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Abstract

This paper defines a framework in which one can formalize a variety of authorization and policy issues
that arise in access control of shared computing resources. Instantiations of the framework address such
issues as privacy, recency, validity, and trust. The paper presents an efficient algorithm for solving all
authorization problems in the framework; this approach yields new algorithms for a number of specific
authorization problems.

1 Introduction

The main issues in access control of shared computing resources are authentication, authorization and en-

forcement. ldentification of principals is handled by authentication. Authorization addresses the following
question: should a request r by a specific principal K be allowed? Enforcement addresses the problem of
implementing the authorization during an execution. In a centralized system, authorization is based on the

closed-world assumption, i.e., all authorized parties are known and trusted. In a distributed system where

all the parties are not known a priori, the closed-world assumption is not applicable. Trust management

systems [9] address the authorization problem in the context of distributed systems by requiring that autho-

rization and access-control policies be defined explicitly, using an appropriate specification language, and
relying on an algorithm to determine when a specific request is allowable. A survey of trust management
systems, along with a formal framework for understanding them, is presented in [47]. Several trust manage-

ment systems, such as Binder [17], Keynote [8], Referee [14], and SPKI/SDSI [18], have been proposed.

Our work is presented in the context of SPKI/SDSI, but several aspects of the approach should carry over to

other trust management systems and authorization frameworks.

In SPKI1/SDSI, principals are the public keys, i.e., the identity of a principal is established by checking
the validity of the corresponding public key. In SPKI/SDSI, name certificates define the names available
in an issuer’s local name space; authorization certificates grant authorizations, or delegate the ability to
grant authorizations. The fundamental problem in SPKI/SDSI (or any other trust management system) is
the authorization problem (AP), which is defined as follows: given a security policy—which in SPKI1/SDSI
is represented by a set of name and authorization certificates—can a principal K access resource R?

Certificate-chain discovery refers to the problem of finding a “proof” that K can access resource R.
(In the case of SPKI/SDSI, a proof is a chain of certificates.) If found, the proof can be presented by K
to R. R checks the validity of the proof, and if the proof is valid, K is allowed access to R. Therefore,
algorithms for certificate-chain discovery can also be used in frameworks such as proof-carrying autho-
rization [3]. An efficient certificate-chain-discovery algorithm for SPKI/SDSI was presented by Clarke
et al. [15]. An improved algorithm was presented by Jha and Reps [23]. The latter algorithm is based on

*Institutsverbund  Informatik, Universitdt Stuttgart, Breitwiesenstr. 20-22, 70565 Stuttgart, Germany; E-mail:
schwoosn@informatik.uni-stuttgart.de

TComp. Sci. Dept., Univ. of Wisconsin, 1210 W. Dayton St., Madison, W1 53706. E-mail: {jha,reps}@cs.wisc.edu.

#Stubblebine Research Labs, LLC 8 Wayne Blvd., Madison, NJ 07940. E-mail: stuart@stubblebine.com



translating SPKI/SDSI certificates to rules in a pushdown system. In [23] it was also demonstrated how
this translation enables many other questions to be answered about a security policy expressed as a set of
certificates.

In this paper, we generalize the pushdown-systems approach to enable it to address important security-
policy issues such as privacy, recency, validity, and trust. For instance, consider the following authorization
example: suppose that company X provides additional insurance to cover prescription-drug expenses that
are not covered by a patient’s health-maintenance organization (HMO). For example, the HMO might have
a very high deductible for drugs, which will be covered by the additional insurance. However, company X
only wants to provide this service to patients of a certain hospital H. For Alice to be able to buy insurance,
she needs to prove to X that she is a patient of H. Suppose that there are two certificate chains that prove
that Alice is a patient of H, where one reveals that Alice is a patient in the internal-medicine clinic and
the other reveals that Alice is a patient in the AIDS clinic. For obvious reasons Alice will prefer to use the
former chain. In other words, Alice prefers a certificate chain that reveals the least amount of information
about her. Such privacy-related issues can be addressed in our generalized framework.

In the context of SPKI/SDSI, assume that we are given a metric p on certificate chains, and hence
on proofs of authorization. The details of the metric depend on the specific issue being addressed. In
the generalized authorization problem (GAP) we are given a principal K, a set of name and authorization
certificates C, a resource R, and a metric x on certificate chains. The question that GAP addresses is
the same as AP—i.e., given C, is K authorized to access resource R?—however, an authorization proof that
solves a GAP minimizes or maximizes the given metric (depending on the application). We demonstrate that
several security-policy issues in trust management systems can be cast as GAPs with appropriate metrics.
In particular, we demonstrate how an extension of pushdown systems, called weighted pushdown systems,
can be used to solve such generalized authorization problems.

The algorithm for solving GAPs can be thought of as a generalization of the certificate-chain-discovery
algorithm. The general strategy is as follows: the set of labeled SPKI/SDSI certificates is first translated
to a weighted pushdown system.® After the translation, the answer is obtained by solving a generalized
shortest-path problem [26, 31, 35].

The main contributions of the work reported in the paper are as follows:

e The GAP framework. We define the generalized authorization problem and show how versions of
several types of security issues related to authorization can be handled in the GAP framework.

e An efficient algorithm for solving GAPs. We present an efficient algorithm for solving GAPs. This
yields several new algorithms for a number of specific authorization problems.

e A prototype implementation. MOPED [42] is a model checker for pushdown systems. We created
an extended version of MOPED that handles weighted pushdown systems, and used it implement a
prototype system that solves GAPSs.

The remainder of the paper is organized as follows: Section 2 provides background on SPKI/SDSI.
Section 3 defines the GAP framework and discusses several possible applications of it. Section 4 provides
background on pushdown systems (PDSs). Section 5 reviews the connection between SPKI/SDSI and PDSs.
Section 6 defines weighted PDSs, and shows how an analysis of the transition system defined by a weighted
PDS can be used to solve GAPs. Section 7 returns to the discussion of applications of the GAP framework.
Section 8 discusses related work. Appendix A describes an enhancement to the algorithm described in
Section 6 to generate witnesses or proofs of authorization.

1In a GAP, each certificate is labeled with a value. However, a label might depend on the execution context. For example, for
recency policies a certificate’s value represents the time the certificate was issued, or last known to be current.



2 Background on SPKI1/SDSI

2.1 Principals and Names

In SPKI/SDSI, all principals are represented by their public keys, i.e., the principal is its public key. A
principal can be an individual, process, host, or any other active entity. /C denotes the set of public keys.
Specific keys are denoted by K, K4, K, K’, etc. An identifier is a word over some alphabet Y. The set of
identifiers is denoted by .A. Identifiers will be written in typewriter font, e.g., Aand Bob.

