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Abstract. This paper gives an account of St̊almarck’s method for valid-
ity checking of propositional-logic formulas, and explains each of the key
components in terms of concepts from the field of abstract interpretation.
We then use these insights to present a framework for propositional-logic
validity-checking algorithms that is parametrized by an abstract domain
and operations on that domain. St̊almarck’s method is one instantiation
of the framework; other instantiations lead to new decision procedures
for propositional logic.

1 Introduction

A tool for validity checking of propositional-logic formulas (also known as a
tautology checker) determines whether a given formula ϕ over the propositional
variables {pi} is true for all assignments of truth values to {pi}. Validity is dual
to satisfiability: validity of ϕ can be determined using a SAT solver by checking
the satisfiability of ¬ϕ and complementing the answer: VALID(ϕ) = ¬SAT(¬ϕ).

With the advent of SAT-solvers based on conflict-directed clause learning
(i.e., CDCL SAT solvers) [11] and their use in a wide range of applications, SAT
methods have received increased attention during the last twelve years. Previous
to CDCL, a fast validity checker (and hence a fast SAT solver) already existed,
due to St̊almarck [13]. St̊almarck’s method was protected by Swedish, Euro-
pean, and U.S. patents [15], which may have discouraged experimentation by re-
searchers. Indeed, one finds relatively few publications that concern St̊almarck’s
method—some of the exceptions are by Harrison [9], Cook and Gonthier [2], and
Björk [1]. (Kunz and Pradhan [10] discuss a closely related method.)

In this paper, we give a new account of St̊almarck’s method by explaining
each of the key components in terms of concepts from the field of abstract in-
terpretation [3]. In particular, we show that St̊almarck’s method is based on a
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certain abstract domain and a few operations on that domain. For the program-
analysis community, the abstract-interpretation account explains the principles
behind St̊almarck’s method in terms of familiar concepts. In the long run, our
hope is that a better understanding of St̊almarck’s method will lead to

– better program-analysis tools that import principles found in St̊almarck’s
method into program analyzers

– improvements to St̊almarck-based validity checkers by (i) incorporating do-
mains other than the ones that have been used (implicitly) in previous im-
plementations of the method, or (ii) improving the method in other ways by
incorporating additional techniques from the field of abstract interpretation.

There has been one payoff already: in [17], we describe ways in which ideas from
St̊almarck’s method can be adopted for use in program analysis. The techniques
described in [17] are quite different from the huge amount of recent work based
on reducing a program path π to a formula ϕπ via symbolic execution, and then
passing ϕπ to a decision procedure to determine whether π is feasible. Instead,
we adopted—and adapted—the key ideas from St̊almarck’s method to create
new algorithms for key program-analysis operations.

In this paper, we use the vantage point of abstract interpretation to de-
scribe the elements of the Dilemma Rule—the inference rule that distinguishes
St̊almarck’s method from other propositional-reasoning approaches—as follows:

Branch of a Proof: In St̊almarck’s method, each proof-tree branch is associ-
ated with a so-called formula relation [13]. In abstract-interpretation terms,
each branch is associated with an abstract-domain element. As discussed in
§4, the set of formula relations associated with a formula ϕ under consider-
ation is one particular abstract domain.

Splitting: The step of splitting the current goal into sub-goals can be expressed
in terms of meet (⊓).

Application of simple deductive rules: St̊almarck’s method applies a set of
simple deductive rules after each split. In abstract-interpretation terms, the
rules perform a semantic reduction [4] by means of a technique called local
decreasing iterations [8].

“Intersecting” results: The step of combining the results obtained from an
earlier split are described as an “intersection” in St̊almarck’s papers. In the
abstract-interpretation-based framework, the combining step is the join (⊔)
of two abstract-domain values.

This more general view of St̊almarck’s method furnishes insight on when an
invocation of the Dilemma Rule fails to make progress in a proof. In particu-
lar, both branches of a Dilemma may each succeed (locally) in advancing the
proof, but the abstract domain used to represent proof states may not be precise
enough to represent the common information when the join of the two branches
is performed; consequently, the global state of the proof is not advanced.

We use these insights to present a parametric framework for propositional
validity-checking algorithms. The advantages of our approach are

– We prove correctness at the framework level, once and for all, instead of for
each instantiation.
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– Instantiations that use different abstract domains lead to different decision
procedures for propositional logic. St̊almarck’s method is the instantiation
of our framework in which the abstract domain tracks equivalence relations
between subformulas—or, equivalently, 2-variable Boolean affine relations
(2-BAR). By instantiating the framework with other abstract domains, such
as k-variable Boolean affine relations (k-BAR) and 2-variable Boolean in-
equality relations (2-BIR), we obtain more powerful decision procedures.

Contributions. The contributions of the paper can be summarized as follows:
– We explain St̊almarck’s method in terms of abstract interpretation [3]—in

particular, we show that it is one instance of a more general algorithm.
– The vantage point of abstract interpretation provides new insights on the

existing St̊almarck method.
– Adopting the abstract-interpretation viewpoint leads to a parametric frame-

work for validity checking, parameterized by an abstract domain that sup-
ports a small number of operations.

Organization. The remainder of the paper is organized as follows: §2 reviews
St̊almarck’s algorithm, and presents our generalized framework at a semi-formal
level. §3 defines terminology and notation. §4 describes St̊almarck’s method us-
ing abstract-interpretation terminology and presents the general framework. §5
describes instantiations of the framework that result in new decision procedures.
§6 presents preliminary experimental results. §7 discusses related work. Proofs
are presented in App. A. App. B discusses a few efficiency issues.

2 Overview

In this section, we first review St̊almarck’s method with the help of a few ex-
amples. We then present our generalized framework at a semi-formal level. The
algorithms that we give are intended to clarify the principles behind St̊almarck’s
method, rather than represent the most efficient implementation.

2.1 St̊almarck’s Method

Consider the tautology ϕ = (a ∧ b) ∨ (¬a ∨ ¬b). It expresses the pigeonhole
principle for two pigeons (a∧b) and one hole (¬a∨¬b). Ex. 1 below shows that the
simpler component of the two components of St̊almarck’s method (application
of “simple deductive rules”) is sufficient to establish that ϕ is valid.

Example 1. We use 0 and 1 to denote the propositional constants false and
true, respectively. Propositional variables, negations of propositional variables,
and propositional constants are referred to collectively as literals. St̊almarck’s
method manipulates formula relations, which are equivalence relations over lit-
erals. A formula relation R will be denoted by ≡R, although we generally omit
the subscript when R is understood. We use 0 ≡ 1 to denote the universal (and
contradictory) equivalence relation {li ≡ lj | li, lj ∈ Literals}.
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v1⇔(v2 ∨ v3) (1)

v2⇔(a ∧ b) (2)

v3⇔(¬a ∨ ¬b) (3)

Fig. 1: Integrity constraints correspond-
ing to the formula ϕ = (a∧b)∨(¬a∨¬b).
The root variable of ϕ is v1.

p⇔(q ∨ r) p ≡ 0

q ≡ 0 r ≡ 0
Or1

p⇔(q ∧ r) q ≡ 1 r ≡ 1

p ≡ 1
And1

Fig. 2: Propagation rules.

