DEPENDENCE-BASED REPRESENTATIONS
FOR
PROGRAMS WITH REFERENCE VARIABLES

PHILLIP E. PFEIFFER, 1V

A thesis submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Computer Science)

at the
UNIVERSITY OF WISCONSIN—MADISON
1991

© copyright by Phillip Edward Pfeiffer [V, 1991
All Rights Reserved

Abstract

Three features common to moden programming languages are popular because they simplify the
development of efficient programs. The first, the assignment statement, allows the components of a data
structure 1o be redefined as a computation progresses. The second, dynamic allocation, allows memory for
data structures to be acquired, destroyed, and reused at need. The third, the reference (i.e., pointer) vari-
able, allows multiple data structures to share a common substructure, These three features, unfortunately,
make it difficult 1o estimate program behavior at compile-time. Such estimates play a crucial role in the
{automatic) improvement, modification, and reuse of existing software.

The first part of this thesis develops a family of algorithms that characterize a program’s data depen-
dences, with respect to an example structured language with assignment statements, reference variables,
dynamic allocation, and procedures. Intuitively, a data dependence p —>, ¢ asseris that a staterment g
manipulates a data object that was first manipulated by p. The analyses developed here gstimate a
program’s data dependences, with respect to the example language’s implementation semantics and an
arhitrary set of initial stores. (This claim is established with the aid of Abstract Interpretation, a formalism
for showing such analyses correct.) These algorithms are also flexible: they return a safe esumate of a
program’s dependences with respect to several common strategies for estimating program behavior (i.e.,
for using a bounded set of approximate states to estimate the unbounded set of states that a program might
generate). These strategies for estimating program behavior are surveyed and critiqued, and extensions to
one of these techniques, known as k-/imiting, are proposed.

The second part of this thesis concemns the safety of using dependences to reason about program
behavior. Earlier authors have shown that specific types of dependence-based representations (ie.,
dependence-depicting graphs) model specific facts about program execution. None of these resulis, how-
ever, apply to languages with reference variables, dynamic allocation, and procedures. This thesis proves
that pointer-language programs that have isomorphic dependence-based representations are behaviorally
equivalent.

— i —

Table of Contents

ADSITACE ©ouiiiiieses e s ses bt s st e nsb s e b st s 1 b s 251 1 £ e it s SRR b et et ettt
1. INTRODUCTION ..o, -
2, AN EXAMPLE LANGUAGE WITH DYNAMIC ALLOCATIONoccoivrncerereeneneasenseenas
3. DEFINING DEPENDENCE

3.1. An Informal Introduction to the Notion of Dependenceocveverrreemesesereosiisassenonses

...

3.2. Definitions of Dependence for LANGUAZE Hcccveeorerirerirersnesseneorme st ssssnonses
3.2.1, CONOl EPEIACIICE ...oooceverueereuememreeesrernsnessenerereessasas e sescacassesasas et resetreeaseasiensroeesesssers
3.2.2, Data dePenUETICE ...cvivecieeee e et e ettt se e e e se et st seeasen et sa bbb bbreneas

3.3. Refining the Notion of Data Dependence

3.4. Addiuonal Background on the Notion of Dependence ...,
3.4.1. Historical back@rotungdc..ccccmenenmiarseniesrensesresnesssesaessesrassnsssesnes e sseesessees sassessrenees
3.4.2. Def-use chains, support sets, and dOTHINANCEc.oeeereerrecr e s
34,3, CONBICIS 1rmvrresevrvrreeree e vesresrrresoreess et e srasasensnnent hraeseseanssisaeshabs staba i sbsbesE s e arnranserserssstsrneas
3.4.4. Logic-based and denotational notions of dependencecccoiiiinisincesinssenen
32,5, Semantic dePeNUEENCEcciviivner et s e e s st er s s e s s be e et e
3.4 6, Imperative GEPENUENCE ..o v st s s s e s s e st b b e ne
3.4.7. Weak control dependencevvmmireininne
3.4.8. Approximate notions of data dependence ... s
3.4.9. Dependences and intended behavior ...
3.4.10. Distance of 8 dePendenCEeccccoocerercrc it
3.4.11. Declaration dePEnUENCE ...ccirermiresinssrssmresinmsee st sn s ssa s s s amssssrssssssesossiosaees
3.4.12. Limitations of dependence ... e st st e

4, USING AN INSTRUMENTED SEMANTICS TO CHARACTERIZE DATA DEPEN-

4.1. Using Labels to Characterize DEPendence ...
4.2. An Instrumented Semantics for Characterizing Flow Dependence ...
4.3, Relation 10 PrevioUs WOIK ..ottt s s s sn s nins
5. AN APPROXIMATION SEMANTICS FOR ANALYZING FLOW DEPENDENCE
5.1. An Approximation Semantics for Dependence COMPUIALON ..o
5.1.1. The domain of ADSIACL SEALES ..vvrvercecertererimiitssmiriere s smere st stc st e as i nn s
5.1.2. An approximate interpretation for H s

S.2. Proving the Comrectness of the Approximate [EPIELALON oeivcnirie v vemires e b
5.2.1, AbSIAC TNIEIPIEIALION .ovueretieirecester oottt rb s b

5.2.2. A static semantics for characterizing flow dependence ...,

tr
a2

A
L]

—iv—

523 Relating MS ;- t0MA oo s
5.2.4. Relating dependences w.r.L. MAﬂ and M:H’

5.3. Using the Determinate Selector Property Lo Sharpen the Interpretation ...,

5.4. Related Work .
5.4.1. Related abstraction teCANIQUESovvviivemrieicsitcrems s s e

..

5.4.2. Related INEIPTCIAIONSccveecveererrecerrerremenrrsoseees et sstaststse sesassasessesssenssssssesnronsnssrmnans
5.4.3. Related proofs Of COMTECINeSS ..ivveieaimiinircsnicerecsnsssnesns s restsirsres e semes seemeseseesnnas
5.4.4. Other graph-based store abstraction [ECRAMIGUES .vvveeriverianismiiscnis s s e snsisssans
5.4.5. Other graph-based state abstraction teChniQUES v iisinncs s sasraeaes
5.4.6, Other state abSIracHOn tECHMIGUEScovrieerereseisesecrrarsssermranrrinssossssssrsasssssssssessssarssnsissenres
5.4.7. Other IMIEIPTELALIONS Loiiiivrieirieirerisrreerarvesuss st b sre s s sessbas e raa s s e arErrrsaasrrornspasbasssnsssrns

6. STRATEGIES FOR ESTIMATING A PROGRAM'S STATES ..oovrvivririmissisnerins st cntonsenns

6.1. Abstracting Labeled SIOTES ..ot et et s s e s
6.1.1. PartitiONing SIFAIEZIES ..eovreriesisimssressessssmssesrassesstrnisibessstssstrnsesssesmasmsnarassrsrnaress s sas sasssnaans
6.1.2. ReAUCHON SIEALEZIES 1vvereresenreneereensasmsstasassssstrss rss soressersestonsss sttt aieseseseensasarmasresessrams sbets

6.2. Abstracting Sets of Labeled SIOrES ...ovvicivirmieniinisssman e s s

6.3. Abstracting OCCUITENCE SUANES ...vvviririenrsrusirsirsesisietesseratassin s st s nensasssass b s srasaens

6.4, ADSITACUIIE SELS Of SLAES wuevvereureeeererrreresisiiinimiee st srns s s e s bes st s sh st b a e e e s e

6.5. The Cost of Program ANAIYSIS ... e st s sesstsssisins

6.6, Oher RElAted WOTKoocviviiisviees e semsssssensontntastssasstsansesn s st aseassssas seesnsscsdsb bt bassbsnaenies

7. DO DEPENDENCES CAPTURE A POINTER PROGRAM’S BEHAVIOR? ...

7.1. The Use of Dependence-Based Representations in Program Analysis ..o

7.2, A Dbr fOr LARGUARZE H overcrcincimiascsnsss s rasissse s st sessbsieas i s s s st st s

7.3. A Basis for Reasoning about Pointer-Language Programs ...
7.3, 1. LADZUAZE 5 oevererimsmeessessrscessnemarsensesoe s s s s 0848128 21220202
7.3.2. Reducing pointer-language programs o pointer-free Programsocovernivinesnes
7.3.3. An equivalence femma for language § s
7.3.4. Using the reduction 10 map from HI0 S s
7.3.5. Flattening programs i Ja0ZUAEE H wevreeeeioniininrnmeres i s
7.3.6. The Pointer-Language Equivalence TREOIEM wc. it

7.4. Practical Implications of the Pointer-Language Equivalence TheOrem ...
% 4.2, Procedure ACTIVALON RECOTHS o.oouiciiiria e se s e s sty s s
T b3 ALOITES +vveoreeseessserasesnesessessassnsseemesensasasssesrarsAeaas 16 oE e e e b E 1P 42 nh sS4 2L AL AR e e

TS REIAEE WOIK oo oeeeeesooe v eeeeasstetnaresaesasssseesae esssssmre ok debeE 4RSS e EL SR AR AL P 1SS0 e S0 e e b
7.5.1. A BACE NISEOTY OF dBFS worveeeiicvtiirerss et b e

7.5.1.1, The carly NStory 0f @Brs .ot st

7.5.1.2. Program dependence Graphsooooooeecoeeosoeeeesonesereooeoe oo sevesesessesosone
7.5.1.3. Def-0rder-dependence-free dbrsoommroeroseeeeeseseosssesesssesosmeseeeoeeeoeeoeeeooseons.
7.5.1.4. Interpretable dbrs

...

Appendix 1. A Semantics for LANGUAZE Hcc.eeerrvimsnsrnneiosionsessesessssssesss essasssssssessessessssnses
Appendix 2. An Instrumented Semantics for LANEUALE H ..o..v.veeveeereeeeeeeereieeses oo e
Appendix 3. An Approximation Semantics for LARZUAZE Ho.eoeeemerevoeronereeee oo eessenses
Appendix 4. Abstraction and Subsumption REIAtioNSco..ooveveveeecomeoseeoremeeee s ceeees oo
Appendix 5. The MOnOIONICILY OF @VAIPELL .oveivirieereeeesseesseeesiesseseeevesese e ser s sesssenssssssssseessssss s sns
Appendix 6. The Congruence of evalPt; and VAPl 4 ..cveomvviveeaeeeeeeeeeeeeeeeeeaeeeeeeeeeeeeress s resses
Appendix 7. A Semantics for LANZUAZE .5 .ouoeeeecrereeeeneciee oo e se e e es e e
Appendix 8. Definition Of an SPAFcovvuiererrermecarnisnnsesinsreses e ese e esrs et s ses s e es s senseseanenen
RE{ETENCES ovviviiiiiiiii e er e sser s et se s e ba st s st b sttt e e s e sa s as s st st s et st ee s e
Index Of AULHOTS ..ot et saer s et s ee s enase e e erene

Index of Terms and DEefINILONS ...ttt et e et s et ce e v reen

LASUOL FRUIBS ettt ccecen e s e nss sa st st rs b s et bt ae bt e e e eesneetaneentrns et e srae s senseees

116
117
119
120
123
125
125
127
128
129
132
134
139
143
149
153
158
162
164
165
179
183
190

1. INTRODUCTION

The proof of a system’s value is in its existence. —A. Perlis [Perf2]

Classic imperative programming languages have important weaknesses—limitations and missing
features that make programs unnecessarily difficult to develop and understand. Sonmie of these weaknesses
are described in an essay by John Backus [Bac78]. In his 1977 Turing Award lecture, Backus argues that a
good programming language should provide high-level operations on aggregale types. Backus observes
that high-level operators like Lisp’s map functionals allow users to develop succinct and clear statements
of algorithms. Backus also argues that languages should minimize the use of operators with side effects,
since these operators make it more difficult to assess a computation’s net effect. Conventional, imperative
languages like FORTRAN are criticized for making an operator that violates both precepts, the scalar
assignment statement, the basis of all computation.

Some authorities believe that these classic programming languages should simply be abandoned.
Backus, for example, proposed that future research into programming languages be limited to what are now
called declarative languages. A declarative language is a language that in theory allows a programmer o
specify what a program computes, without having to specify a computation’s intermediate steps. [t is
worth noting that declarative paradigms such as Backus's functional programming [Bac78] have evolved 1o
where they are sometimes credible alternatives to imperative languages {¢f. [Hud88]). Proponents of elim-
inating imperative fanguages, however, usually ignore the negative consequences of abandoning the user
community’s massive investment in imperative languages and software,

Other, more conservative approaches have been developed for coping with the flaws of imperative
languages. One such approach emphasizes the use of utilities that make programs easier to0 manipulate.
These utlities use information about a language's semantics to make judgments about how programs
evaluate. Examples of such utilities include
* optimizing compilers [Kuc81], which antomatically improve program efficiency;

* parallelizing compilers [Kuc81], which automatically transform programs into parallel programs;

* program-comparison utilities [Hor90], which use semantic criteria to identify differences between
variants of a program, !

* program-integration utilities {Hor89}, which merge multiple versions of a base program 5 1nto a sin-
gle program that preserves all non-conflicting changes to &; and

* flowback debuggers [Mil88], which use information about 2 program’s form to minimize the size of
a stored trace.

A crucial component of many such utilities is a dependence-based representation of a program’s seman-

tics. A dependence is an assertion that one statement might affect how a second statement evaluates, A
dependence-based representation (dbr) is a graph that summarizes a program’s dependences. A dbr for a

! Semantic program comparators can be distinguished from 1ext-based comparators like Jiff [Hun76], which, lacking information about
a program’s meaning, make imprecise-—and eroncous—judgments about how programs differ (¢f. [Hor89}).

-2

program P consists of a set of vertices that represent P’s statements, and a set of labeled edges that

represent possible dependences between a program’s statements, An example dbr is depicted in Figure
1.1,

Dbrs are popular because they simplify program analysis. A dbr, once constructed, gives a useful esti-
mate of a program’s threads of computation—one that is reasonably precise and casily manipulated. One
can, for example, determine whether a statement p might affect the evaluation of statement ¢ by determin-
ing whether a program’s dbr contains a path from p 10 g. In this manner, dbrs expose a program’s potential
parallelism, and simplify the task of assessing program behavior.

Dbrs have three additional characteristics that make them well-suited to program analysis:

® Dbrs are flexible. The kinds of dependences that are represented in a dbr can be adjusted according
to that dbr’s intended use.

. Dbrs are tunable. An algorithm for computing a program’s dependences can be adjusted according 1o
an analysis’s available resources, Coarse (but fast) analyses yield rough but safe estimates of a
program’s dependences. Slower analyses yield dbrs that are no worse—and probably better—
estimates of program evaluation. Dbrs can also be tuned by hand. Utilities such as PTOOL [All86]
and Curare [L.ar89] allow their users to specify that certain dependences cannot arise.

. ‘The semantics of certain kinds of dbrs are well understood. For several exampie languages, it has
been proven that dbrs provide a sound characterization of a program’s meaning,

From the late 1960's through the mid 1980’s dbrs were used primarily for paralielizing FORTRAN pro-
grams. An early paper by Ramamoorthy and Gonzalez {Gon69] introduces graph-based technigues for

program
sum =0
i=1
while i<1l1 do
sSum ;= sum+i
im=1+1
od
end {sum)

Key: === control dependence
----g= def-order dependence
-t loop~carried flow dependence
~t> loop-independent flow dependence

Figure 1.1. An cxample program, which sums the integers from | to 10 and leaves the result in the variable SUM.
The figure also shows a type of dependence-based representation for this program known as a pdg. (Dependences are
defined in Chapter 3, and pdgs in Chapter 7.)

-3

parallelizing FORTRAN. Kuck, Muracka, and Chen, who cite the Ramamoorthy paper, were among the
first to recognize the importance of distinguishing among different types of data dependence [Kuc72].
Kuck et. al. later developed many of the fundamental dbr-based algorithms for restructuring FORTRAN
{Pad79,Kuc81]. Other important contributions that were made during the initial period of dbr research
include work by researchers at Rice University (e.g., [All84]), Michigan Tech (e.g., [Ou84]), and IBM
(e.g.. [Fer87)).

Current research on dbrs addresses other languages, other problems, and other concerns. New kinds of
dbrs have been developed that support languages with while loops and procedures {Hor89, Hor90a]. Oth-
ers have also been developed for swdying specific aspects of program behavior (e.g.,
(Cyt86, Hor89, Yan90]). Another relatively recent development is the increased emphasis on understand-
ing the semantics of dbrs (cf. (Rep89, Ram§&9, 5el897).

This thesis represents another step in the continuing search for a more general theory of dbrs. It is con-
cerned with the computation and characterization of dbrs for peinter languages—imperalive languages
that support heap-allocated storage, reference variables, and assignment statements that overwrite the con-
tents of reference variables. There are four concemns that motivate the work reported in this thesis:

. Heap allocation, reference variables, and assignment statements are useful constructs: they simplify
the task of programming with shared and circular structures, and with structures whose size is not
known until run-time.

. Dbrs for programs that use pointers should provide a reasonable estimate of how such r-igrams
might evaluate. Making worst-case assumptions about the use of pointers can yield estimates of pro-
gram behavior that are too coarse to be useful [Lan90].

. The semantics of pointer-language dbrs had not been investigated prior to the inception of this
rescarch.

. Pointer languages are a challenging area of research. Destructive pointer updating complicates the
analysis of pointer languages by forcing the recomputation of aliases at every assignment statement.
Allocation complicates dependence analysis by forcing analyses to construct finite approximations to
potentiaily infinite sets of memory configurations. Finally, proofs about the semantics of dbrs must
account for how programs manipulate references and allocate storage.

The remaining seven chapters of the thesis can be divided into four parts. Chapter 2 describes an exam-
ple pointer language. Chapters 3 through 6 develop algorithms for computing a program’s dependences
w.r.t. this example language. Chapter 7 defines an example dbr for this language, and argues that this dbr
characterizes a program’s meaning. Chapter 8 then summarizes the work presented in presented in the
preceding five chapters. The following is a detailed synopsis of the presentation.

Part I. An Example Pointer Language

Chapter 2 defines the model language that forms the basis of this swdy. This language, cailed
language #, supports heap-allocated storage, reference variables, lexicaily-scoped recursive procedures,
and structure declarations. The semantics for language 34 M, gives an operational characterization of

a program’s meaning,.

PartII. Computing Data Dependences for Pointer Programs

Chapters 3 through 6 develop algorithms for computing a pointer program’s data dependences. They
also prove that Lt_le dependences computed by these algorithms are a safe estimate of (i.¢., a superset of)
the dependences that a program exhibits w.r.t. My,

Chapter 3 defines a program’s dependences w.r.t. M,. The chapter first explains the concept of
dependence. Chapter 3 then uses #°s definition to formalize the standard notions of conmol and data
dependence, and to define a refinement of the notion of data dependence. This refinement, the carriers
of a dependence, characterizes how a data dependence interacts with a program’s loops and procedures.

Chapter 4 develops new definitions of data dependence that simplify the task of dependence compu-
tation. In Chapter 3, the notion of a data dependence is defined as function of the sequence of siates
that computations generate. In Chapter 4, data dependence is redefined as a function of the individual
states that computations generate. These new definitions of dependence are based on a second seman-
tics for language #£ This semantics, MI,, is an extension of M,, that labels objects in stores with
values that characterize a computation’s history. These labels, for example, identify those statements
that might have read or written the various structures and references in a program’s stores. Chapter 4
shows that the new definitions of dependence w.r.t. M1, arc equivalent to the definitions of dependence
w.r.t. M given in Chapter 3.

Chapter 5 uses Ml w develop algorithms for estimating a program’s dependences. These algo-
rithms first estimate the set of all states that a computation might generate w.r.t. MI,. This set of siates
is then used to estimate the set of data dependences that a computation might exhibit w.r.t. Ml,. The
semantics that generates these estimates of program behavior, MA ,, is an extension of MI,, that uses
abstract (i.e., “approximate”™) stores to obtain a conmservative, terminating characterization of a
program’s behavior. The claim that MA, can be used to estimate a program’s dependences w.r.t. Ml
is proved with a theoretical framework known as Abstract fnterpretation [Cou77]. This assertion that
MA,/ s characterization of dependence is safe w.r.t. MI,’s, when combined with the assertion that
MI,, and M,, give equivalent characterizations of a program’s dependences, implies that these algo-
rithms compute a proper superset of a program’s dependences w.r.t. My,

The definition of MA,, given in Chapter 5 does not specify how termination is to be achieved: it
merely assumes that an analysis has been supplied with an operator that, intuitively, limits the number
of distinct states that an analysis can return. Chapter 6 explores possible definitions for this operator.
The greater part of Chapter 6 is devoted to a comparison of techniques for estimating stores. Chapter 6
also proposes a modified version of a standard store-limiting technique known as k-limiting, and argues
that the modified k-limiting operator can be used to obtain space-efficient abstract stores.

Part III. A Dependence-Based Representation for Pointer Programs

Chapter 7 argues that a pointer program’s dependences can be used o reason about is meaning.
This chapter first defines an example dependence-based representation for language 4 This dbr. the
heap-language system dependence graph (hsdg) is rclated to an earlier dbr for languages with pro-
cedures, the system dependence graph (sdg). Chapter 7 next argues that programs with isomorphic
hsdgs have cquivalent meanings. Chapter 7 then concludes with a critique of this dbr, and suggests

avenues for further research.

Part IV. Conclusions

Chapter 8 summarizes the work presented in this thesis. It also lists open problems, and discusses
possible extensions to the framework developed in Part 11

The author has tried to simplify the reader’s task in the following five ways. Chapters 3 through 7 are
prefaced with short introductions that sketch these chapters’ contributions to the literature. Comparisons
with related work are typically relegated to the end of each chapter; the lone exception is Chapter 6, which
can be regarded as a gloss on Chapter 5. Semantic definitions and the proofs of certain low-level lemmas
have been consigned to appendices. The proof of another crucial result, the Pointer-Language Equivaience
Theorem (cf. §7.3), is skeiched before being given in detail. Finally, there are two special indices at the
back of the thesis: the first lists authors, and the second lists definiton sites for special terms—technical
terms that appear in bold italics (names of lemmas, section headings, and terms in the concluding chapter
excepted).

OTHER REMARKS ABOUT THE THESIS

Backus described two deficiencies of common imperative languages: their reliance on side effects, and
their lack of support for aggregate data structures, This thesis is concerned with one specific approach for
dealing with the first of these deficiencies. The data structure that is at the heart of this approach, the dér,
characterizes one kind of assertion about program behavior—the dependence. Approaches to understand-
ing how programs evaluate that use other facts about program besavior (e.g., [Ger75, Par83]) are beyond
the scope of this thesis. Ideas for ameliorating the aggregate problem—e.g., extensions of FORTRAN that
support APL-like matrix primitives [Ame89]—are also beyond the scope of the thesis.

2. AN EXAMPLE LANGUAGE WITH DYNAMIC ALLOCATION

Be careful in the beginning, and you have no trouble in the end. —the I Ching, cited in [Cle88]

This thesis is concerned with languages that support dyramic allocation. Dynamic allocation is a strategy
for managing program memory that sets aside space for structures “on demand”—i.e., when certain opera-
tors, called allocation operators, are evaluated. These structures persist until they are no longer needed or
the computation terminates. Dynamic allocation is one of three common strategies for managing program
memory. The other two strategies, static allocation and stack allocation, differ from dynamic allocation—
and from each other—according to how structures are created and destroyed. Each of these strategics has
certain advantages. Dynamic allocation simplifies the task of programming with structures whose size and
useful lifetime are unknown at compile-time,

Dynamic allocation is typically implemented by providing each program with a pool of auxiliary
memory locations known as the heap. Allocation operators acquire structures from the heap by

) obtaining unused locations from the heap’s set of free locations (i.e., its freelisr);

' removing these locations from the freelist; and

* (optionally) tagging the set of newly-acquired locations with a rype that identifies these locations as a
single, logical entity.

Other operators are then used to access and update heap-ailocated structures. Some lancrages (e.g., Pascal
and C) also support an explicit deallocation operator—an operator that returns a structure to a freelist (i.e.,
when its useful lifeime ends). Other languages, such as Lisp and CLU, automatically return structures that
can no longer be accessed to the freelist. This process of automatically retrieving inaccessible locations
from the store is known as garbage collection.

The paragraphs that follow define an example language, 74 that exhibits properties of languages that sup-
port dynamic allocation. Language #is a structured, first-order language that provides user-defined types;
non-nested, recursive procedures; statically-scoped variable declarations; an allocation operator; and a
pointer-updating assignment statement.

Figure 2.1 defines % 's abstract syntax. A program in language #is a two-part object that consists of an
optional set of structure declarations, followed by a set of procedure declarations. Structure declarations
define a program’s allocatable structures. Procedure declarations define a program’s executable code. An
example program is depicted in Figure 2.2.

