
Checking Compatibility of a Producer and a Consumer
Evan Driscoll,† Amanda Burton,† and Thomas Reps†,‡

†University of Wisconsin
‡GrammaTech, Inc.

{driscoll, burtona, reps}@cs.wisc.edu

Abstract
This paper addresses the problem of identifying incompatibilities
between two programs that operate in a producer/consumer rela-
tionship. It describes the techniques that are incorporated in a tool
called PCCA (Producer-Consumer Conformance Analyzer), which
attempts to (i) determine whether the consumer is prepared to ac-
cept all messages that the producer can emit, or (ii) find a counter-
example: a message that the producer can emit and the consumer
will reject.

1. Introduction
Complex systems today are made up of many communicating com-
ponents. For instance, a modern fuel-injected engine has a num-
ber of sensors that send their current measurements to the engine-
control unit, which decides, for instance, what the optimum fuel-air
mixture should be. It emits messages to other components, such as
the fuel pumps and fuel injectors, to enact its decisions.

In such systems, it is vitally important to ensure that the mes-
sages that one component sends to another are understood by
the receiving component, otherwise runtime errors will ensue.
Send/receive incompatibilities can often drive up the cost of de-
veloping a system because different components of a system are
often developed by different development teams or different sub-
contractors, and thus compatibility problems may not be detected
until integration time. (The cost of fixing errors found late in the de-
velopment process is usually much higher than that of errors found
earlier.)

As a first step toward addressing the general component-
compatibility problem, this paper describes a technique for au-
tomatically determining if two components that operate in a
producer-consumer relationship are compatible. In particular, the
paper addresses the following problem:

Given two programs that operate in a producer/consumer
relationship, (i) determine whether the consumer is prepared
to accept (and process in some way) all messages that the
producer can emit, or (ii) find a counter-example: a message
that the producer can emit and the consumer will reject.

Because it is necessary to use approximations to the producer’s
output language and the consumer’s input language, the method we
have developed has some limitations. In both cases, the approxima-
tions are over-approximations: i.e., the approximation of the pro-
ducer’s language may say that the producer can emit a certain word
that can never actually be emitted by the producer; likewise, the ap-
proximation of the consumer’s language may say that the consumer
can accept a certain word that can never actually be accepted by the
consumer. Consequently, the compatibility-checking method can
have both false positives and false negatives. For this reason, our
technique is really a heuristic for bug-finding, not a technique for
verifying producer-consumer compatibility.

We have implemented the method in a tool called PCCA
(for Producer-Consumer Conformance Analyzer). Given the two
source programs, along with information about which functions
perform I/O (see §4.2), PCCA infers a description of the language
that the producer generates and a description of the language that

the consumer expects, and determines whether the former is a sub-
set of the latter.

PCCA starts out by producing a nested word automaton (NWA)
[1] P for the producer, which accepts an over-approximation of
language that the producer emits. Similarly, PCCA produces an
NWA C for the consumer, which accepts an over-approximation
of language that the consumer accepts. In each of the nested-
word languages L(P) and L(C), internal calls and returns in the
corresponding program are made manifest in the words of the
language. The goal (modulo some technicalities having to do with
differences in the call and return structures of the two languages) is
to determine whether L(P) ⊆ L(C).

Next, PCCA “enriches” the consumer’s NWA C—and hence its
nested-word language L(C)—so that differences in the call/return
structures of the producer and the consumer do not preclude an-
swering the language-containment question. (This step is explained
in more detail in §3.2.1.)

PCCA then performs a set-difference operation to compute
L(P) r L(Enrich(C)) by complementing the NWA Enrich(C),
intersecting the result with NWA P . Finally, it tests whether the
language of the NWA produced by the intersection is empty. If so,
thenL(P) ⊆ L(Enrich(C)); if not, then there is a counter-example
to L(P) ⊆ L(Enrich(C)).

The techniques used in PCCA are “transport-agnostic” as long
as the producer and the consumer use a stream-like interface to
communicate. That is, PCCA can analyze a pair of programs—
or even the same program as both producer and consumer—that
communicate by sharing files, by sending information over sockets,
by using standard I/O, or by using combinations of the above.
(In the latter case, PCCA treats all the messages as if they were
transmitted over the same stream.)

Organization The remainder of the paper is organized as fol-
lows: §2 provides an overview of our goals and the methods used
for achieving them. §3 discusses the individual steps that make
up our technique. §4 describes the prototype implementation. §5
presents experimental results. §6 discusses related work.

2. Overview
Consider the example producer and consumer shown in listings 1
and 2, respectively.

EXAMPLE 2.1. The producer is a program that monitors a sensor,
and sends an update to the consumer periodically. The system uses
an abbreviated protocol: if the sensor data has not changed since
the last update, then it is not resent. Line [2] makes this decision.

From the standpoint of checking that the producer and consumer
are compatible, even this simplified example has a number of chal-
lenging features. In particular,
1. The producer’s loop procedure uses recursion instead of itera-

tion. In contrast, the consumer is more straightforward: it reads
values in a loop.

2. The calls to the write functions in the producer and the read
functions in the consumer are organized differently. The pro-
ducer calls all the write * functions from the same procedure,
while the consumer reads the second two fields (a double and

Listing 1: Example producer

1 sendReading(Sensor* device, int prev)
2 if device→setting == prev then
3 writeBool(false); // no change

4 else
5 writeBool(true); // change: send new data

6 writeDouble(device→setting);
7 writeBool(device→valid);

8 loop(Sensor* device, int prev)
9 ...

