
Verifying Concurrent Message-Passing
C Programs with Recursive Calls ∗

Sagar Chaki Edmund Clarke
Carnegie Mellon University, Pittsburgh,

USA

Nicholas Kidd Thomas Reps
University of Wisconsin, Madison, USA

Tayssir Touili
LIAFA, CNRS & University of Paris 7,

Paris, France

Abstract
We consider the model-checking problem for C programs with (1)
data ranging over very large domains, (2) (recursive) procedure
calls, and (3) concurrent parallel components that communicate
via synchronizing actions. We model such programs using com-
municating pushdown systems, and reduce the reachability prob-
lem for this model to deciding the emptiness of the intersection of
two context-free languages L1 and L2. We tackle this undecidable
problem using a CounterExample Guided Abstraction Refinement
(CEGAR) scheme based on (1) computing over-approximations
A1 and A2 of L1 and L2, (2) checking if the intersection of A1

and A2 is non-empty, and, if the non-empty intersection repre-
sents an infeasible trace, (3) refining these over-approximations A1

and A2. Furthermore, we present new fully automatic predicate-
abstraction refinement techniques to obtain communicating push-
down systems from C source code. We have implemented our tech-
niques in the model-checker MAGIC. We report our experimental
results on some non-trivial benchmarks.

1. Introduction
Analysis of concurrent software represents a major challenge in the
model-checking community. Indeed, concurrent programs include
various complex features such as: (1) the manipulation of data rang-
ing over unbounded domains, such as integers and reals (or very
large domains, such as 32-bit ints and floats), (2) the presence of
recursive procedure calls, which can lead to an unbounded number
of calls, (3) concurrency and the existence of synchronization state-
ments. Unfortunately, checking whether a given control point is
reachable is undecidable, even if the program includes only recur-
sive procedures and synchronisation statements [Ram00]. Conse-
quently, any method for solving the reachability problem for these
systems is incomplete, and all we can hope for is either an approxi-

∗ This research was sponsored by the Office of Naval Research (ONR) and
the Naval Research Laboratory (NRL) under contract no. N00014-01-1-
0796. The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of ONR, NRL, the U.S. Government
or any other entity.

[copyright notice will appear here]

mate technique, or a semi-decision procedure whose termination is
not guaranteed.

During the last few years, several authors have addressed this
issue. Pushown systems have been proposed as an adequate formal-
ism to describe pure sequential recursive programs [EK99, ES01].
This allows to represent the potentially infinite configurations of
recursive programs in a symbolic manner using regular languages
[BEM97, FWW97]. Recently, compositions of pushown systems,
called communicating pushown systems, have been used to model
concurrent recursive programs [BET03a, BET03b]. However, in
these cases, all data were assumed to have a small finite domain.

On the other hand, abstract-interpretation techniques [CC77]
have been used to deal with data ranging over unbounded (or very
large) domains. More recently, automated predicate-abstraction
techniques [GS97] have been proposed to deal with this issue. The
idea of predicate abstraction is to abstract the infinite data domain
into a finite one defined by a given set of predicates. The precision
of the abstraction and the model-checking algorithm depend on
the number and the form of the predicates, because the size of the
model increases with the number of predicates. The central prob-
lem in predicate abstraction is then the discovery of a small set of
predicates sufficient to prove the desired property. To do so, Coun-
terExample Guided Abstaction Refinement (CEGAR) techniques
[Kur94, CGJ+00] have been used to find such a small set. The idea
is to (1) start with an empty set of predicates, (2) perform the ver-
ification procedure on the obtained model. If the property is satis-
fied by the model, we conclude that it is also satisfied by the real
program because the program has fewer behaviors than the model.
Otherwise, we obtain a counterexample. (3) If the counterexample
corresponds to an execution of the program, we conclude that the
program does not satisfy the property. (4) Otherwise, we compute
a new set of predicates that eliminate future exploration of the spu-
rious trace, and go back to step (2).

This schema has been successfully applied to handle both pure
non-concurrent (sequential) recursive programs in the tool SLAM
[BR01], and concurrent nonrecursive programs in the tools BLAST
[HJMS02] and MAGIC [CCG+03].

In this work, we go one step further, and combine CEGAR
predicate-abstraction techniques with pushdown-system modeling
to handle concurrency, recursion, and very large data domains
at the same time. Our approach consists of using communicating
pushdown systems (CPDSs) to model concurrent programs. To
do this, we (1) define CEGAR predicate-abstraction techniques to
obtain successively more precise CPDSs from the C source code of
a parallel program, and (2) define model-checking algorithms for
CPDSs. The main contributions of this paper are:

1. Defining new automatic CEGAR predicate-abstraction tech-
niques that can create a CPDS from the C source code of a con-
current (recursive) C program that manipulates variables that

1 2005/7/19

range over very large domains, and that can refine CPDS ab-
stractions to eliminate a given counterexample. Our techniques
are defined component-wise, which makes them compositional
and scalable to large programs.

2. Defining new model-checking techniques for CPDSs. We re-
strict ourselves in this work to solving reachability queries.
We reduce the reachability problem for CPDSs to the unde-
cidable problem of checking the emptiness of the intersection
of two context-free languages L1 and L2. To tackle this prob-
lem, we apply a second CEGAR scheme that consists of (1)
computing over-approximations A1 and A2 of L1 and L2. (2)
If A1 ∩ A2 = ∅, we conclude that L1 ∩ L2 = ∅. (3) Other-
wise, we check whether the intersection A1 ∩ A2 is spurious.
In this case, we refine the over-approximations A1 and A2, and
return to step (2). This semi-decision procedure is guaranteed
to terminate if the intersection L1 ∩ L2 is not empty.

3. Implementing our technique in the model-checker MAGIC, and
carrying out a number of non-trivial experiments. Our imple-
mentation was able to handle a non-trivial example (a Bluetooth
driver in Windows NT) that could not be handled with the previ-
ous version of MAGIC. Moreover, the implementation provides
improved performance for non-recursive examples that the pre-
vious version of MAGIC was able to handle only via inlining.
This shows that our technique represents an advance for recur-
sive as well as non-recursive concurrent programs.

One of the novel features of this work is that it applies the
CEGAR scheme at two levels: (1) at the predicate-abstraction level
to deal with unbounded domain variables, and (2) at the model-
checking level to solve reachability queries in CPDSs: the CPDS
model checker uses a second CEGAR scheme in its semi-decision
procedure for testing emptiness of the intersection of two context-
free languages. As far as we know, this is the first time that CEGAR
is used in the model-checker itself. Indeed, it is usually used to
compute successively more precise abstractions of a system.

Related Work. In [BET03a, BET03b], the reachability problem for
CPDSs has also been reduced to computing over-approximations
of context-free languages. However, no CEGAR techniques were
presented there. More precisely, those works compute over-
approximations A1 and A2 of two given context-free languages L1

and L2, and if A1 ∩ A2 = ∅, one concludes that L1 ∩ L2 = ∅.
However, with the approach of [BET03a, BET03b], no conclusion
can be made automatically if A1 ∩ A2 6= ∅. In particular, using
[BET03a, BET03b], one can never conclude that L1 ∩ L2 6= ∅. In
contrast, our CEGAR-based semi-decision procedure is guaranteed
to terminate in this case, with the correct answer.

CEGAR-based predicate-abstraction techniques are used in sev-
eral C-programs model-checking tools, such as SLAM [BR01],
BLAST [HJMS02], ZING [QRR04], and KISS [QW04]. How-
ever, as mentioned previously, SLAM cannot deal with concur-
rency, BLAST cannot handle recursion, and KISS cannot discover
errors that appear after a number of interleavings between the paral-
lel components greater than three. ZING is an extension of SLAM
to concurrent programs. SLAM and ZING are based on procedure
summarization; hence, ZING might not terminate in cases where
our technique will. Indeed, in the concurrent case, one needs to
keep track of the calling stack, which can be unbounded in the
presence of recursive calls. The contents of the stack are explicitely
represented in ZING. In contrast, in our framework, they are sym-
bolically represented with regular languages, because we use push-
down system modeling. On the other hand, SLAM and ZING use
predicate-abstraction techniques to extract a Boolean program from
a C program with recursion. Schwoon [Sch02] has implemented
in his pushdown-systems-analysis tool MOPED a translation from
Boolean programs to pushdown systems. However, MOPED can-

not handle concurrent programs. Our CPDS predicate-abstraction-
refinement techniques are done component-wise, and amount to
performing successive sequential PDS predicate-abstractions and
refinements. One can argue that these successive steps can be
done using SLAM and then MOPED. However, in this paper, we
propose predicate-abstraction techniques that produce directly and
more efficently a pushdown system from C source code of a se-
quential component without going through a Boolean program. We
give in Section 3.4 more details about the difference between our
predicate-abstraction techniques and the ones used in SLAM and
ZING. Readers who are already familiar with those techniques,
and who wish to skip our approach to translating C code to PDSs
should concentrate on Sections 2, 4, and 6, which focus on the
concurrency-related aspects of our work.