Appendix 1 gives the formal definition of language 7's meaning function, M,,. Semantics M, is an
operational, state-transition semantics for language H—the sort of semantics that could be used to imple-
ment 4. The use of an operational semantics allows one to reason about the sequence of intermediate

states that a computation generates (§3.2.2).

A program in language is interpreted as a partial function from an input store to an output store. Intui-
tively, a store is a directed labeled graph that represents memory. More formally, a store 18 a map that
assigns a unique address (i.c., element of Loc) to each of a program’'s siructwres. A structure s consists of a
type; an atom, which identifies 5’s value (if 5 is atomic); and a map m that names s's successors. This map
m maps selectors such as Ad and ¢ 1o elements of Loc . Every selector that a structure of type s does not

Program - [Structs;) {Procs) Stmt — while Cond do Stmis od
Structs —s Struct (; Struct)” — If Cond then Stmts (else Stmis) fi

Struct — struct TYPE s < Sels > — Selbxp := Exp
Sels - SEL {, SEL}" —» call IDENT { SelExps)

— return

Procs — Proc {; Proc)’

Cond -3 typeOf (SelExp) is TYPE
Proc ~3 Recproc

> Stdproc — SelExp Bq SelExp
—> SelExp > SelExp

Recproc — recursive Stdprocs endrec — SelExp = SelFxp
Stdprocs — Stdproc {; Stdproc)’ - Sdfépo;se;&p
Stdproc > precedure Stdp end - 0o
Stdp —> Proc_hd {Local;} Stmts Exp — new { TYPE)
Proc_hd — IDENT (([fdents}) — PRIMOP({SimplExps})
Local ~3 local Idents -3 SimplExp

d L]
fdernts —» IDENT {, IDENT) Simpllixps s SimplExp {, SimplExp)*

. i Al
Sims s Stimt (5 Strnt) SimplExp — ATOM | SelExp

SelExps —+ SelExp {, SelExp)”
SelExp — IDENT{.SEL}"

SEL is a set of alphanumeric names. TYPE is set of alphanumeric (fype) names that includes atom and env. IDENT
is a set of alphanumeric (variable and function) names.
PRIMOP is an unspecified set of primitive operations on atoms. PRIMOP includes "+’ and other arithmetic operations.

ATOM is a topped and lifted set of primitive objects that includes nil.

Figure 2.1. The abstract syntax of language H

support is mapped to L, the error location.

Language M defines two types of built-in structures. Environments are structures that map identifiers to
structures. Atoms are structures that map all selectors to L. Other structures arc defined by the evaluation
of structure declarations, A structure declaration names a structure type ¢ and specifies the selectors that ¢
supports. For example, the declaration “struct conscell is <hd,t >” defines a two-field structure named
conscell with selectors Ad and ¢l

Language # supports one kind of store-access expression: the identifier expression. An identifier
expression is a string of the form x.sel . sef,. - .sel,, where x is an identifier and the sel” are selectors.
The identifier portion of an identifier expression is interpreted according to a C-language-like, 1wo-level
scoping discipline. Let x.sel,. *-- be an identifier expression that occurs in a procedure P. Then x 15
interpreted relative to P’s local environment when x is either (1) one of P’s fommal parameters, or (2)
declared to be local to procedure P. Otherwise, x is interpreted relative o s global cavironment. The
rest of an identifier cxpression is interpreted according to the standard rules for dereferencing structures. 11
x. for example, references the cons cell <1,2>, then x.id and x4 reference “17 and “27, respectively.

struct conscell Is <hd, ti >; procedure sum (list, result) recursive
struct inipir Is <intp >, resultintp =0, procedure swmeits (list, sum)
listlen = 0; if list # nil then

procedure main () call sumelts (list, result); sum.intp = sum.intp + list.hd

local total; end; listlen = listlen + 1;

JE**% sum values in list, call sumeles (list.tl, sum)
/#*** and determine list length fi
end

total = new (iniptr);

call sum (list, total,

/¥*¥* final sum in total.intp,
f**** length in listlen

end;

endrec

Figure 2.2. An example program in language # The program sums a list of atoms. Subroutine swmelts () uses the
global identifier listien to record the length of the list. (Undeclared identifiers such as lisden are inierpreted w.rl. 3
program’s global environment.)

Language H provides three kinds of operations on atoms: arithmetic operators such as '+'; predicates
such as <, &, and >; and logical negation (“~").

oo

Language 7f provides four operations on non-atomic structures: “.”, Eqg, typeOf, and new. The .
(dereference) operator is described above. Eq is a binary predicate that tests whether two selector expres-
sions reference the same structure. TypeOf identifies the type of the structure referenced by its operand.
New(7) returns a reference to a previously unreferenced structure of type . Function new also initializes
the structure that it retums. The evaluation of the expression “new(r)”, where r is the type
< feld,, - - -, field, >, creates n+1 new structures: one structure of s, of type t, and n nil-valued atoms.
Each of the field;’s in the s, returned by “new(r)” references a distinct nil-valued atom.

A procedure consists of a two-part header and a body. A procedure’s header names its formal parame-
ters and local identifiers. A procedure’s body is made up of while loops, conditional statements, assign-
ment statemnents, procedure calls, and return statements, While loops and conditional statements have their
usual meaning. Assignment statements alter references; a statement like x.hd ;= (0 replaces a reference x.hd
with a new reference to the atom 0.

Semantics M., uses the following five-step, pass-by-reference discipline 10 implement a statement like

“call 4 (a,, - ,a.)"

i. A set of n + 1 special references are created at the caller’s local environment. One of these references
identifies (i.e., points to a special structure that contains) the retum address for the call to A, The
remaining n references point to the structures denoted by a through a,.

Tt

Control is transferred to procedure A.
Procedure A creates its local environment.
Procedure A initializes its local environment. A reference named _prev is first created from A's

bl

—9_

local environment to the caller’s local environment, (The return statement uses this reference w
restore the caller’s local environment.) The n + | special references created at step (1) are then used
to initialize A’s local references. One reference, reference _callcxt, is set 1o A’s return address. The
remaining n references are set to the initial values of A’s formal parameters.

5. Control is transferred to the first executable statement in A.

The return statement resets the local environment to the caller’s local environment, then returns control o
the program point referenced by callctxt. There is an implicit return statement after the last executable

~curr main _curr main
@ @é _pmﬁo @C prev :sQ

list fist list total
hd tl hd hd 1l [;I
/ / / intp
;L ;0 ;[1.
hd U hd t hd nil
/ \ / \ /! \
1 nil 1 nil 1 nil
initlal store store after entering main(before call to sum {)
_curr
_prev
fistlen list
/ resuit
0
g i
s |
hd il 0
' \
1 nil

--

—— other non—atomic
Key: @ —— global environment] e
<> __ local environment] -— atom

Figure 2.3. The first of iwo figures illustrating an evaluation of the program in Figure 2.2, Environments are fabeled
with names of their instantiating procedures; genv represents the giobal environment.

-10 -

statement in every procedure.

Language #’s meaning function executes a program P by creating and initializing P’s freelist, then
entering procedure main (). The following three constraints are imposed on every initial store o:

_cur
main sum sumelts
_prev _prev
listlen list list
/
0 total resuit sum
hd i
/
2 _ after first call to sumelts(
hd tl intp
7/ \ i
1 nil 0
se(se(se})}
listlen
/
2
2
7 \ | er final call to sumelts()
1 nil
' 3
/ _cwr
5?..:,_ “prev)? main
fistlten list total
/
2
hd . after return from sumy().
/ intp results saved in total.intp. lstlen.
2 E;l |
hd ti 3
/ \
1 nil

Figure 2.4. The second of two figures illustrating an example computation.

—11 -

@ ? X y

I
nil nii nil
before "x := nil" after "x := nil" after "y = x”

Figure 2.5. Language # s implementation of atoms. Every structure points to its own copy of an atom.

* o must be finite: ¢ must contain finitely many accessible structures and references.
* & must be deterministic: every structure may have at most one reference labeled sel.
* ¢ must have exactly one environment. This environment must not be the target of any references,

Figures 2.3 and 2.4 depict the interpretation of the program in Figure 2.2 w.r.t. an initial store that contains
a two-element list. These directed labeled graphs depict the store at successive stages of P’s evaluation.
Nodes represent structures; edges represent references. The special references labeled curr identify the
currently active procedure’s local environment. The special references labeled prev are used to stack and
unstack local environments on procedure entry and exit. Other special references to parameters and return
addresses have been omitted for simplicity; a detailed specification of M,,’s calling protocol is given in
Appendix 1.

The example computation depicted in Figures 2.3 and 2.4 illustrates three simplifying assumptions that
M,, makes about a program’s evaluation. The first such assumption is that new()} always succeeds. The
new operation uses a list of inaccessible structures known as the freefist 1o obtain unused structures. A call
to new() removes the first structure from the freelist and returns a reference to that structure. This thesis
makes the assumption that the freclist is unbounded; i.e., that the mew() operator never fails for want of
storage. This assumption makes it possible to sidestep the need for garbage collection. Eliminating gar-
bage collection, in turn, eliminates potential interactions between program points that arise from the reuse
of structures: i.e., an allocation operator never operates on a structure that was manipulated by a previous

statement,

The second simplifying assumption is that procedure activation records are allocated from the heap, and
not from a run-time stack of spare locations. Using the heap as the basis for allocation makes #’s
definition more uniform. It also eliminates potential interactions between program points that arise {rom
the reuse of the stack: i.e., a call statement never overwrites a location in the stack that was manipulated by

a previous statement,

The third simplifying assumption is that operations that retum references to atoms return references 10
unshared atoms. Specifically, an expression like new(conscell) relurns a cons cell whose fields reference
two unshared, nil-valued atoms. Also, the evaluation of a pair of statements such as “x :=nil; y = x"
yiclds a store in which x and y reference distinct nil-vaiued atoms (c¢f. Figure 2.3). This assumption
simplifies the task of comparing the contents of one store (0 the contents of a second: such maps play a key
role in the development of a non-standard, approximation semantics for language # (cf. Chapter 3).

-12 -

Section 7.4, which discusses these three simplifications in more detail, argues that none of these assump-
tions has a major effect on the analyses developed in this thesis.

Language 7 has also been simplified by the omission of several common programming constructs.
These include:

. Support for arbitrary scoping. The two-level scoping mechanism assumed in this chapter is a
compromise between simplicity and generality. Supporting no more than two levels of scoping
simplifies #{’s definition. Supporting more than one level of scoping makes the presentation more
realistic, and suggests how these results can be extended 0 languages with more general scoping.

. Value-returning procedures. The effect of a value-returning procedure call such as
“value = call swmfn (list)” can be obtained by defining sumfn as a two-parameter function, and set-
ting the second parameter to reference the result (¢f. Figure 2.2).

) Static typing. Language H's run-time type discipline is similar to Lisp’s. The effort required to
define a stronger typing system would have detracted from the focus of the presentation.

. Input and owtput, arrays, higher-order procedures, gotos, dynamic scoping, and reference arith-
metic. These features are beyond the scope of this thesis. How the addition of these features to the
example language would have complicated the presentation is considered in Chapter &,

OTHER REMARKS ABOUT CHAPTER 2

Static, stack, and dynamic allocation are discussed in more detail in the opening chapter of Ruggieri’s
thesis [Rug87]. This well-written overview of storage management also discusses persistent allocation—a
fourth allocation strategy that preserves structures across computations (i.e., on backing store).

Formalisms that have been used to model heaps include location-based models of memory
[Ple81, Deu90]: collections of symbolic equations [Sch75]; path strings [Myc8l, Ino88]; connection
matrices of path strings [Hen89, Hen90]; and alias sets [Har89,Gua%90]. The formalism used in this thesis
borrows heavily from Jones's and Muchnick’s original scheme for depicting stores [Jon79,Jon81]. A
graph-based formalism was chosen for Lwo reasons:

. Graphs provide a reasonably compact formalism for describing heaps. Other techniques for reducing
the number of nodes and edges in a memory graph are described in Chapter 6.
. Graphs are good tools for visualizing memory.

Later sections extend this notation with ideas from the literature on graph grammars and ideas from other
papers on pointer-language analysis.

~-13-
3. DEFINING DEPENDENCE

It is almost a defining characteristic of @ ‘mechanism' that, when it has produced a result, it is possible
10 inquire by what series of more elementary operations it has produced that result Since the pri-
mary purpose of a program is to specify a mechanism, it should be possible to associate with each pro-
gram of a language a set of possible traces of the execution of that program, this association provides
a 'mechanistic' formal definition of the language. ——C.A.R. Hoare [Hoa78]

A dependence is a relation that characterizes a program’s behavior. The dependence p —3 g, roughly
speaking, asserts that an execution of a statement p could interact with a subsequent execution of a state-
ment ¢. Various algorithms that operate on programs use a program’s dependences to determine how its
statements might interact. These algorithms typically make valid (if conservative) judgments about a
program’s behavior when given a safe estimate (i.e., a proper superset) of its dependences. This use of safe
estimates is a concession to the limitations of static analysis: it is not possible to determine the set of depen-
dences that an arbitrary program musr exhibit {¢f. §3.4.11).

A data dependence is a dependence that characterizes how a program operates on objects in memory—

i.e., structures, references, and streams. A data dependence p —>, g, roughly speaking, asserts that two
statements p and g operate on a common object in memory. Simple and efficient algorithms exist for deter-
mining whether a given pair of statements might operate on a common object, relative 10 example
languages in which every stored object has a unique name [Aho86]. The task of estimating a program’s
data dependences becomes more challenging in languages where objects do not have unique names—e.g.,
in languages that support aliasing and dynamic allocation. '

Chapters 3 though 6 develop algorithms for estimating a program’s data dependences w.r.t. My, These
algorithms, roughly speaking, pair each of a program’s statements with a set of abstract stores. An abstract
store is a special type of approximate memory configuration that represents a potentially infinite subset of
Store—M /s domain of stores. The sct of abstract stores that these algorithms pair with a statement g arc a
(finite) estimate of the (possibly infinite} set of stores that reach ¢ during a computation. These algorithms
also annotate every structure and reference obj in an abstract store with a fabel: a value that charactierizes
how a computation might have operated on obj. For example, the algorithm for computing a program’s
flow (i.e., write-before-read) dependences labels every obj with those program points that might have
defined obj’s value. This allows the set of flow dependences incident on a statement g to be cstimated from
the labels on the structures and references read at q.

The current chapter, which lays the groundwork for Chapters 4 through 6, defines notions of dependence
w.r.t. M,. Section 3.1 presents an informal survey of the notion of dependence. Section 3.2 defines the
basic types of dependence w.r.t. M. Section 3.3 refines the notion of a data dependence. The refinements
discussed in this section give a more precise picture of program evaluation in the presence of loops and
procedures. Section 3.4 presents additional background on the notion of dependence.

Many of the concepts presented in Chapter 3 were originally developed by previous authors. Concepts
that are original to this thesis include an alternative definition of def-order dependence (§3.2) and a gen-
eralized notion of loop-carried dependence for programs with procedures (§ 3.3).

—14-

3.1. An Informal Introduction to the Notion of Dependence

A dependence is a relation that characterizes how a program’s statements interact over the course of its
execution. Dependences are often used to determine whether the constraints on program execution that are
inherent in a language's definition can be relaxed without altering a program’s meaning. Dependences, for
example, are frequently used to determine whether evaluating certain statements in parallel would change a
program’s meaning. Dependences are also used to identify and isolate a program’s slices; i.e., its logically
related collections of statements [Ott84), Other uses of dependences are given in the introduction, and
mentioned throughout this chapter.

The paragraphs that follow present an informal taxonomy of dependence. The distinctions described
below are important, since different kinds of dependences are used to reason about different aspects of pro-
gram behavior. These distinctions are also fairly standard, up to subtle differences in assumptions about
how dependences anse (¢f. §3.4).

A program exhibits a control dependence p —>, q when a point p determines whether a second point g
executes. A program’s control dependences are a reflection of a language’s control structures. A program

in an #like language, for example, may exhibitp —>. g for any of the following reasons:

. p is a predicate that controls whether g ¢valuates. For example, g is conirol-dependent on p in the
expression “{p] if pred then [g] a =1 fi".

) p is the entry point of a procedure A, and ¢ is a statement in A that is not enclosed by any loops or
conditionals.

. pis a call to a procedure A, and g is A’s entry point.

Dependences from call sites to procedure entry points are called interprocedural control dependences
[Hor90a]. Other dependences are infraprocedural control dependences.

A data dependence p —>,4 g arises when points p and ¢ manipulaic common values. The dependence

p —>4 q is typically classified according to how p and ¢ interact. Most authors recognize four types of
data dependences:

. A flow dependence p —> q arises when p writes to a location that g then reads.
. An anti-dependence p —>, g arises when p reads from a location that g then OVerwriles.
. An output dependence p —, q arises when p writes to a location that g then overwrites,

. An input dependence p —>; q arises when p reads from a location that g then reads.

A fifth type of data dependence, the def-order dependence is sometimes used instead of output dependence
[Hor89]. These five dependences are illustrated in Figure 3.1. The distinctions between data dependences
arc important for analyzing program behavior: e.g., for determining if an optimization is safe {Pad79,
Kuh80, Kuc81, Woi82, AlI83, All87, Cal87, Fer87, Lar89, BalB9]. The following paragraphs give some rea-
sons for these distinctions; more can be learned by consulting [Kucg1] or {Cal87}.

Two statements p and g are said to exhibit a read-write conflict when one of these statemenis readds from,
and the other writes 1o, a common location [, In a sequentially executed program, a read-write conflict that
corresponds lo a dependence can be classified as a flow or an anti-dependence. The distinction between

~15-

Input Anti Flow Output
{Rd.-Before-Rd.) (Rd.-Before-Wr.) (Wr.-Before-Rd.) (Wr.-Before-Wr.)
(1] a=x (1] a=x f1] x:=a ft] x:=a
f2] y:=x (2] x=y 21 y=x [2] x:=y
(11— 121 (1] =, 21 (111 —, 2D (] —, 2D

Def-Order
1} x:=a A def-order dependence is a ransitive output dependence
(2] if pred then (i.e., a dependence of the form [p] —, -+ —>, [a])
3] x:=#b
(4] x:=y that is witnessed by a third program point.
5 fi The fifth example program exhibits {1] —, [3] —, [4].
zZ=x

The definitions at [1] and [4] are witnessed by the read a1 [5].
(1] > sy [41)

Figure 3.1. The five types of data dependence. All example dependences are through the variable x.

Program A, after paralielization

Program A, Program A,

[1] x:=2; [11 wmp =2 parbegin

2] z=x; (2] z=tmp begin [1] tmp =2 (2} z :=tmp end.
(3] xm=1,; 3] xm=1; begin [3] x:=1; [4] y:=x end

4] y==x; 4 y=x; parend

Figure 3.2, Using variable renaming to break an anti-dependence [2] —>, [3] in Program A,. This renaming allows
statements in the resulting program, A ,, to be safely executed in parallel.

flow and anti-dependence is important because anti-dependences need not appear in certain representations
of program behavior (¢f. Chapter 7). This distinction is also important because anti-dependences can be
eliminated by renaming variables. This idea is illustrated in Figure 3.2. Program A, in Figure 3.2 is not
parallelizable, because [2] —>, {3] prevents the simultaneous execntion of ([1],[2]) and ([3],[4]). Depen-
dence [2] —>, [3], however, arises from the reuse of the variable x. Renaming one use of x to imp elim-
inates these dependences—and yields the equivalent, parallelizable program A.

If a program redefines its variables, then some notion of output dependence is needed o characterize its
execution. Qutput dependences per se, however, can sometimes represent needless constraints on a
program’s scquential evaluation. Def-order dependences were introduced by Horwitz, Prins, and Reps 10
obtain an alternative characterization of program behavior [Hor89). A def-order dependence p — i ¢

* v " ..
is a transitive output dependence p —>, ¢ that satisfics the following conditions:

- 16 -

1. A flow dependence p —>; r is transmitted through a location /.
2. A second flow dependence ¢ —>, r is transmitted through /.
3. pocceurs to the left of g in a program’s abstract syntax tree (¢f. [Aho86]).

Intuitively, def-order dependences are used instead of output dependences because they constrain the
sequence of values read from (rather than the sequence of values written to) a variable x {cf. Figure 3.3).

Input dependences are useful for program optimization when different sequences of memory accesses
incur different costs, Kuck er. al., for example, use input dependences to group statements that read the
same array [Kuc81]. This optimization improves program performance by reducing how often large arrays
are loaded into virtual memory.

This taxonomy of data dependence has emphasized dependences that result from operations on stores.
Data dependences can also result from operations on streams. Consider, for example, the program
“[1] read(w); [2] read(x);”. This program exhibits a dependence [1] —, [2], since the read at [1]
affects the value read at [2]. Some authors refer to such dependences as flow dependences {Hor89) or def-
order dependences [Sei89]. Here, a dependence like [1] —, [2] is called a stream-mediated data depen-
dence; other (ermms such as “flow dependence” and “def-order dependence” are reserved for dependences
that arise through storez.

[1] a:=1; [5] a:=3: ".'[]_] a:=1: 5] a:=3:

(2] if pred then 6] c:=a: "‘.~ [2] if pred then 6] ¢c:=a;

(3 a:m=2 1] a:=1;: RNEY a=2 S a=1;

fi; ({2] if pred then fi; “'_ {2} if pred then
(4} b:=a: {3 am=2 [4] b:=a; g a:=2
TS5 a:=3; i 5] a:=3; fi :
<[6} ci=a; 4] b:=a: {6} c:=a: 4 bi=a;

71 a:=4; TR a=4 (7] a:=4; (7) a:=4;
Program P. Program Q, Program P, Program Q.
showing output showing output showing def-order showing def~order
dependences dependences dependences dependences

Figure 33. Programs that have inequivalent output dependences may have equivalent def-order dependences. Pro-
gram P has three output dependences that program Q lacks: {1] —», (3], [3] —, [5], and [5] —, (7]. Similarly,
has three output dependences that are missing from P. Programs £ and (J, on the other hand, both have exactly one
def-order dependence: [1] —3 4 qap 3]

-17—-

3.2. Definitions of Dependence for Language #

3.2.1. Control dependence

Control dependence can be defined in terms of how a program might execute w.r.t. a given set of inputs.
Such definitions of control dependence are useful, for example, in languages that support procedure-valued
variables [Shi88]. The definition of control dependence used in this thesis, which is somewhat simpler, is
based on the structure of a program’s abstract syntax tree.

DEFINITION. A program point is a name that uniquely identifies a site in a program’s abstract syntax tree.
A program P has one program point for every if predicate, while predicate, assignment statement, and call
staternent that P contains. Program P also contains the following special program points:

. Points initial; and initial;, which correspond to P’s initial points of control. Point initial, initializes
every object in a program’s store, Point initial, invokes main ().

. Point final, which corresponds to P’s final point of control.

. For every call site “[p] callA(aq, ---,a,)",
one point [p.iy] that saves the return address for the call o A;
* npoints {p.i,] - - [pri,] that compute the call's actual parameters,

. For every n-parameter procedure A,

* a point [A.enter} thal represents A’s entry point;

* three points [A. 3] - - - [A.7_;] that initialize A’s local environment;

* one point [A.iy] that saves a cailer’s return address;

* n points {A.,] - - - {A.,] that initialize A’s formal parameters; and

* one point [A.f] that represents the implicit return at the endof A, 3

DEFINITION. Let g be a point in a program P. A while statement s encloses g if g is subordinate to s in P's
abstract syntax tree. An if statement s encloses ¢ if ¢ is subordinate to 5 in #'s abstract syntax mee. A call
statement s encloses g if g is a special point that initializes one of 5's actual parameters. [

DEFINTTION. Let p and g be statements in a procedure P. Let level (p) and level (g) be the number of call,
while, and if statements that enclose p and g, respectively. Statement q is (directly) controi-dependent on

p, written p —»_ g, iff either

p is the entry vertex, g is not the entry vertex, and level (g) = 0;

p is a call site, and p encloses ¢;

p 18 a while predicaie, and ¢ = p;

p is a while predicate, the while statement at p encloses g, and level (q) = level (p)}+ 1;

p is an if predicate, the true branch of the if statement at p encloses g, and level () = level (p)+ 11 or
p is an if predicate, the false branch of the if statement at p encloses g, and level (g) = level (p)+ 1.

_O'\f.ll-&-wt\)w

Dependences that comespond to cases 1.5 are referred to as true-valued control dependences. Depen-
dences that correspond w case 6 are referred 10 as false-valued control dependences. [

DEFINITION. Let p be a statement that calls procedure A. Let g be A’s entry point. Then g 1s interpro-
cedurally controi-dependent on statement p. U]

—18 -

3.2.2. Data dependence

Data dependences arise through operations on streams and stores. The algorithms given in this thesis for
computing a program’s data dependences, however, ignore dependences that arise through streams. This
decision follows from the observation that language # supports only one stream: the freelist. Chapter 7
argucs that data dependences that arise from accesses of the freelist correspond to ugeless constraints on
program behavior. Intuitively, a freelist-mediated data dependence, if honored, would restrict the order in
which unreferenced structures were removed from a program’s freelist. Language #, however, is a
referentially transparent language: none of its operators alter, or recognize specific, addresses in memory
(i.e., clements of domain Loc). Changes in how a program assigns addresses to newly allocated structures
are therefore unobservable to the user.”