10 sendReading(device, prev);
11 if ... then
12 loop(device, device→setting);

13 main()
14 Sensor device;
15 loop(&device, -1);

Listing 2: Example consumer

1 updateReading(int* setting, bool* valid)
2 *setting = readDouble();
3 *valid = readBool();

4 main()
5 int setting;
6 bool valid;
7 while ... do
8 if readBool() then
9 updateReading (&setting, &valid);

10 ...

a bool) in a different procedure from the one in which it reads
the first field (a bool).
PCCA is provided the information that the read * and write *

functions are “special” (in that they perform I/O operations); in
§4.2, we discuss how this information can be supplied to PCCA.
2

Later in the paper, we will refer to a “packet” of data going
from the producer to the consumer; a “packet” refers to what
the producer sends or the consumer reads during one iteration of
their respective loops. (That is, in this example, a packet is either
just a Boolean, or a Boolean followed by a double and another
Boolean.) “Packet” is an informal term used only as a shorthand in
discussions in the paper, and has nothing to do with how the data is
actually transported, nor does the notion of packets play an explicit
role in our compatibility-checking technique. (However, in Ex. 2.6
in §2.5, we do discuss a way to make “packets” more evident in the
languages of the producer’s and consumer’s models and why that
can be advantageous.)

2.1 Nested Words and Nested Word Automata
Nested word automata (NWAs) [1] are a generalization of finite-
state automata that can capture the matched call and return structure
of execution traces through multi-procedure programs. For pur-
poses of this section, the exact definition is unimportant;1 it suffices
to know that, even though they represent the matched call/return
structure of a program, they have the following properties [1]:

1 NWAs are defined formally in §3.1.

M: mainentry

L: loopentry

sendReadingentry

sendReadingexit

loopexit

mainexit

bool

bool

<, ↓M

double

bool

<, ↓L

<, ↓L

>, ↑L

>, ↑M

>, ↑L

Figure 1. The producer’s NWA (with ε-transitions col-
lapsed). To reduce clutter, all transitions to the implicit
“stuck state” are omitted. For instance, there is a transition
δi(sendReadingentry, double, stuck).

updateReadingentry

updateReadingexit

M: main

double

bool

<, ↓M

>, ↑M

bool

Figure 2. The consumer’s NWA (with ε-transitions collapsed).
Again, all transitions to the implicit “stuck state” are omitted to
reduce clutter.

• They are closed under complementation. That is, given NWA
A, one can construct an NWA A′ such that L(A′) = L(A).
• They are closed under intersection. That is, given NWAs A1

and A2, one can construct an NWA A3 such that L(A3) =
L(A1) ∩ L(A2).
• Emptiness testing is decidable. That is, given NWA A, it is

decidable whether L(A) = ∅.
Consequently, language containment is decidable. (Given NWAs
A1 and A2, to determine whether L(A1) ⊆ L(A2), create NWA
A3 such that L(A3) = L(A1) ∩ L(A2) and check whether
L(A3) = ∅.)

In our application, the alphabet consists of the types that are
emitted by the producer and read by the consumer, together with
distinguished call and return symbols (“〈” and “〉”, respectively).

For expository purposes, we talk about the producer NWA
“emitting” nested words. An NWA does not actually emit anything
(except a yes/no answer); what we mean is that a given word is ac-
cepted by the producer’s NWA. However, if the word is accepted
by the producer’s NWA, that means it could be emitted by the pro-
ducer, and it is often convenient to think of the NWAs as being
the producer and consumer themselves, rather than models of the
producer and consumer.

2.2 Inferring The I/O Format
The first step in the process is to infer an automaton that approx-
imates the language of the producer and consumer. In the case of
the producer, we wish to infer the language of all possible outputs;
in the case of the consumer, we wish to infer the language of all
inputs that will not drive the producer to an error state.

To do this we use a technique developed by Lim et al. [14]. Lim
described the technique in terms of producing a hierarchical finite-
state machine (HFSM), but we adapt it slightly to produce an NWA
instead. This NWA functions somewhat like an interprocedural
control-flow graph from which all “uninteresting” nodes and edges
have been removed. A node in the interprocedural control-flow
graph is interesting if it is either a branch or a function call/return.
The entry node of main becomes the start node of the NWA, and
the exit node of main becomes the sole accepting state.

Figs. 1 and 2 show the NWAs2 that are produced from the
producer and consumer shown above. (To reduce clutter, Figs. 1
and 2 do not show the transitions to an implicit “stuck state”.) Call-
transitions have labels of the form “〈, ↓X”, where X is the state at
the source of the transition, and ↓X means that X is pushed onto
the call stack. Return-transitions have labels of the form “〉, ↑X”,
which means that the machine can make the transition only if state
X is on the top of the stack; in so doing, it pops X .

Epsilon-transitions have been collapsed in both NWAs, which
resulted in the removal of 7 states (and a comparable number of
transitions) from each.

Knowledge about I/O Functions. The system needs informa-
tion about what function calls can perform I/O. There are a number
of ways such information can be provided to the system (see §4.2).

One important point is that there needs to be agreement between
the producer and consumer regarding what types are used. The first,
and easiest, issue related to this point is that the names of the types
must agree.

