 2.1(3).

More surprisingly, the logical-consequence rows added to matrix (15) to enforce
Defn. 2.1(4) cannot change upper either. For instance, consider a row such as row ¢
in Fig. 14, which has the form [0 ..02z0...01 ... ﬁ]. Let j be the leading
index (with respect to matrix lower) of the first row of upper. Suppose that s is
the smallest number such that when the portion of row ¢ that is in lower, namely,
[ 0...0¢t...u ]7 is multiplied by 2%, all entries in column positions < j are 0, and
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we are left with [0 ... 0 2% |. Because lower is in Howell form, by Defn. 2.1(4)
row([upper];) includes constraints that are equal to or stronger than all multiples
of [0 ... 0 2517].

Now consider again the full row ¢ of matrix (15), [0 ...02z0...0¢ ... ﬁ].
For a logical consequence of row ¢ to have non-zero entries only at positions k+1+j
or greater, we must multiply ¢ by at least a power of 2 that is sufficient to zero out
z and all elements at positions k+ 1+ Ljpuer(q) to k414 j — 1. Consequently, the
multiplicand must be a multiple of 2°; however, in that case the result is a vector
that is a multiple of [O ... 0 2% ] As observed above, such a constraint cannot
change upper because row([upper];) already includes constraints that are equal to
or stronger than all multiples of [0 ... 0 2%@ |. O
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