The definitions of store-mediated dependence given below are similar to—but not quite the same as—the
ones presented in Section 3.1. The definitions given in Section 3.1 assume that statements perform only
two kinds of operatons on memory: ie., read and write location. These definitions work well for
languages like FORTRAN, where a store’s size is fixed throughout the execution of a given scope. They
do not work as well for languages (like #} whose operators can also alter the size of the store. For histori-
cal reasons, the terms read and write are used throughout this thesis to characterize how stalements operate
on memory. This circumlocution, however, requires a slight bending of the notion of a write.

DEFINITION (write of @ memory object). A structure or reference is written when it is added to a store
s. O '

DEFINITION (write of a memory object at a state). Let p be a program point, © a store, and fl a freelist.
A structure (reference) obj is written at state (p, o, fi) iff the evaluation of p w.r.t. o and fl writes 0b/.
a

DEFINITION (read of a memory object). A structure or reference is read when it is accessed by the
evaluation of an identifier expression. O

DEFINITION (read of a memory object at a state). Let p be a program point, ¢ a store, and fl a freelist.
A structure (reference) obj is read at state (p, 6, fl) iff the evaluation of p w.r.t. o and fl reads obj. O

Structures are written by the evaluation of initialize and assignment statements. The initialize statement
“re-creates” every structure (and reference) in a program’s initial store. The evaluation of -~ = val®
adds the atom val to a store ¢. The evaluation of “- -+ = new(env)” adds a new environment to . The
evaluation of © + - - = new(typ)”, where ryp is a user-defined structure with n fields, adds n + 1 structures to
o one stucture of type fp, and n nil-valued atoms. Finally, the evaluation of
- = saveContext(programPt)” adds a special structure o ¢ that records a procedure call’s return

o,

address.

T Admittedly, this is an unusual usc of the term referentially ransparent. Solomon [private communication] has suggested that the no-
tion described here is akin o what the database community refers to as a wyaluse-based™ semantics—as opposed to a semantics where

structures have distinct identities.

-19-

References are written by the evaluation of the initialize and assignment statements. The evaluation of
“. = new(typ)”, where typ (#env) is a structure with n fields, adds n references to a store o. The
evaluation of “[p] idexp := ---™, where idexp =sel, - - sel,, adds a reference to a store o, More
specifically, let gEnv be o’s global environment. Let idexpr (p, o, gEnv, sel, - - - sel,_;) denote the loca-

tion { (cf. Appendix 1), and s the structure at location /. Then the evaluation of idexp := - - - adds a refer-
ence r at s of type sel,,

DEFINITION. Let 5 be a structure and sel a selector. The reference of type sel at s is the reference at s
that corresponds to sel. More precisely, let & be a store such that G(loc) = s5; then the reference of type
sel at 5 is the reference accessed by the evaluation of selexp (0, loc, sel). O

(N.B.: If there is already a reference r” at s of type sel ,, then the new reference r replaces r'.)

The set of structures and references that the evaluation of the identifier expression idexp reads varies
according to idexp's context. More specifically, let idexp = sel| - - - sel,, be an identifier expression at a
point p. Let ¢ be a store and gEnv be ¢'s global environment. If idexp appears on the left-hand side of an
assignment statement, then the evalvation of idexp at p reads those structures and references that are
accessed by the evaluation of idexpr (p, ©, gEnv, sel, - - - sel ,_;). Otherwise, the evaluation of idexp at p
reads those structures and references that are accessed by the evaluation of
idexpr (p, ©, gEnv, sel -+ - sel,).

Technicaily, a structure s is also read when it is passed as an argument to geityp, which retums s°s type,
or getval, which returns s°s atomic value. The definition of My, however, ensures that any s passed to ge. -
typ or gerval must first be accessed by the evaluation of an identifier expression.

The informal definition of data dependence states that a dependences arises through successive opera-
tions on a common object in memory. This notion is formalized with a state transition relation,

DEFINTTION. The stafe transition relation -+ & -+ —> -+ is defined as follows:

prog | state; — 0 state j e state; = state;

prog |~ state; —>" state; < 3 state’: prog |- state; — ™ state” A siate; = evalPt(prog, state’)
prog |- state; — " state; < A n:prog |- slate; —>" swate;

prog | state; —>* state; <> 3n>0:prog |- siate; ~>" state ;

prog - state, —> -+ —> state, < Viinsism-l:prog {- siate; —>tstate;,, O

The expression evalPt (prog, state”) constitutes a minor abuse of notation. The function evalPr (cf.
Appendix 1) actually takes one formal parameter—a state—and three non-local parameters that
describe prog's control-flow graph, structure declarations, and local identifiers.

DEFINTTION (frue for all states between ...). A predicate P: Stare — Bool is true for all siates bevween
state, and state, iff prog | state, —» ' =7 staie, implies that P(state;) =wrue for ali
itn<i<m. 0O
The definition of | may now be used to give formal definitions of flow, output, input, and anti-
dependence:
DEFINITION (flow dependence). Let prog be a program with program points p and ¢, and [nSet a set of
stores. Point g is (directly) flow-dependent on p w.r.L. InSet, written p —>, q (w.r.t. [nSet), il there

20~

exists a store o € InSer, a freclist fl, states (p, G, f1,) and (g, ;. fl,), and an object ob; such that

e prog - (initial, 0, f} =" (p,0,. fl,) —* (4.6, flg);

. obj is writien at (p, G, fl,));

. obj is not written at any states between (p, O, fl,) and (g, 0,4, fl,;); and

. objisreadat (¢,0,). O

DEFINITION (input dependence). Let prog be a program with program points p and ¢, and /nSer a set of
stores. Point g is (directly) input-dependent on p w.t. InSet, written p —>; g (w.r.t. InSet), iff there
exists a store g € InSet, a freelist fI, states (p, O, fl,) and (g, G, f,), and an object obj such that

. prog - (initial, , 0,) = (0,6, f,) = (¢.0,.f,);

L Objisreadat(p; Gp,ﬂp);

. obj is not written at any states between (p, 6, fl,) and (g, S, fi,); and

. objisread at (g, 0., ;). O

DEFINITION {output dependence). Let prog be a program with program points p and ¢, and /nSet a set
of stores. Point g is (directly) output-dependent on p w.r.t. inSet, written p —, ¢ (W.LL InSer), iff
there exists a store G € InSet, a freelist fl, states (p, G, f1,,) and (¢, 0, fl,), and a reference r such that

. prog + (initial, , 0, Iy =" (p.6,. f,) = (4. Gp. flg)s

. r is written at (p, 6, fl,):

. r is not overwritten (i.e., replaced) at any states between (p, 0, fl,) and (g, 64, 15); and

. ris overwritten at (g, 65, flg). O

DEFINTTION {anti-dependence). Let prog be a program with program points p and g, and [nSet a set of

stores. Point ¢ is (directly) anti-dependent on p w.r.t. InSet, written p —>, g (w.r.t. InSet), iff there

exists a store o e InSet, a freelist i, states (p, 6, f,) and (g, 5,, fl,), and a reference r such that

. prog ~ (imitial, , g, i) —° (. 0, fAp) —* (g, G flg):

. ris read at (p, ©,, fl,);

° r is not overwritten at any states between (p, G, f,) and (g, 0, fl,); and

. r is overwritten at (¢, 6,, flg). O

Output and anti-dependences can only arise through operations on references. The definition of My

does not allow the attributes of a structure s (i.¢., its type and atomic value) to be modified after ¢ has been
altocated. This observation is true, in part, because M, never returns structures that have been allocated to
the freelist,

Section 3.1.2 states that a computation exhibits p —>4) ¢ when it exhibits two flow dependences,

p —>;rand g —; r, that arise through a common location /. This definition, when rephrased in terms of

structures and references, states that a computation exhibits p ~>g4, () 4 when it exhibits two flow depen-
dences, p ~—d; randg —Jy r, that arise through a commeon field in a common structure.

DEFINTTION {def-order dependence). Let prog be a program with program points p and g, and /nSer 2

set of stores. Assume that p occurs to the left of g in prog’s abstract syntax tree. Point ¢ is {directly)

def-order-dependent on p w.r.t. InSet and r, written p =Yg ¢ (W.LL [nSer), iff there exists 4 store
o e InSet, an initial freelist ff, four states (p, Tpa flp)s (9, 64, fi) (T, o, fl,), and (r, o’ fI),), a pair of

31—

structures s and 5°, and a selector sel such that

p —?; rwur.t { o) through a reference ref of type sef at structure s; ie.,
prog |+ (imitial,, 0, f) =" (p, 6,, fl,) —>* (r. 6., f,);

ref is written at {p, 0, f1,);

ref is not overwritten at any states between (p, 6, f)) and (r, o, fi,); and
refisread at (r.c,, f1,);

q —»; r w.r.t. (o) through a reference ref " of type sel at structure 57 ie.,
prog t (initialy, o, fI) =" (g, 6., A,) = (. &,)

ref” is writien at (g, G, fl,);

ref’ is not overwritten at any states between (g, o, f,) and (r, o, A’y and
ref’ is read at (r, &', fI’,); and

s and s” arc the same structure. [

The definition given above, however, is not a good starting point for determining a pointer program’s

def-order dependences. According to this definition, a computation ¢’s def-order dependences can be

determined if one knows whether s and s'—an arbitrary pair of structures that exist at unrelated moments

(r,6,, i,y and (r, &, fl',} in c—are the same structure. To make such preciss comparisons between arbi-

trary structures in o, and ¢’, possible, every structure that is allocated during the course of ¢ must have a
tag that uniquely distinguishes it from all other structures allocated during computation ¢. These tags could
be implemented, for example, by pairing every structure s with an additional integer that identifies the
moment int ¢ at which s was allocated: e.g., by pairing the kth structure alloc~ted during the evaluation of ¢

with the integer k. This assumption that every object initially has a unique identity, however, creates two
problems for algorithms that analyze a pointer program’s behavior.

Tags are a potential source of imprecision. A language like # does not limit the number of structures
that an arbitrary computation can allocate. There is therefore no a priori limit on the number of tags
that a computation that paired structures with tags could require—even if the number of accessible
structures in a computation’s store is bounded. (This is true, for example, of a program such as
“while pred do a := new{conscell) od”) To ensure that an analysis of an arbitrary computation
terminates (cf. Chapter 5), the number of tags that a computation uses must somehow be limited: e.g.,
by pairing the mth structure allocated by a computation with the value m modulo k for some
predetermined constant k. This, however, can create spurious def-order dependences by (e.g.) caus-
ing the m +k modulo kth structure allocated by a computation to be mistaken for the m modulo kth,

Tags interfere with the elimination of redundant stores. Recall that language # is referenually tran-
sparent: two stores hat are isomorphic up to how structures are paired with locations are indistin-
guishable from the standpoint of the language's operators—and are therefore interchangeable from
the standpoint of dependence computation. Introducing tags into an analysis would make it more
difficult to find opportunitics for climinating redundant stores. Two stores s and 5° whose siructures
are allocated at different moments during 2 computation would never be indistinguishable for the
purpose of dependence computation—uniess, that is, the tags of s and 5" are equivalent, relative 10

the chosen strategy for estimating (ags.

—-22 -

The following, equivalent definition of def-order dependence eliminates these difficulties by rephrasing
the notion of a def-order dependence in terms of a single sequence of states.

(RE)DEFINITION (def-order dependence). Let prog be a program with program points p and ¢, and InSer
a set of stores. Assume that p occurs to the left of ¢ in prog’s abstract syntax tree. Point g is (directly)
def-order-dependent on p w.r.t. InSet and r, writien p —>4,¢y ¢ (W.r.t. InSet), iff there exists a store
oe [nSer, an initial freelist fI, states (x, 6, f,), (v, 6,1, A,2). (0. Gy,), and (r, 6,4, fl), a structure
5, and a selector sel such that:

e {xyl={pgh

s prog - (initialy, 5,) =" (x, 0,) —=* . G 1) = (0,0, fy) —* (1,01, A2
. a reference ref of type sel at structure s is written at (x, 6, 1.}

. ref is not overwritien at any states between (x, ;, fI,) and {r, 5,1, i1)

. refisread at {r, o, , fl, 1)

. areference ref” of type sel at structure s is written at (y, 6y, fl,);

. ref’ is not overwritten at any states between (v, 6,, f,) and (, G,,, fl,,); and

. ref’ isread at {r, 0,2, fl,2). O

According to this second definition, a program’s def-order dependences can be computed by monitoring
how a computation ¢ performs sequences of operations on a store’s component structures. This second
definition is used in Chapter 4 to develop a strategy for determining def-order dependences that does not
use tags to determine whether two structures are, in fact, the same structure.

3.3. Refining the Notion of Data Dependence

The dependence p —>, ¢ asserts that any execution of ¢ might depend on any execution of p. Such an
assertion is often an excessively weak estimate of program behavior. This is the case, for example, when p
and ¢ are statements in loops that access different elements of a common structure: e.g., an array or list.
Improved estimates of program behavior are often obtained by refining the notion of dependence—i.e., by

qualifying p —>, ¢ with assertions about which of p’'s and g’s evaluations interact,
One such refinement, the distance of a data dependence, is discussed in Section 3.4.10. A second

refinement of the notion of data dependence is the notion of a loop-carried dependence. This concept was
introduced by Allen [All83], who uses it t0 determine when nested loops can safely be interchanged.

Roughly speaking, the assertion that a loop L carries p —>a q corresponds to the assertion that p —4 ¢
arises from operations on L’s induction variables. Figure 3.4 explains this notion by relating it to the data
dependences exhibited by an unfolded loop. Assume that the example program in Figure 3.4 exhibits
p —>,4 g, and that L runs for n iterations. Unfolding L n times yields an equivalent program that has one
less loop and n copies of p and g. Let [f, p] denote the copy of p produced by the ith unfolding of L.
Assertions about whether L carries p —>4 ¢ can be used 10 determine whether the unfolded program exhi-
bits dependences of the form [i, pl —2 [, 41

. If { # j and L does not carry p —>y ¢, then the unfolded program exhibits no dependences of the

form {f, p} —*4 (/. ql.
. If i < jand L carrics p ~74 g, then [, p] —>a U, gl is presumed to hold in the absence of special

information about [i, p} and [/, g}.

-23 -

The assertion that L carries p —>, ¢ says nothing about whether [i, p] —3, [i, ¢].

A dependence p —3; q is also said to be loop-independent if an {i, q] depends on an [i, p] after every loop
ir a set of loops has been completely unfolded,

Program P

P's dependences after unfolding L.
if L is not a carrier of if L. is a carrier of
[LpI—™ [Lqa] Lp]—™ [Lq]

for 11:= 1to n, do for il:==lto n, do
for i_:

1 for 11:=1to ny do
2=1to n, do for12:=1to n, do for 12:=1to n, do
L] for iL:= 1to n do ";-[1,]3] al.] := Spl all] o=

pt al.l

= ;J ;‘D-ll.ql . -: al.]: o [L.al . -:= al.]:
lal ‘ .:= al...]: U

PR teD) B

endfor

= o 2.pl al.] :=
‘e [2.q] = al.: ‘e (2,41 = al
endfor
endfor

S lepl al.d Slpl ald
‘B [k.ql .

= a e [k.q]

STinpl alll]

Snploall] =
‘o (n.ql = al.l: &= [n.q] = al
endfor endfor

endfor endfor

that L carries p —¥, q. Broken lines denote possible dependence

Figure 3.4. Loop-carried dependence. Solid arrows in unrolled programs dencte dependences implied by assertion
Lcarriesp —; q.

s whose existence is independent of the assertion that

— 24—

procedure main () procedure getX (index) Th
o call gerX (1); Ipl temp (index) = x [index ere are n dependences from occurrences of p
{2] call putY (1); end; tooc ces of g
3] call gerX (2); [initial , 1, p] —, {initial, 2, q]
[4] call putY (2); [initial; 3, p] —, [initial, 4, 4]
- . procedure put¥ (index) o
[2n-1] call getX(n); lal ylindex | = temp [index] [initial , 2n—1, p] —3, [initial, 2n, ¢}

[2n} call pwY(n);

end;
end; '

Figure 3.5. Using the Sharir-Pnueli call string notation o name a program’s dependences,

Previous treatments of carriers have focused on languages with loops. This section develops a notion of
a carrier for languages like % that support loops and procedures. This new notion of a carrier is defined as
an approximation to the set of dependences that arise between specific occurrences (i.e., distinct execu-
tions) of two program points. Assume, in other words, that there is some way of assigning a unique name
[n, x] to every occurrence of a program point [x] in a computation ¢. Then this computation may be said to

exhibit [i, p] ~, U, g] iff

. [{, p] and [}, q] both occur in ¢;
. [{, p] occurs before [, gl in ¢; and
. that part of ¢ that runs from i, p] to [, g] exhibits p —>, 4.

The notion of a carrier will be defined in terms of the specific instances of p and g that exhibitp —; ¢.

Various schemes can be used to name a statement’s occurrences. Because the notion of a carrier is
closely connected with the notion of unfolding, it is important to use names that identify the circumstances
under which these occurrences execute. Algorithms that analyze sets of nested loops, for example, typi-
cally use iteration counts to name the occurrences of a given statement. Under this naming scheme, each
occurrence of statement [2] in the program “{1] for i:=1 to 64 do [2] ali+8]:=alil*ali]l od™ is
numbered with the value of i at the time of that occurrence’s evaluation. The program is then said to exhi-
bit 56 flow dependences between the occurrences of [2]—namely, [1,2] =, [9.2], {2,2] —; [10,23, -,
[57.2] —>, {64,2]. (The observation that j—i = 8 for all [i, 2} = [/, 2] also allows this loop to be split
into eight parallelizable loops.)

A more general naming scheme is needed to distinguish between different occurrences of statements in
languages with loops and procedure calls. A satisfactory naming scheme for such languages can be
developed from another naming device-—the call siring [Shag1]. Intuitively, a call string is an abstraction
of a program’s stack (hat names a program’s active call sites.” Figure 3.5 shows how cail strings can be

} A similar naming device appears in Harrison’s thesis on parallelizing Scheme (cf. §2.6, [Har89]). Harrison’s procedure sirings are a
variant of call strings that name call sites and procedures. The need 10 include procedure names in procedure strings stems from the

presence of procedurc-valued variables in Scheme.

-25 -

used to name the dependences that arise between individual occurrences of a program’s statements. The
program shown, program P, is a program in an extended version of # that, for the sake of example, also
supports arrays. The string “initial; 2: -1 p” names that occurrence of p that sets temp(i] to i. (N.B.: ini-
tial, is the first element of every call string because main() is first called at initial,.) The string
“initial, 2i ¢ names that occurrence of g that sets x{i] to i.

Sharir and Pnueli use call strings to determine how specific procedure calls affect a program’s store.
The naming mechanism used in this thesis, the occurrence string, is a call string that aiso records the
evaluation of a program’s loops. Occurrence strings are illustrated in Figure 3.6, The program in Figure
3.6, which is similar to the one in Figure 3.5, uses a loop to transfer data between arrays x and y. This
program’s occurrence sirings record snapshots of that program’s stack. These occurrence sirings also
record how many times the loop at statement [2] has evalnated—if this loop has not yet finished running.
This information about loop evaluation is needed to distinguish among the different invocations of the
cxample program’s auxiliary procedures. In particular, “initial, 2 3 p” names that occurrence of p that sets
templi] to i. Similarly, “initial, 2' 4 g” names that occurrence of ¢ that sets y[i] to templil. (N.B.: m*
denotes a k-long sequence of m’s.)

Occurrence strings can be used to develop occurrence-specific definitions of dependence for language 1.
Lett=(p,,00,) -+ (Pr. O, fly) - - - be the frace of an example computation:

DEFINITION (trace of a computation). Let prog be a program and © a store. The trace of prog on o is
the sequence (p1, &y, 1) - -+ (Pas Ony) -, where p, = initial;, ¢, = &, fI, is the freelist that My,
pairs with @, and, for all i, prog + (i, 60, i) = Pivt. Gier, flin). O

The following algorithm, adapted from similar algorithms in Sharir and Pnueli (§ 7.3, ibid.) and Harrison
[Har89], computes occurrence (1, n), the occurrence string for the program point at the nth state in £

. occurrence (1, 1) is €, the empty occurrence string.

. fn>l,leto=0, -0, beoccurrence (t, n—1). occurrence(t, n) may now be computed from o,

P a_t,and p,, as follows:

procedure main ()} procedure getX {index) There are n dependences from occurrences of p
[11 i=1; [p] temp(index] = x[index] to occurrences of q:
(21 while i<n do end; [initial, 23, p] —; [initial , 24, 4]
E} “a:i ge’i{ E‘_;; [initial, 223, p] —, [initial, 224, 4]

cait putY(i); .

5 f=i+1; rocedure putfY (index) . .
o) en:j' o [q]p y[index}ez ter(np{index] [initial , 2" 3, p] —, [initial, 2" 4, g]

end ; end;

Figure 3.6. Using occurrence strings to name a pregram’s dependences.

—26—
* If@._q,p.)isan entry arc into a procedure A, then occurrence {ty=01 -0, A.
* It (p,_1,pa)isan entry arc into the body of a loop L, then occurrence {(ty=o0y- -0, L.
* If (P -1, pa) is an exit from a procedure, then occurrence (1) = Oy 0.

* If (Pa-1,p4) is an exit from a loop L—that is, an arc from the loop’s predicate to the first statement
following L-—then o must have been of the form 010 ,-L"‘f , where 0, # L and j is the number of
consecutive iterations of L that have completed. occurrence (t)istheno; --- o -0

Intuitively, this algorithm computes occurrence strings by reducing a prefix of a program’s trace to a string
of active procedure calls and loop invocations, The relationship between this algorithm and the Sharir-
Pnueli and Harrison algorithms becomes evident if one thinks of each invocation of a loop as a call on a
tail-recursive procedure.

The notion of a carrier of a dependence p —, ¢ may now be defined as an abstraction of the set of all
dependences between specific occurrences of p and g that a program exhibits.

DEFINITION (carriers of an occurrence-specific dependence). Letd =i, p] —>, {/, g1, where { and ;
are occurrence strings, be a dependence between two specific occurrences of a pair of program points, p
and g. Let i and j be strings of the form p, vyl fandpy cop f e o, where py - S pg s
the longest common prefix of i and j. The carrier of d, written carrier (d),1s(g,8),if I =m =0; (&, /'y),
ifi=0andm > 0; (", €),if{ > 0and m = 0; and (7, /). 1! > Oand m > 0. 03

DEFINITION (carrier-independent dependence). An occurrence-specific data dependence is carrier-
independent if its carrier is (g, €). 0O

DEFINITION (loop-carried dependence). Let | be the entry point of a loop. An occurrence-specific data
dependence is carried by | if its carrier is either (e, 1) or {{, m), where m is transitively control-
dependent on /, and / is not transitively control-dependent on m. An occurrence-specific data depen-
dence d is carried by a loop if there exists an [that carries d. [

DEFINITION (call-site-carried dependence). An occurrence-specific data dependence is carried by a
call site if its carrier is (x,), where either x or y isa call site. [

Figures 3.5 and 3.6 depict call-site carried dependences. In Figure 3.5, the dependence
[initial, 2i -1, p] —>¢ [initial, 2i, q] is carried by ([2i~1],(2{). In Figure 3.6, every dependence
[initial, 2' 3, p} —> [initial, 2'4, q] is carried by ([3],{4]). Examples of carrier-independent dependences
and loop-carried dependences are given in Figure 3.7.

DEFINITION (carriers of a dependence). The carriers of a dependence p —»4 g are the set of all
carrier ({i, pl,[j, gl) such that (i, p) ~>, (i, q1. O

Since programs are finite syntactic objects, carriers(p —>, q) is always a finite set.