The second issue is that the granularity of the I/O function spec-
ifications must agree. Consider Ex. 2.1. As written, both the pro-
ducer and consumer have I/O operations expressed in terms of their
constituent C types. It would also be possible to have the producer
and consumer store values in a two-element structure SensorData,
and do a “bulk read/write” with fread()/fwrite() to operate on
the struct as a whole. In such a case, it would be reasonable to say
that the type of that I/O operation was SensorData. However, the
two approaches cannot be mixed: the consumer and producer need
to agree on the granularity of the approach used.
Remark. The need for agreement between the producer and con-
sumer on the granularity of types is not a fundamental limitation:
it would be possible to have the user specify that SensorData is
a {double, bool} struct at either the format-inference stage or af-
ter the NWAs are constructed, and it might even be possible to ex-
tract this information automatically from structure definitions in the
code. We have not investigated these avenues at this point; however,
with the current implementation the user has the ability to specify,
for example, that a particular call to fread/fwrite operates on a
double and then a bool. 2

Finally, the discussion above and in the rest of the paper is
framed from the point of view that the NWA alphabet consists
of the actual programming language types used by the programs.
However, our approach is more flexible. It is possible to have even
finer-granularity types—in terms of specific values or constraints
on values. One possibility would be to use “types” that do not

2 Technically, what are illustrated in Figs. 1 and 2 are more properly called
visibly pushdown automata (VPAs) [1], which are standard PDAs with
restrictions on when the machine can access the stack. However, VPAs and
their languages are equivalent in power to NWAs and their languages, and
there are direct mappings from each formalism to the other.

correspond to C types. For instance, it would be possible to have
an int ascii symbol for an integer expressed in ASCII digits
(e.g., the three-byte sequence “255”) and int bin for an integer
in binary (e.g., the four bytes 0x000000FF). Example 2.6 examines
a related possibility in the context of our running example. It may
also be possible to extend our work to include information about
the values that are read or written—for instance, to specify that
write int outputs a “4” or that write int outputs a value in
the range “[4,7]” (and similarly for the input operations of the
consumer). Such alternatives are left for future research.

2.3 Enriching the Consumer’s NWA
It would be too restrictive to demand that the producer and con-
sumer perform calls and returns at the same points during their ex-
ecutions. The NWAs that we infer from the producer and consumer
allow for the same call/return behavior as the original programs,
thus the nested words in the languages of the producer and con-
sumer models contain internal call and return symbols that are not
actually evident in the transmission across the wire. Performing a
set-difference of the nested-word languages would require that they
agree in this respect.

Ex. 2.1 illustrates the issue. Each “packet” consists of a
Boolean, optionally followed by a double and a Boolean. The pro-
ducer sends the entire packet within one function (sendReading),
but the consumer reads the first Boolean, and then calls another
function (updateReading) to read the remaining values of the
packet.

The consequence of the producer and consumer having different
calling structure is that the fragments of a nested word that corre-
spond to the same packet are different in the producer’s language
and the consumer’s language.

EXAMPLE 2.2. Consider the word emitted by a run of Ex. 2.1 in
which the producer performs just one iteration—hence the word
contains just a single packet—and emits “bool double bool.” For the
producer’s NWA (Fig. 1), the corresponding nested word would be
“〈 〈 bool double bool 〉 〉”, while for the consumer’s NWA (Fig. 2),
the nested word would be “bool 〈 double bool 〉”. These words have
different nestings of “〈” and “〉”. 2

For this reason, we modify the consumer’s NWA so that it can
accept words in which new occurrences of “〈” and “〉” are added
and existing occurrences of “〈” and “〉” are deleted.

EXAMPLE 2.3. For the example discussed in Ex. 2.2, based on
Ex. 2.1 and Fig. 2, the language of the consumer’s enriched NWA
contains not just “bool 〈 double bool 〉” but also “〈 〈 bool double
bool 〉 〉”. The latter word is in the languages of both the producer’s
NWA and the consumer’s enriched NWA. 2

2.4 Language Containment
Once we have in-hand the producer NWA and the enriched con-
sumer NWA, determining the set difference, and thus containment,
of their languages is straightforward:L(P)rL(Enrich(C)) = ∅ iff
L(P)∩L(Enrich(C)) = ∅. NWAs are closed under all of these op-
erations, so all that is necessary is to take Enrich(C), complement
it, intersect it with P , and test the resulting NWA for emptiness.

2.5 Further Examination of Ex. 2.1
In this section, we return to Ex. 2.1 and illustrate the types of bugs
that can be discovered by our algorithm. We discuss bugs in the
consumer, but similar errors in the producer would lead to similar
results.

EXAMPLE 2.4. Suppose that the author of the consumer did not
realize that the protocol had an abbreviation mechanism, and as-
sumed it always sent a full bool–double–bool message. As a con-

sequence, he omitted the check in line [8] of listing 2 and always
called updateReading.

Our algorithm would discover this, because the nested word
“〈〈bool〉〈〈bool〉〉〉” can be emitted by the producer but would not
be accepted by the consumer’s NWA, no matter how the word is
parenthesized. 2

EXAMPLE 2.5. Suppose that the specification of the protocol
changed during development to include the final bool field, but
the implementation of the consumer was not updated and line [3]
of listing 2 (which reads that field) was omitted.

This would almost certainly signify a bug, but it would not be
detected by our tool. The reason is that there is no association
between the function call on lines [3] and [5] in the consumer,
which writes the first bool in each packet, and line [8] in the
producer, which reads it. Instead, the consumer could “use” the call
on readBool on line [8] to consume the final field of the previous
packet, then not call updateReading during that iteration. 2

EXAMPLE 2.6. We can modify the source code of the producer
and consumer—without changing the actual protocol they use to
communicate—to make it possible for our technique to detect the
bug in the previous example. The problem that our technique has
with detecting the previous bug is that what the producer and
consumer thought were packets got out of sync. By inserting a
phony I/O call at the start or end of each loop (e.g., in the ellipsis
on line [9] of the producer and between lines [8] and [9] in the
consumer), we can allow the inference algorithm to ensure that the
the producer’s and consumer’s packets cannot get out of sync.

