
Interprocedural Path Profiling and the
Interprocedural Express-Lane Transformation

By
David Gordon Melski

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

(COMPUTER SCIENCES)

at the
UNIVERSITY OF WISCONSIN – MADISON

2002

 Copyright by David Gordon Melski 2002
All Rights Reserved

Dedicated to my parents, John and Linda Melski

i

Abstract

The contributions of this thesis can be broadly divided into two categories: we present novel path-
profiling techniques, and we present techniques for performing the express-lane transformation, a pro-
gram transformation that duplicates frequently executed paths in the hope that better data-flow facts
result along those paths.

In path profiling, a program is instrumented with code that counts the number of times particular
finite-length path fragments of the program’s control flow graph are executed. This thesis presents a
number of extensions to the intraprocedural path-profiling technique of Ball and Larus. Several of our
techniques collect information about interprocedural paths (i.e., paths that cross procedure boundaries).
We show that the overhead of our techniques is not prohibitive (300–700%), and that they often capture
more information than the Ball-Larus technique.

The express-lane transformation isolates and duplicates hot paths in a program, aiming for better
data-flow facts along the duplicated path. We describe several variants of the interprocedural express-
lane transformation, each of which duplicates hot paths from an interprocedural path profile. We show
that an interprocedural express-lane transformation helps range analysis to determine the outcome of
0–7% more branches than the intraprocedural express-lane transformation and 1.5–19% more branches
than performing no transformation.

Code growth is one drawback of the express-lane transformation. When a pair of duplicate control-
flow vertices have the same data-flow facts, it is desirable to eliminate one of the vertices (e.g., by
coalescing the duplicate vertices). We present several effective techniques for eliminating duplicated
code that has a redundant data-flow solution; this helps to control code growth.

We also present experimental results for program optimizations that are based on: (1) performing
an express-lane transformation; (2) performing range analysis; and (3) replacing decided branches and
constant expressions. We show that when used with the intraprocedural express-lane transformation,
this strategy leads to larger performance benefits than previously reported (0.7–13.0%). Using the inter-
procedural express-lane transformation also leads to performance benefits, although usually not enough
to offset the costs incurred by the transformation. It is likely that a better implementation would lower
these costs, possibly leading to a net performance gain.

ii

Acknowledgements

I love being in Madison. And I have thoroughly enjoyed being a student in Madison. Even so, graduate
school is hard, and I could not have accomplished anything without help.

First and foremost, I must thank my advisor Tom Reps for his patience and his guidance. I have
learned a lot from Tom, including not just specific knowledge in the field of computer science, but also
about how to think about problems and how to write. (Tom is an excellent editor and I wish there were
time to get more feedback on the thesis; as it is, there are many rough patches for which I must take full
responsibility.) I have been glad of the opportunity to work with him.

I would also like to thank my other committee members; I have tried to make the thesis easy to
read, but I know it is both long and sometimes dense. I am also thankful for all of the people in the
programming languages group at Wisconsin, including Susan Horwitz, Ras Bodik, Jim Larus, Tom Ball,
Charles Fischer, Mike Siff, Manuvir Das, Alexey Loginov, Glenn Ammons and many more. All of these
people have offered useful feedback and support. I cannot stress this enough: without the support and
feedback from these people, I could not have accomplished anything. There are also colleagues outside
of Wisconsin to whom I am grateful for support and suggestions, including Mooley Sagiv, Reinhard
Wilhelm, Barbara Ryder, and Laurie Hendren.

I owe thanks to Glenn Ammons for his implementation of a Ball-Larus path profiler and his imple-
mentation of the intraprocedural express-lane transformation. They were a good starting point for my
own implementations. I would also like to thank Mike Siff, Glenn Ammons, and Alexey Loginov for
reading my prelim and calming me down before the oral presentation of my prelim.

There are other crucial players in my support network. Chief among these are my parents, John and
Linda Melski. They are always there for me, and they are always supportive. I think that it is impossible
to underestimate the importance of their support.

I have also been blessed with many great friends during my tenure in Madison. These include Amy
Millen, Berit and Mark Givens, Eric Melski (my brother), Kasey Melski (my sister), Bill Winters, Amir
Roth, Chris Lukas, Alain Roy, Alexey Loginov, and Meghan Wulster. These people have lifted my
spirits countless times, and they always helped to relieve the pressures of graduate school. My soccer
teams, the Crystal Corner and the Madison O2, were also great for relieving stress, both on the field and
off.

There are many other people who have played an important role in my life while working on my
Ph.D., and I am sure that I am forgetting to mention some important people. To those people, please
know that I am grateful.

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 Interprocedural Path Profiling . 1
1.2 The Interprocedural, Express-Lane Transformation 4

1.2.1 Reducing the Hot-path Supergraph . 5
1.2.2 Using the Express-Lane Transformation for Optimization 5

1.3 Organization of the Thesis . 6

2 Related Work 7
2.1 Summary of the Ball-Larus Technique for Intraprocedural Path Profiling 7
2.2 Improving Data-flow Analysis with Path Profiles . 10

2.2.1 Constructing the Hot-path Graph . 10
2.2.2 Reducing the Hot-path Graph . 15

3 The Functional Approach to Interprocedural, Context Path Profiling 17
3.1 Background: The Program Supergraph and Call Graph 20
3.2 Modifying G∗ to Eliminate Backedges and Recursive Calls 21

3.2.1 G∗
fin has a Finite Number of Paths . 22

3.3 Numbering Unbalanced-Left Paths: A Motivating Example 24
3.3.1 What Do You Learn From a Profile of Unbalanced-Left Paths? 26

3.4 Numbering L-Paths in a Finite-Path Graph . 27
3.5 Numbering Unbalanced-Left Paths in G∗

fin . 29
3.5.1 Connection Between Numbering Unbalanced-Left Paths inG∗

fin and Numbering
L-Paths in a Finite-Path Graph . 29

3.5.2 Assigning ψ and ρ Functions . 32
3.5.3 Computing edgeValueInContext for interprocedural edges 35
3.5.4 Practical Considerations When Numbering Unbalanced-Left Paths 36
3.5.5 Calculating the Path Number of an Unbalanced-Left Path 38

3.6 Runtime Environment for Collecting a Profile . 40
3.6.1 Optimizing the Instrumentation . 40
3.6.2 Recovering a Path From a Path Number . 41

3.7 Handling Other Language Features . 43
3.7.1 Signals . 43
3.7.2 Exceptions . 44
3.7.3 Indirect Procedure Calls . 44

iv

4 The Functional Approach to Interprocedural Piecewise Path Profiling 55
4.1 Numbering Unbalanced-Right-Left Paths in G∗

fin . 56
4.1.1 Calculating numValidComps from ExitP . 59
4.1.2 Practical Considerations When Numbering Unbalanced-Right-Left Paths . . . 61

4.2 Calculating the Path Number of an Unbalanced-Right-Left Path 64
4.3 Runtime Environment for Collecting a Profile . 65
4.4 Comparing Path-Profiling Information Content . 66

5 Other Path-Profiling Techniques 70
5.1 Intraprocedural Context Path Profiling . 70
5.2 Interprocedural Context Path Profiling with Improved Context for Recursion 72
5.3 Non-Functional Approaches to Interprocedural Path Profiling 73
5.4 Hybrid Approaches to Path Profiling . 73

6 Path Profiling Experimental Results 75

7 The Interprocedural Express-lane Transformation 83
7.1 Entry and Exit Splitting . 84
7.2 Defining the Interprocedural Express-Lane . 86

7.2.1 The Minimal Predecessor Property . 89
7.2.2 The Context Property . 89

7.3 Performing the Interprocedural, Express-Lane Transformation 90
7.3.1 The Hot-Path Automata for Interprocedural, Piecewise Paths 91
7.3.2 The Hot-Path Automata for Interprocedural, Context Paths 93
7.3.3 Step Two: Hot-Path Tracing of Intraprocedural Path Pieces 95
7.3.4 Step Three: Connecting Intraprocedural Path Pieces 96

7.4 Graph Congruence of the Supergraph and the Hot-path Supergraph 99

8 Experimental Results for the Express-lane Transformation 106

9 Reducing the Hot-path (Super)graph: Partitioning Algorithms 118
9.1 Definition of a Hot-path Graph Reduction Algorithm 118

9.1.1 A Paradigm Shift? . 120
9.2 The Ammons/Larus Approach to Reducing the Hot-path Graph 121

9.2.1 Step One: Identify Hot Vertices . 121
9.2.2 Step Two: Partition Vertices into Compatible Blocks 122
9.2.3 Step Three: Apply the Coarsest Partitioning Algorithm 122

9.3 Adapting the Coarsest Partitioning Algorithm for the Hot-Path Supergraph 127
9.3.1 Properties of the Supergraph Partitioning Algorithm 129
9.3.2 Using the Supergraph Partitioning Algorithm in the Ammons-Larus Reduction

Algorithm . 129
9.3.3 Comparing and Contrasting the Partitioning Algorithms 130
9.3.4 The Supergraph Partitioning Algorithm . 132

v

10 Reducing the Hot-path Supergraph Using Edge Redirection 144
10.1 Problems Created by Performing an Edge Redirection 144
10.2 Determining When Edge Redirection is Possible . 146
10.3 Determining When Edge Redirection is Profitable . 154
10.4 Proof of Correctness . 157
10.5 Analysis of Runtime . 159
10.6 Updating a Path Profile After Edge Redirection . 160
10.7 Alternating Between Graph Reduction Strategies . 162

11 Reducing the Hot-path Graph is NP-hard 163

12 Experimental Results for Reducing the Hot-path Supergraph and for Program Optimiza-
tion 171

12.0.1 The Supergraph Partitioning Algorithm . 171
12.0.2 Edge Redirection Algorithm . 174

12.1 Using the Express-Lane Transformation for Program Optimization 178

13 RelatedWork 185
13.1 Related Profiling Work . 185
13.2 Related Path Optimization Work . 186

14 Contributions and Future Work 189

Bibliography 191

A Proof of Theorem 3.4.2 196

B Runtime Environment for Collecting an Interprocedural, Context Path Profile 199

C Proofs for Theorems in Chapter 9 203

D Proofs for Theorems in Chapter 10 210

E Determining If J ′ Preserves the Valuable Data-Flow Facts of J 215

vi

List of Tables

1 Example path profile for Figure 3. 11
2 Paths for Figure 1 translated to the hot-path graph in Figure 6. 12
3 Path profiling statistics when the profiled SPEC benchmark is run on its reference input. 76
4 Path profiling statistics when the profiling SPEC benchmark is run on its reference input. 77
5 Path profiling statistics when the profiling SPEC benchmark is run on its reference input. 79
6 Runtime of the SPEC95Int benchmarks with and without interprocedural path profiling

instrumentation. 81
7 Interprocedural path profiling overhead. 81
8 Comparison of the cost of performing various express-lane transformations and the cost

of performing interprocedural range analysis after an express-lane transformation has
been performed. 112

9 Comparison of the results of range analysis after various express-lane transformations
have been performed. 113

10 Table showing the time in seconds required to run the analyses in the first thru fourth
columns of Figure 83 . 176

11 Table showing the time in seconds required to run the reduction algorithms in the first
thru fourth columns of Figure 84 . 178

12 Base run times for SPECInt95 benchmarks. 180
13 Program speedups due to the interprocedural, context express-lane transformation. . . 180
14 Program speedups due to the interprocedural, context express-lane transformation. . . 180
15 Program speedups due to the interprocedural, piecewise express-lane transformation. . 181
16 Program speedups due to the interprocedural, piecewise express-lane transformation. . 181
17 Program speedups due to the intraprocedural, piecewise express-lane transformation. . 182
18 Program speedups due to the intraprocedural, piecewise express-lane transformation. . 182

vii

List of Figures

1 Example showing that a path profile contain more information than an edge profile. . . 2
2 Example showing the use of an interprocedural path profile. 2
3 Example control-flow graph. 10
4 Hot-path trie for the path profile shown in Table 1. 12
5 Algorithm for creating the hot-path graph from a control-flow graphG and an determin-

istic, finite automaton A that recognizes hot-paths in G (see [5, 37]). 13
6 The hot-path graph constructed by the hot-path tracing algorithm (see Figure 5) for the

control-flow graph in Figure 3 and the hot-path automaton in Figure 4. 14
7 (a) Schematic of the supergraph of a program in which main has two call sites on the

procedure pow. (b) Example of an invalid path in a supergraph. (c) Example of a cycle
that may occur in a valid path. 21

8 Example program used to illustrate the path-profiling technique. 23
9 G∗-fin for the code in Fig. 8. 45
10 Example of an invalid cycle in a program supergraph. 46
11 Modified version of G∗-fin from Fig. 9 with two copies of pow. 47
12 Part of the instrumented version of the program from Fig. 8. 48
13 Part of the instrumented version of the program from Fig. 8. 49
14 Illustration of the definition of edgeValueInContext given in Equation (5). 50
15 Schematic that illustrates the paths used to motivate the ψ functions. 51
16 Schematic of the paths used to explain the use ofψ functions to compute numValidComps(q). 52
17 null . 53
18 Example showing the effect of breaking an edge u→ v on the number of paths in pro-

cedure P . 53
19 Schematic ofG∗

fin with a call-site where the return-edge has been replaced by a surrogate
edge, but not the call-edge. 54

20 G∗
fin for piecewise-profiling instrumentation for the program given in Figure 8. 57

21 Labeled version of G∗
fin from Figure 20. 62

22 Part of the instrumented version of the program shown in Figure 8. 66
23 Part of the instrumented version of the program shown in Figure 8. 67
24 Comparison of the (theoretical) information content of various path profiling techniques. 68
25 Illustration of Transformations 1 and 2 from Section 5.1. 71
26 Graph of the average number of SUIF instructions in an observable path for interproce-

dural context, interprocedural piecewise, and intraprocedural piecewise path profiles of
SPEC95 benchmarks when run on their reference inputs. 78

27 Number of paths versus percentage of dynamic execution covered. 80
28 Schematic of a procedure Q with multiple entries; there are two call-sites that call Q,

each of which calls a different entry. 85
29 Schematic of a procedureQ with multiple exits; there is one call-site that callsQ, which

has multiple return-site vertices. 85
30 Example hot-path graph for the program shown in Figure 8. Observable path 24 from

Figure 9 has been duplicated as an express-lane. 87

viii

31 Supergraph used in examples of the interprocedural express-lane transformation. . . . 92
32 Path trie for an interprocedural, piecewise path profile 92
33 Path trie for an interprocedural, context path profile 94
34 Interprocedural Hot-Path Tracing Algorithm. 97
35 The procedures CreateVertex and ProcessCallVertex used by the algorithm in Figure 34. 98
36 Algorithm for the third phase of the interprocedural express-lane transformation. See

also Figure 37. 100
37 Auxially functions for Figure 36. 101
38 Stage during the hot-path tracing algorithm while constructing a hot-path supergraph

for an interprocedural, piecewise path profile. 101
39 Stage during the hot-path tracing algorithm while constructing a hot-path supergraph

for an interprocedural, piecewise path profile. 102
40 Stage during the hot-path tracing algorithm while constructing a hot-path supergraph

for an interprocedural, piecewise path profile. 102
41 Hot-path supergraph for an interprocedural, piecewise path profile 103
42 Hot-path supergraph for an interprocedural, context path profile 104
43 Code growth caused by the express-lane transformations. 107
44 Increase in runtime of range analysis versus the percent code coverage. 108
45 Increase in percentage of instruction operands that have a constant value versus the

percent of code coverage. 109
46 Increase in percentage of instructions that have a constant result versus the percent of

code coverage. 110
47 Increase in percentage of branch instructions that have a constant result versus the per-

cent of code coverage. 111
48 Graphs comparing the code growth and increase in analysis time for the three express-

lane transformations for CA = 99%. 114
49 Graphs comparing the results of range analysis on the hot-path supergraphs created by

the three express-lane transformations when CA = 99%. 115
50 The Coarsest Partitioning Algorithm [38, 1]. 123
51 Example of the coarsest partition algorithm. 123
52 (a) shows a partition π1 that the Coarsest Partitioning Algorithm splits into five blocks.

(b) shows a partition π2 of the same set that the Coarsest Partitioning Algorithm leaves
as four blocks. 124

53 Example showing how edge redirection may help reduce the hot-path graph. 125
54 Sample control-flow graph. 126
55 Sample control-flow graph, hot-path graph, and reduced hot-path graph. 126
56 Sample supergraph, hot-path supergraph, and reduced hot-path supergraph. 128
57 The Supergraph Partitioning Algorithm. 133
58 The function SplitPreds. 134
59 The function RepartitionCallBlock. 135
60 The function RepartitionExitBlock. 136
61 Schematic of a hot-path supergraph. 138
62 The list PredBlocks constructed in an efficient implementation of SplitPreds. 141
63 Simple supergraph with two paths. 145
64 Hot-path supergraph for Figure 63 . 145

ix

65 Hot-path supergraph from Figure 63 with an additional return-edge h′ → E′′ labeled
“)D′′”. 146

66 Example supergraph showing that if J is a meet-over-all paths solution, then the condi-
tion Tu(J(u)) v J(v′) is an insufficient criterion for replacing the edge u→ v with the
edge u→ v′. 147

67 Vertex Subsumption Algorithm for finding pairs 〈v1, v2〉 such that v1 � v2. 151
68 The function FindNonSubsumptionAtExits used by the Vertex Subsumption Algorithm 152
69 The function AddRtnEdges used by the Vertex Subsumption Algorithm in Figure 67 . . 152
70 Example of “distribution” of non-subsumption facts across congruent edges. The fact

that v1 6� v2 implies that u1 6� u2. 153
71 Example showing why non-subsumption facts might not distribute over call-edges. The

non-distribution fact v1 6� v2 is due to the fact that r1 6� r2. 153
72 Edge Redirection Algorithm. 154
73 The hot-path graph of Figure 55 after the Edge Redirection Algorithm is run (see Fig-

ure 72). 155
74 Clean-up algorithm that repairs the hot-path supergraph after the Edge Redirection Al-

gorithm has been run. 156
75 Stages used for minimizing a graph using edge redirection. 157
76 Example showing that translating a path profile after edge redirection is impossible.

(Dotted edges indicate recording edges.) . 160
77 Example program that that results in a hot-path graph that encodes a graph coloring

problem. 164
78 Schematic control-flow graph C for the program in Figure 77. 165
79 Hot-path graph for the control-flow graph shown in Figure 78. 166
80 Reduced hot-path graph H ′ for the hot-path graph H in Figure 79. 167
81 Charts showing how well the Supergraph Partitioning Algorithm does when it preserves

all of the results for conditional branches in the range analysis. 172
82 Plots of the amount of reduction done by the Supergraph Partitioning Algorithm versus

the percentage of branch results that are saved. 173
83 Plots of the amount of reduction done using successive iterations of the Supergraph

Partitioning Algorithm and the Edge Redirection Algorithm. 175
84 Plots of the amount of reduction done using successive iterations of the Supergraph

Partitioning Algorithm and the Edge Redirection Algorithm. 177
85 Comparison of strategies for reducing the hot-path supergraph while preserving decided

branches. 179
86 Schematic of the paths referred to in Equation (35). 197
87 Visual interpretation of Lemma C.0.3 . 204
88 Visualization of Case II of the proof of Lemma C.0.3 205
89 A violation of the second property of the Supergraph Partitioning Algorithm. 207
90 A violation of the third property of the Supergraph Partitioning Algorithm. 208
91 Stages used for minimizing a graph using edge redirection. 210

1

Chapter 1

Introduction

In path profiling, a program is instrumented with code that counts the number of times particular finite-
length path fragments of the program’s control-flow graph—or observable paths—are executed. A path
profile for a given run of a program consists of a count of how often each observable path was executed.
Thus, a path profile gives information about a program’s execution behavior (e.g., a path profile can be
used to identify frequently executed program fragments). One potential application of path profiling
(which we will examine in this thesis) is to transform the profiled program by isolating and optimizing
frequently executed, or hot, paths. We call this transformation the express-lane transformation, and the
isolated paths express lanes. More specifically, an express lane p is a copy of a hot path such that p has
only one entry point at its beginning; p may branch into the original code, but the original code never
branches to p. After the express-lane transformation has been performed, classical data-flow analysis is
likely to find sharper data-flow facts along the express lanes, which may create program optimization
opportunities.

1.1 Interprocedural Path Profiling

Ball and Larus have presented an efficient path-profiling technique that records how often each intrapro-
cedural, acyclic path is executed [12]. Path profiling is of interest because a path profile contains more
information than an edge profile or a vertex profile: it is always possible to calculate an edge profile
from a path profile, but not vice versa. This is shown in Figure 1. Suppose that an edge profile for the
control-flow graph shown in Figure 1 shows that each edge executed 50 times. Then very little can be de-
termined about the execution frequency of any particular path: e.g., the path [A→ B → D → E → G]
could have executed anywhere from 0 to 50 times.

Suppose we have the following path profile for the control-flow graph in Figure 1:

Path Execution Count

A→ B → D → E → G 50
A→ B → D → F → G 0
A→ C → D → E → G 0
A→ C → D → F → G 50

Compared with the edge profile, there is a good deal more information in this path profile:

1. We can calculate the edge profile from this path profile.

2. We can see that the branch taken at vertex D was perfectly correlated with the branch taken at
vertexA: the branch at D was taken only when it followed an execution of A in which the branch
at A was taken.

3. We can see that every time vertex E was executed, it was preceded by the execution of B and D.
Likewise, every time vertex F was executed, it was preceded by the execution of C and D.

2

Figure 1: Example showing that a path profile contain more information than an edge profile.

Figure 2: Example showing the use of an interprocedural path profile.

This information can be used to guide program optimization. One example of this application of path
profiling is the express-lane transformation, which we will examine later [5]. (Chapter 13 discusses
other work that uses path profiles to guide program optimization.)

We have extended the Ball-Larus technique in three directions:

1. Interprocedural vs. Intraprocedural: The Ball-Larus technique is an intraprocedural tech-
nique: it profiles each procedure separately, and the observable paths are all intraprocedural. We
show how to extend the Ball-Larus technique to obtain interprocedural path-profiling techniques;
that is, we present path profiling techniques in which the observable paths can cross procedure
boundaries. Interprocedural path profiles are capable of capturing correlations between the execu-
tion behavior of different procedures (e.g., in Figure 2, an interprocedural path profile might show
that the branch at vertex a was perfectly correlated with the branch at vertex A). Furthermore, the
average path in an interprocedural path profile is longer than the average path in an intraproce-
dural path profile, which also means that an interprocedural path profile tends to capture more of
a program’s run-time behavior than an intraprocedural path profile. (Longer paths may be better

3

for the express-lane transformation, since a long express-lane may keep a valuable data-flow fact
alive longer than a short express-lane.)

2. Context vs. Piecewise: In piecewise path profiling, each observable path corresponds to a path
that may occur as a subpath (or piece) of an execution sequence. The set of observable paths
must cover every possible execution sequence. That is, every possible execution sequence can
be partitioned into a sequence of observable paths. In context path profiling, each observable
path corresponds to a pair 〈C, p〉, where p corresponds to a subpath of an execution sequence,
and C corresponds to a context (e.g., a sequence of pending calls) in which p may occur. The
set of all p such that 〈C, p〉 is an observable path must cover every possible execution sequence.
A context path-profiling technique generally maintains finer distinctions than a piecewise path-
profiling technique.

3. Edge Values vs. Edge Functions: In our functional approach to path profiling, the numbering of
observable paths is carried out via an edge-labeling scheme that is in much the same spirit as the
path-numbering scheme of the Ball-Larus technique, where each edge of the control-flow graph
is labeled with a number, and the “name” of a path is the sum of the numbers on the path’s edges.
However, in the functional approach, edges are labeled with functions instead of values. The
path-profiling techniques that use edge-functions can maintain finer distinctions than those that
use edge-values. For example, an interprocedural path-profiling that uses edge-values may use
observable paths that begin in a procedure P and descend into a called procedureQ, or it may use
observable paths that begin in a procedure Q and exit Q into a calling procedure P , but it cannot
use observable paths that descend into called procedures and/or return from called procedures.
Functional techniques for interprocedural path-profiling do not have this restriction.1

This thesis shows that for any combination of the above traits, there is at least one path-profiling tech-
nique with those traits. In effect, we give a toolkit for generating novel path-profiling techniques.

According to the above schema, the Ball-Larus technique is an example of intraprocedural piece-
wise path profiling; for the remainder of the thesis, we use “intraprocedural piecewise path profiling”
and “Ball-Larus path profiling” interchangeably. In this thesis, we examine in detail the functional ap-
proaches to interprocedural context path profiling and interprocedural piecewise path profiling. We will
show that the overhead of these techniques is reasonable (300-700%), though they are considerably more
expensive than the Ball-Larus technique. Furthermore, both the interprocedural context path profile and
the interprocedural piecewise path profile usually contain more information than the intraprocedural
piecewise path profile. For example, the following table shows some statistics for various profiles of the
SPEC95 benchmark 130.li when it is run on its reference input:

Profiling technique
Avg. num.
instructions
per path

Avg. num. of
call-edges per
path

Avg. num. of
return-edges per
path

Inter., context 107.7 3.0 1.0
Inter., piecewise 55.6 0.6 0.5
Intra., piecewise 36.1 - -

A call-edge connects a call-site to the entry vertex of the called procedure. A return-edge connects an
exit vertex of a procedure P to a call-site that calls P . The above table shows that the interprocedural

1Note that the “functional” approach to path profiling does not use a functional-programming style; it is so named because
it labels edges with linear functions.

4

path-profiling techniques capture more information than the intraprocedural technique; furthermore,
they do capture information about the “interprocedural” behavior of li (e.g., correlations between the
execution behavior of different procedures).

1.2 The Interprocedural, Express-Lane Transformation

The express-lane transformation seeks to transform a program such that subsequent data-flow analysis
will find better data-flow facts along the program’s frequently executed paths. Consider a hot, or fre-
quently executed, path p. In the express-lane transformation, the program code is transformed so that
there is a copy p′ of p that has only one entry point at the beginning of p′; p′ may branch into the original
code, but the original code never branches to p′. We call p′ an “express lane.” The hope is that giving p′

this special status may lead to sharper dataflow facts along p′, thereby allowing greater optimization.
Section 2.2 summarizes the algorithm of Ammons and Larus for performing the intraprocedural

express-lane transformation: the algorithm takes as input a control-flow graph, and a Ball-Larus path
profile, and produces as output a hot-path graph in which the hot paths have been duplicated to form
express-lanes [5]. In [5], Ammons and Larus show that the express-lane transformation does improve
the results of conditional constant propagation [61]. Furthermore, they show that the express-lane trans-
formation combined with replacing the constants found by conditional constant propagation can lead to
improved program performance. However, performance is sometimes degraded due to the code growth
caused by the transformation.

Ammons and Larus sought to control the problem of code growth by removing duplicated code
when there was no benefit to data-flow analysis. The program optimization examined in [5] consists
of the following steps: (1) perform the express-lane transformation; (2) perform conditional constant
propagation; (3) reduce the hot-path graph while preserving constants found in previous step; and (4)
replace constant expressions with literals. The Ammons-Larus technique for reducing the hot-path graph
is based on an algorithm for minimizing deterministic, finite-state automata.

In Chapter 7, we describe how to extend the algorithm for performing the intraprocedural express-
lane to an algorithm that takes as input the program supergraph (an interprocedural control-flow graph)
and an interprocedural, path profile and produces as output a hot-path supergraph; the transformation of
a supergraph into a hot-path supergraph is called the interprocedural express-lane transformation. We
present algorithms for performing the interprocedural express-lane transformation for both interproce-
dural piecewise and interprocedural context path profiles.

We show that the interprocedural context express-lane transformation and the interprocedural piece-
wise express-lane transformation both have greater benefits for range analysis than the intraprocedu-
ral express-lane transformation does. (Some preliminary experiments suggest that the interprocedural
express-lane transformations and the intraprocedural express-lane transformation have the same benefits
on conditional constant propagation; therefore, we present results for range analysis, and not conditional
constant propagation as [5] does.) For example, range analysis of the SPEC95 benchmark compress
cannot determine if there are any conditional branches that have only one possible outcome. After the
intraprocedural express-lane transformation is applied to compress, range analysis can determine that at
least 2.2% of the conditional branches (weighted dynamically) have only one possible outcome. After
either of the interprocedural express-lane transformations is applied to compress, range analysis can
determine that at least 9.8% of the conditional branches have only one possible outcome.

5

1.2.1 Reducing the Hot-path Supergraph

Unfortunately, the interprocedural express-lane transformations can also cause a great deal more code
growth than the intraprocedural express-lane transformation. The interprocedural, context express-lane
transformation can cause 1600% code growth, although we limit the code growth to be between 20%
and 400%. This amount of code growth is likely to cause performance degradation, so we examine
techniques for reducing the hot-path supergraph. The technique used by Ammons and Larus cannot be
applied directly to the hot-path supergraph: they use a DFA-minimization algorithm, which works on
a hot-path graph (since a hot-path graph can be considered to be a deterministic, finite automaton); in
contrast, a hot-path supergraph is a pushdown automaton. We show how to adapt the DFA-minimization
algorithm (which is really a variant of the Coarsest Partitioning Algorithm [38, 1]) to obtain the Super-
graph Partitioning Algorithm, which can be used to minimize the hot-path supergraph. The Supergraph
Partitioning Algorithm is very effective: it reduces the amount of code growth (as compared to the
original program) to be no more than 140% and usually less than 30%.

Even though the Supergraph Partitioning Algorithm is effective in practice, we show that there are
some simple examples where it performs poorly. These examples motivated us to develop another tech-
nique for reducing the hot-path supergraph, called the Edge Redirection Algorithm. When combined
with the Supergraph Partitioning Algorithm, the Edge Redirection Algorithm causes further reductions
in the size of the hot-path supergraph.

1.2.2 Using the Express-Lane Transformation for Optimization

We have run experiments on using the express-lane transformation together with range analysis to op-
timize some of the SPEC95 benchmarks. Specifically, for five benchmarks, for three different profiling
techniques, and for several different hot-path supergraph reduction strategies, we have performed the
following procedure:

1. Collect a path profile.

2. Perform the express-lane transformation.

3. Perform interprocedural range analysis on the hot-path (super)graph.

4. Reduce the hot-path (super)graph.

5. Use the results of interprocedural range analysis to eliminate branches and to replace constant
expressions with a literal.

6. Emit C source code for the transformed program.

7. Compile the C source code using GCC 2.95.3 -O3.

8. Compare the runtime of the new program with the runtime of the original program.

Our experiments show a greater benefit from the intraprocedural express-lane transformation than are
reported in [5]: there was a 0.7–13.0% decrease in runtime for every benchmark. (Note however, that
our use of the express-lane transformation is different than in [5]; for example, we perform interpro-
cedural range analysis while intraprocedural constant propagation is performed in [5].) Interestingly,
in the case of the intraprocedural express-lane transformation, the code growth caused by the express-
lane transformation is not always detrimental; our experiments provide some evidence that GCC (when

6

optimizing at the -O3 level) is able take advantage of the express-lane transformation to perform addi-
tional optimizations. However, the greatest benefit is gained from the express-lane transformation when
interprocedural range analysis is used to eliminate branches and replace constant expressions.

Our experiments also show that when the above steps are performed with an interprocedural path
profile, there is a benefit to program performance, though it is usually not sufficient to overcome the costs
of the interprocedural express-lane transformation. The interprocedural express-lane transformation has
two associated costs: the first is due to code growth; the second is due to entry splitting and exit splitting.
Entry and exit splitting are mechanisms that we use to duplicate interprocedural paths. Entry splitting
allows a procedure to have more than one entry. Exit splitting allows a procedure to have more than
one exit, and to return to a different location for each exit: normally, when a procedure call is made to
procedure P a return address is given to P , and when P ’s exit is reached, control jumps to the return
address; in a procedure call to a procedure P with multiple exits, a vector of return addresses is passed,
one for each exit, and when one of P ’s exits is reached, control jumps to the appropriate return address.
We used a particularly simple but inefficient implementation of entry and exit splitting. Unfortunately,
this has a negative impact on our performance numbers.

Even with the high costs of the interprocedural express-lane transformation, we still occasionally get
some performance benefit. Also, if we skip Step 5 of the above process (i.e., eliminating branches and
replacing constants), then program performance almost always drops, usually dramatically. This implies
that the interprocedural express-lane transformation followed by range analysis is having a strong benefit
on program performance.

The above algorithm for using the interprocedural express-lane transformation for program opti-
mization complements the literature on profile-directed optimizations. More specifically, our approach
differs from those in the literature in one or more of the following aspects:

1. We duplicate interprocedural paths before performing analysis.

2. We guide our path duplication using interprocedural path profiles.

3. We perform interprocedural range analysis on the transformed graph.

4. We attempt to eliminate duplicated code when there was no benefit to range analysis.

(Points 2 and 3 may sound redundant, but they are not. For example, in [20], edge profiles are used to
duplicate intraprocedural paths.)

1.3 Organization of the Thesis

The thesis is organized as follows: Chapter 1 provides an overview of the thesis’s contributions. Chap-
ter 2 summarizes [12] and [5], which are crucial to understanding the thesis. Chapters 3 through 5
describe novel path-profiling techniques. Chapter 6 gives experimental results for our interprocedural
path-profiling techniques. Chapter 7 describes how to perform the interprocedural, express-lane trans-
formation. Chapter 8 gives experimental results for the express-lane transformation. Chapters 9 and 10
describe techniques for reducing the code growth caused by the express-lane transformation. Chapter 11
shows that this problem is NP-hard. Chapter 12 provides experimental results for the techniques pre-
sented in Chapters 9 and 10. Chapter 13 discusses related work. Chapter 14 offers some concluding
remarks.

7

Chapter 2

Related Work

In Chapter 14, we will give an overview of related profiling and programing optimization work. In this
Chapter, we give a more detailed summary of two pieces of work. Section 2.1 describes the Ball-Larus
path profiling technique of [12]; our path profiling techniques are an extension of this work. Section 2.2
describes the intraprocedural express-lane transformation presented in [5]; our interprocedural express-
lane transformations are an extension of this work. Familiarity with [12] and [5] will help to understand
the remainder of the thesis.

2.1 Summary of the Ball-Larus Technique for Intraprocedural Path Pro-
filing

This section summarizes the Ball-Larus path profiling technique presented in [12]. In path profiling, a
program is instrumented with code that counts the number of times particular finite-length path frag-
ments of the program’s control-flow graph — or observable paths — are executed. A path profile for
a given run of a program consists of a count of how often each observable path was executed. As
mentioned above the Ball-Larus strategy can be summarized as follows:

1. Start with a graph that represents a program’s control flow.

2. Apply a transformation that results in a new graph with a finite number of paths; each path through
the transformed graph corresponds to a path fragment, called an observable path, in the original
graph.

3. Number the paths in the transformed graph.

4. Instrument the program with code that counts how often each observable path is executed (by
incrementing a counter associated with the path through the transformed graph).

The Ball-Larus path-numbering scheme (used in step 3 above) applies to an acyclic control-flow
graph with a unique entry vertex Entry and a unique exit vertex Exit . For purposes of numbering
paths, control-flow graphs that contain cycles are modified by a preprocessing step to turn them into
acyclic graphs (step 2 above):

Every cycle must contain one backedge, which can be identified using depth-first search.
For each backedge w → v, add the surrogate edges Entry → v and w → Exit to the graph.
Then remove all of the backedges from the graph.

The resulting graph is acyclic. In terms of the ultimate effect of this transformation on profiling, the
result is that we go from having an infinite number of unbounded-length paths in the original control-
flow graph to having a finite number of acyclic bounded-length paths in the modified graph. A path p
in the original graph that proceeds several times around a loop will, in the profile, contribute “execution

8

counts” to several smaller “observable paths” whose concatenation makes up p. In particular, each
path from Entry to Exit in the modified graph correspond to an observable path in the original graph
(where following the edge Entry → v that was added to the modified graph corresponds to beginning
a new observable path that starts with the backedge w → v of the original graph, and following the
edge w → Exit that was added to the modified graph corresponds to ending an observable path in the
original graph at w).

In the discussion below, when we refer to the “control-flow graph”, we mean the transformed (i.e.,
acyclic) version of the graph.

The Ball-Larus numbering scheme labels the control-flow graph with two quantities:

1. Each vertex v in the control-flow graph is labeled with a value, numPaths[v], which indicates the
number of paths from v to the control-flow graph’s Exit vertex.

2. Each edge e in the control-flow graph is labeled with a value derived from the numPaths[] quanti-
ties.

For expository convenience, we will describe these two aspects of the numbering scheme as if they
are generated during two separate passes over the graph. In practice, the two labeling passes can be
combined into a single pass.

In the first labeling pass, vertices are considered in reverse topological order. The base case involves
the Exit vertex: It is labeled with 1, which accounts for the path of length 0 from Exit to itself. In
general, a vertex w is labeled only after all of its successors w1, w2, . . . , wk are labeled. When w is
considered, numPaths[w] is computed using the following equation:

numPaths[w] =
k
∑

i=1

numPaths[wi]. (1)

This equation is illustrated in the following diagram:

The goal of the second labeling pass is to arrive at a numbering scheme for which, for every path
from Entry to Exit , the sum of the edge labels along the path corresponds to a unique number in the
range [0..numPaths[Entry] − 1]. That is, we want the following properties to hold:

1. Every path from Entry to Exit is to correspond to a number in the range [0..numPaths[Entry]−
1].

9

2. Every number in the range [0..numPaths[Entry] − 1] is to correspond to some path from Entry

to Exit .

Again, the graph is considered in reverse topological order. The general situation is shown below:

At this stage, we may assume that all edges along paths from each successor of w, say wi, to Exit

have been labeled with values such that the sum of the edge labels along each path corresponds to a
unique number in the range [0..numPaths[wi]− 1]. Therefore, our goal is to attach a number xi on edge
w → wi that, when added to numbers in the range [0..numPaths[wi] − 1], distinguishes the paths of the
form w → wi → . . .→ Exit from all paths from w to Exit that begin with a different edge out of w.

This goal can be achieved by generating numbers x1, x2, . . . , xk in the manner indicated in the
above diagram: The number xi is set to the sum of the number of paths to Exit from all successors of
w that are to the left of wi:

xi =
∑

j<i

numPaths[wj]. (2)

This “reserves” the range [xi..xi + numPaths[wi]− 1] for the paths of the form w → wi → . . .→ Exit .
The sum of the edge labels along each path from w to Exit that begins with an edge w → wj , where
j < i, will be a number strictly less than xi. The sum of the edge labels along each path from w
to Exit that begins with an edge w → wm, where m > i, will be a number strictly greater than
xi + numPaths[wi] − 1.

In some cases, the number of paths in the acyclic control flow graph is too great to fit in a single
machine word (e.g., numPaths[Entry] > 232), which can make the profiling instrumentation ineffi-
cient. In this case, an edge u→ v is chosen from the graph and replaced by the edges Entry → v and
u→ Exit (as was done for backedges); then the labelling passes are rerun. This process is repeated
until numPaths[Entry] is less than or equal to the maximum value that will fit in a machine word. Each
edge removed from the control-flow graph (including backedges) is called a recording edge.

The final step is to instrument the program, which involves introducing a counter variable and ap-
propriate increment statements to accumulate the sum of the edge labels as the program executes along
a path. Recording edges are also instrumented with code to record the current observable path and reset
the counter variable to begin observing a new path.

10

Figure 3: Example control-flow graph.

Several additional techniques are employed to reduce the runtime overheads incurred. These ex-
ploit the fact that there is actually a certain amount of flexibility in the placement of the increment
statements [10, 12].

2.2 Improving Data-flow Analysis with Path Profiles

We now summarize an intraprocedural version of the express-lane transformation investigated by Am-
mons and Larus in [5]. The express-lane transformation transforms a program to isolate frequently
executed paths in the hope that better data-flow facts will results along the isolated paths. Their tech-
nique consists of the following steps, performed on each procedure independently [5]:

1. Identify frequently executed, or hot, paths. This is done using the Ball-Larus path-profiling tech-
nique [12] summarized in Section 2.1.

2. Perform the express-lane transformation on the procedure’s control-flow graph. This step creates
a new control-flow graph, called the hot-path graph in which each hot path has been duplicated.

3. Perform data-flow analysis on the hot-path graph.

4. Reduce the hot-path graph while preserving valuable data-flow solutions. This step prevents
unnecessary code growth.

5. Translate the original path profile to a path profile for the reduced hot-path graph. This step allows
the profiling information to be used by subsequent compiler phases.

Section 2.2.1 elaborates on steps 2 and 5, while Section 2.2.2 discusses step 4. We will use a running
example based on the control flow graph shown in Figure 3 and the profile shown in Table 1.

2.2.1 Constructing the Hot-path Graph

In [5], Ammons and Larus construct the hot-path graph by taking the cross-product of the control-flow
graph G and the hot-path automaton A. The hot-path automaton is a deterministic finite automaton

11

Path Frequency
Entry → A→ B → E → I 15
A→ C → E → H → I 30
A→ C → F → I → Exit 15

Table 1: Example path profile for Figure 3.

(DFA) that recognizes hot-paths in a string of control-flow edges (from G). (For purposes of the con-
struction, the control-flow graph G is considered to be a DFA that recognizes valid execution sequences
in a string of control-flow edges: each control-flow edge u→ v represents a transition from state u to
state v when the control-flow edge u→ v is seen in the input.) The hot-path automaton has two impor-
tant properties: (1) there are only a few states that are the target of more than one transition; and (2)
there is a unique state for every prefix of a hot path. These properties can be used to show that hot-path
graph has the desired express-lane versions of the hot paths.

Each vertex [v, q] of the hot-path graph H encodes a vertex v from the original control-flow graph
G and a state q from the automaton A; the execution semantics of [v, q] are taken from v. For H to
contain an edge [v, q] → [v′, q′], it must be the case that there is an edge v → v′ in G and a transition
(q, v → v′, q′) inA; here, the notation (q, v → v′, q′) indicates a transition from state q to state q′ labeled
with the control-flow edge v → v′. There is a path

[u, q0] → [v, q1] → [w, q2] . . .

in H iff there is a path
u→ v → w . . .

in G and a path
q0 → q1 → q2 . . .

in A where the transition from q0 to q1 is labeled “u→ v”, the transition from q1 to q2 is labeled
“v → w”, etc.

Ammons and Larus make use of Holley and Rosen’s data-flow tracing technique to create H [37].
This technique is an efficient way of computing the cross-product of A and G that avoids creating
vertices [v, q] that are not reachable from [Entry , root], where Entry is the entry vertex of G, root
is the start state of A, and [Entry , root] is the entry vertex of the new graph, H . Figure 5 shows the
data-flow tracing algorithm used in [5].

Ammons and Larus construct the hot-path automaton A using a modified version of the Aho-
Corasick algorithm for matching keywords in a string [2]. In this case, the keywords are hot paths
(from a Ball-Larus path profile), and, as mentioned above, the automaton works over an alphabet of
edges from the control-flow graph together with the special symbol • that matches any recording edge.
Hot-paths that do not begin at Entry are prefixed with • to indicate that they may only be reached after
traversing a recording edge.

The Aho-Corasick algorithm constructs a trie, or retrieval tree, from the set of key words (or hot
paths in this case). Assuming that all paths in Table 1 are hot, Figure 4 shows the corresponding trie.1

1The trie (and the hot-path graph) that Ammons and Larus would construct for our running example is slightly different
from those that we have shown. This is because they require that every edge from Entry and every edge that targets Exit be
a recording edge. This makes sense in the intraprocedural case when there are no paths that may contain Entry or Exit in
the middle of the path; we avoid this convention because it does not make sense when we begin discussing the interprocedural
express-lane transformation.

12

Figure 4: Hot-path trie for the path profile shown in Table 1.

Path in CFG Path in hot-path graph
Entry → A→ B → E → E → I [Entry , root] → [A, 1] → [B, 2] → [E, 3]
A→ C → E → H → I [A, 5] → [C, 6] → [E, 7] → [H, 8] → [I, 9]
A→ C → F → H → I → Exit [A, 5] → [C, 6] → [F, 10] → [H, 11] → [I, 12] → [Exit , 13]

Table 2: Paths for Figure 1 translated to the hot-path graph in Figure 6.

The trie in Figure 6 shows the structure of the hot paths that must be duplicated; this gives intuition as
to why the automaton is useful in performing the express-lane transformation. In Aho-Corasick, as each
symbol of the input string is read, an appropriate transition is made in the trie. Specifically, the next
letter of the input string is compared to the labels on outgoing edges of the current state; if a match is
found, then the matching edge is followed. If no matching edge for the next letter, e, and current state,
q, is found, then a failure function, h(q, e) is consulted.

Ammons and Larus show that in the case of the hot-path trie, the failure function is trivial [5].
Regardless of the current state, if e is not a recording edge, then the failure function returns the root
state, qroot. If e is a recording edge, then the failure function returns q•, where q• is defined to be the
target of the • edge from qroot. In Figure 4, q• = q5. Together, the edges of the trie and the failure
function define the transition function of the hot-path automaton: there is a state in the automaton for
each state in the trie; there is a transition (qi, e, qj) in the automaton if there is an edge qi → qj in the
trie labeled e or the failure function is defined so that h(qi, e) = qj . Hence forth, we will use the terms
“hot-path trie” and “hot-path automaton” interchangeably.

The hot-path automaton has the important property that only two states, qroot and q•, are the target
of more than one transition. (The states qroot and q• may be the target of multiple transitions because
the range of the failure function h is {qroot , q•}.) It follows that in the hot-path graph, hot paths are only
entered from the beginning. Figure 6 shows the hot-path graph for the running example.

The algorithm in Figure 5 also identifies recording edges in the hot-path graph: an edge [v, q] → [v ′, q′]
is a recording edge in the hot-path graph iff v → v′ is a recording edge in the original control flow graph.
Given this set of recording edges, it is possible to translate the path profile for the original graph into a

13

G ≡ (V,E) is the original (possibly cyclic) control flow graph.
A is the hot-path automaton.
Q is the set of states of A.
qroot is the start state of A.
T is the set of transitions in A.
R ⊆ E is the set of recording edges.
W is a worklist of pairs [v, q], where v ∈ V and q ∈ Q.
GA = (VA, EA) is the hot path graph.
RA ⊆ EA is the new set of recording edges in G.

V = {[Entry , qroot]}
EA = ∅
RA = ∅
W = [Entry , qroot]
WhileW 6= ∅

[v, q] = Take(W)
ForeachEdge v → v′ ∈ E
(q, v → v′, q′) ∈ T /* The unique transition for v → v′ */
If [v′, q′] 6∈ VA

Put(W, [v′, q′])
VA = VA ∪ [v′, q′]

EA = EA ∪ {[v, q] → [v′, q′]}
If v → v′ ∈ R

RA = RA ∪ {[v, q] → [v′, q′]}

Figure 5: Algorithm for creating the hot-path graph from a control-flow graph G and an deterministic,
finite automaton A that recognizes hot-paths in G (see [5, 37]).

14

Entry,root

B,2

D,root

G,3

C,root

E,root F,root

H,root

I,4

Exit,13

A,1

G,root

I,root

I,12

Exit,root

A,5

C,6

E,7 F,10

H,8 H,11

I,9

Figure 6: The hot-path graph constructed by the hot-path tracing algorithm (see Figure 5) for the control-
flow graph in Figure 3 and the hot-path automaton in Figure 4. Dashed lines represent recording
edges. Shaded boxes indicate vertices where the automaton is in the qroot state; with the exception
of [Entry , qroot], these are vertices that do not occur on an express-lane. The vertex [A, q5] is the only
vertex where the automaton is in the state q•.

15

path profile for the hot-path graph. Translating an individual path is done in two steps:

1. Find the corresponding starting point in the hot-path graph. For a path starting at Entry , this is
[Entry , root]. For a path starting at v 6= Entry , this is [v, q•].

2. Inductively trace out the path: when the hot path follows an edge v → w, the translated path
follows an edge [v, q] → [w, r].

[5] proves that this translation produces the correct path profile for the hot-path graph. Table 2 shows
the translated paths for the profile in Table 1.

2.2.2 Reducing the Hot-path Graph

A forward data-flow analysis may get better solutions on the hot-path graph than on the original control
flow graph: for a vertex v of the original control flow graph and a vertex [v, q] of the hot-path graph, we
have I(v) v J([v, q]), where I and J are the greatest fix-point solutions for data-flow analysis for the
respective graphs [37, 5]. When I(v) < J([v, q]), duplication of a hot-path has been beneficial.

However, in some cases, the code duplication may be redundant: for example, the hot-path graph
may contain duplicate vertices that have the same data-flow solution. When J([v, q]) = J([v, q ′]),
it is desirable to collapse [v, q] and [v, q′] to a single vertex and avoid unnecessary code growth. If
[v, q] has a high execution frequency (i.e., it is hot) and [v, q ′] has a low execution frequency (i.e., it is
cold), then it may be desirable to combine them even when [v, q] has weaker facts than [v, q ′] — i.e.,
J([v, q]) v J([v, q′]). Care must be taken that collapsing vertices [v, q] and [v, q ′] does not invalidate a
desirable data-flow fact at a third vertex [w, q′′].

Ammons and Larus offer a technique for reducing the hot-path graph that is based on an algorithm
for minimization of deterministic, finite automata (DFAs). Their algorithm consists of the following
steps [5]:

1. Identify the hot vertices in the hot-path graph; we wish to preserve the data-flow facts used in
these vertices. The frequency of execution for each vertex can be determined from the path
profile for the hot-path graph. Ammons and Larus sort the vertices by the number of desirable
data-flow facts (e.g., that the variable x has constant value c) they “execute” dynamically; here,
“executing” a data-flow fact means performing an operation that is described by the data-flow fact,
e.g., executing an operation that uses the variable x when x is known to have a constant value.
Vertices are marked hot until a fixed percentage — 95% in their experiments — of the desirable
data-flow facts are covered.

2. Partition the vertices of the hot-path graph into sets of compatible vertices; call this partition Π.
Two vertices [v, q] and [v′, q′] are compatible if and only if v = v′ and combining the vertices
does not destroy desirable data-flow fact in a hot vertex, i.e., iff:

• if [v, q] is hot, then J([v, q]) v J([v′, q′]) for the data-flow facts used in v.

• if [v′, q′] is hot, then J([v′, q′]) v J([v, q]) for the data-flow facts used in v′.

For example, suppose the results of constant propagation for a hot vertex [v, q] show that x = 3.
If v contains a use of x, then [v, q] is compatible with [v, q′] iff constant propagation gives x = 3
for [v, q′] or [v, q′] is cold and constant propagation gives x w 3 for [v, q′]. (Note, if x = > for
[v, q′], then x is uninitialized, and it is safe to lower the data-flow fact x = > to the data-flow

16

fact x = 3; this is because any particular constant (e.g., 3) is a possible value for an uninitialized
variable (e.g., x).) This definition of compatible is not transitive, and hence does not define an
equivalence relation. [5] creates the partition by greedily adding each vertex [v, q] to an existing
set when possible.

3. Run the DFA-minimization algorithm on Π to create a new partition Π′ [30]. As stated in [5], the
hot-path graph can be considered to be a finite automaton with transitions labeled by the edges
of the original control-flow graph. With this intuition, each set in Π is the set of final states that
recognize paths (“words” in the automaton) that lead to a certain set of data-flow facts. The DFA-
minimization results in a more fine-grained partition Π′ such that for each pair of vertices v and
v′ in a block B of Π′, for any “string” s of CFG-edges that drives v to a vertex w in block C, the
string s drives v′ to a vertex w′ that is also in block C. It follows that coalescing vertices that are
in the same block of Π′ will not destroy any valuable data-flow facts at any vertex.

4. Replace each block B of Π′ with a representative r; the data-flow solution for r is set to the
meet of the data-flow solutions for the vertices in B. Let r and r′ represent blocks B and B′,
repsectively: then there is an edge r → r′ in the reduced graph iff there is an edge [v, q] → [v′, q′]
in the hot-path graph where [v, q] ∈ B and [v′, q′] ∈ B′. The edge r → r′ is a recording edge iff
v → v′. ([5] shows that this is well-defined.)

The path profile can be translated to the reduced hot-path graph just as it was for the hot-path graph.

17

Chapter 3

The Functional Approach to
Interprocedural, Context Path Profiling

In path profiling, a program is instrumented with code that counts the number of times particular finite-
length path fragments of the program’s control-flow graph — or observable paths — are executed. A
path profile for a given run of a program consists of a count of how often each observable path was
executed. This chapter presents extensions of the intraprocedural path-profiling technique of Ball and
Larus [12]. We show that the approach used in the Ball-Larus technique can be used as a strategy for
creating other path-profiling techniques. Their strategy can be summarized as follows:

1. Start with a graph that represents a program’s control flow.

2. Apply a transformation that results in a new graph with a finite number of paths; each path through
the transformed graph corresponds to a path fragment, called an observable path, in the original
graph.

3. Number the paths in the transformed graph.

4. Instrument the program with code that counts how often each observable path is executed (by
incrementing a counter associated with the path through the transformed graph).

All of our extensions to the Ball-Larus technique employ this strategy. In particular, we have used this
approach to develop path-profiling techniques for collecting information about interprocedural paths
(i.e., paths that may cross procedure boundaries).

Interprocedural path profiling is complicated by the need to account for a procedure’s calling con-
text. There are really two issues:

• What is meant by a procedure’s “calling context”? Previous work by Ammons et al. [4] inves-
tigated a hybrid intra-/interprocedural scheme that collects separate intraprocedural profiles for a
procedure’s different calling contexts. In their work, the “calling context” of procedure P consists
of the sequence of call sites pending on entry to P . In general, the sequence of pending call sites
is an abstraction of any of the paths ending at the call on P .

The path-profiling techniques we have developed profile true interprocedural paths, which may
include call and return edges between procedures, paths through pending procedures, and paths
through procedures that were called in the past and completed execution. This means that, in gen-
eral, our techniques maintain finer distinctions than those maintained by the profiling technique
of Ammons et al.

• How does the calling-context problem impact the profiling machinery? In our functional ap-
proach, the numbering of observable paths is carried out via an edge-labeling scheme that is in
much the same spirit as the path-numbering scheme of the Ball-Larus technique, where each edge

18

is labeled with a number, and the “name” of a path is the sum of the numbers on the path’s edges.
However, to handle the calling-context problem, in our methods edges are labeled with functions
instead of values. In effect, the use of edge-functions allows edges to be numbered differently
depending on the calling context.1

We have also developed non-functional (i.e., value-based) techniques for interprocedural path
profiling. In this approach, edges are labeled with values, as in the Ball-Larus technique. These
techniques may be more efficient than the functional techniques, however, they also result in
coarser profiles.

All of our techniques can be divided into two categories, which we call context path profiling and
piecewise path profiling. In piecewise path profiling, each observable path corresponds to a path that
may occur as a subpath (or piece) of an execution sequence. The set of observable paths is required to
cover every possible execution sequence. That is, every possible execution sequence can be partitioned
into a sequence of observable paths. In context path profiling, each observable path corresponds to a pair
〈C, p〉, where p corresponds to a subpath of an execution sequence, andC corresponds to a context (e.g.,
a sequence of pending calls) in which p may occur. The set of all p such that 〈C, p〉 is an observable
path must cover every possible execution sequence.

In addition to several interprocedural path-profiling mechanisms, we have also developed several
extensions to the Ball-Larus technique that yield novel intraprocedural path-profiling techniques. In
particular, we have developed a method for intraprocedural context path-profiling where the context of
an observable path may summarize the path taken to a loop header. It is also possible to use a functional
approach to intraprocedural path-profiling to unroll loops in a virtual manner for profiling purposes; one
possible application of this technique might be to generate profiles that distinguish between the even
and odd iterations of a loop without actually unrolling the loop.

All of the path-profiling techniques presented in this thesis can be classified according to three binary
traits:

1. functional approach vs. non-functional approach

2. intraprocedural vs interprocedural

3. context vs. piecewise

In the remainder of this chapter, we present the functional approach to interprocedural, context path
profiling. In Chapter 4, we present the functional approach to interprocedural, piecewise path profiling.
Chapter 5 discusses other novel path profiling techniques.

In the functional approach to interprocedural context path-profiling, the “naming” of paths is carried
out via an edge-labeling scheme that is in much the same spirit as the path-naming scheme of the Ball-
Larus technique, where each edge is labeled with a number, and the “name” of a path is the sum of the
numbers on the path’s edges. However, in a functional approach to path profiling, edges are labeled with
functions instead of values. In effect, the use of edge-functions allows edges to be numbered differently
depending on context information. At runtime, as each edge e is traversed, the profiling machinery uses
the edge function associated with e to compute a value that is added to the quantity pathNum. At the
appropriate program points, the profile is updated with the value of pathNum.

Because edge functions are always of a particularly simple form (i.e., linear functions), they do not
complicate the runtime-instrumentation code greatly:

1Note that the “functional” approach to path profiling does not use a functional programming style; it is so named because
it labels edges with linear functions.

19

• The Ball-Larus instrumentation code performs 0 or 1 additions in each basic block; a hash-table
lookup and 1 addition for each control-flow-graph backedge; 1 assignment for each procedure
call; and a hash-table lookup and 1 addition for each return from a procedure.

• The technique presented here performs 0 or 2 additions in each basic block; a hash-table lookup,
1 multiplication, and 4 additions for each control-flow-graph backedge; 2 multiplications and
2 additions for each procedure call; and 1 multiplication and 1 addition for each return from a
procedure.

Thus, while using functions on each edge involves more overhead than using values on each edge,
we originally believed that the overhead from using edge functions would not be prohibitive. The
experimental results in Chapter 6 show that the overhead for interprocedural path profiling is 300-700%;
this is much more costly than the Ball-Larus technique. A significant amount of this overhead results
from the fact that we must do a hash table lookup every time we record a path; the Ball-Larus technique
can sometimes use an array access when it records a path.

The specific technical contributions of the work presented in this chapter include:

• In the Ball-Larus scheme, a cycle-elimination transformation of the (in general, cyclic) control-
flow graph is introduced for the purpose of numbering paths. We present the interprocedural
analog of this transformation for interprocedural context path profiling.

• In the case of intraprocedural path profiling, the Ball-Larus scheme produces a dense numbering
of the observable paths within a given procedure: That is, in the transformed (i.e., acyclic) version
of the control-flow graph for a procedure P , the sum of the edge labels along each path from P ’s
entry vertex to P ’s exit vertex falls in the range [0..number of paths in P], and each number in the
range [0..number of paths in P] corresponds to exactly one such path.

The interprocedural techniques presented in this chapter produce a dense numbering of interpro-
cedural observable paths. The significance of the dense-numbering property is that it ensures that
the numbers manipulated by the instrumentation code have the minimal number of bits possible.

This chapter focuses on the functional approach to interprocedural context path profiling, and, except
where noted, the term “interprocedural path profiling” means “the functional approach to interprocedu-
ral context path profiling”. As mentioned above, the path profiling techniques explored in this thesis
have four steps:

1. Start with a graph that represents a program’s control flow.

2. Apply a transformation that results in a new graph with a finite number of paths; each path through
the transformed graph corresponds to a path fragment, called an observable path, in the original
graph.

3. Number the paths in the transformed graph.

4. Instrument the program with code that counts how often each observable path is executed (by
incrementing a counter associated with the path through the transformed graph).

The remainder of this chapter discusses how these four steps are implemented to collect an interproce-
dural, context path profile: Section 3.1 presents the interprocedural control-flow graph, or supergraph,
and defines terminology needed to describe our results. Section 3.2 describes how the supergraph is

20

transformed into a graph with a finite number of paths. In Sections 3.3–3.5, we describe how to number
the paths in the graph defined in Section 3.2. Section 3.6 describes the instrumentation used to collect
an interprocedural context path profile. Finally, Section 3.7 discusses how to profile in the presence of
some language features (e.g., signals) that are not discussed in earlier sections.