Finally, the new techniques presented in [KIG05, QR05] also
use multiple pushdown systems to model concurrent recursive pro-
grams. However, [KIG05] is restricted to programs that commu-
nicate via a finite number of locks, and assumes a certain nest-
ing condition on the locks. As for [QR05], it uses shared-variables
for communication between threads, whereas we use synchronizing
actions (these two models can simulate each other). The technique
presented in [QR05] sidesteps the undecidability of reachability of
multiple pushdown systems by putting a bound k on the number
of interleavings between the different threads, whereas we handle
this undecidable problem by computing abstractions of context-free
languages (without bounding the number of interleavings between
the different threads). In certain cases, our technique can be more
powerful than the one presented in [QR05]. Indeed, if the target
configurations are reachable, our technique is guaranteed to termi-
nate with the correct answer. The same can be said of the technique
of [QR05] if we apply it by incrementing automatically the bound k
until the target configurations are found to be reachable. However,
in certain circumstances (when we find A1 ∩A2 = ∅) we can infer
that the target configurations are not reachable, whereas the tech-
nique of [QR05] can never establish such a property. Finally, the
technique of [QR05] has not been implemented, and no automatic
techniques to translate C code to pushdown systems are provided
there. In contrast, our method has been implemented and applied to
several non-trivial examples. This effort is reported in Section 6.

The remainder of the paper is organized as follows: In Section
2, we define the CPDS model. Section 3 describes the way we
generate a CPDS from a C program using predicate abstraction. In
Section 4, we give our semi-decision procedure for model-checking
a CPDS. Section 5 presents our predicate-abstraction refinement
techniques. Section 6 reports our experimental results.

2. Preliminary definitions
A pushdown system (PDS) is a four-tuple P = (Q,Act , Γ, ∆)
where P is a finite set of states, Act is a finite set of actions, Γ is a
finite stack alphabet, and ∆ is a finite set of transition rules of the
form 〈p, γ〉

a
↪−→ 〈p′, w〉, where p, p′ ∈ P, a ∈ Act, γ ∈ Γ, and

w ∈ Γ∗. We assume without loss of generality that all the rules of
∆ are such that |w| ≤ 2. This is not restrictive because any PDS
can be transformed into a PDS of this form [Sch02]. Moreover,
as we will see in the next subsection, the transition rules obtained
from programs are always of this form. A configuration of P is a
pair 〈p,w〉, where p ∈ P is a state and w ∈ Γ∗ is the content of the
stack. A set C of configurations is regular if for every p ∈ P the
language {w ∈ Γ∗ | 〈p, w〉 ∈ C} is regular.

For every a ∈ Act, we define a transition relation a
−→ between

the configurations of P as follows:

〈q, γ〉
a

↪−→ 〈q′, w〉, then 〈q, γv〉
a

−→〈q′, wv〉 for every v ∈ Γ∗

2 2005/7/19

For a1 · · · an ∈ Act∗, the relation
a1···an−−−−−→ is defined in the

obvious way. Let C be a set of configurations. Post∗(C) is the
set of successors of C defined as follows:

Post∗(C) = {c′ | ∃c ∈ C, a1 · · · an ∈ Act∗, c
a1···an−−−−−→ c′}

A communicating pushdown system (CPDS) [BET03b] is a
tuple CP = (P1, . . . ,Pn) of pushdown systems over the same
set of actions Act such that Act = Lab ∪ {τ}, where Lab is the
set of synchronization actions, and τ represents internal actions. τ
is such that for every a ∈ Lab, τa = aτ = a. As we will see
later, we need this to reduce the reachability problem for CPDSs
to checking the emptiness of the intersection of two context-free
languages.

A global configuration of CP is a tuple g = (c1, . . . , cn) of
configurations of P1, . . .Pn. The relation a

−→ is extended to global
configurations as follows:

• (c1, . . . , cn)
τ
−→(c′1, . . . , c

′
n) if there is an index 1 ≤ i ≤ n

such that ci
τ
−→ c′i and c′j = cj for every j 6= i;

• (c1, . . . , cn)
a
−→(c′1, . . . , c

′
n) if there are two distinct indices

i 6= j such that ci
a
−→ c′i, cj

a
−→ c′j , and c′k = ck for every

i 6= k 6= j.

Given a set G of global configurations, we define the successors
of G, Post∗(G), as before.

3. Component-wise Predicate Abstraction
We model concurrent recursive programs using CPDSs. In this
section, we show how to use predicate abstraction to extract a
CPDS from a parallel program.

Suppose that we are given n concurrent recursive C compo-
nents. We extract a PDS from each recursive component. The par-
allel composition of these components is then represented by the
CPDS corresponding to the tuple of these PDSs. In what follows,
we show how to extract a PDS from a sequential component using
predicate abstraction. To do this, we extend the approach originally
used in MAGIC [CCG+03], which automatically extracts a finite-
state automaton from C code, to extract a PDS.

Without loss of generality, we assume that there are only six
kinds of statements in programs: assignments, procedure calls,
if-then-else branches, gotos, synchronization statements, and re-
turns. In MAGIC, we use the CIL tool [NMW+01] to transform
arbitrary C programs into the above format.

Each PDS is defined in terms of a current set of seed predicates.
Initially, the set of seed predicates is empty. The predicate set is
augmented using our refinement techniques (see Section 5). Each
predicate represents a set of assignments of the variables of the
program. Let p be a predicate over the sets of variables X and Y ,
where X (resp. Y) is a set of local (resp. global) variables. Then
ploc (resp. pglob) is the “projection” of p over the local variables X
(resp. global variables Y). For example, let p = (x > 0 & y < 8)
be a predicate that represents the set of values {x > 0, y < 8}.
If x is a local variable, and y is a global one; ploc denotes the
predicate (x > 0); and pglob the predicate (y < 8). We extend
these notations to sets of predicates in the obvious manner.

We first describe how, given a set of seed predicates, we gen-
erate a larger set of predicates useful to compute an abstraction of
the program (this process is called predicate inference), and then
describe how to use this new set of predicates to obtain a PDS from
a sequential C component. As explained above, the CPDS that cor-
responds to a parallel program is the tuple of all the PDSs of its
different sequential components.

3.1 Predicate inference

The weakest precondition of a set of predicates p is defined as
follows. Let s be an assignment of the form v = e. Then, the
weakest precondition of p with respect to s (denoted by Ws(p))
is obtained from p by replacing every occurrence of v in p by e.
Assignments through pointers, i.e., statements of the form ∗p = e,
are handled by the approach of Morris [Mor82].

Let C be a set of seed predicates. In MAGIC, we require that the
seed set C is always a subset of the conditions in the program’s if
statements1. To create a PDS that is an abstraction of a sequential
component relative to the predicates in seed set C, we repeatedly
compute weakest preconditions. That is, for every control point n,
we compute a set of predicates P[C]n as follows:

Initially, P[C]n = ∅ for every point n. We repeat the following
until for every n, P[C]n is no longer modified. Let sn be the
statement that corresponds to control point n:

1. if sn is an assignment that has n′ as successor, then add
Wsn

`

P[C]n′

´

to P[C]n.

2. if sn is an if statement and n′ is its then or else successor,
then add P[C]n′ to P[C]n. Moreover, if c is the corresponding
condition of sn such that c ∈ C, then add c to P[C]n.

3. if sn is a goto or a synchronisation statement that has n′ as
successor, then add P[C]n′ to P[C]n.

4. if sn is a call to a procedure π, where sn has n′ as successor,
and if eπ is the initial control point of procedure π, then add
P[C]loc

n′ and P[C]glob
eπ

to P[C]n.

Note that this procedure might not terminate in the presence
of loops and recursive procedure calls. In this case, we impose
termination by bounding the number of predicates in P[C]n, for
every control point n.

Let us explain the intuition behind the items above. P[C]n
is meant to be the set of predicates needed to characterize the
values of the variables when point n is active (with respect to the
predicates in C). Let sn be an assignment that has n′ as successor.
The first item adds Wsn

`

P[C]n′

´

to P[C]n. This is because if ϕ
is true at n′, then Wsn

(ϕ) is true at n. Thus, if we know that ϕ
holds at n′, then to avoid a loss of precision, we need to know that
Wsn

(ϕ) holds at n.
Now, consider the fourth item (the others are easy to under-

stand). Let π′ be the procedure that contains control point n. Be-
cause procedure π is called at n, the global variables have the same
values at n and eπ . This motivates the inclusion of P[C]glob

eπ
in

P[C]n. Moreover, when the procedure π terminates, and control
goes back to point n′ in procedure π′, the values of the local vari-
ables of the procedure π′ in n′ are the same as those at point n
(since these values did not change during the call to π). This is why
we add P[C]loc

n′ to P[C]n.
Note that in our procedure we reason in a backward manner

to compute the P[C]n’s. An equivalent approach would have been
to use forward reasoning. In this case, we would need to compute
strongest postconditions instead of weakest preconditions.