This phony call would have a type that does not appear in the
packet itself; in our experiments we have called it SEP. The key
point to realize is that this “type” does not have to have any material
presence in any of the communications, and in fact the function that
performs the phony I/O can be completely empty.

This idea can be generalized to “hijack” the communication-
inference algorithm to ensure that events that should occur during
the execution of the producer and consumer occur in the proper
order. From this point of view, a write operation is essentially an
event, during which the program only happens to perform commu-
nication. 2

3. Format Inference and Containment Checking
3.1 Nested Words and Nested Word Automata

DEFINITION 3.1 ([1]). A nested word (w,) over alphabet Σ is
an ordinary word w ∈ Σ∗, together with a nesting relation
of length |w|. is a collection of edges (over the positions in w)
that do not cross. A nesting relation of length l ≥ 0 is a subset of
{−∞, 1, 2, . . . , l} × {1, 2, . . . , l,+∞} such that
• Nesting edges only go forward: if i j then i < j.
• No two edges share a position: for 1 ≤ i ≤ l, |{j | i j}| ≤ 1

and |{j | j i}| ≤ 1.
• Edges do not cross: if i j and i′ j′, then one cannot have
i < i′ ≤ j < j′.

When i j holds, for 1 ≤ i ≤ l, i is called a call position;
if i +∞, then i is a pending call; otherwise i is a matched
call, and the unique position j such that i j is called its return
successor. Similarly, when i j holds, for 1 ≤ j ≤ l, j is a
return position; if−∞ j, then j is a pending return, otherwise
j is a matched return, and the unique position i such that i j is
called its call predecessor. A position 1 ≤ i ≤ l that is neither a
call nor a return is an internal position.

MatchedNW denotes the set of nested words that have no pend-
ing calls or returns. NWPrefix denotes the set of nested words that
have no pending returns.

A nested word automaton (NWA) A is a 5-tuple
(Q,Σ, q0, δ, F), where Q is a finite set of states, Σ is a fi-
nite alphabet, q0 ∈ Q is the initial state, F ⊆ Q is a set of final
states, and δ is a transition relation. The transition relation δ
consists of three components, (δc, δi, δr), where
• δi ⊆ Q×Σ×Q is the transition relation for internal positions.
• δc ⊆ Q× Σ×Q is the transition relation for call positions.
• δr ⊆ Q × Q × Σ × Q is the transition relation for return

positions.
Starting from q0, an NWA A reads a nested word nw =

(w,) from left to right, and performs transitions (possibly non-
deterministically) according to the input symbol and . If A is
in state q when reading input symbol σ at position i in w, and i
is an internal or call position, A makes a transition to q′ using
(q, σ, q′) ∈ δi or (q, σ, q′) ∈ δc, respectively. If i is a return po-
sition, let k be the call predecessor of i, and qc be the state A
was in just before the transition it made on the kth symbol; A uses
(q, qc, σ, q

′) ∈ δr to make a transition to q′. If, after reading nw,A
is in a state q ∈ F , then A accepts nw. 2

In our formulation, we modify the definition above to allow ε-
transitions in δi only; computing the ε-closure of a state is straight-
forward. We also include an implicit “stuck state”: any transitions
not explicitly represented transfer to this state. By default, the stuck
state is not an accepting state, but during complementation the
stuck state becomes an accepting state.

In their full generality, NWAs allow there to be call/return
transitions on any symbol, but we do not use this. Instead, we
have two distinguished symbols: “〈”, which marks each call, and
“〉”, which marks each return. In the NWAs generated to model
the producer and consumer languages, only call-transitions are la-
beled with “〈”, and each state implicitly has internal-transitions and
return-transitions labeled with “〈” that transfer control to the stuck
state. Similarly, only return-transitions are labeled with “〉”, and
each state implicitly has internal-transitions and call-transitions la-
beled with “〉” that transfer control to the stuck state.

For nested words of this form, we do not have to give the nesting
relation explicitly: the nesting relation is implicit from the positions
of the “〈” and “〉” symbols. For instance, a word such as “〈 a b 〈 c
〉 〉” can only have the nesting relation {(1, 7), (4, 6)}.
3.2 Checking Containment

3.2.1 Enrichment
It is unreasonable to demand that the producer and consumer have
the same call/return structure, so we introduce an “enriching” op-
eration, denoted by Enrich, that when applied to the consumer’s
NWA will relax the requirement. In particular, Enrich creates new
transitions in the consumer’s NWA that allow it to make arbitrary
calls and returns. In essence, this allows the consumer’s NWA to
emulate the call/return structure of the producer’s NWA.

The transformation is defined as follows:

DEFINITION 3.2. Given NWA A = (Q,Σ, q0, δ, F), augment δ
with the following transitions:
1. For every state p, introduce a call transition δc(p, 〈, p).
2. For every pair of states (p, q), introduce a return transition
δr(p, q, 〉, p).

3. For every call transition δc(p, 〈, q) in the original NWA, intro-
duce a new ε-transition δi(p, ε, q).

4. For every return transition δr(p, p′, 〉, q) in the original NWA,
introduce a new ε-transition δi(p, ε, q).

2

Items 1 and 2 allow the consumer’s enriched NWA to perform
extra call or return moves to emulate the producer NWA, while
items 3 and 4 allow the consumer’s enriched NWA to omit call or
return moves, in case the producer has fewer.