St̊almarck’s method first assigns to every subformula of ϕ a unique Boolean
variable in a set of propositional variables V , and generates a list of integrity
constraints as shown in Fig. 1. An assignment is a function in V → {0, 1}. The
integrity constraints limit the set of assignments in which we are interested. Here
the integrity constraints encode the structure of the formula.

St̊almarck’s method establishes the validity of the formula ϕ by showing that
¬ϕ leads to a contradiction (which means that ¬ϕ is unsatisfiable). Thus, the sec-
ond step of St̊almarck’s method is to create a formula relation that contains the
assumption v1 ≡ 0. Fig. 2 lists some propagation rules that enable St̊almarck’s
method to refine a formula relation by inferring new equivalences. For instance,
rule Or1 says that if p⇔(q ∨ r) is an integrity constraint and p ≡ 0 is in the
formula relation, then q ≡ 0 and r ≡ 0 can be added to the formula relation.

Fig. 3 shows how, starting with the assumption v1 ≡ 0, the propagation rules
derive the explicit contradiction 0 ≡ 1, thus proving that ϕ is valid. ⊓⊔

Ex. 1 illustrates several aspects of St̊almarck’s method. By starting with the
assumption that the formula is equivalent to false, St̊almarck’s method derives
new equivalences using simple deductive rules. These rules use the currently
known equivalences and an integrity constraint to derive new equivalences.

Alg. 1 (Fig. 4) implements the propagation rules of Fig. 2. Given an integrity
constraint J ∈ I and a set of equivalences R1 ⊆ R, line 1 calls the function
ApplyRule, which instantiates and applies the derivation rules of Fig. 2 and
returns the deduced equivalences in R2. The new equivalences in R2 are incor-

v1 ≡ 0 . . . by assumption
v2 ≡ 0, v3 ≡ 0 . . . by rule Or1 using Eqn. (1)
¬a ≡ 0, ¬b ≡ 0 . . . by rule Or1 using Eqn. (3)
a ≡ 1, b ≡ 1 . . . interpretation of logical negation
v2 ≡ 1 . . . by rule And1 using Eqn. (2)
0 ≡ 1 . . . v2 ≡ 0, v2 ≡ 1

Fig. 3: Proof that ϕ is valid.
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Algorithm 1: propagate(J,R1, R, I)

1 R2 = ApplyRule[I](J, R1)
2 return Close(R ∪ R2)

Algorithm 2: 0-saturation(R, I)

1 repeat

2 R′ ← R

3 foreach J ∈ I,R1 ⊆ R do

4 R← propagate(J,R1, R, I)

5 until (R = R′) ‖ contradiction(R)
6 return R

Algorithm 3: 1-saturation(R, I)

1 repeat

2 R′ ← R

3 foreach vi, vj such that

vi ≡ vj 6∈ R and vi ≡ ¬vj 6∈ R

do

4 R1 ← Close(R ∪ {vi ≡ vj})
5 R2 ← Close(R ∪ {vi ≡ ¬vj})
6 R′

1 ← 0-saturation(R1)
7 R′

2 ← 0-saturation(R2)
8 R← R′

1 ∩R′
2

9 until (R = R′) ‖ contradiction(R)
10 return R

Algorithm 4: k-saturation(R, I)

1 repeat

2 R′ ← R

3 foreach vi, vj such that

vi ≡ vj 6∈ R and vi ≡ ¬vj 6∈ R

do

4 R1 ← Close(R ∪ {vi ≡ vj})
5 R2 ← Close(R ∪ {vi ≡ ¬vj})
6 R′

1 ← (k–1)-saturation(R1, I)
7 R′

2 ← (k–1)-saturation(R2, I)
8 R← R′

1 ∩R′
2

9 until (R = R′) ‖ contradiction(R)
10 return R

Algorithm 5: k-St̊almarck(ϕ)

1 (vϕ, I)← integrity(ϕ)
2 R← {vϕ ≡ 0}
3 R′ ← k-saturation(R,I)
4 if R′ = 0 ≡ 1 then return valid

5 else return unknown

Fig. 4: St̊almarck’s method. The operation Close performs transitive closure on
a formula relation after new tuples are added to the relation.

porated into R and the transitive closure of the resulting equivalence relation
is returned. We implicitly assume that if Close derives a contradiction then it
returns 0 ≡ 1. Alg. 2 (Fig. 4) describes 0-saturation, which calls propagate re-
peatedly until no new information is deduced, or a contradiction is derived. If a
contradiction is derived, then the given formula is proved to be valid.

Unfortunately, 0-saturation is not always sufficient.

Example 2. Consider the tautology ψ = (a ∧ (b ∨ c))⇔((a ∧ b) ∨ (a ∧ c)), which
expresses the distributivity of ∧ over ∨. The integrity constraints for ψ are:

u1 ⇔ (u2⇔u3) u2 ⇔ (a ∧ u4) u3 ⇔ (u5 ∨ u6)
u4 ⇔ (b ∨ c) u5 ⇔ (a ∧ b) u6 ⇔ (a ∧ c)

The root variable of ψ is u1. Assuming u1 ≡ 0 and then performing 0-saturation
does not result in a contradiction; all we can infer is u2 ≡ ¬u3.

To prove that ψ is a tautology, we need to use the Dilemma Rule, which is a
special type of branching and merging rule. It is shown schematically in Fig. 5.
After two literals vi and vj are chosen, the current formula relation R is split
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R

R1 = Close(R ∪ {vi ≡ vj}) R2 = Close(R ∪ {vi ≡ ¬vj})

R′
1 R′

2

R′ = R′
1 ∩ R′

2

Fig. 5: The Dilemma Rule.

into two formula relations, based on whether we assume vi ≡ vj or vi ≡ ¬vj ,
and transitive closure is performed on each variant of R. Next, the two relations
are 0-saturated, which produces the two formula relations R′

1 and R′
2. Finally,

the two proof branches are merged by intersecting the set of tuples in R′
1 and

R′
2. The correctness of the Dilemma Rule follows from the fact that equivalences

derived from both of the (individual) assumptions vi ≡ vj and vi ≡ ¬vj hold
irrespective of whether vi ≡ vj holds or whether vi ≡ ¬vj holds.