3.1 Background: The Program Supergraph and Call Graph

As in many interprocedural program-analysis problems, we work with an interprocedural control-flow
graph called a supergraph. Specifically, a program’s supergraph G∗ consists of a unique entry vertex
Entryglobal , a unique exit vertex Exitglobal , and a collection of control-flow graphs (one for each pro-
cedure), one of which represents the program’s main procedure. For each procedure P , the flowgraph
for P has a unique entry vertex, EntryP , and a unique exit vertex, ExitP . The other vertices of the
flowgraph represent statements and predicates of the program in the usual way,2 except that each pro-
cedure call in the program is represented in G∗ by two vertices, a call vertex and a return-site vertex.
In addition to the ordinary intraprocedural edges that connect the vertices of the individual control-flow
graphs, for each procedure call (represented, say, by call vertex c and return-site vertex r) to procedure
P , G∗ contains a call-edge, c→ EntryP , and a return-edge, ExitP → r. The supergraph also contains
the edges Entryglobal → Entrymain and Exitmain → Exitglobal . An example of a supergraph is shown
in Fig. 7(a).

For purposes of profiling, we assume that all branches are logically independent, i.e., the result of
one branch does not affect the ability to take any other branch. However, we do not wish to consider
paths in G∗ that violate the nature of procedure calls (as the path in Fig. 7(b) does). We now develop a
language for describing the set of paths inG∗ that we wish to consider valid. To do this, for each call site
with call vertex c and return-site vertex r, let the call-edge from c be labeled with the symbol “(c”, and let
the return-edge to r be labeled with the symbol “)c”. Let each edge of the form Entryglobal → EntryP

be labeled with the symbol “(P ” and each edge of the form ExitP → Exitglobal be labeled with the
symbol “)P ”.3 Let all other edges be labeled with the symbol e. Then a path p in G∗ is a same-level
valid path if and only if the string formed by concatenating the labels of p’s edges is derived from the
non-terminal SLVP in the following context-free grammar:

SLVP ::= SLVP SLVP

| e
| ε
| SLVP1

SLVP1 ::= (c SLVP)c foreachcallvertex c
| (P SLVP)P foreachprocedure P

Here, ε denotes the empty string. A same-level valid path p represents an execution sequence where
every call-edge is properly matched with a corresponding return-edge and vice versa. If a path p spells
out a word that can be derived from the non-terminal SLVP 1, then we call p a SLVP1-path. A call
vertex and its return-site vertex are always connected by a SLVP1-path.

We also need to describe paths that correspond to incomplete execution sequences in which not all
of the procedure calls have been completed. (For example, a path that begins in a procedure P , crosses

2The vertices of a flowgraph can represent individual statements and predicates; alternatively, they can represent basic
blocks.

3For now, the only such edges are Entry global → Entrymain and Exitmain → Exitglobal . In Section 3.2, we will introduce
edges that connect Entryglobal and Exitglobal to other procedures.

21

(a) (b) (c)

Figure 7: (a) Schematic of the supergraph of a program in which main has two call sites on the procedure
pow. (b) Example of an invalid path in a supergraph. (c) Example of a cycle that may occur in a valid
path.

a call-edge to a procedureQ, and ends in Q.) Such a path p is called an unbalanced-left path. The string
formed by concatenating the labels on p’s edges must be derived from the non-terminal UnbalLeft in
the following context-free grammar:

UnbalLeft ::= UnbalLeft (c UnbalLeft for each call vertex c
| UnbalLeft (P UnbalLeft for each procedure P
| SLVP

where SLVP is defined by the productions given above.
In the remainder of this thesis, we will also refer to a program’s call graph. We define a call graph

to be the graph that contains one node for each procedure P and one edge P → Q for each call site in
P that calls Q. (In the literature, this is often called the call multi-graph, since there may be more than
one edge from a procedure P to procedure Q.)

3.2 Modifying G∗ to Eliminate Backedges and Recursive Calls

For purposes of numbering paths, the Ball-Larus technique modifies a procedure’s control-flow graph to
remove cycles. This section describes the analogous step for interprocedural context profiling. Specif-
ically, this section describes modifications to G∗ that remove cycles from each procedure and from the
call graph associated with G∗. The resulting graph is called G∗

fin . Each unbalanced-left path in G∗
fin

22

from Entryglobal to Exitglobal defines an “observable path” that can be logged in an interprocedural
profile. The number of unbalanced-left paths in G∗

fin is finite, which is the reason for the subscript “fin”.
For the remainder of the thesis, we will use the phrases, “a path in G∗

fin from Entryglobal to Exitglobal”
and “a path through G∗

fin” interchangeably.
In total, there are three transformations that are performed to create G∗

fin . Fig. 9 shows the trans-
formed graph G∗

fin that is constructed for the example program in Fig. 8 (the labels on the vertices and
edges of this graph are explained in Section 3.3).

Transformation 1: For each procedure P , add a special vertex GExitP . In addition, add an edge
GExitP → Exitglobal labeled e.

The second transformation removes cycles in each procedure’s flow graph. As in the Ball-Larus
technique, the procedure’s control-flow graph does not need to be reducible; backedges can be deter-
mined by a depth-first search of the control-flow graph.

Transformation 2: For each procedure P , perform the following steps:

1. For each backedge target v in P , add a surrogate edge EntryP → v labeled e.

2. For each backedge source w in P , add a surrogate edge w → GExitP labeled e.

3. Remove all of P ’s backedges.

The third transformation “short-circuits” paths around recursive call sites, effectively removing cy-
cles in the call graph. First, each call site is classified as recursive or nonrecursive. This can be done by
identifying backedges in the call graph using depth-first search; the call graph need not be reducible. A
call-site is considered to be recursive iff it is represented in the call graph by a backedge. Otherwise, a
call-site is considered to be non-recursive.

Transformation 3: The following modifications are made:

1. For each procedureR called from a recursive call site, add the edges Entry global → EntryR

and ExitR → Exitglobal labeled ”(R” and ”)R”, respectively.

2. For each pair of vertices c and r representing a recursive call site that calls procedure R,
remove the edges c → EntryR and ExitR → r, and add the summary edge c → r labeled
e. (Note that c→ r is called a “summary” edge, but not a “surrogate” edge.)

As was mentioned above, the reason we are interested in these transformations is that each observ-
able path—an item we log in an interprocedural path profile—corresponds to an unbalanced-left path
throughG∗

fin . Note that the observable paths do not correspond to just the same-level valid paths through
G∗

fin : as a result of Transformation 2, an observable path p may end with . . . → GExitP → Exitglobal ,
leaving unclosed left parentheses. Also note that a path through G∗

fin that is not unbalanced-left cannot
represent any feasible execution path in the original graph G∗.

3.2.1 G∗
fin has a Finite Number of Paths

A crucial fact on which this approach to interprocedural path profiling rests is that the number of
unbalanced-left paths through G∗

fin is finite. To prove this we start with the following observation:

Observation 3.2.1 The maximum number of times a vertex v in a procedure P can appear on an
unbalanced-left path p (in G∗

fin) is equal to the number of times p enters the procedure P by reach-
ing the vertex EntryP . 2

23

���������	����
���
����������� ����� �	���	� ���! �"# %$
�����&���(')$
*,+ � ���
-�/.��('�0!���

�21%
3
�24�5	�6�,�7 8���
�7�/9 � *
-�:�;58�:$
� �	����� ��<,�3�=$

>
�21%
3
�24�?	�6�,�7 8���

�7�/9 � *
-�:�;58�:$
� �	����� ��<,�3�=$

>
�2<,<=$

>
� � � � ���7 %$

>

@�A�B�C�D�E�F	A�G=HI@�A�B,C	D�E6C	JLK�E%M;D�A�N�OPERQRF)S/T
@�A�B�C�D�EUF	A�G	E�V�W(X:Y#Z%[
G,\)]^D�E_H;ERQ�F!`�ZaS�T

F	A�G	E�Vab2W�C	JLK�E%[
ERQ�F�c�c_[

d
VLEReRB�V�N�F	A�G	E�V�[

d

Figure 8: Example program used to illustrate the path-profiling technique.
(The program computes the quantity (

∑9
j=1(2 · j)2)) + (

∑6
k=1(3 · k)2).)

This follows from the fact that G∗
fin contains no intraprocedural loops. It also relies on the fact that

p is an unbalanced-left path; a path q that is not unbalanced-left may reach some vertices an arbitrary
number of times. For example, consider Figure 10. The vertex u lies on a cyclic path that runs from u to
the second call-site on procedure Q, enters Q from the second call-site, then returns to the first call-site,
and then reaches u; a path may visit u are arbitrary number of times by repeatedly traversing this cycle.
However, note that this cycle cannot occur in an unbalanced-left path.

Next, we wish to calculate the number maxEnters[P], which is an upper bound on the number of
times the vertex EntryP can occur on an unbalanced-left path. (As we shall see, maxEnters[P] is
well defined and finite.) We observe that for P 6= main, the number of times EntryP occurs on an
unbalanced-left path p is bounded by the maximum number of times a vertex for a call site on P can
occur on the path p. Together with Observation 3.2.1 (which applies to call vertices), this implies that
for all P 6= main,

maxEnters[P] =
∑

Q

maxEnters[Q] · (number of non-recursive call sites on P in Q).

We also have maxEnters[main] = 1. For P 6= main, maxEnters[P] is well defined and has a finite
value because there are no recursive calls in G∗

fin ; thus, we can solve for the maxEnters[P] values by
considering the vertices of the call graph associated with G∗

fin (which is acyclic) in topological order.
Observation 3.2.1, together with the fact that maxEnters[P] is finite for all P , means that for all

vertices v, there is a finite bound on the number of times v may occur in an unbalanced-left path p. This
implies that there is an upper bound on the length of an unbalanced-left path, and that the number of
unbalanced-left paths is finite.

24

3.3 Numbering Unbalanced-Left Paths: A Motivating Example

In this section, we illustrate, by means of the example shown in Fig. 8, some of the difficulties that arise
in collecting an interprocedural path profile. Fig. 7(a) shows a schematic of the supergraph G∗ for this
program. One difficulty that arises in interprocedural path profiling comes from interprocedural cycles.
Even after the transformations described in Section 3.2 are performed (which break intraprocedural
cycles and cycles due to recursion), G∗ will still contain cyclic paths, namely, those paths that enter a
procedure from distinct call sites (see Fig. 7(c)). This complicates any interprocedural extension to the
Ball-Larus technique, because the Ball-Larus numbering scheme works on acyclic graphs. There are
several possible approaches to overcoming this difficulty:

• One possible approach is to create a unique copy of each procedure for each nonrecursive call
site and remove all recursive call and return edges. In our example program, we would create the
copies pow1 and pow2 of the pow function, as shown in Fig. 11. pow1 can be instrumented as if
it had been inlined in main, and likewise for pow2. In many cases, this approach is impractical
because of the resulting code explosion.

• A second approach—which is the one developed in this chapter—is to parameterize the instru-
mentation in each procedure to behave differently for different calling contexts. In our example,
pow is changed to take an extra parameter. When pow is called from the first call site in main,
the value of the new parameter causes the instrumentation of pow to mimic the behavior of the
instrumentation of pow1 in the first approach above; when pow is called from the second call site
in main, the value of the new parameter causes pow’s instrumentation to mimic the behavior of
the instrumentation of pow2. Thus, by means of an appropriate parameterization, we gain the
advantages of the first approach without duplicating code.

The remainder of this section gives a high-level description of our path-numbering technique. Sec-
tion 3.5 gives a detailed description of the path-numbering technique.

Extending the Ball-Larus technique to number unbalanced-left paths in G∗
fin is complicated by the

following facts:

1. As mentioned above, while the number of unbalanced-left paths is finite, an unbalanced-left path
may contain cycles (such as those in Fig. 7(c)).

2. The number of paths that may be taken from a vertex v is dependent on the path taken to reach
v: for a given path p to vertex v, not every path q from v forms an unbalanced-left path when
concatenated with p.

These facts mean that it is not possible to assign a single integer value to each vertex and edge of G∗
fin

as the Ball-Larus technique does. Instead, each occurrence of an edge e in a path p will contribute a
value to the path number of p, but the value that an occurrence of e contributes will be dependent on the
part of p that precedes that occurrence of e. In particular, e’s contribution is determined by the sequence
of unmatched left parentheses that precede the occurrence of e in p. (The sequence of unmatched left
parentheses represents a calling context of the procedure containing e.)

Consider the example shown in Figs. 8 and 9. Notice thatG∗
fin in Fig. 9 contains cyclic, unbalanced-

left paths. For example, the following path is a cycle from u1 to u1 that may appear as a subpath of an
unbalanced-left path:

u1 → u3 → u7 → u8 → v7 → v8 → v9 → v10 → u1.

25

Fig. 11 shows a modified version of G∗
fin with two copies of the procedure pow, one for each call

site to pow in main. This modified graph is acyclic and therefore amenable to the Ball-Larus numbering
scheme: Each vertex v in Fig. 11 is labeled with numPaths[v], the number of paths from v to Exit global ;
each edge e is labeled with its Ball-Larus increment [12]. Note that there is a one-to-one and onto
mapping between the paths through the graph in Fig. 11 and the unbalanced-left paths through the
graph in Fig. 9. This correspondence can be used to number the unbalanced-left paths in Fig. 9: each
unbalanced-left path p in Fig. 9 is assigned the path number of the corresponding path q in Fig. 11.

The following two observations capture the essence of our technique:

• Because the labeling passes of the Ball-Larus scheme work in reverse topological order, the values
assigned to the vertices and edges of a procedure are dependent upon the values assigned to the
exit vertices of the procedure. For instance, in Fig. 11, the values assigned to the vertices and
edges of pow1 are determined by the values assigned to Exit pow1 and GExitpow1 (i.e., the values
5 and 1, respectively), while the values assigned to the vertices and edges of pow2 are determined
by the values assigned to Exit pow2 and GExitpow2 (i.e., the values 1 and 1, respectively). Note
that numPaths[GExitP] = 1 for any procedure P (since the only path from GExitP to Exitglobal
is the path consisting of the edge GExitP → Exitglobal). Thus, the values on the edges and the
vertices of pow1 differ from some of the values on the corresponding edges and vertices of pow2
because numPaths[Exitpow1] 6= numPaths[Exitpow2].

• Given that a program transformation based on duplicating procedures is undesirable, a mechanism
is needed that assigns vertices and edges different numbers depending on the calling context. To
accomplish this, each vertex u of each procedure P is assigned a linear function ψu that, when
given a value for numPaths[ExitP], returns the value of numPaths[u]. Similarly, each edge e of
each procedure P is assigned a linear function ρe that, when given a value for numPaths[ExitP],
returns the Ball-Larus value for e.

Fig. 9 shows G∗
fin labeled with the appropriate ψ and ρ functions. Note that we have the desired

correspondence between the linear functions in Fig. 9 and the integer values in Fig. 11. For example,
in Fig. 9 vertex u1 has the function ψu1

= λx.2 · x + 2. This function, when supplied with the value
numPaths[Exitpow1] = 5 from Fig. 11 evaluates to 12, which is equal to numPaths[u′1] in Fig. 11.
However, when λx.2 ·x+2 is given the value numPaths[Exit pow2] = 1, it evaluates to 4, which is equal
to numPaths[u′′1] in Fig. 11.

To collect the number associated with an unbalanced-left path p in G∗
fin , as p is traversed, each edge

e contributes a value to p’s path number. As illustrated below, the value that e contributes is dependent
on the path taken to e:

Example 3.3.1 Consider the edge u1 → u3 in G∗
fin , and an unbalanced-left path s that begins with the

following path prefix:
Entryglobal → v1 → v4 → v5 → v6 → u1 → u3 (3)

In this case, the edge u1 → u3 contributes a value of 6 to s’s path number. To see that this is the correct
value, consider the path prefix in Fig. 11 that corresponds to (3):

Entryglobal → v1 → v4 → v5 → v6 → u′1 → u′3

In Fig. 11, the value on the edge u′1 → u′3 is 6.
In contrast, in an unbalanced-left path t that begins with the path prefix

Entryglobal → v1 → v4 → v5 → v9 → v10 → u1 → u3 (4)

26

the edge u1 → u3 will contribute a value of 2 to t’s path number. (To see that this is the correct value,
consider the path prefix in Fig. 11 that corresponds to (4).)

It can even be the case that an edge e occurs more than once in a path p, with each occurrence
contributing a different value to p’s path number. For example, there are some unbalanced-left paths in
G∗

fin in which the edge u1 → u3 appears twice, contributing a value of 6 for the first occurrence and a
value of 2 for the second occurrence.

To determine the value that an occurrence of the edge e should contribute to a path number, the
profiling instrumentation will use the function ρe and the appropriate value for numPaths[ExitP], where
P is the procedure containing e. Thus, as noted above, an occurrence of the edge u1 → u3 may
contribute the value (λx.x+ 1)(1) = 2 or the value (λx.x+ 1)(5) = 6 to a path number, depending on
the path prior to the occurrence of u1 → u3. 2

Figs. 12 and 13 show the program from Fig. 8 with additional instrumentation code — based on
the linear functions in Fig. 9 — that collects an interprocedural path profile. The output from the
instrumented program is as follows:

0: 0 1: 0 2: 0 3: 0 4: 0 5: 0 6: 0 7: 0 8: 0
9: 0 10: 0 11: 0 12: 0 13: 0 14: 0 15: 0 16: 1 17: 0

18: 9 19: 0 20: 0 21: 0 22: 0 23: 0 24: 9 25: 3 26: 0
27: 3 28: 3 29: 6 30: 3 31: 0 32: 3 33: 3 34: 5 35: 1

Section 3.5 presents an algorithm that assigns linear functions to the vertices and edges of G∗
fin di-

rectly, without referring to a modified version ofG∗
fin , like the one shown in Fig. 11, in which procedures

are duplicated.

3.3.1 What Do You Learn From a Profile of Unbalanced-Left Paths?

Before examining the details of interprocedural path profiling, it is useful to understand the information
that is gathered in this approach:

• Each unbalanced-left path p through G∗
fin from Entryglobal to Exitglobal can be thought of as

consisting of a context-prefix and an active-suffix. The active-suffix q ′′ of p is a maximal-size,
surrogate-free subpath at the tail of p (though the active-suffix may contain summary edges of the
form c → r, where c and r represent a recursive call site). The context-prefix q ′ of p is the prefix
of p that ends at the last surrogate edge before p’s active suffix. (The context-prefix q ′ can be the
empty path from Entryglobal to Entryglobal .)

• The counter associated with the unbalanced-left path p counts the number of times during a pro-
gram’s execution that the active-suffix of p occurs in the context summarized by p’s context-prefix.

Example 3.3.2 Consider the path in Figure 9 with path number 24 (shown in bold):

24 : Entryglobal → v1 → v4 → v5 → v6 → u1 → u3 → u4 → u5 → u6 → Exitglobal

This path consists of the context-prefix Entry global → v1 → v4 → v5 → v6 → u1 and the active-suffix
u3 → u4 → u5. The output obtained from running the program shown in Figs. 12 and 13 indicates
that the active suffix was executed 9 times in the context summarized by the context-prefix. Note that
the context-prefix not only summarizes the call site in main from which pow was called, but also the
path within main that led to that call site. In general, a context-prefix (in an interprocedural technique)
summarizes not only a sequence of procedure calls (i.e., the calling context), but also the intraprocedural
paths taken within each procedure in the sequence. 2

27

3.4 Numbering L-Paths in a Finite-Path Graph

The Ball-Larus path-numbering technique applies to directed acyclic graphs (DAGs). In this section,
we discuss how to generalize the Ball-Larus technique to apply to a finite-path graphs. Since G∗

fin is
an example of a finite-path graph, this gives us a firm theoretical foundation to justify our technique for
numbering unbalanced-left paths in G∗

fin . A finite-path graph is defined as follows:

Definition 3.4.1 Let CF be a context-free grammar over an alphabet Σ. Let G be a directed graph
whose edges are labeled with members of Σ. Let G have a unique entry vertex, Entry , and a unique
exit vertex, Exit . Each path in G defines a word over Σ, namely, the word obtained by concatenating,
in order, the labels of the edges on the path. A path in G is an L-path if its word is in the language L
defined by CF. The graph G and the context-free grammar CF constitute a finite-path graph if and only
if the number of L-paths in G from Entry to Exit is finite.4 2

In Section 3.2, we showed that the number of unbalanced-left paths through G∗
fin is finite. Thus, as

mentioned above, the graph G∗
fin , together with the context-free grammar for unbalanced-left strings,

constitutes a finite-path graph where Entry is the vertex Entry global and Exit is the vertex Exitglobal .
Note that a finite-path graph need not be acyclic, and hence might not be a DAG; however, just as the
number of paths through a DAG is finite, the number of L-paths through a finite-path graph is finite.

We are now ready to describe a mechanism for numbering L-paths in a finite-path graph.5 The
numbering of L-paths in a finite-path graph is necessarily more complex than assigning a single integer
to each vertex and edge, as is done in the Ball-Larus technique (because a finite-path graph may contain
cycles). Nevertheless, a number of comparisons can be made between our technique for numbering
L-paths and the Ball-Larus technique for numbering paths in an acyclic graph. In the remainder of this
section, we describe the functions numValidComps and edgeValueInContext that correspond, in a sense,
to the vertex and edge values of the Ball-Larus technique. (These functions are used in Section 3.5.1
to give a theoretical justification for the ψ and ρ functions that were introduced in the previous section
for numbering unbalanced-left paths (i.e., L-paths) in G∗

fin (a finite-path graph). However, in another
sense, in the interprocedural path-profiling techniques it is the ψ and ρ functions that correspond to
the vertex and edge values of the Ball-Larus technique, in that the ψ and ρ functions are employed
at runtime to calculate the edge-increment values used by the profiling instrumentation code, whereas
numValidComps and edgeValueInContext are only referred to in order to argue the correctness of the
interprocedural profiling techniques.)

The following list describes aspects of the Ball-Larus technique, and the corresponding aspect of
our technique for numbering L-paths:

1. In the Ball-Larus technique, each vertex v is labeled with the number numPaths[v] of paths from
v to Exit . In our technique, it is necessary to define a function numValidComps that takes an
L-path prefix p from Entry to a vertex v and returns the number of paths from v to Exit that
form an L-path when concatenated with p. Thus, numValidComps(p) returns the number of valid
completions of p.

Furthermore, numValidComps has two properties that are similar to corresponding properties of
the numPaths values:

4Since the number of L-paths in G is finite, there must be a regular grammar R that describes the L-paths in G. We use a
context-free grammar for convenience. Also, R may be exponentially larger than CF.

5Readers who are familiar with interprocedural dataflow analysis may prefer to start with the presentation given in Sec-
tion 3.5.2 and Section 3.5.5 and read the present section later to understand the justification of the numbering algorithm.

28

• In the Ball-Larus technique, numPaths[Exit] is 1 because the only path from Exit to Exit

is the path of length 0. For an L-path q from Entry to Exit , numValidComps(q) is defined
to be 1 because the only valid completion of q is the path of length 0 from Exit to itself.
(In the rest of this thesis, a path of length 0 is called an empty path. The empty path from a
vertex v to itself is denoted by “[ε : v].”)

• In the Ball-Larus technique, the value numPaths[Entry] is the total number of paths through
the acyclic control-flow graph. In our technique, the value numValidComps([ε : Entry]) is
the total number of L-paths through G.

Note that the definition of the function numValidComps is dependent on the specific finite-path
graph in question.

2. In the Ball-Larus technique, each edge e is labeled with an integer value that is used when com-
puting path numbers. We define a function edgeValueInContext that takes an L-path prefix p and
an edge e, and returns an integer value for the edge e in the context given by p. (As in the case
for numbering unbalanced-left paths, the value that an edge e contributes to an path number may
depend on the path prefix up to e.) The definition of edgeValueInContext is based on the concept
of a valid successor: let p be an L-path prefix from Entry to a vertex v. A vertex w is a valid
successor of p if w is a successor of v, and [p ‖ v → w] is an L-path prefix.6 We are now ready to
define the function edgeValueInContext in terms of the function numValidComps: let w1, . . . , wk

be the valid successors of the path p, where p is an L-path prefix from Entry to a vertex v. Then
edgeValueInContext(p, v → wi) is defined as follows:

edgeValueInContext(p, v → wi) =

{

0 if i = 1
∑

j<i numValidComps(p ‖ v → wj) otherwise
(5)

Note that this equation is similar to Equation (2), which is used in the Ball-Larus technique to
assign values to edges. Equation (5) is illustrated in Figure 14.

As mentioned above, the function edgeValueInContext is used in computing path numbers. Note
that for an edge v → w, the path [p ‖ v → w] must be an L-path prefix, otherwise
edgeValueInContext(p, v → w) is not defined.

3. In the Ball-Larus technique, the path number for a path p is the sum of the values that appear on
p’s edges. We define the path number of an L-path p to be the following sum:

∑

[p′‖v→w] a prefix of p

edgeValueInContext(p′, v → w). (6)

(In our interprocedural path-profiling techniques, at runtime, a running total is kept of the contri-
butions of the edges of p′, and as the edge v → w is traversed, the value of
edgeValueInContext(p′, v → w) is added to this sum. The challenge is to devise a method by
which the contribution of edge v → w to the running sum, which is a function of the path p′

seen so far (namely, edgeValueInContext(p′, v → w)), can be determined quickly, without an ex-
pensive examination of p′. A method for doing this using ψ and ρ functions is presented in
Section 3.6.)

6We use the notation [p ‖ q] to denote the concatenation of the paths p and q; however, when [p ‖ q] appears as an argument
to a function, e.g., numValidComps(p ‖ q), we drop the enclosing square brackets.

29

4. Just as the Ball-Larus technique generates a dense numbering of the paths in an acyclic control-
flow graph, we have the following theorem:

Theorem 3.4.2 [Dense Numbering of L-paths] Given the correct definition of the function num-
ValidComps, Equations (5) and (6) generate a dense numbering of theL-paths throughG. That is,
for every L-path p through G, the path number of p is a unique value in the range
[0..(numValidComps([ε : Entry])−1)]. Furthermore, each value in this range is the path number
of an L-path through G. 2

Theorem 3.4.2 is proven in Appendix A.

Our interprocedural path-profiling techniques are based on the above technique for numbering L-
paths in a finite-path graph. As mentioned above, G∗

fin is a finite-path graph, where unbalanced-left
paths correspond to L-paths. In Section 3.3, we showed how to number unbalanced-left paths through
G∗

fin by use of the ψ and ρ functions. As shown in Section 3.5.1, the ψ and ρ functions are actually
being used to compute numValidComps and edgeValueInContext.

3.5 Numbering Unbalanced-Left Paths in G∗
fin

The first step in collecting an interprocedural path profile is to construct the supergraph, G∗. The
second step is to construct G∗

fin , as described in Section 3.2, and this section assumes that G∗
fin has

been so constructed. The remainder of this section is organized as follows: Section 3.5.1 discusses the
technical connection between numbering the unbalanced-left paths in G∗

fin and numbering the L-paths
in a finite-path graph. Section 3.5.2 describes how to assign the ψ and ρ functions that are used in
numbering unbalanced-left paths in G∗

fin . Section 3.5.3 describes how to compute edgeValueInContext
for interprocedural edges of G∗

fin . Finally, Section 3.5.5 reviews how the ψ and ρ functions are used to
calculate the path number of an unbalanced-left path.

3.5.1 Connection Between Numbering Unbalanced-Left Paths in G∗
fin and Numbering

L-Paths in a Finite-Path Graph

Motivation Behind the ψ Functions

The graph G∗
fin , together with the context-free grammar for unbalanced-left strings, is an example of

a finite-path graph. This means that the technique presented in Section 3.4 can be used to number
unbalanced-left paths in G∗

fin . In particular, the L-paths of Section 3.4 are the unbalanced-left paths
in G∗

fin that start at Entryglobal and end at Exitglobal . The function numValidComps discussed in Sec-
tion 3.4 takes an unbalanced-left path p (that starts at Entry global inG∗

fin) and returns the number of valid
completions of p. The function edgeValueInContext and the definition of a path number are exactly as
described in Section 3.4.

In Section 3.5.2, we describe a technique that assigns a function ψv to each vertex v, and a function
ρe to each intraprocedural edge e. These functions are used by the runtime instrumentation code to com-
pute path numbers, which involves computing numValidComps and edgeValueInContext. This section
starts by discussing properties of numValidComps that motivate the definition of the ψ functions. This
is followed by a discussion that motivates the ρ functions.

First, observe that the following relation holds for numValidComps:

30

Let p be an unbalanced-left path from Entry global to v, such that v 6= Exit global . Let
w1 . . . wk be the set of valid successors of p. Then

numValidComps(p) =
k
∑

i=1

numValidComps(p||v → wi). (7)

This relation is very similar to the definition of numPaths (see Equation (1)). In particular, for any
vertex v such that v is not an ExitP vertex, the set of valid successors for any path to v is the set of
all successors of v, and so Equation (7) is identical to the definition of numPaths. For an ExitP vertex
there is only one valid successor: for an unbalanced-left path p from Entry global to ExitP , the label on
the first edge of any valid completion of p must match the last open parenthesis that labels an edge of p.
Note that this means that the number of valid completions for an unbalanced-left path p is completely
determined by the last vertex of p and the sequence of unbalanced-left parentheses in p.

Now consider an unbalanced-left path p from Entry global to a vertex v and a same-level valid path
q from v to a vertex u in the same procedure as v. Note that [p ‖ q] is an unbalanced-left path and that
the sequence of unbalanced-left parentheses in [p ‖ q] is the same as in p alone. This implies that for an
unbalanced-left path p from Entryglobal to v and a vertex u, the value of numValidComps(p ‖ q) is the
same for any same-level valid path q from v to u.

These observations help to motivate our approach for computing numValidComps for unbalanced-
left paths. Consider an unbalanced-left path p from Entry global to a vertex v in procedure P . For any
same-level valid path from v to ExitP , numValidComps(p‖q) is the same and is determined by the se-
quence of unmatched open parentheses in p. We also observe that the value numValidComps(p ‖ q ′′) =
1, where q′′ is any same-level valid path from v to GExitP . (The fact that numValidComps(p ‖ q′′)
is always 1 follows from the fact that the only successor of GExitP is Exitglobal .) Given the num-
ber of valid completions from ExitP and from GExitP (for a given p), it is possible to compute
numValidComps(p ‖ s) for any same-level valid path s from v to any vertex u (that is reachable from v)
in procedure P . To aid in these computations, for each vertex v of procedure P , we define a function ψv

that, when given the number of valid completions from ExitP , returns the number of valid completions
from v. Note that the function ψv does not need to take the number of valid completions from GExitP

as an explicit argument, because the number of valid completions of any path to GExitP is always 1.
The ψ functions will be used in calculating numValidComps(p) for an unbalanced-left path p that

ends at a vertex v 6= ExitP . They are also used to compute numValidComps(q) for an unbalanced-left
path q from Entryglobal to a vertex ExitP . We now consider the latter use of the ψ functions. Recall that
there is only one valid successor of q—the return vertex r1 such that the label on the edge ExitP → r1
matches the last open parenthesis of q. Thus, we have the following:

numValidComps(q) = numValidComps(q ‖ ExitP → r1).

Suppose r1 occurs in procedure Q. Then the above value is equal to

ψr1
(numValidComps(q ‖ ExitP → r1 ‖ q′)),

where q′ is any same-level valid path from r1 to ExitQ . Recall that the function ψr1
counts the valid

completions of [q ‖ ExitP → r1] that exit Q via GExitQ , even though ψr1
only takes as an argument

the number of valid completions for paths that exit Q via ExitQ .
As before, there is only one valid successor of [q ‖ ExitP → r1 ‖ q′]: the return vertex r2 such

that ExitQ → r2 is labeled with the parenthesis that closes the second-to-last open parenthesis in q.

31

Suppose that r2 is in procedure R. Then the value of numValidComps(q) is equal to

ψr1
(ψr2

(numValidComps(q ‖ ExitP → r1 ‖ q′ ‖ ExitQ → r2 ‖ q′′))),

where q′′ is any same-level valid path from r2 to ExitR. Again, ψr2
counts valid completions that leave

R via either GExitR or ExitR.
This argument can be continued until a path s has been constructed from Entry global to ExitS ,

where S is the first procedure that q (and s) enters. The path s has q as a prefix, and has only one
unmatched parenthesis, “(S”, which is the same as the first unmatched parenthesis in q. The parenthesis
“(S” is matched by the parenthesis “)S”, which can only appear on the edge ExitS → Exitglobal . Thus,
the number of valid completions of s is 1. This implies that

numValidComps(q) = ψr1
(ψr2

(. . . ψrk
(numValidComps(s)) . . .))

= ψr1
(ψr2

(. . . ψrk
(1) . . .))

(8)

where r1 . . . rk is the sequence of return vertices determined by the unmatched parentheses in q. Fig-
ure 16 shows a schematic of the path s that is constructed to compute numValidComps(q).

The ψ functions are also used to calculate the total number of unbalanced-left paths through G∗
fin ,

i.e., numValidComps([ε : Entryglobal]):

numValidComps([ε : Entryglobal]) =
∑

EntryP ∈succ(Entryglobal)

numValidComps(Entryglobal → EntryP).

(9)
The value of numValidComps(Entryglobal → EntryP) can be computed using the function ψEntryP

: For
a same-level valid path p from EntryP to ExitP , the value of

numValidComps(Entryglobal → EntryP ‖ p)

is 1, because the only valid completion of [Entry global → EntryP ‖ p] is the edge ExitP → Exitglobal ;
thus, for a path consisting of the edge Entry global → EntryP , the value of

numValidComps(Entryglobal → EntryP)

is given by
numValidComps(Entryglobal → EntryP) = ψEntryP

(1). (10)

Substituting Equation (10) into Equation (9) yields the following:

numValidComps([ε : Entryglobal]) =
∑

EntryP ∈succ(Entryglobal)

ψEntryP
(1). (11)

Motivation Behind the ρ Functions

In addition to the ψ functions on vertices, functions are also assigned to edges. In particular, each in-
traprocedural edge e is assigned a function ρe. While the function ψv is used to compute
numValidComps(p) for a path p ending at vertex v, the function ρe is used to compute
edgeValueInContext(p, e) for a path p to the source vertex of e. Specifically, for each edge e of a
procedure P , the function ρe takes the number of valid completions from ExitP (for an unbalanced-
left path p′ to EntryP concatenated with any same-level valid path to ExitP) and returns the value of
edgeValueInContext(p′ ‖ q, e), where q is any same-level valid path from EntryP to the edge e.

In the following section, we first describe how to define the ψ functions and then show how to define
the ρ functions. In Section 3.6, we show how to use these functions to instrument a program in order to
collect an interprocedural profile.

32

3.5.2 Assigning ψ and ρ Functions

The Relationship of Sharir and Pnueli’s φ Functions to ψ Functions

Recall that in the Ball-Larus technique, each vertex v is assigned an integer value numPaths[v] that
indicates the number of paths from v to the exit vertex. In this section, we first show that the problem
of finding the value numPaths[v] for each vertex v of a control-flow graph can be cast in a form that is
similar to a backwards, intraprocedural dataflow-analysis problem. We then show that our scheme for
assigning ψ functions to vertices is similar to Sharir and Pnueli’s functional approach to interprocedural
dataflow analysis [58].

A distributive, backwards dataflow-analysis problem includes a semi-lattice L with meet operator
u, a set F of distributive functions from L to L that is closed under composition, a graph G, and a
dataflow fact c associated with the exit vertex Exit of G. Each edge v → w of the graph is labeled with
a function fv→w ∈ F . Kildall showed that the meet-over-all-paths solution to a distributive, backwards
dataflow-analysis problem is given by the maximal fixed point of the following equations [40]:

val[v] = u fv→w(val[w]) for v 6=Exit
w∈succ(v)

(12)

val[Exit] = c (13)

For a DAG, finding the quantity numPaths[v] amounts to a technique for summing over all paths
between v and Exit , where each path contributes a value of one to the sum. Thus, numPaths[v] can be
considered to be a “sum-over-all-paths” value. To find the numPaths values, the Ball-Larus technique
finds the maximum fixed point of the following equations (over the integers together with ∞):

numPaths[v] =
∑

w∈succ(v)

id(numPaths[w]) for v 6=Exit (14)

numPaths[Exit] = 1 (15)

The form of Equation (14) is similar to Equation (12), with the identity function id standing in for each
edge function fv→w, and the addition operator + playing the role of the meet operator u. When we
simplify the right-hand side of Equation (14) to

∑

w∈succ(v) numPaths[w], this is precisely the definition
of numPaths[v] given in Section 2.1 in Equation (1).

Thus, the problem of calculating numPaths values is similar to a dataflow-analysis problem (on
a DAG), differing only in that addition is not an idempotent meet operator. (In fact, the problem of
calculating numPaths values is an example of an algebraic path problem on a DAG. For a more gen-
eral discussion of the relationship between algebraic path problems and dataflow-analysis problems,
see [53].)

We now review the appropriate part of Sharir and Pnueli’s work [58], with some rephrasing of their
work to describe backwards dataflow-analysis problems instead of forwards dataflow-analysis problems.
We then show how their φ functions are related to our ψ functions.

In Sharir and Pnueli’s functional approach to interprocedural dataflow analysis, for each procedure
P , and each vertex v of P , the function φv captures the transformation of dataflow facts from ExitP to
v.7 The φ functions are found by setting up and solving a system of equations. For an exit vertex ExitP ,
φP is the identity function:8

φExitP = id. (16)
7Information flows counter to the direction of control-flow graph edges in a backwards dataflow-analysis problem.
8According to [58], this equation should be φExitP v id. Since we do not allow an exit vertex to be the source of an

intraprocedural edge, it is safe to replace v with =.

33

For a call vertex c associated with return-site vertex r to the procedure Q, we have the following equa-
tion:

φc = φEntryQ
◦ φr. (17)

Finally, for any other vertex m in P , we have the following equation:

φm = u fm→n ◦ φn.
n∈succ(m)

(18)

In a similar fashion, we wish to define, for each procedure P and each vertex v in P , a function
ψv that calculates the number of valid completions from v to Exit global based on the number of valid
completions from ExitP to Exitglobal . The problem of finding the ψ functions differs from the one
solved by Sharir and Pnueli in that the φ functions describe how dataflow facts are propagated in a
dataflow-analysis problem and the ψ functions describe how values are propagated in the problem of
assigning Ball-Larus-like values to vertices. However, as shown above, the problem of assigning Ball-
Larus values to vertices is similar to a backwards dataflow-analysis problem, and as we show below, the
equations that hold for the ψ functions are very similar to the equations that hold for the φ functions.

As in Sharir and Pnueli’s functional approach to interprocedural dataflow analysis, several equations
must hold. For an exit vertex ExitP , ψExitP is the identity function:

ψExitP = id. (19)

This is similar to Equation (16).
For a vertex of the form GExitP , the following must hold:

ψGExitP = λx.1. (20)

This equation reflects the fact that the number of valid completions from GExitP is always 1, regardless
of the number of valid completions from ExitP . Equation (20) does not have a direct analog in [58],
however, GExitP could be thought of as a vertex that generates a constant dataflow fact.

For a call vertex c to a procedure Q associated with return-site vertex r, where c and r represent a
non-recursive call site, we have the following:

ψc = ψEntryQ
◦ ψr. (21)

This is similar to Equation (17).
For all other cases for a vertex m, the following must hold:

ψm =
∑

n∈succ(m)

id ◦ ψn. (22)

where the addition f + g of function values f and g is defined to be the function λx.f(x) + g(x).
Equation (22) is similar to Equation (18) with the identity function id standing in for each edge function
fm→n.

Just as Equations (16)–(18) are the interprocedural analogs of Equations (12) and (13), Equa-
tions (19)–(22) are the interprocedural analogs of Equations (14) and (15).

We now show that the solution to Equations (19)–(22) yields the desired ψ functions. Recall that,
for a vertex v in procedure P , the function ψv takes the number of valid completions from ExitP (for
an unbalanced-left path p to vertex v in procedure P concatenated with any same-level valid path from

34

v to ExitP) and returns the number of valid completions from v (for p). Given this definition of ψv, it is
clear that Equations (19) and (20) must hold. Equation (22) must hold because of Equation (7) and the
fact that for an internal vertex v and any unbalanced-left path p to v, the valid successors of p are the
same as the successors of v.

Equation (21) requires more extensive justification. Let p be an arbitrary unbalanced-left path to
EntryP ; let p′ be an arbitrary same-level valid path from EntryP to a call vertex c; let c be associated
with the return vertex r; let c and r represent a nonrecursive call site on procedure Q ; and let q be an
arbitrary same-level valid path from EntryQ to ExitQ . (Figure 17 illustrates these paths and vertices.)
The function ψc takes the numberNp of valid completions from ExitP (for the path p concatenated with
any same-level valid path from EntryP to ExitP) and returns the number of valid completions from c
(for [p ‖ p′]).

By the definition of ψr, we know that the number of valid completions from vertex r (for p concate-
nated with any same-level valid path to r) is given by ψr(Np). In particular, we have the following:

numValidComps(p ‖ p′ ‖ c→ EntryQ ‖ q ‖ ExitQ → r) = ψr(Np).

Now consider the path [p ‖ p′ ‖ c→ EntryQ ‖ q]. The last unmatched parenthesis in this path is on the
edge c→ EntryQ . This gives us the following (see Figure 17):

numValidComps(p ‖ p′ ‖ c→ EntryQ ‖ q) = ψr(Np).

Because q is a same-level valid path from EntryP to ExitP , we have (by the definition of ψEntryQ
) the

following:
numValidComps(p ‖ p′ ‖ c→ EntryQ) = ψEntryQ

(ψr(Np)).

Because EntryQ is the only successor of c, this gives us

numValidComps(p ‖ p′) = ψEntryQ
(ψr(Np)).

However, by the definition of ψc, numValidComps(p ‖ p′) = ψc(Np). This gives us

ψc(Np) = ψEntryQ
(ψr(Np)). (23)

We have shown that Equation (23) holds for an arbitrary unbalanced-left path [p ‖ p′] to c (to which
there corresponds NP , the number of valid completions from ExitP for p concatenated with any same-
level valid path to ExitP) and for an arbitrary same-level valid path [c → EntryQ ‖ q ‖ ExitQ → r].
It follows that

ψc = ψEntryQ
◦ ψr.

Solving for ψ Functions

We now describe how to find ψ functions that satisfy Equations (19)–(22). Note that each ψ function is
a linear function of one variable. This follows because id(= λx.x) and λx.1 are both linear functions
of one variable, and the space of linear functions of one variable is closed under function composition
and function addition. For the composition of two linear functions, we observe that

(λx.a · x+ b) ◦ (λy.c · y + d) = λz.(a · c) · z + (a · d+ b).

For the addition of two linear function values (as defined above), we have

35

(λx.a·x+b)+(λy.c·y+d) = λz.(λx.a·x+b)(z)+(λy.c·y+d)(z) = λz.(a+c)·z+(b+d).

The fact that each ψ function is a linear function of one variable means that they can be compactly
represented as an ordered pair, with one coordinate representing the coefficient, and one coordinate
representing the constant.

To find the ψ functions, each procedure P is visited in reverse topological order of the call graph,
and each vertex v in P is visited in reverse topological order of P ’s control-flow graph. (For purposes of
ordering the vertices of a procedure P , a return vertex r is considered to be a successor of its associated
call vertex c.) As each vertex v is visited, the appropriate equation from Equations (19)–(22) is used to
determine the function ψv.

The order of traversal guarantees that when vertex v is visited, all of the functions that are needed
to determine ψv will be available. This follows from the fact that the call graph associated with G∗

fin

is acyclic and the fact that the control-flow graph of each procedure in G∗
fin is acyclic. (The fact that

the call graph and control-flow graphs are acyclic also explains why each vertex needs to be visited
only once.) For instance, consider a call vertex c that is associated with return-site vertex r and calls
procedure Q. When the vertex c is visited, the function ψr will be available (because vertices are
visited in reverse topological order) and the function ψEntryQ

will be available (because procedures are
processed in reverse topological order). Hence, Equation (21) can be used to determine ψc.

Solving for ρ functions

As mentioned above, a linear function is assigned to each intraprocedural edge e to aid in the calculation
of edgeValueInContext. In particular, for an edge e in procedure P , we define the function ρe such that,
when supplied with the number of valid completions from ExitP (for an unbalanced-left path [p ‖e‖ q],
where p is an unbalanced-left path that ends at the source vertex of edge e and q is any same-level valid
path from the target vertex of e to ExitP), it returns the value of edgeValueInContext(p, e).

Let v be an intraprocedural vertex that is the source of one or more intraprocedural edges. (That
is, v cannot be a call vertex for a nonrecursive call–site, nor have the form ExitP , nor have the form
GExitP .) Letw1 . . . wk be the successors of v. Recall that for a vertex such as v, for any unbalanced-left
path p that ends at v, every successor of v is a valid successor of p. This is because no outgoing edge
from v is labeled with a parenthesis. Given the definition of edgeValueInContext (see Equation (5)) and
the definition of the ψ functions, it follows that the following equation holds:

ρv→wi
=

{

0 if i = 1
∑

j<i ψwj
otherwise

(24)

Clearly, each ρ function is a linear function of one variable. Furthermore, Equation (24) can be used
to find each ρ function after the appropriate ψ functions have been determined (i.e., during a traversal
of a procedure’s vertices in reverse topological order).

3.5.3 Computing edgeValueInContext for interprocedural edges

The ρ functions are only assigned to intraprocedural edges and they can be used to calculate edgeVal-
ueInContext when the second argument to edgeValueInContext is an intraprocedural edge. To compute
the path number for an unbalanced-left path p it is also necessary to compute edgeValueInContext for
certain interprocedural edges. This section describes how to compute edgeValueInContext for interpro-
cedural edges.

36

In fact, for an interprocedural edge e and an unbalanced-left path p to e, the value of
edgeValueInContext(p, e) is almost always 0. The only situation where this is not the case is when
e is of the form Entryglobal → EntryQ and p is the path [ε : Entryglobal]. (Recall that as part of
creating G∗

fin , Transformation 3 of Section 3.2 adds edges of the form Entry global → EntryQ and
ExitQ → Exitglobal for each recursively called procedure Q.) This follows from the fact that for an
unbalanced-left path p that ends at a call vertex, an ExitP vertex, or a GExitP vertex, p has only one
valid successor.

Let us consider the case of an edge of the form Entry global → EntryQ . The value of
edgeValueInContext([ε : Entryglobal],Entryglobal → EntryQ) is computed using Equation (5). This
means that it is necessary to set a fixed (but arbitrary) ordering of the edges of the form Entry global →
EntryP . For convenience, we number each edge Entry global → EntryP according to this ordering,
and use Qi to refer to the procedure that is the target of the ith edge. From Equation (5), the value of

edgeValueInContext([ε : Entryglobal],Entryglobal → EntryQi
)

is as follows:
{

0 if i = 0
∑

j<i numValidComps(Entryglobal → EntryQj
) otherwise

(25)

As noted in Section 3.5.1, the value of numValidComps(Entry global → EntryQj
) is given by

numValidComps(Entryglobal → EntryQj
) = ψEntryQj

(1). (26)

Substituting Equation (26) into Equation (25) yields the following:

edgeValueInContext([ε : Entryglobal],Entryglobal → EntryQi
) =

{

0 if i = 0
∑

j<i ψEntryQj
(1) otherwise

(27)

3.5.4 Practical Considerations When Numbering Unbalanced-Left Paths

The previous sections demonstrated how to obtain a dense numbering of the paths through G∗
fin . This is

important because it limits the number of bits needed to encode a path number. However, the number
of paths through G∗

fin can be doubly exponential in the size of G∗
fin . In practice, even with a dense

numbering, there are still an impractically large number of paths. For practical purposes, each path
name must fit in a machine word, otherwise the profiling overhead becomes prohibitively expensive. On
a machine with a word size of 64 bits, we require that there be no more than 264 paths through G∗

fin .
Recall that in the construction of G∗

fin (see Section 3.2), each backedge u→ v in procedure P is
removed and replaced with the surrogate edges EntryP → v and u→ GExitP . We call the process of
removing an edge u→ v and replacing it with surrogate edges breaking the edge u→ v. We can limit
the number of paths through G∗

fin by breaking non-backedges in a similar fashion. Consider an edge
u→ v in procedure P where there are c paths from EntryP to u and d paths from v to ExitP (see
Figure 18. This edge participates in c · d paths from EntryP to ExitP . If u→ v is removed from the
graph, c ·d paths from EntryP to ExitP are eliminated. Adding the surrogate edge EntryP → v creates
d new paths from EntryP to ExitP . Adding the surrogate edge u→ GExitP creates c new paths from
EntryP to GExitP . On balance, replacing the edge u→ v with the surrogate edges EntryP → v and
u→ GExitP (i.e., breaking the edge u→ v) eliminates many more paths (c · d) than it creates (c+ d).

37

It is also possible to limit the number of paths through G∗
fin by breaking call and return-edges at a

call-site (as is done in Transformation 3 of the construction of G∗
fin ; see Section 3.2). We also transform

some call-sites by breaking the call-site’s return-edge, but not the call-site’s call-edge. This is shown in
Figure 19. Specifically, for a pair of vertices c and r representing a call-site to a procedure Q, we can
lessen the number of paths in G∗

fin by performing the following transformation:

Remove the return-edge ExitQ → r. Add the surrogate edge ExitQ → Exitglobal and the
summary-edge c→ r.

This transformation eliminates paths containing the edge ExitQ → r, but retains paths containing the
edge c→ EntryQ . The profiling machinery at the vertex c will save the path number for the current
path p before calling the procedure Q. After control returns from ExitQ to the return-site vertex r, the
profiling machinery will end the path from ExitQ using the surrogate-edge ExitQ → Exitglobal . Then
it will use the path number saved at c and the function ρc→ r to resume recording the path [p‖c→ r].
After the above transformation has been performed, the appropriate ψ for c is given by

ψc = ψEntryQ
◦ λx.1 + ψr

and the appropriate ρ for c→ r is given by

ρc→ r = ψEntryQ
◦ λx.1

As before, for any unbalanced-left path p to c, the value of edgeValueInContext(p, c→ EntryQ) is 0.
The above discussion demonstrates that the number of paths throughG∗

fin can be lowered by replac-
ing some edges with surrogate edges. The question becomes, which edges to break such that the number
of paths through G∗

fin is less that 2WordSize? (Here, WordSize is the number of bits in a machine word
on the system where the profiling is performed.) We use a technique that breaks edges as it computes
the ψ functions.

By Equation (11) in Section 3.5.1, we know that the number of paths in G∗
fin is equal to

∑

P∈Proc

ψEntryP
(1)

Let NumProcs be the number of procedures in G∗
fin . As we compute the ψ functions for the vertices of

a procedure P , we replace edges with surrogate edges until

ψEntryP
(1) ≤ 2WordSize/NumProcs (28)

This guarantees that the number of paths through G∗
fin is less than 2WordSize.

When computing the ψ functions for a procedure P , we simultaneously break edges in P to try to
ensure that Equation (28) holds. When we break an edge in P is determined by a threshold value Max-
PathsFromNonEntry. If after computing ψEntryP

Equation (28) does not hold, we lower the threshold
for breaking edges and recompute the ψ functions in P . More precisely, we use the following algorithm
to compute ψ functions in a procedure P and simultaneously break edges in P so that the number of
paths in G∗

fin is limited:

Algorithm 3.5.1
ComputeAllPsiFnsInProc(P)

MaxPathsFromEntry = 2WordSize/NumProcs

38

MaxPathsFromNonEntry = MaxPathsFromEntry

Foreach vertex v in P in reverse topological order
If v = EntryP Then

ψv :=
∑

w∈succ(v) ψw

Else
ComputePsiFnAndBreakEdges(v,MaxPathsFromNonEntry)

While ψEntryP
(1) > MaxPathsFromEntry

Undo all of the edge breaks in P
Break all of the backedges in P
MaxPathsFromNonEntry/=2
Foreach vertex v in P in reverse topological order

If v = EntryP Then
ψv :=

∑

w∈succ(v) ψw

Else
ComputePsiFnAndBreakEdges(v,MaxPathsFromNonEntry)

End ComputeAllPsiFnsInProc

ComputePsiFnAndBreakEdges(v,MaxNumPaths)
If v is not a call vertex Then

ψv :=
∑

w∈succ(v) ψw

While ψv(1) > MaxNumPaths
break an edge v → w
ψv :=

∑

w∈succ(v) ψw

Return
Else

Let r denote the return-site vertex associated with the call vertex v
Let Q be the procedure called by v
ψv := ψEntryQ

◦ ψr

If ψv(1) > MaxNumPaths Then
break the return-edge ExitQ → r

ψv := ψEntryQ
◦ λx.1 + ψr

If ψv(1) > MaxNumPaths Then
break the call-edge v → EntryQ

ψv := ψr

End ComputePsiFnAndBreakEdges

2

3.5.5 Calculating the Path Number of an Unbalanced-Left Path

In this section, we show how to calculate the path number of an unbalanced-left path p through G∗
fin

from Entryglobal to Exitglobal . This is be done during a single traversal of p that sums the values of
edgeValueInContext(p′, e) for each p′ and e such that [p′ ‖ e] is a prefix of p (cf. Equation (6)).

For interprocedural edges, the value of edgeValueInContext is calculated as described in Section 3.5.3.

39

For an intraprocedural edge e in procedure P , the value of edgeValueInContext(p′, e) is calculated by
applying the function ρe to the number of valid completions from ExitP . (The number of valid comple-
tions from ExitP is determined by the path taken to EntryP—in this case a prefix of p′.)

We now come to the crux of the matter: how to determine the contribution of an edge e when the
edge is traversed (i.e., how to determine the value edgeValueInContext(p′, e,)) without incurring a cost
for inspecting the path p′. The trick is that, as p is traversed, we maintain a value, numValidComps-
FromExit, to hold the number of valid completions from the exit vertex ExitQ of the procedure Q
that is currently being visited (the number of valid completions from ExitQ is uniquely determined
by p′—specifically, the sequence of unmatched left parentheses in p′). The value numValidComps-
FromExit is maintained by the use of a stack, NVCStack, and the ψ functions for return-site vertices.
The following steps describe the algorithm to compute the path number for a path p (which is accumu-
lated in the variable pathNum):

• When the traversal of p is begun, numValidCompsFromExit is set to 1. This indicates that
there is only one valid completion from ExitR, where R is the first procedure that p enters: if p
reaches the exit of the first procedure it enters, then it must follow the edge ExitP → Exitglobal .
The value of pathNum is initialized to the value edgeValueInContext([ε : Entry global], e) where
e is the first edge of p (see Section 3.5.3).

• As the traversal of p crosses a call-edge c → EntryT from a procedure S to a procedure T , the
value of numValidCompsFromExit is pushed on the stack, and is updated to
ψr(numValidCompsFromExit), where r is the return-site vertex in S that corresponds to call ver-
tex c. This reflects the fact that the number of valid completions from ExitT is equal to the
number of valid completions from r.

• As the traversal of p crosses a return-edge ExitT → r from a procedure T to a procedure S, the
value of numValidCompsFromExit is popped from the top of the stack. This reflects the fact
that the number of valid completions from the exit of the calling procedure S is unaffected by the
same-level valid path that was taken through the called procedure T .

• As the traversal of p crosses an intraprocedural edge e, the value of pathNum is incremented by
ρe(numValidCompsFromExit).

• At the end of the traversal of p, pathNum is output.

In essence, we have described the following algorithm:

Algorithm 3.5.2 (Calculate Path Number)
Input: An unbalanced-left path p from Entry global to Exitglobal .
Output: p’s path number.

initialize numValidCompsFromExit to 1
Initialize stack NVCstack to empty

Let e be the first edge of the path p. Calculate the value of edgeValueInContext([ε : Entry global], e) as
described in Section 3.5.3. Set pathNum to this value.

set e to the second edge of p

40

while e is not of the form v → Exit global do
if e is of the form c→ EntryT then

push(NVCstack, numValidCompsFromExit)
let r be the return vertex associated with c
numValidCompsFromExit := ψr(numValidCompsFromExit)

else if e is of the form ExitT → r then
numValidCompsFromExit := pop(NVCstack)

else
pathNum := pathNum+ ρe(numValidCompsFromExit)

fi
set e to the next edge of p

od
output pathNum

2

3.6 Runtime Environment for Collecting a Profile

We are now ready to describe the instrumentation code that is introduced to collect an interprocedu-
ral path profile. In essence, the instrumentation code threads the algorithm described in Section 3.5.5
into the code of the instrumented program. Thus, the variables pathNum and numValidComps-
FromExit become program variables. There is no explicit stack variable corresponding to NVC-
stack; instead, numValidCompsFromExit is passed as a value-parameter to each procedure and
the program’s execution stack is used in place of NVCstack. The instrumentation also makes use of
two local variables in each procedure:

pathNumOnEntry stores the value of pathNum on entry to a procedure. When an intraprocedural
backedge is traversed in a procedure P , the instrumentation code increments the count associated
with the current observable path and begins recording a new observable path that has the context-
prefix indicated by the value of pathNumOnEntry.

pathNumBeforeCall stores the value of pathNum before a recursive procedure call is made.
When the recursive procedure call is made, the instrumentation begins recording a new observable
path. When the recursive call returns, the instrumentation uses the value in pathNumBefore-
Call to resume recording the observable path that was executing before the call was made.

Figs. 12 and 13 show an instrumented version of the code in Fig. 8. Appendix B gives a more detailed
description of the instrumentation used to collect an interprocedural, context path profile.

3.6.1 Optimizing the Instrumentation

The code that calculates path numbers can be made more efficient than the implementation described
above (and in Appendix B). As each non-backedge is traversed, this implementation requires one mul-
tiplication and two additions. However, within a given activation of a procedure P , the multiplication is
always by the same value of numValidCompsFromExit, and the products of these multiplications
are always added to the sum in pathNum. This means that the multiplication may be “factored out.” As
an example, consider a subpath in P consisting of the non-backedges e1, e2, and e3 that are associated

41

with functions 〈2, 2〉, 〈3, 4〉, and 〈5, 3〉. Let pathNumorig be the value of pathNum before this subpath
is executed. After e1, e2, and e3 are traversed, we have the following:

pathNum = pathNumorig

+ 2 · numValidCompsFromExit + 2
+ 3 · numValidCompsFromExit + 4
+ 5 · numValidCompsFromExit + 3
= pathNumorig + 10 · numValidCompsFormExit+ 9

Instead of incrementing pathNum as each edge is traversed, two temporaries t1 and t2 are introduced.
Both are initialized to 0. The temporary t1 is used to sum the coefficients from the edge functions. The
temporary t2 is used to sum the constant terms of the edge functions. When pathNum absolutely must
be updated (i.e, before the profile is updated, before a procedure call is made, or before a procedure
returns), it is incremented by t1 ·numValidCompsFromExit+ t2. Note that when procedure P calls
procedure Q, after control returns to P , both t1 and t2 should be set to 0; when control returns to P ,
pathNum will have already been updated for the current values of t1 and t2.

The fact that t1 and t2 are used to sum values as edges are traversed allows some additional op-
timizations to be performed. Recall that in the Ball-Larus technique, there is some flexibility in the
placement of increment statements; this is used to push the increment statements to infrequently ex-
ecuted edges [10]. In a similar fashion, it is possible to move the statements that increment t1 and
t2.