EXAMPLE 3.3. The example discussed in Exs. 2.2 and 2.3 requires
all four steps: to match the producer, the consumer needs to add
two call-transitions to the beginning of the nested word, add two
matching return-transitions to the end of the nested word, and
remove the “extra” call between the first “bool” and “double” and
its corresponding return. 2

While in theory it is possible to either enrich the consumer to
match the producer or enrich the producer to match the consumer,
in practice only the former produces reasonable results. The goal
of the containment is to determine the emptiness L(P) r L(C).
Enriching an NWA increases the size of its language, so this oper-
ation adds some error E to one of the operands, resulting in either
(L(P) ∪ E) r L(C) or L(P) r (L(C) ∪ E). Unfortunately, the
error introduced by enriching the producer’s NWA invariably leads
to false positives: for the consumer to accept everything that the
enriched producer emits, the consumer would have to accept every
possible call structure of every word the producer emits.

3.2.2 Complement and Intersection
As mentioned in §2.4, determining the set difference of the pro-
ducer NWA and the enriched consumer NWA, is straightforward:
L(P) r L(Enrich(C)) = ∅ iff L(P) ∩ L(Enrich(C)) = ∅, and
NWAs support all of the required operations.

3.2.3 Checking Emptiness
Although other algorithms are known for checking whether the
language of an NWA is empty [1], for completeness we describe a
new algorithm that we devised, which harnesses previously known
operations for answering reachability queries on pushdown systems
(PDSs). One of the advantage of our approach is that the PDS
reachability operation used below (post∗) supports witness tracing
[24], which can be useful for tracing non-emptiness answers back
to potential bugs in the producer and consumer when the answer
to the query is that the NWA’s language is non-empty. That is, the
PDS post∗ operation can be run in a mode that returns a counter-
example, which serves as an explanation of why the language of an
NWA is non-empty.

To describe the algorithm, it is necessary to review some known
results about PDSs.

DEFINITION 3.4. A pushdown system (PDS) is a three-tuple P =
(P,Γ,∆), where P is a finite set of control locations, Γ is a finite
set of stack symbols, and ∆ ⊆ P×Γ×P×Γ∗ is a finite set of rules.
A configuration of P is a pair 〈p, u〉 where p ∈ P and u ∈ Γ∗. A
rule r ∈ ∆ is written as 〈p, γ〉 ↪→ 〈p′, u〉, where p, p′ ∈ P , γ ∈ Γ,
and u ∈ Γ∗. The rules define a collection of transition relations⇒
on configurations of P as follows: If r = 〈p, γ〉 ↪→ 〈p′, u′〉, then
〈p, γu〉 ⇒ 〈p′, u′u〉 for all u ∈ Γ∗. 2

Because the number of configurations of a PDS is unbounded,
it is useful to use finite automata to describe certain infinite sets of
configurations.

DEFINITION 3.5. A configuration automaton that defines a lan-
guage of configurations of PDS P = (P,Γ,∆) is a finite-state
automaton C = (S,Γ,→, P, F), where S is a finite set of states, C
uses P’s set of stack symbols Γ as its alphabet,→⊆ S × Γ× S is
the transition relation, the set of initial states consists of P’s set of
control locations P (which must be a subset of S), and F ⊆ S is
the set of final states. We say that a configuration 〈p, u〉 is accepted
by configuration automaton C if C can accept u (in the ordinary

sense from the theory of finite-state automata) when it is started in
the state p; that is, p u−→

∗
s, where s ∈ F . A set of configurations

is said to be regular if some configuration automaton accepts it. 2

Let ⇒∗ denote the reflexive transitive closure of ⇒. For a set
of configurations C, pre∗P(C)

def
= {c′ | ∃c ∈ C : c′ ⇒∗ c} and

post∗P(C)
def
= {c′ | ∃c ∈ C : c ⇒∗ c′}—i.e., backward and

forward reachability, respectively, with respect to transition relation
⇒. When C is a regular language of configurations, automata
for the configuration languages pre∗P(C) and post∗P(C) can be
constructed by algorithms that run in time polynomial in the size
of P [3, 10].

Given an NWA A, the first step of checking whether L(A) = ∅
is to convert A to a PDS PA.

DEFINITION 3.6. Given NWA A = (Q,Σ, q0, δ, F), we define
PDS PA = ({s}, Q,∆), where each transition of A is converted
to one or two rules in ∆, as follows:
• For each transition (q, σ, q′) ∈ δi, ∆ has a rule 〈s, q〉 ↪→
〈s, q′〉.
• For each transition (qc, σ, qe) ∈ δc, ∆ has a rule 〈s, qc〉 ↪→
〈s, qe qc〉.
• For each transition (qx, qc, σ

′, qr) ∈ δr , ∆ has two rules,
〈s, qx〉 ↪→ 〈sx, ε〉 and 〈sx, qc〉 ↪→ 〈s, qr〉.