The Dilemma Rule is applied repeatedly until no new information is deduced
by a process called 1-saturation, shown in Alg. 3 (Fig. 4). 1-saturation uses two
literals vi and vj , and splits the formula relation with respect to vi ≡ vj and vi ≡
¬vj (lines 4 and 5). 1-saturation finds a contradiction when both 0-saturation
branches identify contradictions (in which case R = R′

1 ∩R
′
2 equals 0 ≡ 1). The

formula ψ in Ex. 2 can be proved valid using 1-saturation, as shown in Fig. 6.
The first application of the Dilemma Rule, which splits on the value of b, does
not make any progress; i.e., no new information is obtained after the intersection.
The next two applications of the Dilemma Rule, which split on the values of a
and c, respectively, each deduce a contradiction on one of their branches. Each
contradictory branch is eliminated because the (universal) relation 0 ≡ 1 is
the identity element for intersection, and hence the intersection result is the
equivalence relation from the non-contradictory branch. We illustrate this fact
in Fig. 6 by eliding the merges with contradictory branches. Finally, splitting on
the variable b leads to a contradiction on both branches. ⊓⊔

There are many possible strategies for choosing which equivalence to split
on for the Dilemma Rule during 1-saturation. The choices made by a strategy
have an impact on the completeness and efficiency of the decision procedure. For
expository purposes, Alg. 3 adopts a simple yet complete strategy. We revisit
this issue in App. B.

Unfortunately 1-saturation may not be sufficient to prove certain tautologies.
The 1-saturation procedure can be generalized to the k-saturation procedure
shown in Alg. 4 (Fig. 4). St̊almarck’s method (Alg. 5 of Fig. 4) is structured
as a semi-decision procedure for validity checking. The actions of the algorithm
are parameterized by a certain parameter k that is fixed by the user. For a
given tautology, if k is large enough St̊almarck’s method can prove validity, but



A Generalization of St̊almarck’s Method 7

{[u1,0][u2,¬u3]}

b ≡ 0 b ≡ 1

{[b, u1,0][u2,¬u3,¬u6], [u4, c]} {[u1,0][u2, a, u5,¬u3][b, u4,1]}

{[u1,0][u2,¬u3]}

a ≡ 0 a ≡ 1

0 ≡ 1 {[u1,0][u5, b][u2, u4,¬u3][u6, c][a,1]}

c ≡ 0 c ≡ 1

{[u1, c, u6,0][u4, b, u5, u3, u2,¬u4][a,1]} 0 ≡ 1

b ≡ 0 b ≡ 1

0 ≡ 1 0 ≡ 1

Fig. 6: Sequence of Dilemma Rules in a 1-saturation proof that ψ is valid. (Details
of 0-saturation steps omitted.)

if k is too small the answer returned is “unknown”. In the latter case, one can
increment k and try again. However, for each k, (k+1)-saturation is significantly
more expensive than k-saturation: the running time of Alg. 5 as a function of k
is O(|ϕ|k) [13].

Each equivalence relation that arises during St̊almarck’s method can be
viewed as an abstraction of a set of variable assignments. More precisely, at any
moment during a proof there are some number of open branches. Each branch
Bi has its own equivalence relation Ri, which represents a set of variable as-
signments Ai that might satisfy ¬ϕ. In particular, the contradictory equivalence
relation 0 ≡ 1 represents the empty set of assignments. Overall, the proof repre-
sents the set of assignments

⋃
iAi, which is a superset of the set of assignments

that might satisfy ¬ϕ. Validity of ϕ is established by showing that the set
⋃

iAi

equals ∅.

2.2 Generalizing St̊almarck’s Method

Instead of computing an equivalence relation ≡ on literals, let us compute an
inequality relation ≤ between literals. Fig. 7 shows a few of the propagation rules
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a⇔(b⇒ c)

c ≤ a ¬a ≤ b
Imp1

a⇔(b⇔ c) a ≤ 0

b ≤ ¬c ¬c ≤ b
Iff1

a⇔(b⇒ c) 1 ≤ b c ≤ 0

a ≤ 0
Imp2

Fig. 7: Examples of propagation rules for inequality relations on literals.

that deduce inequalities. Because (i) an equivalence a ≡ b can be represented
using two inequality constraints, a ≤ b and b ≤ a, (ii) an inequivalence a 6≡ b can
be treated as an equivalence a ≡ ¬b, and (iii) a ≤ b cannot be represented with
any number of equivalences, inequality relations are a strictly more expressive
method than equivalence relations for abstracting a set of variable assignments.
Moreover, Ex. 3 shows that, for some tautologies, replacing equivalence relations
with inequality relations enables St̊almarck’s method to be able to find a k-
saturation proof with a strictly lower value of k.

Example 3. Consider the formula χ = (p⇒ q)⇔(¬q⇒¬p). The corresponding
integrity constraints are w1⇔(w2⇔w3), w2⇔(p⇒ q), and w3⇔(¬q⇒¬p). The
root variable of χ is w1. Using formula relations (i.e., equivalence relations over
literals), St̊almarck’s method finds a 1-saturation proof that χ is valid. In con-
trast, using inequality relations, a St̊almarck-like algorithm finds a 0-saturation
proof. The proof starts by assuming that w1 ≤ 0. 0-saturation using the propa-
gation rules of Fig. 7 results in the contradiction 1 ≤ 0, as shown in Fig. 8. ⊓⊔

We say that the instantiation of St̊almarck’s method with inequality relations
is more powerful than the instantiation with equivalence relations. In general,
St̊almarck’s method can be made more powerful by using a more expressive
abstraction: when you plug in a more expressive abstraction, a proof may be
possible with a lower value of k. This observation raises the following questions:
1. What other abstractions can be used to create more powerful instantiations?
2. Given an abstraction, how do we come up with the propagation rules?
3. How do we split the current abstraction at the start of the Dilemma Rule?
4. How do we perform the merge at the end of the Dilemma Rule?
5. How do we guarantee that the above operations result in a sound and com-

plete decision procedure?
Abstract interpretation provides the appropriate tools to answer these questions.

3 Terminology and Notation

3.1 Propositional Logic

We write propositional formulas over a set of propositional variables V using the
propositional constants 0 and 1, the unary connective ¬, and the binary con-
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w1 ≤ 0 . . . by assumption
w2 ≤ ¬w3, ¬w3 ≤ w2 . . . Rule Iff1 on w1⇔(w2⇔w3)
q ≤ w2, ¬w2 ≤ p . . . Rule Imp1 on w2⇔(p⇒ q)
q ≤ ¬w3 . . . q ≤ w2, w2 ≤ ¬w3

w3 ≤ p . . . w2 ≤ ¬w3 implies w3 ≤ ¬w2,¬w2 ≤ p

¬p ≤ w3, ¬w3 ≤ ¬q . . . Rule Imp1 on w3⇔(¬q⇒¬p)
q ≤ 0 . . . ¬w3 ≤ ¬q implies q ≤ w3, q ≤ ¬w3

1 ≤ p . . . w3 ≤ p,¬p ≤ w3 implies ¬w3 ≤ p

w2 ≤ 0, . . . Rule Imp2 on w2⇔(p⇒ q)
w3 ≤ 0 . . . Rule Imp2 on w3⇔(¬q⇒¬p)
1 ≤ 0 . . . w2 ≤ ¬w3,¬w3 ≤ w2, w2 ≤ 0, w3 ≤ 0

Fig. 8: 0-saturation proof that χ is valid, using inequality relations on literals.

nectives ∧, ∨, ⇒,⇔, and ⊕ (xor). Propositional variables, negations of proposi-
tional variables, and propositional constants are referred to collectively as literals.
voc(ϕ) denotes the subset of V that occurs in ϕ.