A term is a key followed by zero or more identifiers. Terms are either keys, local names, or extended
names. A local name is of the form K A, where K € K and A € A. For example, K Bob is a local hame.
Local names are important in SPKI/SDSI because they create a decentralized name space. The local name
space of K is the set of local names of the form K A. An extended name is of the form K o, where K € K
and o is a sequence of identifiers of length greater than one. For example, K UW CS faculty is an extended
name.

2.2 Certificates

SPKI/SDSI has two types of certificates, or “certs”:
Name Certificates (or name certs): A name cert provides a definition of a local name in the issuer’s local
name space. Only key K may issue or sign a cert that defines a name in its local name space. A name cert C'
is a signed four-tuple (K, A, S, V). The issuer K is a public key and the certificate is signed by K. A is an
identifier. The subject S is a term. Intuitively, S gives additional meaning for the local name K A. V' is
the validity specification of the certificate. Usually, V' takes the form of an interval [t;, 5], i.e., the cert is
valid from time ¢, to ¢, inclusive. A validity specification can also take the form of an on-line check to be
performed.
Authorization Certificates (or auth certs): An auth cert grants or delegates a specific authorization from an
issuer to a subject. Specifically, an auth cert C'is a five-tuple (K, S, D,T,V'). The issuer K is a public key,
which is also used to sign the cert. The subject S is a term. If the delegation bit D is turned on, then a subject
receiving this authorization can delegate this authorization to other keys. The authorization specification T'
specifies the permission being granted; for example, it may specify a permission to read a specific file, or a
permission to login to a particular host. The validity specification V' for an auth cert is same as in the case
of a name cert.

We will treat certs as rewrite rules:?

e Aname cert (K,A, S, V) will be written as K A — S.

e Anauth cert (K, S, D, T, V) will be written as K O — S O if the delegation bit D is turned on;
otherwise, it will be writtenas K+ 0 — S .

The pair K, T of an auth cert refers to some resource R. Because we are primarily interested in
questions about resources, rather than questions about either K or 7" individually, we generally write
an auth certas R 0 — S O or RO — S M. Resources will be denoted by R, R4, Rp, R/, etc.

2.3 The Authorization Problem in SPKI1/SDSI

In traditional discretionary access control, each protected resource has an associated access-control list, or
ACL, describing which principals have various permissions to access the resource. An auth cert (K, S, D, T, V)

2In authorization problems, we only consider valid certificates, so the validity specification V' for a certificate does not appear
as part of its rewrite rule.



can be viewed as an ACL entry, where keys or principals represented by the subject S are given permission
to access resource K.

A term S appearing in the rules can be viewed as a string over the alphabet IC U A, in which elements of
K appear only in the beginning. For uniformity, we also refer to strings of the form S [0 and .S B as terms.
Assume that we are given a rewrite rule . — R corresponding to a cert. Consider aterm S = LX. In
this case, the rewrite rule L — R applied to the term S (denoted by (L — R)(.S)) yields the term RX.
Therefore, a rule can be viewed as a function from terms to terms, for example,

(K4 Bob — Kp)(K4 BobmyFriends) = KpmyFriends

Consider two rules ¢; = (L1 — Rj) and ¢ = (Ls — Ry), and, in addition, assume that Lo is a prefix
of Ry, i.e., there exists an X such that Ry = Lo X. Then the composition ¢y o ¢q isthe rule L1 — Ry X.
For example, consider the two rules:

c1: Ky friends — K 4 Bob myFriends cy: K4Bob— Kp

The composition cs o ¢; IS K4 friends — Kp myFriends. Two rules c¢; and ¢, are called compatible if
their composition ¢s o ¢; is well defined3

A problem that often needs to be solved is the authorization question: “Given a set of certs C and a
principal K, is K allowed to access resource R?” A certificate-chain-discovery algorithm provides more
than just a simple yes/no answer to the authorization question; in the case of a yes answer, it identifies a
chain of certificates ¢, o ¢;,_1 o --- o ¢1 that proves that principal K is allowed to access R. Formally,
certificate-chain discovery attempts to find a certificate chaingo ¢, _1 o - - - o ¢1 such that

(ckock—r10---oc)(RO)e{KO KR} .

Intuitively, ¢ o cr_1 o - -+ o ¢q represents a path from R [, which represents the resource, to either K O or
K M, which represent two forms of “permission for K to access”: with and without delegation, respectively.

Clarke et.al [15] presented an algorithm for certificate-chain discovery in SPKI/SDSI with O(r%|C|)
time complexity, where n x is the number of keys and |C| is the sum of the lengths of the right-hand sides of
all rules in C. Jha and Reps [23] presented a different algorithm, based on the theory of pushdown systems.

3 The Generalized Authorization Problem

In this section, we formally define the generalized authorization problem, or GAP. Later in the section, we
show that several issues, such as privacy, validity, recency, and trust, can be formulated in the GAP frame-
work. In this framework, certificates are labeled with weights that are drawn from a bounded idempotent
semiring.

Definition 3.1 A bounded idempotent semiring is a quintuple (D, ®, ®,0,1), where D isaset, 0 and 1 are
elements of D, and & (the combine operation) and ® (the extend operation) are binary operators on D such
that

1. (D, ®) is a commutative monoid with 0 as its neutral element, and & is idempotent (i.e., for all a € D,
a®a=a).

3Note that in general the composition operator o is not associative. For example, c3 can be compatible with ¢z o ¢1, but ¢3 might
not be compatible with c2. Therefore, c3 o (c2 o c1) can exist when (c3 o c2) o c; does not exist. However, when (c3 oc2) o ¢1 exists,
S0 does c3 o (c2 o c1); moreover, the expressions are equal when both are defined. Thus, we allow ourselves to omit parentheses
and assume that o is right associative.




2. (D, ®) is a monoid with the neutral element 1.

3. ® distributes over &, i.e. for all a,b,c € D we have

a®(b®c)=(a®b) D (a®c) and (adb)@c=(a®@c)®(b®c).

4. 0is an annihilator with respect to ®, i.e,,foralla € D,a®0=0=0® a.

5. In the partial order C defined by: Va,b € D, a C biff a & b = a, there are no infinite descending
chains.

A weighted SPKI1/SDSI system WSS is a 3-tuple (C, S, f), where C is a set of certs, S = (D, ®, ®,0,1)
is a bounded idempotent semiring, and f: C — D assigns weights to the certs in C. We extend the function f
to certificate chains in a natural way, i.e., given a certificate chain ¢ o cj_1---ocy, f(ckocg_10---0¢1)
isdefined as f(a) ® --- ® f(ck—1) ® f(ck).