3.6.2 Recovering a Path From a Path Number

This section describes an algorithm that takes a path number pathNum as input and outputs the corre-
sponding path p; this is the inverse operation of computing a path number. As the algorithm traverses
the path p, it decrements the value in pathNum. After a path prefix p′ has been traversed, pathNum
holds the value that is contributed to p’s original path number by the path p′′, where p = [p′ ‖ p′′]. At
this stage, edgeValueInContext(p′, v → wi) is computed for each valid successor wi ∈ {w1 . . . wk} of
p′. (Note that v is the last vertex of p′.) The algorithm is based on the following observations:

• Letwj denote the valid successor of p′ that gives the largest value of edgeValueInContext(p′, v → wj)
that is less than or equal to pathNum. Given the definition of edgeValueInContext, the edge
v → wj must be the next edge of p (i.e., the first edge of p′′).

• For x > j, the value of edgeValueInContext(p′, v → wx) is greater than pathNum and v → wx

cannot be the first edge of the continuation p′′.

• For x < j, any valid continuation of p′ that starts with v → wx will contribute a value to the
path number that is less than edgeValueInContext(p′, v → wj) (see Figure 14), which itself is less
than or equal to pathNum. Since the continuation p′′ makes a contribution equal to pathNum,
v → wx cannot be the first edge of p′′.

Thus, the next steps of the algorithm are: (i) set p′ to p′ ‖ v → wj ; (ii) decrement the value of pathNum
by edgeValueInContext(p′, v → wj); and (iii) start considering the valid successors of the new p′.

The algorithm uses two stacks: the first is similar to the stack used by Algorithm 3.5.2 and keeps
track of the value numValidCompsFromExit; the second keeps track of the sequence of return
vertices that correspond to the current call stack.

42

Algorithm 3.6.1 (Calculate Path from Path Number)
Input: The path number pathNum for an unbalanced-left path p in G∗

fin from Entryglobal to Exitglobal .
Output: A listing of the edges of the path p.

initialize stack NVCstack to empty
initialize stack returnStack to empty
initialize numValidCompsFromExit to 1
initialize path p to [ε : Entryglobal]

Find the edge Entryglobal → EntryP that gives the largest value for

x = edgeValueInContext([ε : Entryglobal],Entryglobal → EntryP)

that is less than or equal to pathNum (see Section 3.5.3).
p := [p ‖ Entryglobal → EntryP]
pathNum := pathNum− x
push(returnStack, Exitglobal)
push(NVCstack, 1)
while p does not end at Exitglobal do

let v be the last vertex of p
if v is a call vertex c then

let c→ EntryP be the call-edge from c
p := [p ‖ c→ EntryP]
let r be the return vertex associated with c
push(returnStack, r)
push(NVCstack, numValidCompsFromExit)
numValidCompsFromExit := ψr(numValidCompsFromExit)

else if v is an exit vertex ExitP then
numValidCompsFromExit := pop(NVCstack)
r :=pop(returnStack)
p := [p ‖ ExitP → r]

else if v is an exit vertex GExitP then
p := [p ‖ GExitP → Exitglobal]

else
let w1 . . . wk denote the successors of v
for (i := 1; i ≤ k − 1; i++) do

if (ρv→wi+1
(numValidCompsFromExit) > numPaths) then

break
fi

od
p := [p ‖ v → wi]
numPaths := numPaths− ρv→wi

(numValidCompsFromExit)
fi

od
output p

2

43

3.7 Handling Other Language Features

In this section, we describe how to handle some additional language features that were not explicitly
addressed in the previous sections. Specifically, Section 3.7.1 discusses some of the complications that
arise because of signals and signal handlers. Section 3.7.2 describes how exceptions can be handled,
and Section 3.7.3 describes how to take care of indirect function calls.

3.7.1 Signals

Program signals can cause a problem for path profiling because of their asynchronous nature. For
example, it is possible for a signal handler to be invoked while the program is in the middle of executing
an observable path p. Because it is possible that the signal handler will never return, it is possible that the
program will never complete execution of the (hypothetical) path p, and hence p will not be recorded.
Furthermore, it is possible that there are paths, called pending paths, that are “on hold” at a recursive
call site that will only be completed once control returns to the call site. Thus, the current and pending
path prefixes that are active at the time of the signal will not be recorded in the profile. This is a problem
if the purpose of gathering a path profile is to aid in debugging. Instead, we want to record the prefixes
of p and the pending paths that have executed at the time the signal occurs.

For either of the interprocedural techniques described in this chapter and the next chapter this can
be done as follows:

• For each procedure P , for each vertex v of P that is not a call vertex and is not ExitP , add a
surrogate edge v → GExitP .

• For each new surrogate edge v → GExitP , the assignment of ρ functions is done such that
ρv→GExitP = 〈0, 0〉. This guarantees that whenever execution reaches the vertex v, the value
in pathNum is the path number for the current path to v concatenated with [v → GExitP →
Exitglobal].

• Add a global stack of unsigned longs called pendingPaths. For each recursive call site,
modify the instrumentation to push the current value of pathNum on pendingPaths before
the call is made and to pop pendingPaths after the call returns.

• For every possible signal, a signal handler is written (or modified) in which the first action of
the signal handler is to update the path profile with the current value of pathNum and with
every value that appears on the stack pendingPaths. Thus, if a signal s interrupts execution
of a procedure P at a vertex v, the signal handler for s will record a path that ends with v →
GExitP → Exitglobal and, for every pending path prefix on pendingPaths that ends at the
call vertex c, a path that ends with c→ GExitP → Exitglobal .

These modifications guarantee that signals will not cause a loss of information in the profile, which,
as mentioned above, is important for some profiling applications. Unfortunately, they also increase the
number of observable paths, which creates its own problems (see Section 3.5.4). Note that a similar
technique could be used for handling signals in the intraprocedural case.

It is possible to avoid the issue of pending paths by changing Transformation 3 in the construction
of G∗

fin (see the construction for context profiling in Section 3.2). In particular, for a recursive call
site represented by vertices c and r, rather than adding the summary edge c → r, the surrogate edges
c→ GExitP and EntryP → r are added.9 In this way, every observable path that contains the summary

9For piecewise profiling, the edge EntryP → r becomes GEntryP → r.

44

edge c → r is split into two observable paths. The instrumentation code at a recursive call site records
the path that ends with c→ GExitP → Exitglobal before making the recursive call, and begins recording
a new path when the recursive call returns. When this version of Transformation 3 is used, there are
never any pending paths during runtime.

3.7.2 Exceptions

Programming languages that have exceptions (e.g., C++, Java) can cause complications, particularly for
intraprocedural path-profiling techniques. In particular, consider a procedure P that calls procedure Q,
which in turn calls procedure R. If R throws an exception that is caught in P , then there will be an
incomplete path in Q that is not recorded. One way to address this is to break every observable path at
each call site.

In an interprocedural path-profiling technique, exceptions can be handled by adding a surrogate edge
from the EntryP vertex (or GEntryP vertex, depending on the interprocedural technique being used)
to the vertex v where the exception is caught, and adding a surrogate edge from the vertex u where the
exception is thrown to GExitR. (HereP is the procedure containing v, andR is the procedure containing
u.) When the exception is thrown, the profiling instrumentation updates the profile for the path that ends
with [u→ GExitR → Exitglobal]. When the exception is caught, the profiling instrumentation uses the
edge EntryP → v (or the edge GEntryP → v) to begin recording a new observable path.

Note that in the interprocedural path-profiling techniques we must also deal with the issue of pending
path prefixes. This can be handled in the same way it is handled in Section 3.7.1: a surrogate edge
c→ GExitP is added to each recursive call vertex c in each procedure P , the assignment of ρ functions
is done such that the ρc→GExitP functions are all 〈0, 0〉, and a stack of pending path prefixes is maintained.
When an exception is thrown, the profile is updated for each value on the stack of pending path prefixes.
A stack of pending path prefixes can also be used to handle exceptions for intraprocedural path profiling
techniques (where pending paths may include paths that are “on hold” at call sites).

3.7.3 Indirect Procedure Calls

The easiest way to handle indirect procedure calls is to treat them as recursive procedure calls, and
not allow interprocedural paths that cross through an indirect procedure call. Another possibility is to
turn each indirect procedure call through a procedure variable fp into an if-then-else chain that has a
separate (direct) procedure call for each possible value of fp. Well-known techniques (e.g., such as
flow insensitive points-to analysis [6, 59, 57]) can be used to obtain a reasonable (but still conservative)
estimate of the values that fp may take on.

45

Figure 9: G∗
fin for the code in Fig. 8. Dashed edges represent surrogate edges; the supergraph for the

program in Fig. 8 includes the backedges v13 → v4 and u5 → u3, which have been removed here by
Transformation 2. Here, the ordered pair 〈a, b〉 represents the linear function λx.a · x+ b. Each vertex
v is assigned the linear function ψv, which is shown in a rounded box. Each intraprocedural edge e is
assigned the linear function ρe, which is shown in a doubled, rounded box. Unlabeled intraprocedural
edges have the function 〈0, 0〉. Interprocedural edges do not have ρ functions. Path number 24 has been
shown in bold.

46

Figure 10: Example of an invalid cycle in a program supergraph.

47

Figure 11: Modified version of G∗
fin from Fig. 9 with two copies of pow. Labels on the vertices and

edges show the results of applying the Ball-Larus numbering technique to the graph. Each vertex label
is shown in a circle, and each edge label is shown in a double circle. Unlabeled edges are given the
value 0 by the Ball-Larus numbering scheme.

48

���������	��
��������������������
����	���! "	#�$&%('�)	*�*	+�,.-/0'�13245*6+�782�)32�1	-9#&"
:)<;�,�-&/0'�)<=?> :)@;&,.-&/A,�1	*/CBD-&)<7	E8/3F&'?B

���������	��
�������HG�!I���J�K.�<L!MN�&�O�����	�5
&�������P�&�@LCQ<I����&�@RO��L@����S5���TLU�V.�	�XW@Y
���������	��
�6�����Z�[I	�XJ�K��@L.\�<U������]_^P�[I	�XJ�K��@L` H"	#9a&13bO/_2&4O/8c31	-�-�+�7�Edc3)@7�2O/3F&2d#"
:)<;�,�-&/_'O)@=O/3e9fhg�ikjCl
=�4�+3-/[>m/@F&'dn6joW9Y

'O)@=O/3eo#<f9,�1	*/[l
/@F&'�p�p[l
�����T�`����
��q�[I���J�K��@L&��rr�
"�#_s�e�)�tu*X;	e&eO)@EO132�/(/ : EO/v;�g<p&n<;O$xwy#&"
�!I���J�K.�<Ld^{z{|v���<L}QXI�����3R���L3�~��S.����L3U.V5�&�Nr8z�r��[I	�XJ�K��@L.\�<U������]�

�
�[I	�XJ�K.�@L�r^8�{|v���<L}Q<I�����3RO�TL3�~��S5�O��L3U.V.�	�Hr�z� P"�#_s�e�)�t�/ : E�/_;�$�p�nX;��6#&"
eO/@2&;�e&76'O)@=O/3e?l

�

Figure 12: Part of the instrumented version of the program from Fig. 8. Instrumentation code is shown
in italics. (See also Fig. 13.)

49

���������	����
���
���	�	�������������������	�� "!#�%$'&'()
���	�	�������������������	�� "!#�%$#*��"+,���"-�.�&'()
���	�	���������������/���%$10"��2�����3546$7�8��9,-#4:$�+,;#�5�<&'=#)
>�?%@�A,B�C ��DFE C5G"@#B ��H'IKJLI1M
�6�5�N��HPOQM
R�S � B�C
T�VU%HPO"W'���

�"XK
Y
:�7Z�[#�\H�H]I^���
�]HV_ ? R
T�8D<[8` ���	�� "!#�%$ ` (]a����%$10"��2�����3	4$%�Q�"9#-#4$�+#;����cbVd ��M
e5f�g � C ����E�hV� ? _ ? Rji _#�%� S�k @ �P� G I ? ElO�WKMmX ?%@ E�� S ��E�njJo� B R �%h Gqp f�e
e5f�g � C�r �"��X�E ? �'_ ? Rsi _	��� S5k @ �P� G O�D<tKDuO�vKD ? E][p f�e
E C5G"@#B ��w�H��xM

y ��2:�	�
�z�5�" �!,�%$^b�&]('a����%$10"��2�����3546$7�8��9,-	4$�+#;,�5�cbY="{Q)

�"XK
Y
:�7Z�|#�\H�H]I^���
�]HV_ ? R
T�8D<[8` ���	�� "!#�%$ ` (]a����%$10"��2�����3	4$%�Q�"9#-#4$�+#;����cbY= ��M
e5f�g � C ����E�hV� ? _ ? Rji _#�%� S�k @ �P� G OQD<t1D/O"[1DuO"v1D�[p D ? EY|�I1Mm}�� S ��E�njJm� B R ��h G O f�e
e5f�g � C�r �"��X�E ? �'_ ? Rsi _	��� S5k @ �P� G [1D<|KD�W1D<vKD/O�|KDuO}xDm[�I1D<[�O�D�[�~1D<[�t1D�|�O�D ? E'|�[f�e
E C5G"@#B ��w�H��xM

y ��2:�	�
�z�5�" �!,�%$^b�&]('a����%$10"��2�����3546$7�8��9,-	4$�+#;,�5�cb/�z) e�f�� E ? � C�> n Cq� v5��� � O"| f�e

�"w�w�M
��-#46�Q��26�����z�5�" �!,�7$���b�b)
e�f�� E ? � G�@ E�E ? n	�%� CqC�> n Cq� O"��� � } i f�e
���	�" �!,�7$'&'=]a����%$10"��2�����3546$7�8��9,-	46$%+,;,���cb]=��YbT���	�� "!#�%$#*��"+,���"-�.�)

y
���	�� "!#�%$^b�&'(]a����%$10"��2�����3546$7�8��9,-	46$%+,;#�5�cbY=��#) e�f�� E ? � C�> n Cq� }#��� � O p f�e
��-#4�8��2��������	�� "!#�%$��Qb�b#)
��4%-��:��&'()����q�	�)V��b�b%� �

��47�������#���5�" K�L����)/��4"���q���]���������5�)V��47�������,���5�" K��{5��)u��4"�������c��-#4�8��26���6�:�N�������6)
�:��������b�=%�V�'��&�&'(%����47���q���Y�"�,��2")

y
E C � @ E��'I1M

y

Figure 13: Part of the instrumented version of the program from Fig. 8. Instrumentation code is shown
in italics. (See also Fig. 12.)

50

Figure 14: Illustration of the definition of edgeValueInContext given in Equation (5).

51

P

Entryglobal Exitglobal

eP xP

v q’’

q’

Figure 15: Schematic that illustrates the paths used to motivate the ψ functions. Vertices with labels of
the form eP , xP , and gP represent the vertices EntryP , ExitP , and GExitP , respectively.

52

Entryglobal Exitglobal

S

Q

P

R

(1

(2

(S

)1

)2

)S

c1c1

c2

ck

r1

r2

rk

eS

eR

eQ

eP

xS

xR

xQ

xP

gS

gR

gQ

gP

q’

q’’

Figure 16: Schematic of the paths used to explain the use of ψ functions to compute numValidComps(q),
where q is an unbalanced-left path from Entry global to ExitP . The unbalanced-left path s starts at
Entryglobal and ends at ExitS , and has q as a prefix. Vertices with labels of the form eP , xP , and gP

represent the vertices EntryP , ExitP , and GExitP , respectively.

53

Q

P

Entryglobal Exitglobal

eQ xQ

eP xP

c r

gP

p

p’

q

()

gQ

Figure 17: Paths used to illustrate the correctness of Equation (21).

Figure 18: Example showing the effect of breaking an edge u→ v on the number of paths in procedure
P .

54

Figure 19: Schematic of G∗
fin with a call-site where the return-edge has been replaced by a surrogate

edge, but not the call-edge.

55

Chapter 4

The Functional Approach to
Interprocedural Piecewise Path Profiling

As mentioned in Section 3.3.1, the technique described in Chapter 3 is a functional approach to inter-
procedural context path-profiling. In particular, an unbalanced-left path p through G∗

fin may contain
a non-empty context-prefix that summarizes the context in which the active-suffix of p occurs. In an
intraprocedural context path profile, an observable path can include a context prefix that summarizes the
path taken to a loop header. In piecewise path profiling, we define a set of observable paths such that
any execution path — a same-level valid path from Entry global to Exitglobal in the program supergraph
— is the concatenation of a sequence of observable paths. A piecewise path profile reports how many
times each observable path occurs as a subpath of a given execution path.

This chapter shows how to modify the technique of Chapter 3 to give a technique that collects an
interprocedural piecewise path profile. Since we are interested in observable paths that may begin and
end in the middle of an execution path, we are interested in unbalanced-right-left paths. Unbalanced-
right-left paths are defined in terms of unbalanced-right paths, which are the dual of unbalanced-left
paths. A path p is called an unbalanced-right path if and only if the string formed by concatenating the
labels of p’s edges can be derived from the non-terminal UnbalRight in the following the context-free
grammar:

UnbalRight ::= UnbalRight)c UnbalRight for each call vertex c
| UnbalRight)P UnbalRight for each procedure P
| SLVP

An unbalanced-right path represents part of an incomplete execution sequence. Specifically, an
unbalanced-right path p may leave a procedure P (where the execution sequence that reached P is
not part of p). For example, a path that begins in a procedure P , crosses a return-edge to a procedure Q,
and ends in Q is an unbalanced-right path.

An unbalanced-right-left path is the concatenation of an unbalanced-right path and an unbalanced-
left path. Specifically, a path is called an unbalanced-right-left path if and only if the string formed by
concatenating the labels of p’s edges can be derived from the non-terminal UnbalRtLf in the following
context-free grammar:

UnbalRtLf ::= UnbalRight UnbalLeft

An unbalanced-right-left path p may leave some number of procedures (where the execution sequence
that reached those procedures is not part of p) and then enter some number of procedures (where the
execution that leaves those procedures is not part of p). For example a path that begins in a procedure
P , crosses a return-edge to a procedure Q, then crosses a call-edge to procedure R and ends in R is
an unbalanced-right-left path. Note also that every same-level-valid path, unbalanced-left path, and
unbalanced-right path is also an unbalanced-right-left path.

56

One way to see that we are interested in unbalanced-right-left paths for interprocedural piecewise
path-profiling is to compare them with the observable paths used for interprocedural context path-
profiling: to modify an observable path p from the context path-profiling technique for use in a piecewise
path-profiling technique, we are interested in throwing out the prefix of p that contains the context-prefix,
and keeping the suffix of p that has the active-suffix; the suffix of an unbalanced-left (observable) path
that is used for context profiling is an unbalanced-right-left path.

The algorithm for piecewise path profiling uses a slightly different version of G∗
fin from that used in

the previous chapter. In particular, a new transformation must be performed before the transformations
given in Section 3.2:

Transformation 0: For each procedure P add the special vertex GEntryP to the flow graph for P and
an edge Entryglobal → GEntryP .

In addition, Transformations 2 and 3 are modified so that each surrogate edge of the form EntryP → v
is replaced by a surrogate edge of the form GEntryP → v. For the purpose of classifying a path as
a same-level valid path, an unbalanced-left path, an unbalanced-right path, or an unbalanced-right-left
path, edges of the form Entryglobal → EntryP are labeled “(P ”, edges of the form ExitP → Exitglobal
are labeled “)P ”, and edges of the form Entryglobal → GEntryP and GExitP → Exitglobal are labeled
“e”. The observable paths correspond to the unbalanced-right-left paths from Entry global to Exitglobal
in the graph G∗

fin created by Transformations 0–3.

Example 4.0.1 Figure 20 shows the graph G∗
fin that is constructed for collecting a piecewise profile for

the program in Figure 8. In Figure 20, the vertices v17 and u9 are inserted by Transformation 0. The
vertices v14 and u6 are inserted by Transformation 1. The edges v17 → v4 and v13 → v14 are inserted by
(the modified) Transformation 2 (and the backedge v13 → v4 is removed). Similarly, Transformation 2
adds the edges u9 → u3 and u5 → u6, and removes the backedge u5 → u3. Transformation 3 is not
illustrated in this example, because the program is non-recursive. 2

As noted above, under this construction of G∗
fin , the observable paths correspond to unbalanced-

right-left paths through G∗
fin . In particular, the observable paths no longer correspond just to the

unbalanced-left paths in G∗
fin : an unbalanced-right-left path that begins Entry global → GEntryP →

v → . . . corresponds to an observable path that begins at vertex v (i.e., in the middle of procedure P).
For instance, consider the following path in Figure 20:

Entryglobal → u9 → u3 → u7 → u8 → v7 → v8 → v9 → v10 → u1 → u2 →
u3 → u4 → u5 → u6 → Exitglobal

This path corresponds to an execution sequence that begins at vertex u3 in pow, returns to the first call
site in main, and then re-enters pow from the second call site in main. The sequence of parentheses
generated by this path consists of an unmatched right parenthesis on the return-edge u4 → v7 and an
unmatched left parenthesis on the call-edge v10 → u1. Thus, the path is an unbalanced-right-left path,
but is not an unbalanced-left path nor a same-level valid path.

4.1 Numbering Unbalanced-Right-Left Paths in G∗
fin

In this section, we describe how to obtain a dense numbering of the unbalanced-right-left paths in G∗
fin .

The number of unbalanced-right-left paths in G∗
fin is finite. Thus, the graph G∗

fin together with the

57

v1: Entrymain

v2: result = 0;

v3: i=1;

v4: while(i <= 18)

v5: if((i%2) == 0)

v6: call: t = pow(i, 2);

v7: retn: t = pow(i, 2);

v8: res += t;

v9: if((i%3) == 0)

v10: call: t = pow(i, 2);

v11: retn: t = pow(i, 2);

v12: res += t;

v13: i++;

v14: GExitmain

v15: return 0;

v16: Exitmain

main

Exitglobal

Entryglobal

u1: Entrypow

u2: power = 1.0;

u3: while(exp > 0)

u4: power *= base;

u5: exp--;

u7: return power;

u6: GExitpow

u8: Exitpow

pow

v17: GEntrymain u9: GEntrypow

(1

(2

)2

)1

(main

)main

Figure
20:

G
∗fi
n

forpiecew
ise-profiling

instrum
entation

forthe
program

given
in

Figure
8.D

ashed
edges

representsurrogate
edges;the

supergraph
for

the
program

in
Figure

8
includes

the
backedges

v
1
3
→
v
4

and
u

5
→
u

3 ,w
hich

have
been

rem
oved

here
by

T
ransform

ation
2.

58

context-free grammar for unbalanced-right-left strings of parentheses constitute a finite-path graph. We
will use the technique presented in Section 3.4 for numbering L-paths to number unbalanced-right-left
paths in the modified G∗

fin . For this section, the L-paths of Section 3.4 correspond to unbalanced-right-
left paths. The function numValidComps takes an unbalanced-right-left path p that starts at Entry global

and returns the number of valid completions of p. The definitions of edgeValueInContext and path
number are exactly as in Section 3.4.

The task of computing numValidComps and edgeValueInContext for an unbalanced-right-left path
is similar to the task of computing these functions for an unbalanced-left path in Section 3.5. Let p be
an unbalanced-right-left path from Entry global to a vertex v in procedure P . Our technique is based on
the following observations (which are essentially the same as those made in Section 3.5):

1. The number of valid completions of p, numValidComps(p), is determined by the sequence of
unmatched left parentheses in p and the vertex v. If v = ExitP and p contains an unmatched left
parenthesis, then there is only one valid successor of p: the return vertex r such that ExitP → r
closes the last open parenthesis in p. Otherwise, any successor of v is a valid successor of p.

2. For a vertex u in P , the value of numValidComps(p ‖ q) is the same for any same-level valid path
q from v to u. In particular, this holds for u = ExitP .

3. If v = GExitP , then the number of completions of p is 1, because GExitP → Exitglobal is the
only path out of GExitP .

4. If w1, . . . , wk are the valid successors of p, then the value of numValidComps(p) is given by the
following sum:

numValidComps(p) =
k
∑

i=1

numValidComps(p ‖ v → wi).

These observations imply that the ψ and ρ functions described in Section 3.5 are also useful for inter-
procedural piecewise path profiling. Let q be any same-level valid path from v to ExitP . This means
that

numValidComps(p) = ψv(numValidComps(p ‖ q)).

Furthermore, for an intraprocedural edge v → w, we have the following:

edgeValueInContext(p, v → w) = ρv→w(numValidComps(p ‖ q)).

As we will see in Sections 4.2 and 4.3, this allows us to use the same device we used in Sections 3.5.5
and 3.6—namely, to maintain a value numValidCompsFromExit so that
edgeValueInContext(p, v → w) can be computed efficiently, as ρv→w(numValidCompsFromExit.

Even though the same ψ and ρ functions will be used, there are two key differences in how the
functions numValidComps and edgeValueInContext are computed when dealing with unbalanced-right-
left paths:

1. The first difference is in how numValidComps is computed for an unbalanced-right-left path that
ends with an ExitP vertex.

2. The second difference is in how edgeValueInContext is computed for an interprocedural edge.

Both of these differences stem from the fact that an unbalanced-right-left path p from Entry global to
ExitP may have no unmatched left parentheses (i.e., p may be an unbalanced-right path). In contrast, in
Section 3.5, when dealing with unbalanced-left paths, we never “ran out” of unmatched left parentheses.

59

4.1.1 Calculating numValidComps from ExitP

Let q be an unbalanced-right-left path from Entry global to ExitP . In this section, we discuss how to
compute numValidComps(q). If q contains an unmatched left parenthesis, then there is only one valid
successor of q: the return vertex r1 such that the edge ExitP → r1 matches the last unmatched left
parenthesis of q. This gives us the following:

numValidComps(q) = numValidComps(q ‖ ExitP → r1).

Suppose r1 occurs in procedure Q. Then the above value is equal to

ψr1
(numValidComps(q ‖ ExitP → r1 ‖ q′)),

where q′ is any same-level valid path from r1 to ExitQ . Recall that the function ψr1
counts the valid

completions of p that exit Q via GExitQ , even though it only takes as an argument the number of valid
completions for paths that exit Q via ExitQ . As before, if [q ‖ ExitP → r1 ‖ q′] has an unmatched
left parenthesis, then it will have only one valid successor: the return vertex r2 such that ExitQ → r2 is
labeled with the parenthesis that closes the second-to-last unmatched left parenthesis in q. Suppose that
r2 is in procedure R. Then the above value becomes

ψr1
(ψr2

(numValidComps(q ‖ ExitP → r1 ‖ q′ ‖ ExitQ → r2 ‖ q′′))),

where q′′ is any same-level valid path from r2 to ExitR. Again, ψr2
counts valid completions that leave

R via either GExitR or ExitR. This argument can be continued until a path s has been constructed from
Entryglobal to ExitS , and one of two cases holds:

Case 1: The parenthesis “(S” that appears on the edge Entryglobal → EntryS is the only unmatched
left parenthesis in s. In this case, the only valid successor of s is Exit global , and the number of
valid completions of s is 1. This means that

numValidComps(q) = ψr1
(ψr2

(. . . ψrk
(numValidComps(s)) . . .))

= ψr1
(ψr2

(. . . ψrk
(1) . . .))

where r1 . . . rk is the sequence of return vertices determined by the unmatched left parentheses in
q. (Note that this equation is the same as Equation (8), which makes sense because q must have
been an unbalanced-left path.)

Case 2: There are no unmatched left parentheses in s. (In this case, q does not contain the parenthesis
“(S”; note that this case cannot happen for a path q in Section 3.5, because each unbalanced-
left path q starts with a parenthesis of the form “(S”.) In this case, s is an unbalanced-right
path (which has the unbalanced-right-left path q as a prefix), and so every return vertex that is a
successor of ExitS is a valid successor of s. Furthermore, any unbalanced-right-left path from
ExitS to Exitglobal is a valid completion of the path s. (In contrast, consider an unbalanced-left
path p that is used for interprocedural context path profiling: each valid completion of p is an
unbalanced-right-left path; however, only an unbalanced-right-left path p′ where the sequence of
unmatched right parentheses in p′ match the sequence of unmatched left parentheses in p can be
a valid completion of p.)

We define the value numUnbalRLPaths[v] to be the total number of unbalanced-right-left paths
from the vertex v to Exit global . This gives us the following:

numValidComps(q) = ψr1
(ψr2

(. . . ψrk
(numValidComps(s)) . . .))

= ψr1
(ψr2

(. . . ψrk
(numUnbalRLPaths[ExitS]) . . .))

60

where r1 . . . rk is the sequence of return vertices determined by the unmatched left parentheses in
q. Note that if there are no unmatched left parentheses in q, then ExitS = ExitP and the above
equation simplifies to:

numValidComps(q) = numUnbalRLPaths[ExitP]

We now show how to compute numUnbalRLPaths[v]. First, note that if numUnbalRLPaths[ExitP] is
known, then the ψ functions can be used to compute numUnbalRLPaths[v] for any vertex v in procedure
P :

numUnbalRLPaths[v] = ψv(numUnbalRLPaths[ExitP])

This follows from the definition of ψv: let p be any unbalanced-right-left path from Entry global to v
such that p does not contain any unmatched left parentheses and let q be a same-level valid path from
v to ExitP—thus, p is an unbalanced-right path that starts with an edge Entry global → GEntryP ′ .
The number of valid completions of p is equal to the number of unbalanced-right-left paths from v to
Exitglobal . This implies that

numUnbalRLPaths[v] = numValidComps(p)
= ψv(numValidComps(p ‖ q))
= ψv(numUnbalRLPaths[ExitP])

The value of numUnbalRLPaths[ExitP] is given by the following equation:

numUnbalRLPaths[ExitP] =
∑

r∈succ(ExitP)

numUnbalRLPaths[r] (29)

where numUnbalRLPaths[r] is given by

numUnbalRLPaths[r] =

1 if r = Exitglobal

ψr(numUnbalRLPaths[ExitQ])
if r is a return-site
vertex in procedure Q

(30)

Equations (29) and (30) can be used to compute numUnbalRLPaths[ExitP] for each ExitP vertex and
numUnbalRLPaths[r] for each return-site vertex r during a traversal of the call graph associated with
G∗

fin in topological order: Because the call graph associated with G∗
fin is acyclic, whenever a vertex

ExitP is reached, each value numUnbalRLPaths[r] that is needed to compute numUnbalRLPaths[ExitP]
will be available.

Computing edgeValueInContext for interprocedural edges

For an unbalanced-right-left path p from Entry global to ExitP , and an edge ExitP → r, the value of
edgeValueInContext(p,ExitP → r) is not always zero, as it was in Section 3.5.3. Let r1 . . . rk be the
successors of ExitP . If the path p does contain an unmatched left parenthesis, then there is only a single
ri that is a valid successor of p. This means that

edgeValueInContext(p,ExitP → ri) = 0.

Now suppose that p has no unmatched left parentheses (i.e., p is an unbalanced-right path). In this case,
every ri is a valid successor of p. Then the definition of edgeValueInContext in Equation (5) yields the
following:

edgeValueInContext(p,ExitP → ri) =

{

0 if i = 1
∑

j<i numUnbalRLPaths[rj] otherwise
(31)

61

Notice that the value computed by Equation (31) is the same for any unbalanced-right-left path p to
ExitP that has no unmatched left parentheses (i.e., for any unbalanced-right path). For an edge ExitP →
ri, we define edgeValue[ExitP → ri] to be the value computed by the right-hand side of Equation (31)
(for any unbalanced-right-left path p to ExitP that has no unmatched left parentheses).

As in Section 3.5.3, we must also calculate edgeValueInContext for the path [ε : Entry global] and an
edge Entryglobal → v. We observe that

numValidComps(Entryglobal → EntryP) = ψEntryP
(1)

and
numValidComps(Entryglobal → GEntryP) = ψGEntryP

(numUnbalRLPaths[ExitP]).

The first of these equations is discussed in Section 3.5.3. The second holds because the path consist-
ing of the edge Entryglobal → GEntryP is (trivially) an unbalanced-right path. With these observations,
it is possible to apply Equation (5) to find the appropriate values of
edgeValueInContext([ε : Entryglobal],Entryglobal → v) for the Entryglobal → EntryP and
Entryglobal → GEntryP edges.

Figure 21 shows a labeled version of G∗
fin from Figure 20. Figure 21 shows the values on the

interprocedural edges that are calculated as discussed in this section. In addition, numUnbalRLPaths is
shown for certain vertices.

In general, the total number of unbalanced-right-left paths through G∗
fin is given by

numValidComps([ε : Entryglobal]) =
∑

v∈succ(Entryglobal)

numValidComps(Entryglobal → v)

where
numValidComps(Entryglobal → EntryP) = ψEntryP

(1)

and
numValidComps(Entryglobal → GEntryP) = ψGEntryP

(numUnbalRLPaths[GExitP]).

For the graphG∗
fin shown in Figure 21, the total number of unbalanced-right-left paths from Entry global

to Exitglobal is

numValidComps([ε : Entryglobal]) = numValidComps(Entryglobal → Entrymain)+
numValidComps(Entryglobal → GEntrymain)+

numValidComps(Entryglobal → GEntrypow)

= ψEntrymain
(1) + ψGEntrymain

(1) + ψGEntrypow
(4)

= 8 + 8 + 5
= 21

4.1.2 Practical Considerations When Numbering Unbalanced-Right-Left Paths

For practical purposes, it is important to limit the number of unbalanced-right-left paths through G∗
fin

to 2WordSize, where WordSize is the number of bits in a machine word, (i.e., on typical commercial
hardware). As in Section 3.5.4, this is done by breaking edges in G∗

fin . However, limiting the number
of unbalanced-right-left paths in G∗

fin is more complicated than limiting the number of unbalanced-left
paths in G∗

fin , as in Section 3.5.4. There are the following issues:

62

0
,
7

v 1
:

E
nt

ry
m

ai
n

v 2
:

r
e
s
u
l
t

=

0
;

v 3
:

i
=
1
;

v 4
:

w
h
i
l
e
(

i

<
=

1
8

)

v 5
:

i
f
(

(
i
%
2
)

=
=

0
)

v 6
:

ca
ll
:

t

=

p
o
w
(
i
,

2
)
;

v 7
:

re
tn
:

t

=

p
o
w
(
i
,

2
)
;

v 8
:

r
e
s

+
=

t
;

v 9
:

i
f
(

(
i
%
3
)

=
=

0

)

v 1
0:

ca
ll
:

t

=

p
o
w
(
i
,

2
)
;

v 1
1:

re
tn
:

t

=

p
o
w
(
i
,

2
)
;

v 1
2:

r
e
s

+
=

t
;

v 1
3:

i
+
+
;

v 1
4:

G
E

xi
t m

ai
n

v 1
5:

r
e
t
u
r
n

0
;

v 1
6:

E
xi

t m
ai

n

m
ai

n

E
xi

t gl
ob

al

E
nt

ry
gl

ob
al

u 1
:

E
nt

ry
po

w

u 2
:

p
o
w
e
r

=

1
.
0
;

u 3
:

w
h
i
l
e
(
e
x
p

>

0
)

u 4
:

p
o
w
e
r

*
=

b
a
s
e
;

u 5
:

e
x
p
-
-
;

u 7
:

r
e
t
u
r
n

p
o
w
e
r
;

u 6
:

G
E

xi
t po

w

u 8
:

E
xi

t po
w

po
w

1
,
7

1
,
7

1
,
7

0
,
7

0
,
1
2

0
,
3

0
,
4

0
,
3

0
,
3

0
,
2

0
,
1

0
,
1

0
,
1

0
,
1

0
,
1

0
,
1

0
,
1

0
,
1

0
,
2

1
,
0

1
,
0

1
,
0

1
,
1

1
,
1

1
,
1

1
,
0

1
,
0

0
,
4

v 1
7:

G
E

nt
ry

m
ai

n
u 9
:

G
E

nt
ry

po
w

1
,
7

1
,
7

1

3
0

8
0

1
6

4

1
,
1

3
1

1

Figure 21: Labeled version of G∗
fin from Figure 20. For each intraprocedural vertex v, the function ψv

is shown in a rounded box. For each intraprocedural edge e, the function ρe is shown in a doubled,
rounded box; intraprocedural edges that are not labeled have the function 〈0, 0〉. For the exit vertices
Exitglobal , Exitmain , and Exitpow, and the return-site vertices v7 and v11, the value of numUnbalRLPaths
is shown in a circle. For each interprocedural edge v → w, the value of edgeValueInContext(p, v → w)
for an unbalanced-right path p ending at v is shown in a doubled rounded circle. There are a total
of ψEntrymain

(1) + ψGEntrymain
(1) + ψGEntrypow

(4) = 8 + 8 + 5 = 21 unbalanced-right-left paths from
Entryglobal to Exitglobal in G∗

fin .

63

1. Calculating the number of unbalanced-right-left paths is done in two passes over G∗
fin , called

Pass I and Pass II in the remainder of this section. (Recall that only a single pass over G∗
fin is

required to calculate the number of unbalanced-left paths.) During Pass I, the ψ and ρ functions
are calculated in almost exactly the same way as described in Section 3.5.4. Edges are broken
(in order to limit the number of paths) in a manner similar to the one described in Section 3.5.4.
There are two differences:

(a) When assigning ψ and ρ functions in a procedure P , we check to make sure that

ψEntryP
(1) + ψGEntryP

(1) ≤ 2WordSize/NumProcs

instead of checking that

ψEntryP
(1) ≤ 2WordSize/NumProcs

(b) For every return-site vertex r in procedure P , we add a surrogate-edge GEntryP → r. The
use of these surrogate-edges is described below.1

2. A return-edge may be broken for some paths, but not others — this is in contrast to Section 3.5.4,
where a broken edge could not be used in any path. There are two ways that a return-edge
ExitP → r may be broken:

With respect to unbalanced-right path prefixes: In this case, the return-edge ExitP → r can-
not be used in any path [p‖ExitP → r‖q] where p is an unbalanced-right path. In the profil-
ing instrumentation, when execution reaches ExitP → r along an unbalanced-right path p,
the path is ended using surrogate-edge ExitP → Exitglobal ; the instrumentation then begins
recording a new path using the surrogate-edge GEntryQ → r, where Q is the procedure
containing Q. Even if the return-edge ExitP → r is broken with respect to unbalanced-
right path-prefixes, it may still be appear in a path [p′‖ExitP → r‖q′], where p′ is not an
unbalanced-right path (i.e., it contains at least one unmatched, open parenthesis). Return-
edges broken during Pass II are always broken with respect to unbalanced-right path pre-
fixes.

With respect to any path prefix: In this case, the return-edge cannot be used in any path. Return-
edges broken during Pass I are always broken with respect to any path prefix.

As described above, to calculate the number of unbalanced-right-left paths in G∗
fin , two passes are

used: Pass I calculates ψ and ρ functions (almost) as described in Section 3.5.4 (the differences are
described in the preceding text); Pass II calculates numUnbalRLPaths[ExitP] for each procedure P
(during a traversal of the call-graph associated with G∗

fin).
After the second pass, for every procedure P , we require that

ψEntryP
(1) + ψGEntryP

(numUnbalRLPaths[ExitP]) ≤ (2WordSize/NumProcs) (32)

This is sufficient to guarantee that the number of unbalanced-right-left paths inG∗
fin is less than 2WordSize.

As the second pass computes the value numUnbalRLPaths[ExitP], it may discover that Equation (32) is
1Adding these surrogate-edges to G∗

fin allows us to compute the number of unbalanced-right-left paths in G∗

fin in two
passes, however, they also increase the number of paths in G∗

fin , and therefore may cause additional edges to be broken;
this may be the reason that observable paths are shorter in an interprocedural-piecewise path profile than they are in an
interprocedural-context path profile (see Chapter 6).

64

violated. If this is the case, the value of numUnbalRLPaths[ExitP] is lowered by breaking a return-edge
ExitP → r with respect to unbalanced-right path prefixes; the broken edge is replaced (for unbalanced-
right path prefixes) by the surrogate-edges EntryQ → r (which was added during the Pass I) and
ExitP → Exitglobal . We then calculate numUnbalRLPaths[ExitP] considering the edge ExitP → r
to have been replaced by the edge ExitP → Exitglobal . The reason that numUnbalRLPaths[ExitP] is
lowered by breaking a return-edge ExitP → r only with respect to unbalanced-right path prefixes—and
not with respect to all path prefixes—is that numUnbalRLPaths[ExitP] is used to calculate the number
numValidComps(p) for any unbalanced-right path prefix p that ends at ExitP ; thus, by
breaking ExitP → r with respect to unbalanced-right path prefixes and calculating
numUnbalRLPaths[ExitP] as if ExitP → r is replaced by ExitP → Exitglobal , we ensure that
numValidComps(p) = numUnbalRLPaths[ExitP]. Furthermore, we guarantee that for any unbalanced-
right path p′ that ends at a vertex v in procedureP , numValidComps(p′) = ψv(numUnbalRLPaths[ExitP]).

Pass I guarantees that, for every procedure P ,

ψEntryP
(1) + ψGEntryP

(1) ≤ 2WordSize/NumProcs

This implies that Pass II will be able to satisfy Equation (32) for each procedure P ; to do so, it may have
to break every return-edge from ExitP with respect to unbalanced-right path prefixes, in which case,
numUnbalRLPaths[ExitP] becomes 1.

A return-edge ExitP → r that is broken only with respect to unbalanced-right path prefixes will
have an impact on the profiling machinery described below in Section 4.3. As we will see in Section 4.3,
at run-time, the profiling instrumentation will keep a count of the number of open parentheses in the
currently executing path. If execution reaches ExitP and the count of open parentheses is 0, then the
program is currently executing an unbalanced-right prefix of an observable path, and the return-edge
ExitP → r cannot be used. However, if the count of open parentheses is greater than 0, then the return-
edge ExitP → r can be used.

4.2 Calculating the Path Number of an Unbalanced-Right-Left Path

We are now ready to give the algorithm for computing the path number of an unbalanced-right-left
path p. This algorithm is very similar to the algorithm given in Section 3.5.5 for calculating the path
number of an unbalanced-left path. One additional program variable, cntOpenLfParens, is used.
This variable is used to keep track of the number of open left parentheses in the prefix p′ of p that has
been traversed. If cntOpenLfParens is zero (indicating that p′ is an unbalanced-right path) and
the algorithm traverses a return-edge e, then pathNum may be incremented by a non-zero value (see
Section 4.1.1). If cntOpenLfParens is non-zero and the algorithm traverses a return-edge e, then
pathNum is not incremented (which represents an increment by the value 0).

Algorithm 4.2.1 (Calculate Path Number for an Unbalanced-right-left Path)
Input: An unbalanced-right-left path p from Entry global to Exitglobal .
Output: p’s path number.

Initialize stack NVCstack to empty

Let e be the first edge of the path p. Calculate the value of edgeValueInContext([ε : Entry global], e) as
described in Section 4.1.1. Set pathNum to this value.

65

if e is of the form Entryglobal → EntryP then
numValidCompsFromExit := 1
cntOpenLfParens := 1

else /* e is of the form Entryglobal → GEntryP */
numValidCompsFromExit := numUnbalRLPaths[ExitP]
cntOpenLfParens := 0

fi

set e to be the second edge of p
while e is not of the form v → Exit global do

if e is of the form c→ EntryT then
push numValidCompsFromExit on NVCstack
let r be the return vertex associated with c
numValidCompsFromExit := ψr(numValidCompsFromExit)
cntOpenLfParens++

else if e is of the form ExitT → r then
if cntOpenLfParens == 0 then

pathNum += edgeValue[e]
let S be the procedure that contains r
numValidCompsFromExit := ψr(numUnbalRLPaths[ExitS])

else
numValidCompsFromExit := pop(NVCstack)
cntOpenLfParens – –

fi
else

pathNum := pathNum+ ρe(numValidCompsFromExit)
fi
set e to the next edge of p

od
output pathNum

2

4.3 Runtime Environment for Collecting a Profile

As in Section 3.6, the instrumentation code for collecting an interprocedural piecewise path profile
essentially threads Algorithm 4.2.1 into the code of the instrumented program. The instrumentation code
for collecting an interprocedural piecewise path profile differs from the instrumentation code described
in Section 3.6 in the following ways:

• there is no variable pathNumOnEntry;

• there is a new parameter cntOpenLfParens that is passed to every procedure except main,
which has cntOpenLfParens as a local variable; and

• both pathNum and cntOpenLfParens are saved before a recursive call is made and restored
after a recursive call returns.

66

�����������
	��������������������	��������! "�#$���%�
�
�����&'��	(�
)*��+��,��,���-��)���#*"

���-��&'��	.�
�-/!01���-��&
��	2&
)
��	435���-����	*6*�47
8�9�:';�<�9�=->,;�9@?BA*CED
?F�G�8�HE7I8�9�:';�<�9�=*>�;�9�?29�8JH4KJDML�;->*N�O�H-CM:�P�Q�ORH�S'T�;�?�7
8�9�:';�<�9�=->,;�9@?BAEU�9@?V�C4=�9JW�X�YZD-Q�=9�[]\

���-��&
��	.�
�-/
	-��^_�Z`bac

/�+@�-�*	c05	*6��ed�af[�\
�
�-/
	*�e#J^�&
)��-	4
	*6��'g�gE
CMQ
O�Xh;�L�=�ijCED�?�F�G�8�H-kMl�l
m

"�#on*��)*����)p�
	-/��
)*�*+,/�����+,��+
	,	�����	��.	-������q�r-�
���-&�)���g�d���s2)����p�
s�g�d��M�.#*"
U�9@?�V�Cc=�9JW�X�YMD-Q�=�92tvu'm
9�8�H4KJD@L�;*>*N�ORH-CZ:�P�Q�O�H*S'T�;�?BtowEm%"�#p������xv���-x�y���&
)��-z�{*|�)*��+��M0��
}'[]#*"
CED
?�F�G'8�Hvtv~��'m "�#p������xe��+
	�	�����	�	-������q
r-�����-&
)���g�d��
so#*"

"�#.�
�,)����'�������-��)��$�-�*��	e���.��	�	���	��$���*����+
	e#*"
"�# �*�����������-�v��ac31a�dp�-�e	�����	o�
s�g�d��
��#*"�

CED
?�FG�8�H�l*tvu��$9�8�HcKJDML�;*>-N�O�H-CZ:P�Q�O�H*S'T�;�?�l�~'m�"�#o������x�	�����	p����g�d��
��#-"

��	*�������$�
�-/
	-�� �

Figure 22: Part of the instrumented version of the program that computes
(
∑9

j=1(2 · j)2) + (
∑6

k=1(3 · k)2). The original program is shown in Figure 8; the instrumenta-
tion collects an interprocedural piecewise profile. The instrumented version of main is shown in
Figure 23. Instrumentation code is shown in italics.

Figures 22 and 23 show the program from Figure 8 with additional instrumentation code to collect
an interprocedural piecewise path profile. The output from the instrumented code is as follows:

0: 0 1: 0 2: 0 3: 0 4: 0 5: 0 6: 1 7: 0
8: 9 9: 0 10: 0 11: 0 12: 3 13: 0 14: 5 15: 1
16:15 17: 3 18: 0 19: 6 20: 6

(The algorithm for decoding a path number to obtain the corresponding unbalanced-right-left path
is left as an exercise for the reader.)

4.4 Comparing Path-Profiling Information Content

Intuitively, we expect an interprocedural path profile to have more information than an intraprocedural
path profile. However, this is not always the case, as the following example shows:

Example 4.4.1 Figure 24(a) shows a schematic of an execution trace. Figure 24(b) shows the paths that
the intraprocedural, piecewise path-profiling technique records given the trace shown in Figure 24(a):
there are three paths, one in R and two in Q (each shown with a different style line). Notice that the

67

���������	����
���
���	�	����������������� �	��!�"#�%$'&'()
���	�	���������������*���%$ +,��-�����.0/$,�1��2#3#/4$�5#6����7&'8#)
���	�	����������������9�����:� ����;0<�=1�,3>����&'8#)
?�@%A�B>C�D �FE�G D	H�A#C �JILKNMOK P
��0�Q�RITS�P

U�V � C�D
W��X�ITS�YQ�J�
�,Z
J
��[0\	�]I�ILK^�J�

9�����:� ���,;�<�=_�%3#���	`�`#)
�LIJa @ U
b�_Ec\1d �e�	��!�"#�%$ d ('f����%$ +,��-�����.0/$%�_��2#3	/4$�5	6����b`�g d 9�����:� ���,;�<�=_�%3#��� �_P
h�iJj � D �0��G�k�� @ a @ Uml a#�%� V�n A �T� H K @ GLY P�o�� V ��G�pmM�� C U �%k H�q i�h
h�iJj � D%r ���sZ�G @ �'a @ Utl a	��� V0n A �T� H S�E7uNE @ GTS�v i�h
�w<yx7(�&�&z9�����:� ����;0<�=1�%3#���*{ �

���,$N+,��-�����.0/$,�1��2>3#/w$�5#6>���7&'8#) h0i Z�G @ �^| D G�� D%r |_S�} i�h
~ �>-4�	�

9�����:� ����;0<�=1�,3>���>����)
G D	H�A>C �J��IJ�FP

~ ��-w�#�
�e�	��!�"#�%$Q`�&'(LfR���%$ +,��-�����.	/4$%�_��2#3#/w$�5#6>�0��`*�) h0i Z�G @ � D�? p D |	�����,|	u i�h

�,Z
J
��[q �]I�ILK^�J�
9�����:� ���,;�<�=_�%3#���	`�`#)
�LIJa @ U
b�_Ec\1d �e�	��!�"#�%$ d ('f����%$ +,��-�����.0/$%�_��2#3	/4$�5	6����b`s8 d 9�����:� ���,;�<�=_�%3#��� �_P
h�iJj � D �0��G�k�� @ a @ Uml a#�%� V�n A �T� H S�E�o�E7uNE]S�\ @ G�S�vNP�o�� V ��G�pmM�� C U ��k H S i�h
h�iJj � D%r ���sZ�G @ �'a @ Utl a	��� V0n A �T� H \ E7�NE]S�KNE*S q E*S�YNE @ GL\�K i�h
�w<yxO(�&�&Q9�����:4�N���,;�<�=_�%3>����{ �

� �0��!�"#�%$Q`%&Jg�) h�i Z�G @ � D�? p D�A Y����%|�S�S i�h
���,$N+,��-�����.0/$,�1��2>3#/w$�5#6>���7&'8#) h�i Z�G @ �^| D G�� D�r |_S�} i�h

~ �>-4�	�
9�����:� ����;0<�=1�,3>���>����)

G D	H�A>C �J��IJ�FP
~ ��-w�#�

� �0��!�">�%$Q`%&L(Lf����,$N+���-�����.0/$,�1��2>30/$�5#6����b`��_) h0i Z�G @ � D�? p D |	u����%|�S q i�h
�,����P

�_3	/<_��-������e�	��!�"#�%$%�_`�`#)
h0i�� �	�%G��L��� D U a#�%� VJU ��� V D�? p D	H p C�@,B � C���D ����G�k	���,|�S�v]�,� ? |_S�v0���%|�o i�h
9�����:4�N���,;0<�=1�,3>����&'(#)
���,$N+���-�����.0/$,�1��2>30/$%5>6����7&^8) h0i Z�G @ �^| D G�� D%r |_S�} i�h
� �0��!�">�,$L&s��) h0i Z�G @ � D�? p DJD ����G�k � p C�@,B � C ���%|�S�v i�h

~
�e�	��!�"#�%$^`%&'(Lf����%$ +,��-�����.0/$%�_��2#3	/4$�5	6����W`s�>) h0i Z�G @ � D�? p D |�o	���,|_S�� i�h
��3#/4<1�>-��>��� �0��!�">�,$���`�`0)
<�/%3�x��R&'(#)J�J�]��8)���`�`%{ �

9�/����>���#���	��!Fx�g�{�)*9�/��������L�J�����%�	�)
9�/����>���#���	��!Fx��	{�)*9�/����������_3	/<_��-��>�����Q�������)
�4<�x�xw�%`�8,{��Q�J&�&L(%{z9�/,�������L���>��-�)~

9�/,�������s���>��-,)
G D � A G��LKNP

~

Figure 23: Part of an instrumented version of the program in Figure 8; the instrumentation collects
an interprocedural piecewise profile. The instrumented version of the function pow and the global
declaration of profile is shown in Figure 22. Instrumentation code is shown in italics.

68

(a) (b)

(c) (d)

Figure 24: Comparison of the (theoretical) information content of various path profiling techniques.

69

path in R captures a correlation between R’s behavior before the call to Q and R’s behavior after the
call to Q.

Figure 24(c) shows the paths that the interprocedural, piecewise path-profiling technique records,
given the trace shown in Figure 24(a): there are two paths, one that starts in R and ends in Q and one
that starts in Q and ends in R. Notice that the interprocedural, piecewise path profile does not capture
the correlation between R’s behavior before and after the call to Q. However, each path in Figure 24(c)
captures a correlation between the execution behaviors of Q and R.

Figure 24(c) shows the paths that the interprocedural, context path-profiling technique records given
the trace in Figure 24(a). As in the interprocedural, piecewise path profile, there are two paths, but
in this case, the second path consists of a context-prefix and an active suffix. This allows the second
path to capture the correlation between R’s behavior before and after the call to Q. In addition, the
paths in Figure 24(c) capture the same correlations between the execution behaviors of Q and R that the
interprocedural piecewise paths capture. 2

In practice, each of the three techniques may break edges in different places in order to guarantee
that the number of paths is no greater than 2WordSize, which means that the information content of
the different profiles is incomprable. If this were not a factor, than an interprocedural, context path
profile would always contain more information than an intraprocedural or an interprocedural piecewise
path profile while the information content of intraprocedural and interprocedural piecewise path profiles
would remain incomparable.

70

Chapter 5

Other Path-Profiling Techniques

In addition to the functional approach to interprocedural context path profiling, we have developed
several other path-profiling techniques. As mentioned above techniques can be classified according to
three binary traits:

1. functional approach vs. non-functional approach

2. intraprocedural vs. interprocedural

3. context vs. piecewise

In a functional approach to path profiling, edges are labeled with linear functions. In a non-functional
approach to path profiling, edges are labeled with values. This means that non-functional approaches
are generally more efficient than functional approaches, however, they also result in coarser profiles.

The Ball-Larus technique is an example of a non-functional approach to intraprocedural piecewise
path profiling. Chapter 3 describes the functional approach to interprocedural, context path profiling.
Chapter 4 describes the functional approach to interprocedural, piecewise path profiling. We have devel-
oped path-profiling techniques for every other combination of the three traits listed above. In addition,
each pair of path-profiling techniques that we have developed in this paper can be hybridized to give
a new technique. In the remainder of this chapter, we discuss some of these other approaches to path
profiling.

5.1 Intraprocedural Context Path Profiling

This section describes how to modify the Ball-Larus path-profiling technique to collect an intrapro-
cedural context profile. In Section 3.6, each observable path is divided into a context-prefix and an
active-suffix. When these definitions are applied to the observable paths of the Ball-Larus (intraproce-
dural) technique, each observable path has an empty context-prefix. We now show how to modify the
Ball-Larus technique so that an observable path may have a non-empty context-prefix. Under this new
technique, a typical observable path will consist of a context-prefix that summarizes the path taken to a
loop header and an active suffix that is a path through the loop.

The new technique gives more detailed profiling information than the Ball-Larus path-profiling tech-
nique. For example, suppose there is a correlation between the path taken to a loop header and the path(s)
taken during execution of the loop body. Intraprocedural context profiling will capture the relationship
between the path taken to the loop header and the paths taken on each iteration of the loop body. The
Ball-Larus (piecewise) profiling technique will only capture the correspondence between the path taken
to the loop header and the path taken on the first iteration of the loop; for all subsequent iterations, the
Ball-Larus technique records an observable path that begins at the loop header, and ignores the context
information provided by the path used to reach the loop header.

71

w

v

w

vb

va

w

vb

va

Exit

(a) (b) (c)

Figure 25: Illustration of Transformations 1 and 2 from Section 5.1. Figure (a) shows a piece of the
control-flow graph for a loop before Transformation 1, and Figure (b) shows the same piece of the
control-flow graph after the transformation. Figure (c) shows the two surrogate edges that replace the
backedge w → va. Note the difference from the Ball-Larus technique: Section 5.1 uses the surrogate
edge va → vb instead of the surrogate edge Entry → v.

Just as in the Ball-Larus technique, modifications are made to the procedure’s control-flow graph.
Unlike the Ball-Larus technique, we require that the control-flow graph be reducible.1 There are two
transformations:

Transformation 1 (split backedge targets): Each vertex v that is a backedge target is split into two
vertices va and vb. All edges into v are changed to point to vertex va. All edges that have v as a
source vertex are changed to have vb as the source. An edge va → vb is added to the graph; this
edge is not considered to be a surrogate edge in the following discussion. Figures 25(a) and 25(b)
illustrate this transformation.

Transformation 2 (replace backedges): For each backedge target va, a second edge va → vb is added
to the graph; this edge is considered to be a surrogate edge. (Thus, for each pair of vertices va

and vb introduced by Transformation 1, there are two edges of the form va → vb, one of which is
considered to be a surrogate edge, and one that is not.) For each backedge source w, the surrogate
edge w → Exit is added to the graph. Each backedge w → va is removed from the graph.
Figure 25(c) illustrates this transformation.

The graph that results from performing these transformations is acyclic. Once the graph has been modi-
fied, the Ball-Larus edge-numbering scheme is used as before. As in the Ball-Larus technique, the path
number for a path p from Entry to Exit is the sum of the values on p’s edges.

We are now ready to describe the instrumentation that is used to collect a profile. As in the Ball-
Larus technique, an integer variable pathNum is introduced that is used to accumulate the path number
of the currently executing path. At the beginning of the procedure, pathNum is initialized to 0.

Let v be a backedge target in the original control-flow graph, and let va and vb be the vertices that
represent v in the modified control-flow graph (after Transformation 1). A new integer variable called

1If the control-flow graph is not reducible, then the graph can be transformed to make it reducible (see, for example, Aho
et al. [3]).

72

pathNumOnEntryToV is introduced. When control reaches v, pathNumOnEntryToV is set to the
current value in pathNum. pathNum is then incremented by the value on the non-surrogate edge
va → vb in the modified graph. When the backedge w → v is traversed, the following steps are taken:

1. pathNum is incremented by the value on the surrogate edge w → Exit . The profile is updated
with this value of pathNum.

2. pathNum is set to pathNumOnEntryToV, plus the value on the surrogate edge va → vb.

The second step starts recording the path number for a new path p. The path p contains the edge
va → vb and will have a context-prefix that ends at va and an active-suffix that begins at vb. Note that
this instrumentation relies on the fact that the original control-flow graph is reducible. In particular, it
assumes that the backedge target v is reached—and the value of pathNumOnEntryToV is set—before
the backedge w → v is traversed.

The remaining instrumentation is similar to the instrumentation used in the standard Ball-Larus
technique. In particular, as each edge e is traversed, the value in pathNum is incremented by the value
on e.

5.2 Interprocedural Context Path Profiling with Improved Context for
Recursion

A comparison of the Ball-Larus piecewise path-profiling technique and the intraprocedural context path-
profiling technique suggests a way of improving the context for recursively called procedures in inter-
procedural context path profiling. The way recursive call-edges are currently handled in interprocedural
context path profiling is similar to the way backedges are handled in the Ball-Larus technique. In in-
terprocedural context path profiling, each recursive call-edge is removed and an edge is added from
Entryglobal to the target of the call-edge. Similarly, in the Ball-Larus technique, each backedge is re-
moved and a surrogate edge is added from Entry to the target of the backedge.