2

In our application, the initial state of the producer’s NWA is
mainentry, and the only final state is mainexit. Assuming that
main is never invoked recursively, we really only care about
perfectly-matched words (MatchedNW words) and whether the set
of perfectly-matched words is empty. To test this condition, we
create configuration automata for the languages of initial-state and
final-state configurations (where all words have an empty stack)

L(InitialConfigurations) = {〈s, q0〉}
= {〈s, mainentry〉}

L(FinalConfigurations) = {〈s, f〉 | f ∈ F}
= {〈s, mainexit〉}

We can check whether the set of perfectly-matched words is empty
by answering the question of whether there is a path in the tran-
sition relation⇒ from a configuration in L(InitialConfigurations)
to a configuration in L(FinalConfigurations). One way to answer
this question is to check whether the language of the finite-state
automaton constructed as follows is empty:

FinalConfigurations ∩ post∗PA
(InitialConfigurations). (1)

(Note that this reduces the question of NWA emptiness to a ques-
tion about the emptiness of the language of an ordinary finite-state
automaton.)
Remark. The more general question of NWA emptiness when non-
perfectly-matched words are of interest can also be addressed using
Eqn. (1): one merely has to use more elaborate languages of initial
and final configurations. 2

3.3 Other Possible Approaches using Known Language-
Theoretic Techniques

A different approach to the producer-consumer compatibility-
checking problem would be to cast the problem in terms of context-
free languages instead of nested-word languages. For instance, it is
possible to infer a context-free grammar for each of the producer
and consumer programs by the following method:
• Each procedure P in the program corresponds to a nonterminal
NP , for which there is a single production with NP on the left-
hand side.

• The right-hand side of the production for NP consists of a reg-
ular expression over the terminals and nonterminals to capture
the I/O operations and call sites, respectively, of P .

For Ex. 2.1, context-free grammars that capture the structure of the
producer and the consumer are

PRODUCER:
main → loop
loop → sendReading (ε | loop)

sendReading → (bool | (bool double bool))

CONSUMER:
main → (bool (ε | updateReading))∗

updateReading → double bool

For compatibility checking, such an approach immediately runs
into the problem that the context-free languages are not closed
under either complementation or intersection.

For other program-analysis problems that involve multiple
context-free languages (e.g., either multiple processes [22, 4, 6]
or a single process with two or more independent context-free fea-
tures [23]) one has the option of modeling each feature/process as a
context-free language, then abstracting all but one of the languages
as regular languages, intersecting the remaining context-free lan-
guage with the intersection of the regular languages, and testing
whether the resulting context-free language is empty. For instance,
Kodumal and Aiken have devised a modeling formalism—set con-
straints annotated with regular expressions [12]—expressly for this
purpose.

Thus, an alternative algorithm for finding possible producer-
consumer compatibility bugs would involve
1. inferring a context-free grammar for each of the two programs,
2. using an algorithm that approximates a context-free language

by a regular one, such as the one due to Mohri and Nederhof
[20] to approximate L(C),

3. complementing the regular approximation of L(C),
4. testing whether the intersection of L(P) with the complement

of the regular approximation of L(C) is empty.
The hypothetical method outlined above is incomparable with the
method presented in §3. To make this statement more precise,
• Let CFLtoReg denote some operation for approximating a

context-free language by a regular language.
• Let Enrich denote the nested-word-automaton enrichment op-

eration defined in Defn. 3.2.
• Let Forget be the operation that (i) first drops the nesting rela-

tion, and then (ii) removes all occurrences of “〈” and “〉” from
each word of a nested-word language.

For instance, the context-free languages L(PRODUCER)
and L(CONSUMER) equal Forget(L(listing 1)) and
Forget(L(listing 2)), respectively.

Now suppose that A is some nested-word automaton. We have

CFLtoReg(Forget(L(A))) ⊇ Forget(L(A)) ⊆ Forget(L(Enrich(A))).

It remains for future work to investigate whether one method is
better than the other in practice.

Another alternative would be to use the idea of a parenthesis
grammar [19], which is a context-free grammar in which each
production’s right-hand side is enclosed in a pair of parentheses.
In the case of grammars like those discussed above, in which each
nonterminal corresponds to a procedure, we could add call and
return markers around each production. For instance, parenthesis
grammars for the producer and consumer are as follows, where the
symbols “〈” and “〉” denote “call” and “return”, respectively:

PRODUCER:
main → 〈 loop 〉
loop → 〈 sendReading (ε | loop) 〉

sendReading → 〈 (bool | (bool double bool)) 〉

CONSUMER:
main → 〈 (bool (ε | updateReading))∗ 〉

updateReading → 〈 double bool 〉
However, although parenthesis languages are closed under the
language-difference operation [11], that would not help us because
the producer’s language and the consumer’s language are allowed
to have a different organization of their calling structures. Paren-
thesis languages are closed under union and intersection—but, be-
cause parenthesis languages can consist of only well-parenthesized
words, they are not closed under concatenation and complementa-
tion.

In essence, the approach adopted in §3 is close to the
parenthesis-grammar approach, but encodes the parenthesis gram-
mars in the more flexible formalism of nested-word automata.

4. Implementation
This section describes a prototype implementation of the ideas
presented in §3 in a tool called PCCA (Producer-Consumer
Conformance Analyzer).

4.1 Removing Irrelevant Procedures
To reduce the size of the inferred NWA, PCCA prunes procedures
that cannot possibly participate in I/O operations. If there is no
matched path (i.e., a path that produces a MatchedNW word) from
the entry of procedure P to the exit of procedure P along which
an I/O procedure is invoked, P can be discounted entirely. (For
instance, in the consumer’s NWA, every nested-word fragment that
can be generated for matched paths from P ’s entry to P ’s exit
would consist entirely of matched call and return markers; however,
that fragment can also be produced in the reduced version of the
consumer’s NWA by “spinning” on a state, using the transitions that
were introduced during the enriching operation—see Defn. 3.2.)

The first phase of PCCA uses CodeSurfer/C [8] to build an
interprocedural control-flow graph for the program being analyzed.
The control-flow graph is traversed to create the NWA. However,
an additional analysis artifact CodeSurfer can supply is a call graph
and its strongly connected components; we use these structures to
perform the pruning operation.