Finally, let P[C] = ∪P[C]n, where the union is taken over all
the control points n of the sequential component, be the set of all
the generated predicates.

3.2 Predicate valuation

Recall that our goal is to compute a PDS abstraction of a sequential
component. As described in the next section, the states of this PDS
correspond to the different valuations of the global predicates, and
a symbol of its stack will be a pair that consists of a control point

1 A query q at a given point p can be emulated by introducing an if statement
at p whose branch condition is q.

3 2005/7/19

n, and a valuation of the local predicates at point n. We associate
with each location n two sets of formulas V[C]glob

n and V[C]loc
n ,

respectively, called global and local valuations as follows: For x in
{glob, loc}, V[C]xn is the set of formulas {(px

1 = v1)∧· · ·∧(px
kx

=
vkx

) | P[C]xn = {px
1 , . . . , px

kx
}, vi ∈ {true,false}, i = 1, . . . , kx}.

Moreover, if P[C]xn = ∅, then V[C]xn = {empty}.
Let V be a valuation of the form (p1 = v1) ∧ · · · ∧ (pk = vk).

We denote by Γ(V) its corresponding predicate p′
1∧· · ·∧p′

k, where
p′

i = pi if vi = true, and p′
i = ¬pi if vi = false. Moreover, we let

Γ(empty) = {true}.

3.3 Creating a PDS that corresponds to a sequential
component

We are now ready to describe how to create a PDS that corresponds
to a sequential component. Let C be a given set of seed predicates.
We assign to a sequential (possibly recursive) component the PDS
P = (Q,Act , Γ, ∆) defined as follows. Q is the set of valuations
that correspond to the global variables, i.e., Q = ∪V[C]glob

n , where
the union is taken over all the control points n of the sequential
component. Act contains the action τ as well as the other syn-
chronization actions of the program. Γ is the set of all pairs (n, v),
where n is a control point of the sequential component, and v is a
valuation in V[C]loc

n that corresponds to a set of valuations of the
local variables at location n.

To define the rules of ∆, we need one more notion. Consider a
goto statement from point n1 to n2. Intuitively, we would like to
represent this statement with rules of the form

〈glob, (n1, loc)〉
τ

↪−→ 〈glob′, (n2, loc
′)〉

where glob ∈ V[C]glob
n1

, glob′ ∈ V[C]glob
n2

, loc ∈ V[C]loc
n1

, loc′ ∈
V[C]loc

n2
, and the formulas

`

Γ(glob) ∧ Γ(glob′)
´

and
`

Γ(loc) ∧
Γ(loc′)

´

are satisfiable.
This means that if the program is at point n1 and its variables

satisfy the global and local valuations glob and loc, then after per-
forming the goto statement, it goes to point n2 and its variables
can satisfy all the valuations glob′ ∈ V[C]glob

n2
and loc′ ∈ V[C]loc

n2

such that
`

Γ(glob)∧ Γ(glob′)
´

and
`

Γ(loc)∧ Γ(loc′)
´

are satisfi-
able. This condition ensures that the PDS we are creating has more
behaviors than the concrete program.

However, determining whether (p1 ∧p2) is satisfiable is in gen-
eral undecidable when p1 and p2 are first-order formulas over the
integers. To sidestep this problem, we use a sound validity checker
[Nel80] that always terminates and answers TRUE, FALSE, or UN-
KOWN to the question whether a given formula ¬(p1∧p2) is valid.
We use A(p1, p2) to denote that the answer provided by the valid-
ity checker to the question “Is ¬(p1 ∧ p2) valid?” is FALSE or
UNKOWN. Then, to ensure that the PDS we are creating is a safe
abstraction, we add the PDS-transition above if A(p1, p2) holds.

We are now ready to define the set of rules ∆ as follows: Let s
be a statement, and n1 be its corresponding control point:

• If s is a goto statement, it is represented by rules of the form:

〈glob, (n1, loc)〉
τ

↪−→ 〈glob′, (n2, loc
′)〉

where n2 is the unique successor of n1, glob ∈ V[C]glob
n1

,
glob′ ∈ V[C]glob

n2
, loc ∈ V[C]loc

n1
, loc′ ∈ V[C]loc

n2
,

A
`

Γ(glob), Γ(glob′)
´

, and A
`

Γ(loc), Γ(loc′)
´

.

• If s is a synchronizing statement labeled with action a, it is
represented by rules of the form:

〈glob, (n1, loc)〉
a

↪−→ 〈glob′, (n2, loc
′)〉

where n2 is the unique successor of n1, glob ∈ V[C]glob
n1

,
glob′ ∈ V[C]glob

n2
, loc ∈ V[C]loc

n1
, loc′ ∈ V[C]loc

n2
,

A
`

Γ(glob), Γ(glob′)
´

, and A
`

Γ(loc), Γ(loc′)
´

.

• If s is an assignment, then it is translated into a set of rules of
the form

〈glob, (n1, loc)〉
τ

↪−→ 〈glob′, (n2, loc
′)〉.

where n2 is the unique successor of n1, glob ∈ V[C]glob
n1

,
glob′ ∈ V[C]glob

n2
, loc ∈ V[C]loc

n1
, loc′ ∈ V[C]loc

n2
,

A
“

Ws

`

Γ(glob′)
´

, Γ(glob)
”

, and A
“

Ws

`

Γ(loc′)
´

, Γ(loc)
”

.

In other words, glob and glob ′ (loc and loc ′) are valuations
that correspond to the values of the global (local) variables
before and after the assignment.

For example, if we have P[C]n1
= {(y = 7), (x > −2)}

and P[C]n2
= {(y = 7), (x > 1)}, where y is a global

variable and x is a local one; if s is the assignment x := x + 3;
then we have the following rule, where T stands for true:

〈
`

(y = 7) = T
´

,
“

n1,
`

(x > −2) = T
´

”

〉
τ

↪−→ 〈
`

(y =

7) = T
´

,
“

n2,
`

(x > 1) = T
´

”

〉.

• If s is an if statement, it is represented by rules of the form:

〈glob, (n1, loc)〉
τ

↪−→ 〈glob′, (n2, loc
′)〉.

where n2 is the control point of the corresponding then
(resp. else) statement if glob and loc satisfy the if condi-
tion (resp. do not satisfy the if condition); and where glob ∈
V[C]glob

n1
, glob′ ∈ V[C]glob

n2
, loc ∈ V[C]loc

n1
, loc′ ∈ V[C]loc

n2
,

A
`

Γ(glob), Γ(glob′)
´

, and A
`

Γ(loc), Γ(loc′)
´

.

• If s is a call to a procedure π, then it is represented by rules of
the form:

〈glob, (n1, loc)〉
τ

↪−→ 〈glob′, (eπ, loc′) (n2, loc
′′)〉

where n2 is the unique successor of n1, eπ is the initial
control point of the procedure π, glob ∈ V[C]glob

n1
, loc ∈

V[C]loc
n1

, glob′ ∈ V[C]glob
eπ

, loc′ ∈ V[C]loc
eπ

, loc′′ ∈ V[C]loc
n2

,
A

`

Γ(glob), Γ(glob′)
´

, and A
`

Γ(loc), Γ(loc′′)
´

.
We need to have A

`

Γ(loc), Γ(loc′′)
´

because the role of
loc′′ is to save the values of the local variables of the caller
procedure.

• Finally, a return statement is translated into rules of the follow-
ing form, where glob ∈ V[C]glob

n1
, and loc ∈ V[C]loc

n1
:

〈glob, (n1, loc)〉
τ

↪−→ 〈glob, ε〉

REMARK 3.1. Note that the predicate abstraction techniques de-
scribed above are sound only for programs in which there are no
assignments through pointers that can hold addresses of local vari-
ables of callers. It would not be difficult to extend these techniques
with an interprocedural modification-analysis algorithm [CK88] to
detect and account for such cases.

NOTE 3.1. Observe that all the internal actions are represented by
“τ”. This is needed to reduce the reachability problem for CPDSs
to computing abstractions of path languages for pushdown systems,
as will be discussed in Section 4.