To change interprocedural context path profiling to keep more context in the presence of recursion,
we change the handling of recursive call-edges to resemble the handling of backedges in intraprocedural
context path-profiling. Every vertex EntryR that is the target of a recursive call-edge is split into two
vertices, EntryR and Entry ′

R with a (non-surrogate) edge EntryR → Entry ′
R between them. The

recursive call-edge is removed, and a surrogate edge is added from EntryR to Entry ′
R. The profiling

instrumentation is modified such that when the procedure R is called from a non-recursive call-site the
value of pathNum is saved in static variable pathNumOnNonRecrEntryToR. When R is called
from a recursive call-site, the value of pathNum is restored to the value in pathNumOnNonRecrEn-
tryToR.

In fact, this description is an oversimplification of the technique. Special care must be taken when
the call graph is not reducible. Furthermore, in the presence of mutual recursion, it is possible for more
than one non-recursive call to a recursive procedure to be active at once. (Recall that a call is recursive iff
it is represented by a backedge is the call-graph.) This means that pathNumOnNonRecrEntryToR
must be a stack. Furthermore, profiling in the presence of exceptions becomes more complicated (see
Section 3.7.2.

This technique is important because it may lead to a more efficient method for gathering the in-
formation present in Ammons et. al.’s Calling Context Tree [4] — although such a technique will be
hampered by the need for a complete call graph.

73

5.3 Non-Functional Approaches to Interprocedural Path Profiling

In both of the functional approaches to interprocedural path profiling, the graphG∗
fin may contain cycles

(see Figure 7(c)). If these cycles are broken, then G∗
fin becomes a directed acyclic graph. In this case, it

is possible to number the paths in G∗
fin using the Ball-Larus path-numbering technique; there is no need

for ψ or ρ functions — each edge is labeled with a value, and the number for a path p is the sum of the
values on the path’s edges.

One interesting way to remove cycles of the form found in Figure 7(c) is to remove all return edges.
Specifically, we have the following graph transformation:

Remove Return-Edges: For each pair of vertices c and r representing a call site that calls procedure
P , remove the return-edge ExitP → Exitglobal , add the surrogate edge ExitP → Exitglobal , and
add the summary edge c→ r.

This transformation along with the appropriate modifications in the profiling machinery, can be used
with either of the functional approaches to interprocedural path profiling to create a non-functional
approach to interprocedural path profiling. In these non-functional approaches to interprocedural path
profiling, before a procedure P calls a procedure Q, the value of pathNum is saved in a local variable
pathNumBeforeCall. When control passes from the call-vertex c to the entry vertex EntryQ , the
value of pathNum is incremented by the value on c → EntryQ . When control reaches the end of
Q, the profile is updated with the path ending at ExitQ . When control returns to the calling procedure
P , the value of pathNum is restored to the value in pathNumBeforeCall and incremented by the
value on the edge c→ r.

There are two advantages to using a non-functional approach to interprocedural path profiling:

• There are exponentially fewer paths than in the corresponding functional approach to interproce-
dural path profiling.

• The instrumentation code that collects the profile is more efficient.

However, non-functional approaches to interprocedural path profiling will also generate less detailed
profiles.

5.4 Hybrid Approaches to Path Profiling

Each pair of path-profiling techniques described in this thesis can be hybridized to give a new technique.
For example, if one removes some but not all of the nonrecursive return-edges fromG∗

fin , then the result-
ing technique could be considered to be a hybrid between a functional and a non-functional approach
to interprocedural path profiling. In such an approach, some procedures may have edges labeled with
linear functions while other procedures have edges labeled just with constant functions.

Other hybridizations are also possible. In a functional approach to interprocedural path profiling,
the instrumentation for each procedure takes parameters at runtime; thus the instrumentation can be
made to behave in different ways in different contexts. For example, with the correct parameters, the
instrumentation for a leaf procedure will record an intraprocedural path profile for that procedure. With
different parameters, the instrumentation for a leaf procedure will help record an interprocedural path
profile for paths passing through the procedure. Thus, it is possible to use the instrumentation of a
procedure to record an intraprocedural profile when called from one context, and to help record an
interprocedural profile when called from another context.

74

Notice that if all call-edges and return-edges are removed from G∗
fin , then an interprocedural path-

profiling technique becomes an intraprocedural path-profiling technique. In this sense, one might con-
sider an interprocedural technique where only some of the call-edges and return-edges have been re-
moved to be a hybridization between interprocedural path-profiling and intraprocedural path-profiling.

It is also possible to combine intraprocedural and interprocedural techniques in other ways. For
example it is easy to mix intraprocedural context path profiling with interprocedural context path profil-
ing to give an interprocedural technique where an observable path can include context information that
summarizes the interprocedural path taken to a procedure entrance and the intraprocedural path taken to
a loop header. One could also mix intraprocedural context path profiling with interprocedural piecewise
path profiling to generate a novel technique. An observable path in this technique could include an
active-suffix that crosses call and return edges and a context-prefix that summarizes the intraprocedural
path taken to a loop header.

75

Chapter 6

Path Profiling Experimental Results

In this chapter, we present some statistics on the paths in the interprocedural path profiles of the
SPEC95Int benchmarks. Our implementation of the interprocedural path profiling techniques differs
from the description given in the previous chapters in one small regard: we represent a path name us-
ing a 16-bit integer for the first edge of the path (which must have the form Entry global → EntryP or
Entryglobal → GEntryP) and a 64-bit integer that holds the sum of the values contributed by each edge
except the first; in the description given previously, a path name a single integer — the sum of the values
contributed by each edge. The new representation simplified our implementation slightly.

We will compare the statistics for our interprocedural path profiles against statistics for the paths
in the Ball-Larus (i.e., intraprocedural, piecewise) path profiles of the SPECInt95 benchmarks [12].
Our results for intraprocedural, piecewise path profiling differ from those reported in [12] for several
reasons:

• We test the benchmarks on different hardware.

• We implement path profiling using a tool written in SUIF 1.3.0.5 that takes C source code as input
and produces an instrumented version of the source code. [12] uses EEL (the Executable Editing
Library [43]) to insert profiling instrumentation directly into the executable.

• We build our control-flow structures from SUIF. [12] builds their control-flow structures from
Sparc executables.

• Because we use SUIF, we do not profile library code.

• The way we define a program vertex is different. Since we construct a program supergraph, we
create a call vertex c and a return-site vertex r to represent each call instruction i. The vertices
c and r represent only the call instruction i. In [12], they build a collection of intraprocedural
control-flow graphs where each control-flow vertex represents a basic block. In this case, a call
instruction i is treated the same as any non-branching instruction: as such, i may be represented
in a vertex together with other instructions.

Tables 3 through 5 and Figure 26 show statistics about path profiles of the SPEC95 integer bench-
marks when run on their reference inputs. In Section 3.5.4, we described techniques for limiting the
number of observable paths, such that each path name fits into a machine word. One of the techniques
for limiting the number of paths that pass through a call-site is to “break” the return-edge at the call-site.
This may create a small bookkeeping problem for the interprocedural, piecewise path profiling tech-
nique. The problem is that a path prefix p leading to the call vertex c of the call-site will be counted
in two observable paths in the path profile: a path that continues from c along a call-edge, and a path
that continues from c along a summary-edge. To avoid over-counting the execution frequency of p, we
consider p to be a context-prefix in the observable path that continues from c along the call-edge. This
small technical glitch means that we consider some of our piecewise observable paths to have context-
prefixes, though this violates our original definition of a piecewise profile. However, the observable

76

Benchmark
Profiling
technique

Number of dis-
tinct paths

Number of exe-
cuted paths

Number of exe-
cuted SUIF in-
structions

124.m88ksim Inter. Context 2080 4.34E+09 1.87E+11
Inter. Piecewise 1101 4.64E+09 ′′

Intra. Piecewise 725 4.72E+09 ′′

129.compress Inter. Context 423 1.76E+09 9.23E+10
Inter. Piecewise 131 1.76E+09 ′′

Intra. Piecewise 124 2.91E+09 ′′

130.li Inter. Context 3943 2.24E+09 1.19E+11
Inter. Piecewise 1343 2.22E+09 ′′

Intra. Piecewise 560 3.30E+09 ′′

132.ijpeg Inter. Context 2734 2.26E+09 1.89E+11
Inter. Piecewise 1384 2.26E+09 ′′

Intra. Piecewise 1031 2.37E+09 ′′

134.perl Inter. Context 1656 1.15E+09 6.30E+10
Inter. Piecewise 1497 1.20E+09 ′′

Intra. Piecewise 1096 9.77E+08 ′′

147.vortex Inter. Context 4211 1.78E+09 1.18E+11
Inter. Piecewise 4220 1.86E+09 ′′

Intra. Piecewise 1749 2.20E+09 ′′

Table 3: Path profiling statistics when the profiled SPEC benchmark is run on its reference input.

77

Benchmark
Profiling
technique

Avg. num.
edges per path

Avg num. SUIF
instructions per path

124.m88ksim Inter. Context 68.9 [31.6:37.3] 261.2 [68.7:192.5]
Inter. Piecewise 6.8 [0.7: 6.1] 43.1 [2.7: 40.4]
Intra. Piecewise 5.9 [: 5.9] 39.7 [: 39.7]

129.compress Inter. Context 46.7 [20.6:26.1] 187.9 [43.1:144.8]
Inter. Piecewise 9.0 [0.0: 9.0] 52.3 [0.0: 52.3]
Intra. Piecewise 4.7 [: 4.7] 31.7 [: 31.7]

130.li Inter. Context 29.7 [18.1:11.6] 107.7 [43.1: 64.6]
Inter. Piecewise 12.0 [0.5:11.4] 55.6 [1.9: 53.7]
Intra. Piecewise 7.2 [: 7.2] 36.1 [: 36.1]

132.ijpeg Inter. Context 5.5 [1.9: 3.6] 102.9 [9.6: 93.3]
Inter. Piecewise 3.6 [0.0: 3.6] 83.7 [0.0: 83.7]
Intra. Piecewise 3.4 [: 3.4] 79.6 [: 79.6]

134.perl Inter. Context 10.6 [1.2: 9.4] 60.8 [6.2: 54.6]
Inter. Piecewise 9.2 [0.3: 8.9] 54.1 [1.4: 52.7]
Intra. Piecewise 11.0 [:11.0] 64.4 [: 64.4]

147.vortex Inter. Context 21.8 [3.2:18.6] 93.6 [10.4: 83.2]
Inter. Piecewise 14.7 [1.7:13.0] 71.0 [7.6: 63.4]
Intra. Piecewise 10.6 [:10.6] 53.5 [: 53.5]

Table 4: Path profiling statistics for the profiled SPEC benchmarks when run on their reference input.
An entry such as “68.9 [31.6:37.3]” in the column “Average number of Edges” indicates that the average
path has 68.9 edges, with 31.6 edges in the context-prefix and 37.3 edges in the active suffix. All the
entries in all of the averages columns have a similar interpretation. For purposes of calculating averages,
each path is weighted by its execution frequency. Blank entries in the table represent a measurement
that is not applicable (e.g., context-prefix length in a piecewise profile); as mentioned in the text, there is
one situation where we consider an interprocedural, piecewise observable path to have a context-prefix.

78

Figure 26: Graph of the average number of SUIF instructions in an observable path for interprocedural
context, interprocedural piecewise, and intraprocedural piecewise path profiles of SPEC95 benchmarks
when run on their reference inputs. For purposes of computing the average, each observable path is
weighted by its execution frequency. (This figure is a graphical representation of the data in the last
column of Table 4.)

79

Benchmark
Profiling
technique

Avg. num.
edges per path

Avg. num.
call-edges per
path

Avg. num.
return-edges per
path

124.m88ksim Inter. Context 68.9 [31.6:37.3] 5.8 [5.6: 0.2] 3.6 [3.4: 0.2]
Inter. Piecewise 6.8 [0.7: 6.1] 0.2 [0.0: 0.2] 0.1 [0.0: 0.1]

129.compress Inter. Context 46.7 [20.6:26.1] 5.2 [4.6: 0.7] 2.9 [2.3: 0.7]
Inter. Piecewise 9.0 [0.0: 9.0] 0.7 [0.0: 0.7] 0.7 [0.0: 0.7]

130.li Inter. Context 29.7 [18.1:11.6] 3.0 [2.5: 0.6] 1.0 [0.5: 0.5]
Inter. Piecewise 12.0 [0.5:11.4] 0.6 [0.0: 0.6] 0.5 [0.0: 0.5]

132.ijpeg Inter. Context 5.5 [1.9: 3.6] 0.4 [0.4: 0.1] 0.1 [0.1: 0.1]
Inter. Piecewise 3.6 [0.0: 3.6] 0.1 [0.0: 0.1] 0.1 [0.0: 0.1]

134.perl Inter. Context 10.6 [1.2: 9.4] 0.4 [0.1: 0.3] 0.3 [0.0: 0.3]
Inter. Piecewise 9.2 [0.3: 8.9] 0.3 [0.0: 0.3] 0.2 [0.0: 0.2]

147.vortex Inter. Context 21.8 [3.2:18.6] 1.1 [0.4: 0.6] 0.4 [0.0: 0.4]
Inter. Piecewise 14.7 [1.7:13.0] 0.7 [0.0: 0.6] 0.4 [0.0: 0.4]

Table 5: Path profiling statistics for the profiled SPEC benchmarks when run on their reference input.
The numbers in this chart are interpreted just as the numbers in Table 4 are.

paths in a piecewise path profile still do not contain surrogate-edges, and hence do not contain “gaps”
in the way that an observable path in a context-path profile does.

Table 4 and Figure 26 show that interprocedural, piecewise paths are shorter, on average, than inter-
procedural, context paths. This is probably due to the heuristics used to limit the number of observable
paths in G∗

fin (see Section 4.1.2); the heuristics for interprocedural, piecewise path profiling seem to
break more edges than the heuristics for interprocedural, context path profiling. Interprocedural con-
text paths are also quite a bit longer than intraprocedural piecewise paths: the average number of SUIF
instructions along an observable path is considerably higher for most of the benchmarks (see Table 4
and Figure 26). The one exception is 134.perl. Again, this is probably due to the techniques used to
limit the number of observable paths in G∗

fin (see Section 3.5.4 and Section 4.1.2); the techniques in the
interprocedural case must break an edge that is frequently executed, which has a large impact on the
average path length.

Table 5 shows the degree to which the interprocedural path profiles capture interprocedural infor-
mation. In some cases (e.g., in the interprocedural context path profile for m88ksim), the averege ob-
servable path contains a significant number of call and return-edges, indicating that a good deal inter-
procedural behavior is captured in the profile. In other cases (e.g., in the interprocedural piecewise path
profile for ijpeg), very little interprocedural information is captured. This may mean that the program
spends most of its time inside of one procedure without making function calls.

Figure 27 shows plots of the number of observable paths required to cover a given percentage of
program execution. Plots are shown for interprocedural context, interprocedural piecewise, and in-
traprocedural piecewise path profiles of SPEC95 benchmarks when run on their reference inputs. For
most of the path profiles, and for most of the benchmarks, 50 paths are sufficient to cover 80% of pro-
gram execution. One exception is the interprocedural, context path profile for m88ksim; here 100 paths
are required to cover 80% of program execution. Other likely exceptions include the interprocedural
path profiles of go: these profiles include so many paths that we were unable to process them.

80

Figure 27: Number of paths versus percentage of dynamic execution covered.

81

Benchmark
Base Time
(sec)

Time with
Inter. Context.
Prof. (sec)

Time with
Inter. Piecewise
Prof. (sec)

099.go 265 1423 1125
124.m88ksim 144 1060 1145
129.compress 135 479 478
130.li 112 641 679
132.ijpeg 152 490 479
134.perl 104 452 547
147.vortex 189 933 1028

Table 6: Runtime of the SPEC95Int benchmarks with and without interprocedural path profiling instru-
mentation.

Benchmark

Inter. Context
% Overhead
Calc.
Path Name

Inter. Context
% Overhead
Record
Path

Inter. Piecewise
% Overhead
Calc.
Path Name

Inter. Piecewise
% Overhead
Record Path

099.go 138 299 111 213
124.m88ksim 252 383 199 495
129.compress 85 170 55 200
130.li 226 246 172 333
132.ijpeg 143 180 28 187
134.perl 163 170 113 311
147.vortex 200 194 148 296
average: 158 235 118 291

Table 7: Interprocedural path profiling overhead.

82

Table 6 shows the runtimes of the benchmarks when they are run on their reference inputs with and
without profiling instrumentation. We ran the benchmarks 3 times on a 833 MhZ Pentium III with 256M
RAM running Solaris 2.7 and averaged the results. The benchmarks were compiled with GCC 2.95.3
with the “-O3” option. The first column lists the benchmarks. The second column shows the runtime
of the benchmarks when they are compiled “out of the box”. The third column shows the runtime of
the benchmark with the profiling instrumentation for collecting an interprocedural, context path profile.
The fourth column shows the runtime of the benchmark with the profiling instrumentation for collecting
an interprocedural, piecewise path profile.

Table 7 shows the percent overhead for the profiling machinery (as compared to the base runtime
shown in Column II of Table 6). Columns II and III of Table 7 show the percent overhead of the profiling
instrumentation for interprocedural, context path profiling. Columns IV and V show the percent over-
head of the profiling instrumentation for interprocedural, piecewise path profiling. Columns II and IV
show the percent overhead for calculating each path name (for interprocedural, context and interproce-
dural, piecewise path profiling, respectively); this consists of all of the increments and assignments done
to pathNum as each supergraph edge is executed (see Sections 3.6 and 4.3). We expected the overhead
in this column to be close to the overhead of the Ball-Larus path-profiling technique (30%). Instead, it
is much higher. This is partly due to the fact that we did not implement the optimization used in [12] that
attempts to push increment operations to infrequently executed edges (see also [10]). However, even if
this optimization were performed, the profiling overhead would still be high, as is shown in Columns III
and V.

Columns III and V show the percent overhead of the profiling instrumentation for recording a path
execution; this involves looking up a path name in a hash table to find the path’s counter and incre-
menting this counter. This overhead can be expected to be higher than the overhead in the Ball-Larus
technique: every time one of the interprocedural techniques records a path execution, it must perform
a hash-table lookup; in contrast, the Ball-Larus technique can often perform an array access. This is
because the interprocedural techniques always have a large number of paths, since they consider the
entire program. In contrast, the Ball-Larus intraprocedural technique can be extremely efficient (and
avoid hash-table lookups) on procedures that have few paths.

83

Chapter 7

The Interprocedural Express-lane
Transformation

The intraprocedural express-lane transformation takes a control-flow graph and an intraprocedural,
piecewise path profile and creates a hot-path graph in which all of the hot paths have been duplicated.
Section 2.2 summarizes the algorithm of Ammons and Larus for performing this transformation [5].
In this section, we describe how to extend their algorithm to take as input the program supergraph and
an interprocedural path profile and to produce as output a hot-path supergraph; the transformation of
a supergraph into a hot-path supergraph is called the interprocedural express-lane transformation. We
present algorithms for performing the interprocedural express-lane transformation for both interproce-
dural piecewise and interprocedural context path profiles.

There are several issues that must be addressed. Some of them involve formally specifying what is
meant by an interprocedural “express-lane”: previously, we defined an express-lane as a copy p′ of a
hot-path p such that p′ has only one entry point; this means that p′ may have conditionals that branch out
of p′, but other code never branches into p′ (except at the entry point). This definition works well in the
intraprocedural case, but must be extended in the interprocedural case. In a context path profile, a path
may consist of a non-empty context-prefix as well as an active-suffix. Also, an observable path in an
interprocedural path profile may contain “gaps”, e.g., between the context-prefix and the active-suffix;
these gaps are represented in the observable path by surrogate edges (which do not occur in the original
supergraph). An express-lane version of an interprocedural observable path may have a context-prefix
and an active-suffix, and may have gaps just as the hot path does.

There are also technical issues that must be resolved. The interprocedural express-lane transforma-
tion requires a mechanism for duplicating call-edges and return-edges. We will use a straightforward
approach that duplicates a call edge c→ EntryP by creating copies of c and EntryP and duplicates a
return edge ExitP → r by creating copies of ExitP and r. However, this leads to a supergraph with the
following non-standard properties:

1. procedures may have more than one entry;

2. procedures may have more than one exit; and

3. a call-site vertex may have multiple return-site vertices.

We will describe the executable program that corresponds to a supergraph with the above properties.
Even with a mechanism for duplicating interprocedural edges, many modifications of the intrapro-

cedural algorithm are required to obtain an algorithm for performing the interprocedural express-lane
transformation. The intraprocedural express-lane transformation uses a deterministic finite automaton
(DFA) for recognizing hot-paths and combines this with the control-flow graph, which can be seen as
another deterministic finite automaton. To create an automaton that recognizes a set of interprocedu-
ral hot-paths, we require a pushdown automaton. The supergraph can be seen as a second pushdown

84

automaton. Thus, if we mimic the approach used for the intraprocedural express-lane transformation,
we will need to combine two pushdown automata, a problem that is uncomputable, in general. Instead,
we will create a collection of deterministic finite automata, one for each procedure; the automaton for
a procedure P recognizes hot-paths that start in P . The interprocedural express-lane transformation
combines a family of hot-path automata with the supergraph to create the hot-path supergraph.

Finally, the construction of an automaton for recognizing paths from a context path profile is more
complicated than the construction of an automaton for recognizing paths from a piecewise path profile.
Again, recognizing a context-prefix is more complicated because it may contain surrogate edges.

This chapter makes the following contributions:

1. We give a formal definition of the interprocedural express-lane transformation, both for context
and piecewise path profiles.

2. We give algorithms for performing the interprocedural express-lane transformation, both for con-
text and piecewise path profiles.

Section 7.1 describes entry and exit splitting, which is the technique used to duplicate call and return-
edges, respectively [15, 18]. It also discusses the non-standard supergraph properties that result. Sec-
tion 7.2 defines an interprocedural express-lane. Section 7.3 gives algorithms for performing the inter-
procedural express-lane transformation.

7.1 Entry and Exit Splitting

The algorithm for performing the interprocedural express-lane transformation uses entry splitting to
duplicate call-edges and exit splitting to duplicate return-edges. This section briefly describes entry and
exit splitting. (Our definitions of entry and exit splitting are taken from [15, 18].)

Entry splitting allows a procedure P to have more than one entry. A call to P jumps (e.g., via a
jump-and-link instruction) to one of P ’s multiple entries. Figure 28 shows a schematic of a procedure
with two entries.

Exit splitting allows a procedure P to have multiple exits, each of which is assigned a number. Nor-
mally, when a procedure call is made, the caller provides a return address for when the callee returns. In
the case where a procedure has multiple exits, the caller provides a vector of return addresses. When the
callee reaches the ith exit vertex, it branches to the ith return address. (In our experiments, our imple-
mentation of entry and exit splitting is much less efficient than the one described here. We implement
entry-splitting by having each call vertex pass an entry number to the procedure that it calls and insert-
ing a switch statement on this parameter at the beginning of the procedure; similarly, we implement
exit-splitting by having each exit vertex return an exit number and inserting a switch statement on this
value at the return-site vertex. Using this techniques we can implement the same execution semantics
described above. The advantage of this implementation is that it can be done as a source-to-source
transformation using the SUIF toolkit.) Figure 29 shows a schematic of a procedure with multiple exits.

As mentioned above, entry and exit splitting lead to a supergraph that may have the following
nonstandard properties:

1. a procedure may have more than one entry;

2. a procedure may have more than one exit; and

3. a call vertex may be associated with more than one return-site vertex.

85

Figure 28: Schematic of a procedureQ with
multiple entries; there are two call-sites that
call Q, each of which calls a different entry.

Figure 29: Schematic of a procedureQ with
multiple exits; there is one call-site that calls
Q, which has multiple return-site vertices.

86

In the interprocedural hot-path graph, we will also allow a return-site vertex to be shared by more
than one call vertex.

Despite these non-standard properties, we define a same-level valid path (and unbalanced-left paths
and unbalanced-right paths, etc.) in the same way as for a standard supergraph. In particular, each
call site has only a single call vertex c; the call-edges associated with the call-site are labeled “(c”, and
return-edges are labeled with “)c. The context-free grammar for defining same-level valid paths (and
unbalanced-left and unbalanced-right paths) is the same as before (see Section 3.1 and the beginning of
Chapter 4).

In the remainder of this thesis, we will assume that the supergraph G∗ has been augmented with
summary-edges: that is, there is a summary-edge c→ r connecting each call vertex c with its return-
site vertex r. The original definition of the supergraph did not include summary-edges. Previously,
we added a summary-edge to G∗

fin whenever we broke a return-edge. In that case, we were using a
summary-edge in G∗

fin to help define the set of observable paths in G∗. However, for many uses of the
program supergraph, e.g., dataflow analysis, it is convenient for summary-edges to be present. Because
they are so useful, the hot-path supergraph H∗ (that we construct in this section) will also be annotated
with summary-edges: for every call-edge c→ e labeled “(c”, for every return-edge x→ r labeled “)c”,
if there is a same-level valid path in H∗ from e to x, then there is a summary-edge from c to r.

7.2 Defining the Interprocedural Express-Lane

In this section, we give a definition of an interprocedural express-lane. First we consider a simple
example to develop intuition about what should happen when we duplicate an observable path from an
interprocedural, context path profile.

Example 7.2.1 We return to the example program in Figure 8. Figure 9 shows the graph G∗
fin that

is constructed when collecting an interprocedural, context path profile for the program in Figure 8.
Figure 9 shows the following observable path (path number 24) in bold:

24 : Entryglobal → v1 → v4 → v5 → v6 → u1 → u3 → u4 → u5 → u6 → Exitglobal .

Suppose we wish to duplicate this path—that is, suppose we wish to create a hot-path version of the
program in Figure 8 that has an express-lane version of path number 24. The principal difficulty in
duplicating this path has to do with the the edge u1 → u3: this surrogate-edge appears in the middle
of the observable path that we wish to duplicate. However, the edge u1 → u3 does not appear in the
supergraph for the program in Figure 8. So what does it mean to create a hot-path version of the
example program where this edge has been duplicated, considering that this edge does not appear in the
program’s supergraph?

In the interprocedural, context path profile for the example program, path number 24 has a count of
9. This means that during the program’s execution, the active suffix [u3 → u4 → u5] executed 9 times
in the context specified by the context-prefix [Entryglobal → v1 → v4 → v5 → v6 → u1]. Another in-
terpretation of the count of 9 for path number 24 is as follows: in the execution trace of the program, the
pattern indicated by observable path number 24 occurs 9 times. Under this interpretation, the surrogate-
edge u1 → u3 matches any same-level valid path from u1 to u3 that ends with the backedge u5 → u3.
(The surrogate-edge u1 → u3, along with the surrogate-edge u5 → u6, was added to G∗

fin to replace the
backedge u5 → u3.) In a sense, when we duplicate the surrogate-edge u1 → u3, we will duplicate all
same-level valid paths from u1 to u3. It is more accurate to say that we duplicate intraprocedural paths

87

Figure 30: Example hot-path graph for the program shown in Figure 8. Observable path 24 from
Figure 9 has been duplicated as an express-lane.

88

from u1 to u3 that end with the backedge u5 → u3. (Note that given any same-level valid path p from
x to y, we can create an intraprocedural path from x to y by removing any piece of p that represents the
execution of a procedure call.)

When we create an express-lane version of path number 24, we will create copies of the path’s
context-prefix and its active-suffix. The copy of the context-prefix will end at a copy u′1 of the vertex
u1. The copy of the active-suffix will begin at a copy u′3 of the vertex u3. In the hot-path graph (which
is to contain the express-lane version of path number 24), we desire that any time execution reaches u′3,
it came along a path from u′1; we want to make sure that the duplicated active-suffix executes in the
context of the duplicated context-prefix. To ensure this, we may have to duplicate intraprocedural paths
(i.e., paths consisting of intraprocedural and summary edges) from u1 to u3 as paths from u′1 to u′3.

Figure 30 shows a hot-path graph version of the program in Figure 8 with an express-lane version
of observable path number 24. The vertices of the express-lane are shown in bold. There are several
notable features:

1. The active-suffix [u′3 → u′4 → u′5] can only be reached from the context-prefix [. . . → v5 →
v6 → u′1]. There is no way to reach the active-suffix from any other context-prefix (e.g., there is
no same-level valid path from u1 to u′3.

2. In order to achieve the effect noted in 1, it was necessary to duplicate vertices that are not part of
path number 24. Specifically, we had to duplicate u2, u7, and u8. In effect, for this example, we
had to clone the procedure pow.

3. There are branches into the middle of the express-lane, which contradicts our previous definition
of an (intraprocedural) express-lane. Specifically, there are multiple branches to the vertices u′3
and v4. However, note that there are no branches to the middle of the active-suffix [u′3 → u′4 →
u′5].

The intraprocedural express-lane transformation has some similar properties. For example, in the hot-
path graph shown in Figure 6, several vertices have been duplicated that do not belong to any hot-path;
these vertices represent residual code that must be duplicated even though it is not hot. 2

We are now ready to give a technical definition of an interprocedural-express lane. Let G∗ be a
supergraph and let p be an observable path in G∗

fin . The path p may be from either an interprocedural,
context path profile or an interprocedural, piecewise path profile. Let H∗ be a supergraph where every
vertex of H∗ is a copy of a vertex in G∗ and the set of unbalanced-left paths in H∗ is the same as in
G∗ (under a mapping of vertices in H∗ to their originals in G∗). Then an express-lane version of p is a
sequence of vertices [a1, a2, . . . , an] in H∗ such that the following properties are satisfied:

Duplication property: ai is a copy of the ith vertex in p. If a vertex v occurs in p at positions j and k,
then aj and ak are distinct copies of v.

Minimal predecessor property: A vertex ai may have multiple predecessors if ai ≡ a1, or the (i−1)th

edge of p is a surrogate edge, or ai is a copy of a return-site vertex; otherwise ai has exactly one
predecessor, which is ai−1. If ai is a copy of return-site vertex r then there are further restrictions.
Let c be the call vertex associated with r. The following must be satisfied:

• If there is a copy of c in [a1 . . . ai−1], then ai is associated with one call vertex, the last copy
of c in [a1 . . . ai−1]; otherwise, ai may be associated with many call vertices.

89

• If ai−1 is a copy of an exit vertex, then ai is targeted by exactly one return-edge, ai−1 → ai;
otherwise, ai ≡ a1 or ai−1 is a copy of a call vertex, and ai may be targeted by multiple
return-edges.

Context property: For a vertex ai in procedure P , if there is a copy of EntryP in [a1 . . . ai], then ai

can reached by a same-level valid path from the last copy of EntryP in [a1 . . . ai] and not from
any other copy of EntryP .

The next two sections give more details on the second and third properties.

7.2.1 The Minimal Predecessor Property

The minimal predecessor property states the conditions under which there may be branches into the
express-lane. Ideally, this would only be at the beginning of the express-lane. However, the definition
allows several exceptions that are needed to define an interprocedural express-lane. One of these is
for handling surrogate edges for an observable path from a context path profile. A surrogate edge
EntryP → v stands in for any same-level valid path from EntryP to v that ends with a recording edge;
thus many paths may merge at the express-lane’s copy of v.

The other exceptions involve observable paths that include a return vertex. A return vertex r has
at least two predecessors: its intraprocedural predecessor, the call vertex c associated with r, and its
interprocedural predecessor, the exit vertex ExitP for the procedure called by c. (Technically, c is not a
predecessor of r in our definition of a supergraph; however, most uses of a supergraph (e.g., data-flow
analysis) treat c and r as intraprocedural predecessor and successor of one another.) If a hot path p is an
unbalanced-right path, then p might include r but not c. In this case, p does not contain any information
about the (hot) path taken to c. In the hot-path supergraph, there may be many copies of c, each encoding
a different express-lane path taken to c. Some of these paths may continue to reach r along the hot path
p. Thus, p’s copy of r may be associated with multiple copies of c.

If a hot path p starts with r, or contains the summary-edge c→ r, then p has an occurrence of r but
not an occurrence of r’s interprocedural predecessor, ExitP . This means that the hot-path supergraph
may contain many copies Exit ′P of ExitP such that there is a return-edge from Exit ′P to p’s copy of r.

7.2.2 The Context Property

The context property inductively guarantees that the context summarized by a hot path p is duplicated
in the express-lane for p. Every vertex ai must execute in the context summarized by p for the ith vertex
of p. If the context property holds for every vertex aj+1 such that the jth edge of p is a surrogate edge,
then the minimal predecessor property ensures that the context property holds for every vertex of the
express-lane. This follows since the minimal predecessor property strongly restricts the paths that can
reach most vertices of the express-lane.

The context property is trivially satisfied for paths from a piecewise path profile, providing that
the other express-lane properties are satisfied. However, satisfying the context property for a path that
contains a surrogate edge requires the duplication of vertices that do not occur in the path (and hence in
the express-lane version of the path).

In order to create an express-lane of an observable path p containing a surrogate edge EntryP → v
it may be necessary to duplicate many vertices in the procedure P that are not on the path p (see
Example 7.2.1).

90

7.3 Performing the Interprocedural, Express-Lane Transformation

We now present two algorithms for performing the interprocedural express-lane transformation, one
for interprocedural, piecewise path profiles and one for interprocedural, context path profiles. Each
algorithm takes as input a program supergraph G∗ and a set of hot paths, and produces as output a
hot-path supergraph H∗ that contains an express-lane version of each hot-path given as input. G∗ and
H∗ are semantically equivalent in that they have the same set of paths (and hence the same possible
executions). This is stated formally in Theorem 7.4.1.

Recall that in the Ammons-Larus approach to performing the intraprocedural, express-lane transfor-
mation, a deterministic finite automaton (DFA) that recognizes hot-paths is combined with the control-
flow graph to create the hot-path graph. Each vertex [v, q] of the hot-path graph is a combination of
vertex v in the control-flow graph and a state q of the hot-path automaton. The Ammons-Larus ap-
proach considers the control-flow graph (for the procedure P) to be a DFA that recognizes valid exe-
cution sequences (in the procedure P). (Under this interpretation, both the hot-path recognizer and the
control-flow-graph-as-DFA take as input a string of control-flow-graph edges.) Thus, constructing the
hot-path graph involves combining two DFA’s.

For the interprocedural, express-lane transformation, we will construct a family of automata A, one
for each procedure P : the automaton for procedure P , called AP , will recognize hot-paths that begin
in procedure P . AP is also called the hot-path automaton for P . The Interprocedural Hot-path Tracing
Algorithm (or Hot-path Tracing Algorithm for short) combines the hot-path automata in A with the
program supergraph to create the hot-path supergraph. Each vertex [v, q] of the hot-path supergraph is
a combination of a vertex v in the supergraph and a state q in an automaton from A. We consider the
program supergraph to specify a pushdown automaton (PDA) that recognizes valid execution sequences
in the program. Under this interpretation, both the automata in A and the supergraph-as-PDA take as
input a string of supergraph edges. The bulk of the work done by the Hot-path Tracing Algorithm con-
sists of taking a transition (qi, u→ v, qj) of a hot-path automaton and combining it with the supergraph
edge u→ v (which is considered to be a transition (u, u→ v, v) in the supergraph-as-PDA) to create
the hot-path supergraph edge [u, qi] → [v, qj].

The Hot-path Tracing Algorithm will treat the automata in A as DFAs, though technically they are
not: an interprocedural hot path p may contain “gaps” that are represented by surrogate- or summary-
edges. These gaps may be filled by same-level valid paths. This means that an automaton that recognizes
the hot-path p requires the ability to skip over same-level valid paths in the input string. Since same-
level valid paths can only be generated with a context-free grammar (and not with a regular grammar),
a pushdown automaton is required to skip over same-level valid paths. This means that the Hot-path
Tracing Algorithm must combine two PDA’s; generally, this problem is undecidable. However, we will
treat the hot-path automata as DFAs; the Hot-path Tracing Algorithm combines a set of DFAs and a
PDA.

As stated above, we specify the automata in A as DFAs; we do not specify any stack or stack
operations for the automata in A. Instead, we allow the automata to have transitions that are labeled with
summary-edges. A transition (qi, c→ r, qj) that is labeled with a summary-edge c→ r is considered
to be an oracle transition that is capable of skipping over a SLVP 1-path in the input string.1 The oracle
required to skip an SLVP1-path is the supergraph-as-PDA. Note that oracle transitions are sufficiently
powerful to allow a hot-path automaton to handle the gaps that may occur in a hot path.

1Recall from Section 3.1 that an SLVP 1-path is a same-level valid path that consists of an open parenthesis (c, followed
by a same-level valid path, followed by a close parenthesis)c; a call-vertex c and its matching return vertex r are always
connected by an SLVP1-path.

91

When we combine a hot-path automaton with the supergraph, an oracle transition (qi, c→ r, qj)
that is labeled with a summary-edge c→ r will be combined with the summary-edge c→ r of the su-
pergraph to create the vertices [c, qi] and [r, qj] and the summary-edge [c, qi] → [r, qj] in the hot-path su-
pergraph. The justification for this is that the set of SLVP 1-paths that an oracle transition (qi, c→ r, qj)
should skip over is precisely the set of SLVP 1-paths that drive the supergraph-as-PDA from c to r.

Technically, the use of oracle transitions means that the hot-path automata in A are not DFAs. Fur-
thermore, a summary-edge is not actually a supergraph edge, rather it is an annotation on the supergraph;
this means that a summary-edge does not represent a transition in the supergraph-as-PDA. However, our
technique for using oracle transitions and combining them with summary-edges in the supergraph allows
us to treat the hot-path automata as DFAs, and therefore simplifies the task of combining the hot-path
automata and the supergraph.

Our approach to constructing the hot-path supergraph will consist of three phases:

1. Construct a family A of automata with one automaton Ap for each procedure P . The automaton
AP is specified as a DFA that recognizes (prefixes of) hot-paths that begin in P .

2. Use the Interprocedural, Hot-path Tracing Algorithm to combine A with the supergraph G∗ to
generate an initial hot-path supergraph. This step creates all of the intraprocedural path pieces
that may be needed in the hot-path supergraph. An intraprocedural path may be needed in the
hot-path graph if it is part of an express-lane, or a part of residual code. This stage partially
connects the intraprocedural pieces by adding call-edges where appropriate. Summary are added
only if they are part of an express-lane.

3. Make a pass over the generated hot-path supergraph to add return-edges and summary-edges
where appropriate. This stage finishes connecting the intraprocedural paths created in the previous
step.

Throughout each of the steps, it is instructive to recall the process that is used to collect a path profile:
wherever the path-profiling machinery begins recording a path, the interprocedural express-lane trans-
formation may begin a new express-lane. Wherever the path-profiling machinery may resume recording
of a path (i.e., at surrogate and summary edges), the interprocedural express-lane transformation may
resume creation of an express-lane.

The two algorithms for performing the interprocedural express-lane transformation (one for piece-
wise path profiles and one for context path profiles) differ slightly in the first step. We will start by
describing the automata for recognizing hot-paths from an interprocedural, piecewise path profile. Then
we will describe the automata for recognizing hot-paths from interprocedural, context path profiles. Fi-
nally, we will describe phases two and three, which are the same for both algorithms. Throughout these
sections, our examples use the program shown in Figure 31.

7.3.1 The Hot-Path Automata for Interprocedural, Piecewise Paths

In this section, we show how to construct the set A of hot-path automata for recognizing hot interproce-
dural, piecewise paths. We will expand our definition of A in that we will allow each automatonAP ∈ A
to transition to other automata in A; thus, it is more accurate to think of A as one large automaton with
several sub-automata.

As in [5], we will build a hot-path automaton for recognizing a set S of hot paths by building a trie
A of the paths in S and defining a failure function that maps a vertex of the trie and a supergraph edge
to another vertex of the trie. We then consider A to be a DFA where the edges of the trie and the failure

92

Entrymain

a

b c

d

e

Exitmain

Entryfoo

F

G H

I

J

Exitfoo

main foo

Figure 31: Supergraph used in examples of the interprocedural express-lane transformation.

Figure 32: Path trie for an interprocedural, piecewise path profile of the supergraph in
Figure 31. For i ∈ [4..15] and a recording edge e in foo, h(qi, e) = q9; For i ∈ [4..15] and a non-
recording edge e in foo, h(qi, e) = q8. For i ∈ ([0..3] ∪ [16..17]) and an edge e in main, h(qi, e) = q0.

93

function define the transition relation of the DFA. Accordingly, we refer to the trie as an automaton, and
refer to the vertices of the trie as states.

For each procedure P , we create a trie of the hot paths that start in P . Similar to the intraprocedural
express-lane transformation (see Section 2.2), hot paths that can only be reached by following a record-
ing edge u→ v are prefixed with the special symbol •v before they are put in the trie. A transition in
the trie that is labeled by •v can match any recording edge that targets v. Figure 32 shows the path tries
for the supergraph in Figure 31 and the following interprocedural, piecewise paths:

Entrymain → a→ b→ d→ Entry foo → F → G→ I

•F F → H → I
•F F → G→ I → J → Exit foo → e→ Exitmain

Every hot-path prefix corresponds to a unique state in a path trie (which can be found by starting at
the root of the trie and using the edges of the hot-path prefix to drive transitions in the trie). If a hot-path
prefix ends at a vertex v and the prefix corresponds to state q other than the root state, then we say that
q represents v; the root of the path trie for procedure P is said to represent EntryP . The fact that q
represents the vertex v is important, since for a vertex [v, q] in the output hot-path graph, either [v, q] is
not on an express-lane and q represents an entry vertex, or q represents v. A transition (q0, u→ v, q1)
implies that q0 represents the vertex u and q1 represents the vertex v. In Figure 32, the state q2 represents
the vertex b. The state q9 represents the vertex F .

As in Section 2.2, we define a failure function h(q, u→ v) for a state q of any trie and an intrapro-
cedural or summary-edge u→ v; the failure function is not defined for interprocedural edges. If q rep-
resents a vertex w of procedure P and u→ v is not a recording edge, then h(q, u→ v) = root trieP ,
where root trieP is the root of the trie for hot paths beginning in P . Otherwise, if u→ v is a recording
edge, then h(q, u→ v) = q•v , where q•v is the target state in the transition (root trieP , •v, q•v); if
there is no transition (root trieP , •v, q•v), then q•v = root trieP . Recall that when the piecewise path-
profiling instrumentation is in a procedure P when it stops recording a path, it then begins to record
a path that starts in procedure P . Similarly, when a hot-path automaton steps off of a hot-path in the
procedure P , the failure function switches to the hot-path automaton that is responsible for recognizing
hot-paths that begin in P . See the caption of Figure 32 for an example failure function.

The later phases of the express-lane transformation will make use of two functions, LastActiveCaller
and LastEntry, which map trie states to trie states. For a state q that represents a vertex in procedure
P , LastActiveCaller(q) maps to the most recent ancestor of q that represents a call vertex that makes
a non-recursive call to P . LastEntry(q) maps to the most recent ancestor of q that represents EntryP .
LastActiveCaller(q) and LastEntry(q) are undefined for q if there is no appropriate ancestor of q in the
trie. If the function LastActiveCaller is undefined, then the state q must correspond to a hot-path prefix
that is unbalanced-right. This is useful information for performing the interprocedural, express-lane
transformation.

7.3.2 The Hot-Path Automata for Interprocedural, Context Paths

As in the previous section, a path trie is created for each procedure. Before a path is put into a trie, each
surrogate edge u→ v is replaced by an edge labeled with •v. As before, •v matches any recording edge
that targets v. (Recall that a surrogate edge u→ v fills in for any same-level valid path that ends in a
recording edge to the vertex v.) Figure 33 shows the path tries for the supergraph in Figure 31 and the
following interprocedural, context paths:

94

Figure 33: Path trie for an interprocedural, context path profile of the supergraph in Figure 31. For
i ∈ ([0..3] ∪ [15..16]) and an edge e in main, h(qi, e) = q0. For i ∈ [4..14] and a recording edge e in
foo, h(qi, e) = q4; for i ∈ [4..14] and a non-recording edge e in foo, h(qi, e) = q8. For q17 and any edge
e in foo, h(q17, e) = q17.

95

Entrymain → a→ b→ d→ Entry foo → F → G→ I

Entrymain → a→ b→ d→ Entry foo •F F → H → I
Entrymain → a→ b→ d→ Entry foo •F F → G→ I → J → Exit foo → e→ Exitmain

A state q that represents an entry vertex EntryP corresponds to a hot-path prefix p that leads to the
vertex EntryP . The path p describes a calling context for the procedure P . This means that p could be
the context-prefix for a hot-path. For this reason, states in the trie that represent entry vertices take on
special importance in this section. Also, the map LastEntry will be important.

We define the maps LastActiveCaller and LastEntry as in the last section. A principal differnce with
the last section is in the definition of the failure function. In this case, if u→ v is not a recording edge,
then h(q, u→ v) = LastEntry(q). If u→ v is a recording edge, then h(q, u→ v) = q′, where q′ is
the state reached by following the transition labeled •v from LastEntry(q); if there is no such state, the
q = LastEntry(q). Recall that when the context path-profiling instrumentation stops recording a path
in procedure P , it restores the path number to the value it had when P was entered. Likewise, when the
hot-path automaton steps off a hot path in procedure P , the failure function resets the recognizer to the
state that corresponds to the path taken to P .

Before giving a detailed presentation of the Hot-path Tracing Algorithm, we give some intuition
for how the Hot-path Tracing Algorithm will interact with an automaton for interprocedural context
paths. Let us consider what happens when the Ammons-Larus technique is tracing out a cold path
[u → v → w . . .]: when on a cold path, the hot-path automaton is always at the root state, root. Thus,
when tracing the cold path [u → v → w . . .], the hot-path automaton always stays in the root state,
and the tracing algorithm generates the path [[u, root] → [v, root] → [w, root] . . .]. Only when the
tracing algorithm begins tracing a hot path does the hot-path automaton leave the state root and the
tracing algorithm begin generating vertices [x, q], where q is not root . Thus, when tracing a cold path,
the tracing algorithm clones pieces of the control-flow graph, since the state of the hot-path automaton
always stays stuck at root . See Section 2.2 and Figure 6 for an example.

For a context-prefix p that leads to a procedure P , the Interprocedural Hot-path Tracing Algorithm
may have to clone parts of P . This is required to make sure that the Context Property is guaranteed
for express-lanes that begin with p (see Example 7.2.1). To accomplish this, the Hot-path Tracing
Algorithm may generate many vertices [x, q], where q is the automaton state in hot-path automaton A
that corresponds to the context-prefix p: when the hot-path automaton A is in the state q and is scanning
a path [u → v → w . . .] in the procedure P that is cold in the context described by p, the automaton
will stay in the state q. Thus, when the Interprocedural Hot-path Tracing Algorithm has traced out the
context-prefix p and is in the process of tracing out the path [u → v → w . . .], it will generate the path
[[u, q] → [v, q] → [w, q] . . .]. Only when the tracing algorithm begins tracing a path that is hot in the
context of p does the hot-path automaton move out of state q.

7.3.3 Step Two: Hot-Path Tracing of Intraprocedural Path Pieces

This section describes the hot-path tracing algorithm that can be used with a family A of hot-path
automata from one of the previous sections. For a hot-path automaton, we define a state q to be a reset
state if h(q, u→ v) = q for some non-recording edge u→ v. (In the case of a hot-path automaton
for interprocedural, piecewise paths, only the root state is a reset state.) Reset states are important for
several reasons: (1) a context-prefix p always drives a hot-path automata to a reset-state; (2) for every
vertex [v, q] in the hot-path supergraph that is not part of an express-lane (i.e., [v, q] is part of residual,
cold code), q is a reset state; and (3) for a reset state q and a hot-path supergraph vertex [v, q], either v

96

is the entry vertex that q represents, or [v, q] is a cold vertex. We use these facts to determine whether a
hot-path supergraph vertex [v, q] is part of an express-lane or not.

Figure 34 shows the Interprocedural Hot-path Tracing Algorithm and Figure 35 shows the function
ProcessCallVertex used by the algorithm to process a call vertex [c, q]. The algorithm uses a worklist:
when the algorithm creates a vertex [v, q], it adds the vertex to a worklist W ; when [v, q] is removed
from the worklist, the algorithm examines the supergraph vertex v and the hot-path-automaton state q
to determine what edges [v, q] → [v′, q′] must be created.

The bulk of the work of the Interprocedural Hot-Path Tracing Algorithm is done by lines 19–21 of
Figure 34. These lines process each hot-path supergraph vertex [v, q] that is not a call or exit vertex.
Given a hot-path supergraph vertex [v, q], a supergraph edge v → v, and a transition (q, v → v, q),
lines 19–21 ”trace out” a new edge [v, q] → [v′, q′] in the hot-path supergraph. if necessary, a new
vertex [v′, q′] is added to the hot-path supergraph and the worklist W . This part of the Interprocedural
Hot-Path Tracing Algorithm is very similar to the Intraprocedural Hot-Path Tracing Algorithm.

The Interprocedural Hot-Path Tracing Algorithm differs from its intraprocedural counterpart in
that it must take extra steps when processing call and exit vertices. Figure 35 shows the function
ProcessCallVertex that is used to process a call-vertex [c, q].
ProcessCallVertex has two responsibilities: (1) it must create call-edges from [c, q] (this is done in
lines 25–33 of Figure 35); and (2) it must create return-site vertices that could be needed in Phase 3 of
the hot-path supergraph construction (this is done in lines 34–35 of Figure 35). If there is a transition
(q, c→ EntryP , q

′), then [c, q] is part of an express-lane that continues along the call-edge c→ EntryP

and lines 27–29 create an express-lane copy of the call-edge c→ EntryP . Otherwise, for any call-edge
c→ EntryP , lines 31–33 hook up [c, q] to a cold copy of EntryP .

Lines 34–35 trace the summary-edge c→ r from c and the transition (q, c→ r, q ′) from q in order
to create the return-site vertex [r, q′]. The return-site vertex [r, q′] may be used in Phase 3, or it may not:
if q′ is a reset state, and [r, q′] is a cold vertex, then [r, q′] will be used if there is a cold path that contains
a return-edge x→ r; however, if there is no cold path containing a return-edge x→ r, then the cold
return-site vertex [r, q′] is unnecessary. In the later case, Phase 3 does not create any edges that target
[r, q′], so [r, q′] is unreachable, and is eventually removed from the hot-path supergraph.

Figures 38 thru 40 show various stages in the construction of the hot-path supergraph for the super-
graph in Figure 31 and the hot-path automata in Figure 32.

7.3.4 Step Three: Connecting Intraprocedural Path Pieces

The third phase of the interprocedural express-lane transformation is responsible for completing the
hot-path supergraph H∗. It must add the appropriate summary-edges and return-edges.

Formally, this phase of the interprocedural express-lane transformation ensures that the following is
true:

For each call vertex [c, q]
For each call-edge [c, q] → [EntryP , q

′]
For each exit vertex [ExitP , q

′′] reachable from [EntryP , q
′] by a SLVP

There must be a return-site vertex [r, q′′′] such that
1. There is a summary-edge [c, q] → [r, q′′′]
2. There is a return-edge [ExitP , q

′′] → [r, q′′′] labeled ”)[c,q]”

97

G∗ is supergraph.
A is a family of hot-path automata, with one automaton for each procedure in G∗.
/* AP ∈ A denotes the automaton for procedure P */
/* TP denotes the transition relation of AP */
T is the disjoint union of all TP

root triemain is the start state of Amain .
W is a worklist of hot-path supergraph vertices.
H∗ ≡ (V,E) is the hot-path supergraph.

Main()
/* First, create all the vertices that might begin a hot-path */

1: V = Entry ′
global ,Exit ′global

2: Foreach procedure P
3: CreateVertex([EntryP , root trieP]) /* See below */
4: If there is a transition (root trieP , •r, q

′) where r is a return-site vertex
/* For hot-paths that begin at return-site vertices, */
/* create the beginning of the express-lane. */

5: CreateVertex([r, q′])
6: E = {Entry ′

global → [Entrymain , root triemain]}

8: WhileW 6= ∅
9: [v, q] = Take(W) /* select and remove an element from W */
10: If v is a call vertex
11: ProcessCallVertex ([v, q])
12: Else If v is an exit vertex
13: ForeachEdge v → r in G∗

14: /* v → r is a return-edge */
15: If there is a transition (q, v → r, q) ∈ T .
16: CreateVertex([r, q]) /* See below */
17: Else
18: ForeachEdge v → v in G∗

19: Let q′ be the unique state such that (q, v → v′, q′) ∈ T .
20: CreateVertex([v′, q′])
21: E = E ∪ {[v, q] → [v′, q′]}
21a: Foreach vertex [Exitmain , q] ∈ V
22b: E = E ∪ {[Exitmain , q] → Exit ′global}
End Main

Figure 34: Interprocedural Hot-Path Tracing Algorithm.

98

CreateVertex([v, q])
22: If [v, q] 6∈ V
23: V = V ∪ {[v, q]}
24: Put(W, [v, q])

End CreateVertex

ProcessCallVertex([c, q]) /* c is a call vertex */
25: Let r be the return-site vertex associated with c

/* Create call edges to all appropriate entry vertices */
26: ForeachEdge c→ EntryP

/* v may have many callees if it is an indirect call-site */
27: If (q, c→ EntryP , q

′) ∈ T
/* There is a hot path continuing from c along the edge c→ EntryP */

28: CreateVertex([EntryP , q
′])

29: E = E ∪ {[c, q] → [EntryP , q
′]}

29a: Label [c, q] → [EntryP , q
′] with “([c,q]”

30: Else
/* Hook up [c, q] to a cold copy of EntryP */

31: CreateVertex([EntryP , root trieP])
32: E = E ∪ {[c, q] → [EntryP , root trieP]}
33: Label the call-edge [c, q] → [EntryP , root trieP] with “([c,q]”

/* Create every return-site vertex [r,q’] that could be needed in phase 3 */
34: Let q′ be the unique state such that (q, v → r, q′) ∈ T
35: CreateVertex([r, q′])

End ProcessCallVertex

Figure 35: The procedures CreateVertex and ProcessCallVertex used by the algorithm in Figure 34.

99

The algorithm for performing Phase 3 of the interprocedural express-lane transformation is shown in
Figure 36. The algorithm uses a worklist of call-site vertices. For each call-edge [c, q0] → [EntryP , q1],
for each exit vertex [ExitP , q2] such that there is a same-level valid path from [EntryP , q1] to [ExitP , q2],
the algorithm finds a return-site vertex [r, q3] such that r is the return-site vertex associated with c in
the supergraph and adds a summary-edge [c, q0] → [EntryP , q1] and a return-edge [ExitP , q2] → [r, q3]
labeled ”)[c,q0]”. The return-site vertex [r, q3] is chosen as follows:

1. If there is a hot-path-automaton transition (q2,ExitP → r, q′), then the exit vertex [ExitP , q2] is
part of an express-lane. The next vertex of the express-lane is [r, q ′], so [r, q3] is chosen to be
[r, q′]. (See lines 48–51 of Figure 36.)

2. Otherwise, [ExitP , q2] is not part of an express-lane, or is at the end of an express-lane. If there
is a hot-path p that begins with r, [r, q3] is chosen to be the first vertex of the express-lane version
of p. (See lines 53–56 and 64–70.)

3. Otherwise, [r, q3] is chosen to be [r, q′] where q′ is the unique state determined by the summary-
edge transition (q0, c→ r, q′). In this case, [r, q3] may be a cold vertex, or it may be part of an
express-lane for a hot-path that includes the summary-edge c→ r. (See lines 53–56 and 72–73.)

The algorithm uses a mapping Exits that maps each entry vertex [EntryP , q] to the set of exit vertices
reachable from [EntryP , q] along a same-level valid path. This mapping is maintained by calculating
the vertices reachable from each entry vertex EntryP along intraprocedural and summary-edges; as
more summary-edges are added to the hot-path supergraph, the mapping must be updated (see lines 57–
63 of Figure 36). When the mapping Exits changes, it means that more same-level valid paths have
been discovered. Call vertices are added to the worklist (at line 63) to ensure that the new reachability
information is accounted for.

Figures 41 and 42 shows the hot-path supergraph for the hot-path automata in Figures 32 and 33,
respectively, and the supergraph in Figure 31.

7.4 Graph Congruence of the Supergraph and the Hot-path Supergraph

In this section, we show that a hot-path supergraph H∗ created from a supergraph G∗, has the same
execution behavior as G∗. We have the following definitions:

Congruent edges: Edges u→ v and u′ → v′ are said to be congruent if u and u′ are “duplicate ver-
tices” (i.e., duplicates of the same supergraph vertex), v and v ′ are duplicate vertices, and u→ v
and u′ → v′ are the same kind of edge (e.g., a true branch, a false branch, a “case c:”-branch,
return-edge, etc.). The labels on call- and return-edges do not affect congruence.

Congruent paths: Paths p and p′ are said to be congruent iff they are of equal length and, for all i, the
ith edge of p is congruent to the ith edge of p′.

Path congruent graphs: Graphs G and G′ are path congruent iff: for every path in G there is a con-
gruent path in G′; and for every path in G′ there is a congruent path in G. Unbalanced-left path
congruent is defined in an analogous fashion.

If two graphs are unbalanced-left congruent, then they have the same execution behavior. This
follows from the fact that any prefix of a program’s execution trace is an unbalanced-left path. We have
the following theorem:

100

H∗ ≡ (V,E) is the partially completed hot-path supergraph.
A is the set of hot-path automata
T is the disjoint union of the transition relations for the automata in A
Exits is a mapping from each entry vertex to the set of exit vertices

that are reachable by a same-level valid path.
W is a worklist of call vertices.

Main()
36: Add every call vertex [c, q] of H∗ to W
37: Perform reachability over intraprocedural and summary-edges to initialize Exits

38: While W 6= ∅
39: [c, q] = Take(W)
45: Let r be the return vertex associated with c in the supergraph.
46: ForeachEdge [c, q] → [EntryP , q

′]
47: Foreach [ExitP , q

′′] ∈ Exits([EntryP , q
′])

48: If (q′′,ExitP → r, q′′′) ∈ T
49: E = E ∪ {[ExitP , q

′′] → [r, q′′′]}
50: Label the return-edge [ExitP , q

′′] → [r, q′′′] with ”)[c,q′]”
51: AddSummaryEdge([c, q], [r, q′′′])
52: Else
53: [r, q′′′] = GetDefaultRtn([c, q])
54: E = E ∪ {[ExitP , q

′′] → [r, q′′′]}
55: Label the return-edge [ExitP , q

′′] → [r, q′′′] with ”)[c,q′]”
56: AddSummaryEdge([c, q], [r, q′′′])
End Main

Figure 36: Algorithm for the third phase of the interprocedural express-lane transformation. See also
Figure 37.

101

AddSummaryEdge([c, q], [r, q′])
57: P is the procedure containing [c, q] and [r, q′]
58: If [c, q] → [r, q′] 6∈ E
59: E = E ∪ [c, q] → [r, q′]
60: Use reachability over summary- and intraprocedural edges to update Exits
61: Foreach [EntryP , t] where Exits([EntryP , t]) changed
62: ForeachEdge [c′, t′] → [EntryP , t]
63: Put(W, [c′, t′])
End AddSummaryEdge

GetDefaultRtn([c, q])
64: Let r be the return vertex associated with c in the supergraph.
65: P is the procedure containing c and r.
66: If (root trieP ,EntryP → r, q′) ∈ T
70: Return [r, q′]
71: Else
72: Let q′ be the unique state such that (q, c→ r, q′) ∈ T
73: Return [r, q′]
End GetDefaultRtn

Figure 37: Auxially functions for Figure 36.