The semantics of propositional logic is defined in the standard way:

Definition 1. An assignment σ is a (finite) function in V → {0, 1}. Given a
formula ϕ over the propositional variables x1, . . . , xn and an assignment σ that
is defined on (at least) x1, . . . , xn, the meaning of ϕ with respect to σ, denoted
by [[ϕ]](σ), is the truth value in {0, 1} defined inductively as follows:

[[0]](σ)=0 [[¬ϕ]](σ)=1− [[ϕ]](σ) [[ϕ1⇒ϕ2]](σ)= ([[ϕ1]](σ) ≤ [[ϕ2]](σ))
[[1]](σ)=1 [[ϕ1 ∧ ϕ2]](σ)=min([[ϕ1]](σ), [[ϕ2]](σ)) [[ϕ1⇔ϕ2]](σ)= ([[ϕ1]](σ) = [[ϕ2]](σ))
[[xi]](σ)=σ(xi) [[ϕ1 ∨ ϕ2]](σ)=max([[ϕ1]](σ), [[ϕ2]](σ)) [[ϕ1⊕ϕ2]](σ)= ([[ϕ1]](σ) 6= [[ϕ2]](σ))

Assignment σ satisfies ϕ, denoted by σ |= ϕ, iff [[ϕ]](σ) = 1. Formula ϕ is
satisfiable if there exists σ such that σ |= ϕ; ϕ is valid if for all σ, σ |= ϕ.

We overload the notation [[·]] as follows: [[ϕ]] means {σ | σ : V → {0, 1}∧ σ |=
ϕ}. Thus, we can think of ϕ as a device for accepting a set of assignments. Given
a finite set of formulas Φ = {ϕi}, [[Φ]] means

⋂
i [[ϕi]]. ⊓⊔

3.2 Abstract Domains

In this paper, the concrete domain C is P(V → {0, 1}). We will work with several

abstract domains A, each of which abstracts C by a Galois connection C −−−→←−−−α
γ
A.

We assume that the reader is familiar with the basic terminology of abstract
interpretation [3] (⊥, ⊤, ⊔, ⊓, ⊑, α, γ, monotonicity, distributivity, etc.), as well

as with the properties of a Galois connection C −−−→←−−−α
γ
A.

Definition 2. An element R of the domain of equivalence relations (Equiv)
over the set Literals[V ] formed from Boolean variables V, their negations, and
Boolean constants represents a set of assignments in P(V → {0, 1}). The special
value ⊥Equiv represents the empty set of assignments, and will be denoted by
“0 ≡ 1”. Each other value R ∈ Equiv is an equivalence relation on Literals[V ];
the concretization γ(R) is the set of all assignments that satisfy all the equiv-
alences in R. The ordering a1 ⊑Equiv a2 means that equivalence relation a1 is
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a coarser partition of Literals[V ] than a2. The value ⊤Equiv is the identity rela-
tion, {(v, v)|v ∈ V}, and thus represents the set of all assignments. R1 ⊔R2 is
the coarsest partition that is finer than both R1 and R2.

An alternative way to define the same domain is to consider it as the domain
of two-variable Boolean affine relations (2-BAR) over V. Each element
R ∈ 2-BAR is a conjunction of Boolean affine constraints, where each constraint
has one of the following forms:

vi⊕ vj = 0 vi⊕ vj ⊕1 = 0 vi = 0 vi⊕ 1 = 0,

which correspond to the respective equivalences

vi ≡ vj vi ≡ ¬vj vi ≡ 0 vi ≡ 1.

The value ⊥2-BAR is any set of unsatisfiable constraints. The value ⊤2-BAR is
the empty set of constraints. The concretization function γ2-BAR, and abstraction
function α2-BAR are:

γ2-BAR(R) = {c ∈ (V → {0, 1}) | R =
∧

i ri and for all i, c |= ri}
α2-BAR(C) =

∧
{r | for all c ∈ C, c |= r}

For convenience, we will continue to use equivalence notation (≡) in examples
that use 2-BAR, rather than giving affine relations (⊕). ⊓⊔

Definition 3. An element of the Cartesian domain represents a set of as-
signments in P(V → {0, 1}). The special value ⊥Cartesian denotes the empty set
of assignments; all other values can be denoted via a 3-valued assignment in
V → {0, 1, ∗}. The third value “∗” denotes an unknown value, and the values 0,
1, ∗ are ordered so that 0 ⊏ ∗ and 1 ⊏ ∗.

The partial ordering ⊑ on 3-valued assignments is the pointwise extension of
0 ⊏ ∗ and 1 ⊏ ∗, and thus ⊤Cartesian = λw.∗ and ⊔Cartesian is pointwise join.
The concretization function γCartesian, and abstraction function αCartesian are:

γCartesian(A) = {c ∈ (V → {0, 1}) | c ⊑ A}
αCartesian(C) = λw.

⊔
{c(w) | c ∈ C}

We will denote an element of the Cartesian domain as a mapping, e.g.,
[p 7→ 0, q 7→ 1, r 7→ ∗], or [0, 1, ∗] if p, q, and r are understood. ⊓⊔

Local Decreasing Iterations. Local decreasing iterations [8] is a technique
that is ordinarily used for improving precision during the abstract interpreta-
tion of a program. During an iterative fixed-point-finding analysis, the technique
of local decreasing iterations is applied at particular points in the program, such
as, e.g., the interpretation of the true branch of an if-statement whose branch
condition is ϕ. The operation that needs to be performed is the application of
the abstract transformer for assume(ϕ). As the name “local decreasing itera-
tions” indicates, a purely local iterative process repeatedly applies the operator
assume(ϕ) either until some precision criterion or resource bound is attained, or
a (local) fixed point is reached. The key theorem is stated as follows:

Theorem 1. ([8, Thm. 2]) An operator τ is a lower closure operator if it
is monotonic, idempotent (τ ◦ τ = τ), and reductive (τ ⊑ λx.x). Let τ be a
lower closure operator on A; let (τ1, . . . , τk) be a k-tuple of reductive operators
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St̊almarck’s Method Abstract-Interpretation Concept

Equivalence relation Abstract-domain element
Propagation rule Sound reductive operator
0-saturation Local decreasing iterations
Split Meet (⊓) in each proof-tree branch: one with a

splitting-set element a and one with a’s companion
Intersection (∩) Join (⊔)

Table 1: Abstract-interpretation account of St̊almarck’s method.

on A, each of which over-approximates (⊒) τ ; and let (un)n∈N be a sequence of
elements in [1, . . . , k]. Then the sequence of reductive operators on A defined by

η0 = τu0
ηn+1 = τun+1

◦ ηn

is decreasing and each of its elements over-approximates τ . ⊓⊔

Example 4. The propagation rules of Fig. 2 can be recast in terms of reductive
operators that refine an element R of the 2-BAR domain as follows:

Operator Derived from
τ1(R) = R ∪ ((v1 ≡ 0 ∈ R) ? {v2 ≡ 0, v3 ≡ 0} : ∅) v1⇔(v2 ∨ v3) ∈ I
τ2(R) = R ∪ (({a ≡ 1, b ≡ 1} ⊆ R) ? {v2 ≡ 1} : ∅) v2⇔(a ∧ b) ∈ I
τ3(R) = R ∪ (({v3 ≡ 0} ∈ R) ? {a ≡ 1, b ≡ 1} : ∅) v3⇔(¬a ∧ ¬b) ∈ I
τ4(R) = ({v2 ≡ 0, v2 ≡ 1} ⊆ R) ? 0 ≡ 1 : R
The operators τ1, τ2, and τ3 instantiate the rules of Fig. 2 for the three

integrity constraints shown in Fig. 1. The derivation described in Fig. 3 can now
be stated as τ4(τ2(τ3(τ1({v1 ≡ 0})))) = (τ4 ◦ τ2 ◦ τ3 ◦ τ1)({v1 ≡ 0}), which
results in the abstract state 0 ≡ 1.