A use of the notion of a call-site-carried dependence is illustrated in Figure 3.8. The first program in
Figure 3.8, program P, is the program depicted in Figure 3.5. The second program in Figure 3.8, program
{2, is a permutation of P. A theorem proved in Section 7.3 states that £ and (), roughly speaking, represent
equivalent programs if they have equivalent conirol, flow, and def-order dependences. A naive characteri-
zation of these program’s dependences—i.e., onc that fails to use the notion of the carriers of a
dependence—-suggests that the set of flow dependences in P and @ are not the same. For example, the

- 27 -

struct [mipir is <imp>;
procedure conditionalPrint(printswitch, piri)

procedure main() if printswitch =1 then
value := new (intptry; [4] print (periinigp).
[r] read (value.inip) fi
{s,] call conditionalPrint (0, value; end;

[s:] call conditionalPrint (1, valuey,
[for i == 1 to 2 do

{f] f"r:aﬁ (; Ii1+t10 12})"" [)) = [q] is carried by [s2] (i.e., by (¢, [s3]).
1 v H
k=vyliJ];
i:ﬂ xli }’1[i’=12f [m1] =3 [my) s caried by [1] (Gi.e., by (], ().
endfor) ‘
endfor [ma] =3¢ [m,] is carrier-independent.
end ;

Figure 3.7. More examples that illustrate of the notion of a carrier. Here, the language has been extended, for the sake
of example, to include arrays, for statements, read statements, and print statements.

Program P Program @

procedure main () procedure getX (i) procedure main () procedure geiX (i)
[1] call gerX (1); 7] templi] = x[i] [2n—1] call gerX(n); {p] templi] = x{{]
[2} call patY (1), end; [2n} call pur¥(n); end;
[3] call getX(2); e
[4] call pur¥ (2); [3] call getX(2);
v 4] call put¥ (2);

procedure put (i) procedure putY (i)

(2n—1] call gerX(n); o [1] call getX (1} o
[2n] call pui¥(n); lal 1= templi] 21 call put¥Y (1); [ylil=rempld]
end ; end;
end; end;

In both programs, the dependence p —; ¢ is carried by the call site pairs ([11{2]). {[31.14]), - - - ([2n-1], [2n]}.

Figure 3.8. A use of the notion of carrier to show that two programs have equivalent (flow) dependences.

occurrence of ¢ evaluated during the final call to putY in both programs appears to depend on all preceding

evaluations of p. A more careful characterization of p >, g—one which notes that the invocation of ¢ at
point [2f} depends only on the invocation of p at [2i—1]—is needed to establish that P and Q have
equivalent flow dependences.

3.4, Additional Background on the Notion of Dependence

Section 3.4 presents additional material on the notion of dependence. This malerial was not presented in
Sections 3.1 through 3.3 because none of these topics are explored in later sections of the thesis.

-8~

Section 3.4.1 gives an informal history of the notion of dependence. Sections 3.4.2 through 3.4.11 dis-
cuss related notions of program behavior. This includes other notions of dependence, other kinds of depen-
dences, and other dependence-like notions of statement interaction. Section 3.4.12 concludes with obser-
vations on the limitations of the notion of dependence.

3.4.1. Historical background

The concept of dependence grew out of work in the 1960°s on the parallelization of FORTRAN. The
apparent predecessor of the notion of a data dependence is the notion of a conflict {¢f. §3.4.3). This notion
appears in a seminal paper by Bernstein, who proved that two statements p and g could be executed in
parallel whenever p and g do not conflict [Ber66].

Notions similar to control and data dependence are proposed in a 1970 paper by Tjaden and Flynn
[Tja70]. Tjaden and Flynn, who discuss algorithms for parallelizing assembly language programs, use
three notions to characterize interactions between a program’s statements. The first, a procedural depen-
dency, is analogous to a control dependence. The second, a data dependency, corresponds to a flow depen-
dence. The third, an operational dependency, corresponds to a busy-wait. Tjaden and Flynn sketch an
algorithm for determining when additional registers can be used to break read-write and write-write
confiicts between pairs of statements, This algorithm is analogous to later algorithms that use variable
renaming to break anti- and cutput dependences.

Most of the common terms for describing dependence were developed during the 1970’s at the Univer-
sity of Hlinois:

A 1972 paper by Kuck, Muraoka, and Chen draws an explicit distinction between flow dependences and
anti-dependences, there called forward and backward dependences, respectively [Kuc72]. This paper
also defines distance vectors—n-tuples that give the distance of a dependence (in n-space) w.r.l. a col-
lection of n nested loops. Kuhn {Kuh80] credits Muraoka [Mur7 1] with the development of the notion
of a distance vector.

Towle appears to have introduced the notions of output dependence and transitive dependence (referred
to by Towle as indirect data dependence) [Tow76). The word appears is used, since Towle was not

11 for m:=1 to 2 do

(2} for n:=1to 2 do

3 read (a[m+1, 1]};

4] print (a[m, n]);
endfor®

This example program exhibits [3] — {4]. According to Allen’s definition, [3] —>; [41 is carried by the loop at [1].
According to Horwitz etf. al's definition, [3] —3 [4] is carried by the loops at [1] and [2].

Figure 3.9, Dlustrating the difference between Horwilz et. al.’s and Allen’s definitions of loop-carried dependence.

—-29_

careful to distinguish original concepts from concepts that were borrowed from earlier authors,

The notion of a direction vector was first proposed by Wolfe [Wol78]. A direction vector, a vector that
gives the signs of a distance vector’s entrics, plays an important role in loop interchange.

Several authors, including Wolfe, credit Kuck’s text on compiler-writing for the notion of input depen-
dence [Kuc78]. '

Allen’s 1983 thesis [AlI83] introduced the notions of loop-carried and loop-independent dependence.
Allen used these notions to determine the safety of loop interchange. More recently, a different definition
of loop-carried and loop-independent dependence was given by Horwitz, Prins, and Reps [Hor89).
Horwitz et. al. state that a dependence p —> ¢ is carried by a loop L when a path in the control-flow graph
that gives rise to p —> g includes a backedge to L’s entry point. This definition provides an adequate, but
less precise, characterization of a program’s evaluation. Horwitz er. al.’s definition implics that a loop L
carries a dependence d whenever a loop L’ that encloses L carrics d—even when L, by Allen’s definition,
does not (¢f. Figure 3.9).

The notion of a def-order dependence was inroduced by Horwitz, Prins, and Reps in the context of pro-
gram integration [Hor87].

3.4.2. Def-use chains, support sets, and dominance

A dependence is one of several relations that have been used to characterize program behavior, Notions
that are equivalent to the notion of flow dependence include the standard dataflow notion of a def-use
chain (cf. [Aho86]) and Neirynck’s notion of an expression’s support [Nei88].

The notion of control dependence is closely related to the notions of dominance and post-dominance. A
node n in a program’s control-flow graph dominates a second node »” if all paths in the graph from the
entry point to n° pass through ». Similarly, a node # is post-dominated by a second node »” if all paths from
n o' the program’s exit point pass through »", Ferrante, Ottenstein, and Warren give a definition of control
dependence that also exiends to languages with gotos [Fer87). This definition states that statement g is
control-dependent on predicate p iff
. there exists a path = in a program’s control-flow graph from p to ¢ such that every point along this

path, p and g excepted, is post-dominated by g, and
. p is not post-dominated by g.

3.4.3. Conflicts

Another notion that is closely related to the notion of data dependence is the notion of a conflict. Two
statements p and g conflict, written p <> ¢, if both access the same memory location / and either updates /.
The difference between a conflict and a dependence (which is also discussed in Section 3.1) is illustraed

by the following example program:

f1] x =10; [2] x:=20; [3] y ==x; [4] x:=40;
This program cxhibits three read/fwrite conflicts and three write/write conflicts: [1] ¢, [3],
(2] €3, [3], (3] 0 [@] (1] €2, [2], [1} €2, (4], and [2] €5, {4]. Tt also exhibits four data
dependences: [1] —, (21, [2] —>, [3],13] —, [4],and [2] —, [4].

-30-—

Good results have been obtained from using conflicts to guide program parallelization (e.g., [Hen907).
Even 5o, the notion of conflict equivalence has shortcomings that make it unsuitable for reasoning about
certain aspects of program behavior. Consider, for example, the information that conflicts give about the
following programs:

Program Ay [1] x:=1; Program A,: [3] x=2;
{2} y=x; (4] zi=x;
Bl x=2: o] x=1;
i4] zi=x; 2] y=x;
(3] =x:=3; (51 =x:=3;

Programs A, and A, compute the same final values for x, ¥, and z. Neverthless, A, and A, are not
conflict-equivalent; the two programs perform different sequences of updates to x. This example, like Fig-
ure 3.3, suggests why conflict analysis is not a good starting point for analyzing a program’s meaning,

Conflict analysis plays an important role in the detection of program anomalies that arise from con-
current program execution. One such anomaly, a race condition, is illustrated by the example program
“parbegin x:=f();x:=g() parend;y:=x;". If f() and g() return different values, then the final
values of x and y depends on which assignment to x completes first.

Taylor and Osterweil were among the first to use dataflow analysis to detect potential race conditions
(and other anomalies of concurrent programs) at compile-time {Tay80]. Balasundaram and Kennedy, who
also use conflict analysis to detect race conditions, observe that conflict analysis is the proper starting point
for detecting these anomalies {Bal89a). More specifically, they note that the notion of dependence is not
well-defined when there is no a priori order on statement evaluation. Recent work by Netzer and Miller
uses a combination of static and run-time techniques to identify an execution’s racc conditions
[Net91,Net91al.

3.4.4. Logic-based and denotational notions of dependence

This thesis defines an operational notion of dependence. The notion of data dependence also arises in logic
programming, where clauses that use a variable are said to be dependent on other clanses that define that
variable (¢f. [Deb891). A third, denotational approach 1o defining the notion of dependence is described in
a report by Hudak and Young {Hud91]. Hudak and Young state that an expression expr, is dependent on
an expression expr, w.r.t. an environment env if the evaluation of expr, relative to env is affected by
expr,’s meaning. To be precise, they define expr; to be dependent on expr, w.r.tl. env if a “booby-
trapping” of the langnage’s semantic function £ that causes F to fail uniformly at expr, w.r.t. env changes
the meaning of expr,. This particular definition of dependence was chosen, in part, because computations
in functional languages have no internal state. To investigate whether a given expression contributes to a
program’s meaning, one must perturb that program’s meaning function.

3.4.5. Semantic dependence

A notion of dependence that is similar to Hudak and Young's is defined by Podgurski and Clarke [Pod90].
This dependence, the semantic dependence, corresponds to the assertion that changing an operator in state-
ment p might affect the sequence of values produced at statement g. Podgurski and Clarke usc this notion

~31-—

to discuss the problem of determining how a typographical error at a statement p might effect the evalua-

tion of a statement q. Other theorems arc given that relate the notions of semantic dependences and control
and data dependence,

3.4.6. Imperative dependence

Pingali et. al. use the notion of an imperative dependence to model the evaluation of standard, imperative
languages [Pin91]. Intuitively, an imperative dependence asserts that a pair of statements like “load x;
test x” must evaluate in a specific order. This notion allows Pingali et. al. to define a type of dependence
graph, the dependence flow graph, that can be used to execute FORTRAN programs {¢f. Chapter 7).

3.4.7. Weak control dependence

Most authors ignore the effect of execution anomalies (i.e., errors, points of nontermination) on a
program’s flow of control. Podgurski and Clarke, on the other hand, argue that anomalies create a second
type of control dependence, which they call the weak control dependence [Pod90]. A weak control depen-
dence arises when one statement suppresses a second statement’s execution, For example, the program
“[1] while true do skip od; [2] print('done”)” exhibits the weak control dependence {1] —>,. [2],
since statement [1] fails to terminate. Podgurski and Clarke argue that weak control dependences are
important for proper debugging and testing. For example, an optimizer that ignored [1} — . {2] might
generate an executable image that printed “done”—thereby surprising a person who was debugging this
program.

3.4.8. Approximate notions of data dependence

Dependence is sometimes defined w.r.t. simplified models of computation. One common definition of
dependence, which resembles the definition of a def-use chain, states thatp —; ¢ through x in a program
P if p and g manipulate x, and there is an x-definition-free path in P’s (extended) control-flow graph (¢f.
(Aho86]). A slighly more precise formulation of this definition states that a program exhibits p —> g if
(1) paths in its control-flow graph link p to ¢, and (2) p and ¢ might access a common location [AlIB3].
Both definitions are static approximations to the notion of dependence defined in Section 3.2.2.

3.4.9. Dependences and intended behavior

Yet another area of concern is whether the notion of a dependence should be based on a more resilicat
mode! of computation—one that captures a program’s intended behavior. This concern stems from the
observation that an incomplete or erroneous program can contain well defined threads of computation.
Consider, for example, the following program, P: '

[1] y = 1/0; [2] x:=1; [3] print(x)
Under the standard, control-driven model of program execution, P exhibits no data dependences: it simply
halts before completing statement {1]. This characterization of P’s dependences, however, is useless (o the

programmer who wishes to view P as a program in the making. Such a programmer would probably deter-
mine P’s dependences by ignoring the error at [1]. Under this alternative model of evaluation, P exhibits

[21 =, [3]. Similar observations could be used to infer that P is equivaient to

[1] z = 1/0; [2] x:=1; [3] print(x);

—32 -

but not to

(1] z == /05 [2] print(x); [3] x:=1:

Improvements to the control-driven model have been proposed that provide more aggressive characteri-
zations of a program’s threads of computation. Two altemative models of computation are discussed in a
paper by Felleisen and Cartwright [Car89]. The one, lackadaisical evaluation, allows one thread of com-
putation to continue evaluating if another, unrelated thread of computation fails. The other, lazy evalua-
tion, allows a program to continue to run even if all of its threads fail. For other recent discussions of alter-
native models of computation, see [Bal90] and [Pin91].

3.4.10. Distance of a dependence

Section 3.3 describes one refinement of the notion of data dependence. A second important refinement is
the notion of a dependence’s distances. A dependence p —>, ¢ exhibits a distance d w.r.L. a loop L iff the
memory operations that create p —>, ¢ could span 4 iterations of L. Distance plays a crucial role in dis-
covering which invocations of a loop may be run in parallel [Lam74, Wol82, Kuh80, All83, AlI87,
Cal87,Lar89,Bal89). Consider, for example, the problem of parallelizing the program
“[1] for i:=1 to 64 do[2] ali+8} :=ali] *ali] od™. A compiler secking to parallelize loop {1] needs
to know that {2} — .y [2}—i.e., that values produced by earlier evaluations of [2) are used by later
evaluations of [2]. However, the assertion [2] — ;.1 (2] is an excessively cautious characterization of
how this program runs. Of more use is the observaton that the element of a produced by the -
occurrence of [2] is used only by the i +8th occurrence of [2]. This second observation yields an equivalent
program that runs in one-eighth of the ime:

parbegin
for i:=1 to 64 step 8 do afi+8]:=alil*ali] od;

for {:=8 to 64 step 8 do afi+8]:=al]*a[i] od
parend

Authors who have given techniques for computing a dependence’s distance w.r.t. a language with
dynamic allocation include Horwitz, Pfeiffer, and Reps [Hor8%a]; Bodin {BodS0]; Gohkale and Smith
[Goh%90]; and Larus [Lar89]. The first three of these reports are concerned with intraprocedural depen-
dence computation. They propose algorithms that a compute a dependence’s distance w.r.t. a set of nested
loops. Larus, who describes techniques for parallelizing a series of recursive calls to the same procedure,
was apparently the first to use the notion of distance to characterize interprocedural dependence.

3.4.11. Declaration dependence

Languages like 9{ that provide type and variable declarations exhibit a third type of dependence. A
declaration dependence p —>,,., q arises when a point ¢ uses information about a program’s types or
structures given in a declaration p {¢f. Figure 3.10). Declaration dependences are regarded as distinct from
data dependences, since the information being transferred is not a computable value.

Declaration dependences are rarely mentioned in the literatwre on dependences: concems about a
program’s declarations simply do not arise in most treatments of program behavior. One exception is a
paper by Hood, Kennedy, and Miller that deals with efficient module recompilation [Hoo86}. The notion

-33-

[d1] struct comscell Is <hd, i >
[d2] struct intptr Is <ingp >;
[41] =>4 [1}, since new uses conscell’s definition to create a structure.

rocedu i
P re main () [41] ~zeq {3], since statement [3] checks if hd can be applied to cell.

[d3] local cell; .
[d2] ~>, [2], since new uses intptr’s definition to create a structure,

[1] cell = new (conscell);
2] value := new (intptr); [d2] =5, [4], since statement [4] checks if intp can be applied 10 value.
[3] cell hd = 1; [€3] =, [1] and {d3] st [3],
[4] value.intp =2 ; since [d 3] declares cell 1o be a local variable.
end

Figure 3.10. Declaration dependence.

of intermodular dependence developed in this paper is similar to the concept of declaration dependence
sketched above.

Declaration dependences are ignored in this thesis. To simplify the presentation, it is simply assumed
that each of a program’s statements is declaration-dependent on all of its declarations. This is clearly a
pessimistic characterization of a typical program’s declaration dependences. It should be equally clear that
better characterizations are easy to obtain when each of a program’s structures has a unique set of field
names. Consider, for example, the program in Figure 3.10. It is easy to see that statement [1], which mani-
pulates an object of type conscell, is not dependent or declaration [d2], which defines an object of type
intptr. The problem of computing an arbitrary program's declaration dependences, however, becomes
harder when fields in different structures have the same names. Consider, for example, the following pro-
gram:

[41] struct stoplight is <color, timer>; [d2] struct hat is <color, kind, size > ;

[Pl thing.color =red ;

Without more information about the referents of thing, it is impossible to tell whether p is dependent on 47,
or d2, or on both declarations.

3.4.12. Limitations of dependence

Section 3.1 gave reasons for using dependences to analyze programs. There are also important facts about
program behavior that dependences do not provide. One such fact is the specific values that a pair of pro-
gram points share. Dependences alone, for example, cannot be used to determine the equivalence of
“if pred then x:=1 else x:=0 fi; y:=x" and “x:=0; if pred then x:=1 fi; y :=x". Algorithms,
however, have been given that use dependences to make more complex judgments about a program’s
meaning. One such algorithm, given by Yang, can determine that these two programs are cquivalent (¢f.
Chapter 4, [Yan907]).

A second limitation of dependence is that an arbitrary program’s dynamic dependences are uncomput-
able. This asscrtion follows from the fact that it cannot be determined whether arbitrary statement must

cvaluate [Man74]. It is, however, possible to design algorithms that compuie safe estimates (i.e., proper

34~

supersets) of a program’s dependences. Various researchers have also explored the use of special tools and
language constructs that allow users to state that a possible dependence will not, in fact, be exhibited by
any possible execution of a given program (e.z., [All86, Die87, Lar89]).

-35_

4. USING AN INSTRUMENTED SEMANTICS TO CHARACTERIZE DATA DEPENDENCE

SETL is a set-theoretically oriented language of very high level whose repertoire of semantic objects includes
finite sets, ordered n-tuples, and sets of ordered n-tuples usable as mappings. This two-part paper studies some
of the optimization problems associated with such a language. The first issue studied is that of copy optimiza-
tion, i.e. the discovery of cases in which change to a compound object can be made ‘differentially’ without
recopying the whole of the object. This optimization is brought to rest on an analysis of value flow, i.e., on an
analysis which finds all the points p in a SEIL program at which the object created or modified at another
point q can reappear. —I. Schwartz [Sch75]

In Chapter 3, the notion of a data dependence was defined in terms of the sequences of states that a compu-
tation might generate w.r.t. M,,. Chapter 4 develops altemative definitions of data dependence that sim-
plify the task of dependence computation. These new definitions treat dependence as a function of the set
of states that a computation might generate, relative to a collection of non-standard, instrumented semantics
for #. These semantics, roughly speaking, label every structure and reference obj with the names of those
statements that have read and writien obj. These labels allow the data dependences that are incident on a
statement g to be determined from the labels on the objects that are read—and overwritten—at q.

Chapter 4 is divided into three sections, Section 4.1 sketches a set of labeling techniques for characteriz-
ing a program’s data dependences. Section 4.2 argues that the definitions of flow dependence given in Sec-
tion 4.1 are equivalent to the (sequence-based) definitions of dependence given in Chapter 3. The first part
of Section 4.2 uses an instrumented semantics for A, ML.. to formalize the notion of flow dependence.
The second part of Section 4.2 uses a lemma that relates M, and M1, to establish that the two serantics’
characterizations of flow dependence are equivalent. (Similar arguments show the cquivalence of the
remaining notions of data dependence.) Section 4.3 then concludes with a discussion of related work.

Instrumented semantics have played an important role in program analysis since the early 1970’s. This
chapter’s specific contributions include the use of labels to characterize a pointer program’s data depen-
dences; the specific labeling strategies for characterizing def-order dependence and the carriers of a depen-
dence; and the emphasis on showing that M, and M1, have equivalent definitions of dependence. Earlier
studies that use labels to analyze program behavior typically assume, without proof, that an instrumented
characterization of program behavior can be used to reason about a language’s implementation semantics.
This assumption is problematic, since the typical goal of program analysis is (0 characterize a program’s
actual behavior. To rephrase this statement in the context of the current chapter, the observation that M1,
and M,, are distinct—albeit related—semantics implies that a characterization of a program’s behavior
w.r.t. M1, does not necessarily hold for M, One would like to be sure {(e.g.) that the use of labeis does not
impose any hidden implementation commitments on My that limit the applicability of the analysis. This
concerrl is addressed by Lemma 4.2, which asserts that the definitions of flow dependence w.r... M, and

MI,, are equivalent.

4.1. Using Labeis to Characterize Dependence

Various authors, including Cousot and Cousot [CouB80] and Nielson [Nie81,Nie87], distinguish between
two kinds of program analyses. The first, the history-insensitive or first-order analysis, characterizes the
set of states that a program generates. The second, the history-sensitive or second-order analysis, charac-
terizes the sequences of states that a program generates. This distinction is interesting because the two

- 36 —

kinds of analyses characterize different aspects of program execution. First-order analyses typically gen-
erate assertions about the values that a program might compute. Examples of such assertions include “vari-
able x always has the value 3 at point p”, and “function f's sccond parameter is never 1”. Second-order
analyses typically generate assertions about Aow a program computes its values. Examples of such asser-
tions include “point p evaluates ten times before the evaluation of point ¢”, and “program P exhibits the
dependence p —>, ¢”. This distinction is also interesting for pragmatic reasons. A semantics that simply
characterizes a computation’s current state is not a good starting point for analyzing second-order behavior.
A more useful starting point for such an analysis is a history-sensitive semantics—i.e., a semantics that
gives a computation’s current state s, as well as other information about states that precede (or succeed) s.

The semantics given in Chapter 2 is not a history-sensitive semantics, in the sense of [Nie81]. The bal-
ance of this chapter develops such semantics for language #{ and uses them 1o analyze a program’s depen-
dences.

One approach o developing a second-order semantics treats a program’s statement-evaluation function
as a map from a sequence of states to a sequence of states [Cou80, Nie81]. The resulting trace semantics
generates an output that gives (1) a computation ¢’s final state, and (2) a complete record of ¢’s intermedi-
ate states. Figure 4.1 shows a trace of an example program P’s evaluation w.r.t. an empty initial store. The
depicted trace, frace ¢, is the trace that reaches statement [4]. The dependences incident on [4] can be com-
puted by using ¢ to unravel P’s execution. Specifically, statement [4] manipulates four objects in the store:
the global environment, reference y, structure 57, and reference ingp. An inspection of ¢ shows that these
objects were created by the initial program point and statements 3, 1, and 2, respectively. Program P there-

fore exhibits initial; —; [4], [1] —; [4], [3] —; [4], and [2] —, [4].

program P The trace of P w.r.t. store s-initial is
struct iniptr is <intp>; ((initial], s-initial) : ([m], s-[m]) :
fm] procedure main ()} (1), s~111) : (21, s-[2}) : { 3], s-[3])
i1] X = new (intptr) ;
(2] x.intp =0 ; [N.B.: freelist components of trace omitted.]
i3] Vi=X ;
i4] v.intp :=1
end /__CUJT
%_prcv% ? _prev C ;2 _prev <>
_owrr _curr main main X y main
g <<%_prevzx> [b 81 Isj s1 Eﬁ s1
main | nip intp inltp
* L] I — -
s-initial s-[m] ni] s- [1] 0 s-{2] 0 s-{3]

Klgure 4.1. A wace of an example computation.

-37-

program P finit =u [m-ll\"“()_....
struct intptr is <ntps>; _prev [m]

im] procedure main {) X m
[1] X = new (ntptr} ; /6 sl
(2] xintp :=0;
3] Y% st {1]
A y int ‘._1) Instrumented store that
d. pi= lntip 2] reaches statement [4] in P.
€11

0 121

Figure 4.2. Astate in. a{l_instrumented computation. Bold, bracketed strings are defining-point labels. init, is short for
initial;, a program’s initial program peint. m_s, m_,, and m_; are the three program points that initialize procedure
main()'s local environment.

A second approach to defining a history-sensitive semantics treats a statement as map from a labeled
state to a labeled state. These labels give facts about a computation’s history. A semantics that labels
every object with its defining program point is illustrated in Figure 4.2. This semantics, referred to here as
an instrumented semantics, is a straightforward extension of the semantics given in Chapter 2. The pro-
gram depicted in Figure 4.2, program P, is the one depicted in Figure 4.1. The store depicted in Figure 4.2,
store 5, is the instrumented store that reaches statement [4]. The dependences incident on [4] can be com-
puted by using s to discover facts about P’s execution. Specifically, statement {4] manipulates four objects
in 5: the global environment, reference y, structure si, and reference intp. An inspection of s57s labels
shows that these objects were created by the initial program point and statements 3, 1, and 2, respectively.