[Entrymain,0]

[a,1]

[b,2] [c,0]

[d,3]

[Entryfoo,4]

[e,0]

main
foo

Figure 38: Stage during the hot-path tracing algorithm (see Figure 34) while operating on the supergraph
in Figure 31 and the hot-path automata shown in Figure 32. The call vertex [d, 3] has just been processed;
the vertices [e, 0] and [Entry foo , 4] and the call-edge [d, 3] → [Entry foo, 4] were added as a result.

102

[Entrymain,0]

[a,1]

[b,2] [c,0]

[d,3]

[Entryfoo,4]

[F,5]

[G,6] [H,8]

[I,7]

[J,8]
[e,0]

[F,9]

main
foo

Figure 39: Stage during the hot-path tracing algorithm (see Figure 34) while operating on the supergraph
in Figure 31 and the hot-path automata shown in Figure 32. The vertex [I, 7] has just been processed;
the vertices [F, 9] and [J, 8] and the edges [I, 7] → [F, 9] and [I, 7] → [J, 8] were added as a result.

[Entrymain,0]

[a,1]

[b,2] [c,0]

[d,3]

[Entryfoo,4]

[F,5]

[G,6] [H,8]

[I,7]

[J,8]
[e,0]

[F,9]

[G,12] [H,10]

[I,11]

main
foo

Figure 40: Stage during the hot-path tracing algorithm (see Figure 34) while operating on the supergraph
in Figure 31 and the hot-path automata shown in Figure 32. The vertex [I, 11] has just been processed;
the edges [I, 11] → [F, 9] and [I, 11] → [J, 8] were added as a result. The vertices [F, 9] and [J, 8] were
already present.

103

[Entrymain,0]

[a,1]

[b,2] [c,0]

[d,3]

[e,16]

[Exitmain,17]

[Entryfoo,4]

[F,5]

[G,6] [H,8]

[I,7]

[J,8]

[Exitfoo,8]

[Entryfoo,8]

[F,8]

[G,8]

[d,0]

[e,0]

[Exitmain,0]

[I,8]

[F,9]

[G,12] [H,10]

[I,11][I,13]

[J,14]

[Exitfoo,15]

main
foo

Figure 41: Hot-path supergrah for the supergraph in Figure 31 and the hot-path automaton shown in Fig-
ure 32. Most of the graph is constructed during Phase 2 of the construction. The edges [d, 3] → [e, 16],
[d, 3] → [e, 16], [d, 3] → [e, 0], [d, 0] → [e, 0], and [Exit foo , 8] → [e, 0] are added during Phase 3. Each
shaded vertex [v, q] has a state q that is a reset state; with the exception of [Entrymain , 0] and
[Entry foo , 4], these are cold vertices that do not appear on any express-lane.

Theorem 7.4.1 Let H∗ be the hot-path supergraph produced when the Interprocedural Hot-path Trac-
ing Algorithm is run on the supergraph G∗ and the path profile pp. G∗ and H∗ are unbalanced-left
congruent.

Proof: We must show that every unbalanced-left path in G∗, there is a congruent path in H∗ that is
unbalanced-left, and that for every unbalanced-left path in H∗, there is a congruent path in G∗ that is
unbalanced-left. First, we use induction to show that for every unbalanced-left path p in G∗ that starts
at Entryglobal , there is a congruent, unbalanced-left path p′ in H∗:

Base case: p is the path of length 0 from Entry global to Entryglobal . Then the path p′ of length 0 from
Entry ′

global to Entry ′
global is congruent to p and is an unbalanced-left path. Here, Entry ′

global

denotes the root vertex of the hot-path supergraph.

Induction step: For our induction hypothesis, we assume that for all unbalanced-left paths in G∗ that
starts at Entryglobal and have i or fewer edges, there is a congruent, unbalanced-left path in H∗

that starts at Entry ′
global . Let p be an unbalanced-left path in G∗ that has i + 1 edges. We will

show that there is a congruent unbalanced-left path p′ in H∗ that starts at Entry ′
global . There are

two cases that we must consider:

1. The last edge of p is a return-edge. Then there are (in G∗) an unbalanced-left path a, a
call-edge c→ e labeled “(c”, same-level valid path b, and a return-edge x→ r labeled “)c”
such that p = [a‖c→ e‖bx→ r]; this follows from the fact that p is an unbalanced-left
path. By our induction hypothesis, there are (in H∗) an unbalanced-left path a′, a call-edge

104

[Entrymain,0]

[a,1]

[b,2] [c,0]

[d,3]

[e,15]

[Exitmain,16]

[Entryfoo,4]

[F,5]

[G,6] [H,4]

[I,7]

[J,4]

[Exitfoo,4]

[Entryfoo,17]

[F,17]

[G,17] [H,17]

[I,17]

[J,17]

[Exitfoo,17]

[d,0]

[e,0]

[Exitmain,0]

[I,4]

[F,8]

[G,11] [H,9]

[I,10][I,12]

[J,13]

[Exitfoo,14]

main
foo

Figure 42: Hot-path supergrah for the hot-path automaton shown in Figure 33 and the supergraph in
Figure 31. Most of the graph is constructed during Phase 2. The edges [d, 3] → [e, 15], [d, 3] → [e, 0],
[d, 0] → [e, 0], and [Exit foo , 17] → [e, 0] are added during Phase 3. Each shaded vertex [v, q] has a state
q that is a reset state; with the exception of [Entrymain , 0] and [Entry foo , 4], these are cold vertices that
do not appear on any express-lane.

c′ → e′ labeled “(c′”, and a same-level valid path b′ from e′ to x′ such that [a′‖c′ → e′‖b′]
is congruent to [a‖c→ e‖b]. If we can find a return-edge x′ → r′ in H∗ that is labeled “)c′”
and is congruent to x→ r, then p′ = [a′‖c′ → e′‖b′‖x′ → r′] is an unbalanced-left path in
H∗ that is congruent to p. The call-edge c′ → e′ and the same-level valid path b′ from e′

to x′ imply that the third phase of the interprocedural express-lane transformation added a
return-edge x′ → r′ labeled “)c′” to H∗ see Figure 36. Furthermore, since c′ and x′ must be
duplicates of c and x, respectively, the algorithm for the third phase will construct an r ′ that
is a duplicate of r. This means that x′ → r′ is congruent to x→ r.

2. The last edge of p is not a return-edge. Then there are (in G∗) an unbalanced-left path a and
an edge u→ v such that p = [a‖u→ v]. By the induction hypothesis, there is (in H∗) and
unbalanced-left path from Entry ′

global to u′ that is congruent to a. Here, the vertex u′ is a
duplicate of u. When the Interprocedural Hot-Path Tracing Algorithm processed the vertex
u′, it must have created (either at line 21 of Figure 34 or line 29 or line 32 of Figure 36) an
u′ → v′ that is congruent to u→ v. The path p′ = [a‖u′ → v′] is an unbalanced-left path in
H∗ that is congruent to p.

There is an (almost identical) inductive proof to show that for every unbalanced-left path p′ in H∗

that starts at Entry ′
global , there is a congruent, unbalanced-left path p in G∗.

In order to show that for any unbalanced-left path in G∗ there is an unbalanced-left path in H∗ we
need the following additional assumption: for any vertex v in G∗, there is an unbalanced-left path p
from Entryglobal to v. (If this is not true, then v is a unreachable vertex that may be removed from G∗

without changing the program’s execution behavior.) If this assumption is true, then for any vertex v in

105

G∗, there must be at least one duplicate vertex v′ in H∗; this follows from the fact that there is path p′

in H∗ that is congruent to the unbalanced-left path p from Entry global to v.
Now we can use an inductive argument to show that for any unbalanced-left path p in G∗, there is a

congruent, unbalanced-left path p′ in H∗.

Base case: p is path of length 0 from v to v. By the argument given above, there must be at least one
vertex v′ in H∗ that is a copy of v. The path p′ of length 0 from v′ to v′ is congruent to p and is
unbalanced-left.

Induction step: This induction step is identical to the induction step above, so we will not repeat it.

Again, a similar inductive argument shows that for any unbalanced-left path p′ in H∗, there is a
congruent, unbalanced-left path p in G∗. QED 2

106

Chapter 8

Experimental Results for the Express-lane
Transformation

We have implemented a tool called the Interprocedural Path Weasel (IPW) that performs the interproce-
dural express-lane transformation1. IPW is implemented in SUIF 1.3.0.5. The program takes as input a
set of C source files for a program P and a path profile for P . The path profile can be an an interprocedu-
ral context path profile, an interprocedural piecewise path profile, or an intraprocedural piecewise path
profile. Depending on the type of profile, IPW performs the appropriate express-lane transformation on
P (see Chapter 3, Chapter 4, and Section 2.2). IPW then performs interprocedural range analysis on the
hot-path supergraph.

This section presents results of experiments with IPW. The experiments were run on an 833 MhZ
Pentium III with 256M RAM running Solaris 2.7. We compiled with GCC 2.95.3 -O3. Each test was run
3 times, and the run times averaged. For each of the different express-lane transformations, we measured
the amount of code growth caused by the transformation, and the benefit of the transformation for range
analysis.

As the number of paths duplicated by an express-lane transformation increases, the amount of code
growth increases, and the time required to perform range analysis increases. However, the benefit to
range analysis may also increase. As in [5], we evaluate this tradeoff by introducing a parameter CA,
called the dynamic instruction coverage percentage, to each of the express-lane transformations. Given
a value forCA, an express-lane transformation duplicates the smallest set of paths that coverCA-percent
of the program’s execution 2.

Figure 43 plots the amount of code growth that results as a function of CA for each of the express-
lane transformations. Figure 44 shows the increase in analysis time for range analysis as a function of
CA for each of the express-lane transformations. For each of the express-lane transformations, there
is a sharp increase in code growth and analysis time as CA is changed from 99% to 100%. However,
in the following discussion, we will see that the results of range analysis do not benefit significantly
when CA is changed from 99% to 100%. This suggests that the express-lane transformation should not
be used with CA > 99%. Figure 48 compares the amount of code growth and the increase in anal-
ysis time for the three different express-lane transformations at CA = 99%. The increase in analysis
time is measured against the time to perform the analysis on the original supergraph. In all cases, the
interprocedural, context express-lane transformation causes the most code growth. The interprocedu-
ral, piecewise express-lane transformation causes about as much code growth as the intraprocedural,
express-lane transformation, except in the case of compress. On the other hand, the range analysis
has much better results on compress after the interprocedural, express-lane transformations than it does
after the intraprocedural, express-lane transformation (see below). Interestingly, performing range anal-
ysis is sometimes more costly after the intraprocedural express-lane transformation than it is after the

1The tool is named after, and based on, Glenn Ammon’s tool Path Weasel, which performs the intraprocedural express-lane
transformation [5]. We give many thanks for Glenn for his implementation of Path Weasel.

2In [5], CA is called the path coverage.

107

Figure 43: Code growth caused by the express-lane transformations.

108

Figure 44: Increase in runtime of range analysis versus the percent code coverage.

109

Figure 45: Increase in percentage of instruction operands that have a constant value versus the percent
of code coverage.

110

Figure 46: Increase in percentage of instructions that have a constant result versus the percent of code
coverage.

111

Figure 47: Increase in percentage of branch instructions that have a constant result versus the percent of
code coverage.

112

Benchmark E-Lane Trans. Trans. Time (s) Size H∗ DFA Time (s)
124.m88ksim Inter., Context 9.8 24032 569.5

Inter., Piecewise 4.9 15113 508.4
Intra., Piecewise 3.0 14218 734.2
None - 11455 300.8

129.compress Inter., Context 1.4 2610 14.7
Inter., Piecewise 0.3 1014 9.4
Intra., Piecewise 0.2 696 10.2
None - 522 5.2

130.li Inter., Context 12.9 23125 99.1
Inter., Piecewise 5.3 11319 73.2
Intra., Piecewise 1.9 7940 35.7
None - 7240 29.0

132.ijpeg Inter., Context 13.0 18087 628.8
Inter., Piecewise 8.5 13768 526.1
Intra., Piecewise 7.1 12955 504.3
None - 12192 488.2

134.perl Inter., Context 10.3 33863 713.8
Inter., Piecewise 9.0 30189 655.2
Intra., Piecewise 6.7 29309 718.6
None - 27988 573.9

Table 8: Comparison of the cost of performing various express-lane transformations and the cost of
performing interprocedural range analysis after an express-lane transformation has been performed. For
these experiments, CA = 99%. Times are measured in seconds. Graph sizes are measured in number of
vertices.

113

Benchmark E-Lane Trans.
% const.
operands

% const.
results

% decided
branches

124.m88ksim Inter., Context 28.5 33.1 19.7
Inter., Piecewise 28.6 33.2 20.0
Intra., Piecewise 27.7 32.3 17.5
None 25.9 31.1 0.8

129.compress Inter., Context 21.3 26.9 9.8
Inter., Piecewise 21.3 26.9 9.8
Intra., Piecewise 21.3 26.2 2.2
None 20.8 25.8 0.0

130.li Inter., Context 24.1 27.3 4.0
Inter., Piecewise 24.1 27.3 3.9
Intra., Piecewise 23.6 26.8 2.2
None 23.3 26.5 0.0

132.ijpeg Inter., Context 16.8 23.6 4.0
Inter., Piecewise 16.8 23.6 4.0
Intra., Piecewise 16.6 23.3 1.4
None 15.9 22.7 0.0

134.perl Inter., Context 24.3 28.8 3.3
Inter., Piecewise 24.2 28.8 3.0
Intra., Piecewise 24.1 28.7 2.8
None 23.0 28.5 1.3

Table 9: Comparison of the results of range analysis after various express-lane transformations have
been performed.

114

Figure 48: Graphs comparing the code growth and increase in analysis time for the three express-lane
transformations for CA = 99%.

115

Figure 49: Graphs comparing the results of range analysis on the hot-path supergraphs created by the
three express-lane transformations when CA = 99%.

116

interprocedural express-lane transformation.
To evaluate the results of range analysis on a program P , we weighted each data-flow fact by its ex-

ecution frequency during a run of P . For example, let J be the solution for range analysis on a hot-path
supergraphH∗ that was constructed from compress and an interprocedural, context path profile of com-
press when run on the reference input. Then, for each vertex in v, we weight the data-flow facts in J(v)
by v’s execution frequency when H∗ (i.e., the transformed version of compress) is run on compress’s
reference input. This measurement is useful when comparing range analysis on a supergraph G∗ and
range analysis on a hot-path supergraph H∗ constructed from G∗: G∗ and H∗ have the same execution
behavior, but statically they are very different. H∗ has more vertices thanG∗, and hence there are simply
more data-flow facts, both good and bad, in H∗ than in G∗. Hence, an unweighted comparison of the
results of range analysis for G∗ and H∗ is not very informative. We used the same profiles to perform
the express-lane transformation and to measure the effect of the transformation on range analysis. It
would also be interesting if for each SPEC benchmark b we performed the interprocedural-express lane
transformation based on a profile of b when run on b’s training input, and then measured the benefit to
data-flow analysis based on a profile of b when run on b’s reference input.

Figure 45 shows the increase in the percent of instruction operands that have constant values as a
function of the path coverage (CA). Figure 46 shows the increase in the percent of instructions that have
constant results as a function of the path coverage. (An instruction may have a constant result even if
one of its operands is not constant: e.g., the instruction “a=b*0” will always have the constant result
zero.) Figure 47 plots the increase in the percent of conditional branch instructions that are decided to
have only one possible target. In all of these graphs, we can see that most of the benefit of the express-
lane transformations is realized with CA = 99%. Together with Figures 43 and 44, this suggests that
99% is the optimal value for CA.

Figure 49 compares the results of range analysis after the express-lane transformations have been
performed with CA = 99%. In all cases, the interprocedural express-lane transformations do better than
the intraprocedural express-lane transformation. In the case of compress, after either of the interproce-
dural express-lane transformations, range analysis does much better at deciding conditional branches.
This is because compress contains a function called get byte that returns a character in the range [0..255]
when not at the end of the input buffer, and returns −1 (EOF) when the end of the input buffer is reached.
There is a loop that repeatedly calls get byte and uses a conditional branch to test if the return value is
−1. After an interprocedural express-lane transformation has been performed, the path from get byte
where the return value is −1 is separated from the path where the return value is in the range [0..255];
this means that the condition that tests the return value of get byte can be decided.

The range analysis we use allows the upper bound of a range to be increased once before it widens
the upper bound to (MaxVal−1). Similarly, the lower bound of a range may be decreased once before it
is widened to (MinVal+1). Our range analysis is similar to Wegman and Zadeck’s conditional constant
propagation [61] in that (1) it simultaneously performs dead code analysis and (2) it uses conditional
branches to refine the data-flow facts. For example, as the analysis progresses, suppose that it determines
that the vertex v is live and that x must be in the range [0..10] in v. If there is a conditional branch on
the condition “x < 5” at the end of v, then the analysis will determine that both the true branch and
the false branch from v are executable. Furthermore, it will determine that on the true branch from v,
x must be in the range [0..4] and on the false branch, x must be in the range [5..10]. Throughout the
analysis, dead code is not allowed to affect the results of the range analysis.

The results we present here for the intraprocedural, express-lane transformation are different from
those in [5] for several reasons:

117

• The definition of a program vertex is different. IPW works on program supergraphs. For each call
instruction i, IPW creates two supergraph vertices: a call vertex and a return-site vertex. These
vertices represent the call instruction i and only the call instruction i. In contrast, in [5] they work
on a collection of control-flow graphs (CFGs). Call instructions are not treated differently from
other instructions: a single CFG vertex may represent a call instruction together with other in-
structions. The result of this difference is that our program representation has many more vertices
and edges than the program representation used in [5]. Therefore, the average number of edges in
our observable paths may be higher than in [5].

• When we do measurements on the intraprocedural, express-lane transformation, we perform the
transformation on all of the program’s procedures and then perform interprocedural range anal-
ysis. This allows us to compare the results of intraprocedural express-lane transformation with
the interprocedural express-lane transformation. In [5], they perform the intraprocedural express-
lane transformation on each procedure and then perform the intraprocedural version of Wegman
and Zadeck’s conditional constant propagation [61]. This means that they will find strictly fewer
constant operands, instructions with constant values, and decided branches.

In Chapter 12, we present the results in which we use the results of range analysis to preform
optimizations such as replacing a constant expression with a literal and replacing a decided branch with
an unconditional jump.

118

Chapter 9

Reducing the Hot-path (Super)graph:
Partitioning Algorithms

The express-lane transformation creates a hot-path graph in which hot paths are isolated from one an-
other and from cold code. The hope is that a data-flow analysis may find better solutions along the
duplicated paths. However, the analysis may find the same solution for some or all of the duplicated
code. When the hot-path graph contains two copies of a vertex such that they share a common data-flow
solution, it is desirable to collapse them into a single copy and avoid unnecessary code growth.

In this and the following two chapters, we discuss algorithms for reducing the hot-path (super)graph.
Section 9.1 gives a formal definition of the problem. Section 9.2 discusses the Ammons-Larus Reduc-
tion Technique [5] for reducing the hot-path graph via the Coarsest Partitioning Algorithm. Section 9.3
describes how to adapt the key component of the Ammons-Larus Reduction Technique to work on the
hot-path supergraph. In Chapter 10 we present a new reduction algorithm that is based on redirecting
hot-path supergraph edges. Section 10.7 shows how to combine the Ammons-Larus Reduction Algo-
rithm and the Edge-Redirection Algorithm. Chapter 11 shows that an optimal solution to the problem
of reducing the hot-path graph is NP-hard. Chapter 12 presents experimental results for our algorithms
on reducing the hot-path supergraph.

9.1 Definition of a Hot-path Graph Reduction Algorithm

In this section, we define what an algorithm for reducing a hot-path graph must accomplish. We will
also give an analogous definition for algorithms that reduce hot-path supergraphs.

First, we give some preliminary definitions. Some of these definitions are taken from Section 7.4.
Others are standard definitions from the literature.

Congruent edges: Edges u→ v and u′ → v′ are said to be congruent if u and u′ are “duplicate ver-
tices” (i.e., duplicates of the same supergraph vertex), v and v ′ are duplicate vertices, and u→ v
and u′ → v′ are the same kind of edge (e.g., a true branch, a false branch, a “case c:”-branch,
return-edge, etc.). The labels on call- and return-edges do not affect congruence.

Congruent paths: Paths p and p′ are said to be congruent iff they are of equal length and, for all i, the
ith edge of p is congruent to the ith edge of p′.

Path congruent graphs: Graphs G and G′ are path congruent iff: for every path in G there is a con-
gruent path in G′; and for every path in G′ there is a congruent path in G. Unbalanced-left path
congruent is defined in an analogous fashion.

Data-flow frameworks: Following the standard definitions, a data-flow frameworkF is a triple (L,u, F)
whereL is a complete semilattice with meet operatoru and F is a set of functions fromL toL that

119

is closed under composition. F is said to be monotonic if all the functions in F are monotonic.
Likewise, F is said to be distributive if all the functions in F are distributive.

Data-flow problems: A data-flow problem is a tuple (L,u, F,G,Entry , l,M) where (L,u, F) is a
data-flow framework, G is a control-flow graph, Entry is the entry of G, l ∈ L is the data-flow
fact associated with Entry , and M is a map from the vertices of G to the functions in F . The
data-flow problem (L,u, F,G,Entry , l,M) is said to be an instance of the data-flow framework
(L,u, F).

Default data-flow instance for a graph: Given a data-flow framework F = (L,u, F) and a graph G,
we call FG the default instance of the F on G. We have FG = (L,u, F,G,Entry , l,M) where
l = ⊥ and M(v) is the appropriate transfer function as determined by the statements in v.

Valid data-flow solutions: A solution J for a data-flow problem on (super)graph G is valid if it ap-
proximates the meet-over-all (valid) paths solution at each vertex — i.e., for all v in G, J(v) v
MOP(v) (or J(v) v MOVP(v)).

We are now ready to give the requirements of a hot-path graph reduction algorithm: an algorithm for
reducing the hot-path graph takes three inputs: (1) a hot-path graphH; (2) a path profile pp ofH; (3) and
a valid solution J for a data-flow problem FH where F is a monotonic data-flow framework. A hot-path
graph reduction algorithm produces as output: (1) a reduced hot-path graph H ′ that is path congruent
to (and preferably smaller than) H; (2) a path profile pp′ translated from pp onto H ′; (3) and a valid
solution J ′ for the data-flow problem FH′ . An algorithm for reducing a hot-path supergraph has similar
requirements, except that the reduced hot-path supergraph must be unbalanced-left path congruent to
the original supergraph.

This definition admits many trivial, uninteresting algorithms. For example, the algorithm that simply
returns H , pp, and J without any modifications is a hot-path graph reduction algorithm. Other hot-path
graph reduction algorithms may return anyH ′ that is path congruent toH (e.g., the original control-flow
graph, or a supergraph that is larger than H) and the data-flow solution J⊥ that maps everything to ⊥.

The requirements for reducing the hot-path graph also leave room for some promising possibilities.
For example, suppose J is the greatest fixed-point solution to the data-flow problem FH . It may be
that J ′ is actually better than the greatest fixed-point solution for FH′ . For example, suppose F is non-
distributive. Then J ′ may contain data-flow facts that (due to the non-distributive nature of the data-flow
problem) are not found in the greatest fixed-point solution.

Ideally, we want a hot-path graph reduction algorithm that minimizes the size ofH ′ while preserving
the desirable data-flow facts of J in J ′. What a “desirable data-flow fact” means is dependent on the
data-flow analysis in question. For classical constant propagation, a desirable data-flow fact may mean
a use of a variable x that has been shown to have a constant value. A use of x in a vertex v where
J(v)(x) = ⊥ (an undesirable data-flow fact) would not have to be preserved (i.e., H ′ need not contain a
vertex v′ where J ′(v′)(x) = ⊥). Likewise, a data-flow fact that x is constant in a vertex v that does not
use x would not have to be preserved. Furthermore, we do not care about preserving desirable data-flow
facts in vertices that are cold.

Definition 9.1.1 We say that J ′ preserves the valuable data-flow facts of J iff the following is true:

Let p be a path in H that starts at H’s entry and ends at a hot vertex v that contains a use
of a “desirable” data-flow fact in J(v). Let p′ be the path in H ′ that is congruent to p. Let
v′ be the last vertex of p′. Then, J ′(v′) is at least as good as J(v) (J(v) v J ′(v′)) for any
desirable data-flow fact used in v.

120

In Chapter 11, we show that findingH ′ and J ′ such thatH ′ is minimal and J ′ preserves the valuable
data-flow facts of J is an NP-hard problem. The algorithms we consider for reducing the hot-path
(super)graph will preserve valuable data-flow facts (finding these facts was the whole purpose of creating
the hot-path graph), but they will not result in a minimal graph.

9.1.1 A Paradigm Shift?

A reasonable objection to the above definition of “preserving the valuable data-flow facts” is that it
seems to be a paradigm shift from the strategy of the express-lane transformation: the express-lane
transformation focuses on duplicating hot paths, while our hot-path reduction algorithms focus on pre-
serving data-flow facts at hot vertices. We feel that this shift is justified because a solution to a data-flow
problem contains data-flow facts for each individual vertex, not each individual path. The meet-over-all
paths data-flow solution MOP(v) for the vertex v is a single set of data-flow facts for v, namely, the
meet of the data-flow solutions for all of the paths to v.

In contrast to our stated goal of preserving the desirable data-flow facts for hot vertices, the fol-
lowing Path-Preservation Algorithm reduces the hot-path graph by preserving the most valuable of the
duplicated paths and discarding the others:

1. For each express-lane p in the hot-path graphH , compute the weighted benefit, bp, of the express-
lane:

bp = (number of uses of desirable data-flow facts along p) · (the execution frequency of p)

2. Find the smallest subset P of the express-lanes such that

∑

p∈P

bp

 ≥

95% of the uses of desirable data-flow
facts in H , weighted by execution
frequency

3. For any express-lane q 6∈ P , remove q from H . This can be done by coalescing the vertices of q
with vertices that are in another express-lane q′ 6∈ P or with vertices that are not on an express-
lane. The data-flow facts on a vertex w that results from coalescing the vertices u and v are set
to the meet of the data-flow facts on u and v: J ′(w) = J(u) u J(v). (See [5], Section 2.2.2, and
Section 9.2.3 for technical details on coalescing vertices.)

4. Output the reduced graph H ′ with the new data-flow solution J ′.

The above strategy has the advantage of being simple — all of the required machinery has been in-
troduced in previous sections. However, it is likely to overlook many opportunities for reducing the
hot-path graph. For an express-lane p, it may be that the valuable data-flow facts are concentrated in
one part (e.g., a prefix) of p and that it is not necessary to preserve the entire express-lane in order to
preserve the valuable data-flow facts in p. Furthermore, two express-lanes p and q may have pieces that
are congruent and that have the same data-flow facts; in this case, the congruent pieces may be merged.
For example, both p and q may contain a copy of the path a and they may both have the same data-flow
facts along their individual copy of a. In this case, it may be possible for p and q to share a single copy
of a. The path-preservation algorithm does not recognize this.

It is unclear that there is any advantage in an algorithm that concentrates on preserving “valuable
paths” rather than preserving valuable data-flow facts at vertices. Even if the problems mentioned above
were addressed, the Path-Preservation Algorithm would still suffer from all the shortcomings of the
Ball-Larus Reduction Algorithm that are described in the following section.

121

9.2 The Ammons/Larus Approach to Reducing the Hot-path Graph

Section 2.2.2 summarizes the approach used by Ammons and Larus to reduce the hot-path graph [5].
This section gives further details of their algorithm, and shows some of the limitations of their approach.
Sections 9.2.1 thru 9.2.3 discuss the first three steps of the Ammons/Larus hot-path graph reduction
algorithm. The fourth and final step is straightforward and does not require further discussion. In the
remainder of this chapter, we refer to the Ammons-Larus approach to reducing the hot-path graph as the
Ammons-Larus Reduction Algorithm.

9.2.1 Step One: Identify Hot Vertices

The first step of the Ammons-Larus approach identifies hot vertices in the hot-path graph. The execution
frequency of each vertex is easily determined from the path profile (translated from the control-flow
graph to the hot-path graph). The vertices are sorted based on the number of uses of desirable data-flow
facts (e.g., constants) they contain, weighted by execution frequency. Vertices are marked as hot until a
fixed percentage — 95% in their experiments — of the desirable data-flow facts (weighted by execution
frequency) have been included in hot vertices.

We desire a graph reduction algorithm that preserves hot data-flow facts. By definition, this means
preserving desirable data-flow facts that are found in hot vertices. However, labeling vertices hot accord-
ing to their execution frequency in the hot-path graph does not necessarily preserve the hottest data-flow
facts with respect to the original control flow graph:

Example 9.2.1 Let v be a vertex in the control flow graph C that is executed 110 times. Suppose
that there is a use of the program variable x in v. Let the hot-path graph H contain four copies of v:
v1, v2, v3 and v4. Let J be a greatest fixed-point solution to constant propagation on H . The vertex v1

has an execution frequency of 40 and J(v1)(x) = 2. The vertices v2 and v3 each have an execution
frequency of 30 and J(v2)(x) = J(v3)(x) = 3. The vertex v4 has an execution frequency of 10 and
J(v4)(x) = ⊥. From these facts, we conclude that during the execution of v, x has the value ’2’ 40
times, x has the value ’3’ 60 times, and x has an unknown value 10 times. From v’s point of view,
the most important data-flow value for x is 3. By looking only at the separate execution frequencies of
v1, v2, v3, and v4, it may seem that ’2’ is the most important data-flow value for x.

Suppose that the Ball-Larus technique marks the vertex v1 as hot, since it has the highest execution
frequency of v1, v2, v3 and v4. Then the Ball-Larus Reduction Algorithm will strive to create a reduced
hot-path graph in which there is a unique copy v′ of v such that J(v′)(x) = 2 and v′ has an execution
frequency of 110. Since this is not possible, the algorithm instead tries to create a reduced hot-path
graph H ′ with two copies v′ and v′′ of v such that J(v′)(x) = 2, v′ has an execution frequency of 40,
J(v′′)(x) = ⊥ and v′′ has an execution frequency of 70. However, the Ball-Larus Algorithm would do
better to mark v2 and v3 as hot and strive for a reduced hot-path graph with two copies v ′ and v′′ of v such
that J ′(v′) = 3, v′ has an execution frequency of 60, J ′(v′′) = ⊥, and v′′ has an execution frequency of
50. In this second scenario, the copy of v with a value of ⊥ has a lower execution frequency. 2

Thus, preserving the data-flow facts in vertices with high execution frequency might not preserve
the most frequent data-flow facts. For Ammons and Larus (and for us), this is unlikely to be a problem:
they mark enough vertices as hot to cover 95% of the desirable data-flow facts (and we mark enough
vertices as hot to cover 99% of the desirable data-flow facts). If a lower percentage of data-flow facts
are used to identify the hot vertices, then the fact that the reduction algorithm does not preserve the most
frequent data-flow facts could be increasingly important.

122

9.2.2 Step Two: Partition Vertices into Compatible Blocks

The second step of Ammons-Larus Reduction Algorithm partitions the vertices of the hot-path graph
into sets of compatible vertices. (Recall that a hot-path graph vertex is a pair: the hot-path graph vertex
[v, q] is a copy of the CFG vertex v and corresponds to a path that drives the hot-path automaton to state
q.) The vertices [v, q] and [v′, q′] are compatible iff:

1. v = v′ (i.e., [v, q] and [v′, q′] are duplicate vertices) and

2. the meet of J([v, q]) and J([v′, q′]) does not destroy any desirable data-flow facts in a hot-vertex:

(a) if [v, q] is hot, then J([v, q]) v J([v′, q′]) for all desirable data-flow facts used in [v, q];

(b) if [v′, q′] is hot, then J([v′, q′]) v J([v, q]) for all desirable data-flow facts used in [v′, q′].

The blocks of the partition are created greedily: as each vertex [v, q] is considered, it is added to the first
block with which it is compatible. (A vertex is compatible with a block of vertices iff it is compatible
with all of the vertices in the block.) We call the partition that results from this process the Ammons-
Larus compatibility partition, or the compatibility partition for short.

The advantage of this partitioning algorithm is that it is fast: it can be implemented in O(d ·n logn)
steps, where d is the maximum number of data-flow facts used in a vertex and n is the number of
vertices in the hot-path graph. However, it does not result in a partition with a minimal number of
blocks. Finding a minimal partition is likely NP-hard: the fact that compatibility does not define an
equivalence relationship makes the problem similar to finding a minimal graph coloring (see the proof
of Theorem 11.0.1 below).

More importantly, some partitions interact with the Coarsest Partitioning Algorithm better than oth-
ers. This is discussed in the next section.

9.2.3 Step Three: Apply the Coarsest Partitioning Algorithm

Step three of the Ammons-Larus reduction algorithm applies a coarsest partitioning algorithm to the
partition created in step two. An n logn algorithm for the coarsest partitioning problem was given by
Hopcroft in [38]. Our description is taken from [1], which is is turn based on [38]. Given a set S,
an initial partition π = {B1, B2, . . . Bn} of S, and a function f on S, the coarsest partition algorithm
produces a new partition π′ = {C1, C2, . . . Ck} such that the following holds:

1. for every Ci, there is a Bj such that Ci ⊆ Bj ;

2. for every a, b ∈ Ci, there is a Cj such that f(a) and f(b) are in Cj ; and

3. there is no partition with fewer blocks that satisfies the previous conditions.

The new partition π′ is said to be the coarsest partition that respects π and f . The coarsest partition
algorithm is easily generalized to generate a partition that respects a set of functions. This is done
when the coarsest partitioning algorithm is used for DFA minimization: there is one function fa for
each alphabet symbol a; fa encodes the a-transitions of the DFA [38]. Figure 50 shows the coarsest
partitioning algorithm presented in [1]. Figure 51 describes how the algorithm works. The running time
for the generalized version of this algorithm is m ·n logn where m is the number of input functions and
n is the number of elements in the input set S.

The Ammons-Larus technique uses the coarsest partitioning algorithm with a set of functions F
containing one function for each edge in the control-flow graph. The function fu→ v ∈ F for edge

123

B1, B2, . . . Bn are the blocks of the initial partition π
W is a worklist of blocks
q is the index of the last created partition block
Inverse is a set of hot-path graph vertices

Main()
W := {B1, B2, . . . Bn}
q := n
While W 6= ∅

Bi := Take(W) /* select and remove an elt. from W */
Inverse := f−1(Bi)
Foreach Bj such that Bj ∩ Inverse 6= ∅ and Bj 6⊆ Inverse

q := q + 1
Create a new block Bq

Bq := Bj ∩ Inverse
Bj := Bj −Bq

If Bj ∈W Then
Put(W,Bq)

Else If ‖Bj‖ ≤ ‖Bq‖ Then
Put(W,Bj)

Else
Put(W,Bq)

Output the partition π′ ≡ {B1, B2, . . . Bq}
End Main

Figure 50: The Coarsest Partitioning Algorithm [38, 1].

b

d

f

c

a

f

B1

B2 B3

Figure 51: Example of the coarsest partition algorithm. The block B1 must be split because f maps
its members (a and b) into different blocks (B2 and B3, respectively). The algorithm in Figure 50 may
discover this when it looks at blockB2: f−1(B2) contains an element of B1, but not both, implying that
B1 must be split.

124

1v 2v 3v

u1 u2 u3

1v 2v 3v

u1 u2 u3

(a) (b)

Figure 52: (a) shows a partition π1 that the Coarsest Partitioning Algorithm splits into five blocks. (b)
shows a partition π2 of the same set that the Coarsest Partitioning Algorithm leaves as four blocks.

u→ v maps any vertex [u, q] (that is a copy of u) to the unique vertex [v, q ′] (that is a copy of v) if there
is an edge [u, q] → [v, q′] in the hot-path graph that is a copy of the edge u→ v. These functions encode
the control relationships of the edges of the hot-path graph: the edges representing true branches are in
separate functions from the edges representing false branches; the edges representing “case i” branches
are in separate functions from the edges representing “case j” branches, etc. (In fact, it is sufficient
to define F to contain one function for encoding true branches, one for false branches, one for each
possible case of a switch, and one for all other edges1.)

Let π′ be the coarsest partition that respects the compatibility partition π and the functions fu→ v
described above. π′ can be used to reduce the hot-path graph while preserving hot data-flow facts: all the
vertices in a blockBi of π′ are collapsed to a single representative vertex (this is Step 4 of the Ammons-
Larus reduction algorithm). The data-flow facts for a representative vertex are set to the meet of the
data-flow facts on each member of the representative’s block. The fact that this reduction preserves
the hot data-flow facts in the collapsed vertices follows from the fact that π ′ respects the compatibility
partition π and that the output graph is path congruent to the input graph. (See Theorem 9.3.1 for a
proof.)

Over-respecting the initial partition

However, the Coarsest Partitioning Algorithm gives too much respect to π and F and many opportunities
to reduce the hot-path graph are lost. As mentioned in the last section, some partitions of the hot-path
graph’s vertices interact with the coarsest partitioning algorithm in a poor fashion. Figure 52 shows
two possible partitions, π1 and π2, of vertices in a hot-path graph. The coarsest partition that respects
π1 and the edge relationships has five blocks, while the coarsest partition that respects π2 and the edge
relationships has only four blocks. The coarsest partitioning algorithm may not find a minimal reduction
of the hot-path graph if it is given the wrong initial partition.

We employ a simple heuristic to help choose a compatibility partition that interacts in a better way
with the Coarsest Partitioning Algorithm. First, the duplicate vertices of v are partitioned before the
duplicate vertices of u if u comes before v in a depth-first traversal of the vertices of the original control-
flow graph. In Figure 52, the partition of v1, v2 and v3 is chosen before the partition of u1, u2 and u3.

1If the control-flow graph does not allow multiple edges between vertices (e.g., a true branch from A to B and a false
branch from A to B), then the Ammons-Larus technique can use the coarsest partitioning algorithm with one function – the
edge set of the hot-path graph: true edges are never confused with false branches because they always connect incompatible
vertices, and hence connect different blocks of the initial partition.

125

A1

x 2

x 2

B1 2B

x ⊥

x 2

A2

Figure 53: Example showing how edge redirection may help reduce the hot-path graph. VerticesA1 and
A2 are compatible (they have identical data-flow facts), however vertices B1 and B2 are not, preventing
A1 and A2 from being collapsed. If we redirect the edge from A2 to target B1 instead of B2, then A1

and A2 may be collapsed.

Second, we add a requirement that if v1 and v2 are in separate blocks, and there are congruent-edges
u1 → v1 and u2 → v2, then u1 and u2 should be put in separate blocks. If v1 or v2 has not yet been
assigned to a block, then there is no additional restriction on the placement of u1 and u2. In Figure 52,
the heuristic encourages us to pick the partition in Figure 52(b) over the partition in Figure 52(a). In
general, forming the compatibility partition with this heuristic and then running the Coarsest Partitioning
Algorithm seems to result in output partitions that are 10% smaller than when the heuristic is not used.

Over-respecting the edge set of the hot-path graph

Further opportunities for reducing the hot-path graph may be found if we change the edge set of the
hot-path graph — in other words if we change the functions in the set F . Figure 53 gives an example.
The vertices A1 and A2 have identical data-flow facts. However, they cannot be collapsed because B1

and B2 cannot be collapsed — they have different data-flow facts. If the edge A2 → B2 is redirected to
B1 — i.e., the edge A2 → B2 is replaced by the edge A2 → B1 — then A1 and A2 can be coalesced.
If other edges (not shown in Figure 53) that target B2 are redirected, then B2 may become unreachable
and then may be dropped from the graph. The following example demonstrates the power of edge
redirection:

Example 9.2.2 Consider the graph in Figure 54. If this graph has the hot-paths [A→ B → D → E →
G] and [A → C → D → F → G], then the intraprocedural express-lane transformation results in the
hot-path graph H shown Figure 55(a). After constant propagation is performed on H , the Ammons-
Larus technique for reducing the hot-path graph will group the compatible nodes of H as shown in
Figure 55(b) (see Section 2.2 and [5]). The vertices D and D′, E and E′, and F and F ′ are pairs of
compatible nodes that we would like to collapse. G, G′, and G′′ may not be collapsed because they
have different data-flow facts for x. The fact that G and G′′ cannot be collapsed causes the Coarsest
Partitioning Algorithm to decide that E and E ′ cannot be collapsed, and hence that D and D′ must be
separated. The fact that G′ and G′′ cannot be combined causes the DFA-minimization to separate F
and F ′. Thus, the coarsest partitioning algorithm does not find any opportunities to reduce the hot-path
graph in Figure 55(a).

However, the hot-path graph in Figure 55 can be reduced: the edgeE ′ → G′′ could be replaced with
E′ → G; the edge F ′ → G′′ could be replaced with F ′ → G′; and the vertexG′′ could be removed from
the hot-path graph. After these transformations, each pair of vertices D and D′, E and E′, and F and

126

A

B C

D

E
x=2;

F
x=3;

G
... x ...

Figure 54: Sample control-flow graph. The hot-paths in this graph are [A → B → D → E → G] and
[A→ C → D → F → G].

E
x=2;

E’
x=2;

G
... x ...

F’
x=3;

G"
... x ...

F
x=3;

G’
... x ...

A

B C

D D’ D

E
x=2;

F’
x=3;

D’

E’
x=2;

F
x=3;

G
... x ...

G"
... x ...

G’
... x ...

A

B C

A

B C

D

E
x=2;

F
x=3;

G
... x ...

G’
... x ...

(a) (b) (c)

Figure 55: (a) shows the hot-path graph for Figure 54. All nodes have the same data flow fact for
x (namely bottom), except G (where x is 2) and G′ (where x is 3). (b) shows blocks of compatible
vertices inside of boxes. (c) shows the minimal reduced hot-path graph.

127

F ′ can be combined. These steps result in the minimal reduced hot-path graph shown in Figure 55(c).
2

Chapter 10 gives a new algorithm for reducing the hot-path graph that is based on the use of edge
redirection.

Problems applying the Coarsest Partitioning Algorithm to the hot-path supergraph

In addition to the problems that arise when using the Coarsest Partitioning Algorithm to reduce the
hot-path graph, there are difficulties in adapting the Coarsest Partitioning Algorithm to work on a super-
graph. Consider the following example:

Example 9.2.3 Figure 56(a) depicts a program supergraph with two procedures, P and Q. The vertices
Q are shown in an enclosed box; The vertex layout suggests that Q has been inlined in P , but that is
not the case. This program is similar to the one discussed in Example 9.2.2, except that the second if
statement has been put in a called procedure, and the definitions of x have been moved to the branches
of the first if statement. The variable x is local to the procedure P , and not visible to Q.

Given the hot paths [a → b → d → A → B → D → e → f] and [a → c → d → A → C →
D → e→ f], the interprocedural express-lane transformation constructs the hot-path supergraph shown
in Figure 56(b). Every duplicated vertex in Q is compatible: their data-flow facts agree on all visible
variables (which is the empty set in this example). Note that if Q were inlined, none of the inlined
vertices would be compatible: they would all have a different value for x.

If the Coarsest Partition Algorithm is run on this supergraph (and treated the supergraph as a normal
graph), it would not collapse any of the vertices inQ. Since the vertices e and e′′ cannot be collapsed, the
vertices D, D′′, and D′ would be separated. Since the vertices e′′ and e′ are incompatible, the vertices
D′′ and D′ would be separated. The separation of the set of compatible vertices {D,D′′,D′} into the
singleton sets {D}, {D′′} and {D′} causes the rest of the compatible sets in Q to be broken up. Thus,
the hot-path supergraph is not reduced at all.

Figure 56(c) shows the minimum reduced hot-path supergraph for the supergraph in Figure 56(b).
All of the compatible vertices in Q have been collapsed, and the vertices e′′ and f ′′ have been removed.
(It may be interesting to note that this is the graph that results from performing the intraprocedural
express-lane transformation on P and Q, given the hot paths [a → b → d → e → f], [a → c → d →
e→ f], [A→ B → D], and [A→ C → D].)2

In summary, the coarsest partitioning algorithm must respect the input partition and input functions:
this means that it is stuck with unwise decisions in the initial partition and that it cannot make use of
the powerful edge redirection technique. Consequently, the Ammons-Larus reduction algorithm may
do poorly on very simple examples like the one given in Example 9.2.2. Furthermore, there are some
difficulties in adapting the Coarsest Partitioning Algorithm to work on a hot-path supergraph, although
these are addressed in the next section.

9.3 Adapting the Coarsest Partitioning Algorithm for the Hot-Path Su-
pergraph

In this section, we present a modified version of the Coarsest Partitioning Algorithm which we call the
Supergraph Partitioning Algorithm. In Section 9.3.1, we state some properties of the new algorithm.

128

A

B C

D

e

a

b
x=2

c
x=3

d

f
... x ...

A

B C’

A’

B’ C

D D" D’

e e’e"

f
... x ...

f"
... x ...

f’
... x ...

a

b
x=2

c
x=3

d d’

A

B C

D

e e’

f
... x ...

f’
... x ...

a

b
x=2

c
x=3

d d’

(a) (b) (c)

Figure 56: (a) Sample supergraph. The hot paths in this supergraph are a → b → d → A → B →
D → e → f and a → c → d → A → C → D → e → f . (b) Hot-path supergraph for the
supergraph in (a). The large box indicates the procedure Q. The smaller boxes group compatible
nodes. (c) Minimal reduced hot-path supergraph for the hot-path supergraph in (b).

129

Section 9.3.2 describes how the Supergraph Partitioning Algorithm can be used in the Ammons-Larus
Reduction Algorithm (in place of the Coarsest Partitioning Algorithm) to obtain an algorithm for reduc-
ing the hot-path supergraph. A proof is given that the modified Ammons-Larus Reduction Algorithm is
a valid hot-path supergraph reduction algorithm. In Section 9.3.3, we compare and contrast the prop-
erties of the Coarsest Partitioning Algorithm and the Supergraph Partitioning Algorithm. Finally, in
Section 9.3.4, we present the Supergraph Partitioning Algorithm, prove its correctness and analyze its
running time.

9.3.1 Properties of the Supergraph Partitioning Algorithm

The Supergraph Partitioning Algorithm takes as input a hot-path supergraph H∗ and a partition π =
{B1, B2, . . . Bn} of the vertices of H∗. The new algorithm produces as output a partition
π′ = {C1, C2, . . . Cn′} such that the following properties hold:

1. For every Ci, there is a Bj such that Ci ⊆ Bj .

2. For every u1, u2 ∈ Ci where u1 and u2 are not exit vertices, for every pair of congruent edges
u1 → v1 and u2 → v2 that are not return-edges and not summary-edges, there is a Cj such that
v1, v2 ∈ Cj .

3. For every pair of exit vertices x1, x2 ∈ Ci, for every pair of call vertices c1, c2 ∈ Cj , for every pair
of congruent return-edges x1 → r1 and x2 → r2 where x1 → r1 is labeled “)c1” and x2 → r2 is
labeled “)c2”, there is a Ck such that r1, r2 ∈ Ck.

The first property states that π′ respects the partition π. The other properties guarantee that π ′ respects
the control-flow ofH∗. Specifically, the second and third properties imply that for any pair of congruent,
unbalanced-left paths p1 and p2 in H∗, if p1 and p2 start in the same block, then they must end in the
same block. The second and third properties also guarantee that when the Supergraph Partitioning
Algorithm is used in the Ammons-Larus Reduction Algorithm, the resulting graph H ′∗ is unbalanced-
left path congruent toH∗. These properties do not address summary-edges. Recall that a summary-edge
c→ r is only a notation on the supergraph that indicates that there is a same-level valid path from the call
vertex c to the return-site vertex r; a summary-edge does not affect the control-flow of the supergraph.

The Supergraph Partitioning Algorithm must treat return-edges differently from other edges because
it seeks to preserve unbalanced-left paths. Given an unbalanced-left path p to a vertex v that is not an exit
vertex, [p‖v → w] is an unbalanced-left path for any edge v → w. Given an unbalanced-left path p to
an exit vertex x, there is only one return-edge x→ r (uniquely determined by the last open parenthesis
in p) such that [p‖x→ r] is an unbalanced-left path; for any other return-edge x→ r′, [p‖x→ r′] is not
an unbalanced-left path.

9.3.2 Using the Supergraph Partitioning Algorithm in the Ammons-Larus Reduction
Algorithm

The Supergraph Partitioning Algorithm can be used by the Ammons-Larus Reduction Algorithm in
place of the Coarsest Partitioning Algorithm. This results in a reduction algorithm for hot-path super-
graphs. The steps of this new algorithm are (where H∗, pp, and J are the input hot-path supergraph,
path profile, and data-flow solution, respectively):

1. Determine which vertices of the hot-path supergraph H∗ are hot.

130

2. Create a compatibility partition π of the vertices of H∗.

3. Run the Supergraph Partitioning Algorithm on H∗ and π to produce the partition π′.

4. Output a new graph H ′∗, path profile pp ′, and data-flow solution J ′:

• H ′∗ contains one vertex si for each block Ci in π′. H ′∗ contains an edge si → sj if and only
if H∗ has an edge u→ v such that u ∈ Ci and v ∈ Cj . H ′∗ has a call-edge si → sj labeled
“(si

” if and only if H∗ has a call-edge c→ e labeled “(c” such that c ∈ Ci and e ∈ Cj . H ′∗

has a return-edge si → sj labeled “)sk
” if and only if H∗ has a return edge x→ r labeled

“)c” such that x ∈ Ci, r ∈ Cj , and c ∈ Ck.

• pp′ is pp translated onto H ′∗ by replacing each vertex v that appears in a path of pp with v’s
representative in H ′∗; thus, if v ∈ Ci, it is translated to si.

• J ′ for vertex si is defined by J ′(si) = uv∈Ci
J(v).

The output from this algorithm (H ′∗, pp′, and J ′) is valid output for a hot-path reduction algorithm
and J ′ preserves the valuable data-flow facts of J . These statements are restated as Theorems 9.3.1
and 9.3.2 below. In the following theorems, we will use H∗, pp, J , π′ = {C1, C2, . . . Cn′}, H ′∗, pp′

and J ′ as they are defined in the above algorithm.

Theorem 9.3.1 H∗ and H ′∗ are unbalanced-left path congruent.

Proof: See Appendix C. 2

Theorem 9.3.2 J ′ is a valid data-flow solution (i.e., it approximates the meet-over-all valid paths solu-
tion) for the graph H ′∗.

Proof: See Appendix C. 2

These theorems are enough to show that the Ball-Larus Reduction Algorithm with the Supergraph
Partitioning Algorithm is a hot-path supergraph reduction algorithm.

9.3.3 Comparing and Contrasting the Partitioning Algorithms

The Supergraph Partitioning Algorithm is very similar to the Coarsest Partitioning Algorithm except that
it periodically subdivides, or repartitions, certain blocks to eliminate conflicts between return-edges. A
return-edge x1 → r1 labeled “)c1” conflicts with return-edge x2 → r2 labeled “)c2” if x1 and x2 are
in the same block, c1 and c2 are in the same block, and r1 and r2 are in different blocks. Conflicting
return-edges indicate a violation of the third property of the Supergraph Partitioning Algorithm. The
above return-edge conflict can be resolved by separating x1 and x2 or by separating c1 and c2. It usually
is not feasible to put r1 and r2 back in the same block without creating a violation of the requirements of
the Supergraph Partitioning Algorithm; we will not try to resolve return-edge conflicts in this manner.

To better understand how the Coarsest Partitioning Algorithm is modified to produce the Super-
graph Partitioning Algorithm, it is instructive to compare and contrast the properties of the Coarsest
Partitioning Algorithm (stated in Section 9.2.3) with the properties of the Supergraph Partitioning Algo-
rithm (stated in Section 9.3.1). The remainder of this section discusses the similarities and differences
between the properties of the two algorithms.

The first property of both algorithms states that the output partition respects the input partition. The
second property of the Coarsest Partitioning Algorithm states that the output partition respects the input

131

functions. The second property of the Supergraph Partitioning Algorithm states that the output partition
respects call-edges and the intraprocedural edges in the supergraph, with the exception of summary-
edges. These two properties are very similar in that a set of congruent edges (that is not a set of summary-
edges nor a set of return-edges) can be encoded as a function. This is what is done when the Coarsest
Partitioning Algorithm is used in the Ammons-Larus Reduction Algorithm (see Section 9.2.3). Thus, the
Supergraph Partitioning Algorithm can use the same technique as the Coarsest Partitioning Algorithm
to ensure that the output partition respects the non-return, non-summary edges of the supergraph. The
Supergraph Partitioning Algorithm uses the following optimization: rather than using a collection F
of functions where each f ∈ F encodes a set of congruent edges, we use a smaller collection F ′ of
functions where F ′ contains a function for encoding true-edges, a function for encoding false-edges, a
function for encoding call-edges, a function for encoding “case 0:”-edges, a function for encoding “case
1:”-edges, etc. Since each f ∈ F is a subset of some function g ∈ F ′, if the output partition π′ respects
the functions in F ′, then π′ respects the functions in F and hence the second property of the Supergraph
Partitioning Algorithm.

The third property of the Supergraph Partitioning Algorithm states that the output partition respects
the return-edges of the input hot-path supergraph. This requirement is more complicated than the re-
quirement to respect non-return-edges in three ways:

1. A pair of duplicate exit vertices x1 and x2 might not have congruent, outgoing return-edges. This
happens if x1 and x2 were duplicated for different calling contexts. In this case, there may be
a return-edge x1 → r labeled “)c” and an return-edge x2 → s labeled “)d” where the return-site
vertices r and s are not duplicates, and the call vertices c and d are not duplicate vertices. These
return-edges are not congruent, and they are not in conflict. The vertices x1 and x2 do not need to
be split. If the Supergraph Partitioning Algorithm were to treat return-edges as it treats others, then
when it examines the block B containing r, it would determine that there is a return-edge from
x1 to r but no congruent return-edge from x2 to a vertex in B. This would cause the algorithm to
incorrectly conclude that x1 and x2 must be split.

2. Let u1 → v1 and u2 → v2 be congruent edges such that u1 and u2 are in the same block B. In
most cases, if v1 and v2 are in different blocks, then u1 and u2 must be separated into different
blocks. However, if u1 → v1 is a return-edge with label “)c1” and u1 → v1 is a return-edge with
label “)c2” such that c1 and c2 are in different blocks, then u1 and u2 do not need to be split: the
return-edges are not in conflict.

3. If there are conflicting return-edges x1 → r1 labeled “)c1” and x2 → r2 labeled “)c2”, then the
conflict can be resolved either by splitting the exit vertices x1 and x2 or by splitting the call
vertices c1 and c2. This extra degree of freedom makes the problem harder. Also, splitting a
block of call vertices may obviate the need to split a block of exit vertices, and vice-versa. In the
Coarsest Partitioning Algorithm, splitting one block always increases the probability that other
blocks need to be split.

The Supergraph Partitioning Algorithm includes a mechanism for eliminating return-edge conflicts by
subdividing blocks of call vertices and blocks of exit vertices. This is an important difference between
the Supergraph Partitioning Algorithm and the Coarsest Partitioning Algorithm.

The third property of the Coarsest Partitioning Algorithm states that the output partition has the
minimum possible size while still satisfying the first two properties. There is no similar property for
the Supergraph Partitioning Algorithm. The Supergraph Partitioning Algorithm uses heuristics to avoid

132

splitting blocks, and hence to minimize the size of the output partition. However, it is difficult to
guarantee that a minimal output partition is produced. This is because of the need to respect return-
edges: given two conflicting return-edges x1 → r1 labeled “)c1” and x2 → r2 labeled “)c2”, there are
two ways to fix the problem: split x1 and x2 or split c1 and c2. It is non-trivial to determine which is an
optimal choice. Furthermore, suppose that the choice to split x1 and x2 is made. There may be a third
exit vertex x3 that does not have any conflicting edges with x1 or x2. When x1 and x2 are split, it is hard
to make an optimal decision about whether x3 should go in the sub-block with x1 or in the sub-block
with x2. A similar problem arises if c1 and c2 are split.

9.3.4 The Supergraph Partitioning Algorithm

We are now ready to present our modification of the Coarsest Partitioning Algorithm, which we call
the Supergraph Partitioning Algorithm (see Figure 57). The algorithm is very similar to the Coarsest
Partitioning Algorithm, except that it periodically repartitions a block of call vertices or a block of exit
vertices in order to eliminate conflicts between return-edges. There are two worklists, WSplitPreds and
WRepartition . The worklist WSplitPreds is processed by the auxiliary function SplitPreds . The core of
this function is almost identical to the Coarsest Partitioning Algorithm: a block Bi is removed from the
worklist WSplitPreds ; then, the incoming edges of Bi (i.e., those edges u→ v that target some v ∈ Bi)
are examined, and predecessor blocks ofBi (i.e., those blocksBj such that there is an edge u→ v where
u ∈ Bj and v ∈ Bi) are potentially split. The principal difference between the function SplitPreds and
the Coarsest Partitioning Algorithm is that the function SplitPreds never splits a block of exit vertices
(since it does not try to respect return-edges) and it may add blocks to the worklist WRepartition . The
conditions under which a block is added to WRepartition are discussed below.

Every block on the worklist WRepartition is either a call-block or an exit-block; an call-block is
a block of call vertices. A exit-block is a block of exit vertices. When the Supergraph Partitioning
Algorithm processes an exit-block B ∈ WRepartition , it refines the current partition π′ until π′ respects
the set of return-edges {x→ r : x ∈ B} that have a member of B as their source. The block B
is repartitioned into sub-blocks such that for any x1 and x2 6= x1 in a given sub-block, there are no
conflicting return-edges x1 → r1 labeled “)c1” and x2 → r2 labeled “)c2”. The sub-blocks of B are
created greedily: each vertex x of B is added to the first sub-block C such that there are no conflicting
return-edges x→ r and x′ → r′ where x′ ∈ C. All but the largest of the new sub-blocks are added to the
worklistWSplitPreds . The Figure 60 shows the auxiliary function RepartitionExitBlock that repartitions
an exit block.

The Supergraph Partitioning Algorithm uses the function RepartitionCallBlock to repartition a
block of call vertices (see Figure 59). This function is almost identical to
RepartitionExitBlock except that it creates sub-blocks such that no sub-block contains call vertices
c1 and c2 6= c1 where there are conflicting return edges x1 → r1 labeled “)c1” and x2 → r2 labeled
“)c2”.

We are now ready to discuss when the function SplitPreds puts a block onto the worklistWRepartition .
When SplitPreds examines a block R of return-site vertices, it examines incoming edges and adds any
of R’s predecessor blocks to the worklist WRepartition . The justification for the policy is as follows: let
x1 → r1 labeled “)c1” and x2 → r2 labeled “)c2” be return-edges where c1, c2 ∈ C and x1, x2 ∈ X .
If r1, r2 ∈ R are in the same block, then there is no conflict with these return-edges. If r1 and r2 are
split into separate blocks, then the return-edges come into conflict. The conflict could be resolved by
splitting either the c1 and c2 or by splitting x1 and x2. However, if c1 = c2, then the conflict must be
resolved by splitting x1 and x2. If x1 = x2, then c1 and c2 must be split. (Note that it is not possible for

133

B1, B2, . . . Bn are the blocks of the initial partition π
WSplitPreds is a worklist of blocks
WRepartition is a worklist of blocks
q is the index of the last created partition block

Main()
1: WSplitPreds := {B1, B2, . . . Bn}
2: q := n

3: While WSplitPreds 6= ∅ or WRepartition 6= ∅
4: SplitPreds()

5: If WRepartition = ∅ Then
6: Break

7: B := TakeFront(WRepartition) /* Take a block from the front of WRepartition */
8: pick any v ∈ B
9: If v is a call vertex Then
10: NewSubBlocks := RepartitionCallBlock(B)
11: Else /* v is an exit vertex */
12: NewSubBlocks := RepartitionExitBlock(B)

/* Add all but the largest block in NewSubBlocks to WSplitPreds */
13: pick any B ∈ NewSubBlocks
14: NewSubBlocks := NewSubBlocks − {B}
15: LargestBlock := B
16: While NewSubBlocks 6= ∅
17: pick any B ∈ NewSubBlocks
18: NewSubBlocks := NewSubBlocks − {B}
19: If ‖LargestBlock‖ < ‖B‖ Then
20: Put(WSplitPreds ,LargestBlock)
21: LargestBlock := B
22: Else
23: Put(WSplitPreds , B)

24: Output the partition {B1, B2, . . . Bq}
End Main

Figure 57: The Supergraph Partitioning Algorithm.