Definition 3.2 Given a weighted SPKI/SDSI system WSS = (C,S, f), a principal K, and a resource
Ry, proof (C, K, Ry) denotes the set of certificate chains that prove that K can access Rp. Formally,
proof (C, K, Rr) is the set of certificate chains ¢y, o ¢;_1 o - - - o ¢; such that:

(chocp_10--c)(Rp0) e {KO KM}

The generalized authorization problem (GAP) asks the following two questions: (1) Is proof (C, K, Rr)
non-empty? (2) If proof (C, K, Rr) is non-empty, then find the following two quantities:

o §:=@{ f(cc) | cc € proof (C,K,Rr)};

e a witness set of certificate chains w C proof (C, K, Rr) such that @ f(cc) = 9.

ccEW

Notice that the extender operation ® is used to calculate the value of a certificate chain. The value of a set
of certificate chains is computed using the combiner operation &. In general, it is enough for w to contain
only a finite set of minimal elements (i.e., minimal with respect to the partial order C). Intuitively, GAP
attempts to find a set of certificate chains proving that K can access [ such that the combination (using
the operator @) of their weights is minimal.

We now demonstrate that several authorization-related problems can be cast in this framework.

Privacy-preserving certificate chains
We return to the example described in the Introduction, in which company X offers additional insurance to
patients of a certain hospital H. The certificates relevant to the problem are shown in Figure 1. Kx O rep-
resents the service offered, i.e., the additional insurance offered by company X. The filled square represents
the fact that this authorization cannot be delegated, e.g., an eligible patient cannot delegate the action of
buying insurance to one of their friends. The principals corresponding to the clinics of AIDS treatment and
internal medicine in hospital H are denoted by K a7ps and Kg_ . Alice is a patient in both clinics.
Suppose that Alice wants to buy the insurance. In this case, both (4) o (2) o (1) and (5) o (3) o (1) are
equal to Kx O — K5 B However, the certificate chain (4) o (2) o (1) reveals that Alice probably has
AIDS, which is information that Alice may not wish to reveal to company X. Therefore, Alice would prefer
to offer the certificate chain (5) o (3) o (1) to company X; it proves that she is authorized to buy additional
insurance, but reveals the least amount of information about her.



Certificates weights
Kx O — Ky patient B (1) I
Ky patient — Kp_arps patient (2) I
Ky patient — Kpy_jj patient (3) 1
Ky _arps patient — Kpiice (4) S
Ky_1yv patient — Kjpiice (5) I

Figure 1. A set of weighted certificates.

Privacy can be modeled in the GAP framework using the semiring (D, ®, ®, 0, 1), defined as follows:
D = {1,S}, where I and S stand for “insensitive” and “sensitive”, respectively. The 0 and 1 elements are
S and I, respectively. The & and ® operators are defined as follows (where x denotes either S or I):

Ior=x0l=1 and SOrz=xdS==z
SRQr=z5=S5 and IQr=zx ==z

It is easy to check that conditions 1—4 of Definition 3.1 are satisfied. Condition 5 is trivially satisfied because
D is finite. The weights for the certificates are shown in Figure 1: certificate (4), if_a;ps patient —

Kyiice, is labeled S because it reveals that Alice is a patient in the AIDS clinic; all other certificates are

labeled I. The weights of the certificate chain (4) o (2) o (1) and (5) o (3) o (l)areI® I® S = S and

I®1®I1 = I,respectively. Obviously, Alice prefers the certificate chain with weight 1. In Section 6, we

show how Alice can discover such a certificate chain.

Maximally-valid certificate chain. Let V'(c) be the expiration value of cert ¢, i.e., the cert ¢ will expire
at time Teyrrent + V(c), Where Tyene 1S the current time. The expiration value of a certificate chain
ko cp_10---0c is minf_, V(¢;). Suppose that Alice wants to login to host H. If Alice provides a
certificate chain that is only valid for two minutes, then she will be logged off by the host after two minutes.
Thus, Alice wants to find a certificate chain that authorizes her to login to H, but has the maximum expiration
value among all such certificate chains.

Most-recent certificate chain. Let R(c) be the time (relative to the current time) when the cert ¢ was issued

or an on-line check was performed on cert ¢, i.e., Tcyrrent — R(c) is the actual time of issue or the last on-line

check. We call R(c) the recency associated with cert c. The recency of a certificate chain ¢, ocx_10---0¢;

is equal to max”_; R(c;). Suppose that Alice wants to login to host H. For risk-reduction purposes, host H

might mandate the use of a certificate chain whose recency is no more than ten minutes. In this case, Alice
wishes to find a certificate chain that authorizes her to login to H and has the minimum recency among all
such chains. Let c; o ¢,_1 o - - - 0 ¢1 be the certificate chain with minimum recency. If maxf:l R(c;) is less

than or equal to ten minutes, then Alice can use the certificate chain to login to H.

Certificate chains with maximal trust

Assume that each certificate c is assigned a trust level 7r(c) by the issuer of the certificate. Intuitively, 7r(c)
denotes the confidence that the issuer of ¢ has in the relationship expressed by the certificate c. The trust
level of a certificate chain g, oc,_10---0cy IS ®f:1 Tr(c;), where ) is defined in Table 1. Suppose that
Alice wants to use server S, but .S requires a certificate chain that has a trust level above a certain value v. In
this case, Alice wants to find a certificate chain that authorizes her to use .S, but has the maximal trust level
among all such chains. If such a certificate chain has a trust level above v, Alice can use S.

Formalization using semirings. The semirings for the three cases discussed above are shown in Table 1.
In the case of the maximal-trust example, the trust levels are drawn from a totally ordered set with four
elements {N, L, M,H},where N J L J M 3 H. Elements L, M, and H denote low, medium, and high



D 2] & 0
Validity | NU {£o0} max | min | —oo
Recency | NU {oco} min | max | oo |0
Trust {N,L,M,H} | 1 L N

Table 1: Semirings for validity, recency, and trust.

levels of trust, respectively. The element N stands for “no link”.# The join LI and the meet 1 operator on
this totally ordered set are defined as follows (where 2 and y are arbitrary elements of { N, L, M, H}):

x ifzdy y ifzdy
rUy = : Ty = :
y  otherwise x otherwise

4 Pushdown Systems
A pushdown system is a transition system whose states involve a stack of unbounded length.

Definition 4.1 A pushdown system is a triple P = (P,T", A), where P and T" are finite sets called the
control locations and the stack alphabet, respectively. A configuration of P is a pair (p, w), where p € P
and w € T'*. A contains a finite number of rules of the form (p,v) —»p (p’,w), where p,p’ € P, v € T,
and w € I'*, which define a transition relation between configurations of P as follows:

Ifr = (p,7) —p (p/,w), then (p,yw') %p (p',ww') for all w" € T*.

We also write ¢ =p ¢’ to express that there is some rule r such that ¢ %p c, and we omit the index P if

‘P is understood. The reflexive and transitive closure of = is written =-*. Given a set of configurations C,
we define pre*(C) :={c | e € C: ¢ =* ¢} and post*(C) := { | e € C: ¢ =* ¢ }. to be the sets of
configurations that are backwards and forwards reachable from elements of C', respectively.

Without loss of generality, we assume henceforth that for every (p,~v) — (p’,w) we have |w| < 2; this
is not restrictive because every pushdown system can be simulated by another one that obeys this restriction
and is larger by only a constant factor; e.g., see [23].