3.4 Comparision with the predicate-abstraction technique of
SLAM

As mentioned in Section 1, the SLAM tool uses predicate-
abstraction techniques to extract a Boolean program from C source
code. Then, one can use Schwoon’s translation [Sch02] to obtain a

4 2005/7/19

PDS from a Boolean program. Compared with the techniques used
in SLAM, the techniques described in Section 3.3 exhibit two main
differences:

1. Our translation is more efficient because it produces directly,
in one step, a PDS from C code without going through an
intermediate Boolean program.

2. Technically, the approach described in Section 3.3 is different
from SLAM’s approach. In our method, we close a given set of
seed predicates C by computing weakest preconditions along
the different possible paths of the program, and thus obtain
a larger set of predicates that we use to compute the abstract
model. In contrast, SLAM uses the seed set of predicates C as is,
without computing its closure by weakest precondition. Instead,
it computes largest disjunctions of predicates in C that imply
the weakest preconditions. Consequently, the abstract model
we obtain is more precise than SLAM’s because it uses more
predicates.

3.5 Example

Consider the following two sequential components D1 and D2

running in parallel, where a is a synchronization action:

D1:
main() {
n0: int x=10;
n1: proc();
n2: return;}

void proc(){
n3: if (x < 10)
n4: {a;}
n5: else {proc();}
n6: return;}

D2:
main(){
m0: a;
m1: return;}

Case #1: The set of seed predicates C is empty: Let us model first
the component D1 by a PDS P1. There are no local variables, so
the stack alphabet is the set of the control points. Moreover, because
the set of seed predicates C is empty, let p be the unique state of P1

(p corresponds to the valuation empty). P1 contains the following
rules:
r1 : 〈p, n0〉

τ
↪−→ 〈p, n1〉; r2 : 〈p, n1〉

τ
↪−→ 〈p, n3n2〉;

r3 : 〈p, n2〉
τ

↪−→ 〈p, ε〉; r4 : 〈p, n3〉
τ

↪−→ 〈p, n4〉; r5 :

〈p, n3〉
τ

↪−→ 〈p, n5〉; r6 : 〈p, n4〉
a

↪−→ 〈p, n6〉; r7 :

〈p, n5〉
τ

↪−→ 〈p, n3n6〉; r8 : 〈p, n6〉
τ

↪−→ 〈p, ε〉.

Similarly, we represent the second component by a PDS P2 that
has a unique state q, and the following rules:
r′1 : 〈q, m0〉

a
↪−→ 〈q, m1〉; and r′2 : 〈q, m1〉

τ
↪−→ 〈q, ε〉.

Case #2: We have C = {(x < 10)}: We model the component
D1 by the following PDS P ′

1. We have: Pn1
= Pn3

= Pn5
=

{x < 10}, and Pn = ∅ for the other points (while computing Pn0
,

we find the predicate 10 < 10. Because we ignore predicates that
are trivially true or false, we keep Pn0

= ∅). The states of P ′
1 are:

p1 : (x < 10) = false, p2 : (x < 10) = true, and p3 : empty.
P ′

1 contains the following rules:
〈p3, n0〉

τ
↪−→ 〈p1, n1〉; 〈p1, n1〉

τ
↪−→ 〈p1, n3n2〉;

〈p3, n2〉
τ

↪−→ 〈p3, ε〉; 〈p2, n3〉
τ

↪−→ 〈p3, n4〉;
〈p1, n3〉

τ
↪−→ 〈p1, n5〉; 〈p3, n4〉

a
↪−→ 〈p3, n6〉;

〈p1, n5〉
τ

↪−→ 〈p1, n3n6〉; 〈p3, n6〉
τ

↪−→ 〈p3, ε〉.

4. Reachability Analysis of CPDSs
Suppose that the program consists of n sequential components. In
MAGIC, we usually ask the following query: “Suppose that the
system starts from a configuration where each component i is at
its initial control point ni

0, for i = 1, . . . , n; can one component
reach an error point?” We show in this section how to tackle
the reachability analysis of these systems. In the remainder of
this paper, we restrict ourselves to systems that consist of two
parallel sequential components. The technique can be extended in
a straightforward manner to the general case (see [BET03b] for
more details); the implementation reported in Section 6 supports
an arbitrary number of components.

We reduce the reachability problem for CPDSs to deciding
the emptiness question for the intersection of two context-free
languages as follows: Let (P1,P2) be a CPDS, and let C1×C2 and
C′

1×C′
2 be two sets of global configurations of the system. Because

all the internal actions are represented by ′′τ ′′ (which is a neutral
element for concatenation), C ′

1 × C′
2 is reachable from C1 × C2

if and only if there exists at least one sequence of synchronization
actions that simultaneously leads P1 from a configuration in C1

to a configuration in C′
1 and P2 from a configuration in C2 to a

configuration in C′
2. This holds iff L(C1, C

′
1) ∩ L(C2, C

′
2) 6= ∅,

where L(Ci, C
′
i) is the context-free language consisting of all the

sequences of actions (or, equivalently, of synchronization actions
because the internal actions are represented by τ) that lead Pi from
Ci to C′

i .
Because deciding the emptiness of two context-free languages

is undecidable, we propose a semi-decision procedure that, in case
of termination, answers exactly whether the intersection is empty or
not. Moreover, if L(C1, C

′
1) ∩ L(C2, C

′
2) 6= ∅, the semi-decision

procedure is guaranteed to terminate and return a sequence in the
intersection.

The semi-decision procedure is based on a CounterExample
Guided Abstraction Refinement (CEGAR) scheme as follows:

1. Abstraction: We compute an over-approximation Ai of the
path language L(Ci, C

′
i).

2. Verification: We check if A1 ∩ A2 = ∅, and, if so, we con-
clude that L(C1, C

′
1) ∩ L(C2, C

′
2) = ∅, i.e., that C′

1 × C′
2 is

unreachable from C1 ×C2. Otherwise, we compute the “coun-
terexample” I = A1 ∩ A2.

3. Counterexample Validation: We check whether I contains a
sequence x that is in L(C1, C

′
1) ∩ L(C2, C

′
2). In this case I is

not spurious, and we conclude that L(C1, C
′
1) ∩ L(C2, C

′
2) 6=

∅, i.e., that C′
1 ×C′

2 is reachable from C1 ×C2. Otherwise, we
proceed to the next step.

4. Refinement: If I is spurious, we refine the over-approximations
A1 and A2, i.e., we compute other over-approximations A′

1 and
A′

2 such that L(Ci, C
′
i) ⊆ A′

i ⊆ Ai. We then continue from
step 2.

In the remainder of this section, we discuss these steps in detail.
We fix two sets of global configurations C1×C2 and C′

1 ×C′
2. For

the sake of simplicity, we denote L(C1, C
′
1) by L1, and L(C2, C

′
2)

by L2.

4.1 Computing over-approximations of path languages

To compute over-approximations of pushdown-system path lan-
guages, our technique is based on the approach presented in
[BET03b]. We summarize this approach in what follows.

Consider an abstract lattice (D,≤,u,t,⊥,>) associated with
an idempotent semiring (D,⊕,�, 0̄, 1̄) such that ⊕ = t is an
associative, commutative, and idempotent (a⊕a = a) operation; �
is an associative operation; 0̄ = ⊥; 0̄ and 1̄ are neutral elements for

5 2005/7/19

⊕ and �, respectively; 0̄ is an annihilator for� (a�0̄ = 0̄�a = 0̄);
and � distributes over ⊕. Finally, ≤ is such that x ≤ x ⊕ a.

D is related to the concrete domain 2Lab∗ as follows:

• It contains an element va for every letter a ∈ Lab,
• It is associated with an abstraction function α : 2Lab∗ → D and

a concretization function γ : D → 2Lab∗ defined as follows:

α(L) =
M

a1···an∈L

va1
� · · · � van

and

γ(x) = {a1 · · · an ∈ Lab∗ | va1
� · · · � van

≤ x}

It is easy to see that for every language L ⊆ Lab∗; α(L) ∈
D, and γ

`

α(L)
´

⊇ L. In other words, γ
`

α(L)
´

is an over-
approximation of L that is finitely represented in the abstract do-
main D by the element α(L). Intuitively, the abstract operations �
and ⊕ correspond to concatenation and union, respectively; ≤ and
u correspond to inclusion and intersection, respectively; and the
abstract elements 0̄ and 1̄ correspond to the empty language and
{ε}, respectively.

Therefore, to compute the over-approximations γ
`

α(Li)
´

, we
need to compute its representative α(Li) in the abstract domain D.
Let a finite-chain abstraction be an abstraction such that D does
not contain an infinite ascending chain, and let h be the maximal
height of a chain in D. Then we have:

THEOREM 4.1. [BET03b, RSJ03] Let P = (Q,Act , Γ, ∆) be
a PDS and C, C′ be two regular sets of configurations of P ,
and let α be a finite-chain abstraction defined on the abstract
domain D. Then α

`

L(C, C′)
´

can be effectively computed in D

in O(h|∆||Q|2) time.