Program P therefore exhibits initial, —>; [4], [1] —3, (4], [3] — [4], and [2] —>, [4].

The program depicted in Figure 4.1 and 4.2 exhibits the same fiow and output dependences w.r.t the two
semantics. The principal reason for preferring the instrumented semantics is that it yields a more efficient
characterization of a program’s evaluation. As Figures 4.1 and 4.2 illustrate, labels condensc a
computation’s execution history, and make facts about computations easier to retrieve.

What follows now is an informal description of a set of instrumented semantics that yield exact, albeit
possibly uncomputable, characterizations of a computation’s data dependences. It is important to keep in
mind that the following definitions are not the same as those given in Chapter 3.

Flow dependences. Flow dependences are defined as write-before-read dependences (cf. §3.2.2). The
instrumented semantics for characterizing flow dependence therefore pairs every noit-atomic object obj
with the name of the statement that writes obj. The instrumented characterization of flow dependence

states that a computation exhibits p —>¢ g when point g reads an object obj whose label equals p.

Atoms are not labeled because they are never shared; there is never more than one pointer to a given
atom throughout a computation. Furthermore, the definition of # guarantees that:

. An atom a and a reference 7 to a are defined at the same point in a computation; and

- 38—

. Atom g is never accessed without a corresponding access of 7.

The dependences that arise from the read of an atom a are therefore the same as the dependences that
arise from the read of its comresponding reference r,

Input dependences. Input dependences are defined as read-before-read dependences (cf. §3.2.2). The
instrumented semantics for characterizing input dependence therefore pairs every non-atomic object
obj with the names of all statements that read obj. (N.B.: this label is initially empty.) The instru-
mented characterization of input dependence states that a computation exhibits p —>; g when point ¢
reads an object obj whose label contains p.

Output dependences. Output dependences are defined as write-before-write dependences (cf. §3.2.2).
The instrumented semantics for characterizing output dependence therefore pairs every reference ref
with the name of the statement that writes ref. The instrumented characterization of output dependence

states that a computation exhibits p —>, ¢ when point g overwriles a reference whose label equals p.

Structures are not labeled because output and anti-dependences do not arise through structures. Mly,
like M, does not overwrite structures,

Anti-dependences. Anti-dependences are defined as read-before-write dependences (cf. §3.2.2). The
instrumented semantics for characterizing anti-dependence therefore pairs every reference ref with the
names of all statements that read ref. (NV.B.: this label is initially empty.) The instrumented characteri-
zation of anti-dependence states that a computation exhibits p —>, ¢ when point g overwrites a refer-
ence whose label contains p,

Def-order dependences. A def-order dependence is defined as a pair of flow dependences that arise at a
specific field of a specific structure (cf. §3.2.2). The instrumented semantics for characierizing def-
order dependence therefore pairs every reference ref of type ¢ at structure s with rwo labels. The first
tabel, which names ref’s defining point, is used to determine flow dependences. The second label on
ref, the prior-dependences label, names those dependences p —>; r that arise through reads of refer-
ences of type ¢ at 5. (When a reference ref of type ¢ at structure s is replaced with a reference ref p...
reference ref ., inherits ref’s prior-dependences label) The inserumented characterization of def-order

dependence states that a computation exhibits p —4 ¢ ¢ when:

1. pprecedes ¢ in a program’s abstract syntax tree; and either

2a. rreads a reference ref whose writing-point label is ¢, and whose prior-dependences label contains
p —ror

2b. rreads a reference ref whose writing-point label is p, and whose prior-dependences label contains
q —Ir.

Carriers of a dependence. The instrumented semantics for characterizing a dependence's carriers

maintains a computation’s current occurrence string (cf. §3.3) as a part of that computation’s statc.
Objects that are read and written at a point p are labeled with the current occurrence of p. When a data

dependence p —», q is created by an operation on memory, the occurrence of g is checked against the

occurrence of p to determine the carriers ofp —4 q.

~39-

4.2. An Instrumented Semantics for Characterizing Flow Dependence

The current section uses an example instrumented semantics, M, to illustrate the labeling techniques
given in the previous section. Semantics MI,,, whose definition is given in Appendix 2, labels every refer-
ence and non-atomic structure ob; with the occurrence of the program point that creates obj. The evalua-
tion of a program’s initial program point, initial, , labels every non-atomic object in the initial store with
the value initial;; a subsequent statement p that creates a non-atomic object obj labels obj with the current
occurrence of p. Ml also maintains a computation ¢’s current occurrence string as a part of ¢'s state. A
transition into the body of a loop / adds an “I” to the end of the current occurrence string. An exit from [
strips all {’s from the end of the string. A procedure cail at point s saves the current occurrence string in the
current procedure’s local environment, then appends an “s” to the occurrence string. A return from a pro-
cedure restores the caller’s occurrence string.

To show that MI,, can be used to identify a program’s dependences w.r.t. My, it must be shown that the
new definitions of dependence w.r.t. MI,, are equivalent to the definitions given in Chapter 3. This is
demonstrated by first formalizing the definition of flow dependence w.r.t. M, and then showing that an
arbitrary computation exhibits the same set of flow dependences w.r.l. M, and MI,. Similar arguments
justify the use of the other labeling techniques described in Section 4.1,

DEFINITION (write of a memory object w.r.t. MIL,). A structure or reference is written (w.r.t. ML)
when itisadded toa store. O

DEFINITION {write of a memory object at a staiv w.r.t. M1,). Let p be a program point, @ a store, fl a
freelist, label a label function, and occ an occurrence string. A structure (reference) obj is written at
state (p, o, fl, label, occ) (w.r.t. M1, iff the evaluation of p w.r.t. o, fl, label, and ccc writes 08j. T

DEFINITION (read of @ memory object w.r.t. ML), A structure or reference is read (w.r.t. MI,) when it
is accessed by the evaluation of an identifier expression. [J

DEFINITION (read of a memory object at a state w.r.t. MI,). Let p be a program point, ¢ a store, fl a
freelist, label a label function, and occ an occurrence string. A structure {reference) obj is read at state
(p, 6, fi) (w.r.t. ML) iff the evaluation of p w.r.t. o, fl, label, and occ reads o). O

The remarks in Chapter 3 about the circumstances under which objects are read and written also apply to
the instrumented semantics. The definitions of M, and MI,; are identical, up to that part of Ml,'s
definition that maintains labels and occurrence strings.

DEFINTTION (state transition relation for MI,). The instrumented semantics’ state transition relation
py r+ 0 —> -+ is defined as follows:

prog - state; —° state; < state; = siate;

prog |, state; —" state; < 3 state’: prog |- state; —>* ! state” A state ;= evaiP1, (prog, state”)

prog \-; state; —>" state; <> A n:prog \-; state; —>" siate;

prog b state; —>* state; < In>0:prog - state; — " state

prog |-, state, —> -+ ~> state, < Viinsi<m-—1:prog |- state; —>!state,,, O

The expression evalPt; (prog, state”) constitutes a minor abuse of notation. The tunction evaiPt, {ef.
Appendix 2) actuaily takes one formal parameter—a state—and three non-local parameters that

-40 -

describe prog’s control-flow graph, structure declarations, and local identifiers.

(RE)DEFINITION (frue for all states between ...). A predicate P:State — Bool 1is true for all states
between state, and state . iff prog |-, state, — --- —> state,, implies that P (state ;) = true for all
irn<i<m 0O

DEFINITION (frace of a computation w.r.t. ML;). Let prog be a program and ¢ a store. The trace of
prog on ¢ is the sequence (py, 0y, fl1,labely, 0ccy) ** (Pn, O fla, label ,,0cc,), ¢, where
py =initial;; o, =0; fl; is the freelist that M1, pairs with G; [abel, is the label function that pairs
every object with the special value undefined; occ, = ¢, the empty occurrence string; and, for all i,
prog t; (pi, 0i, fli. label;, 0cc;) = @iy Oisrs flin, labeliyy, 0cc). O

DEFINITION (gccurrence-specific flow dependence w.r.t. Ml,). Let prog be a program with points p
and ¢, and [nSer a set of stores. Let op and og, where og = 0g * - * 04 ,_ ¢, be occurrences of p and g,
respectively, Program prog exhibits a flow dependence op —> og w.r.t. InSet iff g # initial, and there
exists a store o€ /nSet, a freelist /I, an instrumented state (¢, 6 . fl,, label,, 0g; - --04,1), and an
object obj such that

. prog |-, (initial, , o, A, label, &) —* (4,0, f1,.label,, oq; - 0q,.,), where & denotes the
empty occurrence string, and label the label function that pairs every object with the label
undefined,

. objisread at (¢, 0., fl,, label,, oq; -+ 0q,), and

] objislabeledop. O

DEFINITION. (flow dependence w.r.t. MLy). Let prog be a program with points p and g, and /nSet a set

of stores. Program prog exhibits a flow dependence p —»; q w.r.t. InSet iff there exist occurrences of

p and g, op and oq, such that prog exhibits op —»; og w.r.t. InSet. O

DEFINTTION (carriers of a dependence w.r.t. ML). The carriers of a dependence p >4 g are the set
of all carrier ([i, p1.j, q1) (cf. §3.3) such that [, p] ~>4 [j, gl w.rt MI,. O

This completes the formal definition of flow dependence w.r.t. ME,. The following two lemmas show
the equivalence of the definitions of flow dependence w.r.t. M, and M1,

DEFINITION (congruent stores). Let & Store be a store, and oy € Siore; an instrumented store. Stores
o and o; are congruent iff ¢ can be obtained from o by replacing all values in o; of the form
(return—pt, return—occsir) (i.e., all instrumented calling contexts) with values of the form return—pt.
|

LEMMA 4.1. Let P be a program, and ¢ a store. Letf = (1,01, 1) "' (P Ca, fla) -+ - bethe trace
of My (P, o). Let ;= (p'1,0 1. 1, label';, 0cc’)) (D' ns O ns lns label’y, 00c'y) + -+, where A=
1., be the trace of Ml (P, ©). Then, for all i

1 pi=pi

2. ¢; iscongruent to g;;

3. evalPt(p,, o, ;) and evalPt, (p";, &', f;, label’;, occ’;) read the same objects;

4 occ; is the occurrence string for (p1.o1, Ay - (i, o, fli); and

—41-

5. if i >1 and obj is a non-atomic object in o’;, then label’; (obj) identifies the occurrence of that
point that created obj in 1.

PROOF (sketch). Assertions 1 and 2 are proved by induction on the length of ¢ and ¢;. Inuitively, these
assertions are true because M, and MI,, have identical definitions, up o those parts of MI,, that are
concerned with maintaining labels and the current occurrence string.

Assertion 3 follows immediately from the definitions of evalPt and evaiPt;, which are identical up to
that part of evalPt, that maintains labels.

The proof of assertion 4 is tantamount to showing that MI, incrementally computes a computation’s
occurrence string. ‘This assertion is also proved by induction on the length of + and f;. The induction
hypothesis states that occ’}, the occurrence string at the jth statc in the trace of ML, (P, o), is the
occurrence string for (py, 6y, 1) -+ (;, 0 fi;). The induction hypothesis also characterizes how
environmenis and (return —pt, return—occurrence —string) pairs are configured in ¢’;. Roughly speak-
ing, the induction hypothesis asserts that executing & return instructions after the jth step in an instru-
mented computation would maintain the proper occurrence string, so long as there are no morc than k
active procedure calls at step j.

Assertion § is also proved by an induction on the number of states in r.

If i =2, then the all objects in ¢, are created at initial;. By the definition of M1, all accessible
non-atomic objects in ¢ are labeled initial, .

Assume that the assertion holds for i—1. Then the induction hypothesis follows from the definitions
of M, and MI,. Specifically, the two semantics’ versions of evalPt create the same sets of struc-
tures and references. Furthermore, M Ieaves all labels on all other objects in &', unchanged.

O

LEMMA 4.2. Let P be a program, ¢ a store, and d=p —?, g a dependence. Program P exhibits d
w.r.t. & according to the standard semantics (.e., My iff P exhibits d w.rt. ¢ according to the instru-
mented semantics (i.e., MI). Furthermore, 4 is carried by (x,y) w.rt. @ according to the standard
semantics iff d is carried by (z, y) w.r.t. ¢ according to Ml,.

PROOF (sketch). Let o, and o, be occurrence strings, and d’ ={0,.,p} —> log, ¢l an occurrence-
specific dependence. Lemma 4.2 follows from the claim that P exhibits & w.r.t. ¢ according (o the
standard semantics iff P exhibits &’ w.r.L. ¢ according to the instrumented semantics. The proof of this
claim breaks down into two cases.

Standard implies instrumented. let i =(p, Oy, fly) * -, where 6; =0, be the trace of My {prog, o).
By the definition of flow dependence w.r.L. M,,, ¢ contains two states (pj, 0, fl;) and (9, Gy, S such
that:

. p;=n

. o, is the occurrence string for (py, o, 1) o @i op A

. an object obj is written at (p;, 57, f1;);

. obj is not overwritten at any states between (p;. 05, A1) and (i, Ok, AL

. k>

42 -

. Pr=4;
. 0 4 is the occurrence string for (py, ¢y, fl;) - (P1. Ok, Ap); and
. objisread at (py, Oy, fls).

By Lemma 4.1, the kth state in the trace of MI,(P,), state’y, is a state of the form
(9, Ok fi'y, label’,, 0,,), where o’ is congruent to o;. Lemma 4.1 also implies that obJ is read at state’y.
The proof now breaks into two cases, according to whether obj is an atom:

If obj is not an atom, then by Lemma 4.1 obj is labeled [0,,p]. Since k>, ¢ # initial;. The
definition of an occurrence-specific flow dependence w.r.t. MI,, implies that P exhibits &' w.r.t. G.

If obj is an atom, then, by the definition of M1, the reference ref to obj in 6”; must also be read at
state’y. By the definition of M, ref must also have been created at the jth state in +. By Lemma
4.1, ref must now be labeled [o,, p]. Since k> j, ¢ #initial;. The definition of an occuwrrence-
specific flow dependence w.r.t. ML, implics that P exhibits &’ w.r.t. 6.

Instrumented implies standard. Let ¢ = (p', &1, f'1, label’y, 0c¢’y) -+ -, where ¢y =G, be the trace of
MI,{prog, c). By the definiion of dependence w.rt. My, ¢ contains a state state’y =
©'k» Tk» i label’y, occ’y) such that

. Pe=4¢

. occ’y =043

. a non-atomic object obj is read at state’y; and

. obj is labeled [0, pl.

Let j be the unique state in ¢ such that p’; = p and oce’; = 0,. (To assume there is no such state con-
tradicts the hypothesis that there exists an obj labeled {0, pl; to assume there is more than one such
state contradicts the assertion that occurrence strings uniquely name every occurrence of every program
point in the course of a computation.} Since state’, read an object labeled [0, pl, j <k.

Lett =(p,, oy, A1) -+, where o, = o and fi = fI',, be the trace of M (prog, ¢). By Lemma 4.1,
e object obj is written at {p;, 0, 1)
. obj is not overwritten at any states between (p, ;. ;) and (p g, Op. fly);
s objistead at (g, Op, flg)-
The definition of an occurrence-specific flow dependence w.r.L. My now implies that P exhibits &’ w.r.L.
c. O

4.3, Relation to Previous Work
The material presented in Chapter 4 stresses two ideas:

. Program-point labels can be used to characterize a pointer program’s dependences.
. The proposed labeling strategies are consistent with the implementation semantics for language 7

given in Chapter 2.
The current section discusses the relationship between these ideas and earlier work on program analysis.

Program-point labels are an old and oft-used tool in program analysis. The Courant Institute’s SETL
group was perhaps the first to use a labeled representation of the store to analyze a language with
dynamically-created structures. Their work is described in Schwartz’s report on the optimization of SETL

—43—

programs {Sch75]. This report describes labeling techniques for determining whether an object obj might
be written at p and read at ¢; written at p and overwritten at g; or read at p and overwrilten at ¢. Schwartz
uses these techniques to determine when it is safe to replace occurrences of the SETI. assignment state-
ment, which typically makes a new copy of its left-hand argument, with more efficient operations that
update the affected structures in place. An appendix of this paper sketches a second algorithm that est-
mates a program’s conflicts (cf. §3.4.3); this algorithm assumes a pointer-arithmetic-free subset of PL/L

Other analyses that use program-point labels to analyze pointer-program behavior (w.r.L various tech-
niques for representing stores) have been given by various authors. Roughly speaking, these reports can be
classified according to whether labels are used to estimate object lifetimes [Rug87, Cha87, Rug88,
Hed88, Har89, Deud0]; estimate a program’s dependences [Har89,Lar891; estimate the carriers or dis-
tances of a program’s dependences [Lar89, Goh90, Bod90]; or limit the size of an approximate representa-
tion of the heap [Jon82,Hud87, Cha87, Nei88, Str88, Lar89, Deud0, Goh90, Str90, Cha%0]. Only three of
these reports [Str88, Har89, Deud0] observe that the correctness of a labeling technique needs to be
demonstrated w.r.t. a language’s implementation semantics. Only two of these three reports gives such a
proof; the third [Str88] sketches, but does not develop, a semantics for program analysis.

The labeling technique presented here for determining def-order dependences is new. The technique’s
principal advantage lies in its referentially transparent characterization of def-order dependence. Previous
techniques for computing def-order dependences compared the dependences that arise through objects of
the same name in pairs of stores that reached different occurrences of a single witness point, 7. The tech-
nique given here examines the labels on the individual objects in the individual stores that reach individual
occurrences of r. This allows store approximation to proceed independently of how structures ar¢ named
(cf. Chapter 6). A second advantage of the technique is that it allows states that have been checked for
def-order dependences to be discarded—thereby saving space.

The use of labels to compute carriers was first proposed by Horwitz, Pfeiffer, and Reps in [Hor8%a], The
labeling technique given here is a new version of this earlier technique that also supports procedures.

The question of whether an analysis characterizes a program’s behavior also arises in the study of deno-
tational semantics. The principal problem with using denotational definitions to assess program behavior is
that these semantics do nof characterize a computation’s intermediate sequences of states: they merely
define a correspondence between a program’s inputs and its outputs. The following three approaches have
been used to bridge the gap between a language’s denotational and implementation semantics.

® Some authors accept the assertion that a denotational semantics characterizes a program’s second-
order behavior “on faith.” Reports that use this approach often show that a labeling strategy is con-
sistent with the original semantics {Mil76, Ple81].

. A second approach, discussed by Mulmuley [Mul87], uses the notion of full abstraction 10 associale

a denotational definition with a canonical operational semantics for a language.

. A third approach augments a denotational semantics with assumptions about a program’s evalution,
Deutsch, for example, uses this approach in his work on functional programs [Deu&0].

— 44—

5. AN APPROXIMATION SEMANTICS FOR ANALYZING FLOW DEPENDENCE

The semantic analysis of a program is the determination of the conditions under which the executions of this
program terminate, fail to terminate, or lead 10 an error ... The semantic analysis of a program should also
allow the properties of objects manipulated by a program to be determined at every point in that program.

—P. Cousot; trans. from introduction to [Cou78]

This chapter describes MA ,,, an approximation semantics for H that yields safe, computable characteriza-
tions of a program’s flow dependences. The semantics given in the previous chapter, M1, cannot be used
to compute a program’s dependences w.r.t. infinite sets of stores and nonterminating computations.
Semantics MA,, overcomes these limitations through the use of abstract objects—special objects that
represent infinite sets of values, stores, and occurrence strings. Similar extensions of the other labeling
techniques described in Chapter 4 yield effective algorithms for determining other kinds of data depen-
dences.

Chapter 5 is divided into four sections.

Section 5.1 defines MA,,;, an approximate interpretation for language #/ that gives a terminating charac-
terization of a program’s execution, Semantics MA , is constructed from ML, by introducing abstract
objects into MI,’s domain. The rules for interpreting MI,, are then extended to obtain a conservative
interpretation of a pointer program’s meaning.

Secticr: 5.2 shows that MA, yields a safe approximation to a program’s flow dependences. Abstract
Interpretation, a framework for comparing fixpoints, is first used to show that MA ,, correctly estimates the
set of states that a computation generates w.r.. MI,. This result is then used to argue that MA ,, correctly
estimates the set of dependences that a computation generates w.r.t. MI. The proof is then completed by
using the equivalence of MI, and M, (cf. Chapter 4) to show that MA, yields safe estimates of a
program’s flow dependences.

Section 5.3 uses an observation about the definition of M to sharpen MA s characterization of pro-
gram execution. A given SIOI¢-access eXpression cannot have more than one meaning at a specific moment
in a program’s interpretation, w.r.l. M, It is not possible, for example, for an expression such as
“y.intp +y.inip”, where y.intp is an integer, to cvaluate to the value 3. This anomaly, which does arise in
the approximate interpretation of pointer programs, can be avoided (in certain cases) by sharpening the
interpretation of selector expressions.

Section 5.4 conciudes by reviewing related work.

The principal contribution of Chapter 5 is a set of safe and flexible algorithms for estimating a program’s
data dependences. This flexibility is achieved by splitting the definition of MA , into two components: a
set of semantic functions that interpret the meaning of 7('s operators, and a stafeset estimation function, V.
The operator V ensures that analyses terminate by restricting the number of distinct states that the analysis
can output. The exact definition of V, however, is left unspecified. The principal reason for this decision is
that there does not appear to be a best heuristic for estimating pointer program behavior (¢f. Chapter 6). A
second contribution of this chapter is the adjustment to MA,'S definition described in Section 5.3.

- 45

3.1. An Approximation Semantics for Dependence Computation

Appendix 3 defines a semantics, MA,, that yields effective algorithms for estimating flow dependences.
This new semantics avoids nontermination through the use of abstract ebjects—objects that represent
infinite sets of concrete (i.e., “ordinary”) objects in MI,.s domain of definition. One such abstract object,
TAT, represents the set of all atomic values. Another, the summary structure, represents an arbitrarily
large set of structures. MA , uses abstract objects 1o create finite stores and states that represent infinite
sets of stores and states. These special objects are then used to estimate how programs operate on infinite
sets of states and stores.

The next two sections describe MA,. Section 5.1.1 describes MA,’s domain of states. Section 5.1.2
describes MA ,/'s meaning function.

5.1.1. The domain of abstract states

Appendix 3 defines a semantics that gives conservative estimates of a program’s flow dependences. The
definiion of flow dependence given in Chapter 4 suggests that this semantics, MAy, must not
underestimate—and may safely overestimate—the set of instrumented states that a program might com-
pute. It is safe, in other words, for MA, to overestimate

. the set of program-point occurrences that a state might reach;
. the set of paths than a store might contain; and
. the set of program points that might have defined an object.

Semantics MA ,, uses regular expressions 1o abstract a computation’s current occurrence string. An
abstract occurrence string is a regular expression that denotes a sef of occurrence strings. The abstract
occurrence suring x{yz)*, for example, denotes the set of all occurrence strings of the form xW, where W is
a string of one or more pairs of yz’s.

Semantics MA,, uses embeddings to abstract stores. An embedding, roughly speaking, is a value-
preserving, path-preserving map from one store to a second. Figure 5.1 motivates the notion of an embed-
ding, using stores from a program’s standard interpretation. Store 5y, which has strictly fewer paths than
Store 4, is trivially embeddable in s;. Note that the example computation P :s5, exhibits strictly more

1] x:=x-1 store s1 store 82 cutput of P:s1 output of P:s2

2] y=y/x <>? ?
X X z
Bl zw=x+Yy)|(/ y\ —L store / { ~
Program P 3 3 4 2 2 4

Figure 5.1. Store 52 can be used in place of store s/ to estimate 2 program’s dependence, since s2 contains strictly
more paths than s/.

— 46—

dependences than P:§,, since the latter fails to terminate.

Figure 5.2 depicts embeddings of stores into abstract stores. The abstract stores depicted in Figure 5.2
differ from ML,’s stores in the following four ways:

. Structures in abstract stores may have several edges with a given selector. This allows arbitrarily
sets of structures to be condensed into a single, representative structure.

. Abstract atoms may have the value TAT,

» Structures in abstract stores may have more than one type.

. Abstract stores have two kinds of structures. White boxes in Figure 5.2 represent ordinary struc-
tures: structures that are the image of no more than one structure in an embedding. Black boxes
represent summary structures: structures that may be the image of arbitrarily many structures in an

X y X
si s2 $3
intp intp intp

nil ni nil nil nil nil

Store A Store B Store C

A and B embed in C. One embedding maps sl to s3; the other maps s2 and s3 to0 s4 and s6.
A is not embeddable in B. s1 cannot be mapped onto both s2 and s3.
B is not embeddable in A. s1, an ordinary vertex, cannot be the image of s2 and s3.