Note that the operators given above are specialized for the given integrity
constraints, while the rules in Fig. 2 are stated in a parametric fashion. We will
revisit this issue in App. B. ⊓⊔

4 The Generalized Framework

In this section, we map the concepts used in St̊almarck’s method to concepts
used in abstract interpretation, as summarized in Tab. 1. The payoff is that
we obtain a parametric framework for propositional validity-checking algorithms
(Alg. 9) that can be instantiated in different ways by supplying different abstract
domains. The proofs of all theorems stated in this section are found in App. A.

Definition 4. Given a Galois connection C −−−→←−−−α
γ
A between abstract domain A

and concrete domain C = P(V → {0, 1}), an acceptable splitting set S for A
satisfies
1. S ⊆ A
2. For every a ∈ S, there exists b ∈ S such that γ(a) ∪ γ(b) = γ(⊤). Two

elements a, b ∈ S such that γ(a) ∪ γ(b) = γ(⊤) are called companions.
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3. For every assignment C ∈ V → {0, 1} there exists MC ⊆ S such that
γ( MC) = C. We call MC the cover of C. ⊓⊔

Example 5. The set of “single-point” partial assignments {⊤[v ← 0]} ∪ {⊤[v ←
1]} is an acceptable splitting set for both the Cartesian domain and the 2-BAR
domain. Another acceptable splitting set for the 2-BAR domain is the set con-
sisting of all 2-BAR elements that consist of a single constraint. ⊓⊔

The assumptions of our framework are rather minimal:

1. There is a Galois connection C −−−→←−−−α
γ
A between A and the concrete domain

of assignments C = P(V → {0, 1}).
2. A is at least as expressive as the Cartesian domain (Defn. 3); that is, for all
Ac ∈ Cartesian, there exists A ∈ A such that γCartesian(Ac) = γA(A).

3. There is an algorithm to perform the join of arbitrary elements of the domain;
that is, for all A1, A2 ∈ A, there is an algorithm that produces A1 ⊔ A2.

4. There is an algorithm to perform the meet of arbitrary elements of the
domain; that is, for all A1, A2 ∈ A, there is an algorithm that produces
A1 ⊓ A2.

5. There is an acceptable splitting set S for A (Defn. 4).
Assumption 2 ensures that any instantiation that satisfies assumptions 1–4 will
satisfy assumption 5: the set of “single-point” partial assignments inherited from
the Cartesian domain (Ex. 5) is always an acceptable splitting set.

Note that because the concrete domain C is over a finite set of Boolean
variables, the abstract domain A has no infinite descending chains. It is not
hard to show that 2-BAR meets assumptions (1)–(5). The standard version of
St̊almarck’s method (§2.1) is the instantiation of the framework presented in this
section with the abstract domain 2-BAR.

At any moment during our generalization of St̊almarck’s method, each open
branch Bi represents a set of variable assignments Ci ∈ C such that

⋃
iCi ⊇

[[¬ϕ]]. That is, each branch Bi represents an abstract state Ai ∈ A such that⋃
i γ(Ai) ⊇ [[¬ϕ]]. Let Ā =

⊔
iAi. Then Ā is sound, i.e., γ(Ā) ⊇

⋃
i γ(Ai) ⊇ [[¬ϕ]].

The net result of the proof rules is to derive a semantic reduction Ā′ of Ā with
respect to the integrity constraints I; that is, γ(Ā′) ∩ [[I]] = γ(Ā) ∩ [[I]], and
Ā′ ⊑ Ā. If the algorithm derives that Ā′ = ⊥A, then the formula ϕ is proved
valid.

Generalized Propagation Rules. The propagation rules aim to refine the
abstract state by assuming a single integrity constraint J ∈ I. It is possible to
list all the propagation rules in the style of Fig. 2 for the 2-BAR domain; for
brevity, Alg. 6 is stated in terms of the semantic properties that an individual
propagation rule satisfies, expressed using the operations α, γ, and ⊓ of abstract
domain A. This procedure is sound if the abstract value Ā returned satisfies
γ(Ā) ⊇ [[I]] ∩ γ(A). Furthermore, to guarantee progress we have to show that
Alg. 6 implements a reductive operator, i.e., Ā ⊑ A.

Theorem 2. [Soundness of Alg. 6] Let Ā := propagateA(J,A1, A, I) with
J ∈ I and A1 ⊒ A. Then γ(Ā) ⊇ [[I]] ∩ γ(A) and Ā ⊑ A. ⊓⊔
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Algorithm 6: propagateA(J,A1, A, I)

1 requires(J ∈ I ∧A1 ⊒ A)
2 return A ⊓ α([[J ]] ∩ γ(A1))

Algorithm 7: 0-saturationA(A, I)

1 repeat

2 A′ ← A

3 foreach J ∈ I,A1 ⊒ A such

that |voc(J) ∪ voc(A1)| < ǫ) do

4 A← propagateA(J,A1, A,I)

5 until (A = A′) ‖ A = ⊥A

6 return A

Algorithm 8: k-saturationA(A, I)

1 repeat

2 A′ ← A

3 foreach a, b that are companions

such that a 6⊒ A and b 6⊒ A do

4 A1 ← A ⊓ a

5 A2 ← A ⊓ b

6 A′
1 ← (k–1)-saturation

A
(A1, I)

7 A′
2 ← (k–1)-saturation

A
(A2, I)

8 A← A′
1 ⊔A

′
2

9 until (A = A′) ‖ A = ⊥A

10 return A

Fig. 9: The algorithms that make up the parametric framework for propositional
validity checking. Alg. 7 is parameterized on ǫ, which bounds the number of
variables considered in each propagation step.

Example 6. Let us apply Alg. 6 with J = v1⇔(v2 ∨ v3), A1 = {v1 ≡ 0} and
A = {v1 ≡ 0, v4 ≡ 0}. To save space, we use 3-valued assignments to represent
the concrete states of assignments to v1, . . . , v4.