There are two different algorithms that provide the basis of this
theorem, one described in [BET03a, BET03b], and one described
in [RSJ03, RSJM]. The latter has been implemented in a tool called
WPDS++ [KRML]. We use this tool to compute abstractions of
path languages.

To check the emptiness of the intersection of the over-
approximations γ

`

α(L1)
´

and γ
`

α(L2)
´

, it suffices to check
whether α(L1)uα(L2) = ⊥. Indeed, using the fact that α(∅) = ⊥
and γ(⊥) = ∅, we can show that

∀L1, L2 ∈ Lab∗, α(L1)uα(L2) = ⊥ ⇔ γ
`

α(L1)
´

∩γ
`

α(L2)
´

= ∅

4.2 Defining refinable finite-chain abstractions

To be able to apply our CEGAR scheme, we need to define refin-
able finite-chain abstractions, i.e., a series (αi)i≥1 such that αi is
more precise than αj if i > j; i.e., for every language L ⊆ Lab∗,
if i > j then

L ⊆ γi

`

αi(L)
´

⊆ γj

`

αj(L)
´

For this we define the ith-prefix abstraction as follows:

• Let Wi be the set of words of Lab∗ of length less than or equal
to i. The abstract lattice Di is equal to 2Wi ;

• for every a ∈ Lab, va = a;
• ⊕ = ∪;
• u = ∩;
• U � V = {(uv)i | u ∈ U, v ∈ V }, where (w)i is the prefix of

w of length i;
• 0̄ = ∅;
• 1̄ = {ε};
• ≤=⊆.

Let αi and γi be the abstraction and the concretization functions
associated with this domain. It is easy to see that αi(L) is the set of
words of L of length less than i, union the set of prefixes of length i
of L, i.e., αi(L) = {w | |w| < i and w ∈ L, or |w| = i and ∃v ∈
Lab∗ s.t. wv ∈ L}. Therefore, γi

`

αi(L)
´

= {w ∈ αi(L) | |w| <
i} ∪ {wv | w ∈ αi(L), |w| = i, v ∈ Lab∗}.

Observe that it is possible to decide whether αi(L1)∩αi(L2) =
∅ because for every L ⊆ Lab∗, αi(L) is a finite set of words.

It is easy to see that if i > j, then αi is more precise than αj .
Indeed, we have

L ⊆ γi

`

αi(L)
´

⊆ γj

`

αj(L)
´

.

We have thus defined a series of refinable finite-chain abstrac-
tions α1, α2, α3,

REMARK 4.1. The ith-prefix abstraction is only one abstraction
that can be used to instantiate the framework. Others are possible,
such as the ith-suffix or the ith-subword abstractions (defined in
an analogous way).

4.3 Checking whether the counterexample is spurious

It remains to check whether I = γi

`

αi

`

L1)
´

∩ γi

`

αi(L2)
´

con-
tains an element x such that x ∈ L1∩L2. This amounts to deciding
whether I ∩ L1 ∩ L2 = ∅. Unfortunately, this problem is unde-
cidable because I is a regular language (because for L ⊆ Lab∗,
γi

`

αi(L)
´

is regular). To sidestep this problem, we check instead
whether L1 and L2 have a common word of length at most i. This
amounts to checking whether

`

αi(L1) ∩ L1

´

∩
`

αi(L2) ∩ L2

´

= ∅

This is decidable because αi(L) is a finite set.

4.4 The semi-decision procedure

Summarizing the previous discussion, we obtain the following
semi-decision procedure:

1. Initially, i = 1;
2. Compute the common words of length less than i, and the

common prefixes of length i of L(C1, C
′
1) and L(C2, C

′
2):

I ′ = αi

`

L(C1, C
′
1)

´

∩ αi

`

L(C2, C
′
2)

´

.

3. If I ′ = ∅, conclude that L(C1, C
′
1) ∩ L(C2, C

′
2) = ∅, and that

C′
1 × C′

2 is unreachable from C1 × C2. Otherwise, determine
whether or not I ′ is spurious: Check whether I ′ ∩L(C1, C

′
1)∩

L(C2, C
′
2) 6= ∅. If this holds, conclude that L(C1, C

′
1) and

L(C2, C
′
2) have a common word of length less than or equal to

i, and therefore, that L(C1, C
′
1)∩L(C2, C

′
2) 6= ∅, and C′

1×C′
2

is reachable from C1 × C2.
4. Otherwise, increment i and proceed from step 2.

It is easy to see that:

THEOREM 4.2. If L(C1, C
′
1) ∩ L(C2, C

′
2) 6= ∅, then the above

semi-decision procedure terminates with the exact solution.

Proof: Let x ∈ L(C1, C
′
1) ∩ L(C2, C

′
2), and let k be the length

of x. Then x ∈ αk

`

L(C1, C
′
1)

´

∩ αk

`

L(C2, C
′
2)

´

. 2

REMARK 4.2. It follows from Theorem 4.1 that at each step i,
computing αi(L) necessitates O(2|Lab|i |∆||Q|2) time since there

are at most |Lab|i words of length i, and therefore at most 2|Lab|i

elements in Di. This is the worst case complexity of our algorithm.
However, in practice, our tool behaves well as described in Section
6.

6 2005/7/19

4.5 Example

Let P1 be the PDS having the following rules:
r1 : 〈p, n0〉

a
↪−→ 〈p, n1〉; r2 : 〈p, n1〉

τ
↪−→ 〈p, n0n2〉; r3 :

〈p, n2〉
b

↪−→ 〈p, ε〉; r4 : 〈p, n0〉
b

↪−→ 〈p, ε〉.
And let P2 be the PDS having the following rules:

r′1 : 〈q, m0〉
a

↪−→ 〈q, m1〉; r′2 : 〈q, m1〉
b

↪−→ 〈q, m2〉; r′3 :

〈q, m2〉
τ

↪−→ 〈q, m0m3〉; r′4 : 〈q, m3〉
b

↪−→ 〈q, ε〉; and r′5 :

〈q, m0〉
d

↪−→ 〈q, ε〉.
It is easy to see that in P1, L1 = L

`

〈p, n0〉, 〈p, ε〉
´

= {akbbk |

k ≥ 0}; and that in P2, L2 = L
`

〈q, m0〉, 〈q, ε〉
´

= {(ab)kdbk |
k ≥ 0}, and therefore that L1 ∩ L2 = ∅. We use this straightfor-
ward example to illustrate our approach:

• α1(L1) ∩ α1(L2) = {a} 6= ∅;
• a /∈ L1, therefore, we refine the abstraction and go to α2;
• α2(L1) ∩ α2(L2) = {ab} 6= ∅;
• ab /∈ L2, therefore, we refine the abstraction and go to α3;
• α3(L1) ∩ α3(L2) = ∅. Therefore, we infer that L1 ∩ L2 = ∅.

5. Component-wise Refinement
The construction of the CPDS model from the C program involves
predicate abstraction. It is parametrized by a set of predicates.
The main issue in predicate abstraction is to find a small set of
predicates that allows to prove a property of interest. In our case,
the property in question is whether the system can reach an error
from the initial configuration, where component i (where, e.g.,
i = 1, 2) is in 〈globi

0, (n
i
0, loc

i
0)〉 such that ni

0 is the initial control
point of the component i, and globi

0, loc
i
0 are initial valuations of

the global and local variables, respectively. Similarly, an error is a
configuration where at least one component i is in a configuration
of the form 〈glob, (ni

e, loc)〉, where ni
e correponds to an error

point, and glob and loc are arbitrary valuations of the variables.
MAGIC finds this minimal set of predicates by applying a CEGAR
approach as follows:

We start with a model involving an empty set of seed predicates,
and perform the model-checking step described in Section 4. If
the model checker answers that the error state is unreachable in
the CPDS model, we are sure that this is also the case for the
concrete program because the program has fewer behaviors than
the model. Otherwise, if the model checker finds that the CPDS can
reach an error state by performing a sequence of synchronization
actions a1 · · · an (a1 · · · an ∈ I ′ ∩ L(C1, C

′
1) ∩ L(C2, C

′
2)),

we need to verify whether this behavior corresponds to any real
executions of the program (in which case, we have shown that the
program is not correct), or whether the erroneous-looking behavior
has been introduced by abstraction. If this is the case, we need
to refine the CPDS model. More precisely, the model checker
returns two sequences of rules r1

1, . . . , r
1
m1

and r2
1, . . . , r

2
m2

such
that the CPDS (P1,P2) reaches the error state if Pi performs the
sequence ri

1, . . . , r
i
mi

(in this case, a1 · · · an is the sequence of
synchronization actions corresponding to these sequences of rules).
We say that the sequence ri

1, . . . , r
i
mi

is a counterexample for
component i. To check whether this counterexample is spurious,
we need to check whether component i can perform the sequence
of statements that correspond to the sequence of rules ri

1, . . . , r
i
mi

.
If either component fails to perform its corresponding sequence, we
refine its corresponding PDS to eliminate the spurious sequence of
rules. Observe that all these steps are done component-wise, which
makes the technique compositional and scalable to large programs.