Because pushdown systems have infinitely many configurations, we need some symbolic means to rep-
resent sets of configurations. We will use finite automata for this purpose.

Definition 4.2 Let P = (P, I', A) be a pushdown system. A P-automaton is a quintuple A = (Q,T", —
, P, F')where @ 2 P isafinite set of states, — C @ xT"x Q is the set of transitions, and F' C () are the final
states. The initial states of A are the control locations P. A configuration (p, w) is accepted by A if p —-* ¢
for some final state ¢. A set of configurations of P is regular if it is recognized by some P-automaton. (If P
is understood, we omit the prefix P and merely refer to “automaton™.)

A convenient property of regular sets of configurations is that they are closed under forward and back-
ward reachability. In other words, given an automaton .4 that accepts the set C, one can construct automata
Aprex and Ao that accept pre*(C') and post*(C'), respectively. The general idea behind the algorithm
for pre* [11, 19] is as follows:

“Note that “highest level of trust” is denoted by the element H, which is lowest in the total order.



(Kx,O) — (Kp,patient W) (D)
(Kp,patient) — (Ky_aips,patient) (2)
<KH, patient) — <KH—IM7 patient) 3
(KH-a1ps,patient) — (Kpiice, ) (4)
(Ku—1v,patient) — (Kpice,€) )

Figure 2: The PDS rules that correspond to Figure 1.

Let » = (P,I', A) be a pushdown system and A = (Q,T', —¢, P, F') be a PP-automaton accepting a
set of configurations C. Without loss of generality we assume that .4 has no transition leading to an initial
state. pre*(C') is obtained as the language of an automaton A, = (Q,I', —, P, F') derived from A by a
saturation procedure. The procedure adds new transitions to .4 according to the following rule:

If (p,) — (p',w) and p’ —5* ¢ in the current automaton, add a transition (p,, q).

In [19] an efficient implementation of this procedure is given, which requires O(|QP|A|) time and
O(|Q| |A|+ |—o]|) space. Moreover, another procedure (and implementation) are presented for constructing
a P-automaton that accepts post*(C'). In the following, we show that extensions of these procedures provide
efficient algorithms for discovering the certificate chains needed in generalized authorization problems, such
as those discussed in Section 3. We will present these extensions for pre*; the same basic idea applies to
post™, but this is omitted for lack of space.

5 The Connection Between SPK1/SDSI and Pushdown Systems

The following correspondence between SPKI/SDSI and pushdown systems was presented in [23]: let C be
a (finite) set of certificates such that /¢ and Z. are the keys and identifiers that appear in C, respectively;
with C we associate the pushdown system Py = (K¢, Ze U {T, B}, Ac), i.e., the keys of C are the control
locations and the identifiers form the stack alphabet; the rule set A¢ is defined as follows:

e if C contains a name cert K A — K’ o (where ¢ is a sequence of identifiers), then Ac contains a
rule (K,A) — (K',o);

e if C contains an auth cert K O — K’ o b (where b € {{J, ®}), then A¢ contains a rule (K,0) —
(K', ob).

For instance, consider the set of certificates C from Figure 1. The corresponding pushdown system 7
has the control locations { Kx, K7, Kg—aips, Kg—1m, Kaiice }, the stack alphabet {patient, ], B}, and
the set of rules listed in Figure 2.

The usefulness of this correspondence stems from the following simple observation: A configuration
(K, o) of P can reach another configuration (K’, ¢’) if and only if C contains a chain of certificates that,
when applied to K o, yield K’ ¢’. For instance, in the example above Alice can prove that she has the
right to buy additional insurance because (K x,) =* (Kjpiice, ). In the authorization problem, we
are given a set of certs C, a principal K, and resource Rr. In terms of the PDS P that corresponds to
certificate set C, the authorization problem can be stated as follows: K should be granted access to resource
Ry iff the condition (Rp,0) € pre*({(K,O), (K,M)}) holds. Thus, in the medical example, we wish to
determine whether (Kx,00) € pre*(S), where S = {(Kj1ice, D), (Ka1ice, B)}. The automaton shown
in Figure 3(a) accepts the set of configurations S. The set of predecessor configurations of the set S or
pre*(S) is shown in Figure 3(b). Because there is a transition on the symbol OO0 from state K x to the



Figure 3: (a) Automaton representing the configurations S = {(Kj1ice, ), (Ka1ice, ®) }. (b) Automaton
representing the configurations in pre*(S).

accepting state s, (K x,0) € pre*(S). In other words, Alice is authorized to buy additional insurance. (The
extra annotations 7 (insensitive) and S (sensitive) on the transitions indicate whether the transitions involve
sensitive information. The algorithm for deriving these labels is presented in Section 6.)

6 Solving the Generalized Authorization Problem

The types of problems treated in [23] could be characterized as having a qualitative nature; they answer
questions such as “Is a given principal allowed to access a given resource?” In this section, we show how
to answer questions that have an additional quantitative component, e.g. “How long is a given principal
allowed to access a given resource?” To do so, we consider pushdown systems whose rules carry weights.

6.1 Weighted Pushdown Systems

We consider pushdown system whose rules are given values from some domain of weights. The weight
domains of interest are the bounded idempotent semirings from Definition 3.1.

Definition 6.1 A weighted pushdown system is a triple W = (P, S, f) such that P = (P,T',A) is a
pushdown system, S = (D, ®, ®,0, 1) is a bounded idempotent semiring, and f: A — D is a function that
assigns a value from D to each rule of P.

Let o € A* be a sequence of rules. Using f, we can associate a value to o, i.e., if o = [r1,... 7],
then we define v(o) := f(n) ® ... ® f(rk). Moreover, for any two configurations ¢ and ¢ of P, we let
path(c, ¢') denote the set of all rule sequences [ry, ... , 7] that transform cinto ¢/, i.e., ¢ SUTRN NS

Definition 6.2 Given a weighted pushdown system W = (P, S, f), where P = (P,I", A), and a regular set
C C P x I'*, the generalized pushdown reachability (GPR) problem is to find for each c € P x I'*:

e i(c) :=P{v(o) | o € path(c,d),d € C};

e a witness set of paths w(c) C |J path(c,¢’)suchthat @ v(o) = d(c).
cdeC oew(c)



In general, it is enough for w(c) to contain only a finite set of paths whose values are minimal ele-
ments of {v(o) | o € path(c,c’), ¢ € C}, i.e., minimal with respect to the partial order C defined in
Definition 3.1(5).

For the remainder of this section, let WV denote a fixed weighted pushdown system: W = (P, S, f),
where P = (P,I',;A)and S = (D, ®, ®,0,1); let C denote a fixed regular set of configurations, represented
by a P-automaton A = (Q,T", —¢, P, F') such that .4 has no transition leading to an initial state.