:

X s};) , : @ - environment
/hd i 1l <9 X g 1 ordinary cons cell
2 Rs& ?d ﬂ‘ | J— summary cons cell
}1 [{ TAT il hd tl : 1 —- atom
1 nil i @ —— summary object
Store D Store E Store F - TTTmroTmmmmmeoomommmmmmssmemommoeeee

Dembeds in E. The embedding sends s7 and s8 to s9, and both integers to TAT

D also embeds in F. The embedding sends every atom and cons cell in D onto F’s
special summary object. This object has type {atom,conscell} and value T AT .

Figure 5.2. Embeddings of stores in abstract stores.

—47 —

embedding. Intuitively, a summary structure {and its incident edges) depicts the graph that resuits
when an arbitrarily large subgraph of a store is condensed into a single, representative node.

Semantics MA , uses label-preserving embeddings to abstract instrumented stores. Intuitively, let ¢ be a

reference {or non-atomic structure) that is mapped to 0,4 in an abstract store, Assume that an occurrence op
of a point p defined 0. Then 0,4’s label must also assert that op might have defined o,

The assertion that one object is abstracted by a second is formalized as a relation, £> . The following is
an informal definition of © ; a precise definition of this relation is given in Appendix 4.

DEFINITION (occurrence-string abstraction). An approximate occurrence string occ, abstracts the

occurrence string oce, writlen occ [> occy, iff oce is in the set of occurrence strings denoted by (the
regular expression) occ,. 0O -

DEFINITION (store abstraction). Let o€ Store and 6, € Store, be stores. Store o, abstracts G, writien
o > ©,, iff there exists a map fsuch that

* J maps every accessible structure and reference in ¢ into 0.

* S maps o's global environment to o, 's global environment.

* f preserves kinds: every ordinary structure in 6,4 is the image of at most one structure in G.

f preserves types: fmaps every structure in @ of Lype ¢ 1o a structure whose type includes ¢.

£ preserves atoms: fmaps every atom in & of value v to an atom whose value is either v or TAT,
f preserves contexts: fmaps every saved calling context in & of the form (pt, refocc) to a com-
parable context; i.e., acontext (pt, occ), where retocc &> oce.

[preserves references: if r is a reference to a structure 5 in ¢, and r4 and 5, are the images of 7
and s under f, then 4 must reference s, ing,. O

DEFINITION (labeled store abstraction). Let Is = (o, label) € Storey xLabel and s, = (0,4, labely)
€ Stores X Label s be labeled stores. Labeled store [s, abstracts Is, writen Is > sy, iff there exists a

map f such that o &> o, by f, and f preserves labels: that is, f maps every object in & i0 a comparably
labeled objecting,. O

DEFINITION (state abstraction). Let state = (pt, o, fl, occ, label) € State;, and state, =
(pia, O, fla.0CC4, label,) € State,. Stale state, abstracts state, written state & statey, ilf pt = pt,,
oce > accy, and (G, label) & (04, label,). O

DEFINITION (pwr). Let D be a set. The expression pwr(D) denotes the powerset of D—the set of ail
subsetsof D. [

DEFINITION (stateset abstraction). Let state, & pwr(State;) and state,, € pwr(State,). Stateset

state., abstracis state,, wrilten state, O state.,, iff for all stare € state, there exists a

state 4 € state,, such that state & sware,. U

A similar set of subsumption relations can be defined between abstract objects. The store subsumption
relation = is based on a kind-, type-, atom-, context-, and reference-preserving embedding of one abstract
store into a second. A pair of example abstract stores that satisfics this relation is depicted in Figure 5.2, E
Z Fin Figure 5.2 by a map that sends every atom and cons cell in E onto the special summary object in F.
A precise definition of C is given in Appendix 4,

—48 -

The T relation is a reflexive and transitive relation. The domain of abstract statesets can therefore be
ordered by using T o partition pwr(State ,) into equivalence classes. Define statesets state, and state’, w0
be equivalent w.r.t. C , written state, ~ state’, , iff state, C state’. and state’, T siate.. Then the set of
equivalence classes of pwr(State ,) under ~, pwr(State,) / ~, is a partial order. This subsumption-induced
ordering is important for formalizing the notion of a safe approximation. Section 5.2 argues that depen-
dence is monotonic w.r.t. orderings on pwr(State,) induced by C . Section 5.2 also argues that MA,, is

monotonic w.r.t. this ordering. These two results justify this use of embeddings to estimate dependence,

5.1.2. An approximate interpretation for #

Semantics MAy is a nondeterministic extension of MI,; whose domain includes abstract and concrete
objects. To ensure that MA, gives a conservative picture of a program’s dependences w.r.t. an abstract
store 5, the semantics must estimate all possible interpretations of the stores that 5 abstracts.

The interpretation of assignment statements w.r.t. MA,,, is illustrated in Figures 5.3 and 5.4. Figure 5.3
shows the interpretation of assignment statements in the presence of nondeterminisim. The expression x
w.I.L. 59 denotes taree objects: the atomic structure TAT; structure s,; and structure s,. The expression
“[p] xintp :=0” could therefore have any of three meanings: the one shown in store s,; the one shown in
57, and 1, the error element, if x is taken © be T2T. In semantics MA,, the meaning of p w.r.l. s is
[51,52). Both stores are included in the set because the definition of dependence w.r.t. MLy (¢f. §5.1.1)
implies that it is safe to overestimate the set of states that a computation might generate. The error state is
omitted from the result because computations that err terminate, vielding no further dependences.

Figure 5.4 shows the interpretation of assignment statements in the presence of summary structures. In
the previous example, two references of type intp (at s, and 5,) were replaced with new references of type
intp (1o the integer 0). Both references were situated at ordinary structures. References that are situated at
summary structures, on the other hand, are left untouched by assignment. Figore 5.4 illustrates why. The
second store in Figure 5.4, s,, abstracts the first, 54. If the evaluation of “x.1ld :=y" wrtl. store s,
removed the edge in s, labeled 4, then the updated s; wouid no longer abstract the updated sq.

X, X, A
T;:T [J‘:Imtjsz TAT [_T_]mbsz T;:T ¢]s1t’s2

Store s ir}tp i?tp Store s, mtp Lntp Store s, Hlltp “;tp

1 2 O 2 1 0

Figure §.3. The effect of nondeterminism on store evaluation. Stores 5, and s, represent iwo possible interpretalions
of “rintp ;= (' w1t store 5.

—49-

R ¢ Q ?

X

X
y‘\ t y\ X y\ i a y\
0 0 0 0
1 d hd tl il

h h h
/ | / / A
o T AT o T AT 0
hd hd td
| 7 \
1 1 0
Store s Store s 1 Updated stores after "x.tLtl:= y"

Figure 5.4. Why edge removal at summary vertices is unsafe. Store 5 abstracts store 5o. Vot replacing the ! edge at
the summary structure ensures that 5 continues to abstract the updated 54.

The ambiguous nature of abstract objects also affects the interpretation of predicates. Let store so. for
example, be a store in which x references T2, The meaning of “[p] if x L(” wrt sg is both true and
false, since TAT denotes zero and non-zero integers. An s that reached p during an analysis would pro-
pagate to both of p’s control-flow successors,

Figure 5.5 illustrates the effect of nondeterminism on the return statement. Objects pointed to by edges
labeled _callctxt are calling CODtEXIS: (return—point, return— oCCurrence —string) pairs that record the state
of the computation before a procedure call. When a retumn statement is evaluated w.r.L. the approximate
store in Figure 5.5, the interpretation identifies two valid avenues of return: point [¢2+1] in procedure 7
with environment P* and occurrence string initial, cIc2 , and point [cl+1] in procedure main with

environment main and OCCUITENCE string initial,.*

The framework used to prove MA,/'s safety leads to a second important difference between the two
semantics. MA, maps an initial store to a sef of states. This set characterizes the calls to evalPi, that
MA ,; makes over the course of a computation. Let final., for example, be the output of MA, when
applied to an initial store G, Assume, further, that MA ,,, when run on G, invokes evalPt, with an argument
of the form state = (pt, G, fl, label, occ). Then final, either contains stare, Of 4 St that subsumes state.

A third difference between M and MA is MA,/ s use of a stateset estimation operator, V, to ensure
that analyses terminate. MA , assumes that V is extensive: i.e., that V maps every statesel s 10 a stateset

“Technically, there are four avenues of return: (1) [c14+1] with main, (2) [ci+1] with P".(3) [c2+1] with main, and (4) [c2+1] with P
Avenues (2) and (3), however, are not valid: (2), for example, pairs peint {c1+1], which lies in main (), with a localAenwronmcm
defined by the procedure P. These invaiid avenues of retm could be eliminated by ireating rcfegnccs as ochc'ls of type
Loc +Loc % Context. References labeled _prev, which would have type Loc w Conlext, would be paired with the return point and the
oecurrence string of the calling procedure. Other references would have lype Loc.

— 50—
Im] procedure mainf } recursive
o Ipl procedure P()
e, @iro [c2] call P ()
return lc2+1]
retum
Instrumented end end
store after nth call to P: _ endrec
_curr
main P p"
_prev —Qﬂ-— _prev —<? ~<— _prev -Qﬂ—- _prev —
_caflctxt _callctxt _callctxt _callctxt
I | _l n-3 t n—
(final .&) {€1+1,1) (c2+1,iclc2) (e2+1,iclc2)]
_eurr P*
Vel main
An abstraction @"‘ _prev < _prev prev
of this store:
_calletxt _callctxt
1 |
{(final .£)} {(cl+1,1), (c2+,ic) 2 3}

Returmn fromnth callto Pin approximation semantics (w.r.t. abstraction} yields two stores:

/__CUH' in curr *
mai — . P
<<>>.<. re:"w . yal main
P I @«mray —Qﬂ—-_prev _prev
“calfc:ltxr callctxt _callctxt
o] .
((final .£)) ((final .€)) {(el+1,i), (2+1,i¢lc2)
Store propagated to [c1+1] Store propagated to [c2+1}

Figure 5.5. The evaluation of the return statement w.r.L, MA,. The letier / in occurrence strings is a shorthand for ini-
tial,, the program point that first invokes main().

that subsumes s. MA,, also assumes that V limits the length of every ascending chain in pwr(State,).
[ntuitvely, this implies that V limits the number of different states that an analysis can generate. Such a
limit can be imposed by restricting the size and content of approximate stores. Onc such v, depicted in
Figures 5.6 and 5.7, maps updated atoms 10 TAT. yses one summary structure to represent all cons cells
allocated at point [4]; and pairs every occurmence of a point p in the while toop at [3] with the approximate
occurrence string [3}*p. Other definitions of V are explored in Chapter 6.

A final assumption about MA,, is that its versions of MI,/'s primitive Operators are monotonic w.r.L. the
¥ H AT 4 . x
embedding-induced ordering on atoms. For example, MA,/'s version of + retums TAT when either of its

— 81~

arguments is T4T.

5.2. Proving the Correctness of the Approximate Interpretation

The following definitions characterize a program’s flow dependences w.r.t. MA,,.

DEFINITION, (occurrence-specific flow dependence w.r.t. MA,). Let prog € Program ,, and InSet a
set of stores. Let p and g be points in prog. Let op and oq, where og =04, * ** 04,14, be occurrences
of p and g, respectively, Program prog exhibits a flow dependence op —>; 0q w.r.L. MA, and InSet iff
g # initial;, and there exists a ge InSet and a (g, &, fl, label, occ) € MA(prog, o) such that

procedure main()

1 k:=0 Stores reaching successive
[2 lis't = nil occurrences of (3
3 while pred(k} do
(4 tmp := new (conscell)
(=) tmp.tl = list
{7 list := tmp
8 k=k+1 list
od
[9] end
k list / tmp
kj i list
0
1st occurrence 2nd occurrence 3rd occurrence 4th occurrence

In instrumented semantics

k hst k list jtmp k list /k list Jtmp
/
0 ml T AT Du
hd il

nil T AT nil T AT nil
1st occurrence 2nd occurrence 3rd occurrence 4th occurrence

In approximation semantics

Figure 5.6. The progress of an example computation, relative to MI, and MA,, and an empty imitial store. The sira-

tegy used to limit the sizes of the approximate slores is described in the text. Labels and local environments are not

shown.

- 82~

0qy " - 09— > oce and evalPt, (g, o, fl, label, occ)) accesses an obiect whose label abstracts op.

|

DEFINTTION (flow dependence w.r.t. MA). Let prog € Program, and InSet a set of stores. Let p and
¢ be points in prog. Program prog exhibits a flow dependence p —>; g wrt. MAy and InSer iff there
exist accurrences of p and ¢, op and oq, such that prog exhibits op —>, og w.r.t. MA, and InSet. O
DEFINITION (carriers of a flow dependence w.r.t. MA ;). Let carrier (Ix, pL.[y, q}) denote the carrier of
the occurrence-specific dependence [x,pl —4 [1, 4] (¢f. §3.3). The carriers of 2 dependence
p —>a g are the setof all carrier ({i, pl.lj, q1) such that [, p] —>a [/,] w.r.t. MS,., O

The balance of Section 5.2 demonstrates that these four definitions represent a safe estimate of a
program’s dependences w.r.l. My, Intuitively, it will be demonstrated that a program P that exhibits

procedure main()

[k:=0: [2] list:=nil
i3] while pred(k) do

(4] tmp := new (conscell [5] tmp.hd := k: [6] tmp.tl:=list; [7] list:=tmp:
(8] odk =k + 1
end Store that reaches the fourth occurrence of [3]:
[initl]
k 333817 o 4 .
st k 03 ,8] st L+
[i333,7] P T, mp [i34]
ot o
hd 1i333,5] [i3 4] il [i3,6]
/
hd @3%81° 0 6376
TAT nil
0 nil
Instrumented semantics Approximation semantics

Figure 5.7. A “closeup” of two of the stores shown in Figure 5.7 that depicts the creatio.rbpt‘)int labels assigned (o
structures and references. Labels are shown in boldface. The symbol “1"is a shorthand for initial,, the program pont
that invokes main ().

-~ 53~

op —>; 0g w.rt. My and a set of states InSet must also exhibit op —>y 0 w.r.t. MAy and any abstraction
of InSet.

5.2.1. Abstract Interpretation

Abstract Interpretation is a well-known framework for program analysis developed by Cousot and Cousot
[Cou77,Cou78, Abr87]. Abstract Interpretation simplifies the task of showing that the least fixpoint of a
function f¢ is approximated by the fixpoint of a related function fy. This framework is typically used to
show that an estimate of a program P’s behavior obtained from some f, is a safe estimate of an fr that
characterizes P’s standard execution.

Abstract Interpretation is used below to demonstrate the safety of the definitions of flow dependence
w.r.L. MA . The framework is first used to show that MA,,'s final output abstracts the set of all states gen-
erated by M. Itis then argued that the flow dependences created by the evaluation of a state w.r.t. MIy
are a subset of those created by the evaluation of a comparable state w.r.t. MA,. These two results estab-
fish that the flow dependences exhibited by a computation w.r.t. MA, are a supersel of those exhibited
w.r.t. a comparable instrumented computation. The safety of MA,,;’s characterization of flow dependences
then follows from the equivalence of M1, and M.

5.2.2. A static semantics for characterizing flow dependence

In the Cousots’ formulation of abstract interpretation, the correctness of a semantics like ML, is demon-
strated by using an intermediate semnantics 1o pass from MI, o MA 4. This intermediate semantics, which
i+ Cousots called a static semantics, has a fixpoint that characterizes the set of states that are generated
during the evaluation of Ml

Figure 5.8 gives a static semantics for M1, named MS,. The definitions of M1, and MS,, are identi-
cal, up to the definitions of evalPgm; and evalPgms. The static semantics’ version of evalPgm simply
“collects” into a set the states that arc gencrated by the evaluation of evalPgm,. This allows the definitions
of dependence w.r.t. MI, to be rephrased in terms of a program’s meaning, as follows:

DEFINITION (occurrence-specific flow dependence w.r.L. MS,). Let prog € Program, and /nSet a sct
of stores. Let p and g be points in Programse. Let op and og, where og =04, """ 014, b€
occurrences of p and g, respectively. Program prog exhibits a flow dependence op —77 04 w.r.t. InSel
iff ¢ # initial,, and there exists a o€ [nSet and a (g, &', fl, label, 0g1 *~ 0q,.1) € MSy(prog, &) such
that evalPt; (g, &, fl, label, 0q1 **~ 04 5-1)) accesses an object labeled op. A

DEFINTTION (flow dependence w.r.t. MS,). Let prog € Programs; and InSet a set of stores. Let p and
g be points in prog. Program prog exhibits a flow dependence p —y gwWrIlL MS,, and /nSet iff there

exist occurrences of p and ¢, op and og, such that prog exhibits op —y 09 W.I.L. MS,, and /nSet. [
DEFINITION {carriers of a flow dependence w.r.t. MS,). The carriers of a dependence p —24 ¢ ar¢
the set of all carrier ([i, p3.Us 1) (cf. §3.3) such that [, pl —>a U, gi WL MS,. O

5.2.3. Relating M3,/ to MA

The claim that MA ;s output abstracts MS,'s output will be demonstrated by using Abstract Interpretation
to compare the outputs of the semantics’ state-transition loops, evalPgmg and evalPgm . In Cousot-style

— 84~

MS,,: Prog — Store; — pwriState;)
MS, (prog, 0} =
let (structdecls, body) = prog in
let body = expand (initialize (body))
and locallds = determineLocals {body")
and structDecls = evalStructDecls(structdecis) 1n
and fl = an arbitrarily large collection of locations not in @
and label = \ loc . (undefined, A sel . undefined)
and occ = g, the empty OCCUITENCES string
in
let evalPgms = fix Af .k (state.).
let next, = union_from staie € state, :
if mew’s program-point component is final then {state }
elsif evalPt; fails when evaluated on state then &
else evalPr, (state)
fi
in next, ¢ state, — slate, 0 f(next.)
end
in evalPgmg ([(initial, , G, fi, label, occ)})

end’

Figure S.8. A static semantics for language H evalPt; denotes MI,'s version of evalPt.

Abstract Interpretation, the claim that evalPgm4’s output abstracts evalPgmg’s output is demonstrated by
proving the following assertions about MA 5 and MS,.

1. The body of evalPgms is continuous w.r.L the subset ordering on Ds= pwr(State), evalPgms's
domain of states. This ensures that MS,, has a least fixpoint.

2. Function evaiPty 18 monotonic w.r.t. the subsumption ordering on D4 = pwr(State), evalPgm,’s
domain of states. This ensures that MA , has fixpoints. (If evalPgmy is continuous, then iteration

from L computes MA s least fixpoint; of. [Cou77}, Section 8.1.)
3, Dy and D, are adjoined; that is, there exist monotonic abstraction and concretization maps

abs:Dg — D, and con : Dy = Dg such that stare, < con (abs (state.}) and abs (con(state.)) ~
state , , for all state. € D¢ and stale.s € Dg.

4 Functions evaiPt; and evalPt, arc congruent; that is,

4a. TForall state, € Ds, abs (evalPt; (state.)) & evalPt 4 (abs (state.)); and

4b. Forall state., € Das evalPty{con (state.)) < con (evailPt 4 (state. Al
If MA,, MS,, etc. satisfy these requirements, then abs (evalPgms (state.)) = evalPgm 4 (abs (state .)),
and evalPgms (con(staie,) < con (evalPgma (state «a))-

The Cousots show that abs and con determine one another: a suitable abs can be constructed from a
monotonic con, and vice versa. The requisite celationship between MA and MS,, can therefore be esta-
blished by defining a monotone concretization map from D4 toDgand showing 1, 2, and 4b.

— 8§ _

LEMMA 5.1 (continuity of evalPgms). evalPgm is continuous w.r.l the subset ordering on Ds.

PrOOF. Immediate from the definitions of continuity and evalPgms. [
LEMMA 5.2 (monotonicity of evalPt,). evalPt, is mOnOOMC W.I.L. the subsumption ordering on D4

proOF. Lemma 5.2 is proved with a series of lemmas that characterize its semantic functions. This
proof, which is straightforward but rather long, is given in Appendix 5. O

DEFINITION. con : D, — Dy maps a state,, € D to (state € State; : { state) o state.s). O
LEMMA 5.3 (monotonicity of con). con is MONOLONIC W.I.L the subsumption ordering on D,

PROOF. By the definitions of & and T, state, O state’., whenever swfe, o state., and
state.n T State’ .. Thus, if state,, T state’,a, then every { state } € State; that is abstacted by
state. 5 is also abstracted by state’,a. O

LEMMA 54 (congruence of evalPt;, evalPty). For all state o€ Da, evalPt; (con (state.a)) <

con (evalPt , (state,)2

proog. This assertion is equivalent to the assertion that (*) state & statea = evalPt; (state) &
evalPt, (state,). The proof of (*), which resembles that of Lemma 5.2, is given in Appendix 6. T
LEMMA 5.5 (congruence of evalPgmyg, evalPgm,). For all state., € D4, evalPgms (con{state..4)) <
con (evalPgm 4 {state. Al

PROOE. This claim follows from Lemmas 5.1, 5.2, 5.3, 5.4, and from the Cousot’s extended framework

¢or Abstract Interpretation, which supporis ¥-like estimation operators——there called widening operd-
tors (operateurs d elargissement). O

LEMMA 5.6 (Abstract Interpretation Lemma). 1f 6 B> 04, then MS, (prog,) & MA , (prog, Ga)-

PROOF. Let store, = con(c,). Let

state, = union_from ¢ € store. :
union_from fle F reelist such that fl is infinite and fi names no reachable structures ing :
{ (initial, &’ fl, label, £}}

state ., = union_from G, € Store., :
union from fie Freelist such that f is infinite and f names NG reachable structures in " :

{ (initial, &' s, fla, labely, e}
By the definition of con, staie. = con(state,s). I then follows, from Lemma 5.5, that (*)
evalPgmyg (state,) < con (evalPgm 4 (state.)2
Observation (¥) can now be ased to show that MS,(prog, 0) MA , (prog, G4). Let siatesel =

{ (initial, o, fl, label, €)). Clearly, stateset < SIA€.. By the continuity of MS,, wrt, < (Lemma 5.1),
(**y evalPgmg (stateset) < evalPgmg (state.)- Since the subset relation is transitive, (*) and (**)

imply that evalPgms (stateset) & con{evalPgm a (state.a)). Hence, by the definition of [>.

MS,(prog, o) & MA ,(prog, Sa)- O

56—

5.2.4. Relating dependences w.r.t. MA of and M 9

THEOREM 5.1 (safety of MA, w.r.t. MS;,). Let prog be a program, and ¢ [> G4. Let op and og be two
occurrences of points in prog. Let d =o0p—>r0q. If prog exhibits d w.r.t. ¢ and M8y, then prog exhi-
bits d w.r.l. g4 and MA,,.

PROOF. If program prog exhibits d wrt MS,, then MS,(prog, ©) contains a stale,
(g, o, fl, label, occ), such that og = append (occ, q) and the evaluation of an identifier expression exp at
this state accesses an object labeled op. Lemma 5.6, however, implies that MA 5 (prog,) contains a
state that abstracts (g, o, fl, label, occ). The second corollary to Lemma A3 in Appendix 6, which
characterizes the approximation semantics’ evaluation of identifier expressions, asserts that the evalua-
tion of exp at this state accesses an obiect whose label abstracts op. The definition of dependence w.rI.L.

MA ,, now implies that program P exhibits op —¥ ogwrt.o. 0O

COROLLARY 1. Let prog be a program, and ¢ & Gj. Let p and ¢ be two points in prog. If prog exhi-
bitsp —>f g WwILC and MS,,, then prog exhibits p —; g W.I.L. Gy and MA .

PROOF. Immediate from the definitions of flow dependence w.r.t. M8, and MA. O

COROLLARY 2. Let prog be a program, and G &> Ca. Let p and g be two poinis in prog. Let prog exhi-
bitd=p =¥ gwrl O and MS,.. If d is carried by (x, y) w.r.L. © and MS,,, then d is carried by (x, y)
Ww.I.L. Ca and MAg.