PCCA performs a traversal over the strongly connected com-
ponents in a reverse topological order, looking at each procedure.
When it encounters a procedure that either calls an I/O procedure
directly or calls a procedure that was previously marked, it marks
that procedure and everything else in the same SCC. When PCCA
does another walk over the program to generate the NWA, it only
traverses procedures that it marked during the filtering step, ignor-
ing any others.

This is analogous to performing a control-dependence slice on
the program from the I/O nodes and only analyzing procedures
that appear in the slice, except that it operates at the granularity
of procedures.

As illustrated in columns 3 and 4 of Fig. 3 (see §5), the effect
of pruning is substantial, reducing the number of procedures by
as much as 99.6%. (Larger programs see much more benefit than
smaller ones.)

4.2 Seeding the System with I/O Functions
PCCA requires information about (i) what function calls of the
producer can perform output, and (ii) what function calls of the
consumer can perform input. There are a number of ways such
information can be supplied to PCCA:
1. The user can provide a list of I/O functions (e.g. readBoolean,

writeInt, as in the example) and their associated types. For
calls to standard functions such as puts, PCCA is already
equipped with such mappings.

2. For calls to printf- or scanf-style procedures, if the format
string is a constant in the code, PCCA will parse the string to
determine the types being operated on.

The implementation is flexible enough so that the pro-
ducer or consumer can contain user-defined procedures with
printf/scanf-like format-strings, provided that the format-
string syntax is either the same as what is used by printf or
what is used by scanf. PCCA just needs to know the name
of the procedure and which formal parameter holds the format
string.

3. For calls to fread/read-like procedures, we can infer the type
being operated on by looking at the type of the data parameter
before its cast to void*.

4. If all else fails, the user can supply comments that annotate
procedure-call sites to specify that a particular call site performs
either input or output. The annotation includes the type that is
operated on. This method also allows the user to selectively
choose only some call sites on a particular procedure.

5. Finally, the list of procedure-call sites that the tool should con-
sider to be I/O functions is explicitly materialized in a text file,
so the user can add, remove, or change procedure-call sites in
that list, or even write another script to create it. This interface
facilitates making extensions to PCCA to supply it with addi-
tional information about I/O functions. (In fact, in the current
version of PCCA, the techniques described in items [1]–[3] are
implemented by one program, and the technique described in
item 4 is implemented by a second program.

5. Experiments
To test the capabilities of PCCA, we ran it on a small corpus of
examples (whose characteristics are listed in columns 2 and 3 of
Fig. 3). The inference of the NWAs for the producers and con-
sumers was performed on a machine with 2.83 GHz Core 2 Quad
and 3 GB of memory running 32-bit Red Hat Linux Enterprise 5.
The language-containment check was performed on a single core
of a two-processor quad-core 2.26 GHz Xeon processor running
Windows XP 64-bit, with 12 GB of memory.

The experiments were designed to test whether PCCA would
detect bugs in producer-consumer pairs that were buggy, correctly
identify (presumably) correct code as having the language contain-
ment property, and scale to realistic programs.

Each example consisted of a pair of programs—a producer and
a consumer. In several cases, we used the program as both the
producer and the consumer, which makes sense for programs such
as gzip, bzip2, and dia, where they produce output that is meant
to be processed by the same program.

The examples are as follows3:
• ex-prod/ex-cons make up our running example (stubs for the

I/O functions are included in the count),
• ex-prod-bug/ex-cons-bug are buggy versions of the running

example, modified as described in Ex. 2.6 with the separator to
mark the packets,

3 Our experiments can be found at http://www.cs.wisc.edu/wpis/
examples/pcca/

• ez-ntp-server/ez-ntp-client are a server and client for
the network time protocol (the communication we are testing
here is from the server to the client),
• gzip and bzip2 are the common Unix compres-

sion/decompression utilities, and
• dia is software for creating diagrams.

Two of the tests required minor modifications. gzip uses input
and output operations much like the one in our running example,
except that they are implemented as macros. Because our inference
tool works over the control-flow graph generated by CodeSurfer/C,
these macros are not visible, so we replaced the macro definitions
with functions. (Making them into stub functions is sufficient for
our analysis.) The ez-ntpd server forks off threads to handle each
request using pthread create, which takes a function pointer to
the function that handles that request. Because the program does
not include the source for pthread create, CodeSurfer/C does
not know about the transfer of control, and so the server looks like
it does not actually respond to the request (and thus does not emit
anything); we changed this to a call to the function directly. Having
source code for pthread create or an appropriate model would
obviate the need for this step.

As shown in Fig. 3, PCCA reports that some commonly-used
programs operate in a correct manner with regard to their I/O
behavior. PCCA also detects synthetic programming errors in small
examples, as shown by the second pair of examples.

6. Related Work
Inferring Input or Output Formats of Programs. PCCA is
built, in part, on top of the file-format-extractor tool FFE/x86 [14],
which extracts output formats from x86 executables. PCCA’s I/O
extraction components were created from FFE/x86 by (i) retarget-
ing it to work on C and C++ source code,4 and adding the capability
to infer input formats as well as output formats.

Inferring input formats of executables has received much atten-
tion lately, particularly in the context of protocol reverse engineer-
ing for network security [5, 9, 25, 15, 16]. However, most of this
work involves the use of dynamic-analysis techniques.

Komondoor and Ramalingam developed methods to recover an
object-oriented data model from a program written in a weakly-
typed languages, such as Cobol [13]. It is capable of recovering
information about the record structure of entities that occur in a
file, as well as information about subtyping relationships between
such entities.