[[J ]] = {(1, 0, 1, ∗), (1, 1, 0, ∗), (1, 1, 1, ∗), (0, 0, 0, ∗)}

γ(A1) = {(0, ∗, ∗, ∗)}

C = [[J ]] ∩ γ(A1) = {(0, 0, 0, ∗)}

α(C) = {v1 ≡ 0, v2 ≡ 0, v3 ≡ 0}

Ā = A ⊓ α(C) = {v1 ≡ 0, v2 ≡ 0, v3 ≡ 0, v4 ≡ 0}

Thus, the value Ā computed by Alg. 6 is exactly the abstract value that can be
deduced by propagation rule Or1 of Fig. 2. ⊓⊔

Generalized 0-Saturation. Alg. 7 shows the generalized 0-saturation proce-
dure that repeatedly applies the propagation rules (line 4) using a single integrity
constraint (line 3), until no new information is derived or a contradiction is found
(line 5); voc(ϕ) denotes the set of ϕ’s propositional variables.

To prove soundness we show that the abstract value Ā returned by Alg. 7
satisfies γ(Ā) ⊇ [[I]] ∩ γ(A).

Theorem 3. [Soundness of Alg. 7]
For all A ∈ A, γ(0-saturationA(A, I)) ⊇ [[I]] ∩ γ(A). ⊓⊔

Generalized k-Saturation. Alg. 8 describes the generalized k-saturation pro-
cedure that repeatedly applies the generalized Dilemma Rule. By requirement
5, there is an acceptable splitting set S for A. The generalized Dilemma Rule,
shown schematically in Fig. 10, splits the current abstract state A into two
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Algorithm 9: k-St̊almarckA(ϕ)

1 (vϕ, I)← integrity(ϕ)
2 A← ⊤A[vϕ ← 0]
3 A′ ← k-saturationA(A, I)
4 if A′ = ⊥A then return valid

5 else return unknown

A

A1
' A2

'

A 6 b = A2A1 = A 6 a

A' A1
' A2

'7=

b t

b

b

t

t

b

Fig. 10: Generalized Dilemma Rule.

abstract states A1 and A2 using companions a, b ∈ S. Using the fact that
γ(a) ∪ γ(b) = γ(⊤) (Defn. 4), we can show that γ(A1) ∪ γ(A2) = γ(A). This
fact is essential for proving the soundness of the generalized Dilemma Rule. To
merge the two branches of the generalized Dilemma Rule, we perform a join of
the abstract states derived in each branch. The dashed arrows from A to A′, A1

to A′
1, and A2 to A′

2 in Fig. 10 indicate that, in each case, the target value is
a semantic reduction of the source value. The next theorem proves that Alg. 8,
which utilizes the generalized Dilemma Rule, is sound.

Theorem 4. [Soundness of Alg. 8]
For all A ∈ A, γ(k-saturationA(A, I)) ⊇ [[I]] ∩ γ(A). ⊓⊔

Generalized k-St̊almarck. Alg. 9 describes our generalization of St̊almarck’s
method, which is parameterized by an abstract domain A. Line 1 converts the
formula ϕ into the integrity constraints I, with vϕ representing ϕ. We have to
prove that Alg. 9 returns valid when the given formula ϕ is indeed valid.

Theorem 5. [Soundness of Alg. 9]
If k-St̊almarckA(ϕ) returns valid, then [[¬ϕ]] = ∅. ⊓⊔

Completeness. As we saw in §2, Alg. 9 is not complete for all values of k.
However, Alg. 9 is complete if k is large enough. To prove completeness we make
use of item 3 of Defn. 4. After performing k-saturation, Alg. 9 has considered
all assignments C that have a cover of size k. Let MinCover[C] = min{|M | |
M ⊆ S is a cover of C}, and let m = maxC∈CMinCover[C]. m-St̊almarckA(ϕ)
will consider all assignments, and thus is complete; that is, if m-St̊almarckA(ϕ)
returns unknown, then ϕ is definitely not valid. App. B discusses the efficiency
of our generalization of St̊almarck’s Method.

5 Instantiations

St̊almarck’s method is the instantiation of the framework from §4 with the ab-
stract domain 2-BAR. In this section, we present the details for a few other in-
stantiations of the framework from §4. As observed in §4, any instantiation that
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[a 7→ 0, b 7→ 0] [a 7→ 1, b 7→ 1]

⊔

⊤Cartesian

{a ≡ 0, b ≡ 0, a ≡ b} {a ≡ 1, b ≡ 1, a ≡ b}

⊔

{a ≡ b}

(a) (b)

Fig. 11: An example in which the Cartesian domain and 2-BAR start with equiv-
alent information in the respective branches, but (a) the Cartesian domain loses
all information at the join, whereas (b) 2-BAR retains the equivalence a ≡ b.

satisfies the first four assumptions of the framework has an acceptable splitting
set; hence, we only consider the first four assumptions in the discussion below.

Cartesian Domain. The original version of St̊almarck’s method [16] did not use
equivalence classes of propositional variables (i.e., the abstract domain 2-BAR).
Instead, it was based on a weaker abstract domain of partial assignments, or
equivalently, the Cartesian domain. It is easy to see that the Cartesian domain
meets the requirements of the framework.

1. There is a Galois connection P(V → {0, 1}) −−−→←−−−α
γ

Cartesian. The α and γ

functions are given in Defn. 3.
2. The Cartesian domain obviously meets the expressiveness condition of being

as precise as the Cartesian domain.
3. The partial ordering ⊑ on 3-valued assignments is the pointwise extension

of 0 ⊏ ∗ and 1 ⊏ ∗. Thus, ⊔Cartesian is pointwise join.
4. ⊓Cartesian is pointwise meet.

Example 7. Fig. 11 presents an example in which the Cartesian domain and
2-BAR start with equivalent information in the respective branches, but the
Cartesian domain loses all information at a join, whereas 2-BAR retains an
equivalence. Consequently, the original version of St̊almarck’s method [16] is
less powerful than the standard version of St̊almarck’s method that came later
[15]. ⊓⊔

Three-Variable Boolean Affine Relations (3-BAR). The abstract domain
3-BAR is defined almost identically to 2-BAR (Defn. 2). In general, a non-
bottom element of 3-BAR is a satisfiable conjunction of constraints of the form⊕3

i=1
(ai ∧ xi)⊕ b = 0, where ai, b ∈ {0,1}.

1. The definitions of the γ and α functions of the Galois connection P(V →

{0, 1}) −−−→←−−−α
γ

3-BAR are identical to those stated in Defn. 2.
2. 3-BAR generalizes 2-BAR, and so is more precise than the Cartesian domain.
3. A1 ⊔ A2 can be implemented by first extending A1 and A2 with all implied

constraints, and then intersecting the extended sets.
4. A1 ⊓ A2 can be implemented by unioning the two sets of constraints.
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R1 : {z⊕ 1 = 0, x⊕ y = 0} R2 : {z = 0, x⊕ y⊕ 1 = 0}

R1 ⊔R2 = {x⊕ y⊕ z⊕ 1 = 0}

R1 : {z ≡ 1, x ≡ y} R2 : {z ≡ 0, x ≡ ¬y}

R1 ⊔R2 = ⊤2-BAR

(a) (b)

Fig. 12: 3-BAR (a) retains more information at the join than 2-BAR (b).