PrROOF. Immediate from the definitions of a dependence’s carriers w.r.l. MS, and MA,. U

THEOREM 5.2 (safety of MA, w.r.t. My, Let prog be a program, and ¢ &> Cja. Let op and og be two
occurrences of points in prog. If prog exhibits op —y 0g WL O and M,, then prog exhibits
op —¥; 0@ W.I.L Gy and MA,,.
PROOF, (1) op—rjoqWILL M, iff op —>0g w.r.t. My (Lemma 4.2)

(2) op—rrogWrLl ML, iff op —>roq WI.L MBS, (by defn. of MS;)

(3) op—2poqWIL MS, = op—>roq wrt. MAy (Theorem 3.1)

@)y op—rjoq Wil M, = op—r;oq WI.L MA (12,3 above) O]

COROLLARY 1. Let p and g be two points in prog. If prog exhibits p —>; ¢ W.I.L. O and My, then prog
exhibits p —>y g W.I.l. Gy and MA,. O

COROLLARY 2. Let prog exhibitd =p —r ¢ W.I.L G and M. If d is carried by (x. y) w.r.t. ¢ and
M,,, then d is carried by (x, y) wr.t. g, and MAg. 0

The notion of embedding also allows dependence (0 be estimated w.r.i. arbitrarily large sets of stores.
Suppose, for example, that a program P supports three types of structures: environments, cons cells, and
atoms. Suppose, moreover, that P supports two identifiers, x and y. Then a safe estmate of P's depen-
dences w.r.t. to the set of all initial stores can be obtained by evaluating P w.r.L. a store with

. one ordinary global environment, genv,

—57 -

. onesummary structure, s, of type { cons, atom } with value TAT,
. wwo references from genv 10 5 of type x and y; and
. two self-references from s to s of type Ad and .

This store is shown as Store F in Figure 5.2.

5.3. Using the Determinate Selector Property to Sharpen the Interpretation

In their survey on non-determinacy, Sondergaard and Sestoft distinguish between interpretations that exhi-
bit, and interpretations that fail to exhibit, the deferminate variable property [Son87]. This property is
illustrated in the following example program.

11 x=172; [2Z} y=x+x

The operator ? is the binary nondeterministic choice operator. In statement [1], for example, “172"
denotes either 1 or 2, depending on the whims of the implementation. If an interpretation / exhibits the
determinate variable property, then this program’s interpretation (according to [) assigns either 2 or 4 t0y.
If I does not exhibit this property, then statement 12] could also assign 3 10 y; [2], in effect, is interpreted as
“2] y=(172)+(172)"

Similar concems arise in the nondeterministic interpretation of pointer languages. Let G, for example,
be a store in which x denotes an ordinary location with fwo selectors of type x.intp: one to an atom 1, and a
second to an atom 2 (¢f. Figure 5.3, store s¢). The interpretation of 'y := x.intp + x.intp” would then return
three stores. The value of y in these threc stores would be 2, 3, and 4, respectively.

This loss of precision can sometimes be avoided by altering the interpretation of selector expressions.
Fanction selexp 4, when run on a store o and an expression idexp, currently returns the set of locations that
idexp denotes in 6. The altered selexp, changes o to reflect choices made during the interpretation of
idexp. Assume, for example, that idexp denotes a single structure § w.r.l. 2 store ¢. Assume that 5 is an
ordinary structure that contains two references of type sel: one reference ry (0 a structure at location /,, and
a second reference ry to a structure at location [,. The revised selexpa. when run on idexp.sel and G,
returns two objects: {; paired with a store that lacks 7, and [, paired with a store that lacks r. This pran-
ing of unselected references at ordinary structures is safe, since M, is deterministic.

Consider how the revised MA,, would evaluate “y = x.intp + x.intp” W.I.L Cp. The evaluation of the
first x.intp would produce two SIOTES, o’y and 6", in which x.intp denoted 1 and 2, respectively. The
evaluation of x.hd relative to o’y and & *s would determine that .hd must denote 1 w.r.t. s, and 2 w.r.t.
s”s. The interpretation of “y = x.inip + x.intp” now yields two stores: one where y is set to 2 and x.inip 10

1, and one where y is set to 4 and x.inip 10 2.

A second situation where the revised selexp s sharpens the interpretation is depicted in Figure 5.3. The
version of MA, given in Appendix 3 maps sStore So to stores s; and 5. The adjusted interpretation of

MA ,, would return one siore in which x.intp was Q.

5.4. Related Work

Most of the techniques for analyzing pointer programs described in Chapter 5 arc sketched in earlier

reporls on pointer-program analysis. This dissertation, however, is the first that considers various interpre-

tation and approximation techniques from a unified perspeciive. A related attempt to unify various tech-

— 58 —

niques for analyzing higher-order functional languages is discussed in [Deu90]. The material presenied in
Section 3.3 also appears to be new, although a related idea was proposed by Stransky (see below).

The rest of this section discusses related techniques for pointer-program analysis. A discussion of store
abstraction strategies is deferred until Chapter 6,

5.4.1. Related abstraction techniques

Each of the abstraction techniques described in Section 5.1.1 has been described in previous papers on pro-
gram analysis. The particular combination of these techniques described here is new.

The approximate occurrence string is related to the approximate call string of Sharir and Pnueli {Sha&1]
and to Harrison’s (approximate) stack configurations [Har89). Harrison uses stack configurations to est-
mate the lifetimes of dynamically allocated objects in Scheme.

The abstract store graph is a direct descendant of the graphs described in (Jon79,Jon81]. Jones and
Muchnick, who were concemned with storage-sharing, label summary structures with values that character-
ize the topology of the replaced region. Other authors that use similar graphs include Pleban {Ple81],
Stransky [Str88], Larus [Lar87], and Chase, Wegman and Zadeck [Cha%0]. Store graphs are also similar to
Chase’s storage containment graph (SCG) [Cha87] (a descendant of Schwartz’s subpart graph [Sch75]).
The principal differences between store graphs and SCGs are superficial. SCGs, for example, contain two
types of edges: one type of edge that denotes a reference, and a second that pairs a structure s with a spe-
cial node—i.e., a label—that names s°s defining point.

Embeddings play a crucial role in other analyses that use graphs to abstract memory. Authors who
develop explicit embedding relations include Jones and Muchnick [Jon79,] on81}, Chase [Cha87], Stransky
[$tr88, 590}, and Chase, Wegman, and Zadeck [Cha90]. The notion of abstraction by embedding is
implicit in other work that uses monotone datafiow frameworks to build store graphs: e.g., Ruggieri’s work
on garbage collection [Rug87, Rug88] and Larus’s work on paralielizing Lisp [Lar87].

The distinction between ordinary and summary objects has been drawn by previous authors, notably
Jones and Muchnick {Jon79,Jon81], Chase [Cha87], Stransky [Str88], and Chase, Wegman, and Zadeck
{Cha%01.

Most papers describe analyses that pair every program point with a single abstract store. One exception
(o this observation is a paper by Deutsch on the analysis of higher-order functional languages [DeudO]. A
second is the set-valued interpretation developed in the Jones and Muchnick work on analyzing Lisp-like
languages {Jon79,Jon81].

5.4.2. Related interpretations

The immediate precursor of MA, is the fAlow-sensitive semantics for pointer-program analysis developed
by Jones and Muchnick [J on79,Jon81]. This analysis supports a procedure-free subset of Lisp that has a
destructive update operator and one type of allocatable object—the cons cell.

One extension of the Jones and Muchnick framework was developed by Pleban (Plegl]. Pleban’s
analysis supports a subset of Scheme that provides continuations and closures, but does not allow closures
to be stored or returned from procedures-——mercby avoiding the upward funarg problem.

—~59_

A second, non-set-valued extension of the Jones and Muchnick framework was developed by Stransky
[Str88]. Stransky’s analysis supports a subset of Lisp that lacks closures. Stransky obtains a flow-sensitive
analysis by using predicates as filters of data: i.e., as assertions that remove paths from stores. Let P, for
example, denote the predicate “x > 0”. Predicate P, when applied to a store 5o, trims paths from so that
fail to satisfy the assertion “x may be numeric.” Predicate P also trims paths from the stores passed to its
true and false control-flow successors, according to whether x is positive or nonpositive along these paths.
A path that paired x with the value -1, for example, would be trimmed from the store passed to P’s (rue
consequent. An appreciation of Stransky’s technique for interpreting predicates led to the observations
about the determinate selector property given in Section 5.3.2,

The technique for interpreting the return statement is similar to the one proposed by Myers [Mye81] and
later rediscovered by Jones and Muchnick [Jon82]. This technique, which uses an approximation 10 the
stack to identify a procedure’s potential return points, can be contrasted with stack-less techniques that sim-
ply assume all possible return paths to be valid (e.g.. [Cou78]).

The extended control-flow-graph model of program evaluation is easiest to work with when the example
language does not support local variables. In such languages, the return statement does not affect the
configuration of a program’s memory. Examples of pointer analyses for local-variable-free languages
include those by Chase [Cha87], Chase, Wegman, and Zadeck [Cha%0], and Larus [Lar87].

Propagating approximate stores through extended control-flow graphs becomes a little more difficult
when a language supports nested scopes. The interpretation described in this thesis uses a special set of
references to track the local environment. Stransky, who treats the stack and heap as separate objects,
maintains a safe estimate of a program’s stack by performing comparable folding and unfolding {pliage et
depliage) operations on the abstract stack [Sir88]. Pleban’s evaluator, on the other hand, appears to lack
abstract procedure activation records [Ple81]. Pleban suggests that an analysis be run until it duplicates
some memory configuration that sits atop the stack.

Cousot and Cousot introduced estimation operators (there called widening operators) to ensure the ter-
mination of analyses over infinite abstract domains [Cou77]. Another use of widening operators appears in
Stransky’s thesis [Str88].

5.4.3. Related proofs of correctness

Related proofs of correctness for pointer-program analyses have been given by Jones, Muchnick, Stransky,
Deutsch, and Hendren. Jones and Muchnick use Abstract Interpretation to show the safety of two tech-
niques for alias analysis, relative to procedure-free and procedure-supporting dialects of Lisp
iJon79,Jon81,Jon82). Stransky’s thesis sketches, but does not actually give, a proof of correctness for a
label-based analysis of a Lisp-like language with dynamic scoping [Str88,Su90). Deutsch describes an
abstract-interpretation-based proof of correctness for a framework for analyzing higher-order functional
languages [Deu90]. Hendren’s thesis uses a denotational definition of a language as a starting point for
demonstrating the correctness of an alias-analysis technique (Hen90].

A second well-established framework for developing program analyses is the monotone dataflow frame-
work of Kildall and Kam-Ullman [Kil73, Kam76]. This second framework predates Abstract Interpreta-
tion. The principal reason for using Abstract Interpretation to demonstrate the safety of MA is that show-

—- 60—

ing that MA is a monotone dataflow framework would not establish the desired relationship between
MA , and MS,;; it would merely guarantee that MA,, has a least fixpoint.

5.4.4. Other graph-based store abstraction techniques

The value TAT gives a coarse estimate of an atom’s value. More refined estimates can be developed from
domains of atomic values, intervals, and types. The four-element lattice (Lap ,nil ,non —nil ,TAT)
appears in work by Cousot and Hendren [Cou78, Hen90]. More elaborate lattices of approximate values
are given by Stransky [Str88, Su90}.

A program’s evaluation can also be sharpened by extending the distinction between ordinary and sum-
mary objects to references, In this extension of the interpretation, it is safe for assignment o replace ordi-
nary references at summary structures, and summary structurcs at ordinary references. The distinction
between ordinary and summary references is drawn by Jones and Muchnick {Jon79,Jon81] and Schwartz
(reported in {Cha87]), who replace sets of concrete references with special references labeled any. Stran-
sky uses what is tantamount to a typed summary reference to determine when not to remove references
from stores [Str88, $tr90]. Even sharper characterizations of program evaluation may be obtained by using
counts to estimate the number of references that a summary reference represenis—or, alteratively, by
pairing structures with abstract reference counts [Myc81, Hud87, Str88, Hed88, Chad0].

Summary structures give a coarse estimate of a collapsed section of a store. Sharper estimates can be
obtained with annotations that characterize the topology of an abstracted subgraph. Structures have been
annotated with values that identify them as abstractions of trees [Myc81], lists {¢f. Chapter 5 in [Myc81],
p. 261 in [Ple81], and Section 43 in [Cha%0]), and directed acyclic graphs [Jon79,Jong1]. Jones and
Muchnick have also used regular tree grammars 0 Capiure reCurrences generated by programs in func-
tional languages [Jon79, Jon82]. A related idea for using graph grammars to capiure regularities in impera-
tive stores is sketched in Chapter 6.

The previous three paragraphs describe more precise abstractions of stores. Most papers on store
analysis use simpler abstractions of stores. One simplification of the store graph, the alias graph, is used
by Ruggieri to analyze object lifetimes [Rug87,Rug88] and by Larus to compute a program’s dependences
[Lar87]. Intuitively, a store graph so can be converted into an alias graph by pruning all unshared struc-
tures from the frontier of the store (¢f. Figure 5.9).

Alias graphs can be further compressed by replacing chains of unshared structures with single refer-
ences. Each replacement reference is labeled with a path expression that characterizes the path that it
replaces (cf. Figure 5.10). The interpretation must then be adjusted to account for edges that are labeled
with regular expressions, The adjusted interpretation, in effect, “re-materializes” the elided structures when
a program creates new references to what had been unshared structures. This technique is used by
Mycroft, and again by Inoue, Seki, and Yagi, to estimate how objects are shared in stores created by appli-
cative programs [Myc81,Ino88]. Hendren uses an equivalent path-compression technique 10 reduce the
size of a comparable representation, the path marix [Hen89, Hen%0]. The rows and columns of Hendren's
path matrix correspond to a program’s identifier expressions; its entries name paths through the heap.
Assume, for example, that the ith row in a path matrix M corresponds 1o the identifier a, and the jth column
to the identifier expression b.next. Then the {i, j]th column in M characterizes the set of paths that link the
object referenced by a to the object referenced by b.next. Hendren's interpretation is also limited to pro-

-6l ~

w I;x? ¥
hd/ hd tl hd 'l
/
nit
hd tI intp hd ti
f A | / \
nil nil nil nil nil

Figure 5.9. A store graph, and its corfesponding alias graph.

W

ﬁ W y Cl:f xhdhd xtl
tl.next\.r_l_']
hd.hd
hd/ 14 'y
/ Q
W xhdt =xd
S "—g
any

Figure 5.10. Using path expressions to compress alias graphs. The store on the left is an example alias graph. The
two stores on the right are compressed alias graphs. The top store is exact; the lower store, approximate.

;I%ld
next ﬁhd

hd

grams that generate cycle-free stores.

5.4.5. Other graph-based state abstraction techniques

Maost authors describe analyses that pair every program point with on¢ or more representations of memory.
Chase describes an interpretation that pairs one labeled graph with an entire program [Cha87]. This graph
represents the set of all storage containment graphs (SCG’s) that could arise at any point over the course of
a program’s cxecution, Chase’s analysis forms a program’s SCG by merging store graphs produced at
separale program points over the course of an analysis. Chase shows that merging SCGs docs not lose
information about a program’s evaluation when the language under consideration supports a copy seman-
tics for assignment statements. A improved version of this idea is developed in [Cha%0].

-62—

Sagiv, Francez, Rodeh, and Withelm describe a logic-based framework for program analysis that aug-
ments store graphs with assertions about pointer equalities [Sag90]. These assertions can reduce the
amount of space required to record facts about program evaluation. Suppose, for example, that a program
manipulates three identifiers named x, y, and z. Suppose, further, that any two, but not all three, of these
variables can be aliased. This assertion could be captured in Sagiv’s framework by annotating a store
graph that showed x, y, and z as aliases with the appropriate assertion about x, y, and z. A related idea is
described in a paper by Seo and Simmons, who pair a finite automaton that recognizes a language with a
matrix that rules out certain states recognized by the automaton as invalid [Seo88].

5.4.6. Other state abstraction techniques

A 1982 paper by Jones and Muchnick describes a framework for analyzing programs that generate tree-like
recursive data structures [Jon82]. This framework uses a representation function and an abstraction of the
stack to characterize a program’s state. This report also stresses the use of defining-point labels (there
called tokens) to capture information about a program’s behavior.

Various authors pariition a program’s identifier expressions into sets of equivalence classes
[Cou78, Wei80, Gua90, Gua90a]. These algorithms place two identifier expressions in the same
equivalence class if they might reference the same structure ata given point in an interpretation.

Coutant describes a technique for tracking a program’s aliases in a C-like language [Cou86). Coutant’s
analysis monitors the set of memory objects that each of a program’s names—arrays, pointers, arrays of
pointers, and aggregates——might denote.

Harrison uses sets of closures to model stores [Har89). Harrison treats a reference x to a record as a
binding of a variable x to a new, dynamically allocated function. This function accepts a switch-like argu-
ment that either directs it to return the contents of one of its fields, or to update a field and return an
updated closure. Selector are then redefined as functions that (1) accept a closure f that represents a struc-
ture, and (2) invoke f with the appropriate switch. This treatment of structures makes Harrison’s technique,
which supports closures, more uniform. Harrison also argues that this approach should allow functions 0
be returned that characterize the potential dependences of separately compiled procedures.

5.4.7. Other interpretations

Hendren gives an elegant algorithm for estimating a recursive procedure’s behavior, w.r.t. a first-order
language that lacks mutual recursion [Hen90]. Hendren's algorithm, roughly speaking, pairs a procedure P
with a pair of abstract sStores (Gin » Sour)- Thig pair represents the assertion that P maps every store that
embeds in o, to a store that embeds In Gour. The following is a sketch of her algorithm:

1. A first estimate of P’s behavior, (g;, ©,). is generated by propagating a ; passed to P along all
recursive-call-free paths through P.

2. An estimate of P’s maximal input is computed from o;. The initial estimate (o;, a,) is iterated 1o
ohtain a o’; that subsumes g;.

3. Store o, is then held fixed, and G, iterated. If this second iteration produces an estimate of £’s max-
imal output that does not invalidate @’;, then the algorithm terminates, Otherwise, the second
sequence of iterations caused a store o, that did not embed in ¢’; to propagate t0 a call to P. The
algorithm then restarts at step 1 with a new estimate of P’s behavior generated from o, and ¢”;.

- 63—

It is clear that Hendren’s algorithm can be implemented as a specific iteration strategy over a program’s
extended control-flow graph. What makes Hendren's formulation of interprocedural analysis appealing is
that the strategy is an explicit part of her analysis.

Weih! uses information about a reference’s type (w.r.t. a strongly-typed example language) 1o constrain
a program’s potential aliases (Wei80]. Weihl’s algorithm supports programs with procedure-valued vari-
ables. An important limitation of Weshl’s algorithm is its failure to use information about a program’s con-
trol flow. Landi and Ryder argue that this produces estimates of a program’s aliases that are to0 coarse 0
be readily useful [Lan90j.

A second algorithm that uses strong typing to constrain a program’s potential aliases was given by Rug-
gieri and Murtagh [Rug87,Rug88]. This algorithm is designed for a strongly-typed, procedure-variable-
free language that resembles CLU. The first, intraprocedural pass of the Ruggieri-Murtagh algorithm com-
putes a symbolic estimate of how a program’s procedures map inputs to outpuis. Rules about a variable’s
type determine {e.g.) whether pairs of inputs could be aliased on procedure entry. The second, interpro-
cedural pass of the algorithm estimates how objects propagate between procedures. Ruggieri and Murtagh
argue that their two-pass algorithm represents a reasonable compromise between iterating over a program’s
extended control-flow graph and analyzing procedures in isolation, using worst-case estimates of inputs.

Other symbolic techniques for pointer-program analysis have been given by Reynolds, Jones and
Muchnick, Chase, Larus, and Guarna. Reynolds showed how to develop and soive systems of equations
that characterize recursive structures generated by functional programs [Rey68]. Jones and Muchnick later
described a similar use of regular tree grammars to estimate the sets of stores generated by a functional
program [Jori79, Jon81].

Chase discusses the use of extended store graphs (o discover opportunities for speeding fixpoint compu-
tations [Cha87]. These graphs, which Chase calls update graphs, contain additional nodes that correspond
to program points, and additional edges that represent assertions about how pairs of program points share
data. Chase uses these graphs to replace a cyclic sequence of assignment statements like

while pred do b=a; cw=by ~rz=y;,a=z od
with a single operation that performs a pessimistic update on the store graph. A related idea appears in

Larus’s thesis, which discusses the use of summary graphs—graphs that summarize the effect of a set of
stalements—to speed program analysis [Lar87).

Guarna’s technique for program analysis, which uses a semigroup-like algebra of selector gxpressions to
analyze a pointer program’s aliases, is discussed in Section 6.6. Other work on pointer program analysis 18
beyond the scope of this thesis. This includes Harrison’s use of object lifetime analysis to estimatc a
program’s dependences, relative 10 a callico-free dialect of Scheme [Har89). This also includes Jouvelot
and Gifford’s use of type and effect information {0 reason about program behavior [Jou91], and the use of
invariants and meaning-preserving ransformations to reason about Lisp-like programs [Jor86, MasB6,

Mas90].

OTHER REMARKS ABOUT CHAPTER 5

Various authors (e.g., Jones and Mycroft [Jon86}) credit Sintzoff with the original idea for Abstract
Interpretation [Sin72]. Sintzoff argued that a dataflow analysis could be viewed as non-standard interpreta-

— 64—

tion of a program on an approximate domain. Cousot and Cousot developed the first framework for show-
ing that non-standard interpretations of a programming language were consistent with a language’s stan-
dard interpretation. Subsequent authors have developed variants of the Cousots’ framework, including
Mycroft and Nielson [Myc81, Myc83], Nielson [Nic84], Mycroft and Jones [Myc85]1, and Jones and
Mycroft [Jon86]. These papers, which are principally concerned with functional languages, assume deno-
tational definitions of a program’s meaning.

Different authors have given different names to the progression of semantics that are used in Abstract
Interpretation. The term instrumented semantics is due to Neil Jones [private communication, through
Reps]. Nielson uses the terms collecting semantics and sticky semantics to refer to a related style of pro-
gram definition [Nie90]. What the Cousots refer to as a static semantics is referred to by Jones and
Mycroft as a collecting semantics [Jon86] and by Nielson as 2 sticky lifted store semantics Nic90]. The
term abstract interpretation was used by the Cousots to refer to what Niclson calls an approximation
semantics [Nie84).

— 65—

6. STRATEGIES FOR ESTIMATING A PROGRAM’S STATES

There are, alas, many signs that our field (and most current work in the whole programming languages area as
well) is far from scientifically mature. One important problem: there is all loo little research in the classical
meaning of the term, meaning to search systematically through the existing literature for ideas and results
[relevant] to one's current goals, even though perhaps expressed in a quite different language or framework.
The inevitable result is that many works “reinvent the wheel” and omit highly relevant references to others’
work. —N. Jones [Jon#8]

If we could first know where we are, and whither we are tending, we could better judge what to do. and how to
do it. —A. Lincoln, cited in [Oat77]

The semantics given in Chapter 5, MA,, uses an estimation function V to ensure that analyses terminate.
Chapter 5 assumes that V is an extensive operator that restricts the length of every infinite ascending chain
in pwr(State ;). The precise definition of V, however, was left unspecified. The primary reason for leaving
V unspecified is that the problem of finding a best estimate for arbitrary program’s store configurations
appears incapable of exact solution. Larus showed that an important subproblem of dependence computa-
tion, that of determining a pointer program’s aliases, was NP-complete (Lar89). This result was later
amplified by Landi and Ryder, who show that alias computation is NP-compiete in languages that support
two or more levels of reference indirection [Lan911.

Various heuristics have been proposed for estimating the objects that a pointer program’s computation
might generate. Sections 6.1, 6.2, 6.3, and 6.4 discuss strategies for estimating labeled stores, sets of
labeled stores, occurrence strings and sets of states, respectively. Section 6.5 discusses comments that
other authors have made about the potential cost of store approximation. Section 6.6 concludes with a dis-
cussion of related work.

Most of the concepts presented in Chapter & were originally developed by previous authors. This
chapter’s primary contributions are this survey of store approximation techniques presented in Section 6.1
and the variant of the k-limiting technique for store approximation described in Section 6.1.1.

6.1. Abstracting Labeled Stores

The number of structures that a (labeled) store may contain must be bounded if a program is to have a ter-
minating interpretation w.r.L. MA .’ More precisely, the stateset estimation operator V must restrict the
number of structures that a program’s while loops and recursive procedures add to a store. To ensurc a safe
result, V must also map every store ¢ that grows {00 large to a bounded store that subsumes .

Various techniques have been proposed for limiting the size of a stor¢ graph . In this thesis, such tech-
niques will be treated as special instances of the following three-step algorithm for store reduction;

1. Every inaccessible structure is removed from C.
2. A partitioning strategy is used to divide the updated & into 7 + 1 sets of structures. One set of struc-
tures is left unchanged by the algorithm. The other n sets of structures are replaced by representative

5 The number of references in a store G must also be bounded, but this can be accomplished by first }imiting the number of structures

in @, and then stipulating that there can be no MoOTS than one reference of a given Lype berween any two structures in &

— 66—

structures. Refer to these sets as protecied and unprotected | - - - unprotected ,, respectively.