Checking Compatibility/Conformance. Rajamani and Rehof
[21] developed a way to check that an implementation model I
extracted from a message-passing program conforms to a specifi-
cation S. Their goal was to support modular reasoning on models;
they established that if I conforms to S and P is any environment
in which P and S do not get stuck waiting in vain to send or receive
messages, then P and I also do not get stuck.

A related question is checking conformance of software com-
ponents as software evolves and components are replaced or up-
graded. Clarke et al. [7] survey several approaches that have been
devised to answer the question, including interface automata, be-
havioral subtyping [17], input/output-based compatibility of up-
grades [18], and model checking.

References
[1] R. Alur and P. Madhusudan. Adding nesting structure to words. J.

ACM, 56(3), 2009.

4 Our job was made easier because FFE/x86 was based on the x86 version
of CodeSurfer [2], which makes use of some of the CodeSurfer/C infras-
tructure [8].

#Lines #Funcs #NWA #Static Times (seconds)
Test of code Original Reduced vertices I/O ops Infer NWA ¬Consumer ∩ Total OK?
ex-prod 43 11 3 16 5 2.87 0.49 0.0 6.12 Y
ex-cons 26 7 2 11 2 2.87
ex-prod-bug 43 11 3 17 5 2.65 0.47 0.0 9.57 N
ex-cons-bug 25 7 2 11 3 6.67
ez-ntp-server 622 7 2 32 1 4.38 0.56 0.0 11.58 Y
ez-ntp-client 678 6 1 51 1 6.57
gzip-prod 4213 87 15 271 18 120 665 0.13 843 Y
gzip-cons 4213 87 15 367 47 57
bzip2-prod 5413 108 15 357 8 132 877 0.62 1124 Y
bzip2-cons 5413 108 13 322 10 115
dia-prod 128972 4554 18 137 7 435 4.11 0.25 885 Y
dia-cons 128972 4554 14 196 5 446

Figure 3. Experimental results.

[2] G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum.
Codesurfer/x86 – A platform for analyzing x86 executables, (tool
demonstration paper). In Comp. Construct., 2005.

[3] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of
pushdown automata: Application to model checking. In Proc.
CONCUR, 1997.

[4] A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the
static analysis of concurrent programs with procedures. In Princ. of
Prog. Lang., pages 62–73, 2003.

[5] J. Caballero and D. Song. Polyglot: Automatic extraction of protocol
format using dynamic binary analysis. In Conf. on Comp. and
Commun. Sec., 2007.

[6] S. Chaki, E. Clarke, N. Kidd, T. Reps, and T. Touili. Verifying
concurrent message-passing C programs with recursive calls. In
Tools and Algs. for the Construct. and Anal. of Syst., 2006.

[7] E. Clarke, N. Sharygina, and N. Sinha. Program compatibility
approaches. In Formal Methods for Components and Objects, 2005.

[8] CodeSurfer system. www.grammatech.com/products/codesurfer.
[9] W. Cui, M. Peinado, K. Chen, H. Wang, and L. Irun-Briz. Tupni:

Automatic reverse engineering of input formats. In Conf. on Comp.
and Commun. Sec., 2008.

[10] A. Finkel, B.Willems, and P. Wolper. A direct symbolic approach to
model checking pushdown systems. Elec. Notes in Theor. Comp. Sci.,
9, 1997.

[11] D. Knuth. A characterization of parenthesis languages. Inf. and
Control, 11(3), 1967.

[12] J. Kodumal and A. Aiken. Regularly annotated set constraints. In
Prog. Lang. Design and Impl., 2007.

[13] R. Komondoor and G. Ramalingam. Recovering data models via
guarded dependences. In Working Conf. on Rev. Eng., 2007.

[14] J. Lim, T. Reps, and B. Liblit. Extracting output formats from
executables. In Working Conf. on Rev. Eng., 2006.

[15] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic protocol format
reverse engineering through context-aware monitored execution. In
Network and Dist. Syst. Security, 2008.

[16] Z. Lin and X. Zhang. Deriving input syntactic structure from
execution. In Found. of Softw. Eng., 2008.

[17] B. Liskov and J. Wing. Behavioral subtyping using invariants and
constraints. In H. Bowman and J. Derrick, editors, Formal Methods
for Distributed Processing: An Object Oriented Approach. Cambridge
Univ. Press, 2001.

[18] S. McCamant and M. Ernst. Early identification of incompatibilities
in multicomponent upgrades. In European Conf. on Obj.-Oriented
Prog., 2004.

[19] R. McNaughton. Parenthesis grammars. J. ACM, 14(3), 1967.
[20] M. Mohri and M.-J. Nederhof. Regular approximation of context-free

grammars through transformation. In Robustness in Language and
Speech Technology, chapter 9. Kluwer Acad., 2001.

[21] S. Rajamani and J. Rehof. Conformance checking for models of
asynchronous message passing software. In Computer Aided Verif.,
2002.

[22] G. Ramalingam. Context-sensitive synchronization-sensitive analysis
is undecidable. Trans. on Prog. Lang. and Syst., 22(2):416–430,
2000.

[23] T. Reps. Undecidability of context-sensitive data-dependence
analysis. Trans. on Prog. Lang. and Syst., 22(1):162–186, Jan. 2000.

[24] S. Schwoon. Model-Checking Pushdown Systems. PhD thesis,
Technical Univ. of Munich, Munich, Germany, July 2002.

[25] G. Wondracek, P. Comparetti, C. Kruegel, and E. Kirda. Automatic
network protocol analysis. In Network and Dist. Syst. Security, 2008.