Example 8. Fig. 12 presents an example in which 2-BAR and 3-BAR start with
equivalent information in the respective branches, but 2-BAR loses all infor-
mation at a join, whereas 3-BAR retains an affine relation. Consequently, the
instantiation of our framework with the 3-BAR domain provides a more power-
ful proof procedure than the standard version of St̊almarck’s method. ⊓⊔

Two-Variable Boolean Inequality Relations (2-BIR). 2-BIR is yet an-
other constraint domain, and hence defined similarly to 2-BAR and 3-BAR. A
non-bottom element of 2-BIR is a satisfiable conjunction of constraints of the
form x ≤ y, x ≤ b, or b ≤ x, where x, y ∈ V and b ∈ {0,1}.
1. The definitions of γ and α are again identical to those given in Defn. 2.
2. An equivalence a ≡ b can be represented using two inequality constraints,
a ≤ b and b ≤ a, and hence 2-BIR is more precise than 2-BAR, which in
turn is more precise than the Cartesian domain.

3. A1 ⊔ A2 can be implemented by first extending A1 and A2 with all implied
constraints, and then intersecting the extended sets.

4. A1 ⊓ A2 can be implemented by unioning the two sets of constraints.

Example 9. Fig. 13 presents an example in which 2-BAR and 2-BIR start with
equivalent information in the respective branches, but 2-BAR loses all informa-
tion at a join, whereas 2-BIR retains a Boolean inequality. Consequently, the
instantiation of our framework with the 2-BIR domain provides a more powerful
proof procedure than the standard version of St̊almarck’s method. ⊓⊔

6 Experiments

As discussed in §1, a validity-checking algorithm can be used for checking sat-
isfiability. In this section, we present preliminary experimental results for the
following instantiations of our parametric framework:
– 1-St̊almarck[Cartesian]: uses 1-saturation and the Cartesian domain.

R1 : {a ≤ 0, a ≤ b} R2 : {1 ≤ a,1 ≤ b, a ≤ b, b ≤ a}

R1 ⊔ R2 = {a ≤ b}

R1 : {a ≡ 0} R2 : {a ≡ 1, b ≡ 1, a ≡ b}

R1 ⊔R2 = ⊤2-BAR

(a) (b)

Fig. 13: 2-BIR (a) retains more information at the join than 2-BAR (b).
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– 1-St̊almarck[2-BAR]: uses 1-saturation and the 2-BAR domain.
– 1-St̊almarck[2-BIR]: uses 1-saturation and the 2-BIR domain.
– 2-St̊almarck[Cartesian]: uses 2-saturation and the Cartesian domain.

We compared the above algorithms with the mature SAT solver, MiniSat
(v2.2.0) solver [7]. For our evaluation, we used the Small, Difficult Satisfiability
Benchmark (SDSB) suite, which contains 3,608 satisfiability benchmarks that
have up to 800 literals, and have been found to be difficult for solvers [14].
We used a time-out limit of 500 seconds. If an algorithm could not determine
whether a benchmark was satisfiable or unsatisfiable, then the solver is recorded
as taking the full 500 seconds for that benchmark.

For each of the five algorithms, Fig. 14(a) is a semi-log plot in which each
point (n, t) means that there were n benchmarks that were each solved correctly
in no more than t seconds. Fig. 14(b) and Fig. 15 give log-log scatter plots of the
time taken (in seconds) for each of the benchmarks, for several combinations of
the five algorithms. As seen in Fig. 14(a), MiniSat correctly solves 3,484 of 3,608
benchmarks, and is significantly faster than 1-St̊almarck[2-BAR] (Fig. 14(b)).

When comparing among the instantiations of our framework, we expect more
benchmarks to be solved correctly as we move to more expressive abstract do-
mains. For instance, 1-St̊almarck[2-BAR] (1,545 benchmarks) solves 36 bench-
marks that 1-St̊almarck[Cartesian] (1,509 benchmarks) was unable to solve. On
the other hand, 1-St̊almarck[2-BAR] is slower than 1-St̊almarck[Cartesian], as
seen in Fig. 15(a), because the join operation of the 2-BAR domain is more ex-
pensive than that of the Cartesian domain. The complexity of the join operation
plays an even greater role for the 2-BIR domain: although 1-St̊almarck[2-BIR]

(a) (b)

Fig. 14: (a) Semi-log plot showing the number of benchmarks that were each
solved correctly in no more than t seconds. (b) Log-log scatter plot of the time
taken (in seconds) by MiniSat versus 1-St̊almarck[2-BAR].
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(a) (b)

Fig. 15: Log-log scatter plots of the time taken (in seconds) by (a)
1-St̊almarck[2-BAR] versus 1-St̊almarck[Cartesian], and (b) 1-St̊almarck[2-BIR]
versus 1-St̊almarck[2-BAR].

solves 9 benchmarks that 1-St̊almarck[2-BAR] was unable to solve, overall
1-St̊almarck[2-BIR] is only able to solve 754 benchmarks in the 500-second time
limit. We are currently investigating more efficient implementations of the join
algorithms for the various domains.

Using 2-saturation allows St̊almarck’s method instantiated with Cartesian
domain to correctly solve 2,758 benchmarks (Fig. 14(a)), including 1,213 bench-
marks that 1-St̊almarck[2-BAR] was unable to solve and 1,774 benchmarks that
1-St̊almarck[2-BIR] was unable to solve.

7 Related Work

St̊almarck’s method was patented under Swedish, U.S., and European patents
[15]. Up until Jan. 4, 2011, when the U.S. patent expired, researchers interested
in experimenting with St̊almarck’s method in the U.S. would have needed to
obtain a license for the technology. According to Wikipedia [19],

“In 2002, the Court of Appeals for the Federal Circuit dramatically lim-
ited the scope of the research exemption [for performing research on
patented methods without infringing] in Madey v. Duke University, 307
F.3d 1351, 1362 (Fed. Cir. 2002). The court did not reject the defense,
but left only a ‘very narrow and strictly limited experimental use defense’
for ‘amusement, to satisfy idle curiosity, or for strictly philosophical in-
quiry.’ The court also precludes the defense . . . [for research] done ‘in
furtherance of the alleged infringer’s legitimate business.’ In the case
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of a research university . . . the court held that . . . the defense was
inapplicable.”

Sheeran and St̊almarck [13] give a lucid presentation of the algorithm. Björk
[1] explored extensions of St̊almarck’s method to first-order logic. (Björk credits
St̊almarck with making the first extension of the method in that direction, and
mentions an unpublished manuscript of St̊almarck’s.)