The GPR problem is a multi-target meet-over-all-paths problem on a graph. The vertices of the graph
are the configurations of P, and the edges are defined by P’s transition relation. The target vertices are the
vertices in C. Both the graph and the set of target vertices can be infinite, but have some built-in structure
to them; in particular, C is a regular set.

Because the GPR problem concerns infinite graphs, and not just an infinite set of paths, it differs from
other work on meet-over-all-paths problems. As in the (ordinary) pushdown-reachability problem [11, 19],
the infinite nature of the problem is addressed by reporting the answer in an indirect fashion, namely, in the
form of an annotated automaton. An answer automaton without its annotations will be identical to an A,
automaton created by the algorithm of [19]. For each ¢ € pre*(C), the values of §(c¢) and w(c) can be read
off from the annotations by following all accepting paths for ¢ in the automaton; for ¢ ¢ pre*(C'), the values
of 6(c) and w(c) are 0 and 0, respectively.

The solution to the GPR problem is presented in several stages:

e We first define a language that characterizes the sequences of transitions that can be made by a push-
down system P and automaton A for C'.

e \We then turn to weighted pushdown systems and the GPR problem. We use the language characteri-
zations of transition sequences, together with previously known results on a certain kind of grammar
problem [31, 35] to obtain a solution to the GPR problem.

e However, the solution based on grammars is somewhat inefficient; to improve the performance, we
specialize the computation to our case, ending up with an algorithm for creating an annotated automa-
ton that is quite similar to the pre* algorithm from [19].

6.2 Languages that Characterize Transition Sequences

In this section, we make some definitions that will aid in reasoning about the set of paths that lead from a
configuration ¢ to configurations in a regular set C'. We call this set the reachability witnesses for c € P xI*
with respect to C': ReachabilityWitnesses(c, C') = J ¢ path(c,c’).

It is convenient to think of PDS P and automaton A (for C) as being combined in sequence, to create a
combined PDS, which we will call P.A. P.A’s states are PUQ = @, and its rules are those of P, augmented
with a rule (g,~) — (¢’, €) for each transition ¢ - ¢’ in A’s transition set —.

We say that a configuration ¢ = (p, 2 ... V) is accepted by P.A if there is a path to a configuration
(qf,€) such that g, € F. Note that because .4 has no transitions leading to initial states, P.A’s behavior
during an accepting run can be divided into two phases—transitions during which P.4 mimics P, followed
by transitions during which P.A mimics A: once P.A reaches a state in () — P), it can only perform a
sequence of pops, possibly reaching a state in F. If the run of P.4 does reach a state in F', in terms of the
features of the original 7 and .4, the second phase corresponds to automaton .4 accepting some configuration
 that has been reached by P, starting in configuration c. In other words, P.A accepts a configuration c iff
c € pre*(C).

The first language that we define characterizes the pop sequences of P.A. A pop sequence for ¢ € Q,
v eT,and ¢’ € Q is a sequence of P.A’s transitions that, and (i) starts in a configuration (g, v), and (ii) ends

10



Production for each
(1) PS(g.a) — € g5 q €—o
(2) PSpap) — € (p,y) — (W,e) e A, pe P
(3) PSgprg) — PSipyg) (p,7) = (YY) €A pEP qeQ
4) PSprg) — PSwang) PSwargy  (7) = (0, 9"Y") €A PEP 4.4 €Q

Figure 4: A context-free language for the pop sequences of P.4, and the P.A rules that correspond to each
production.

in a configuration (¢,¢). The family of pop sequences for a given ¢, -, and ¢’ can be characterized by the
complete derivation trees ° derived from nonterminal PS(4,7,4")» Using the grammar shown in Figure 4.

Theorem 6.1 PDS P.A has a pop sequence for ¢, +, and ¢’ iff nonterminal PS(4,~,q) Of the grammar shown
in Figure 4 has a complete derivation tree. Moreover, for each derivation tree with root PS, , ./, a preorder
listing of the derivation tree’s production instances (where Figure 4 defines the correspondence between
productions and PDS rules) gives a sequence of rules for a pop sequence for ¢, , and ¢’; and every such

sequence of rules has a derivation tree with root PS, ., ).

Proof: [Sketch] To shrink the stack by removing the stack symbol on the left-hand side of each rule of PA,
there must be a transition sequence that removes each of the symbols that appear in the stack component of
the rule’s right-hand side. In other words, a pop sequence for the left-hand-side stack symbol must involve
a pop sequence for each right-hand-side stack symbol.

The left-hand and right-hand sides of the productions in Figure 4 reflect the pop-sequence obligations
incurred by the corresponding rule of P.A. O

To capture the set ReachabilityWitnesses ((p, 172 - .. va), C), Where C'is recognized by automaton A,
we define a context-free language given by the set of productions

Accepting[v172 - - Ynl(p.g) = PSrnan) PStarizae) - PStan1,m0)
foreachq; € Q, for1 <i<n-—1;andq e F
Accepted[y172 - - Yalp)  — Accepting[y1y2 - - - Ynl(p,q) foreach ¢ € I

This language captures all ways in which PDS P.A can accept (p,v172...7vx»): the set of reachabil-
ity witnesses for (p,y1v2...7,) corresponds to the complete derivation trees derivable from nonterminal
Accepted[y172 - .. Yn](p)- The subtree rooted at PS¢, | .. ..y gives the pop sequence that P.A performs to
consume symbol ~;. (If there are no reachability witnesses for (p,y172 . . . v), there are no complete deriva-
tion trees with root Accepted[y172 - - - n](p)-)

6.3 Weighted PDSs and Abstract Grammar Problems

Turning now to weighted PDSs, we will consider the weighted version of P.A, denoted by W.A, in which
weighted PDS W is combined with A, and each rule (g,7) — (¢’,€) that was added due to transition
g 5 ¢’ in A’s transition set — is assigned the weight 1.

We are able to reason about semiring sums (&) of weights on the paths that are characterized by the
context-free grammars defined above using the following concept:

SA derivation tree is complete if it has is a terminal symbol at each leaf.
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Production for each

(1) PS(g,q) — 91(€) (¢,7:4) € —o
g1 =1
(2) PSp) = 92(€) r={p7) = (e) A peP
g2 = f(r)
(3) PS@pya) — 93PS ) r={(p,7) = ({,¥)EA PEP q€Q
g3 =Xa.f(r)®a
4) PSwra) = 94(PSwry.0): PS(v.0) r={(p,y) = @P,YV)EA PEP qqd€Q

gs = AaXb.f(r)®a®b
(5)  Accepting[v1v2 - - - Ynl(p,q) = 95(PS(p.v1,a1)s PStar,y2.02) - - -+ PS(an—1,7ms0))
g €@, fori<i<n-1,andge F
g5 = Aa1.A02 ... A0p.01 Qa2 ® ... R any

(6) Accepted[y172 ... ~yn](p) — ge(Accepting[y17y2 - - .'yn](p,q)) qeF
g6 = Aa.a

Figure 5: An abstract grammar problem for the GPR problem.