134

/* These global variables are declared in Figure 57 */
WSplitPreds is a worklist of blocks
WRepartition is a worklist of blocks
q is the index of the last created partition block

SplitPreds()
25: While WSplitPreds 6= ∅
26: Bi = Take(WSplitPreds) /* select and remove an elt. from WSplitPreds*/
27: IncomingEdges = {u→ v : v ∈ Bi}
28: While IncomingEdges 6= ∅
29: pick any edge u→ v from IncomingEdges
30: let t be the type of u→ v /* t may be true, false, “case c:”, call, ... */
31: Inverse := R−1

t (Bi)
32: remove all the edges of type t from IncomingEdges
33: If u→ v is a return-edge Then

/* Every vertex in Inverse is an exit; put pred. exit-blocks on WRepartition */
34: Foreach Bj such that Bj ∩ Inverse 6= ∅
35: PutFront(WRepartition , Bj) /* if Bj 6∈WRepartition , put it at the front */
36: Continue /* Do not split any exit blocks */
37: If u→ v is a summary-edge Then

/* Every v ∈ Inverse is a call; put pred. call-blocks onto WRepartition */
38: Foreach Bj such that Bj ⊆ Inverse
39: PutBack(WRepartition , Bj) /* if Bj 6∈WRepartition , put it at the back */

/* Fall through to the next case */
/* Split predecessor blocks */

40: Foreach Bj such that Bj ∩ Inverse 6= ∅ and Bj 6⊆ Inverse
41: q := q + 1
42: Create a new block Bq

43: Bq := Bj ∩ Inverse
44: Bj := Bj −Bq

45: If Bj ∈WSplitPreds or ‖Bq‖ ≤ ‖Bj‖ Then
46: Put(WSplitPreds , Bq)
47: Else
48: Put(WSplitPreds , Bj)
49: If u→ v is a summary-edge Then

/* Bq is a new sub-block of call vertices that must be examined later */
50: PutBack(WRepartition , Bq) /* if Bj 6∈WRepartition , put it at the back */

End SplitPreds

Figure 58: The function SplitPreds used by the Supergraph Partitioning Algorithm (see Figure 57).

135

/* These global variables are declared in Figure 57 */
WSplitPreds is a worklist of blocks
WRepartition is a worklist of blocks
q is the index of the last created partition block

RepartitionCallBlock(blockB)
/* B is reused as one of the new sub-blocks of the original block */

51: OrigBlock := B
52: B := ∅
53: NewSubBlocks := {B}

/* Create the sub-blocks of OrigBlock */
54: While OrigBlock 6= ∅
55: pick any c ∈ OrigBlock
56: OrigBlock := OrigBlock − {c}
57: Foreach C ∈ NewSubBlocks
58: If there are no conflicting return-edges x→ r labeled “)c” and

x′ → r′ labeled “)c′” s.t. c′ ∈ C Then
59: C := C ∪ {c}
60: Break
61: If c was not added to any block in NewSubBlocks Then
62: q := q + 1
63: create a new block Bq

64: Bq := {c}
65: NewSubBlocks := NewSubBlocks ∪ {Bq}

66: Return NewSubBlocks
End RepartitionCallBlock

Figure 59: The function RepartitionCallBlock used by the Supergraph Partitioning Algorithm (see Fig-
ure 57).

136

/* These global variables are declared in Figure 57 */
WSplitPreds is a worklist of blocks
WRepartition is a worklist of blocks
q is the index of the last created partition block

RepartitionExitBlock(blockB)
/* B is reused as one of the new sub-blocks of the original block */

67: OrigBlock := B
68: B := ∅
69: NewSubBlocks := {B}

/* Create the sub-blocks of OrigBlock */
70: While OrigBlock 6= ∅
71: pick any x ∈ OrigBlock
72: OrigBlock := OrigBlock − {x}
73: Foreach C ∈ NewSubBlocks
74: If there are no conflicting return-edge x→ r labeled “)c” and

x′ → r′ labeled “)c′” s.t. x′ ∈ C Then
75: C := C ∪ {x}
76: Break
77: If x was not added to any block in NewSubBlocks Then
78: q := q + 1
79: create a new block Bq

80: Bq := {x}
81: NewSubBlocks := NewSubBlocks ∪ {Bq}

82: Return NewSubBlocks
End RepartitionExitBlock

Figure 60: The function RepartitionExitBlock used by the Supergraph Partitioning Algorithm (see Fig-
ure 57).

137

x1 = x2 ∧ c1 = c2 ∧ r1 6= r2, for then the supergraph would be malformed.)
Anytime a block of return-site vertices is split, it may create conflicts between pairs of return-edges.

Both the call-blocks and the exit-blocks that may be involved in these conflicts are put onto the worklist
WRepartition . It is not enough to put just the call-blocks or just the exit-blocks on the worklist since
some conflicts cannot be resolved by splitting a call-block and some cannot be resolved by splitting
an exit-block. The function SplitPreds detects call-blocks and exit-blocks that may be involved in a
return-edge conflict when it processes a block R of return-site vertices. R may have been split off from
a larger block of return-site vertices, which means that it may be involved in unresolved return-edge
conflicts. An exit-block X could be involved in these conflicts if there is a return edge x→ r such that
x ∈ X and r ∈ R. A call-blockC could be involved in the return-edge conflicts if there is a return-edge
x→ r labeled “)c” where c ∈ C and r ∈ R. Recall that there exists a return-edge x→ r labeled “)c”
if and only if there is a summary-edge c→ r. This implies that a call-block C could be involved in
the new return-edge conflicts if there is a summary-edge c→ r such that c ∈ C and r ∈ R. Thus,
when SplitPreds examines a block R of return-site vertices, it examines incoming summary-edges and
return-edges and adds any predecessor call-blocks and exit-blocks to the worklist WRepartition . One
optimization is that SplitPreds may first use the summary-edges to justify splitting a call-block (see
the discussion of heuristics below). When this is done, only one of the new sub-blocks will still have
summary-edges to vertices of R; only that sub-block needs to be added to WRepartition .

Heuristics Employed

We have explained most of the Supergraph Partitioning Algorithm. All that remains is to describe the
several heuristics employed by the algorithm. These heuristics aim to minimize the running time of the
algorithm and to minimize the size of the output partition.

Repartitioning blocks (in the functions RepartitionCallBlock and RepartitionExitBlock) is the
most expensive step of the Supergraph Partitioning Algorithm. The first heuristic seeks to maximize
the number of return-edge conflicts that are resolved each time a block is repartitioned; this minimizes
the number of times the functions RepartitionCallBlock and RepartitionExitBlock need to be called.
The heuristic is to call the function SplitPreds anytime there may be blocks on the worklistWSplitPreds .
Every call to SplitPreds may cause a block of return-site vertices to be split, which may in turn, create
return-edge conflicts. The sooner the algorithm learns about a potential return-edge conflict, the better.
Suppose the algorithm repartitions a block B into sub-blocks {b1, b2, . . . , bk}, and then later a block
R of return-site vertices is split, potentially creating a new return-edge conflict. This new conflict may
necessitate repartitioning of one of the sub-blocks bi. If, on the other hand, the block R could be split
beforeB was repartitioned, then the return-edge conflicts created by splittingR could be resolved when
B is first repartitioned, thereby avoiding the second repartitioning. To maximize the number of return-
edge conflicts resolved by each repartitioning, the algorithm alternates processing all of the blocks on
the worklist WSplitPreds (which may create new return-edge conflicts) with processing a single block on
the worklist WRepartition (which may add blocks to WSplitPreds).

The amount of the work done by the repartitioning functions is proportional to the size of the block
that is repartitioned. The second heuristic splits call-blocks into smaller sub-blocks before the function
RepartitionCallBlock is called. Repartitioning several smaller sub-blocks is less expensive than repar-
titioning one large block. The second heuristic is to have SplitPreds treat summary-edges the same
way it treats other intraprocedural edges and call-edges. It is a corollary of Lemma C.0.3 that for every
pair of call vertices c1, c2 ∈ Bi, for every summary-edge c1 → r1, there must be a a summary-edge
c1 → r2 such that r1 and r2 are in the same block. If there is no such summary-edge c1 → r2, then the

138

Figure 61: Schematic of a hot-path supergraph that shows a call vertex with multiple outgoing summary-
edges. Blocks represent a partitioning of the vertices of the hot-path supergraph: B1 = {c1, c2}, B2 =
{r1, r2}, and B3 = {r3, r4}. The vertices c1 and c2 are duplicate call vertices. The vertices r1, r2, r3
and r4 are duplicate return-site vertices.

Supergraph Partitioning Algorithm will ultimately split c1 and c2 into different partitions. By having
SplitPreds examine summary-edges, c1 and c2 may be split earlier rather than later, which may save
work in the repartitioning functions.

A set of congruent summary-edges defines a relation between call vertices and return-site vertices,
but not a function. This may decrease the effectiveness of the second heuristic:

Example 9.3.3 Figure 61 shows a schematic of a hot-path supergraph with several duplicate call and
return-site vertices. The figure also shows a partition of the vertices of the supergraph. The block B1

should be split because there is a summary-edge c2 → r3 from c2 to a vertex (namely r3) in B3, and
there is no summary-edge from c1 to a vertex in B3. The block-splitting technique in SplitPreds may or
may not discover that B1 should be split: if the function examines only the block B2, it will determine
that the set of predecessors of vertices in B2 includes all of the vertices inB1 and conclude (incorrectly)
that B1 does not need to be split; on the other hand if B3 is examined, then the set of predecessors of
vertices in B3 includes only some of the vertices in B1, implying that B1 must be split. 2

Note that it is not guaranteed that both block B2 and block B3 are eventually examined: if blocks
B2 and B3 were created by splitting some larger block, then only one of them would go on the worklist
WSplitPreds to be examined later. Regardless of whether B2 or B3 is examined, B1 will eventually be
split. This is a corollary of Lemma C.0.3: suppose on the contrary that both c1 and c2 are left in the
blockB1. The summary-edge c2 → r3 indicates that there is a same-level valid path p′ from c2 to r3. By
Lemma C.0.3, there must be a congruent path p from c1 to some vertex in B3. The path p implies that
there should be a summary-edge from c1 to some vertex in B3. Since there is no such summary-edge, it
must be the case that the Supergraph Partitioning Algorithm eventually splits B1.

Recall that the properties of the Supergraph Partitioning Algorithm do not mention summary-edges.
Examining summary-edges is a heuristic, it is not required for correctness. If SplitPreds decides to
split a block of call vertices by examining summary-edges, the split is guaranteed to be correct. If
SplitPreds misses an opportunity to perform a split that is indicated by summary-edges, then the split
will still happen, but at some different stage of the algorithm.

The third heuristic of the Supergraph Partitioning Algorithm puts exit-blocks at the beginning of
WRepartition and call-blocks at the end of WRepartition . This is based on experimental evidence that
repartitioning exit-blocks before call-blocks leads to an output partition with fewer blocks. This may

139

mean that repartitioning exit-blocks resolves more return-edge conflicts than repartitioning call-blocks.
If call-blocks are repartitioned first, then many return-edge conflicts may be left unresolved, such that
exit-blocks must still be subdivided to fix the return-edge conflicts. On the other hand, when exit-blocks
are repartitioned first, all return-edge conflicts may be resolved so that when RepartitionCallBlock is
subsequently called on a call-block B, it can leave B intact.

Proof of Correctness

We now turn to proving the correctness of the Supergraph Partitioning Algorithm. We have the following
theorem:

Theorem 9.3.4 When the Supergraph Partitioning Algorithm is run on a hot-path supergraph H ∗ and
a partition π = B1, B2, . . . , Bn of the vertices of H∗, the output partition π′ = {C1, C2, . . . , Cn′}
satisfies the properties of the Supergraph Partitioning Algorithm listed in Section 9.3.1.

Proof: See Appendix C. 2

Analysis of Running Time

In this section, we show that the running time of the Supergraph Partitioning Algorithm isO(‖E‖ logm+
‖MaxRtnEdgesForCallBlk‖2‖R‖‖C‖ + ‖MaxRtnEdgesForExitBlk‖2‖R‖‖X‖), where ‖E‖ is the
number of edges of the input supergraph,m is the size of the largest block in the input partition (which is
usually much smaller that the number of vertices in the supergraph), ‖MaxRtnEdgesForCallBlk‖ is the
maximum number of return-edges from labeled call vertices in the same call-block,
‖MaxRtnEdgesforExitBlk‖ is the maximum number of return-edges from an exit-block, ‖R‖ is the
number of return-site vertices, ‖C‖ is the number of call vertices, and ‖X‖ is the number of exit ver-
tices. The Supergraph Partitioning Algorithm performs a total of O(‖E‖ logm) steps in the function
SplitPreds and a total of O(‖MaxRtnEdgesForCallBlk‖2‖R‖‖C‖) in the function
RepartitionCallBlock andO(‖MaxRtnEdgesForExitBlk‖2‖R‖‖X‖) steps in the function RepartitionExitBlock

We start by discussing the total number of steps the Supergraph Partitioning Algorithm performs
in the function SplitPreds . Throughout the following discussion, we will refer to line numbers in
the function SplitPreds shown in Figure 58. [1] shows the running time of the Coarsest Partitioning
Algorithm to be O(n logn), where n is the number of elements in the input set S. A careful reading
of their argument shows that the algorithm runs in O(‖f‖ logm), where ‖f‖ is the size of the input
function f and m is the size of the largest block in the input partition π. (Since ‖f‖ = n and in the
worse case O(m) = O(n), we have that O(‖f‖ logm) = O(n logn).) Using an argument closely
based on the one in [1], we will show that the Supergraph Partitioning Algorithm executes a total of
O(‖E‖ logm) steps while in the function SplitPreds , where ‖E‖ is the number of edges in the input
supergraph and m is the size of the largest block in the input partition. We expect m to be much smaller
than ‖V ‖, the number of vertices in the input supergraph, though in the worse case O(m) = O(‖V ‖).

The proper data-structures are required for an implementation of SplitPreds that performs no more
thanO(‖E‖ logm) steps. In an efficient implementation, each vertex v has a pointer to the blockB that
v belongs to. Each block B is represented as an object with the following data members:

• a doubly-linked list called members that holds the vertices in the block.

• a doubly-linked list called intersectionInverse that is used to temporarily hold vertices
of the block that are also in the set Inverse. This list is used to efficiently compute the set (B ∩
Inverse) that is needed in the function SplitPreds at lines 34, 40, and 43.

140

• an integer size that records the number of vertices in the block.

• a boolean flag inWSplitPreds that tells if the block is currently on the worklist WSplitPreds .
This flag is used for maintenance of the worklist WSplitPreds .

• a boolean flag inWRepartition that tells if the block is currently on the worklistWRepartition .
This flag is used for maintenance of the worklist WRepartition .

The function SplitPreds uses the following data structures:

• an array of lists of edges called EdgeBins. This array is indexed by edge type (i.e., true, false,
call, summary, etc.). Given an edge type, the list of edges of that type can be retrieved in constant
time. The array is static, so that it only needs to be initialized once. The array is initialized to be
all empty lists at the beginning of the program; since this takes at most O(‖E‖) steps, it does not
add to the overall complexity of the algorithm.

• a list of lists of edges called IncomingEdges. This data-structure stores the set IncomingEdges
used by SplitPreds . The edges of the set IncomingEdges are segregated by edge type into the
different lists of IncomingEdges. That is, there is one list in IncomingEdges for all the
true-edges of IncomingEdges, there is one list in IncomingEdges for all the false-edges of
IncomingEdges, etc. The union of all the edges on all the lists of IncomingEdges is equal to
the set IncomingEdges.

• a list of blocks called PredBlocks. This is used to hold the list of blocks B such that B ∩
Inverse 6= ∅.

Given the above data-structures, an implementation of SplitPreds can perform one iteration of the
outer loop (lines 25–50) in O(‖IncomingEdges‖) steps. We first show that the data-structure In-
comingEdges can be initialized in O(‖IncomingEdges‖) steps by using the array EdgeBins. A
linear scan of the incoming edges for each vertex of B is performed. When an edge u→ v of type t is
examined, it is added to the list EdgeBins[t]. As the edges are examined, a list of the non-empty
entries of EdgeBins is kept. After all the incoming edges are examined, all of the non-empty lists in
EdgeBins are moved to IncomingEdges.

Each iteration of the second-to-outermost loop (lines 28–50) of SplitPreds processes one list Lt of
the list of lists IncomingEdges. (Thus, one iteration processes all of the true edges, one iteration
processes all of the false edges, etc.) The list Lt is the set of congruent edges encoded by the relation
Rt at line 31. An efficient implementation can use Lt directly instead of creating the relation Rt.
The number of steps preformed during one iteration of the loop in lines 28–50 is proportional to the
size ‖Lt‖ of the list processed. The number of steps over all iterations of the loop in lines 28–50 is
O(‖IncomingEdges‖).

An efficient implementation of the loop in lines 28–50 does not reify the set Inverse. However, it
does use efficient techniques for finding each blockB such thatB∩ Inverse 6= ∅ and for finding the sets
(B ∩ Inverse) and (B − Inverse). This is done as follows: let Lt be the list being processed during an
iteration of the loop in lines 28–50. A linear scan of the edges in Lt is performed. As each edge u→ v
is considered, the vertex u (which must be an element of the set Inverse) is moved from B.members to
B.intersectionInverse, where B is the block containing u. If u is the first vertex to be added
to B.intersectionInverse, then the block B is added to the list PredBlocks. When the scan
of Lt is finished, PredBlocks contains a list of all the blocks B such that B ∩ Inverse 6= ∅. The set

141

PredBlocks
ui uj uk

...

ul um un

...

members

intersectionInverse

...

Bi

...

...

Bj

...

Figure 62: The list PredBlocks constructed in an efficient implementation of SplitPreds. Pred-
Blocks is a list of blocks. The members of a block B are found in two lists, B.members and
B.intersectionInverse. The function SplitPreds may split the block B by moving the vertices
on the list B.intersectionInverse to a new block (lines 43–44 of Figure 58).

142

(B ∩ Inverse) can be found in B.intersectionInverse. The set (B − Inverse) can be found in
B.members. Figure 62 shows a schematic of the list PredBlocks after Lt has been examined.

At this point, we will describe how to implement lines 40–44 and trust the reader to see how lines 33–
36, 37–39, 45–48 and 49–50 can be implemented. Line 40 requires that we find each block Bj such
that (Bj ∩ Inverse) 6= ∅ and Bj 6⊆ Inverse. The list PredBlocks contains a list of blocks such
that (Bj ∩ Inverse) 6= ∅. By the above construction Bj.intersectionInverse contains the set
(Bj ∩ Inverse) and Bj.members contains the set (Bj − Inverse). This means that Bj 6⊆ Inverse iff
Bj is on the list PredBlocks and Bj.members is not empty.

To implement lines 40–44, a scan of the list PredBlocks is performed. For each block Bj of
PredBlocks, if Bj.members is empty, then the list Bj.intersectionInverse is spliced back
onto the list Bj.members. This resets the bookkeeping for the blockBj , since no further processing of
Bj is required as far as lines 40–48 are concerned — Bj ⊆ Inverse. If Bj.members is not empty, new
blockBq is created (this implements lines 41–42). Each vertex on the list Bj.intersectionInverse
is moved to Bq.members (this implements lines 43–44). As each vertex v is moved, the data-structure
for v is updated to indicate that it now belongs toBq, the integer Bj.size is decremented, and the inte-
ger Bq.size is incremented. The number of steps required to perform these operations is proportional
to the length of Bj.intersectionInverse.

There are O(‖Lt‖) vertices total on all of the lists B.intersectionInverse of blocks B on
PredBlocks — at most one element is moved onto a list B.intersectionInverse for each
edge in O(‖Lt‖). The number of blocks on the list PredBlocks is also bounded by O(‖Lt‖). This
means that the total number of operations required to implement lines 40–44 is bounded by (O‖Lt‖).
In fact lines 33–50, require no more than O(‖Lt‖) steps. (Given our description of how to implement
lines 40–44, implementing lines 33–39 and lines 45–50 is straightforward.)

Thus, for each iteration of the loop in lines 28–50, an efficient implementation removes one list Lt

from the list IncomingEdges, and performs O(‖Lt‖) operations. The total number of operations
required for all iterations of the loop is O(‖IncomingEdges‖). This means that processing one block
Bi on the worklist WSplitPreds takes at most O(‖IncomingEdges‖) steps, where IncomingEdges is the
set {u→ v : v ∈ Bi}. Suppose that each time SplitPreds processes a block Bi (lines 26–50), the cost
of processingBi is charged to each v ∈ Bi in proportion to the number of edges coming into v. There is
some constant c such that v is charged no more than c · ‖IncomingEdges(v)‖ for an execution of lines
26–50 of SplitPreds . (Here, IncomingEdges(v) = {a→ b : b = v}.)

Let us consider the number of times a vertex v can be in a block B that WSplitPreds takes from
WSplitPreds . This is equivalent to the number of times v has its block B moved onto WSplitPreds . This
happens once at line 1 of Figure 57. Otherwise, it may happen at lines 20 or 23 of Figure 57 or at
lines 46 or 48 of Figure 58. In all these other cases, v’s block is a least half the size of the block
containing v when v last had its block moved onto WSplitPreds . This means that v cannot be in a block
that is moved onto WSplitPreds more than 1 + logm times, where m is the size of the largest block in
the input partition π. This means that the total amount a vertex v is charged for execution of SplitPreds

is at most O(‖IncomingEdges(v)‖ · logm). Let V is the set of vertices in the input supergraph. Since
E =

⋃

v∈V IncomingEdges(v), the total number of steps executed in SplitPreds is O(‖E‖ · logm).
We are now ready to determine the number of steps performed by the Supergraph Partitioning Algo-

rithm while in the functions RepartitionCallBlock and RepartitionExitBlock . First, we consider the
amount of time spent in a single call of RepartitionCallBlock . The execution time during an invocation
of RepartitionCallBlock on blockB is dominated by the innermost loop, lines 58–60 of Figure 59. For
every c1, c2 ∈ B, the lines 58–60 may compare every return-edge x1 → r1 labeled “)c1” with every
other return-edge x2 → r2 labeled)c2 . In the worst case, this means that each execution of lines 58–60

143

may perform O(‖MaxRtnEdgesForCallBlk‖2) comparisons, where ‖MaxRtnEdgesForCallBlk‖ is
the maximum number of return-edges associated with a single call block.

The number of calls to RepartitionCallBlock is equal to the number of times a call-block is put
on WRepartition . Every time a block of return-site vertices is processed in SplitPreds , all of the call-
blocks currently in the partition π′ may be added to WRepartition . For any block B, it can be shown
by induction on the size n of B that a sub-block of B is added to the worklist WSplitPreds at most n
times. This implies that the maximum number of times a block of return-site vertices can be taken from
WSplitPreds is ‖R‖, where R is the set of all return-site vertices. The maximum number of call-blocks
in π′ is ‖C‖, where C is the set of all call vertices. This implies that RepartitionCallBlock can be
invoked at most O(‖C‖ · ‖R‖) times. Thus, the Supergraph Partitioning Algorithm performs at most
O(‖MaxRtnEdges‖2 · ‖C‖ · ‖R‖) steps in the function RepartitionCallBlock .

A similar argument shows that the Supergraph Partitioning Algorithm performs at most
O(‖MaxRtnEdges‖2 · ‖X‖ · ‖R‖) steps in the function RepartitionExitBlock , where X is the set
of all exit vertices. The lines 13–23 of Figure 57 add all but the largest of the blocks in NewSubBlocks
to the worklist WSplitPreds . The work done every time these lines execute their work can be billed to the
previous execution of RepartitionCallBlock or RepartitionExitBlock where the list NewSubBlocks
was created. This does not affect the asymptotic running time spent in these functions.

The total number of steps executed by Supergraph Partitioning Algorithm is:

O((‖E‖ logm) + (‖MaxRtnEdges‖2‖R‖(‖C‖ + ‖X‖)))

In practice, the running time is much better than this. This is borne out in the experimental results
presented in the next chapter.

144

Chapter 10

Reducing the Hot-path Supergraph Using
Edge Redirection

In this section, we present a new strategy for reducing the hot-path supergraph based on the concept of
edge redirection, or replacing an edge u→ v with an u→ v′. This concept was introduced in Exam-
ple 53. The rest of this section is organized as follows: in Section 10.1 we discuss the potential problems
involved in redirecting an edge in a hot-path supergraph. This motivates Section 10.2, where we give an
algorithm for determining when it is safe to perform edge redirection. Section 10.3 presents the Edge
Redirection Algorithm, which decides when it is profitable to perform edge redirection. Section 10.6
shows how to translate a path profile from a hot-path supergraph onto the reduced hot-path supergraph
that results from edge redirection.

10.1 Problems Created by Performing an Edge Redirection

Given two duplicate vertices v and v′, suppose that the vertices reachable from v′ have better data-flow
facts (i.e., w) than the vertices reachable from v. Then we would prefer that the program execute v ′

rather than v: given an edge u→ v, we would like to replace it with the edge u→ v ′. There are three
general problems that must be addressed: (1) does replacing the edge u→ v with the edge u→ v ′

invalidate any of the data-flow facts in the hot-path supergraph?; (2) does replacing the edge u→ v
with the edge u→ v′ corrupt the structure of the hot-path supergraph?; (3) does replacing the edge
u→ v with the edge u→ v′ “drop” a valuable data-flow fact that is used on a path from v but not on
the congruent path from v′? The following example demonstrates the first and second problems:

Example 10.1.1 Figure 63 shows a supergraph with two paths. Along one path, the local variable x
takes the value 2. On the other path, x has the value ⊥. Figure 64 shows the hot-path supergraph that
results from duplicating these two paths. Notice that the data-flow facts on the path from [h′ → E′ →
F ′] are better than the data-flow facts on the path [h′′ → E′′ → F ′′]. This suggests that we may want
to replace the edge g′′ → h′′ with the edge g′′ → h′ so that any path to g′′ will continue along the path
[g′′ → h′ → E′ → F ′] instead of the path [g′′ → h′′ → E′′ → F ′′].

However, replacing the edge g′′ → h′′ with g′′ → h′ is not enough to realize this change in control
flow. With the edge g′′ → h′′, the hot-path supergraph contains the same-level valid path p = [A′ →
C ′ → D′′ → g′′ → h′′ → E′′ → F ′′]. After replacing the edge g′′ → h′′ with the edge g′′ → h′,
we expect the path p to be replaced by the path q = [A′ → C ′ → D′′ → g′′ → h′ → E′ → F ′].
Unfortunately, q is not a same-level valid path: the call edge D′′ → g′′ is labeled “(D′′” while the return
edge h′ → E′ is labelled “)D′”. To solve this problem, we could create a second return edge h′ → E′

between h′ and E′ that is labeled “)D′′”. However, this creates other problems.
One additional problem is that the summary-edges in main are invalidated: the summary-edge

D′′ → E′′ must be removed and the summary-edge D′′ → E′ must be added.

145

Figure 63: Simple supergraph with two paths.

Figure 64: Hot-path supergraph for Figure 63

146

Figure 65: Hot-path supergraph from Figure 63 with an additional return-edge h′ → E′′ labeled “)D′′”.

A final problem with the redirection of the edge g′′ → h′′ and the addition of the return-edge
h′ → E′ labeled “)E′” is that it invalidates the data-flow facts at E ′ and F ′: before, x had the con-
stant value 2 in these vertices; afterwards, x has the data-flow value ⊥ in the same vertices. This change
in the data-flow solution follows from the fact that we have created a new same-level valid path from C ′

to E′. Notice that replacing g′′ → h′′ with g′′ → h′ does not invalidate any local data-flow facts in the
procedure foo. In general, redirecting an edge may invalidate data-flow facts that are not visible (e.g.,
data-flow values for variables that are out of scope) at the site of the edge replacement.

We shall see later that if we wish to replace g′′ → h′′ with g′′ → h′, the best way to fix the ensuing
control-flow problems is to add the return-edge h′ → E′′ labeled “)D′′”. In this case the path [g′′ →
h′′ → E′′ → F ′′] is replaced by the path [g′′ → h′ → E′′ → F ′′]. 2

10.2 Determining When Edge Redirection is Possible

In this section, we give an algorithm for determining when it is safe to redirect an edge. Informally, it is
safe to redirect an edge u→ v to point at a vertex v′ if the following safety properties are satisfied:

1. Replacing the edge u→ v with the edge u→ v′ does not destroy any valuable data-flow facts that
are visible at the vertex v′. A data-flow fact J(w)(x) is visible at v if the variable x is in scope at
v. Note that it may be that w 6= v.

2. Replacing the edge u→ v with the edge u→ v′ does not destroy any valuable data-flow facts
that are not visible at the vertex v′ (i.e., data-flow facts for variables that are not in scope at v ′).

3. Replacing the edge u→ v with the edge u→ v′ does not corrupt the hot-path supergraph in a
way that is “irreparable”. (Of course, the hot-path supergraph can always be repaired by taking

147

u
J(x)=⊥
J(y)=⊥
J(z)=5

u’
J(x)=2
J(y)=3
J(z)=5

u”
J(x)=3
J(y)=2
J(z)=5

v
J(x)=⊥
J(y)=⊥
J(z)=⊥

z = x + y;

v’
J(x)=⊥
J(y)=⊥
J(z)=5

z = x + y;

Figure 66: Example supergraph showing that if J is a meet-over-all paths solution the condition
Tu(J(u)) v J(v′) is insufficient for replacing the edge u→ v with the edge u→ v′. The figure shows
five vertices, each marked with the meet-over-all paths solution J for constant propagation. The dupli-
cate vertices v and v′ contain the statement z = x + y. Along every path to v′, the variable z has
the data-flow value 5. If the edge u→ v is replaced by the edge u→ v′ a new path [u → v′ → v′] is
created where z has the data-flow value ⊥. This happens even though Tu(J(u)) w J(v′). In contrast,
in the greatest-fixed point solution, J(v′)(z) = ⊥, and replacing the edge u→ v with u→ v′ is safe.

out the edge u→ v′ and putting the edge u→ v back in; we will define an irreparable corruption
of the supergraph below.)

4. Replacing the edge u→ v with the edge u→ v′ does not drop a valuable data-flow fact that is
used on a path from v but not on any congruent path from v′; i.e., the data-flow facts on paths
from v′ are at least as good as the data-flow facts on paths from v.

Checking that these requirements are satisfied is non-trivial. In several cases, we will use conditions
that are sufficient, but not necessary to determine if the above requirements are met.

Of the four requirements, the first is the easiest to handle. A sufficient condition for satisfying the
first requirement is that J is a greatest-fixed-point solution and Tu(J(u)) w J(v′) where Tu is the
transfer function for u. If this condition is satisfied, then adding the edge u→ v ′ does not destroy any
of the data-flow facts that are visible at v′. Figure 66 shows that if J is the meet-over-all paths solution,
then the fact that Tu(J(u)) w J(v′) is not sufficient to guarantee the first requirement. For the rest of
this section, we shall assume that J is a greatest-fixed point solution.

The second, third, and fourth requirements listed are more difficult to check because they can not
be verified “locally”: these requirements place restrictions on the set of paths from v and v ′. We will
discuss how to check these requirements below, but first we elaborate on the third requirement. The only
corruption of the hot-path supergraph that we consider to be “irreparable” is if we are required to add
a return-edge to maintain the original control-flow behavior, but there is no way to add a return-edge
that maintains control-flow and maintains the data-flow solution. For example, suppose that an edge
redirection creates a new same-level valid path from entry vertex e to exit vertex x. If there is a call-
edge c→ e labeled “(c” but no return-edge x→ r labeled “)c” then the modified hot-path supergraph

148

is malformed. To fix this problem, we must find a return-site vertex r such that adding the return-
edge x→ r labeled “)c” restores the execution behavior of the supergraph. However, if for every such
return-site vertex r, adding the return-edge x→ r labeled “)c” destroys the data-flow solution at r,
then we cannot repair the supergraph by adding a return-edge and the supergraph has been irreparably
damaged. To make sure that redirecting an edge from v to v′ does not cause irreparable corruption of
the supergraph, we will require (roughly) that for every path p from v that reaches a return-edge labeled
“)c”, the congruent path p′ from v′ also reaches a return-edge labeled “)c”. As we will see in the proof
of Theorem 10.4.8, this condition is also sufficient for satisfying the second requirement listed above.

To help check that safety properties 2, 3, and 4 are satisfied, we compute a vertex subsumption
relation, or �-relation. The vertex subsumption relation is defined in terms of the path subsumption
relation. Informally, a path p′ subsumes a path p (written p′ � p) if

1. p′ exactly mimics the control-flow of p. In particular, p′ must be congruent to p. Furthermore, if
p has an unmatched return-edge x→ r labeled “)c”, then p′’s corresponding return-edge x′ → r′

is also labeled “)c”.

2. the data-flow facts along p′ are at least as good as the data-flow facts along p.

A vertex v′ subsumes a duplicate vertex v (written v′ � v) if for every unbalanced-right-left path p from
v, there is a unique unbalanced-right-left path p′ from v′ such that p′ � p. For the time being, we use the
path subsumption relation as a relation between the paths of a single hot-path graph; later, we will use
the path subsumption relation as a relation between the paths of multiple path congruent graphs. This is
also true of the vertex subsumption relation.

Note that in previous chapters, we were generally concerned with preserving unbalanced-left paths
(and the data-flow facts along unbalanced-left paths). The path subsumption relation is defined in terms
of unbalanced-right-left paths. Ultimately, this chapter is also concerned with preserving unbalanced-
left paths. The suffix of an unbalanced-left path is an unbalanced-right-left path. Thus, by preserving
all unbalanced-right-left paths (and the data-flow facts along unbalanced-right-left paths) we will pre-
serve all suffixes of unbalanced-left paths (and their data-flow facts); we prove this in Theorems 10.4.8
and 10.4.6.

The condition v′ � v is sufficient to guarantee that replacing any edge u→ v with the edge u→ v ′

is safe with regard to the 2nd , 3rd , and 4th safety properties. To check if it is safe to redirect a particular
edge u→ v to point to v′, it is sufficient to check if v′ � v ∧ Tu(J(u)) w J(v).

Why does the subsumption relation not cover the first safety property? That way, v ′ � v would
be a sufficient condition to guarantee that any edge u→ v can be redirected to v ′. The answer is,
the subsumption relation “distributes” over congruent edges. That is to say, for any subsumption fact
a′ � a, for any pair of congruent edges a→ b and a′ → b′ (that are not call or return-edges), it must be
the case that b′ � b. This observation is the key to computing the subsumption relation. If we change
the subsumption relation to cover the first safety property, it will no longer distribute over congruent
edges, and it will require more work to calculate. Furthermore, we already have a simple way to check
the first safety property.

Let J be a greatest fixed-point solution for the data-flow problem FH∗ . For unbalanced-right-left
paths p and p′, we say that p′ subsumes p, (written p′ � p) iff the following hold:

1. p and p′ are congruent.

2. The close parentheses that are unmatched in p′ are same as the close parentheses that are un-
matched in p: suppose that p contains a return edge x→ r labeled “)c” and p does not contain a

149

matching call-edge for x→ r. Let x′ → r′ be the edge in p′ that corresponds to p’s edge x→ r.
The edge x′ → r′ must also be labeled)c.

3. For each vertex w of p and the corresponding vertex w′ of p′, J(w) v J(w′).

For duplicate vertices v and v′, we say that v′ subsumes v (written v′ � v) iff for every unbalanced-
right-left path p from v, there is an unbalanced-right-left path p′ from v′ such that p′ � p. Note that for
any path p from v, if there is a path p′ from v′ such that p′ � p, it is unique: since p′ must mimic p so
closely, there is no choice about which edges belong to p′.

In Figure 64 the only (vertex) subsumption facts areE ′ � E′′ and F ′ � F ′′. Even thoughE′ � E′′,
it is not possible to replace the edge D′′ → E′′ with the edge D′′ → E′ because x has the data-flow
value ⊥ in the vertex D′′, while E′ requires that x has the data-flow value 2. (Furthermore, D′′ → E′′

is a summary edge and should not be redirected without simultaneously redirecting a return edge.) For
the same reason, it is not possible to replace E ′′ → F ′′ with E′′ → F ′.

Before we present the algorithm for computing the �-relation, we discuss a graph transformation
that (heuristically) increases the probability that v′ � v. This in turn makes it more likely that the Edge
Redirection Algorithm will be able to replace the edge u→ v with the edge u→ v ′. The transforma-
tion adds additional return-edges to the hot-path graph. This increases the number of unbalanced-right-
left paths from v′, making it more likely that for each unbalanced-right-left path p from v, there’s an
unbalanced-right-left path p′ from v′ that mimics p; this increases the likelihood that v′ � v. (Unfortu-
nately, adding return-edges may also increase the number of unbalanced-right-left paths from v, making
it less likely that v′ � v; the following chapter contains experimental results that show that our tech-
nique for adding return-edges is beneficial for the Edge Redirection Algorithm.) Consider the following
example:

Example 10.2.1 Figure 65 shows the hot-path supergraph in Figure 64 with the additional return edge
h′ → E′′. The new edge is labeled “)D′′”. Notice that the new return edge does not change the set of
unbalanced-left paths in the graph. This follows because the only edge labeled “(D′′” targets the vertex
g′′ and there is no same-level valid path from g′′ to h′.

Without the new edge h′ → E′′, it is not the case that h′ � h′′: for the path p ≡ h′′ → E′′ → F ′′

there is no congruent path from h′ that has the same open parenthesis as p. After the edge h′ → E′′

with label “)D′′” is added to Figure 64 (to create Figure 65), there is a path from h′ that has the same
open parenthesis as p: h′ → E′′ → F ′′. Thus, with the new return-edge, we have that h′ � h′′. This
subsumption fact enables the replacement of the edge g′′ → h′′ with the g′′ → h′. Note that this edge
replacement causes the same-level valid path [A′ → C ′ → D′′ → g′′ → h′′ → E′′ → F ′′] to be
replaced with the (almost identical) same-level valid path [A′ → C ′ → D′′ → g′′ → h′ → E′′ → F ′′]
2

Our algorithm adds “unexecutable” return-edges to the hot-path supergraph. These return-edges are
unexecutable in the sense that they never occur in an unbalanced-left path. These unexecutable return-
edges may increase the number of subsumption facts v′ � v in the hot-path supergraph, which may, in
turn, increase the number of opportunities for performing edge redirection. The unexecutable return-
edges are added in such a way that if they become executable, they will not cause a change in execution
behavior, nor will they violate any data-flow facts.

After creating a new return-edge x→ r with label “)c” and performing edge redirection, the trans-
formed graph may require a new summary-edge c→ r. There are four requirements for adding a return-
edge x→ r with label “)c” to the hot-path supergraph:

150

1. Tx(J(x)) w J(r) for any global data-flow facts (e.g., data-flow facts associated with global
variables), where Tx is the data-flow transfer function for x. Also rtnx w rtnr, where rtnx is the
data-flow fact associated with the return value in x, and rtn r is the data-flow fact associated with
received return values in r. (For example, if x contains the statement “return v1;”, then rtnx

might be the data-flow value Tx(J(x))(v1) associated with v1; if c contains the call statement
“v2 = f(...);”, then rtnr might be the data-flow value J(r)(v2) associated with v2.)

2. Tc(J(c)) w J(r) for the local (i.e., non-global) data-flow facts at the call vertex c, where Tc is the
transfer function for c.

3. There must be no other return-edge x→ r′ from x that is labeled “)c”.

4. If c is a call vertex for an indirect call, then r must be the single return-site vertex associated with
c. (Recall that indirect calls must have only one return-site vertex.)

The Vertex Subsumption Algorithm uses a function called OkayToAddRtnEdge that takes as input a
return-edge x→ r and a label “)c” and returns true iff the above requirements are satisfied for the return
edge x→ r labeled “)c”.

Figures 67 and 69 show the Vertex Subsumption Algorithm. This algorithm finds a conservative
approximation of the �-relation: it may conclude that v′ 6� v when in fact v′ � v.

1. Examine all pairs of duplicate vertices v1 and v2. If J(v1) 6w J(v2), then record v1 6� v2 and put
the pair 〈v1, v2〉 on the worklist, W1. Otherwise, optimistically assume that v1 � v2 and record
this fact.

2. Back propagate each non-subsumption fact v1 6� v2 across all edges (including summary and
call-edges) except for return-edges.

3. Using the subsumption facts computed so far, add return-edges to the hot-path supergraphs.
(Heuristically, these new edges increase the number of subsumption facts in the hot-path graph.
This means subsequent stages are less likely to find non-subsumption facts.)

4. Examine all pairs of duplicate exit vertices x1 and x2 to determine if x1 6� x2 because of the
return edges from x1 and x2. If x1 6� x2 and this is not already known, record the fact, and put
the pair 〈x1, x2〉 on the worklist.

5. Back propagate each non-subsumption fact v1 6� v2 across all edges (including summary and
return-edges) except for call-edges.

If v1 6� v2, then for any congruent edges u1 → v1 and u2 → v2 that are not call nor return-edges, it
follows immediately that u1 6� u2 (see Figure 70); thus, we propagate the fact that v1 6� v2 backwards
by recording the fact that u1 6� u2. This is also the procedure if u1 → v1 and u2 → v2 are return-edges
that have the same label. If u1 → v1 and u2 → v2 are call-edges, then it does not necessarily follow that
u1 6� u2. This is shown in Figure 71. The fact that v1 6� v2 implies that there is some unbalanced-right-
left path p2 from v2 such that there is no unbalanced-right-left path from p1 that does a good enough
job at “mimicking” p2 — every p1 either does not have the same open parentheses as p2 or has a worse
data-flow facts than p2. However, it may be the case that [u2 → v2‖p2] is not an unbalanced-right-left
path. In this case, u1 does not have to provide a path to mimic [u2 → v2‖p2] and it might be the case that
u1 � u2. If we were to propagate the non-subsumption v1 6� v2 to the non-subsumption fact u1 6� u2,

151

map VxV to SubsumesFlag is a map from vertex pairs to a boolean
W is a worklist of vertex pairs 〈v1, v2〉, where v1 6� v2

Main()
/* Find initial non-subsumption facts */

1: Foreach vertex v1

2: Foreach vertex v2 congruent to v1

3: If J(v1) 6w J(v2)
4: map VxV to SubsumesFlag(〈v1, v2〉) := false

5: Put(W, 〈v1, v2〉)
6: Else /* Optimistically assume v1 � v2: */
7: map VxV to SubsumesFlag(〈v1, v2〉) := true

/* Propagate non-subsumption facts, but not across return-edges */
/* i.e., propagate non-subsumption facts along unbalanced-left paths */

8: While W 6= ∅
9: 〈v1, v2〉 := Take(W)
10: Foreach edge u1 → v1 that is not a return-edge
11: Foreach edge u2 → v2 congruent to u1 → v1
12: If u1 6= u2 and map VxV to SubsumesFlag(〈u1, u2〉) = true

13: map VxV to SubsumesFlag(〈u1, u2〉) := false

14: Put(W1, 〈u1, u2〉)
/* Add new return edges (see Figure 69) */

15: AddRtnEdges()
/* Find new non-subsumption facts at exits */

16: FindNonSubsumptionAtExits()
/* Propagate non-subsumption facts, but not across call-edges */
/* i.e., propagate non-subsumption facts along unbalanced-right paths */

17: While W 6= ∅
18: 〈v1, v2〉 := Take(W)
19: Foreach edge u1 → v1 that is not a call-edge
20: Foreach edge u2 → v2 congruent to u1 → v1
21: If u1 → v1 and u2 → v2 are return-edges with different labels
22: Continue
23: Else If u1 6= u2 and map VxV to SubsumesFlag(〈u1, u2〉) = true

24: map VxV to SubsumesFlag(〈u1, u2〉) := false

25: Put(W, 〈u1, u2〉)
26: Output map VxV to SubsumesFlag
End Main

Figure 67: Vertex Subsumption Algorithm for finding pairs 〈v1, v2〉 such that v1 � v2.

152

FindNonSubsumptionAtExits()
27: Foreach exit vertex x1

28: Foreach exit vertex x2 congruent to x1

29: Foreach return-edge x2 → r2
30: Let “)c” be the label on x2 → r2
31: If there is no return edge from x1 labeled “)c” Then
32: map VxV to SubsumesFlag(〈x1, x2〉) := false

33: Put(W, 〈x1, x2〉)
34: Else
35: Let x1 → r1 be the return-edge labeled “)c”
36: If map VxV to SubsumesFlag(〈r1, r2〉) = false Then
37: map VxV to SubsumesFlag(〈x1, x2〉) := false

38: Put(W, 〈x1, x2〉)
End FindNonSubsumptionAtExits

Figure 68: The function FindNonSubsumptionAtExits used by the Vertex Subsumption Algorithm

/* The following global variable is defined in Figure 67 */
map VxV to SubsumesFlag is a map from vertex pairs to a boolean

AddRtnEdges()
39: Foreach procedure P
40: Foreach call vertex c that calls P
41: Foreach exit vertex x of P
42: If there exits a return edge x→ r labeled “)c” Then
43: Continue
44: BestRtnVtx := 0
45: Foreach return-site vertex r congruent to a return-site vertex for c
46: If OkayToAddRtnEdge(x, r,“)c”) /* see page 150 */ Then
47: If (BestRtnVtx = 0 or

map VxV to SubsumesFlag(〈r,BestRtnVtx〉) = true) Then
48: BestRtnVtx := r
49: add the edge x→ BestRtnVtx to the graph; label it “)c”
End AddRtnEdges

Figure 69: The function AddRtnEdges used by the Vertex Subsumption Algorithm in Figure 67

153

Figure 70: Example of “distribution” of non-subsumption facts across congruent edges. The fact that
v1 6� v2 implies that u1 6� u2.

Figure 71: Example showing why non-subsumption facts might not distribute over call-edges. The non-
distribution fact v1 6� v2 is due to the fact that r1 6� r2. However, the non-subsumption fact r1 6� r2 in
procedure R should not be propagated to the call vertices u1 and u2 in procedure P .

154

map VxV to SubsumesFlag is a map from vertex pairs to a boolean

Main()
/* The following also adds return-edges to the graph. */

1: Run the Vertex Subsumption Algorithm to compute map VxV to SubsumesFlag.
2: Foreach edge u→ v
3: BestNewTgt := v
4: Foreach v′ congruent to v
5: If Tu(J(u)) w J(v′) and map VxV to SubsumesFlag(〈v′,BestNewTgt〉) = true

6: BestNewTgt := v′

7: replace the edge u→ v with u→ BestNewTgt
End Main

Figure 72: Edge Redirection Algorithm.

we could be propagating a non-subsumption fact over a path p2 that is not unbalanced-right-left (i.e.,
meaning that p2 is not a feasible execution path).

To avoid this problem, we use the same approach used in interprocedural slicing: propagation of
information is performed in two phases. The first phase (stage 2 above) propagates non-subsumption
facts (e.g., v1 6� v2) only when it knows there is an unbalanced-left path to justify the propagation. It
does not propagate non-subsumption facts across return edges, and thus avoids mistakenly propagating
non-subsumption facts to pairs of call vertices from inappropriate pairs of return-site vertices.

The second phase (stage 5 above) back propagates non-subsumption facts only when it knows there
is an unbalanced-right path to justify the propagation. It again avoids propagating non-subsumption
facts from pairs of return-site vertices to the wrong pairs of call vertices, but this time it does so by
not propagating facts over call-edges. At the end of the algorithm, non-subsumption facts have been
propagated across all congruent, unbalanced-right-left paths.

10.3 Determining When Edge Redirection is Profitable

Determining when edge redirection is profitable is a much harder question than determining when it is
possible. We would like to use edge redirection to help reduce the size of the hot-path graph. However,
just because an edge replacement is possible does not mean that it will make the hot-path graph easier
to reduce. In this section, we introduce a heuristic approach that uses edge redirection in an attempt to
minimize the number of vertices with incoming edges. This may increase the number of vertices with
no incoming edges, which can be removed from the graph, and it may transform the hot-path supergraph
in a way that aids the performance of the Ammons-Larus Reduction Algorithm.

Figure 72 shows the Edge Redirection Algorithm. For each edge u→ v, the algorithm performs
a greedy search for the vertex v′ that is congruent to v, is compatible with u’s data-flow facts, and
subsumes the greatest number of vertices (that are congruent to v). The greedy search assumes that it
has already found the vertex BestNewTgt that satisfies these criteria and only updates its guess when it
encounters a vertex v′ that subsumes BestNewTgt. Hence, it may find a vertex that is a local maximum

155

D

E
x=2;

F’
x=3;

D’

E’
x=2;

F
x=3;

G
... x ...

G"
... x ...

G’
... x ...

A

B C

Figure 73: The hot-path graph of Figure 55 after the Edge Redirection Algorithm is run (see Figure 72).

in the subsumption relationship, but not a global maximum — there may be a vertex that satisfies the
other criteria and subsumes more vertices than BestNewTgt.

Example 10.3.1 Let us consider the effects of this algorithm on the example hot-path graph in Fig-
ure 55(b). When the algorithm considers the edge D′ → E′, it will decide that it is safe to redirect the
edge to E, and profitable to do so, since E � E ′; the algorithm will replace the edge D′ → E′ with
D′ → E. The edges D → F ′, E′ → G′′, and F ′ → G′′ are replaced with the edges D → F , E ′ → G,
and F ′ → G′, respectively. Notice, when the algorithm considers the edge E ′ → G′′, it will not replace
this edge with the edge E ′ → G′, since this would violate the data-flow facts at G′: x has the value 2 at
E′ and the value 3 at G′.

Figure 73 shows the hot-path graph from Figure 55(b) after edge redirection is performed. This
graph is more amenable to the Coarsest Partitioning Algorithm than the original graph: the blocks
{D,D′}, {E,E′}, and {F,F ′} are no longer split by the Coarsest Partitioning Algorithm. Also, the
verticesE′, F ′, and G′′ have become unreachable and may be dropped from the graph. (In practice, one
should drop unreachable vertices before performing the Coarsest Partitioning Algorithm.) 2

After edge redirection is performed, the hot-path supergraph may be corrupted in three ways: (1)
the summary-edges may be incorrect; (2) there may be unnecessary return-edges in the graph; and (3)
there may be unreachable vertices in the graph. To fix these problems, we perform the clean-up pass
shown in Figure 74. This algorithm starts by removing all of the summary-edges. Then the algorithm
uses reachability over intraprocedural and summary edges to find same-level valid paths. As it finds new
same-level valid paths, it adds summary-edges back to the graph. These new summary-edges are then
used to find more same-level valid paths. This process is repeated until all of the summary-edges have
been added to the graph. Then the clean-up algorithm uses the same-level valid paths computed in the
previous stage to decide which return-edges and vertices it needs to keep. The algorithm can be made to
run in O(MaxEntries · ‖E‖ + ‖RtnEdges‖ · MaxEntries · log(MaxCallEdges)), where MaxEntries
is the maximum number of entries for a procedure, ‖E‖ is the number of intraprocedural edges and
summary-edges in the output graph, RtnEdges is the set of all return-edges, and MaxCallEdges is the

156

W is a worklist of vertices.
ReachingEntries is a map from each vertex to a set of entry vertices

Main()
Remove all summary-edges.
/* For each vertex v in procedure P , compute the set of P ’s entries that reach v */
/* Initialize worklist */
Foreach vertex v

Put(W, v)
While W 6= ∅

v := Take(W)
OldReachingEntries := ReachingEntries(v)
If v is an entry vertex Then

ReachingEntries(v) = {v}
Else

Foreach intraprocedural or summary-edge u→ v
ReachingEntries(v) := ReachingEntries(v) ∪ ReachingEntries(u)

If ReachingEntries(v) 6= OldReachingEntries Then
/* Add successors to worklist */
Foreach intraprocedural or summary-edge v → w

Put(W,w)
/* Update summary-edges, if needed */

If v is an exit vertex
Foreach e ∈ ReachingEntries(v)

Foreach call-edge c→ e labeled “(c”
Foreach return-edge v → r labeled “)c”

add the summary-edge e→ r
Put(W, r)

/* Remove dead return-edges */
Foreach return-edge x→ r

let “)c” be the label on x→ r
If there is no call-edge c→ e labeled “(c” s.t. e ∈ ReachingEntries(x) Then

remove the return-edge x→ r
/* Remove unreachable vertices from the graph */
Foreach vertex v

If ReachingEntries(v) = ∅
remove the vertex v

End Main

Figure 74: Clean-up algorithm that repairs the hot-path supergraph after the Edge Redirection Algorithm
has been run.

157

H∗ =⇒

Edge Redirection Algorithm

Vertex
Subsumption

Algorithm
=⇒H∗

1

=⇒ H∗
2 =⇒

Edge
Redirection

Clean-up Pass
=⇒H∗

3

Figure 75: Stages used for minimizing a graph using edge redirection. The Edge Redirection Algorithm
calls the Vertex Subsumption Algorithm as a subroutine, so the graph H∗

1 is a temporary data structure
used by the Edge Redirection Algorithm.

maximum number of call-edges into an entry vertex. We expect this to be cheaper than the Vertex
Subsumption Algorithm.

10.4 Proof of Correctness

In this section, we present proofs that the Vertex Subsumption Algorithm and the Edge Redirection
Algorithm work correctly. Throughout this section, we will use the following nomenclature:

• H∗ refers to the hot-path graph that is input to the Vertex Subsumption Algorithm or the Edge
Redirection Algorithm.

• J is the data-flow solution for the problem FH∗ .

• H∗
1 refers to the graph output by the Vertex Subsumption Algorithm. Every vertex v from H ∗ is

renamed v1 in H∗
1 . Thus, v1 is the same vertex as v, but renamed for the graph H∗.

• H∗
2 refers to the graph output by the Edge Redirection Algorithm. Every vertex v from H∗ is

renamed v2 in H∗
2 .

• H∗
3 refers to the graph output by the Edge Redirection Clean-up Pass. Every vertex v from H ∗ is

renamed v3 in H∗
3 .

Figure 75 shows the relationships between the various graphs.
Before we move on to presenting lemmas and theorems, we have some observations about the

subsumption relation.

Observation 10.4.1 If v′ 6� v, then there must be some shortest unbalanced-right-left path p from v
such that there is no unbalanced-right-left path p′ from v′ that subsumes p. If p is a 0-length path (i.e.,
it is the empty-path from v to v′), then there is a congruent path p′ that mimics p’s control flow, namely
the empty-path from v′ to v′. So it must be that J(v′) 6w J(v). If p is of length 1 or greater, then let
p = [q‖w → y]. There are three possibilities:

1. There is a path q′ from v′ to w′ such that q′ � q, but there is no edge from w′ that is congruent to
w → y.

158

2. There is a path q′ from v′ to w′ such that q′ � q, but w → y is a return-edge that is unmatched in
p and there is no return-edge from w′ with the same label as w → y.

3. There is a path p′ from v′ to y′ such that p′ mimics p’s control flow, but the data-flow facts at y′

are not as good as the data-flow facts at y (J(y′) 6w J(y)).

2

Observation 10.4.2 The �-relation is transitive: for any paths p′′, p′, and p, if p′′ � p′ and p′ � p then
p′′ � p. Similarly, for any vertices v′′, v′, and v, if v′′ � v′ and v′ � v then v′′ � v. 2

Observation 10.4.3 The �-relation is reflexive: for any path p, p � p. Similarly, for any vertex v,
v � v. 2

Observation 10.4.4 Let [p‖q] be an unbalanced-right-left path. Let p′ and q′ be paths such that p′ � p
and q′ � q. If [p′‖q′] is an unbalanced-right-left path, then [p′‖q′] � [p‖q]. 2

All of these observations follow directly from the definition of subsumption.
We now turn to proving the Vertex Subsumption Algorithm correct. The proof is complicated by the

fact that the algorithm does not compute the �-relation for the input graph: it transforms the graph (by
adding return-edges) and it computes the �-relation for the transformed graph.

Theorem 10.4.5 Let H∗be the hot-path graph input to the Vertex Subsumption Algorithm and let H∗
1

be the transformed graph output by the Vertex Subsumption Algorithm. That is, H∗
1 is H∗with the ad-

ditional return-edges added by lines 39–49 of Figure 69. Every vertex subsumption assertion v ′1 � v1
output by the Vertex Subsumption Algorithm is correct for the graph H∗

1 . However, the Vertex Subsump-
tion Algorithm may conclude that v′1 6� v1 when in fact v′1 � v1.

Proof: See Appendix D. 2

It is possible to compute the �-relation accurately, but the process is much more expensive than the
Vertex Subsumption Algorithm both in space and time. In fact, it requiresO(‖MaxDuplicates‖4‖V0‖

2)
space and O(‖MaxDuplicates‖4‖V0‖

2‖E‖) time, where MaxDuplicates is the maximum number of
duplicate vertices in the hot-path graph, V0 is the set of vertices in the original supergraph, and E is the
set of edges in the hot-path graph. This algorithm is described in Appendix E. Right now, we turn to the
proof to the Vertex Subsumption Algorithm is correct.

Theorem 10.4.6 If J approximates (v) the greatest fixed-point solution for F ∗
H , then J also approxi-

mates the greatest fixed-point solution for FH3
.

Proof: See Appendix D. 2

To prove the correctness of the Edge Redirection Algorithm, we must first prove that the Edge
Redirection Algorithm preserves the �-relation in the following sense: let v ′ and v be vertices in the
input graph and let v′o and vo be the same vertices in the output graph (recall that the Edge Redirection
Algorithm does not add vertices to the input graph). If v′ � v, then v′o � v. In other words, if v′ � v,
then for every path pi from v in the input graph, there is a path p′o from v′o in the output graph such that
p′o � pi; the paths from v′o in the output graph are “better” than the paths from v in the input graph.
Note that v′ � v does not imply that v′o � vo. We have the following lemma:

159

Lemma 10.4.7 LetH∗ be the hot-path graph input to Edge Redirection Algorithm. LetH∗
1 be the graph

that results from running the Vertex Subsumption Algorithm on H∗. (H∗
1 isH∗ with extra return-edges.)

Let H∗
2 be the graph output by the Edge Redirection Algorithm. Rename each vertex v in H∗ as v1 in

H∗
1 and as v2 in H∗

2 . Let v′1 and v1 be vertices in H∗
1 and let v′2 be the same vertex as v′1 but in graph

H∗
2 . If v′1 � v1, then v′2 � v1. In other words, if v′1 � v1, then for every unbalanced-right-left path

p1 from v1 in graph H∗
1 , there must be a unbalanced-right-left path p′2 from v′2 in graph H∗

2 such that
p′2 � p1.

Proof: See Appendix D. 2

Theorem 10.4.8 Let H∗
3 be the graph the results from running the Edge Redirection Algorithm (see

Figure 72) and the clean-up pass in Figure 74 on the graph H∗. Then, H∗ and H∗
3 are unbalanced-left

path congruent.