In this section, we first show how to check whether a sequence
of rules returned by the model checker is spurious. We show then

how to add new seed predicates to create a more precise CPDS
model that eliminates a spurious trace.

5.1 Counterexample validation

We present in this subsection an algorithm that takes as input
a counterexample given by a sequence of rules r1, . . . , rn of a
PDS that models a sequential component, and answers whether
it is spurious. Let s1, . . . , sn be the sequence of statements that
correspond to r1, . . . , rn. Intuitively, the algorithm simulates the
different steps to determine whether the concrete component could
possibly perform them. The algorithm starts from the initial point
n0, and the valuations glob0 and loc0 of the variables. Then, it
applies successively the different statements si, i = 1, . . . , n,
updates the values of the variables, and checks whether the if-then-
else conditions are satisfied in this sequence of instructions. More
precisely, the algorithm works as follows:

• Initially ϕ = glob0 ∧ loc0,
• For i = 1 to n do

if si is an assignment, compute the strongest postcondition
of ϕ with respect to si. For example, if si is the assignment
x := x + 5, and ϕ is the valuation (1 < x < 4) = true; the
updated valuation ϕ is (6 < x < 9) = true.
if si is an if statement with condition c, then if si+1 corre-
sponds to its then successor, ϕ := ϕ∧ c. Otherwise, if si+1

corresponds to its else successor, ϕ := ϕ ∧ ¬c.

• If ϕ is satisfiable, then the program can execute the sequence
of statements, and the counterexample is valid; otherwise, the
counterexample is spurious.

5.2 Eliminating the counterexample

If the counterexample is spurious for component i, we need to
refine the PDS model Pi corresponding to this component by
adding new seed predicates. The predicates that we add are subsets
of the set of conditions of the if-then-else branches of the program.
Intuitively, it works as follows: In most cases, the counterexample
is spurious because in the abstract model we have not modeled an
if condition with sufficient precision, and we have allowed both of
its branches to be followed (at some “moment” during an abstract
execution), whereas in any concrete execution run only one branch
can be followed; the counterexample corresponds to a trace that
takes the “wrong” branch. So, to eliminate this trace, we need to
add the condition c of this if statement as a seed predicate. More
precisely, let X = {c1, . . . , ck} be the set of conditions of the
if statements of the program, and let C be the current set of seed
predicates, i.e., such that Pi is computed as described in Section 3
using the set of predicates P[C]. We proceed as follows:

1. i := 1,
2. if ci ∈ C, then increment i and go to step 2,
3. C′ := C ∪ {ci},
4. Create the PDS P ′

i that corresponds to the predicates P[C′] as
described in Section 3.3. If the new model eliminates the coun-
terexample, then let the new seed set be C := C′. Otherwise
increment i and go to step 2.

If none of the predicates c1, . . . , ck succeeds in eliminating the
counterexample, we try to add two predicates at each step. If we try
all the possibilities, and the counterexample is still not eliminated,
we try to add three predicates at each step, etc.

5.3 Example

Let us consider the parallel program given in Section 3.5. Con-
sider this query: Can D2 reach the point m1 if the system starts

7 2005/7/19

from (n0, m0)? Obviously, this is not the case, because the second
component can go to m1 only if it synchronizes with D1 using the
action a, whereas the first component can never perform a, because
at n3 we do not have x < 10. If we model the concurrent program
using no seed predicates, i.e., if we consider the model (P1,P2) de-
scribed in Section 3.5, the model checker answers that (n6n2, m1)
is reachable with the following sequences: r1r2r4r6 for P1, and r′1
for P2. Using our method, we can check that r1r2r4r6 is spurious
because ϕ = (x = 10)∧ (x < 10) is not satisfiable. Therefore, we
refine PDS P1. If we consider C = (x < 10), we obtain the PDS
P ′

1 described in Section 3.5. Then it is easy to see that in the CPDS
(P ′

1,P2), P2 cannot reach m1.

6. Experimental Results
We implemented the method described in the paper in ComFoRT
[CISW05], a model checker built on top of MAGIC [CCG+03],
and experimented with a set of non-trivial benchmarks. Our imple-
mentation supports two kinds of abstractions described in Section
4.2: the ith-prefix and the ith-suffix abstractions.

6.1 Application to concurrent recursive programs: a
Windows NT Bluetooth driver

We applied our technique to a nontrivial recursive concurrent pro-
gram that could not be handled with the original (non-recursive)
version of MAGIC: a Windows NT Bluetooth driver. Our tool
found a bug in this program (that was reported in [QW04]). The
bug could be detected with the ith-prefix as well as the ith-suffix
abstractions. Our experiments were performed on a Linux 2.4.21-
27.0.1 SMP P4 3.00 Ghz machine with 2 GB memory. The results
are summarized in Figure 1.

Abstraction Execution time(seconds) Memory used (MB)

ith-prefix 84.6 667
ith-suffix 36.7 375

Figure 1. Results for the Bluetooth driver

Note that the suffix abstraction is more efficient in this case.
This is due to the fact that in this example, there are less possible
backward paths from the erroneous configurations than forward
paths from the initial configurations.

We describe in what follows the program (the source code can
be found in [QW04]), its corresponding CPDS model, and we show
how to apply our technique to find the error.

The driver consists of a certain number of processes running
in parallel: a process STOP-D, a process COUNTER, a process
STOPPING-FLAG, a process STOPPING-EVENT, and an arbi-
trary number of processes REQUEST (one per each request for the
driver). The role of the process COUNTER is to count the number
of requests that the driver receives. This number is set to 1 initially,
is incremented when the driver receives a new request, and is decre-
mented when a request exits the driver. The process STOP-D may
issue a request to stop the driver at any time. It then has to wait until
all the other requests have finished their work before stopping the
driver. The process STOPPING-FLAG has two control points: F-
S-F (FALSE-STOP-FLAG) and T-S-F (TRUE-STOP-FLAG), de-
pending on whether the process STOP-D is trying to stop the driver
or not. It is initially in state F-S-F, and moves to state T-S-F if it re-
ceives a message from STOP-D. No new thread can enter the driver
if this process is in T-S-F. The process STOPPING-EVENT also
has two control points: F-S-E (FALSE-STOP-EVENT) and T-S-E
(TRUE-STOP-EVENT). It enters state T-S-E if the driver stops, i.e.
when the number of running REQUESTs reaches 0. Finally, when

a new REQUEST enters the driver, it has to increment the number
stored in COUNTER, perform the work asked by the request, and
then decrement the number stored in COUNTER before exiting the
driver. This is done by two functions: Increment and Decrement.

Each of these processes can be modeled by a PDS as described
below (all the techniques described here were automatically per-
formed by our tool).

The process COUNTER: It has no global variables, so let p0 be
its unique state. The number of threads is represented in a stack.
The stack alphabet is {0, 1}. Initially, the stack contains the word
“10” meaning that the number of requests is zero. It can then con-
tain any word in 1∗0. The number of 1’s in the stack corresponds to
the number of running requests minus 1. The increment and decre-
ment operations are invoked by incr and decr messages from the
REQUEST processes.

COUNTER is represented by the following PDS rules:

• 〈p0, 1〉
incr
−−−→〈p0, 11〉 and 〈p0, 0〉

incr
−−−→〈p0, 10〉. These rules

increment the counter.
• 〈p0, 1〉

decr
−−−→〈p0, ε〉. This rule decrements the counter.

• 〈p0, 1〉
not−zero
−−−−−−−→〈p0, 1〉 and 〈p0, 0〉

is−zero
−−−−−−→〈p0, 0〉. These

rules test whether the counter is 0.

The process STOPPING-FLAG: It has no global variables, so
let p1 be its unique state.

• 〈p1, F-S-F〉
stop
−−−→〈p1, T-S-F〉: The process receives a “stop”

request from STOP-D.

• 〈p1, T-S-F〉
stop′

−−−−→〈p1, T-S-F〉: The process communicates
with a REQUEST process via a “stop′” message.

• 〈p1, F-S-F〉
non−stop
−−−−−−−→〈p1, F-S-F〉: It sends a “non-stop” re-

quest to the incoming REQUESTs.