Definition 6.3 [35] Let (.S, 1) be a semilattice. An abstract grammar over (.S, 1) is a collection of context-
free grammar productions, where each production 6 has the form

X() — gg(Xl, v ,Xk).

Parentheses, commas, and gy (where 6 is a production) are terminal symbols. Every production 6 is associ-
ated with a function gg: S* — S. Thus, every string « of terminal symbols derived in this grammar (i.e.,
the yield of a complete derivation tree) denotes a composition of functions, and corresponds to a unique
value in S, which we call valg(«) (or simply val(«) when G is understood). Let L (X) denote the strings
of terminals derivable from a nonterminal X. The abstract grammar problem is to compute, for each non-
terminal X, the value

ma(X) = QGLE(X) valg(a).

Because the complete derivation trees with root Accepted|y172 - . . 7] () €ncode the transition sequences
by which W.A accepts (p, 172 - .. Vn), to cast the GPR as a grammar problem, we merely have to attach
appropriate production functions to the productions so that for each rule sequence o, and corresponding
derivation tree (with yield) «, we have v(o) = valg(«). This is done in Figure 5: note how functions gs,
g4, and g5 place f(r) at the beginning of the semiring-product expression; this corresponds to a preorder
listing of a derivation tree’s production instances (cf. Theorem 6.1).

To solve the GPR problem, we appeal to the following theorem:

Theorem 6.2 [35] The abstract grammar problem for G and (.S, 1) can be solved by an iterative computa-
tion that finds the maximum fixed point when the following conditions hold:

1. The semilattice (.S, ) has no infinite descending chains.

2. Every production function gy in G is distributive, i.e.,

MN,..., )= M Liyyene s Lg
g(’ilefl’ ’ikEIk) (z’l,...,ik)ellx---xlk g( " ’ Zk)
for arbitrary, non-empty, finite index sets I1,... , Ij.

3. Every production function gy in G is strict in 0 in each argument.
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The abstract grammar problem given in Figure 5 meets the conditions of Theorem 6.2 because

1. By Definition 3.1, the & operator is associative, commutative, and idempotent; hence (D, ®) is a
semilattice. By Definition 3.1(5), (D, @) has no infinite descending chains.

2. The distributivity of each of the production functions g1, . .., gg Over arbitrary, non-empty, finite index
sets follows from repeated application of Definition 3.1(3).

3. Production functions g3, ..., gg are strict in 0 in each argument because 0 is an annihilator with
respect to ® (Definition 3.1(4)). Production functions ¢ and g» are constants (i.e., functions with no
arguments), and hence meet the required condition trivially.

Thus, one algorithm for solving the GPR problem for a given weighted PDS W, initial configuration
(P, 7172 - - - 7n), and regular set C' (represented by automaton .4) is as follows:

e Create the combined weighted PDS WA.
e Define the corresponding abstract grammar problem according to the schema shown in Figure 5.

e Solve this abstract grammar problem by finding the maximum fixed point using chaotic iteration: for
each nonterminal X, the fixed-point-finding algorithm maintains a value {(X), which is the current
estimate for X’s value in the maximum fixed-point solution; initially, all /(X' values are set to 0;
[(X) is updated whenever a value [(Y") changes, for any Y used on the right-hand side of a production
whose left-hand-side nonterminal is X.

6.4 A More Efficient Algorithm for the GPR Problem

The approach given in the previous section is not very efficient: for a configuration (p,yvs...v,), it
takes ©(|Q|™!|F|) time and space just to create the grammar productions in Figure 5 with left-hand-side
nonterminal Accepting[vy172 - - - Vnl(p,q)- HOWever, we can improve on the algorithm of the previous section
because not all instantiations of the productions listed in Figure 5 are relevant to the final solution; we want
to prevent the algorithm from exploring useless nonterminals of the grammar shown in Figure 5.

Moreover, all GPR questions with respect to a given target-configuration set C' involve the same sub-
grammar for the PS nonterminals. As in the (ordinary) pushdown-reachability problem [11, 19], the in-
formation about whether a complete derivation tree with root nonterminal PS, . .. exists (i.e., whether
PS(4,v,¢") 1s @ productive nonterminal) can be precomputed and returned in the form of an (annotated) au-
tomaton of size O(|Q| |A| + |—ol). Exploring the PS subgrammar lazily saves us from having to construct
the entire PS subgrammar. Productive nonterminals represent automaton transitions, and the productions
that involve any given transition can be constructed on-the-fly, as is done in Algorithm 1, shown in Figure 6.

It is relatively straightforward to see that Algorithm 1 solves the grammar problem for the PS subgram-
mar from Figure 5: workset contains the set of transitions (PS nonterminals) whose value [(¢) has been
updated since it was last considered; in line 8 all values are set to 0. A function call update(¢,r,7") com-
putes the new value for transition ¢ if ¢ can be created using rule r and the transitions in the ordered list 7.
Lines 9 and 10 process the rules of types (1) and (2), respectively. Lines 11-17 represent the fixed-point-
finding loop: lines 13, 15, and 17 simulate the processing of rules of types (3) and (4) that involve transition ¢
on their right-hand side; in particular, line 4 corresponds to invocations of production functions gs and g4.
Note that line 4 can change I(¢) only to a smaller value (w.r.t. C). The iterations continue until the values of
all transitions stabilize, i.e., workset is empty.

From the fact that Algorithm 1 is simply a different way of expressing the grammar problem for the PS
subgrammar, we know that the algorithm terminates and computes the desired result. Moreover, apart from
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Algorithm 1
Input: a weighted pushdown system W = (P, S, f)
where P = (P, A)and S = (D, ®, ®,0,1);
a P-Automaton A = (Q,T', —¢, P, F') that accepts C' such that .4 has no transitions into P states

Output: a P-automaton A,,.- = (Q,I', —, P, F) that accepts pre*(C)
a function [ that maps every (¢,v,q’) € — to the value of ma(PS(q,4,q/))
in the abstract grammar problem defined in Figure 5;

procedure update(z, r, T')
begin

—:=—U{t}

I(t) = 1(t) @ (f(r) 9 UT(1) ® ... @ UT(T))));

if [(¢) changed value then workset := workset U {t}
end

— = —q; | = 0; workset := —y;
forallt € —gdol(t) :=1;
forall r = (p,7) — (', &) € A do update((p,7,p'),7,());
while workset # () do
select and remove a transition ¢t = (q,, ¢) from workset;
for all r = (p1,71) — {(q,7) € A do update((p1,71,q'), 7, (t));
forall r = (p1,7) — (¢,7y2) € Ado
forall ¢’ = (¢',72,¢") € — do update((p1,71,4"),, (t,t'));
forall r = (p1,71) — (P, 72y) € Ado
if ' = (p/,72,q) € — then update((p1,71,4),r, (t',1));
return ((Q,T', —, P, F),1)

© 00 ~NO OB WwN -

e e e T o el =
0N U WNPRO

Figure 6: An on-the-fly algorithm for solving the grammar problem for the PS subgrammar from Figure 5.

operations having to do with [, the algorithm is remarkably similar to the pre* algorithm from [19]—the
only major difference being that transitions are stored in a workset and processed multiple times, whereas
in [19] each transition is processed exactly once. Thus, the time complexity increases from the O(|Q|?|A|)
complexity of the unweighted case [19] by a factor that is no more than the length of the maximal-length
descending chain in the semiring. (More efficient techniques that apply to certain semirings that are total
orders are discussed in Section 6.5.)