Proof: See Appendix D. 2

Theorem 10.4.9 Let J3 be the same data-flow solution as J , but renamed for the graph H∗
3 . (By

Theorem 10.4.6, J3 is a valid data-flow solution for H∗
3 .) The data-flow solution J3 preserves the

valuable data-flow facts of J .

Proof: This follows from Lemma 10.4.7. For any unbalanced-left path p from Entry global in H∗, there
must be a path p3 in H∗

3 such that p3 � p. This means that p3 has equal or better (v) data-flow facts
than p. QED 2

10.5 Analysis of Runtime

We now turn to the problem of computing the complexity of the Vertex Subsumption and Edge Redi-
rection Algorithms. We start with the Vertex Subsumption Algorithm. Lines 1–7 of Figure 67 find
initial non-subsumption facts. To do this, every pair of duplicate vertices must be examined. This
takes O(MaxDuplicates2‖V0‖d) time, where MaxDuplicates in the maximum number of duplicate
vertices in the hot-path graph, V0 is the set of vertices in the original supergraph (that was traced
to generate the hot-path graph), and d is the cost of comparing the data-flow facts for two vertices.
Lines 8–14 and lines 17–25 propagate non-subsumption facts. This takes O(MaxDuplicates2 ∗ ‖E+‖)
time, where E+ is the set of edges of the input hot-path graph augmented with the return-edges added
by the function call to AddRtnEdges . In the worse case, the call to AddRtnEdges (line 15) takes
O(CallSites·MaxDuplicates2·d) time, where CallSites is the number of call-sites in the hot-path graph.
The call to FindNonSubsumptionAtExits requiresO(MaxRtnEdges2) time, where MaxRtnEdges is
the size of the largest set Sx ≡def {x′ → r′ : x′ is a duplicate of x ∧ x′ → r′ is a return − edge}. All
told, the Vertex Subsumption Algorithm requires

O(MaxDuplicates2‖V0‖d+MaxDuplicates2∗‖E+‖+CallSites·MaxDuplicates2·d+MaxRtnEdges2)

time.
The Edge Redirection Algorithm (not counting the call to the Vertex Subsumption Algorithm) re-

quires ‖E+‖ · MaxDuplicates) time: for each edge u→ v, for each duplicate v′ of v, the algorithm

160

(a) (b)

Figure 76: Example showing that translating a path profile after edge redirection is impossible. (Dotted
edges indicate recording edges.)

considers redirecting the edge u→ v to point at v′. This is absorbed by the time of the Vertex Sub-
sumption Algorithm. We previously stated that the run-time of the Edge Redirection Clean-up Pass
is

O(MaxEntries · ‖E‖ + ‖RtnEdges‖ · MaxEntries)

where MaxEntries is the maximum number of entries for a procedure, ‖E‖ is the number of intrapro-
cedural edges and summary-edges in the output graph, and RtnEdges is the set of all return-edges.

10.6 Updating a Path Profile After Edge Redirection

The previous section described how to use the Edge Redirection Algorithm to reduce a hot-path graph
H∗. Let H ′∗ be the reduced hot-path graph that results from the process described in the last section. In
this section, we discuss the problem of translating a path profile pp for the graphH ∗ to a path profile pp ′

for the graph H ′∗. This is useful if one wishes to follow the reduction of the hot-path supergraph with
profile-based optimizations (other than the express-lane transformation). Unfortunately, this cannot be
done, which restricts one to doing all profile-based optimizations before reducing the hot-path super-
graph. The difficulty arises when attempting to translate a path p ∈ pp that contains a surrogate-edge
u→ v, as the following example demonstrates.

Example 10.6.1 Figure 76(a) shows part of a simple hot-path graph. There is a surrogate-edge
Entry → C that is not shown in the graph. The edges A→ C and B → C are recording edges. (Re-
call that the path-profiling instrumentation on a recording edge u→ v increments the count of the path

161

currently executing and begins recording a new path with the surrogate-edge Entry → C.) Suppose we
have the following path profile pp for the hot-path graph in Figure 76(a):

Path Execution Count
Entry → A→ C 2
Entry → B → C 2
Entry • C → D . . . 2
Entry • C → E . . . 2

Figure 76(b) shows the graph in Figure 76(a) after the Edge Redirection Algorithm has been run; the
edge B → C has been replaced with the edge Br → C ′

r and each vertex v has been renamed as vr. We
would like to translate the path profile pp onto the graph in Figure 76(b). Unfortunately, there are many
possible translations. The path [Entry • C → D . . .] could be translated as [Entry r • Cr → Dr . . .]
or as [Entryr • C ′

r → D′r . . .]. Similarly, the path [Entry • C → E . . .] could be translated as
[Entryr • Cr → Er . . .] or as [Entry r • C ′

r → E′
r . . .]. The difficulty in translating the surrogate-edge

Entry → C is that the profiling machinery may start a path with the surrogate-edge Entry → C after
the path Entry → A→ C or after the path Entry → B → C has executed.

Thus, the surrogate-edge Entry → C could be standing in for any same-level valid path from Entry

to C. One of the same-level valid paths from Entry to C is translated to Figure 76(b) as a same-
level valid path from Entry r to Cr. The other same-level valid path from Entry to C is translated to
Figure 76(b) as a same-level valid path from Entry r to C ′

r. This makes it impossible to translate the
surrogate-edge entry → C to Figure 76(b). 2

The problem in the above example can be avoided if we prevent the Edge Redirection Algorithm
from replacing the edge B → C with the edge B → C ′. If this is done, all of the same-level valid paths
from Entry to C are translated to same-level valid paths from Entry r to Cr in Figure 76(b). In this
case, the surrogate-edge Entry → C is always translated to the surrogate-edge Entry r → Cr.

The following condition is sufficient for guaranteeing that a path profile can be translated to a profile
for the graph created by the Edge Redirection Algorithm:

Let H∗ be a hot-path supergraph, let pp be a path profile on H∗, and let H∗
r be the reduced

hot-path graph output by the Edge Redirection Graph. For every vertex v that is the target
of a surrogate-edge in some path of pp, for any unbalanced-right-left path p inH∗ that ends
at v, the congruent path pr in H∗

r ends at vr. (Here, vr is the new name of the vertex v in
the graph H∗

r .)

If this condition is true, then it is straightforward to translate each path q in pp: we simply traverse the
edges of q and simultaneously trace out the translated path qr in H∗

r . When a surrogate-edge u→ v is
traversed, we know that the next vertex of qr must be vr.

A minor change is needed to make sure that the above condition holds after the Edge Redirection
Algorithm is run. A new requirement is added to the definition of path subsumption: a path p′ subsumes
a path p iff

1. p′ exactly mimics p’s control flow;

2. p′ data-flow facts are equal or better than p’s data-flow facts; and

3. for every vertex v of p, v is not the target of a surrogate edge in any path of the path profile pp.

162

To implement this change, line 3 of the Vertex Subsumption Algorithm is changed to:

If J(v1) 6w J(v2) or v2 is a target of a surrogate-edge that occurs in path profile pp Then

This change will mean that the Edge Redirection Algorithm will be able to make fewer edge replace-
ments. The next chapter contains experimental measurements of the effect of this change. The other
alternative is to not translate the path profile into a profile for the graph created by the Edge Redirection
Algorithm.

10.7 Alternating Between Graph Reduction Strategies

The Edge Redirection Algorithm and the Supergraph Partitioning Algorithm complement one another.
It is possible to use these algorithms as alternating passes in a reduction strategy for the hot-path su-
pergraph. (In fact, the Edge Redirection Algorithm is too expensive if the hot-path supergraph has not
already been partially reduced by the Supergraph Partitioning Algorithm.) The Edge Redirection Al-
gorithm can make a hot-path supergraph more amenable to reduction by the Supergraph Partitioning
Algorithm.

However, care must be taken when alternating between the algorithms. As shown in Figure 66, the
Edge Redirection Algorithm requires that the input data-flow solution J approximates (v) the greatest-
fixed point solution (for F∗

H) on the input hot-path supergraphH∗. In general, the Supergraph Partition-
ing Algorithm does not guarantee that the output data-flow solution J ′ approximates the greatest-fixed
point solution (for FH∗

r
) on the output supergraph H∗

r . If we wish to feed the output of the Supergraph
Partitioning Algorithm as input to the Edge Redirection Algorithm, we must take care that the Super-
graph Partitioning Algorithm outputs a data-flow solution that approximates the greatest-fixed point
solution for FH∗

r
. To do this, we require that the Supergraph Partitioning Algorithm treat every data-

flow fact as desirable; this way the Supergraph Partitioning Algorithm will preserve every data-flow
fact. (The Supergraph Partitioning Algorithm may still destroy data-flow facts that are “dead”, e.g., the
fact that x = 2 in a vertex where the variable x is dead; since these data-flow facts are dead, destroying
them does not matter.)

163

Chapter 11

Reducing the Hot-path Graph is NP-hard

In this chapter, we give some complexity results for the problem of reducing the hot-path graph. The
principal result states that given a hot-path graph H , a distributive data-flow framework F , and a data-
flow solution J for FH , it is NP-hard to find a minimal reduced hot-path graph while simultaneously
preserving the valuable data-flow facts of J . It is unknown if this problem in NP-complete (i.e., it is
unknown if a reduced graph that preserves the valuable data-flow facts of J can be verified to be the
minimal such reduced graph in polynomial time). We show that when F is a distributive framework, it
is computable (via a Turing Machine) to find a minimal reduced hot-path graph while simultaneously
preserving the valuable data-flow facts of J . (In contrast, we conjecture that if F is not distributive, the
general problem of finding a minimal reduced hot-path graph while preserving the data-flow facts of J
is undecidable.)

The first theorem states our NP-hardness result:

Theorem 11.0.1 Given a hot-path graph H , a distributive data-flow framework F , and the meet-over-
all-paths solution J to FH , it is NP-hard to generate a reduced hot-path graph H ′ such that H ′ has a
minimal size and the meet-over-all-paths solution J ′ to FH′ preserves the valuable data-flow facts of J .

The proof gives a reduction from the problem of finding a minimal graph coloring to the problem
of finding a minimal H ′ such that J ′ preserves the valuable data-flow facts of J . A coloring of an
undirected graph is a partitioning of the graph’s vertices such that no two adjacent vertices appear in the
same partition (i.e., have the same color). A minimal coloring is a coloring with a minimal number of
partitions. The proof uses copy constant propagation (see [3]) as an example of a distributive data-flow
problem P , but generalizes easily for any distributive data-flow problem. Also, the measure of the size
of the reduced hot-path graph H ′ is taken to be the number of vertices in H ′. Again, it is easy to modify
the proof to work with any reasonable measure of size, e.g., number of edges or number of instructions.
Proof: Let G be an undirected graph for a minimal graph coloring problem. We construct a program
P and a path profile that result in a hot-path graph H . We give the data-flow solution J for constant
propagation on H . We show how to recover a minimal coloring of G from a reduced hot-path graph H ′

and a constant-propagation solution J ′ where:

1. J ′ is the meet-over-all-paths solution for copy constant propagation on H ′;

2. J ′ preserves the valuable data-flow facts of J ;

3. and there is no reduced hot-path graphH ′ with fewer vertices that satisfies the previous properties.

It follows that finding H ′ is NP-hard.
Let v1, v2, . . . vn denote the vertices of the undirected graph G. We create a program P with the

structure shown in Figure 77. P has n variables x1, x2, . . . xn, one for each vertex vi of G. The
code contains two switch statements. In the first switch statement, the ith case of the switch encodes
the adjacency information for vi in the following manner: the case statement contains the assignment

164

void main() {
int i, x1, x2, . . . xn
i = 0;
while(i < n) {

switch(i) {
case 1:

x1 = 1;
x2 = ⊥;
. . .
xn = 1;
break;

. . .
case n:

x1 = 1;
x2 = ⊥;
. . .
xn = 1;
break;

default:
x1 = x2 = . . . = xn = ⊥;

}
switch(i) {

case 1:
print(x1);
break;

case 2:
print(x2);
break;

. . .
case n:

print(xn);
break;

default:
}

++i;
}

}

Figure 77: Example program that that results in a hot-path graph that encodes a graph coloring problem.

165

Figure 78: Schematic control-flow graph C for the program in Figure 77. The recording edges A→ B
and I → B are shown with dashed lines.

166

Figure 79: The hot-path graph H for the control-flow graph C shown in Figure 78. The vertices have
been renamed (from the results of the hot-path tracing algorithm in Section 2.2.2) to save space. Edges
that are on a hot path appear in bold.

167

Figure 80: Reduced hot-path graph H ′ for the hot-path graph H in Figure 79.

168

xi=1; for j 6= i, if vj is not adjacent to vi, then the case statement contains an assignment xj=1;
otherwise, for j 6= i and vj adjacent to vi, the case statement contains a statement that causes constant
propagation to assign the value ⊥ to xj. The default case statement causes all of the variables x1,
x2, . . ., xn to go to bottom. In the second switch statement, the ith case statement contains a use of
xi.

Figure 78 shows a control-flow graph C for the program in Figure 77. If the edges A→ B and
I → B are chosen as recording edges, then the path profile for P has the following hot paths:

• B → C → D1 → F → G1 → I
• B → C → D2 → F → G2 → I

...
• B → C → Dn → F → Gn → I

This path profile and the control-flow graphC in Figure 78 give the hot-path graphH shown in Figure 79
(see Section 2.2.1).

The meet-over-all-paths solution J for copy constant propagation on H shows that in the vertex
G1a, the variable x1 has the constant value 1; in the vertexG2a, the variable x2 has the constant value 1;
and so on. These are the hot data-flow facts that must be preserved when reducing the hot-path graph. In
contrast to these “good” data-flow facts, copy constant propagation shows the following: in the vertex
G1b, the variable x1 has the value ⊥ (non-constant); in the vertex G2b, the variable x2 has the value ⊥,
and so on.

Let H ′ be a reduced hot-path graph for H such that H ′ has a minimal number of vertices and
the greatest fixed-point solution J ′ to constant propagation on H ′ preserves the data-flow facts of J .
Figure 80 depicts H ′. Only the vertices F , G1 . . .Gn, and I from the original control flow graph
C (Figure 78) are duplicated multiple times in H . Only the vertices in H that are copies of these
vertices (i.e., F1 . . . Fn, F

′, G1a . . .Gna, G1b . . .Gnb, and I1 . . . In) can be removed from H to create
H ′. Removing any other vertices results in a graph that is not path equivalent to H .

H ′ needs only one copy of the vertex I . For every vertex Ij in H , only the variable i is live in Ij and
the solution for constant propagation on H states that i is mapped to ⊥ (i.e., J(Ij) = ⊥). This implies
that there are no paths in H that distinguish I1 . . . In with respect to the important data-flow facts in J .
Therefore, H ′ will have only one copy of I .

On the other hand, H ′ must have all of the vertices G1a . . . G1n and G2a . . .G2n. Consider the
duplicate vertices G1a and G1b. The data-flow solution states that at the use of x1 in G1a, the variable
x1 has the constant value 1. (This is a desirable data-flow fact must be preserved.) However, at the use
of x1 in G1b, x1 has the non-constant value ⊥. Furthermore, because of the path E → F ′ → G1b,
there is no way to restructure H to alter this fact. This means that the vertices G1a and G1b must be
distinguished if we wish to preserve the desirable data-flow fact in G1a. An identical situation holds for
every pair of (duplicate) vertices Gia and Gib.

Vertices in the set {F1, F2 . . . Fn} may be coalesced under certain circumstances (although F ′ may
not). Every variable in a vertex Fi is live. However, only the constant value in the variable xi reaches
a use in a hot vertex, namely Gia. Thus, only the data-flow value of xi must be preserved in Fi. This
means that Fi may be combined with a vertex Fj iff they both have the same constant values for xi and
xj . We say that Fi and Fj are collapsible if this holds. F ′ is not collapsible with any vertex Fi, since it
has a data-flow value of ⊥ for every variable. In order to combine two collapsible vertices Fi and Fj of
H into one vertex Fi of H ′, the following steps are taken:

1. Change the graph so that Fi and Fj have the same successors (by using the edge redirection

169

technique described above). This may be done while preserving desirable data-flow facts because
Fi and Fj are collapsible: replace the edge Fi → Gib with the edge Fi → Gja and replace the
edge Fj → Gjb with the edge Fj → Gia.

2. Change the edges that point to Fj to point to Fi.

3. Remove the vertex Fj .

In Figure 80, we have assumed that the vertices F1 and Fn are compatible. Figure 80 shows the result
of eliding the vertex Fn into the vertex F1.

To minimize the number of copies of F in H ′, we must separate the vertices F1, F2, . . . Fn into a
minimum partition such that the vertices in each partition are collapsible with one another. H ′ must
contain one copy of F for each partition.

Two vertices Fi and Fj in the hot-path graph H are collapsible iff the vertices Vi and Vj in the
undirected graphG are not adjacent. This follows from the encoding of the graphG in the statements in
vertices D1 . . .Dn. Let F ⊆ {F1, . . . , Fn} be a set of collapsible vertices. Then there are no adjacent
vertices in the set V = {Vi : Fi ∈ F}. Likewise, if V ⊆ {V1, . . . Vn} has no adjacent vertices, then the
set F = {Fi : Vi ∈ V} contains collapsible vertices.

This implies that any partition of F1, . . . , Fn into sets of collapsible vertices encodes a partition of
V1, . . . Vn that is a valid coloring of G. Any valid coloring of G encodes a partition of F1, . . . , Fn into
sets of collapsible vertices. It follows that a minimal partition of the vertices F1, . . . , Fn such that each
partition contains collapsible vertices must encode a minimal coloring of G: if there were a coloring
with fewer partitions, then we could use that coloring to find a smaller partitioning of F1, . . . Fn into
sets of compatible vertices.

Thus, it is NP-hard to find a minimum-sized reduced hot-path graph H ′ such that the meet-over-all-
paths J ′ to copy constant propagation preserves the hot data-flow facts of J . QED 2

Theorem 11.0.2 Given a hot-path graphH∗, a distributive data-flow framework F , and the meet-over-
all-paths solution J to F∗

H , it is computable to generate a reduced hot-path graphH ′∗ such thatH ′∗ has
a minimal size and the meet-over-all-paths solution J ′ to FH′∗ preserves the valuable data-flow facts of
J .

Proof: The proof is informal. We give an algorithm for finding the minimal H ′∗ with the desired
data-flow solution J ′, but not an actual Turing Machine. The algorithm for finding H ′∗ is as follows:

1. Enumerate the set H of all the graphs that are smaller than H∗ and path-congruent to H∗.

2. Pick H ′∗ to be smallest graph in G such that the meet-over-all path solution J ′ for FH′∗ preserves
the valuable data-flow facts of J .

For every H ′ ∈ H we must find the meet-over-all-paths solution J ′ to FH′ and check that J ′

preserves the valuable data-flow facts of J . Since F is distributive, J ′ is equivalent to the greatest-fixed-
point solution; this means that there are iterative algorithms for finding J ′ [40]. To check if J ′ preserves
the valuable data-flow facts of J , we can use a modified version of the Vertex Subsumption Algorithm.
This is discussed in Appendix E. QED 2

In contrast to the previous theorem, we have the following conjecture:

Conjecture 11.0.3 Given a hot-path graph H , any monotonic data-flow framework F , and the meet-
over-all-paths solution J to FH , there is no algorithm for generating a reduced hot-path graph H ′

170

such that H ′ has a minimal size and the meet-over-all-paths solution J ′ to FH′ preserves the valuable
data-flow facts of J .

The principal reason for believing this conjecture is that there are no general algorithms for computing
the meet-over-all-paths solution for monotone frameworks [36, 39]. This means that given a reduced
hot-path graph H ′, there is no algorithm for computing the meet-over-all-paths solution J ′ to FH′ from
H ′ alone. (If J ′ cannot be computed, then we cannot check if J ′ preserves the hot data-flow facts of
J .) It may be possible to compute J ′ from H , J and H ′. In other words, it might be possible to find
the meet-over-all-paths solution to FH′ by leveraging off the fact that we have the meet-over-all-paths
solution, namely J = FH , for a graph H that is path congruent toH ′. However, this seems unlikely: let
v be a vertex in H and let p1 and p2 be paths in H from Entry to v. Since H is path congruent to H ′,
we know that there are paths p1 and p2 in H ′ that are congruent to p′1 and p′2, respectively. The problem
is that p′1 may end at v′1 and p′2 may end at v′2 such that v′1 6= v′2. This means that if we want to use the
meet-over-all-paths solution at v for computing the meet-over-all-paths solution at v ′1 and v′2, we would
have to “un-meet” the solution at v to find the individual contributions of the paths p1 and p2.

171

Chapter 12

Experimental Results for Reducing the
Hot-path Supergraph and for Program
Optimization

This chapter presents experimental results for the hot-path supergraph-reduction algorithms presented in
the previous chapters. As stated in previous chapters, all experiments were run on a 833 MhZ Pentium
III with 256M RAM running Solaris 2.7. For a compiler, we used GCC 2.95.3 with the “-O3” option.
When run-time numbers are given, they represent the average of three runs.

12.0.1 The Supergraph Partitioning Algorithm

In the first set of experiments, we considered “conditional branches that have been determined to have
only one possible outcome” to be desirable data-flow facts. We used the Ammons-Larus Reduction
Algorithm with the Supergraph Partitioning Algorithm to preserve the branch outcomes that were de-
termined by range analysis. For example, consider a vertex v that ends with a conditional branch “if
(x < y)”: suppose that range analysis determines that J(v)(x) = [2..5] and J(v)(y) = [6..8]; then
the condition (x < y) must always evaluate to true in the vertex v. After hot-path graph reduction,
we want it to still be the case that the expression (x < y) is always be true in v (or, if v is replaced by
a vertex w in the reduced graph, we want (x < y) to always be true in w).

This definition of a desirable data-flow fact allows great latitude in creating the compatibility par-
tition that is given as input to the Supergraph Partitioning Algorithm. Continuing the above example,
suppose v′ is a duplicate copy of v such that J(v′)(x) = [20..22] and J(v′)(y) = [26..28]. Then, the
expression (x < y) is always true in v′. This means that v and v′ can potentially be collapsed, be-
cause they agree on the outcome of the branch “if (x < y)”, even if they disagree on the data-flow
facts for x and y. When we create the compatibility partition, the vertices v and v ′ are put in the same
block; if the Supergraph Partitioning Algorithm does not separate them into different blocks, they will
be collapsed to a single vertex.

Figure 81 shows the results of our first set of experiments. In these experiments, we created the hot-
path graphs by duplicating enough paths to cover 99% of the dynamic execution paths (i.e., CA = 99%;
see Chapter 8). We then performed range analysis on the hot-path supergraph. Next, we marked as
hot any vertex that had a “decided” branch — a branch whose outcome can be determined from range
analysis. We formed the compatibility partition as described in Section 9.2.2 and in the example above.
Then we ran the Supergraph Partitioning Algorithm. Next, we collapsed vertices that remained in
the same partition block. Finally, we emitted source code in which decided branches were replaced by
goto statements (i.e., unconditional jumps), and instruction operands and instructions that had constant
values were replaced by literals. Note that this approach uses the Supergraph Partitioning Algorithm to
preserve decided branches, which means that other data-flow facts (e.g., a range data-flow fact showing
a variable to be constant) may (or may not) be destroyed by the Supergraph Partitioning Algorithm;

172

Figure 81: Charts showing how well the Supergraph Partitioning Algorithm does when it preserves all
of the results for conditional branches in the range analysis.

173

Figure 82: Plots of the amount of reduction done by the Supergraph Partitioning Algorithm versus the
percentage of branch results that are saved.

174

however, when there is a data-flow fact in the reduced hot-path graph that shows that an instruction
operand or an instruction result is constant, we make use of it.

Figure 81 shows that the Supergraph Partitioning Algorithm is quite effective in these experiments.
The “average” interprocedural, context hot-path graph is 126% larger than the supergraph; after reduc-
tion, it is only 32% larger. (We are not actually comparing average sizes here: we compare the geometric
mean of the ratios of the hot-path graph size to the supergraph size against the geometric mean of the
ratios of the reduced-hot-path graph size to the supergraph size; see Figure 81.) The average interpro-
cedural, piecewise hot-path graph is 37% larger than the supergraph; after reduction, it is only 12%
larger. The average intraprocedural, piecewise hot-path graph is 15% larger than the supergraph; after
reduction, it is only 3% larger.

The next set of experiments were identical to the previous experiments, except that we varied the
number of vertices marked hot. Lowering the number of vertices marked hot lowers the number of
vertices with data-flow solutions that must be preserved, which allows greater reduction. In these ex-
periments, we marked as hot a certain percentage (weighted by execution frequency) of the vertices that
contained decided branches. The results are shown in Figure 82. The fact that the lines in these graphs
are not monotonic indicates that the Supergraph Partitioning Algorithm is sensitive to the input compat-
ibility partition; changing the set of vertices that are marked hot changes the way the greedy algorithm
for creating the compatibility partition will group vertices (see Section 9.2.2); this has an effect on the
output of the Supergraph Partitioning Algorithm. Overall, Figure 82 shows that the fewer vertices that
are marked hot, the greater the reduction in the hot-path supergraph.

12.0.2 Edge Redirection Algorithm

In this section, we present experimental results for reducing the hot-path supergraph using the Edge
Redirection Algorithm. The Edge Redirection Algorithm is most effectively used with the Supergraph
Partitioning Algorithm: the Edge Redirection Algorithm is too expensive to run unless the hot-path
supergraph has already been partially reduced by the Supergraph Partitioning Algorithm; and the Edge
Redirection Algorithm may make the graph more amenable to reduction by the Supergraph Partitioning
Algorithm.

Figure 83 shows results from the first set of experiments with the Edge Redirection Algorithm. As
in the previous section, we start by creating a hot-path supergraph by duplicating enough paths to cover
99% of the program’s execution. Next, we perform range analysis on the hot-path supergraph. Then
we use the Supergraph Partitioning Algorithm to reduce the hot-path supergraph while preserving every
data-flow fact (by marking every vertex as hot and allowing vertices v and v ′ to be in the same block of
the compatibility partition if and only if J(v) = J(v′) for any data-flow facts used in v). Recall from
Section 10.7 that we must preserve every data-flow fact if we wish to follow the Supergraph Partitioning
Algorithm by the Edge Redirection Algorithm.

After running the Supergraph Partitioning Algorithm, we run the Edge Redirection Algorithm and
remove any vertices that become unreachable. Then we run the Supergraph Partitioning Algorithm
again, and follow that by running the Edge Redirection Algorithm a second time. Finally, we run the
Supergraph Partitioning Algorithm again, but this time, we only preserve decided branches, as we did
in the last section (after which, it becomes unsafe to run the Edge Redirection Algorithm again).

These experiments show that the Edge Redirection Algorithm combined with the Supergraph Par-
titioning Algorithm can reduce the code growth even further when we wish to preserve all data-flow
facts on the hot-path supergraph (see the fourth bar in the charts of Figure 83). For example, performing
the interprocedural express-lane transformation on compress and then reducing the hot-path supergraph

175

Figure 83: Plots of the amount of reduction done using successive iterations of the Supergraph Par-
titioning Algorithm and the Edge Redirection Algorithm. In these experiments, the Edge Redirection
Algorithm is restricted by the need to translate the path profile on the hot-path supergraph into a path
profile for the reduced graph.

176

Benchmark Express-Lane
Trans.

Time 1st

Partition
Time 2nd

Partition

Time 1st

Edge
Redirection

Time 2nd

Edge
Redirection

124.m88ksim Inter., Context 23.05 7.67 21.28 18.26
Inter., Piecewise 9.10 4.76 14.54 14.13
Intra., Piecewise 7.46 4.61 13.58 12.93

129.compress Inter., Context 1.25 0.48 0.63 0.61
Inter., Piecewise 0.41 0.29 0.18 0.17
Intra., Piecewise 0.27 0.19 0.09 0.09

130.li Inter., Context 6.30 2.84 8.10 7.90
Inter., Piecewise 3.67 2.43 6.87 5.58
Intra., Piecewise 2.25 1.77 4.11 4.16

132.ijpeg Inter., Context 10.73 8.83 1375.16 1419.20
Inter., Piecewise 7.74 6.97 1168.59 1232.78
Intra., Piecewise 6.76 6.50 1174.01 1236.21

134.perl Inter., Context 20.26 8.68 78.52 79.32
Inter., Piecewise 11.05 8.56 81.64 77.37
Intra., Piecewise 10.50 7.81 74.30 75.85

Average Inter., Context 12.32 5.70 296.74 305.06
Inter., Piecewise 6.39 4.60 254.36 266.01
Intra., Piecewise 5.45 4.18 253.22 265.85

Table 10: Table showing the time in seconds required to run the analyses in the first thru fourth columns
of Figure 83

with the Supergraph Partitioning Algorithm (preserving all data-flow facts) results in a graph that is 1.39
times the size of the original supergraph. Using the Edge Redirection Algorithm and the Supergraph
Partitioning Algorithm results in graph that is 1.2 times the size of the original supergraph. Below,
we will discuss how much the Edge Redirection Algorithm helps in reducing the hot-path graph and
preserving only decided branches.

Table 10 shows the runtimes for the first four phases of the first set of experiments. The second run
of the Supergraph Partitioning Algorithm is much faster because it must collapse many fewer nodes.
(The Supergraph Partitioning Algorithm spends the bulk of its time computing the meet of data-flow
facts from vertices that it has decided to collapse.) For the most part, the Supergraph Partitioning Algo-
rithm and the Edge Redirection Algorithm are cheap, especially when compared to the time required to
perform interprocedural data-flow analysis. The one exception is when the Edge Redirection Algorithm
is run on ijpeg.

Next, we consider the effect of removing the requirement that the Edge Redirection Algorithm
translate a path profile for the hot-path supergraph to a path profile for the reduced hot-path supergraph.
Recall from Section 10.6 that sometimes an replacing an edge u→ v in a graph G with an edge u→ v ′

to create a graph H may make it impossible to translate a path profile for G into a path profile for H .
To avoid this problem, we restrict the set of edge redirections that the Edge Redirection Algorithm can
perform. However, if we are not concerned with translating a path profile from G to H , then we can
increase the opportunities for redirecting edges. Figure 84 shows the results of running the experiments

177

Figure 84: Plots of the amount of reduction done using successive iterations of the Supergraph Par-
titioning Algorithm and the Edge Redirection Algorithm. In these experiments, the Edge Redirection
Algorithm is not restricted by the need to translate the path profile on the hot-path supergraph into a
path profile for the reduced graph.

178

Benchmark Express-Lane
Trans.

Time 1st

Partition
Time 2nd

Partition

Time 1st

Edge
Redirection

Time 2nd

Edge
Redirection

124.m88ksim Inter., Context 23.3476 6.87433 19.9231 16.887
Inter., Piecewise 8.88762 4.81371 13.6085 12.7472
Intra., Piecewise 7.5746 4.82251 12.9695 12.2203

129.compress Inter., Context 1.2146 0.481806 0.447762 0.317464
Inter., Piecewise 0.400633 0.1993 0.129242 0.0846311
Intra., Piecewise 0.261307 0.166892 0.069011 0.059237

130.li Inter., Context 5.75041 2.5138 6.292 5.87555
Inter., Piecewise 3.51735 2.21667 5.37468 4.54208
Intra., Piecewise 2.15271 1.73595 3.88901 3.90023

132.ijpeg Inter., Context 10.307 7.42806 1304.09 1305.13
Inter., Piecewise 7.52524 6.76588 1166.43 1229.05
Intra., Piecewise 6.64826 6.32887 1164.78 1227.36

134.perl Inter., Context 15.3893 8.26194 76.9664 77.5232
Inter., Piecewise 10.8743 8.57494 73.311 73.5693
Intra., Piecewise 10.3659 7.65246 80.4258 75.6512

Average Inter., Context 11.201782 5.1119872 281.5438524 281.1466428
Inter., Piecewise 6.2410286 4.5141 251.7706844 263.9986422
Intra., Piecewise 5.4005554 4.1413364 252.4266642 263.8381934

Table 11: Table showing the time in seconds required to run the reduction algorithms in the first thru
fourth columns of Figure 84

described at the beginning of this section (which are summarized in Figure 83), but without the require-
ment that we be able to update a path profile after performing the Edge Redirection Algorithm. Figure 84
shows that removing this requirement allows the Edge Redirection Algorithm to be much more effec-
tive. The disadvantage of not being able to translate a path profile is that the profiling information is not
available for later passes of the compiler that may come after the express-lane transformation.

We have presented three strategies for reducing the hot-path supergraph while preserving decided
branches: (1) use the Supergraph Partitioning Algorithm (by itself); (2) use the Supergraph Partition-
ing Algorithm together with the Edge Redirection Algorithm (Column 5 of Figure 83); and (3) use the
Supergraph Partitioning Algorithm together with the Edge Redirection Algorithm, but without the re-
quirement that the path profile on the hot-path supergraph be updated to a path profile for the reduced
graph(Column 5 of Figure 84). Figure 85 compares the results of these three strategies and shows that
the third strategy has the best results.

12.1 Using the Express-Lane Transformation for Program Optimization

Tables 12 through 18 show the results of using various forms of the express-lane transformation together
with Range Analysis to optimize SPEC95Int benchmarks. Specifically, we followed the following steps:

1. Perform an express-lane transformation.

2. Perform interprocedural range analysis on the hot-path (super)graph.

179

Figure 85: Comparison of strategies for reducing the hot-path supergraph while preserving decided
branches.

180

Benchmark Base run time (sec)
124.m88ksim 146.70
129.compress 135.46
130.li 125.81
132.ijpeg 153.83
134.perl 109.04

Table 12: Base run times for SPECInt95 benchmarks. The programs were optimized using interproce-
dural range analysis to remove decided branches and constant expressions (but without any express-lane
transformation). Then they were compiled using GCC 2.95.3 -O3.

Benchmark None Partitioning
Partitionining, Kill
Range Prop

124.m88ksim -34.7% -9.3% -29.5%
129.compress -14.0% 1.0% -4.3%
130.li -57.2% -20.4% -27.8%
132.ijpeg -7.5% -1.6% -1.2%
134.perl -21.3% 4.9% 6.0%

Table 13: Program speedups due to the interprocedural, context express-lane transformation. In Col-
umn II, no reduction algorithm was used on the hot-path supergraph. In Column III, the Supergraph
Partitioning Algorithm was used, preserving decided branches. In Column IV, the Supergraph Parti-
tioning Algorithm was used, preserving decided branches; then the results of range propagation were
discarded.

Benchmark
Partitioning and Edge
Redirection, Save all
DFA

Partitioning and Edge
Redirection, Save
Branches

124.m88ksim -13.1% -11.4%
129.compress 2.4% 2.0%
130.li -30.4% -25.4%
132.ijpeg -4.5% -4.8%
134.perl -3.1% -3.0%

Table 14: Program speedups due to the interprocedural, context express-lane transformation. In Col-
umn II, the hot-path supergraph was reduced using the Supergraph Partitioning Algorithm and the Edge
Redirection Algorithm such that all data-flow facts were preserved. In Column III, the hot-path super-
graph was reduced using the Supergraph Partitioning Algorithm and the Edge Redirection Algorithm
such that decided branches were preserved. In both Columns II and III, the Edge Redirection Algorithm
was not inhibited by the requirement that the path profile be translated.

181

Benchmark None Partitioning
Partitionining, Kill
Range Prop

124.m88ksim -13.6% -0.7% -11.4%
129.compress -14.0% 0.5% -4.5%
130.li -68.1% -26.7% -40.1%
132.ijpeg -2.3% -2.2% -0.8%
134.perl -19.4% 2.8% 2.7%

Table 15: Program speedups due to the interprocedural, piecewise express-lane transformation. In
Column II, no reduction algorithm was used on the hot-path supergraph. In Column III, the Supergraph
Partitioning Algorithm was used, preserving decided branches. In Column IV, the Supergraph Parti-
tioning Algorithm was used, preserving decided branches; then the results of range propagation were
discarded.

Benchmark
Partitioning and Edge
Redirection, Save all
DFA

Partitioning and Edge
Redirection, Save
Branches

124.m88ksim 5.7% 5.4%
129.compress -0.2% 2.0%
130.li -11.4% 2.5%
132.ijpeg -2.2% -4.2%
134.perl 6.1% 3.6%

Table 16: Program speedups due to the interprocedural, piecewise express-lane transformation. In
Column II, the hot-path supergraph was reduced using the Supergraph Partitioning Algorithm and the
Edge Redirection Algorithm such that all data-flow facts were preserved. In Column III, the hot-path
supergraph was reduced using the Supergraph Partitioning Algorithm and the Edge Redirection Algo-
rithm such that decided branches were preserved. In both Columns II and III, the Edge Redirection
Algorithm was not inhibited by the requirement that the path profile be translated.

182

Benchmark None Partitioning
Partitionining, Kill
Range Prop

124.m88ksim 10.6%+ 13.0% 1.2%
129.compress 6.4% 5.5% -2.1%
130.li 8.1% 10.3% 7.2%
132.ijpeg 1.0% 0.7% -0.1%
134.perl 9.7% 10.0% 6.3%

Table 17: Program speedups due to the intraprocedural, piecewise express-lane transformation. In
Column II, no reduction algorithm was used on the hot-path supergraph. In Column III, the Supergraph
Partitioning Algorithm was used, preserving decided branches. In Column IV, the Supergraph Parti-
tioning Algorithm was used, preserving decided branches; then the results of range propagation were
discarded.

Benchmark
Partitioning and Edge
Redirection, Save all
DFA

Partitioning and Edge
Redirection, Save
Branches

124.m88ksim 11.6% 7.4%
129.compress 2.1% 0.1%
130.li -1.7% -0.6%
132.ijpeg -1.6% -2.0%
134.perl 9.9% 5.4%

Table 18: Program speedups due to the intraprocedural, piecewise express-lane transformation. In
Column II, the hot-path supergraph was reduced using the Supergraph Partitioning Algorithm and the
Edge Redirection Algorithm such that all data-flow facts were preserved. In Column III, the hot-path
supergraph was reduced using the Supergraph Partitioning Algorithm and the Edge Redirection Algo-
rithm such that decided branches were preserved. In both Columns II and III, the Edge Redirection
Algorithm was not inhibited by the requirement that the path profile be translated.

183

3. Reduce the hot-path (super)graph.

4. Use the results of interprocedural range analysis to eliminate branches and to replace constant
expressions with a literal.

5. Emit C source code for the transformed program.

6. Compile the C source code using GCC 2.95.3 -O3.

7. Compare the runtime of the new program with the runtime of the original program.

For a base case, we performed range analysis without any express-lane transformation and used the
results to eliminate branches and replace constant expressions (Table 12). We ran experiments with the
following express-lane transformations:

1. The interprocedural, context express-lane transformation with CA = 99% (Tables 13 and 14).

2. The interprocedural, piecewise express-lane transformation with CA = 99% (Tables 15 and 14).

3. The intraprocedural, piecewise express-lane transformation with CA = 99% (Tables 17 and 18).

For each of the express-lane transformations, we tried the following hot-path graph reduction strategies:

1. None.

2. Using the Supergraph Partitioning Algorithm to preserve all decided branches (as was done in
Figure 81).

3. Using the Supergraph Partitioning Algorithm and the Edge Redirection Algorithm to preserve all
of the results of range analysis (which is equivalent to the fourth column of Figure 84); here, the
requirement that the path profile be translated after edge redirection was lifted.

4. Using the Supergraph Partitioning Algorithm and the Edge Redirection Algorithm to preserve all
decided branches (which is equivalent to the fifth column of Figure 84); as above, the requirement
that the path profile be translated after edge redirection was lifted.

We also ran experiments where we performed an express-lane transformation, then used the second
listed reduction strategy (partioning), and then discarded the results of range analysis. In all of the
experiments, the reported run time is the average of three runs.

The best results were for the intraprocedural express-lane transformation (Tables 17 and 18). The
intraprocedural express-lane transformation together with the range analysis optimizations has a ben-
efit to performance even when no reduction strategy is used to limit code growth. In fact, aggressive
reduction strategies can destroy the performance gains. There are several possible reasons for this:

1. GCC may be able to take advantage of the express-lane transformation to perform its own opti-
mizations (e.g., code layout [44]).

2. Reduction of the hot path graphs may result in poorer code layout that requires more unconditional
jumps along critical paths [48].

3. The more aggressive reduction strategies seek only to preserve decided branches, and may destroy
data-flow facts that show an expression to have a constant value.

184

4. The reduced graph may have a code layout that interacts poorly with the instruction cache.

The results for the interprocedural express-lane transformations are disappointing. Here the perfor-
mance is usually degraded by the express-lane transformation. There are two likely reasons for this:

1. We use a poor implementation of entry and exit splitting.

2. There is significantly more code growth than in the intraprocedural express-lane transformation.

Unlike the intraprocedural express-lane transformation, using aggressive reduction strategies with the
interprocedural express-lane transformations usually helps performance. In the interprocedural case, not
only does graph reduction lessen code growth, it may also eliminate the need to perform entry and exit
splitting. In fact, with the most aggressive reduction strategy, the interprocedural piecewise express-lane
transformation consistently leads to modest performance improvements (Table 16).

It should also be noted that the interprocedural express-lane transformations combined with the
range-analysis optimizations do have a strong positive impact on program performance, although it is
usually not as great as the costs incurred by the transformations. This can be seen in the experiments
where we discarded the range-analysis results (and did not eliminate branches and replace constants):
the performance was consistently worse. In those few cases where performance showed a slight im-
provement, we assume there was a change in code layout that had positive instruction cache effects.

185

Chapter 13

RelatedWork

This chapter is divided into two sections. Section 13.1 discusses work that is related to our path-profiling
techniques. Section 13.2 discusses work that is related to the interprocedural express-lane transforma-
tion.

13.1 Related Profiling Work

The path-profiling techniques presented here extend the Ball-Larus path-profiling technique of [12].
Section 2.1 summarizes the approach taken in [12]. Our approach generalizes their technique in several
ways:

1. We present techniques for collecting interprocedural path profiles. This means that the observable
paths (that may be logged in a profile) may cross procedure boundaries. We present algorithms
for collecting both interprocedural context and interprocedural piecewise path profiles.

2. In context path profiling, each observable path corresponds to a pair 〈C, p〉, where p corresponds
to a subpath of an execution sequence, andC corresponds to a context (e.g., a sequence of pending
calls) in which pmay occur. The set of all p such that 〈C, p〉 is an observable path must cover every
possible execution sequence. In our interprocedural, context path profiling technique, the context
C may include not only the sequence of pending calls, but also the last acyclic intraprocedural
path that was taken before each pending call. We also present an intraprocedural, context path
profiling where the context may summarize the path taken to a loop header.

Ammons, Ball, and Larus also offer an interprocedural context path profiling method in [4]. In their
method, each observable path is a pair 〈C, p〉 where C is (a summary of) a sequence of pending calls
and p is a path from the Ball-Larus path profiling technique (i.e., an intraprocedural, acyclic path). In
contrast, in our interprocedural, context path-profiling technique, an observable path is a pair 〈C, p〉
whereC is a (fragmented) interprocedural path that contains information not only about the sequence of
pending calls, but also about the paths taken before each pending call, and p is an interprocedural path
that may cross procedure boundaries.

Theoretically, our observable paths contain more information. However, in order to lower the over-
head of our profiling machinery, we are often forced to break observable paths into smaller pieces. This
means that the amount of calling context that can be captured by our profiling technique is bounded in
practice. So, there is a trade-off between our profiling techniques and the one described in [4]. It is
possible to combine the two methods to obtain a profiling technique where each observable path is a
triple 〈C ′, C, p〉, where C ′ is the context summary used in [4], and C and p form an observable path in
our interprocedural, context technique. Such a combination is beyond the scope of the thesis.

Young and Smith present a path-profiling technique that uses a sliding window that advances one
edge at a time over the program trace; each time the window advances, they record the execution of the
path that is found in the window [63, 65]. Their technique may be contrasted with ours in the following

186

ways: (1) in their technique, there is a great deal more overlap between observable paths; (2) the length
of each observable path is fixed by the size of the sliding window; (3) they do not distinguish between
cyclic and acyclic paths; and (4) they are only concerned with intraprocedural paths. One advantage
of their technique is that they can handle cyclic paths. A possible disadvantage is that every path is of
a fixed length: in [65], Young experiments with sliding windows that are as short as 1 and as long as
15; in our interprocedural, context path profiles, the average path length can be as long as 70 edges (see
Table 4), though this comparison is not entirely fair since we are comparing an interprocedural, context
path profiling technique with an intraprocedural path-profiling technique. Young has shown that with
a careful implementation, the overhead of their profiling technique is reasonable (it is similar to our
overhead for interprocedural path profiling) [65].

Bit tracing is an example of a piecewise path-profiling technique [12]. In bit tracing, the outcome
of each n-ary branch is recorded using log n bits in a buffer. When the buffer is filled, a counter is
incremented for the path in the buffer. In contrast to the Ball-Larus technique and to our techniques, bit
tracing does not produce a dense numbering of observable paths [12]. This means that, in general, more
bits may be required for a path name, which may increase the cost of the profiling machinery, or lower
the average length of an observable path. The overhead for bit-tracing is also likely to be higher because
(1) it must include repeated checks for whether the end of the buffer has been reached and (2) there must
be some instrumentation code on each edge. In contrast, the Ball-Larus technique and our path-profiling
techniques do not have to check for reaching the end of a buffer, and there is some flexibility in picking
which edges to put instrumentation on [12, 10].

Recently, Larus developed a technique for gathering a whole program path [42]. A whole pro-
gram path is an encoding of a program’s entire execution sequence; that is, a whole program path for
a program P encodes the sequence of all control decisions made during an execution of P . (This is
an improvement of Ball and Larus’s earlier technique for collecting and representing an execution se-
quence [11].) The encoding has the following advantages: (1) it is relatively cheap to generate; (2) it is
compact; and (3) it is easy it analyze. In particular, Larus shows how to analyze the whole program path
in order to identify frequently executed paths; the paths identified by this technique may by cyclic, and
they may cross procedure boundaries.

Zhang and Gupta developed a timestamped whole program path [66]. A timestamped whole pro-
gram path is a variant of a whole program path; Zhang and Gupta claim that certain types of information
(e.g., intraprocedural path profiles) are easier to extract from a timestamped whole program path than
from one of Larus’s whole program paths.

Whole program paths and timestamped whole program paths were developed after our profiling
techniques (see [46]) and they may obviate our approach. (There is also recent evidence that suggests
that the information in edge profiles is sufficient for many optimization tasks [14, 54, 18, 17].) The
information in a whole program path subsumes the information in a path profile. What is more, the
hot paths that are extracted from a whole program path do not suffer from the limitations of paths in
our profiling techniques: they may contain backedges and recursive calls. However, no matter what
technique is used to select hot paths, our techniques for performing the interprocedural express-lane
transformation and for reducing the hot-path graph are still applicable.

13.2 Related Path Optimization Work

Work that focuses on improving the performance of particular program paths dates back at least to
Fisher’s trace scheduling technique [28]. In this technique, frequently executed paths, called traces, are

187

optimized at the expense of infrequently executed paths. Code motion is used to improve (i.e., shorten)
the instruction schedule on a parallel machine; instructions are copied to CFG edges that branch into or
out of the trace and the edges may be moved in order to preserve the program’s execution behavior; the
technique does not use path duplication.

Hwu et al. examined the superblock transformation [44, 35, 20]. A superblock is similar to an
express-lane in that there is no control-flow into the middle of a superblock. The technique for creat-
ing superblocks estimates hot paths by using edge profiles. [44] focuses on improving the instruction
schedule within a superblock. In [20], Chang, Mahlke, and Hwu investigate the benefits of superblock
formation for dead-code elimination, common-subexpression elimination, and copy propagation. Hank
combines function inlining with superblock formation, in effect duplicating interprocedural paths. He
investigates the benefits for several data-flow problems [35]. None of these works include a stage for
eliminating duplicated code that did not show improved data-flow results.

Another interesting example of using path duplication to improve data-flow analysis is found in Po-
letto’s work on Path Splitting [52]. This work duplicates paths within a loop body in order to provide
optimal reaching-definitions information along the duplicated paths. The improved information is used
in several classic code optimizations, including copy propagation, common subexpression-elimination,
dead-code elimination, and code hoisting. The path-splitting transformation is done statically: no profil-
ing information is used. It also differs from our work on the interprocedural express-lane transformation
in that it focuses on optimizing intraprocedural loop bodies and does not include a stage to collapse
vertices with similar data-flow solutions.

In general, procedure cloning and procedure inlining can be considered to be a kind of bulk duplica-
tion of interprocedural paths; a highly abbreviated list of works that have examined procedure cloning
or procedure inlining includes [24, 34, 60, 26, 19, 55, 25, 7]. Given a call-site c to a procedure P ,
creating a unique copy of P that is only called from c (or inlining a copy of P at c) has the effect of
separating the interprocedural paths that enter P through c from the interprocedural paths that enter P
through some other call-site. However, individual paths that enter P through c are not isolated from one
another, as they can be in the interprocedural express-lane transformation.

Of the work done on procedure cloning, [60] is interesting because it attempts to use intraprocedural
path profiles to guide procedure cloning in order to improve data-flow results along interprocedural
paths. More specifically, in [60], for each call-site s to a procedure P , they collect a Ball-Larus path
profile of P . If there is a significant difference in the profiles for a pair of call-sites that both call a
procedure P , then they assume that the call-sites should each call different copies of P . In some cases,
this technique has the effect of isolating interprocedural paths from one another. However, this approach,
like all techniques based on inlining and cloning, cannot be used to separate interprocedural paths that
contain the same call-sites.

Bodik also uses code duplication to improve the performance of specific program paths [18]. His
approach differs from ours in that code duplication is the last step in his optimization strategy: first he
creates a program representation that exposes possible optimization opportunities; then he uses data-
flow analysis to identify paths that can benefit from duplication; and, finally, he duplicates paths. In
the second step, Bodik uses profiling information to pick which paths to duplicate. Bodik also uses
demand-driven analysis to focus his analyses on hot paths. In our optimization strategy, we start by
duplicating hot-paths, then perform data-flow analysis on the entire hot-path supergraph, and finally
eliminate duplicate code that does not show any benefit.

Young’s thesis includes work on using path profiling to improve the accuracy of static branch pre-
diction and on improving instruction scheduling [65, 63, 64]. As mentioned above, his work is based on
intraprocedural path profiles.

188

There are many other works that are based on improving the performance of specific paths by using
path duplication, including [9, 21, 48, 49, 16]. There has also been a great deal of work that uses
techniques besides code duplication (such as code motion, predication, and speculation) to improve the
performance of certain paths at the expense of others; included in this group are [31, 33, 32].

In summary, the express-lane optimization strategy differs from other path-specific optimization
strategies for one or more of the following reasons:

1. we use interprocedural path profiles;

2. we duplicate interprocedural paths;

3. we perform path duplication before performing data-flow analysis;

4. and we attempt to eliminate duplication when there has been no benefit to the results of the data-
flow analysis.

189

Chapter 14

Contributions and Future Work

We have shown how to extend the Ball-Larus path-profiling technique in many ways. In particular, we
have developed several interprocedural path-profiling techniques. Our techniques are practical for most
benchmarks, and our path profiles have several advantages over their intraprocedural counter-parts: (1)
the paths may cross procedure boundaries; and (2) the paths (especially in interprocedural context path
profiles) tend to be significantly longer. This means that our interprocedural path-profiling techniques
contain a more accurate summary of a program’s execution behavior. This is a positive result for any
application of path profiling.

The thesis has examined in detail one application of path profiling: the express-lane transforma-
tion. We presented techniques for performing the interprocedural express-lane transformation, both for
an interprocedural, context path profile and for an interprocedural, piecewise path profile. We have
shown that the interprocedural express-lane transformations do improve the results of range analysis
along the duplicated paths. Furthermore, the improvements for range analysis are usually better for one
of our interprocedural express-lane transformations than they are for the intraprocedural express-lane
transformation.

Unfortunately, we have not shown that the interprocedural express-lane transformation is an ef-
fective optimization strategy. One reason for this is that the benefits for range-analysis (and branch
elimination) are not great enough to offset the costs of the express-lane transformation, namely, code
growth and increased function-call overhead due to entry and exit-splitting.

Our implementation of entry- and exit-splitting is not very efficient. We implement entry-splitting
by passing an extra parameter to each procedure and inserting a switch statement on this parameter at the
beginning of the procedure; similarly, we implement exit-splitting by returning an extra value and in in-
serting a switch statement on this value in each return-site vertex. The advantage of this implementation
is that it can be done as a source-to-source transformation using the SUIF toolkit, which simplified our
development. However, it is not the most efficient approach for implementing entry and exit splitting.
At this point, it is impossible to say if using a better implementation of entry- and exit-splitting would
help make the interprocedural express-lane transformation a desirable program optimization.

We expect that the express-lane transformation will benefit other data-flow analyses in much the
same way that it benefits range-analysis. One area of future research is to measure the effects of the
express-lane transformation on other data-flow analyses such as common sub-expression elimination,
dead-code elimination, copy propagation, and flow-sensitive pointer analysis. Our preliminary results
with range analysis suggest that the express-lane transformation combined with multiple data-flow anal-
yses will result in improved runtime performance.

The thesis also contains several contributions to the problems of reducing the hot-path graph and
reducing the hot-path supergraph. This work may be applicable to the application of efficiently enforcing
security policies (see below). We have shown that the problem of reducing a hot-path graph while
preserving the valuable data-flow facts is NP-hard. We have also given some simple examples where
the Coarsest Partitioning Algorithm does a poor job of reducing the hot-path graph. We presented a new
technique, called the Edge Redirection Algorithm, that helps to reduce the hot-path graph further than

190

the Coarsest Partitioning Algorithm does. We have also shown that the Edge Redirection Algorithm can
be a valuable tool when reducing the Hot-path Supergraph.

We have also shown how to adapt the Coarsest Partitioning Algorithm to reduce the hot-path super-
graph. The Coarsest Partitioning Algorithm can be used to minimize a deterministic, finite automaton.
Our modified version of the Coarsest Partitioning Algorithm, called the Supergraph Partitioning Al-
gorithm, is used to reduce (though it does not minimize) the hot-path supergraph, an example of a
pushdown automaton.

One area of future work is to find an efficient algorithm to replace the Supergraph Partitioning
Algorithm that: (1) takes as input a hot-path supergraph H∗ and a partition π of H∗’s vertices and (2)
produces as output a minimal partition π′ that respects the edges ofH∗ and the partition π. Alternatively,
one could show that such an algorithm is unlikely to exist, by showing that the problem is NP-hard.
(Note that an algorithm that produces the minimal partition π ′ that respects H∗ and π still does not
solve the problem of finding a minimal reduction of H∗ that preserves valuable data-flow facts; this is
because the choice of the input partition π may be suboptimal, and because finding a minimal reduction
of H∗ may require modifying the edge relation of H∗, not just partitioning H∗’s vertices.)

Another area of future work is to determine how much worse our reduction techniques are than an
optimal reduction strategy. In other words, how much larger are the reduced hot-path graphs produced
by our techniques than the reduced hot-path graph produced by an optimal hot-path reduction algo-
rithm? Clearly, a reduced hot-path graph must be at least as large as the supergraph from which the
hot-path graph was constructed, which puts a lower bound on how small a reduced hot-path graph can
be. However, this does not establish a precise lower bound for the size of the reduced hot-path graph.

Another approach to reducing the hot-path supergraph is to use procedure extraction [41, 27, 23].
Procedure extraction attempts to find identical code segments that can be extracted into a procedure and
then replaced with a call to the new procedure. This may make legacy code more understandable, and
it may reduce the size of the program (which is an important goal for programs running on memory-
constrained systems). Use of procedure extraction on a hot-path supergraph H∗ has the potential to
create a reduced hot-path supergraph that is smaller that the original supergraph G∗. Our reduction
techniques cannot do this: we only eliminate hot-path supergraph vertices that we created during the
express-lane transformation; we cannot “fold together” similar vertices that are not duplicates.

Procedure extraction also differs from our techniques for reducing the hot-path supergraph in the
following sense: in our techniques, given duplicate vertices v and v ′, we can (potentially) eliminate v′

if for every path p′ from v′, there is a path p from v that is equivalent or better than p′. In contrast, using
procedure extraction, v and v′ can be replaced by a single vertex if for every path p′ from v′ that is in
the region to be extracted, there is a path p from v that is equivalent. This potentially gives procedure
extraction many more opportunities to reduce the hot-path supergraph in size. Note, however, that
procedure extraction may have a negative impact on the program’s performance; in particular, it may
add procedure-call overhead along hot paths.

Recently, there has been increased interest in combining security automata with a program’s control-
flow (super)graph in order to guarantee at runtime that the program does not violate certain security
protocols (e.g., see [22, 56]). The problem of combining a security automaton with a supergraph is
similar to the problem of combining a hot-path automaton with a supergraph. Thus, enforcing security
policies (efficiently at run-time) may be another application of the Hot-Path Tracing Algorithm and our
algorithms for reducing the hot-path graph. This is another area of future work.

191

Bibliography

[1] A. V. Aho, J.E. Hopcroft, and J.D. Ullman. The design and analysis of computer algorithms.

Addison-Wesley, 1974.

[2] Alfred V. Aho. Algorithms for finding patterns in strings, chapter 5, pages 255–300. MIT Press,

1994.

[3] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and Tools. Addison-

Wesley, 1985.

[4] G. Ammons, T. Ball, and J. Larus. Exploiting hardware performance counters with flow and

context sensitive profiling. In PLDI’97, June 1997.

[5] G. Ammons and J. Larus. Improving data-flow analysis with path profiles. In Proc. of the ACM

SIGPLAN 98 Conf. on Program. Lang. Design and Implementation, June 1998.

[6] L. O. Andersen. Program Analysis and Specialization for the C Programming Language. PhD

thesis, DIKU, Univ. of Copenhagen, May 1994. (DIKU report 94/19).

[7] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney. Adaptive

optimization in the jalapeno jvm. In ACM SIGPLAN Conference on Object-Oriented Programming

Systems, Languages, and Applications, Oct. 2000.

[8] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transformations for high-

performance computing. ACM computing surveys, 26(4), 1994.

[9] Vasanth Bala, Evelyn Dusterwald, and Sanjeev Banerjia. Transparent dynamic optimization: The

design and implementation of dynamo. Technical report, Hewlett-Packard Company, 1999.

[10] T. Ball. Efficiently counting program events. In Trans. on Prog. Lang. and Syst., 1994.

[11] T. Ball and J. Larus. Optimally profiling and tracing programs. Trans. on Prog. Lang. and Syst.,

16:1319–1360, 1994.

[12] T. Ball and J. Larus. Efficient path profiling. In MICRO 1996, 1996.

[13] T. Ball and J. Larus. Programs follow paths. Technical Report MSR-TR-99-01, Microsoft Re-

search, 1999.

[14] T. Ball, P. Mataga, and M. Sagiv. Edge profiling versus path profiling: The showdown. In Sympo-

sium on Principles of Programming Languages, New York, NY, January 1998. ACM Press.

192

[15] R. Bodik, R. Gupta, and M.L. Soffa. Interprocedural conditional branch elimination. In SIGPLAN

Conference on Programming Languages Design and Implementation, 1997.

[16] R. Bodik, R. Gupta, and M.L. Soffa. Complete removal of redundant expressions. In ACM SIG-

PLAN Conference on Programming Language Design and Implementation, 1998.

[17] R. Bodik, R. Gupta, and M.L. Soffa. Load-reuse analysis: Design and evaluation. In SIGPLAN

Conference on Programming Languages Design and Implementation, 1999.

[18] Rastislav Bodik. Path-sensitive, value-flow optimizations of programs. PhD thesis, University of

Pittsburg, 2000.