The process STOPPING-EVENT: As with the two previous
processes, this process has also no global variables, so let p2 be
its unique state.

• 〈p2, F-S-E〉
stop−driver
−−−−−−−−→〈p2, T-S-E〉 and

〈p2, T-S-E〉
is−stopped

−−−−−−−−→〈p2, T-S-E〉: The process uses the
messages “is-stopped” and a “stop-driver” to indicate that the
driver is stopped.

• 〈p2, F-S-E〉
non−stopped
−−−−−−−−−→〈p2, F-S-E〉: It sends a “non-

stopped” message to indicate that the driver is still running.

The process STOP-D: Again, this process has no global vari-
ables, so let p3 be its unique state.

• 〈p3, n0〉
stop

−−−→〈p3, eDecrement · n1〉: STOP-D sends a “stop”
request to STOPPING-FLAG, and calls Decrement.

• 〈p3, n1〉
is−stopped

−−−−−−−−→〈p3, RELEASE〉. If the driver is stopped,
the allocated resources are released.

This process has a copy of the function Decrement that will be
described below.

The process REQUEST: This process has a global variable g
that can be 0, 1, or -1. It is set initially to 1. Let g0, g1, and g−1 be
the global states of the PDS that correspond to the cases where g is
equal to 0, 1, and -1, respectively. The process REQUEST does the
following:

1. It starts by calling a function Increment. This function will set
g to -1 if the STOPPING-FLAG is set to TRUE, otherwise, it
will increment the counter, and set g to 0.

8 2005/7/19

2. If Increment returns 0, REQUEST performs the work it has to
do, and then asserts that STOPPING-EVENT is in state F-S-E
(i.e., that the driver is still running).

3. Afterwards, it calls a function Decrement that decrements the
counter. If this counter has reached 0, it sends a message to
inform STOPPING-EVENT that the driver is stopped because
there are no more requests running.

The process REQUEST can be modeled by the following PDS
rules, where x ∈ {1, 0,−1}:

• 〈gx, e〉
τ
−→〈gx, eInc · n〉. First, Increment is called;

• 〈g0, n〉
τ
−→〈g0, nWork〉. If Increment returns 0, REQUEST per-

forms some work.
• 〈g0, nWork〉

τ
−→〈g0, nEnd−Work〉. The work ends.

• 〈g0, nEnd−Work〉
non−stopped

−−−−−−−−−→〈g0, eDecrement〉. After the
work is finished, we have to make sure that the driver is still
running, i.e., that STOPPING-EVENT is in F-S-E.

• 〈g0, nEnd−Work〉
is−stopped

−−−−−−−−→〈g0, ABORT 〉. If this is not the
case, we have reached an error, and the program ABORTs.

• 〈gx, n〉
τ

−→〈gx, eDecrement〉. After, Decrement is called.

The function Increment is represented as follows:

• 〈gx, eInc〉
stop′

−−−−→〈g−1, ε〉. If STOPPING-FLAG is in T-S-F,
the function returns -1;

• 〈gx, eInc〉
non−stop

−−−−−−−→〈gx, n′〉. Otherwise, it increments the
counter, and returns:

• 〈gx, n′〉
incr
−−−→〈g0, ε〉

The function Decrement is represented as follows, where g ∈
{gx, p3} (this function is shared by REQUEST and STOP-D):

• 〈g, eDecrement〉
dec
−−−→〈g, n′′〉. The counter is decremented.

• 〈g, n′′〉
not−zero
−−−−−−−→〈g, ε〉. If it has not reached 0, the function

terminates;

• 〈g, n′′〉
is−zero
−−−−−−→〈g, n′′′〉. Otherwise, it communicates with

STOPPING-EVENT using a message “stop-driver”:

• 〈g, n′′′〉
stop−driver
−−−−−−−−→〈g, ε〉

The erroneous trace: The error arises even if we have only
one running request, i.e., if we have the processes STOP-D,
COUNTER, STOPPING-FLAG, STOPPING-EVENT, and an in-
stance of REQUEST running in parallel. We show that the pro-
gram can reach the bad point ABORT. A configuration will be
represented by a 5-tuple (a1, a2, a3, a4, a5), where a1, a2, a3, a4,
and a5 represent the configurations of the processes STOP-D,
COUNTER, STOPPING-FLAG, STOPPING-EVENT, and RE-
QUEST, respectively. The initial configuration is

“

〈p0, 10〉, 〈p1, F-S-F〉, 〈p2, F-S-E〉, 〈p3, n0〉, 〈g1, e〉
”

With a τ action, this configuration can move to:
“

〈p0, 10〉, 〈p1, F-S-F〉, 〈p2, F-S-E〉, 〈p3, n0〉, 〈g1, eInc · n〉
”

and then by exchanging a “non-stop” message between REQUEST
and STOPPING-FLAG to:

“

〈p0, 10〉, 〈p1, F-S-F〉, 〈p2, F-S-E〉, 〈p3, n0〉, 〈g1, n
′ · n〉

”

Now, STOP-D can send a “stop” request to STOPPING-FLAG:
“

〈p0, 10〉, 〈p1, T-S-F〉, 〈p2, F-S-E〉, 〈p3, eDecrement·n1〉, 〈g1, n
′·n〉

”

The counter is decremented:
“

〈p0, 0〉, 〈p1, T-S-F〉, 〈p2, F-S-E〉, 〈p3, n
′′ · n1〉, 〈g1, n

′ · n〉
”

The counter is tested as to whether it is 0 by exchanging the
message “is-zero”:

“

〈p0, 0〉, 〈p1, T-S-F〉, 〈p2, F-S-E〉, 〈p3, n
′′′ · n1〉, 〈g1, n

′ · n〉
”

Therefore, Decrements confirms that the driver is stopped by send-
ing the message “stop-driver”:

“

〈p0, 0〉, 〈p1, T-S-F〉, 〈p2, T-S-E〉, 〈p3, n1〉, 〈g1, n
′ · n〉

”

Now, the resources are released:
“

〈p0, 0〉, 〈p1, T-S-F〉, 〈p2, T-S-E〉, 〈p3, RELEASE〉, 〈g1, n
′ · n〉

”

At this point, the REQUEST at point n′ decides to resume its
execution, and it increments the counter:

“

〈p0, 10〉, 〈p1, T-S-F〉, 〈p2, T-S-E〉, 〈p3, RELEASE〉, 〈g0, n〉
”

Now the request executes its work:
“

〈p0, 10〉, 〈p1, T-S-F〉, 〈p2, T-S-E〉, 〈p3, RELEASE〉, 〈g0, nWork〉
”

The work finishes:
“

〈p0, 10〉, 〈p1, T-S-F〉, 〈p2, T-S-E〉, 〈p3, RELEASE〉, 〈g0, nEnd−Work〉
”

Now, REQUEST realises that the driver was stopped by com-
municating with STOPPING-EVENT using the message “is-
stopped”and it aborts!
“

〈p0, 10〉, 〈p1, T-S-F〉, 〈p2, T-S-E〉, 〈p3, RELEASE〉, 〈g0, ABORT 〉
”

It is easy to see that this trace will be found by our technique
when using prefixes of length 8 (α8) because it contains 8 syn-
chronisation actions. The same can be achieved using the suffix
abstraction.

6.2 Application to non-recursive examples

We also applied our implementation to several examples without
recursion to which MAGIC had already been applied. The previous
version of MAGIC handles non-recursive procedure calls by in-line
expansion. The goal of these experiments was to determine whether
the method described in the paper would improve MAGIC’s per-
formance. Indeed, inlining produces huge finite-state models. Con-
sider for example a procedure having k control points and m calls
to a procedure having n control points. This system can be modeled
using a finite automaton with O(k + mn) states, or a PDS that has
only O(k + n) states.

As described next, our results are encouraging, and we believe
that they can be improved even further via a more efficient imple-
mentation. This shows that in addition to its utility in the verifi-
cation of concurrent recursive programs, our technique represents
an advance for recursive as well as non-recursive concurrent pro-
grams.

The experiments were carried out on a dual-Athlon-XP 1800+
machine with 3 GB of RAM running RedHat 9.0. We used the ith-
prefix abstraction for those experiments. The results are summa-
rized in Figure 2. The columns are explained below the table. Each
row corresponds to a different benchmark. More precisely, the srvr
series is a single OpenSSL server (1444 lines of code); the clnt se-
ries is a single OpenSSL client (1386 lines of code); ssl series is a
server and a client that execute concurrently (2830 lines of code).
Each element of a series corresponds to a different property being
verified on the same source code. The ucos benchmark (6263 lines

9 2005/7/19

of code) refers to a single process running under the Micro-C oper-
ating system; ucos-2 (12526 lines of code) and ucos-3 (18789 lines
of code) refer to two and three Micro-C processes, respectively. Fi-
nally, casting (54992 lines of code) refers to an actual controller
deployed in a metal-casting plant. In all cases, the properties we
checked were found to be valid.