Given the annotated pre* automaton, the value of §(c) for any configuration ¢ can be read off from the
automaton by following all paths by which c¢ is accepted—accumulating a value for each path—and taking
the meet of the resulting value set. The value-accumulation step can be performed using a straightforward
extension of a standard algorithm for simulating an NFA (cf. [1, Algorithm 3.4]).

Algorithm 1 is a dynamic-programming algorithm for determining (c); Appendix A describes how to
extend Algorithm 1 to keep additional annotations on transitions so that the path set w(c) can be obtained.

6.5 Total Orderings

In the examples given in Section 3, the semirings all have the following properties: (i) the ordering C is a
total ordering; (ii) 1 is the least element with respect to =; and (iii) for all a,b € D, a®b 3 lub(a, b) (where
lub denotes “least upper bound”, or maximum, in the total order). In such cases, there is a much more
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efficient algorithm for the GPR problem based on ideas from Knuth’s generalization of Dijkstra’s algorithm
for the shortest-path problem [26].5

e In Algorithm 1, workset is implemented using a priority queue, and the transition selected in line 12 is
always one with minimum value. With this approach, the transitions processed form a non-decreasing
sequence; hence, no transition is selected from workset more than once. (In the general case, the
label of a transition may change even if the transition has been selected before, causing it to be added
to workset again.) Compared to the PDS-reachability problem for the unweighted case, all it costs to
compute the maximum fixed-point values is the cost of maintaining a priority queue. Thus, the time
complexity increases by a factor of O(log(|Q||A] + |—0]))

e The set w(c) contains exactly one path.

7 Discussion

We now discuss several issues that arise in applying the GAP framework.

Recency Policies. The recency metric presented in Section 3 is rather simplistic compared to some others
that have been studied: recency policies can be based on a number of factors, such as the financial risk of the
authentication/authorization decision [44], semantics and invalidity rate of the certificate contents, and the
security of the system used to generate the certificate. In a realistic setting, recency values of certificates need
to be normalized. One possibility is to base the normalization on the remaining lifetime of the certificate
(assuming the “not after” times in the validity specification were appropriately chosen). Let the lifetime of
a certificate be L = Tot after — Tourrent (Provided the certificate is still valid, i.e., Tyrrent is before Thot after ),

and let the recency of a certificate ¢ be defined by% In this case, the semiring for recency is

%

(R>p U {c0}, min, max, 00, 0).”

Multiple Security Policies. Authorization policies may be subject to multiple security policies. For exam-
ple, we might wish to satisfy simultaneously a most-recent certificate-chain policy and a privacy-preserving
policy. One approach is the policy-priority approach, in which the user declares the order of security-policy
priorities; for instance, privacy may be the first priority and recency the second priority. Such problems can
be addressed in the GAP framework, when the component policies involve total orders, by using pairs of
values as semiring values—e.g., (privacy, recency) values—and defining & to be lexicographic minimum
[40, Section 6.4.1]. The GAP framework can also handle partially ordered component policies, as well as
the situation where there is no clear preference among component policies [40, Section 6.4.1].

Trust Policies.  Several trust policies or metrics have been proposed in the literature, such as [7, 30, 36,
37, 48]. Not all trust metrics can be efficiently modeled in the GAP framework. For example, consider the
proposed Bounded Disjoint Paths (BDP) and Bounded Connective Paths metric, which are are NP-hard and
coNP-hard, respectively [36]. Thus, there is little hope of finding an efficient solution to these problems.
We have not investigated whether the approximation algorithms [33, 36] developed for these problems are
applicable in our setting. Similarly, the minimum-capacity-cut metric [37] cannot be easily formulated in our
framework. Because BDP and weighted shortest paths are both interesting metrics in the certificate-chain

®The approach that we describe also applies to a slightly larger class of totally ordered sets studied by Ramalingam [35];
however, our examples all fall into the class defined above, which was studied by Knuth [26].

"R>0 U {oo} has infinite descending chains; however, the only operations performed are min and max, and hence only a finite
number of values ever arise in any execution. Consequently, the GAP framework still applies.
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context, one might consider trying to use a metric of weighted-disjoint-bounded paths for certificate-chain
evaluation. However, the weighted-disjoint-bounded-paths problem has been shown to be NP-complete for
length bounds greater than 5, and approximation algorithms are NP-hard [10].

8 Related Work

A certificate-chain-discovery algorithm for SPKI/SDSI was first proposed by Clarke et al [15]. A credential-
chain-discovery algorithm for the role-based trust management language RT, was presented by N. Li et
al. [29]. In the proof-carrying-authorization (PCA) framework of Appel and Felten [3], a client uses the
theorem prover Twelf [34] to construct a proof of authorization, which the client presents to the server. To
the best of our knowledge, no one has previously considered issues such as privacy and trust in the context
of certificate-chain-discovery algorithms for trust management systems or authorization-proof-construction
algorithms for PCA. Our algorithm is based on an algorithm for a generalized shortest-path problem in
which weights on edges are drawn from a semiring. This approach is quite general, and it is likely that this
approach applies to other formalisms besides SPKI/SDSI.

Pushdown systems are related to “unrestricted hierarchical state machines”, which are collections of
finite-state transition systems connected by call and return transitions [2, 6]. They are also related to
the “interprocedural control-flow graphs” [43] and “exploded supergraphs” [38] used in interprocedural
dataflow analysis. Thus, dataflow analysis is one possible application of weighted PDSs. The algorithm
for solving GPR problems developed in Section 6.4 is related to certain existing dataflow-analysis algo-
rithms [43, 25, 41]. In particular, Sagiv et al. showed how to compute meet-over-all(-valid)-paths values
for multi-entry/multi-exit hierarchically structured graphs [41]. However, with respect to previous work on
interprocedural dataflow analysis, Section 6 makes two contributions:

e Conventional dataflow-analysis algorithms merge together the values for all configurations with the
same top-of-stack symbol. With weighted PDSs, dataflow queries can be posed with respect to a
regular language of initial stack configurations. This provides a strict generalization of the kind of
answers obtainable via ordinary interprocedural dataflow-analysis algorithms.

e Because the algorithm for solving GPR problems can provide a witness set of paths, one can provide
a client of the analysis algorithm with an explanation of why the answer to a dataflow query has the
value reported.