[19] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, and Wen mei W. Hwu. Profile-guided auto-

matic inline expansion for C programs. Software Practice and Experience, 22(5):349–369, May

1992.

[20] Pohua P. Chang, Scott A. Mahlke, and Wen mei W. Hwu. Using profile information to assist classic

code optimizations. Software practice and experience, 1(12), Dec. 1991.

[21] R. Cohn and P.G. Lowney. Hot cold optimization of large Windows/NT applications. In MICRO-

29, 1996.

[22] Thomas Colcombet and Pascal Fradet. Enforcing trace properties by program transformation. In

Symposium on Principles of Programming Languages, 2000.

[23] K. Cooper and N. McIntosh. Enhanced code compression for embedded RISC processors. In

SIGPLAN Conference on Programming Languages Design and Implementation, 1999.

[24] K.D. Cooper, M.W. Hall, and K. Kennedy. A methodology for procedure cloning. Computer

Languages, 19(2):105–118, April 1993.

[25] J. Dean and C. Chambers. Towards better inlining decisions using inlining trials. In Conf. on Lisp

and Functional Programming, pages 273–282, June 1994.

[26] S. Debray. Profile-guided context-sensitive program analysis. draft report, October 1998.

[27] Soumya K. Debray, William Evans, Robert Muth, and Bjorn De Sutter. Compiler techniques for

code compaction. Trans. on Prog. Lang. and Syst., 2000.

[28] J. A. Fisher. Trace scheduling: A technique for global microcode compaction. In IEEE Trans. on

Computers, volume C-30, pages 478–490, 1981.

[29] M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the theory of NP-

completeness. W. H. Freeman and Co., San Fransisco, 1979.

193

[30] David Gries. Describing an algorithm by hopcroft. Acta Informatica, 2:97–109, 1973.

[31] R. Gupta, D. Berson, and J.Z. Fang. Path profile guided partial dead code elimination using

predication. In International Conference on Parallel Architectures and Compilation Techniques,

1997.

[32] R. Gupta, D. Berson, and J.Z. Fang. Resource-sensitive profile-directed data flow analysis for code

optimization. In IEEE/ACM 30th International Symposium on Microarchitecture, 1997.

[33] R. Gupta, D. Berson, and J.Z. Fang. Path profile guided partial redundancy elimination using

speculation. In IEEE International Conference on Computer Languages, 1998.

[34] Mary Wolcott Hall. Managing Interprocedural Optimization. PhD thesis, Rice University, 1991.

[35] Richard Eugene Hank. Region-Based Compilation. PhD thesis, University of Illinois at Urbana-

Champaign, 1996.

[36] Matthew S. Hecht. Flow analysis of computer programs. Elsevier North-Holland, New York, N.Y.,

1977.

[37] L. Howard Holley and Barry K. Rosen. Qualified data flow problems. IEEE Trans. on Softw. Eng.,

1981.

[38] J. Hopcroft. An n log n algorithm for minimizing the states of a finite automaton. The Theory of

Machines and Computations, pages 189–196, 1971.

[39] J.B. Kam and J.D. Ullman. Monotone data flow analysis frameworks. Acta Inf., 7(3):305–318,

1977.

[40] G.A. Kildall. A unified approach to global program optimization. In Symposium on Principles of

Programming Languages, pages 194–206, New York, NY, 1973. ACM Press.

[41] Raghavan Komondoor and Susan Horwitz. Semantics-preserving procedure extraction. In Sympo-

sium on Principles of Programming Languages, 2000.

[42] J. Larus. Whole program paths. In SIGPLAN Conference on Programming Languages Design and

Implementation, 1999.

[43] James R. Larus and Eric Schnarr. Eel: Machine-independent executable editing. In SIGPLAN

Conference on Programming Languages Design and Implementation, pages 291–300, 1995.

[44] Wen mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang, Nancy J. Warter, Roger A.

Bringmann, Roland G. Ouellette, Richard E. Hank, Tokuzo Kiyohara, Grant E. Haab, John G.

194

Holm, and Daniel M. Lavery. The superblock: and effective technique for VLIW and superscaler

compilation. The Journal of Supercomputing, pages 229–248, 1993.

[45] D. Melski and T. Reps. Interconvertibility of set constraints and contex-free language reachabil-

ity. In Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Base

Program Manipulation, pages 74–89, June 1997.

[46] D. Melski and T. Reps. Interprocedural path profiling. In International Conference on Compiler

Construction. Springer-Verlag, 1999.

[47] D. Melski and T. Reps. Interconvertibility of a class of set constraints and context-free language

reachability. Theoretical Computer Science, 248:29–98, 2000. (Invited submission).

[48] F. Mueller and D. B. Whalley. Avoiding unconditional jumps by code replication. In SIGPLAN

Conference on Programming Languages Design and Implementation, pages 322–330, 1992.

[49] Frank Mueller and David B. Whalley. Avoiding conditional branches by code replication. In SIG-

PLAN Conference on Programming Language Design and Implementation, pages 56–66, 1995.

[50] R. Muth and S. Debray. Partial inlining. (Unpublished technical summary).

[51] Jason R. Patterson. Accurate static branch prediciton by value range propagation. In SIGPLAN

Conference on Programming Languages Design and Implementation, 1995.

[52] M. Poletto. Path splitting: a technique for improving data flow analysis, 1995.

[53] G. Ramalingam. Bounded Incremental Computation. Springer-Verlag, 1996.

[54] G. Ramalingam. Data flow frequency analysis. In SIGPLAN Conference on Programming Lan-

guages Design and Implementation, New York, NY, May 1996. ACM Press.

[55] R. W. Scheifler. An analysis of inline substitution for a structured programming language. Com-

munications of the ACM, 20(9), Sept. 1977.

[56] F.B. Schneider. Enforceable security policies. Technical report, Cornell University, 1998.

[57] M. Shapiro and S. Horwitz. Fast and accurate flow-insensitive points-to analysis. In Symposium

on Principles of Programming Languages, pages 1–14, 1997.

[58] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In S.S. Muchnick

and N.D. Jones, editors, Program Flow Analysis: Theory and Applications, chapter 7, pages 189–

234. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[59] B. Steensgaard. Points-to analysis in almost-linear time. In Symposium on Principles of Program-

ming Languages, pages 32–41, 1996.

195

[60] T. Way and L. Pollock. Using path spectra to direct function cloning. In Intl. Conf. on Parallel

Architectures and Compilation Techniques, pages 40–47, Oct. 1998.

[61] M.N. Wegman and F.K. Zadeck. Constant propagation with conditional branches. In Symposium

on Principles of Programming Languages, New York, NY, 1985. ACM Press.

[62] R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson, S. Tjiang, S. Liao, C.-W. Tseng,

M. Hall, M. Lam, , and J. Hennessy. SUIF: An infrastructure for research on parallelizing and

optimizing compilers. ACM SIGPLAN Notices, 29(12), 1994.

[63] Cliff Young and Michael D. Smith. Improving the accuracy of static branch prediction using

branch correlation. In Proc. of ASPLOS-VI, 1994.

[64] Cliff Young and Michael D. Smith. Better global scheduling using path profiles. In Proc. of the

31st Annual Intl. Sym. on Microarchitecture, Dec. 1998.

[65] Reginald Clifford Young. Path-based Compilation. PhD thesis, Harvard University, 1998.

[66] Y. Zhang and R. Gupta. Timestamped whole program path representation and its applications. In

SIGPLAN Conference on Programming Languages Design and Implementation, June 2001.

196

Appendix A

Proof of Theorem 3.4.2

Before restating Theorem 3.4.2, we review some definitions.
Let the graph G and the context-free grammar CF be a finite-path graph. Let L be the language

described by CF. Let the function numValidComps take an L-path prefix q in G and return the number
of valid completions of q.

Let q be an L-path prefix in G from Entry to a vertex v. Let w1, . . . , wk be the valid successors of
the path q. Recall that edgeValueInContext(q, v → wi) is defined as follows:

edgeValueInContext(q, v → wi) =

{

0 if i = 1
∑

j<i numValidComps(q ‖ v → wj) otherwise
(33)

Equation (33) is the same as Equation (5) and is illustrated in Figure 14.
Let p be an L-path through G. Recall that the path number for p is given by the following sum:

∑

[p′‖v→w] a prefix of p

edgeValueInContext(p′, v → w) (34)

Equation (34) is the same as Equation (6).
We are now ready to restate Theorem 3.4.2:

Theorem 3.4.2 (Dense Numbering of L-paths) Given the correct definition of the function numValid-
Comps, the Equations (33) and (34) generate a dense numbering of the L-paths through G. That is, for
every L-path p through G, the path number of p is a unique value in the range
[0..(numValidComps([ε : Entry]) − 1)]. Furthermore each value in this range is the path number of
an L-path through G. 2

The Ball-Larus technique achieves a dense numbering by maintaining the following invariant when
assigning values to edges:

Ball-Larus Invariant: For any vertex v, for each path q from v to Exit , the sum of the edges in q is a
unique number in the range [0..(numPaths[v] − 1)].

A consequence of this invariant is that each path from Entry to Exit has a unique path number in the
range [0..(numPaths[Entry] − 1)].

To prove Theorem 3.4.2, we show that the definition of edgeValueInContext given in Equation (33)
maintains a similar invariant. We have the following lemma:

Lemma A.0.1 The definition of edgeValueInContext given by Equation (33) satisfies the following in-
variant:

Invariant 1: For any nonemptyL-path prefix p from Entry to a vertex v, let setOfValidComps(p) be the
(finite) set of valid completions of p. That is, for every path q in setOfValidComps(p), p concate-
nated with q (denoted by p ‖ q) is an L-path from Entry to Exit . Note that numValidComps(p) =

197

Entryglobal

Exitglobal

w

v

u

p

q’

q

Figure 86: Schematic of the paths referred to in Equation (35). Roughly speaking, for a valid com-
pletion q of the path p, the value

∑

q′‖u→w a prefix of q edgeValueInContext(p ‖ q′, u→ w) is the sum of
the “edgeValueInContext” values for the edges of q (where each edge e of q is considered with the
appropriate context—part of which is supplied by p).

198

|setOfValidComps(p)|. Then, for every nonempty path q in setOfValidComps(p), the sum
∑

q′‖u→w a prefix of q

edgeValueInContext(p ‖ q′, u→ w) (35)

is a unique number in the range [0..(numValidComps(p)−1)]. (Figure 86 shows the paths referred
to in Equation (35).)

That is, for each valid completion q of the path p, q contributes a “unique” value n in the range
[0..(numValidComps(p) − 1)] to the path number associated with [p ‖ q]. The value n is unique
in that for every valid completion s 6= q, the value that s contributes to the path number of [p ‖ s]
is different from the value that q contributes to the path number of [p ‖ q].

Proof: The proof is by induction on path length (from longest path to shortest path). Let the length of a
path p be the number of edges in p, and let maxLength be the maximum length of an L-path through G.
(Note that it is not possible to have an infinite L-path, since derivations under a context-free grammar
must be finite; thus, the fact that there are a finite number of L-paths through G means that there is a
bound on the length of L-paths in G.)

For the base case of the induction, we show that for any L-path prefix of length maxLength, Invari-
ant 1 is satisfied. An L-path prefix p of length maxLength must be an L-path and hence must start at
Entry and end at Exit . An L-path that ends at Exit has only the empty path as a valid continuation, and
hence satisfies Invariant 1 vacuously. It follows that any path of length maxLength satisfies Invariant 1.

For the inductive step, suppose that Invariant 1 is satisfied by any L-path prefix of length n that starts
at Entry , where 1 ≤ n ≤ maxLength. Consider an L-path prefix p of length n− 1 that starts at Entry

and ends at a vertex v. If v = Exit , then p satisfies Invariant 1 vacuously. Otherwise, let w1, . . . , wk

be the valid successors of p. By the inductive hypothesis, for any valid successor wi of p, [p ‖ v → wi]
satisfies Invariant 1; that is, for anL-path prefix of the form [p ‖ v → wi], for every valid completion q of
the path [p ‖ v → wi], q contributes a unique value in the range [0..(numValidComps(p ‖ v → wi)−1)]
to the path number of [p ‖ v → wi ‖ q]. This fact, combined with the definition of edgeValueInContext,
gives us that any valid completion [v → wi ‖ q] of the path p will contribute to the path number of
[p ‖ v → wi ‖ q] a unique value in the range:

[edgeValueInContext(p, v → wi)..
(edgeValueInContext(p, v → wi) + numValidComps(p ‖ v → wi) − 1)]

By Equation (33), this is equal to the following range:

∑

j<i

numValidComps(p ‖ v → wj)

 ..

∑

j<i

numValidComps(p ‖ v → wj)

+ numValidComps(p ‖ v → wi) − 1

Because this holds for each successor wi, 1 ≤ i ≤ k, every valid completion of p contributes a unique
value in the range

[

0..

((

k
∑

i=1

numValidComps(p ‖ v → wi)

)

− 1

)]

= [0..(numValidComps(p) − 1)]

(see Figure 14). It follows that Invariant 1 holds for the path p.
In other words, the definition of edgeValueInContext works for the same reason that the Ball-Larus

edge-numbering scheme works—for each valid successor wi of p, a range of numbers is “reserved” for
valid completions of p that start with v → wi.

Consequently, the definition of edgeValueInContext in Equation (33) satisfies Invariant 1. 2

Theorem 3.4.2 is a consequence of Lemma A.0.1.

199

Appendix B

Runtime Environment for Collecting an
Interprocedural, Context Path Profile

In this section, we describe the instrumentation code that is introduced to collect an interprocedural
path profile. The instrumentation for a program P is based on the graph G∗

fin that is constructed for
P as described in Section 3.2. In essence, the instrumentation code threads the algorithm described
in Section 3.5.5 into the code of the instrumented program. Thus, the variables pathNum and num-
ValidCompsFromExit become program variables. There is no explicit stack variable corresponding
to NVCstack; instead, the program’s execution stack is used. The variable pathNum and procedure
parameter numValidCompsFromExit play the following roles in the instrumentation code (see Fig-
ures 12 and 13 for a concrete example):

pathNum: pathNum is a local variable of main that is passed by reference to each procedure P 6=
main. It is used to accumulate the path number of the appropriate path in G∗

fin . As execution
proceeds along the edges of the supergraph G∗ of P , the value of pathNum is updated. The
profile is updated with the value in pathNum at appropriate places (e.g., before an intraprocedural
backedge of G∗ is traversed).

numValidCompsFromExit: Each procedure P 6= main is modified to take an additional param-
eter numValidCompsFromExit that is passed by value. This parameter is used to tell the
instrumentation code in P the number of valid completions from ExitP for the path in G∗

fin that
was used to reach P . The value in numValidCompsFromExit is used with the ρ functions to
compute edge values for the edges of P .

Given a program P and the graphs G∗ and G∗
fin that are associated with P , the modifications de-

scribed below are made to P in order to instrument it to collect an interprocedural context path profile.
(As before, the ordered pair 〈a, b〉 denotes the linear function λx.a · x + b.) We use C++ terminology
and syntax in the example instrumentation code.

1. A global declaration of the array profile is added to the program; profile is an array
of unsigned longs that has numValidComps([ε : Entry global]) elements, i.e., one for each
unbalanced-left path through G∗

fin .1

2. Code is added to the beginning of main to initialize each element of profile to 0. Code is added
just before main exits to output the contents of profile. This output constitutes the profile.

3. Declarations for the variables pathNum, pathNumOnEntry, pathNumBeforeCall, and
numValidCompsFromExit are added to the beginning of procedure main. pathNum is an

1In practice it is likely that a hash table would be used in place of the array profile.

200

unsigned long2 and is initialized to the value that is calculated for
edgeValueInContext([ε : Entryglobal],Entryglobal → Entrymain); see Section 3.5.3. pathNu-
mOnEntry is an unsigned long and is initialized to the same value as pathNum. path-
NumBeforeCall is an unsigned long that is used to save the current value of pathNum
before a recursive call is made. numValidCompsFromExit is an unsigned long ini-
tialized to 1. (Note that pathNumOnEntry and numValidCompsFromExit are somewhat
redundant in main; they are added for consistency with the other procedures.)

4. For each procedure P such that P 6= main, P is modified to accept the following additional
parameters:

unsigned long &pathNum /* passed by reference */
unsigned long numValidCompsFromExit /* passed by value */

That is, a function prototype of the form

return type func(...params...);

becomes

return type func(...params...,
unsigned long &pathNum,
unsigned long numValidCompsFromExit);

5. For each procedure P 6= main, the declarations

unsigned long pathNumOnEntry = pathNum;
unsigned long pathNumBeforeCall;

are added to the declarations of P ’s local variables.

6. Each nonrecursive procedure call is modified to pass additional arguments as follows: Let the
vertices c and r represent the following nonrecursive procedure call:

t = func(...args...); (36)

Let ψr = 〈a, b〉. Then the function call in (36) is replaced by the following call:

t = func(...args..., pathNum, a * numValidCompsFromExit + b);

7. Each recursive procedure call is modified as follows: Let the vertices c and r represent the fol-
lowing recursive procedure call from the procedure P to the function func:

t = func(...args...); (37)
2In practice, it is possible that the number of bits needed to represent a path number will not fit in an unsigned long. In

this case, instead of using unsigned longs it may be necessary to use a Counter class and Counter objects to represent
path numbers. The Counter class must behave like an unsigned long but be able to handle arbitrarily large integers.

201

Let x denote the value of edgeValueInContext([ε : Entry global],Entryglobal → Entry func) (see
Section 3.5.3). Then the procedure call in (37) is replaced by the following code:

/* A: */ pathNumBeforeCall = pathNum;
/* B: */ pathNum = x;
/* C: */ t = func(...args..., pathNum, 1);
/* D: */ profile[pathNum]++;
/* E: */ pathNum = pathNumBeforeCall;

The line labeled “A” saves the value of pathNum for the path that is being recorded before
the recursive call is made. The lines “B” and “C” set up the instrumentation in func to start
recording a new path number for the path that begins with the edge Entry global → Entry func;
the line “C” also makes the original procedure call in (37). The line “D” updates the profile with
the unbalanced-left path in G∗

fin that ends with the edge Exit func → Exitglobal . The line “E”
restores pathNum to the value that it had before the recursive call was made, indicating that the
instrumentation process resumes with the path prefix [p ‖ c→ r], where p is the path taken to c.

8. For each intraprocedural edge v → w that is not a backedge, code is inserted so that as the edge
is traversed, pathNum is incremented by the value ρv→w(numValidCompsFromExit). For
example, consider the following if statement (v, w1, and w2 are labels from vertices in G∗

fin that
correspond to the indicated pieces of code):

v :if(...) {
w1 : ...

} else {
w2 : ...

}

(38)

Let ρv→w1
= 〈a, b〉 and ρv→w2

= 〈c, d〉. Then the if statement given in (38) is replaced by

v :if(...) {
pathNum += a * numValidCompsFromExit + b;

w1 : ...
} else {

pathNum += c * numValidCompsFromExit + d;
w2 : ...

}

Note that one of 〈a, b〉 and 〈c, d〉 will be the function 〈0, 0〉; clearly, no code needs to be added
for an edge labeled with the function 〈0, 0〉.

9. For each intraprocedural edge w → v in procedure P that is a backedge, code is inserted that
updates the profile for one unbalanced-left path and then begins recording the path number for
a new unbalanced-left path. For a example, consider the following while statement (v and w
represent labels from vertices in G∗

fin that correspond to the indicated pieces of code):

v :while(...){
...

w : /* source vertex of backedge */
}

(39)

202

In G∗
fin , the backedge w → v has been replaced by the edges EntryP → v and w → GExitP .

Let ρEntryP →v = 〈a, b〉. In this example, ρw→GExitP = 〈0, 0〉 (because the surrogate edge w →
GExitP is the only edge out of w in G∗

fin). The while statement in (39) is replaced by

v :while(...){
...
w : /* source vertex of backedge */
/* A: */ profile[pathNum]++;
/* B: */ pathNum=pathNumOnEntry+

a*numValidCompsFromExit+b;
}

The line labeled “A” updates the profile for the unbalanced-left path of G∗
fin that ends with

w → GExitP → Exitglobal , and the line labeled “B” starts recording a new path number for
the unbalanced-left path p that consists of a context-prefix that ends at EntryP and an active-
suffix that begins at v. (The context-prefix is established by the value of pathNum on entry to P ,
which has been saved in the variable pathNumOnEntry.)

For a second example, consider the following do-while statement (v, w and x represent labels
from vertices in G∗

fin that correspond to the indicated pieces of code):

v :do {
...

w : } while(/* test */);
x : . . .

(40)

In G∗
fin , the backedge w → v has been replaced by the edges EntryP → v and w → GExitP .

Let ρEntryP→v = 〈a, b〉, ρw→GExitP = 〈c, d〉, and ρw→x = 〈e, f〉. Then the do-while in (40) is
replaced by

v :do {
...
w :if(/* test */){

/* A: */ ++profile[pathNum + c * numValidCompsFromExit + d];
/* B: */ pathNum = pathNumOnEntry +

a * numValidCompsFromExit + b;
/* C: */ continue;

} else {
/* D: */ pathNum += e * numValidCompsFromExit + f;
break;

}
} while(0);

x : . . .

The line labeled “A” updates the profile for the unbalanced-left path of G∗
fin that ends with

w → GExitP → Exitglobal . The line labeled “B” starts recording a new path number for the
unbalanced-left path p that consists of a context-prefix that ends at EntryP and an active-suffix
that begins at v. The line “D” updates pathNum using the function ρw→x. Again, one of 〈c, d〉
and 〈e, f〉 will be 〈0, 0〉, and no code to update pathNum need be included for the function 〈0, 0〉.

203

Appendix C

Proofs for Theorems in Chapter 9

The Supergraph Partitioning Algorithm can be used by the Ammons-Larus Reduction Algorithm in
place of the Coarsest Partitioning Algorithm. This results in a reduction algorithm for hot-path super-
graphs. The steps of this new algorithm are (where H∗, pp, and J are the input hot-path supergraph,
path profile, and data-flow solution, respectively):

1. Determine which vertices of the hot-path supergraph H∗ are hot.

2. Create a compatibility partition π of the vertices of H∗.

3. Run the Supergraph Partitioning Algorithm on H∗ and π to produce the partition π′.

4. Output a new graph H ′∗, path profile pp ′, and data-flow solution J ′:

• H ′∗ contains one vertex si for each block Ci in π′. H ′∗ contains an edge si → sj if and only
if H∗ has an edge u→ v such that u ∈ Ci and v ∈ Cj . H ′∗ has a call-edge si → sj labeled
“(si

” if and only if H∗ has a call-edge c→ e labeled “(c” such that c ∈ Ci and e ∈ Cj . H ′∗

has a return-edge si → sj labeled “)sk
” if and only if H∗ has a return edge x→ r labeled

“)c” such that x ∈ Ci, r ∈ Cj , and c ∈ Ck.

• pp′ is pp translated onto H ′∗ by replacing each vertex v that appears in a path of pp with v’s
representative in H ′∗; thus, if v ∈ Ci, it is translated to si.

• J ′ for vertex si is defined by J ′(si) = uv∈Ci
J(v).

The output from this algorithm (H ′∗, pp′, and J ′) is valid output for a hot-path reduction algorithm
and J ′ preserves the valuable data-flow facts of J . These statements are restated as Theorems 9.3.1
and 9.3.2 below, though we first state an observation and a lemma. In the following lemma and theorems,
we will use H∗, pp, J , π′ = {C1, C2, . . . Cn′}, H ′∗, pp′ and J ′ as they are defined in the above
algorithm.

Observation C.0.2 (Well-formedness Properties) The hot-path supergraphH∗ has the following well-
formedness properties:

1. For any pair of duplicate vertices u1 and u2 that are not exit vertices, for every edge u1 → v1,
there is a congruent edge u2 → v2.

2. Every call-edge c→ e is labeled “(c”.

3. For every call-edge c→ e labeled “(c”, for every exit vertex x where there is a same-level valid
path from e to x, there is exactly one return-edge x→ r labeled “)c”.

4. For every return-edge x→ r labeled “)c” there must be an entry vertex e such that there is a call-
edge c→ e labeled “(c” and a same-level valid path from e to x. This means that the return-edge
x→ r labeled “)c” implies that there is a summary-edge c→ r.

204

(a) (b)

Figure 87: Visual interpretation of Lemma C.0.3. (a) shows an unbalanced-left path p′ in H ′∗ that starts
at si and ends at sj . (b) shows an unbalanced-left path p in H∗ that starts at u ∈ Ci and ends at v ∈ Cj

where Ci is the block represented by si and Cj is the block represented by sj . Lemma C.0.3 states that
given the path p′ and the vertex u in block Ci, the path p must exist.

5. For every return-edge x→ r labeled “)c”, r is a return-site vertex for the call vertex c.

This observation is offered without proof, as the above properties follow directly from the construc-
tion of the hot-path supergraph.

Lemma C.0.3 For any unbalanced-left path p′ inH ′∗ from vertex si to vertex sj , for any vertex u ∈ Ci,
there is an unbalanced-left path p in H∗ from u to v such that p is congruent to p′ and v ∈ Cj . (See
Figure 87.)

Proof: The proof is by induction on the length (in edges) of p′:

Base case: p′ is the empty path from si to si (and has length 0). Let v ∈ Ci be any vertex in Ci. Then
the empty path p from v to v is an unbalanced-left path in H∗ that is congruent to p′ and ends at
a vertex (namely v) in Ci.

Inductive step: Assume for the induction hypothesis that for any unbalanced-left path p′ in H ′∗ of
length less than n (where n > 0), the lemma is satisfied. Let q ′ be an unbalanced-left path in H ′∗

from si to sj that is of length n. There are two possibilities:

1. The last edge of q′ is not a return-edge. Then q′ = [a′‖sk → sj] where a′ is an unbalanced-
left path from si to sk and sk → sj is not a return-edge. Let u be an arbitrary vertex in Ci.
We must show that there is an unbalanced-left path q inH∗ from the vertex u to some vertex
w such that q is congruent to q′ and w ∈ Cj .
The path a′ has length (n − 1). By the induction hypothesis, there is a path a in H∗ from
u ∈ Ci to v ∈ Ck such that a is congruent to a′. If we can find an edge v → w such that
w ∈ Cj , then the path [a‖v → w] is the desired path that is congruent to q ′.
Since H ′∗ contains the edge sk → sj , it follows from the construction of H ′∗ that there is
an edge v0 → w0 in H∗ where v0 ∈ Ck and w0 ∈ Cj . The fact that v, v0 ∈ Ck means that
v and v0 are duplicate vertices. The vertices v0 and v are not exit vertices, since sk → sj is
not a return-edge. By the well-formedness of H∗ (see Observation C.0.2), there must be an
edge v → w that is congruent to v0 → w0. Since v, v0 ∈ Ck, it follows from the definition
of the partition π′ that w,w0 ∈ Cj . Thus, the path [a‖v → w] is an unbalanced-left path in
H∗ from u ∈ Ci to w ∈ Cj . Furthermore, [a‖v → w] is congruent to q′.

205

(a) (b)

Figure 88: Visualization of Case II of the proof of Lemma C.0.3. (a) shows the unbalanced-left path
q′ = [a′‖sk → s`‖b

′‖sm → sj] in H ′∗. (b) shows blocks Ci, Cj , Ck, C`, and Cm of partition π′ and
the unbalanced-left path q = [a‖v → w‖b‖x→ y] in H∗. The path q is constructed from the path q′

as follows: the path a′ yields a. The edge sk → s` yields the edge v0 → w0, which gives the edge
v → w. The path b′ implies the existence of the path b. The edge sm → sj labeled “)sk

” yields the edge
x0 → y0 labeled “)c”, where c ∈ Ck; the edge x0 → y0 labeled “)c” implies the existence of the edge
x→ y labeled “)v”.

206

2. The last edge of q′ is a return-edge. Then q′ = [a′‖sk → s`‖b
′‖sm → sj] where a′ is an

unbalanced-left path from si to sk, sk → s` is a call-edge labeled “(sk
”, b′ is a same-level

valid path from s` to sm, and sm → sj is a return-edge labeled “)sk
”. (This follows from

the definition of an unbalanced-left path; sk → s` and sm → sj are matching call and return
edges.) Figure 88(a) shows a diagram of the path q′.
Let u be an arbitrary vertex in Ci. We will show that there is an unbalanced-left path q =
[a‖v → w‖b‖x→ y] in H∗ from the vertex u to some vertex y such that q is congruent to
q′ and y ∈ Cj . Figure 88(b) shows a diagram of the path q′ and summarizes the argument
given below.
Since the length of a′ is less than n, by the induction hypothesis, there is an unbalanced-left
path a in H∗ from u to v such that a is congruent to a′ and v ∈ Ck.
Since H ′∗ contains a call edge sk → s`, H∗ must contain a call edge v0 → w0 where
v0 ∈ Ck and w0 ∈ C`. Since v, v0 ∈ Ck, it follows from the well-formedness of H∗

(see Observation C.0.2) that there is a call-edge v → w labeled “(v”. The definition of π′

guarantees that w is in the same block as w0, namely C`.
By the induction hypothesis, there is an unbalanced-left path b in H∗ from w ∈ C` to
x ∈ Cm such that b is congruent to b′. Since, b is congruent to b′, b and b′ must have the
same number of open and closed parentheses, and the parentheses must occur in the same
positions. Since b′ is a same-level valid path, and b is an unbalanced-left path, it follows that
b is also a same-level valid path. (Recall that the set of same-level valid paths is a subset of
the set of unbalanced-left paths.)
Given the call-edge v → w labeled “(v” and the same-level valid path b from w to x, Obser-
vation C.0.2 states that H∗ must have a return edge x→ y labeled “)v”. The fact that H ′∗

has a return-edge sm → sj labeled “)sk
” means that H∗ must have a return-edge x0 → y0

labeled “)c” such that x0 ∈ Cm, y0 ∈ Cj , and c ∈ Ck. Since x, x0 ∈ Cm and v, c ∈ Ck, it
follows from the definition of π′ that y, y0 ∈ Cj .
Thus, the path q = [a‖v → w‖b‖x→ y] is an unbalanced-left path in H∗ from u ∈ Ci to
y ∈ Cj . Furthermore, this path is congruent to q′. (See Figure 88.)

QED 2

Theorem 9.3.1 H∗ and H ′∗ are unbalanced-left path congruent.
Proof: We must show that for any unbalanced-left path in H∗ there is a congruent unbalanced-left path
in H ′∗ and vice-versa.

Let p be an unbalanced-left path in H∗. Define p′ to be the path in H ′∗ formed by replacing each
edge u→ v of p with the edge si → sj , where u ∈ Ci and v ∈ Cj . If the edge u→ v of p is labeled
“(c” (or “)c”) where c ∈ Ck, then the corresponding edge si → sj is labeled “(sk

” (or “)sk
”). Clearly,

p′ is congruent to p. This implies that p′ must also be an unbalanced-left path. For any call-edge c→ e
labeled “(c” and matching return-edge x→ r labeled “)c” that appear in p, it must be the case that the
call-edge si → sj that corresponds to c→ e and return-edge sk → sm that corresponds to x→ r are
also matching: si → sj is labeled “(si

” and sk → sm is labeled “)si
”. Also, the number of call and

return edges in p′ is the same as in p. Thus, p′ is unbalanced-left because it is congruent to p and p is
unbalanced-left.

Let q′ be an unbalanced-left path in H ′∗. By Lemma C.0.3, there is a congruent, unbalanced-left
path q in H∗. QED 2

Theorem 9.3.2 J ′ is a valid data-flow solution (i.e., it approximates the meet-over-all valid paths solu-
tion) for the graph H ′∗.

207

u1 u2

v1 v2
Ci Cj

Figure 89: A violation of the second property of the Supergraph Partitioning Algorithm. The vertices
u1 and u2 must be split.

Proof: Assume, on the contrary, that J ′ is not a valid data-flow solution for H ′∗. Then there must be
some vertex ak and some unbalanced-left path p′ = Entry ′

global → a1 → a2 → . . . ak−1 → ak such
that

J ′(ak) = Tak
(Tak−1

(. . . Ta2
(Ta1

(⊥)) . . .)) (41)

where Ti is the data-flow transfer function for ai. Let C be the block of partition π′ such that ak

represents C in H ′∗. By Lemma C.0.3, there is some unbalanced-left path p from Entry global of H∗ to
a vertex u in H∗ such that p is congruent to p′ and u ∈ C. Since p is congruent to p′, the sequence of
data-flow transfer functions along p is the same as the sequence of data-flow transfer functions along p′.
Thus, we have

J(u) v Tak
(Tak−1

(. . . Ta2
(Ta1

(⊥)) . . .))

However, we also have J ′(ak) v J(u), since by definition J(ak) = uv∈CJ(v). This implies that

J ′(ak) v Tak
(Tak−1

(. . . Ta2
(Ta1

(⊥)) . . .))

which contradicts (41). QED 2

We now turn to proving the correctness of the Supergraph Partitioning Algorithm. We have the
following theorem: Theorem 9.3.4 When the Supergraph Partitioning Algorithm is run on a hot-
path supergraph H∗ and a partition π = B1, B2, . . . , Bn of the vertices of H∗, the output partition
π′ = {C1, C2, . . . , Cn′} satisfies the properties of the Supergraph Partitioning Algorithm listed in Sec-
tion 9.3.1.
Proof: Suppose on the contrary that the partition π′ violates one (or more) of the properties listed in
Section 9.3.1. There are three possibilities:

1. Suppose the first property is violated. In this case, there must be some Ci ∈ π′ such that there
is no Bj ∈ π such that Ci ⊆ Bj . This cannot happen: every time the Supergraph Partitioning
Algorithm creates a block Ci, that block is a subset of some block Bj ∈ π.

2. Suppose the second property is violated. In this case, there must be a pair of congruent edges
u1 → v1 and u2 → v2 such that u1 → v1 and u2 → v2 are not return or summary-edges, u1 and
u2 are in the same block of π′, and v1 and v2 are in different blocks of π′ (see Figure 89). There
are two possibilities:

(a) v1 and v2 start in the same block B of partition π. There must be some step of the algorithm
where v1 and v2 are split. This means that at some point, the algorithm creates the blocks

208

c1 c2

r1 r2

x1 x2

Ck Cl

Ci

Cj

) c1

) c2

Figure 90: A violation of the third property of the Supergraph Partitioning Algorithm. The return-edges
x1 → r1 and x2 → r2 are in conflict. Either c1 and c2 should be split or x1 and x2 should be split.

Ci and Cj where v1 ∈ Ci, v2 ∈ Cj , Ci ⊆ B, Cj ⊆ B, and Ci ∩ Cj = ∅. This may happen
in one of the functions SplitPreds , RepartitionCallBlock , or RepartitionExitBlock . No
matter where it happens, one or both of Ci and Cj are put on the worklistWSplitPreds . When
either of these blocks is removed fromWSplitPreds and processed by SplitPreds , the vertices
u1 and u2 will be split into separate blocks.

(b) v1 and v2 start in different blocks of π. Let v1 start in block B ∈ π. The block B is put
on WSplitPreds at the beginning of the algorithm. When B is removed from WSplitPreds and
processed by the function SplitPreds , the function SplitPreds will determine that u1 and u2

must be split.

3. Suppose the third property is violated. In this case, there must be a pair of conflicting return edges.
Let the return-edgex1 → r1 labeled “)c1” and the return-edge x2 → r2 labeled “)c2” be the return-
edges in conflict, where x1, x2 ∈ Ci, c1, c2 ∈ Cj , r1 ∈ Ck, and r2 ∈ C` (see Figure 90). Recall
that the edge x1 → r1 labeled “)c1” implies that there is a summary-edge c1 → r1. Similarly, the
edge x2 → r2 labeled “)c2” implies that there is a summary-edge c2 → r2. We must consider two
possibilities:

(a) The return-site vertices r1 and r2 started in the same blockB ∈ π. In this case, at some point
the function SplitPreds must split r1 and r2 into the distinct blocks C ′

k and C ′
` where r1 ∈

C ′
k, r2 ∈ C ′

`, Ck ⊆ C ′
k ⊆ B, and C` ⊆ C ′

` ⊆ B. When this happens, SplitPreds will put
either C ′

k or C ′
` onto WSplitPreds . Without loss of generality, let us assume that C ′

k is put on
WSplitPreds . When SplitPreds later takes the blockC ′

k fromWSplitPreds and processes it, the
return-edge x1 → r1 causes SplitPreds to put the block C ′

i containing x1 onto WRepartition ,
where Ci ⊆ C ′

i. Also, the summary-edge c1 → r1 will cause SplitPreds to put the block C ′
j

containing c1 onto WRepartition , where Cj ⊆ C ′
j . After both C ′

i and C ′
j have been removed

from WRepartition and repartitioned, it must be the case that x1 and x2 have been split or c1
and c2 have been split, or both. This contradicts the above assumptions.

209

(b) The return-site vertices r1 and r2 started in different blocks of π. Let r1 start in blockB. The
block B is put on WSplitPreds at the beginning of the algorithm. When SplitPreds processes
B, it will put the blocks C ′

i and C ′
j onto WRepartition , where x1 ∈ C ′

i, Ci ⊆ C ′
i, c1 ∈ C ′

j ,
and Cj ⊆ C ′

j . This happens because of the return-edge x1 → r1 and the summary-edge
c1 → r1. After the blocks C ′

i and C ′
j have been repartitioned, the return-edge conflict will

be resolved. This contradicts the above assumptions.

Thus, the output partition must have the properties listed in Section 9.3.1. 2

210

Appendix D

Proofs for Theorems in Chapter 10

To prove Theorem 10.4.5, we must first show the correctness of a modified version of the Vertex Sub-
sumption Algorithm that does not add return-edges.

Lemma D.0.4 Let the Simple Vertex Subsumption Algorithm be the same as the Vertex Subsumption
Algorithm in Figure 67, but without the call to AddRtnEdges (line 15 of Figure 67). Then every vertex
subsumption fact v′ � v output by the Simple Vertex Subsumption Algorithm is correct. However, the
Simple Vertex Subsumption Algorithm may conclude that v′ 6� v when in fact v′ � v.

Proof: We begin by proving that if the Simple Vertex Subsumption Algorithm concludes that v ′ � v,
then this is, in fact, the case. Suppose, on the contrary, that this is not the case; i.e., in fact, v ′ 6� v. This
means that there is some unbalanced-right path p from v to Exit global such that there is no path p′ from
v′ that subsumes p (p′ � p). If p is of length 0, then Observation 10.4.1 tells us that J(v ′) 6w J(v).
But if this were the case, then the Simple Vertex Subsumption Algorithm would conclude at line 3 (see
Figure 67) that v′ 6� v. This contradicts our assumption. So, p must have a length of at least 1.

Let p = [q‖w → y]. Observation 10.4.1 states that there are three cases to consider:

1. There is a path q′ from v′ tow′ such that q′ � q, but there is no edgew′ → y′ congruent tow → y.
The vertices w and w′ are duplicates. If they are not exit vertices, then the edge w → y implies
that there must be a congruent edge w′ → y′. This follows from the well-formedness of H∗ (see
Observation C.0.2).

Thus, it must be the case that w and w′ are exit vertices and that w → y is a return-edge. Further-
more, the paths q and q′ must be unbalanced-right paths. Suppose, to the contrary, that this were
not the case. Then there must be some unbalanced-left suffix of q. This means that the label “)c”
must match the last unmatched call-edge c→ e in the unbalanced-left suffix of q. Also, there must
be an unbalanced-left suffix of q′. By the third well-formedness principle in Observation C.0.2,

H∗ =⇒

Edge Redirection Algorithm

Vertex
Subsumption

Algorithm
=⇒H∗

1
=⇒ H∗

2 =⇒
Edge

Redirection
Clean-up Pass

=⇒H∗
3

Figure 91: Stages used for minimizing a graph using edge redirection. The Edge Redirection Algorithm
calls the Vertex Subsumption Algorithm as a subroutine, so the graph H∗

1 is a temporary data structure
used by the Edge Redirection Algorithm. (This Figure is reprinted from Chapter 10.)

211

there must be a return-edge w′ → y′ with a label “)c′” that matches the last unmatched call-edge
c′ → e′ in q′. By the fifth well-formedness principle in Observation C.0.2, it must be the case that
y′ is a return-vertex for c′ and that y is a return-vertex for c. Since q and q′ are congruent, c and c′

must be duplicate vertices. This would imply that y and y′ are congruent. Sincew andw′ are con-
gruent, this means that w → y and w′ → y′ are congruent. So, q and q′ must be unbalanced-right
paths, otherwise there is an edge w′ → y′ that is congruent to w → y.

We have that w → y is a return-edge and that there is no congruent return-edge w′ → y′. This
means that the Vertex Subsumption Algorithm will conclude (in lines 31–32 of Figure 68) that
w′ 6� w. Since q and q′ are congruent, unbalanced-right paths, the Vertex Subsumption Algorithm
will propagate this non-subsumption fact (in lines 17–25 of Figure 67) to v ′ and v and conclude
that v′ 6� v, which contradicts our initial assumption.

2. There is a path q′ from v′ to w′ such that q′ � q, but w → y is a return-edge that is unmatched
in p and there is no return-edge from w′ with the same label as w → y. In this case, the Vertex
Subsumption Algorithm will conclude (in lines 31–32 of Figure 68) that w′ 6� w. Since w′ → y′

is a return-edge that is unmatched in p, the paths p, q, and q ′ must all be unbalanced-right. (The
path q is unbalanced-right because it is a prefix of p; the path q ′ is unbalanced-right because it is
congruent to q.) This means that the non-subsumption factw′ 6� w will be propagated by lines 17–
25 of Figure 67 to the vertices v′ and v. The Vertex Subsumption Algorithm will conclude that
v′ 6� v, which contradicts our original assumption.

3. There is a path p′ from v′ to y′ such that p′ exactly mimics p’s control flow, but J(y′) 6w J(y).
In this case, the Vertex Subsumption Algorithm will conclude at line 3 of Figure 67 that y ′ 6� y.
Lines 8–14 and 17–25 of Figure 67 will propagate the non-subsumption fact y ′ 6� y across the
unbalanced-right-left paths p′ and p and conclude that v′ 6� v.

Thus, if the Simple Vertex Subsumption Algorithm concludes that v ′ � v it must be the case that v′ � v.
However, the Simple Vertex Subsumption Algorithm may conclude that v ′ 6� v when in fact v′ � v.

This is because the Simple Vertex Subsumption Algorithm propagates non-subsumption facts across
summary-edges (at lines 10–14 and 19–25). Given the summary-edges c→ r and c′ → r′ and the
non-subsumption fact r′ 6� r, the Simple Vertex Subsumption Algorithm will conclude that c′ 6� c.
The summary-edge c→ r implies that there is a same-level valid path q from c to r. Likewise, the
summary-edge c′ → r′ implies that there is a same-level valid path q′ from c′ to r′. If the paths q and
q′ are congruent, then the non-subsumption fact r′ 6� r should be propagated to c′ 6� c. However, q
and q′ need not be congruent. If for every same-level valid path from c to r there is no congruent path
from c′ to r′, then the non-subsumption fact r′ 6� r should not be propagated across the summary-edges
c′ → r′ and c→ r. (In fact, lines 12 and 23 of Figure 67 contain a check that u1 6= u2; these checks
are to prevent the case when a non-subsumption fact is incorrectly propagated across summary-edges to
generate the non-subsumption fact u1 6� u1, which is clearly false, since it violates the reflexivity of the
�-relation.)

The Simple Vertex Subsumption is always correct when it concludes v ′ � v, but it may be incorrect
when it concludes that v′ 6� v. QED 2

Theorem 10.4.5 Let H∗be the hot-path graph input to the Vertex Subsumption Algorithm and let
H∗

1 be the transformed graph output by the Vertex Subsumption Algorithm. That is, H∗
1 is H∗with

the additional return-edges added by lines 39–49 of Figure 69. Every vertex subsumption assertion
v′1 � v1 output by the Vertex Subsumption Algorithm is correct for the graph H∗

1 . However, the Vertex
Subsumption Algorithm may conclude that v′1 6� v1 when in fact v′1 � v1.

212

Proof: The proof relies heavily on the proof of Lemma D.0.4. Suppose that we add any set of (randomly
chosen) return-edges to H∗with the constraints that we never add a return-edge x→ r labeled “)c” if
there is already a return-edge from x labeled “)c” or r is not a return-site vertex for c. Call this graph
H•. The graph H• violates the fourth well-formedness principle stated in Observation C.0.2, but it
obeys the other well-formedness principles. We can use the proof of Lemma D.0.4 to show that the
Simple Vertex Subsumption Algorithm computes a conservative approximation of the �-relation for
H•: if the algorithm concludes that v′ � v then this is the case. This is because the proof does not
rely on the input graph obeying the fourth well-formedness principle: the extra return-edges in the
graph H• do not confuse the Simple Vertex Subsumption Algorithm. This means that we could run the
Vertex Subsumption Algorithm to obtainH∗

1 and then run the Simple Vertex Subsumption Algorithm to
compute a �-relation for H∗

1 .
We observe that the lines (1–14) of the Vertex Subsumption Algorithm that precede the call to

AddRtnEdges do not examine return-edges. This implies that that the �-relation computed by the
Vertex Subsumption Algorithm forH∗

1 is the same as the �-relation that the Simple Vertex Subsumption
Algorithm computes for H∗

1 . This means that if the Vertex Subsumption Algorithm concludes that
v′ � v then in fact v′ � v; however, if the Vertex Subsumption Algorithm concludes that v ′ 6� v, then
it may be that v′ � v. QED 2

Theorem 10.4.6 If J approximates (v) the greatest fixed-point solution for F ∗
H , then J also approx-

imates the greatest fixed-point solution for FH3
.

Proof: Recall that if J is the meet-over-all valid paths solution to F ∗
H , then J does not necessarily

approximate the greatest fixed-point solution for FH3
(see Figure 66).

Note that before the Vertex Subsumption Algorithm adds a return-edge x→ r to H∗ (line 49 of
Figure 69), it performs a check to make sure the data-flow facts at r will not be violated (line 46 of
Figure 69). Similarly, before the Edge Redirection Algorithm adds an edge u→ v ′ to H∗(line 7 of
Figure 72) it performs a check to make sure that the data-flow facts at v ′ will not be violated (line 5 of
Figure 72).

For every edge u→ v in H ′∗, whether the edge was added by the Vertex Subsumption Algorithm,
the Edge Redirection Algorithm, or was in the original graph H∗, it must be the case that Tu(J(u)) w
J(v). It follows that

J(v) v uu→ vTu(J(u))

Thus, J must approximate the greatest fixed-point solution for FH′∗ . QED 2

Lemma 10.4.7 Let H∗ be the hot-path graph input to Edge Redirection Algorithm. Let H∗
1 be the

graph that results from running the Vertex Subsumption Algorithm on H∗. (H∗
1 is H∗ with extra return-

edges.) Let H∗
2 be the graph output by the Edge Redirection Algorithm. Rename each vertex v in H∗

as v1 in H∗
1 and as v2 in H∗

2 . Let v′1 and v1 be vertices in H∗
1 and let v′2 be the same vertex as v′1 but

in graph H∗
2 . If v′1 � v1, then v′2 � v1. In other words, if v′1 � v1, then for every unbalanced-right-left

path p1 from v1 in graph H∗
1 , there must be a unbalanced-right-left path p′2 from v′2 in graph H∗

2 such
that p′2 � p1.
Proof: The proof is by induction on the length (in edges) of the unbalanced-right-left paths in H ∗

1 .
We will show that for every unbalanced-right-left path p1 from vertex v1 in H∗

1 , for every subsumption
fact v′1 � v1, there is a unbalanced-right-left path p′2 from v′2 in H∗

2 such that p′2 � p1. It follows
immediately that v′2 � v1.

Base case: We need to show that for every unbalanced-right-left path p1 of length zero from v1, for
every subsumption fact v′1 � v1, there is an unbalanced-right-left path p′2 from v′2 such that
p′2 � p1. The path p1 is the empty path from v1 to v1. Since v′1 � v1 it must be that the path

213

p′1 from v′1 to v′1 subsumes the path p1. Since v′1 and v′2 are the same vertices but with different
names, we can just take p′2 to be the empty path from v′2 to v′2. It follows that p′2 � p1.

Induction step: For the induction hypothesis, we assume that for every unbalanced-right-left path p1 of
length i that starts at vertex v1, for every subsumption fact v′1 � v1, there is an unbalanced-right-
left path p′2 from v′2 such that p′2 � p1.

Let p1 be an unbalanced-right-left path of length i + 1 that starts at vertex v1 in the graph H∗
1 .

Pick an arbitrary subsumption fact v′1 � v1. We must show that there is an unbalanced-right-left
path p′2 from the vertex v′2 in the graph H∗

2 such that p′2 � p1. It follows from v′1 � v1 that there
is a path p′1 from v′1 in the graph H∗

1 such that p′1 � p1. We will use the path p′1 to find the path
p′2. The path p′1 must have length i+1, since it is congruent to p1 (this follows from the definition
of �). This means that p′1 has length at least 1. Therefore, there is an edge v′1 → w′

1 and a path q′1
such that p′1 = [v′1 → w′

1‖q
′
1]. There are two cases we must consider:

1. The v′1 → w′
1 also occurs in the graphH∗

2 , renamed as v′2 → w′
2. The path q′1 starts atw′

1 and
has length i. The fact w′

1 � w′
1 follows from the reflexivity of the subsumption relation. It

follows by the induction hypothesis that there is a path q′2 from w′
2 such that q′2 � q′1. Since

v′1 → w′
1 subsumes the first edge of p1, v′2 → w′

2 (which is the same edge) must subsume
the first edge of p1. We now show that p′2 = [v′2 → w′

2‖q
′
2] is an unbalanced-right-left path

that subsumes p1. The only way p′2 could not be unbalanced-right-left is if v′2 → w′
2 were

a call-edge labeled “(c” and the first unmatched return-edge of q′2 were labeled “)d”, where
c 6= d. This cannot happen because: (1) the path [v′1 → w′

1‖q
′
1] is unbalanced-right-left;

(2) the label on v′2 → w′
2 is the same as the label on v′1 → w′

1; and (3) the labels on the
unmatched parentheses of q′2 are the same as the labels on the unmatched parentheses of q ′1
(since q′2 � q′1). We have that q′2 subsumes q′1, and that q′1 subsumes the suffix of p1 that
includes all but p1’s first edge. It follows from the transitivity of the subsumption relation
that q′1 subsumes the same suffix of p1. It follows from the definition of subsumption that
p′2 = [v′2 → w′

2‖q
′
2] must subsume p1.

2. The v′1 → w′
1 does not occur in the graph H∗

2 . This means that the Edge Redirection al-
gorithm replaced the edge v′1 → w′

1 with the edge v′1 → w′′
1 . (The edge v′1 → w′′

1 has been
renamed as v′2 → w′′

2 in the graphH∗
2 .) It follows from the check on line 5 of the Edge Redi-

rection Algorithm (see Figure 72) and the proof of Theorem 10.4.5 that the Edge Redirection
Algorithm would not replace the edge v′1 → w′

1 with the edge v′1 → w′′
1 unless w′′

1 � w′
1.

Thus, we have the path q′1 of length i from the vertex w′
1 and we have the subsumption fact

w′′
1 � w′

1. By the induction hypothesis, there is a path q′′2 from w′′
2 such that q′′2 � q′1. As

in the previous case, it follows that p′2 = [v′2 → w′′
2‖q

′′
2] is an unbalanced-right-left path that

subsumes p1.

Therefore, there is an unbalanced-right-left path p′2 from the vertex v′2 in the graph H∗
2 such that

p′2 � p1.

QED 2

Theorem 10.4.8 Let H∗
3 be the graph the results from running the Edge Redirection Algorithm (see

Figure 72) and the clean-up pass in Figure 74 on the graph H∗. Then, H∗ and H∗
3 are unbalanced-left

path congruent.
Proof: First, we show that for every unbalanced-left path p in H∗, there is a congruent unbalanced-left
path p3 in H∗

3 . Let v be the first vertex of p. Let H∗
2 be the graph that results from running the Edge

214

Redirection Algorithm on H∗. By reflexivity of subsumption, v � v. Thus, by Lemma 10.4.7, v2 � v,
where v2 is the same vertex as v but renamed in H∗

2 . This means that there is a path p2 from v2 in H∗
2

such that p2 � p. In particular, p2 must be an unbalanced-right-left path and it must be congruent to
p. This means that p2 must be an unbalanced-left path that is congruent to p. The Edge Redirection
Clean-up Pass (see Figure 74) only remove vertices and edges that do not occur in any unbalanced-left
path. This means that the path p2 must also appear in the graph H∗

3 . Thus, if we take p3 = p2, we have
an unbalanced-left path in H∗

3 that is congruent to p.
Next, we show that for every unbalanced-left path p3 in H∗

3 , there is a congruent unbalanced-left
path p in H∗. It is straightforward to construct the path p during a traversal of the edges of the path p3.
Let p3 start at the vertex v3. The path p starts at the vertex v, where v and v3 are the same vertex, but v3

has been renamed in the graphH∗
3 . Suppose we have traversed some prefix q3 of p3 and have constructed

a path q in H∗ that is unbalanced-left and congruent to q3. Let m3 → n3 be the next edge after q3. We
need to find an edge m→ n such that [q‖m→ n] is an unbalanced-left path that is congruent with
[q3‖m3 → n3]. There are two possibilities:

1. The edge m3 → n3 is not a return-edge. Recall that H∗ has the well-formedness property that
for any two duplicate vertices a and a′ that are not exit vertices, for every edge a→ b, there must
be a congruent edge a′ → b′. The Edge Redirection Algorithm preserves this property: every
time it removes an edge a′ → b′, it replaces it with a congruent edge a′ → b′′. Since m3 (the last
node of q3) is a duplicate of m′ (the last node of q) and m3 and m′ are not exit vertices (since
m3 → n3 is not a return-edge), it must be the case that there is an edgem→ n that is congruent to
m3 → n3. Since q is unbalanced-left and m→ n is not a return-edge, it must be that [q‖m→ n]
is an unbalanced-left path that is congruent with [q3‖m3 → n3].

2. The edge m3 → n3 is a return-edge. In this case, there can only be one return-edge m→ n such
that [q‖m→ n] is an unbalanced-left path: m→ n is the return-edge that is labeled with the close
parenthesis that matches the last unmatched call-edge in q (the existence ofm′ → n′ follows from
the well-formedness of H∗). To show that [q‖m→ n] is congruent to [q3‖m3 → n3], we must
show thatm→ n is congruent tom3 → n3. We already know that the exit verticesm3 and m are
congruent (since they are the last vertices of the congruent paths q3 and q, respectively). So, we
must show that the return-site vertices n3 and n are congruent. The vertex n3 must be a return-site
vertex for the call vertex c3, where c3 is the call vertex in the last unmatched call-edge c3 → e3
of the path q3. Similarly, the vertex n must be a return-site vertex for the call vertex c, where c is
the call vertex in the last unmatched call-edge c→ e of the path q. Since q and q3 are congruent,
c3 and c must be congruent. This implies that n3 and n are congruent. Hence, [q‖m→ n] is
congruent to [q3‖m3 → n3] are congruent.

QED 2

215

Appendix E

Determining If J ′ Preserves the Valuable
Data-Flow Facts of J

Let J be a data-flow solution for F∗
H , where H∗ is a hot-path graph. Let J ′ be a data-flow solution for

FH′∗ , where H ′∗ is a reducedH∗. To check if J ′ preserves the valuable data-flow facts of J , we need to
know that for every unbalanced-left path p from the Entry global of H∗, for every hot vertex v in p, for
the path p′ inH ′∗ that is congruent to p, for the vertex v′ in p′ that corresponds to v, J(v) v J ′(v′). This
condition is very similar to stating the Entry ′ � Entry , where Entry ′ is the entry of H ′ and Entry is
the entry of H . We define subsumes for valuable data-flow facts as follows: for a path p′ in H ′∗ and a
path p in H∗, we say p′ subsumes p for desirable data-flow facts (written �val) iff

1. p′ exactly mimics p’s control flow and

2. for each hot vertex v in p and corresponding vertex v′ of p′, J(v) v J ′(v′) for all of the uses of
desirable data-flow facts in v.

We say that v′ �val v iff for every path p from v there is a congruent path from v′ such that p′ �val p.
To check if J ′ preserves the valuable data-flow facts of J , we need to check if Entry ′ �val Entry .

To compute if Entry ′ �val Entry , we can use a modified version of the Vertex Subsumption
Algorithm. There are three changes that must be made to the algorithm:

1. The Vertex Subsumption Algorithm must change the way it propagates non-subsumption facts
across summary-edges. As presented, the Vertex Subsumption Algorithm algorithm may con-
clude that v′ 6� v when in fact v′ � v. This is due to the fact that the Vertex Subsumption
Algorithm propagates non-subsumption facts across pairs of duplicate summary-edges (see the
proof of Theorem 10.4.5).

2. Line 3 of the Vertex Subsumption Algorithm (see Figure 67) must be changed to:

If v2 is hot and J(v1) 6w J(v2) for uses of desirable data-flow facts in v2 Then

This changes the Vertex Subsumption Algorithm to calculate the �val -relation instead of �-
relation.

3. The Vertex Subsumption Algorithm must be changed to compute the �val -relation between the
vertices of two graphs (H and H ′) rather than for the vertices of one graph.

The second and third modifications are trivial. The first is more difficult. For every non-subsumption
fact r1 6� r2, for every pair of congruent summary-edges c1 → r2 and c2 → r2, the Vertex Subsumption
Algorithm concludes that c1 6� c2. This conclusion is correct iff there is a same-level valid path p1 from
c1 to r1 and a same-level valid path p2 from c2 to r2 such that p1 and p2 are congruent.

To compute the �-relation accurately, we must compute the set S of tuples 〈c1, c2, r1, r2〉 such that

216

1. c1 and c2 are duplicate call vertices;

2. r1 and r2 are duplicate return-site vertices; and

3. there is a same-level valid path from c1 to r1 that is congruent to some same-level valid path from
c2 to r2.

Given the set S, we change the Vertex Subsumption Algorithm so that for every non-subsumption fact
r1 6� r2, the algorithm generates the non-subsumption fact c1 6� c2 iff 〈c1, c2, r1, r2〉 is in S.

To compute the set S, we must simultaneously compute the set T of tuples 〈v1, v2, x1, x2〉 such that

1. v1 and v2 are duplicate vertices;

2. x1 and x2 are duplicate exit vertices; and

3. there is a same-level valid path from v1 to x1 that is congruent to some same-level valid path from
v2 to x2.

The sets S and T can be computed simultaneously as follows:

1. Initialize the set T to the set of all tuples 〈x1, x2, x1, x2〉 where x1 and x2 are duplicate exit
vertices (x1 may equal x2).

2. For every tuple 〈v1, v2, x1, x2〉 ∈ T , for every pair of intraprocedural, congruent edges (that are
not summary-edges) u1 → v1 and u2 → v2 add the tuple 〈u1, u2, x1, x2〉 to T

3. For every tuple 〈e1, e2, x1, x2〉 ∈ T , for every pair of congruent call-edges c1 → e1 and c2 → e2,
for every return-edge x1 → r1 labeled “)c1”, for every return-edge x2 → r2 labeled “)c2”, add the
tuple 〈c1, c2, r1, r2〉 to S.

4. For every tuple 〈r1, r2, x1, x2〉 ∈ T , for every tuple 〈c1, c2, r1, r2〉 ∈ S, add the tuple 〈c1, c2, x1, x2〉
to T .

5. Repeat steps 2, 3, and 4 until a fixed-point is reached.