CDCL/DPLL solvers [12] are alternatives to St̊almarck’s method for validity
checking and SAT. D’Silva et al. [5] give an abstract-interpretation-based account
of CDCL/DPLL SAT solvers. Thus, though having similar goals, our work and
that of D’Silva et al. are complementary. Our work and that of D’Silva et al. were
performed independently and contemporaneously. They have also lifted their
technique from a propositional SAT solver to a floating-point decision procedure
that makes use of floating-point intervals [6].
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A Proofs

Theorem 2. [Soundness of Alg. 6] Let Ā := propagateA(J,A1, A, I) with
J ∈ I and A1 ⊒ A. Then γ(Ā) ⊇ [[I]] ∩ γ(A) and Ā ⊑ A.

Proof.

J ∈ I, A1 ⊒ A⇒ [[J ]] ∩ γ(A1) ⊇ [[I]] ∩ γ(A1)

⇒α([[J ]] ∩ γ(A1)) ⊒ α([[I]] ∩ γ(A1))

⇒A ⊓ α([[J ]] ∩ γ(A1)) ⊒ A ⊓ α([[I]] ∩ γ(A1))

⇒ γ(A ⊓ α([[J ]] ∩ γ(A1))) ⊇ γ(A ⊓ α([[I]] ∩ γ(A1)))

⇒ γ(A ⊓ α([[J ]] ∩ γ(A1))) ⊇ γ(A1) ∩ γ(α([[I]] ∩ γ(A1))))

⇒ γ(A ⊓ α([[J ]] ∩ γ(A1))) ⊇ [[I]] ∩ γ(A1)

⇒ γ(Ā) ⊇ [[I]] ∩ γ(A1)

This argument proves that the value computed by Alg. 6 is sound.
Furthermore, A ⊓ α([[J ]] ∩ γ(A1)) ⊑ A; therefore, Ā ⊑ A. This observation

proves that Alg. 6 implements a reductive operator. ⊓⊔

Theorem 3. [Soundness of Alg. 7]
For all A ∈ A, γ(0-saturationA(A, I)) ⊇ [[I]] ∩ γ(A).

Proof. In Alg. 7, the propagate procedure is repeatedly called on line 4 in a loop.
By Thm. 2, we know that the call to propagate is a sound reductive operator.
Thus, by directly applying Thm. 1 we can conclude that the value computed at
the end of the loop on lines 3–4 is sound.

Termination of the outermost loop follows from the fact that A has no infinite
descending chains and propagate is reductive. ⊓⊔

Theorem 4. [Soundness of Alg. 8]
For all A ∈ A, γ(k-saturationA(A, I)) ⊇ [[I]] ∩ γ(A).

Proof. We prove this via induction on k. Thm. 3 proves the base case when
k = 0.

To prove the inductive case, assume that Alg. 8 is sound for k − 1, i.e.,

for all A ∈ A, γ((k–1)-saturation
A
(A, I)) ⊇ [[I]] ∩ γ(A) (4)

Let A0 be the value of A passed as input to Alg. 8, and Ai be the value of A
computed at the end of the ith iteration of the loop body consisting of lines 3–8;
that is, the value of A computed in line 8.

We show via induction that, for each i, γ(Ai) ⊇ [[I]] ∪ γ(A0). We first prove
the base case for i = 1; that is, A1 ⊇ [[I]] ∪ γ(A0).

From line 4 of Alg. 8, we have A1 = A0 ⊓ a, which implies γ(A1) ⊇ γ(A0) ∩
γ(a). Similarly, by line 5, we have γ(A2) ⊇ γ(A0)∩γ(b), where b is a companion
of a.
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Now γ(A1) ∪ γ(A2) ⊇ γ(A0) ∩ (γ(a) ∪ γ(b)). By item 2 of Defn. 4, we know
that γ(a) ∪ γ(b) = γ(⊤A). Thus, we obtain

γ(A1) ∪ γ(A2) ⊇ γ(A
0) (5)

By lines 6 and 7, we have A′
1 = (k–1)-saturation

A
(A1) and A′

2 =
(k–1)-saturation

A
(A2).

By the induction hypothesis (Eqn. (4)), we have

γ(A′
1) ⊇ [[I]] ∩ γ(A1), γ(A

′
2) ⊇ [[I]] ∩ γ(A2)

⇒ γ(A′
1) ∪ γ(A

′
2) ⊇ [[I]] ∩ (γ(A1) ∪ γ(A2))

⇒ γ(A′
1) ∪ γ(A

′
2) ⊇ [[I]] ∩ γ(A0) (using Eqn. (5))

⇒ γ(A′
1 ⊔A

′
2) ⊇ [[I]] ∩ γ(A0)

Thus, at line 8, we have γ(A1) ⊇ [[I]] ∩ γ(A0).
An almost identical proof can be used to prove the inductive case for the

induction on i. Thus, for all i, γ(Ai) ⊇ [[I]] ∩ γ(A0).
Because the value returned by Alg. 8 is the final value computed at line 8,

we have proved the inductive case for the induction on k. Thus, by induction,
we have shown that for all A ∈ A, γ(k-saturationA(A, I)) ⊇ [[I]] ∩ γ(A). ⊓⊔

Theorem 5. [Soundness of Alg. 9]
If k-St̊almarckA(ϕ) returns valid, then [[¬ϕ]] = ∅.

Proof. The abstract state A created at line 2 corresponds to the assumption
that there exists an assignment that falsifies ϕ. Thus, [[¬ϕ]] = [[I]] ∩ γ(A). By
Thm. 4, we have γ(A′) ⊇ [[I]] ∩ γ(A) at line 3. Thus, if A′ = ⊥A we know that
[[I]] ∩ γ(A) = ∅. Therefore, if Alg. 9 returns valid, [[¬ϕ]] = ∅. ⊓⊔
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B Efficiency

We now describe how some of the efficient implementation techniques that can
be used with 2-BAR, as described in [13], can be generalized to other abstract
domains. In each case, we express the essence of each technique in terms of
abstract interpretation.

On line 3 of Alg. 7, the quantities J and A1 are chosen so that
|voc(J) ∪ voc(A1)| is small. Such a choice enables efficient symbolic implementa-
tions of the operations used in Alg. 6, viz., implementing truth-table semantics
on the limited vocabulary of size ǫ. Because J in Alg. 6 is a single integrity
constraint, there are only a bounded number of Boolean operators involved in
each propagation step. By limiting the size of voc(J)∪voc(A1) (line 3 of Alg. 7),
it is possible to generate automatically a bounded number of propagation-rule
schemas to implement line 2 of Alg. 6.

Alg. 7 should choose J and A1 such that voc(J) ∩ voc(A1) 6= ∅ to avoid
useless calls to propagate that do not lead to new information being deduced.
Furthermore, 0-saturation can be made more efficient by using semi-naive eval-
uation [18, Alg. 3.4]: 0-saturation should focus on the new information learned
about A on each round of the loop on lines 3 and 4 of Alg. 7 to choose which
J ’s to use in subsequent propagate() steps.

Assuming that all of the required abstract-domain operations can be per-
formed in polynomial time, Alg. 9 retains the property from the standard version
of St̊almarck’s method that it runs in polynomial time in the size of the input
formula.