Model checking of pushdown systems has also been used for verifying security properties of programs [20,
22, 13]. Thus, another application of weighted pushdown systems is for verifying security properties of
programs, where the verification process requires knowing interprocedural dataflow information.

A number of trust policies or metrics have been proposed to obtain assurance on a certificate bind-
ing. The most well-known notions stem from PGP [48] where each user acts as a certificate authority by
creating certificates for entities they trust. In a transitive manner, other certificate authorities (or “recom-
mendors”) introduce new certificate authorities they trust by creating other certificates. Assurance through
this certificate-chaining process is provided, in part, by independent certificate paths [48]. Subsequent work
studies network connectivity as another trust metric [36]. Other work studies metrics based on confidence
valuations [7, 27, 30], minimum-capacity cuts on certificated edges that represent financial liabilities [37],
and an algebra for assessing trust in certificate chains [24].

Private or sensitive information may reside within certificates. This may include names, roles, and/or
other identifying information. Furthermore, chains of authorization certificates tend to mirror organization
structures, business processes, and personal relations, which may also be sensitive [4]. The principal making
the authorization request may follow a privacy policy in order to control what information is disclosed or
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leaked as part of the authorization process. Some flexibility may exist so that the requester can choose from
an alternative set of credentials that may be supplied as part of the proof of authorization. The certificate
privacy problem is related to the long history of work on information flow based on a lattice model [5,
16], which attempts to model controls on the flow of information. Traditional information-flow policies
stemming from the military [32] are concerned with information-disclosure policies under which access
to data requires a proper clearance (mandatory access control) and a need to know (discretionary access
control). We can draw from this work in the sense that our willingness to provide credentials with certain
categories of information are subject to the current “discretionary” access request. Furthermore, policies
may be based on the Chinese-Wall security policy [12] under which access to data is not constrained by
attributes of the data in question but by the data to which the subject already holds access rights. However,
the objective of the current paper has been to demonstrate a simple privacy metric that quantifies information
flow for a certificate chain.

Validity time periods have been included in certificate formats since the early certificate standards [46].
The validity of the certificate contents is suspect if the current time is not within the certificate-validity pe-
riod. Certificate-revocation lists or directories can be queried to determine if the credentials are known to be
invalid. Stubblebine [44] formalizes the notion of recent-secure authentication as a means for authenticating
a channel subject to freshness constraints. That work provides a means for reasoning about recent-secure
authentication by extending a calculus of authentication [28]. Rivest further develops the case for flexible
mechanisms that support authentication subject to recency constraints [39]. Additional recency policies and
methods of analysis for recent-secure authentication were further developed in a work that provides a mono-
tonic logic for reasoning about synchronization, revocation, and recency [45]. Other monotonic logics for
reasoning about validity intervals in the SPKI context have also been studied [21].
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Appendix

A Generation of Witness Sets

Section 6.4 gives an efficient algorithm for determining d(c); this section addresses the question of how to
obtain w(c). It may help to think of this problem as that of examining an infinite graph G whose nodes are
pairs (c,d), where c is a configuration and d a value from D, and in which there is an edge from (¢, d)
to (co, d2) labeled with » € A if and only if ¢; n, cp and f(r) ® do = d;. For a given configuration c,
finding w(c) means identifying a set of paths oy, ... , o) such that path o;, 1 < i < k, leads from some
(¢,d;) to some (c;, 1), where ¢; € C, and @le d; = d(c). In other words, w(c) = {o1,... ,0k} proves
that 6(c) really has the value computed by Algorithm 1. We note the following properties:

e In general, k£ may be larger than 1, e.g., we might have a situation where §(c) = d; @ da because of
two paths with values d; and d», but there may be no single path with value d; & ds.

e We want to keep w(c) as small as possible. If a witness set contains two paths o1 and o9, where
v(o1) C v(o9), then the same set without o5 is still a witness set.
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Algorithm 2
1 procedure update(¢, r, 1))
2 begin
3 — == U{t}
4 d=fr)@UTL) ... UT(T)):
5 5= (d[t], [l (n(t) | ¥ € T))
6 if {(t) C d then return;
7 if n(t) = nil ord C I(t) then
8 create n := {s};
9 else
10 create n := minimize(S U {s}), where n(t) = [S];
11 n(t) := [nl;
12 ) =1t @d;
13 workset := workset U {t}
14 end

Figure 7: Modified update procedure.

Like d(c), w(c) will be given indirectly in the form of another annotation (called n) on the transitions
of A,.-. We use two data structures for this, called wnode and wstruc. If ¢ is a transition, then n(¢) holds
a reference to a wnode. (We shall denote a reference to some entity e by [e].) A wnode is a set of wstruc
items. A wstruc item is of the form (d, [¢], [r], N) where d € D, [t] is a reference back to ¢, » € Ais arule,
and NV contains a sequence of references to wnodes. References may be nil, indicating a missing reference.

We can now extend Algorithm 1. The idea is that during execution, if n(t) = [S], then i(t) =
D (1,11, v)es @ Anitem (d, [¢], [r], V) in S denotes the following: Suppose that A, has an accept-
ing path starting with ¢, and ¢ is the configuration accepted by this path. Then, in the pushdown system,
there is a path (or rather, a family of paths) with value d from cto some ¢’ € C, and this path starts with . An
accepting path (in A,,.+) for a successor configuration can be constructed by replacing ¢ with the transitions
associated with the wnodes in V.

The concrete modifications to Algorithm 1 are as follows: In line 8, set n = nil. In line 9, create a
wnode n := {(1, [t], nil, ())} for every t € — and set n(t) := [n].

Figure 7 shows a revised update procedure. Line 4 of Figure 7 computes the newly discovered value for
transition ¢, and line 5 records how the new path was discovered. In line 6, if I(¢) C d, the update will not
change [(t) and nothing further needs to be done. If d C i(t) (see line 8), the new addition is strictly smaller
than any path to ¢ so far, and n(¢) only has to reference the new path. If d and i(¢) are incomparable, line 10
creates a new set consisting of the previous paths and the new path. Even though d is incomparable to /(¢),
d might approximate (C) one or more elements of S. The procedure minimize (not shown) removes these.

It is fairly straightforward to see that the information contained in S allows the reconstruction of a wit-
ness set involving t (see above). Moreover, every wnode created during execution contains references only
to wnodes created earlier. Therefore, the process of reconstructing the witness set by decoding wnode/wstruc
information must eventually terminate in a configuration from C.

During execution of the modified algorithm, several wnodes for the same transition ¢ can be created;
only one of them is referenced by ¢ at any moment, although the other wnodes may still be referenced by
other transitions. A garbage collector can be used to keep track of the references and remove those nodes to
which there is no longer any chain of references from any transition.

In the totally ordered case described in Section 6.5, every wnode can contain exactly one wstruc.

20