Program Previous version Our technique
Abs Verif Mem Abs Verif Mem

srvr-1 25.5 0.001 24.3 25.5 1.2 31.3
srvr-2 25.8 0.001 22.2 25.7 1.3 31.3
srvr-3 25.7 0.003 23.3 25.6 1.2 31.3
srvr-4 25.5 0.025 24.3 25.6 1.2 31.3
srvr-5 25.4 0.034 25.4 25.7 2.2 34.4
srvr-6 25.7 0.038 22.3 25.7 2.3 34.1
srvr-7 25.5 0.024 24.3 25.9 2.1 34.0
srvr-8 25.4 0.035 25.4 25.8 2.1 34.0
clnt-1 18.9 0.001 16.1 19.3 0.881 22.1
clnt-2 19.2 0.001 14.1 19.0 0.950 24.9
clnt-3 18.9 0.002 16.1 19.2 0.856 23.2
clnt-4 19.1 0.001 14.6 18.9 0.880 24.9
clnt-5 18.7 0.026 18.7 19.1 1.65 27.2
clnt-6 18.9 0.027 16.1 19.3 1.78 27.2
clnt-7 19.2 0.027 14.1 19.1 1.71 27.2
clnt-8 19.2 0.027 14.1 19.3 1.68 27.2
ssl-1 46.2 16.2 56.3 46.8 2.82 58.0
ssl-2 46.2 16.1 56.3 46.4 3.83 68.7
ssl-3 46.8 14.0 56.2 46.8 19.2 450
ssl-4 46.7 14.2 56.2 46.2 2.76 57.1
ssl-5 46.7 14.0 56.2 46.8 3.02 58.3
ssl-6 46.1 14.0 53.5 46.8 2.93 58.3
ssl-7 46.3 15.0 56.3 46.2 3.34 58.3
ucos 29.1 0.044 293 6.8 0.702 110

ucos-2 84.8 578 639 16.5 1.324 161
ucos-3 168 * * 29.2 2.144 213
casting 45.7 0.257 196.1 40.3 38.2 2145

Figure 2. Abs = predicate-abstraction time (sec); Verif = model-
checking time (sec); Mem = memory consumtion (MB); * = ex-
ceeded 2 GB memory limit.

We observe that predicate-abstraction times are comparable in
the first three series of benchmarks because there was essentially no
inlining to be done. In the last four cases, the CPDS approach leads
to faster predicate abstraction, e.g., by a factor of over 5.7 for ucos-
3. In some cases, this also dramatically reduces overall memory
consumption, e.g., by over an order of magnitude in the case of
ucos-3. In terms of overall time, the CPDS approach is much better
for the ssl series, ucos-2 and ucos-3 (in this case by over two orders
of magnitude).

7. Conclusion and Future Work
The paper described how we extended the tool MAGIC to han-
dle concurrent programs with recursive procedure calls. We model
such programs using Communicating Pushdown Systems, and ex-
tend the CEGAR scheme implemented in MAGIC so that it can
manipulate CPDSs. For that, we define new predicate-abstraction-
refinement techniques to compute and refine CPDSs from C source
code. Moreover, we propose a semi-decision procedure that solves
reachability queries for CPDSs. Finally, we report on several en-
couraging non-trivial experimental results.

The semi-decision procedure is based on computing a series
of refinable finite-chain abstractions of pushdown-system path lan-

guages. We use in this work ith-prefix and ith-suffix abstractions. It
would be interesting to try other kinds of finite-chain abstractions,
such as ith-subword abstraction, or the ith-occurrence ordering ab-
straction that considers the order between the ith first occurences
of each letter in the alpahbet, etc.

For the time being, MAGIC can only handle reachability prop-
erties for programs that contain both concurrency and recursion. In
the future, we plan to extend it so that it can handle more general
properties. To do so, we need to define (approximate) techniques
for model checking CPDSs against LTL and CTL formulas.

Acknowledgment. We would like to thank Mihaela Sighireanu for
helpful discussions about the Bluetooth driver program.

References
[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis

of pushdown automata: Application to model checking. In
CONCUR’97. LNCS 1243, 1997.

[BET03a] A. Bouajjani, J. Esparza, and T. Touili. A generic approach
to the static analysis of concurrent programs with proce-
dures. In Proceedings of the 30th ACM SIPGPLAN-SIGACT
on Principles of Programming Languages, POPL’03, 2003.

[BET03b] A. Bouajjani, J. Esparza, and T. Touili. A generic
approach to the static analysis of concurrent programs
with procedures. International Journal of Foundations
of Computer Science, 2003.

[BR01] T. Ball and S. K. Rajamani. Automatically validating
temporal safety properties of interfaces. Lecture Notes
in Computer Science, 2057, 2001.

[CC77] P. Cousot and R. Cousot. Static determination of dynamic
properties of recursive procedures. In IFIP Conf. on Formal
Description of Programming Concepts. North-Holland Pub.,
1977.

[CCG+03] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular
verification of software components in C. In International
Conference on Software Engineering (ICSE), pages 385–
395, 2003.

[CGJ+00] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Com-
puter Aided Verification, pages 154–169, 2000.

[CISW05] S. Chaki, J. Ivers, N. Sharygina, and K. Wallnau. The com-
fort reasoning framework. In Computer Aided Verification,
2005.

[CK88] K.D. Cooper and K. Kennedy. Interprocedural side-effect
analysis in linear time. In PLDI, pages 57–66, 1988.

[EK99] J. Esparza and J. Knoop. An automata-theoretic approach to
interprocedural data-flow analysis. In FOSSACS’99, volume
LNCS 1578, 1999.

[ES01] J. Esparza and S. Schwoon. A BDD-based model checker
for recursive programs. In In Proc. of CAV’01, number
2102 in Lecture Notes in Computer Science, pages 324-336.
Springer-Verlag, 2001.

[FWW97] A. Finkel, B. Willems, and P. Wolper. A Direct Symbolic
Approach to Model Checking Pushdown Systems. In
Infinity’97, 1997.

[GS97] S. Graf and H. Saidi. Construction of abstract state graphs
with PVS. In O. Grumberg, editor, Proc. 9th International
Conference on Computer Aided Verification (CAV’97),
volume 1254, pages 72–83. Springer Verlag, 1997.

[HJMS02] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. In Symposium on Principles of Programming
Languages, pages 58–70, 2002.

[KIG05] V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about
threads communicating via locks. In Computer Aided
Verification, 2005.

[KRML] N. Kidd, T. Reps, D. Melski, and A. Lal. WPDS++:
A C++ library for weighted pushdown systems.

10 2005/7/19

http://www.cs.wisc.edu/wpis/wpds++/.
[Kur94] R. P. Kurshan. Computer-aided verification of coordinating

processes: the automata-theoretic approach. In Princeton
University Press, 1994.

[Mor82] J.M. Morris. Assignment and linked data structures. In
M. Broy and G. Schmidt, editors, Theoretical Foundations
of Programming Methodology, pages 35–41. D. Reidel
Publishing Co., Boston, MA, 1982.

[Nel80] G. Nelson. Techniques for program verification. Phd thesis,
Stanford University, 1980.

[NMW+01] G. Necula, S. McPeak, W. Weimer, B. Liblit,
R. To, and A. Bhargava. C intermediate language.
http://manju.cs.berkeley.edu/cil, 2001.

[QR05] S. Qadeer and J. Rehof. Context-bounded model checking
of concurrent software. In TACAS, 2005.

[QRR04] S. Qadeer, S. K. Rajamani, and J. Rehof. Summarizing
procedures in concurrent programs. In POPL 04: ACM
Principles of Programming Languages, pages 245–255,
2004.

[QW04] S. Qadeer and D. Wu. Kiss: Keep it simple and sequential.
In PLDI 04: Programming Language Design and Implemen-
tation, pages 14–24, 2004.

[Ram00] G. Ramalingam. Context-sensitive synchronization-
sensitive analysis is undecidable. ACM Transactions on
Programming Languages and Systems (TOPLAS), 22:416–
430, 2000.

[RSJ03] T. Reps, S. Schwoon, and S. Jha. Weighted pushdown
systems and their application to interprocedural dataflow
analysis. In SAS, pages 189–213, 2003.

[RSJM] T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted
pushdown systems and their application to interprocedural
dataflow analysis. Sci. of Comp. Prog. To appear.

[Sch02] S. Schwoon. Model-Checking Pushdown Systems. PhD
thesis, Technische Universität München, 2002.

11 2005/7/19