3. A reduction strategy is then used to limit the size of each unprotected;. Each subgraph of ¢ induced
by an unprotected;, G, is replaced with a bounded graph that subsumes G;. The use of a replace-
ment graph that subsumes G ensures that the updated ¢ subsumes the original store.

This algorithm, which will be referred to as the divide-and-shrink algorithm for limiting store size, is dep-
icted in Figure 6.1. This algorithm returns a bounded approximation to a store & when its partitioning stra-
tegy limits the value of n and the size of protected, and its reduction strategy limits the size of each replace-
ment graph. Specific implementations of divide-and-shrink differ according to the strategies used to parti-
tion and reduce stores. Accordingly, the rest of this section discusses the merits and weaknesses of various
store partitioning and reduction techniques.

6.1.1. Partitioning strategies
The scheme for classifying partitioning sirategies used here divides these schemes nto four categories:

. Strategies that use labels.
. Strategies that use labels, and also exploit information about a store's paths.
. Strategies that use paths,
] Strategies that use paths, and atso exploit information about a store’s labels,

Since stores are essentially collections of paths and labels, this classification scheme may appear to do little
more than state the obvious. The author, nevertheless, has found this taxonomy useful for thinking about
the various approaches to store abstraction.

Label-driven partitioning strategies place two structures s, and 5, in a common partition if 5, and 5,
have related labels. The basic label-driven partitioning strategy, which was first described by Hudak
(Hud®6, Hud87] and Chase [Cha87], uses a store o’s allocation-point labels to partition ¢. Let a program
P, for example, contain n statements that allocate structures. Assume, furthermore, that the abstract
interpretation of P labels every structure s with the name of that point that allocates 5. Let @ be a store gen-
erated during a computation that involves P. The basic label-driven partitioning scheme partitions & into at
most n sets of structures, and places all structures aflocated at a common program point a common set. In
the basic version of label-driven partitioning, there is no special, “protected” set of structures; every parti-
tion is a potential candidate for abstraction.

The hasic label-driven partitioning strategy has two pleasant properties. This strategy places objects
allocated at different statements into different partitions. This allows the second phase of divide-and-
shrink fo create approximate stores whose summary structures are each labeled with exactly one creation
point. This is potentially advantageous, since merging structures with different allocation points loscs
information about an abstract structure’s atlocation site. This partitioning strategy is also monotonic.
Assume, for example, that ¢ and o are arbitrary stores such that ¢ - o by an embedding f. If the label-
driven technique puts s; and 5 in a common (unprotected) partition, then it must also put Fs,yand f(s»)
in a common partition. This property of label-based partitioning allows the development of a monotone
store abstraction operator. This observation about the monotonicity of label-driven partitioning also holds

for the other label-driven strategies described below.

— 67—

e+ PR

After partitioning step (step 2} After reduction step (step 3}
{using an unspecified partitioning strategy)

Figure 6,1. The three-siep divide-and-shrink algorithm for limiting store size. The first step in the divide-and-shrink
algorithm removes structures that are unreachable from the global environment. The second step identifies one protect-
ed and 2 unprotected sets of structures in o (here, the protected region contains the global environmeni), The third

step replaces the subgraph & induced by every unprotected set of structures with a bounded, representative graph that
subsumes G.

The basic label-driven partitioning technique has two limitations. An “ideal” partitioning strategy splits
every store into sets of “algorithmically equivalent” structures: Struciures that are treated in roughly the
same way over the course of a computation. The basic label-driven strategy assumes, in effect, that all
structures allocated at a given program point are treated in a uniform manner. Real programs, however, do
not necessarily abide by this assumption, Consider, for example, the effect of using the basic label-driven
strategy to analyze a program that has exactly one allocation site:

procedure allocate{ ptr —to —strucl, type); pir—to—siruct = new (type) end

It would almost certainly be better, in such an exireme, 10 use gny other partitioning strategy. A second

- 68 —

limitation of this strategy is the technique’s tendency to lose information about a siore’s topology. There is

no reason, in other words, to suppose this strategy will place adjacent or proximate structures—even struc-
tures in the same list—in a common partition.

Various extensions of the basic label-driven partitioning technique have been defined. Most give finer
characterizations of a program’s behavior. One, described by Hudak, uses fragments of occurrence strings
to partition the store (Hud86, Hud87]. Assume, for example, that an interpretation labels every structure s
allocated in a procedure P with swo program points: the statement at which s was allocated, and the state-
ment that invoked the particular call to P that allocated 5. Hudak's (second-order) partitioning strategy
would then group two structures iff they had the same two-component label. Hudak’s technigue would
probably prove useful for programs (like the one described in the previous paragraph) that use a few
server-like procedures to aliocate structures.

Other authors obtain finer characterizations of list-like structures by labeling the kth structure allocated
at a program point p with the value [p, £]. A store’s structures are first partitioned by allocation site. The
set of points allocated at a given site p is then partitioned by counter. Stransky, for example, protects the
first & structures allocated at each program point [Str88]. This allows the divide-and-shrink algorithm to
construct abstract stores that give an exact characterization of portions of certain lists (e.g., the heads of
lists that are built top-down from structures allocated at a single statement.) Another counter-based parti-
tioning technique, developed independently by Bodin [Bod90] and Gohkale and Smith [Goh90], places
structures that have the same program point and counter mod & into a common (unprotected) partition.
This scheme has been used to estimate the distance of a loop-carried data dependence.

A third extension of label-driven partitioning supports set-valued labels. (N.B.: sct-valued labels arise
during the computation of input, anti-, and def-order dependences.) This technique, which is related to par-
titioning techniques described by Larus and Hilfinger (see below), places two structures s; and 5, in the
same partition iff either
.. the labels of 5, and s, have a non-empty intersection, or
. there exists a third structure s+ such that 54 and 55 are placed in the same partition, and the labels of

53 and s, have a non-empty intersection.

Consider, for example, a set of structures s, 55, 53, 54, and 55 whose reading-point labels are { [1],[2]],
{ [2LI3) }, { (3164} }, { 5] }, and { [50,[6] }, respectively. The partitioning strategy just described
places 54, 54, and 54 into one partition, and 5, and 55 into a second.

Still other variants of the basic label-driven partitioning strategy can be defined that use some combina-
tion of label, type, and value information to partition the store.’

A second type of label-driven partitioning strategy was developed by Larus and Hillfinger
[Lar88, Lar89]. This technique assigns every newly allocated structure s a label that characterizes the path
along which s was added to the store. Assume, for example, that a program is about to build a list of cons

8 Strictly speaking, it might be more proper (o talk about atfrifute-driven (rather than labai-driven) partitioning. The word “label” has
been chosen for historical reasons.

—-69—

cells that is to be referenced by a variable x. Assume, furthermore, that this list is being built in a top-down
fashion. Then the first cons cell added to this list would be labeled x.hd. Successive cells would be labeled
x.hd.hd, x.hd hd.hd, etc. A list at x of indeterminate length would be terminated with a summary structure
labeled x.hd*"! hd”, where k is an arbitrary limit on the number of selectors in a label.

The first step in the Larus-Hilfinger abstraction technique replaces every label that contains & or more
selectors with a related k-selector-long regular expression. This new regular expression is an abstract label
that subsumes the original label. Assume, for example, that & is 3. Then Larus’s label-replacement algo-
rthm would replace x.hdhdhdhdtl with xhdhdd, and mpabec. - xyz with
imp.a.(b | ¢ -+ x{y).z. The partitioning step then places two structures §; and s, in a common partition
if their labels subsume a common selector expression, or if there exists a third structure 55 such that 5y and
53 are placed in the same partition, and the labels of 54 and s, subsume a common selector expression.

The Larus-Hilfinger partitioning strategy is monotone. A second pleasant property this strategy is its
tendency to preserve a store’s topology: i.e., to place structures that are adjacent or proximate in a common
partition.

Two important limitations of the Larus-Hilfinger partitioning technique are shared by the basic path-
driven partitioning technique described below. The first is the technique’s failure to group structures that
are operated on (e.g., allocated) by a common program point. The second is the k-limiting assumption,
which poses two serious problems for implementations of this technique:

° How can the need for a more precise analysis be balanced against the potuatially exponential
increase in the size of the store that results from an increase in £?
. How can an appropriate value be chosen for £7

Possible solutions for both problems are proposed below, in the discussion of path-driven partitioning.

A third limitation of this technique is its strategy for labeling structures that are prepended to existing
structures. The original version the Larus-Hilfinger algorithm labeled such structures with values that
characterize the new structure’s referents [Lar88]. For example, the two structures created by the evalua-
tion of cons(x, cons(x, y)) are labeled <x, y> and <x, <x, y >>, respectively. This approach apparently
proved unsatisfactory in practice, since it was later replaced with a second labeling strategy. This second
strategy, given in Larus’s thesis, assigns to each prepended s a hybrid label that names the program point at
which s is created [Lar89). The formula for creating this label, which is somewhat complicated, is also
given in Larus’s thesis. This second labeling technique results in a compromise partitioning strategy that
groups some structures by proximity, and others by program point.

Path-driven partitioning strategies use a store’s topology to restrict its growth. The basic path-driven
partitioning strategy, k-fimiting, is discussed in Tenenbaum’s thesis on type determination [Ten74] and in
the Jones-Muchnick reports on analyzing Lisp-like languages [Jon79,Jon81]. The Jones and Muchnick
version of k-limiting, roughly speaking, first partitions a store ¢ into two sets of structures:

1. The set of all ordinary structures in < that can be reached from o’s global environment along a
summary-structure-free path that contains k or fewer references.
2. The set of all other structures in .

~70—

Structures in set 1 are placed in the set of protected structures, protected. Structures in set 2 are first placed
in a single set of unprotected structures, unprotected. Set unprotecied is then partitioned into maximal con-

necied components. In particular, let s; and s, be two structures in unprofected. Then s, and s, are
placed in the same partition iff either

. Structures s, and s, are connected: that is, if 5, references s,, or vice-versa; or

. there exists a structure 53 such that 53 is in unprotected, s, and s, are placed in the same partition,
and 54 and s, are connected,

The number of sets generated by this partitioning of unprotected into maximal, connected subgraphs can be
bounded by restricting the fanout of a store’s ordinary structures—the number of references of a given type
that may be situated at a given structure. Jones and Muchnick, for example, generate abstract stores that
have no more than one reference of a given type at any ordinary structure—and no more than one reference
from any summary stracture to any other structure in the store.

Path-driven partitioning strategies have one important advantage over label-driven partitioning stra-
tegies: they allow the creation of abstract stores that preserve an arbitrarily large, contiguous region of a
store unchanged. The basic path-driven partitioning strategy also has three important problems:

1. The size of a £-limited abstract store is potentially exponential in k.

2. No good rationale has yet been given for choosing a specific curoff—i.e., an appropriate value of
k—for a given analysis.

3. Suuctures that are operated on (e.g., allocated) by comparable program points might not be groupzi
together.

gy 000 T o
.’ 54 . Q s2 “»_ h s4

nil s2 nil nil nl ™,
hd il SO
hd d hd id] . .
nil il il onil il il nil il
Store A Store B Effect of 1-limiting A Effect of 1-limiting B
Figure 6.2, The path-based partidoning operator is not monotonic w.r.l. T . A — B by an embedding that maps 5, 1o

54. The two figures on the right depict the effect of 1-limiting A and B, respectively. Structures above the dotied lines
are placed in the protected partition; structures below the dotted line are placed in unprotected partitions. Note that 5,

is placed in an unprotected partition, and s, in the protected partition.

—-71-

A fourth limitation of path-driven partitioning operators is that they are not monotone wr.t. © (cf, Figure

6.2). This last limitation, however, does not interfere with the use of a path-based partitioning strategy in
any essential way.’

The concern about the exponential blowup in k can be addressed by imposing asymmetric limits on a
store’s extent. It seems reasonable to use any finite, prefix-closed set of identifier expressions to partition a
store into sets of protected and unprotected structures:

DEFINITION. A set of non-empty identifier expressions expset is prefix-closed iff expset contains €, the
empty identifier expression, and expset contains idexp whenever it contains idexp.sel. 0O

Assume, for example, that an analysis secks to determine how a program operates on structures referenced
by v, and the first k structures in lists referenced by z. The set of identifier expressions pathset = (€, v, z,
zhd, 2.4, -+, z.hd*.hd, z.hd*1l } could be used to obtain careful estimates of operations on these
structures—and weaker estimates of operations on other siructures. More precisely, the partitioning step of
divide-and-shrink would protect every structure named by pathser—and leave all remaining structures
unprotecied.

The concern about how to generate appropriate cutoffs—e.g., useful sets of prefix-closed expressions—
can be addressed by using stores generated during an analysis 10 guide the partitioning. More specifically,
the stores that first propagate to a recursive construct 7 could be used, in conjunction with the form of 7, to
bound the states generated by r. Suppose, for exampie, that a store o reaches a while loop L during the
course of an analysis. Suppose, for simplicity, that I contains no other loops, no call staiements, and
exactly one allocation site. To determine a suitable cutoff for o, one might start with a prefixed-closed
pathset that names every structure in 6. A set of prefixclosed identifier expressions for evaluating L w.r.t.
& could then be determined by evaluating L once; determining the shortest identifier expression that names
the newly allocated structure in the updated o; adding this identifier expression to pathset; prefix-closing
the updated pathset; and then using the updated pathset to analyze L w.r.t. o.

The concem about the failure of path-driven partitioning to group program points with related labels
can be addressed by partitioning the store yet another time. This third partitioning of the store would group
together all structures in a given maximal component that have related Tabels.

These proposed adjustments to the basic k-limiting strategy are an original contribution of this disseria-
tion. It is important to point out that this adjusted k-limiting technique has neither been implemented, nor
tested. The principal reason for discussing it here is that a recent paper on Stor¢ reduction by Chase, Weg-
man, and Zadeck argues that the basic k-limiting technique is not practical, for the three reasons given
above [Cha90]. It is hoped that these arguments on hehalf of a modified &-limiting technigue show that
path-driven partitioning strategies may prove viable for store reduction.

amption relation that is one-to-one over part of its

? Path-driven partitioning can be shown 1o be monotofie W.r.L. 3 MOTe [ESINCUVE subs i . :
ets of stores into single, representative stores.

range. The use of such a relation, however, restricts an analysis’s ability to collapse s

-72 -

6.1.2. Reduction strategies

Let o be a store, unprot = {5y, **-,8,, '+ } a set of structures in o, and G wnpror the subgraph of o
induced by unprot. A reduction strategy is a rule that transforms o into a related graph in which the s;’s
are replaced with a bounded number of structures. Intuitively, ¢ is reduced by first replacing G unpror With @
representative (- ,,,,, and then replacing references to structures in F sunpro With comparable references to
structures in (7 ., .

Reduction strategies are classified in this thesis according to the form of the G ,,, that replaces G wnpros-
Two types of strategies are discussed below: those that generate pointwise representations of pruned sub-
graphs, and those that generate strucrured representations of pruned subgraphs.

The basic poiniwise reduction strategy, which will be referred to as labeled store condensation, replaces
G unpror With a G ,,, that contains one structure. Intutively, G, is created by condensing all structures in
G unpror INLO A single, representative STUCIUIE §,q,, and then replacing all paths in ¢ through unprot with
comparable paths through s,,,. More formally, let

* kind (s ;) denote the kind of a structure s; ({.¢., ordinary, summary);

* type (s;) denote the type of 5;

* label (s;) denote the label of s;;

* value (s;} denote the atomic value of s; {(or L1, if atom ¢ fype (5;); and

* (5;, sel, 5;, 1} denote a reference from structure 5; to swucture 5; of type se/ with label .

Then kind(s,.)= ordinary, iff n =1 and s; is an ordinary structure, and summary otherwise;
type (S ,,,) = union_from s5; € unprot: type(s;);
label (s pp.) = umion_from s; € unprot : label (s} and
value (§ ne) = join_from s; € unprot : value(s;)

where g join fromb=aiff a=bor b= L.y, and TAT otherwise. The references in the updated o are

computed as follows:

1. Every reference (s;, sel, s;, 1), where s; € unprot, is replaced with the reference (5w, sel, §;,1).

2. Every reference (s;, sel, 5,), where s; € unprot, is replaced with the reference (s;, sel, 5,0,).

3. The updated o created by steps 1 and 2 may have references that have the same type and the same
endpoints. (This happens, for example, when & containg two references (s, sel, s;,1;) and
{55, 5€el,5;,1;), where s; and 5; are in unprot) Step 3 replaces every set of references of the form
((sisel,s;0y), <00 (s, el 55, 0;)) with the reference (s;, sel, s, [y v <= W)

Strategies for estimating occurrence strings (¢f. §6.3) can then be used to limit the size of the resulling
labeled store’s labels.

Let Is denote a labeled store, and unprot an arbitrary set of structures in /5. Let condense (Is, unprot)
denote the labeled store obtaimed by condensing /s wr.t unprot. The assertion that Is Z
condense (Is, unprot) follows directly from the definitions of condense and & . The assertion that condense
is confiluent—roughly speaking, that condense (condense (Is, {51 1).1521) ~ condense (condense (s,
{53 {5y })—can also be demonstrated when the Iabel-estimation strategy is confluent. (Confluence
proofs for similar condensation Operators are given by Chase {ChaR7} and Stransky {Sur88].)

—"3_

Variants of condense appear in work by Schwartz [Sch75], Jones and Muchnick [Jon79], Pleban
[Ple81], and Stransky [Str88]. Schwartz and Jones and Muchnick use a condense operator that replaces all
references from s,,, 10 a given structure s with a single reference of type any. Jones and Muchnick,
Pleban, and Stransky use a condense operator that removes all references from s, to s,,,, from the con-
densed graph. (Later work by Stransky [Sur90] uses a condense that resembles the one described here.)

The condense operator has an important limitation: a naive pointwise condensation operator discards
useful information about a store’s structure. This point is illustrated in Figure 6.3, which depicts an n-
element list (left-hand store} and the store produced by condensing all cons cells in this list (right-hand
store}. The condensed store, which subsumes the list, can be used in place of the list to obtain a safe esti-
mate a program’s behavior. This condensed store, however, does not produce sharp estimates of a
program’s behavior; it cannot, for example, be used to infer that the pair of selector expressions such as
x.hd* .1l and x.hd’ 1 access different elements of the original list when j # £.

One technique for avoiding this loss of information, discussed in Chapter 5, annotates every s,,,, that
replaces an acyclic G ., with a label that identifies the topology of G unprot® €.§.-, identifies 5,,, as a con-
densed tree, dag, or list. A related idea, devéloped by Hendren, restricts the topologies of the subgraphs
that a summary node can represent {Hen89, Hen90]. Hendren first assumes that every store that a given
program can generate is ~ directed acyclic graph (dag) that contains a bounded number of shared struc-

Figure 6.3. Pointwise reduction strategies lose information about a program’s structure. The store on the right is ob-
tained by condensing the set of all cons cells in the left-hand store into a single structure. The abstract store cannot be
used 1o infer (e.g.} that x.hd and x.ti.hd represent distinct structures in the left-hand store.

— 14—

struct listelt Is <prev.value next>;

first ;= new(listelt] ;
first.prev := nil ; first.value := struct ; first.next := nil ;
last := first ;
L] while pred do
last.next := new(listelt);
last.next.prev := last; last.next.val ;= struct; last.next.next := nil ;
last := last.next

od
struct first last
al prev & nil

Store reaching first iteration of L rev

1 XI})I‘GV last

X

— next —=nil

Store reaching second iteration of L Store reaching nth iteration of L

Figure 6.4. An example program, together with the set of doubly-linked lists that it generates. {The example is treated
as a procedure-free program, for simplicity.) struct is a region of unkmown structure in the initial store.

tures.® This assumption allows Hendren to parttion a store into a contiguous dag that contains the global
environment, and a bounded number of arbitrarily large trees that are rooted at the perimeter of this dag.
Hendren’s version of divide-and-shrink leaves the dag intact, and prunes every [ree on the perimeter of the
dag. This allows Hendren to assume that every reference that points to a structure that lies outside this dag
teferences a tree-like summary structure—and to give an interpretation that “materializes” and “unfolds”

these structures at need.

The qualified-summary-structure approach to store reduction has the following important limitation: it
forces an analysis to anticipate the types of regular structures that a computation might generate. This is

* Hendren treats the stack and the heap as distinct objects. A comparable assumption for the representation used here is that stores are

dags, up 10 the reference that identifics a stere's current locai environment. Her analysis retoms f:“llum hen it de;clas l::[a p::i;‘;;“

. + 5 -
might not satisfy this restriction. [t must be also emphasized that this account Or_Hfmdrefl § algorllhrrf rt‘:j;.)resen}s ‘ ;z;:::_dlg aca ores
tion of her path-matrix-based apalysis into the store-graph framework. Even so, 1t 13 believed that this discussion y capl

the sparit of her work.

~ 75—

unfortunate, since programs can generate many sorts of regular structures. The program given in Figure
6.4, for example, builds a doubly-linked list of references to an unknown set of structures, and maintains an
auxiliary reference to this list’s final clement. A more general technique for abstracting regular data struc-
tures that can capture such recurrences is illustrated in Figure 6.5. This technique augments abstract store
graphs with graph rewriting rules: rules that characterize families of graphs [Nag79]. Each of the rules
shown in Figure 6.5 has the form “X rewrites to Y”, where X is a fragment of a graph that contains one
structure, 5. and a set of edges that are incident on s.

It is not hard to extend MA, to support this style of graph-rewriting rule; the family of graphs that such
rules generate can be enumerated in a straightforward manner (¢f. [Hab86]). A much more challenging
problem is the development of structured reduction strategies—pattern-recognizing condense operators
that can (e.g.) antomatically generate the productions depicted in Figure 6.5, This observation is supported
by the (unpublished) experience of Larus and Wegman, who have investigated the use of graph grammars
in program analysis [private communication]. The author is currently investigating the task of developing
structured reduction strategies. One promising approach involves the use of incremental characterizations
of program evaluation to develop the requisite productions.

3
X

struct first last next prev
rev ™ nil
val P - 3 2~ yal
next nil /\‘
any next prev = next prev

/
2"'val%"‘last' 2“"val‘@""last -1

3 3
—= il A A

—,

first i;\st

prey next prev = next prev
any % g - Qtf"last o1
-r last =f 2 wval™
27 vl next " nil

Figure 6.5. A concise, sharp representation of the stores that reach loop L in the example program in Figure 6.4. .The
s—rules for generating new siores through the replacement of nonterminals
ate the structures that anchor the references on the left-hand
(In this figure, 1 denotes the global en-

Wwo productions are graph rewriting rule
{shaded structures) with subgraphs, Boldface numerals rel _
sides of productions to the structures that anchor the references on the nght:
vironment; 2, the summary structure; and 3, structures in the doubly-linked list.)

—76 --

6.2. Abstracting Sets of Labeled Stores

If V bounds the number of labeled stores and occurrence sirings that an analysis can generate, then the
number of states that reach a given program point must also be bounded—and MA.,, will terminate, There
are, however, practical reasons for further limiting the number of labeled stores that reach a given program
point. Considerable space may be needed to store the sct of all store graphs that an analysis generates;
limiting the number of store graphs that can reach a given program point may considerably reduce an
analysis’s use of storage. Restricting the number of stores that reach certain program points should also
speed the average analysis—if one assumes that an analysis’s running time is typically proportional to the
number of stores that it manipulates.

One technique for reducing the size of set of labeled stores removes redundant labeled stores from this
set. Assume, for example, that set Isset contains a labeled store, /sy, that subsumes 2 second s € Isser.
Then Isset can be replaced by Isser—{ls;} with no loss of information. The principal limitatdon of this
technique is that it cannot be used to reduce an Isset that does not contain redundant labeled stores.

A second technique for reducing the size of an [sset uses a graph merging operator 1o replace a pair of
labeled stores with a third labeled store that subsumes both. The basic graph-merging operator, merge, is
related to that variant of divide-and-shrink algorithm that uses the pointwise condense operator to reduce
store size. The four-step merge operation is defined as follows:

1. Letisand Is’ be a pair of labeled stores, and struct and struct’ the structures in /s and Is’, respectively.
Tt merging of Is and Is” first partitions struct v struct’ into sets of comparable structures. (Criteria
for partitioning struct v struct’ are discussed below.) Let related, - - - related; be the set of struc-
tures obtained from this partitioning.

2. The second step of merge compules the structures in Is”, the merged version of s and Is’. Each
structure s; placed in Is” represents all structures in one of the related;. More formally, the 5, that
represents a given related ; satisfies the following equations:

kind(s,,,)= summary, if cither related; contains summary SIructures, or more than one ordinary
structure from /s, or more than one ordinary structure from /s”; otherwise, ordinary

type (5 pey} = union_from s, € related; : type (s,)
label (s pnw) = union_from s; € related; label (5;)
value (s,,,) = join_from s;€ related; . value(s;)

3. The third step of merge places references in Is”. Each reference added to /s represents a reference
in one of the original graphs. A reference (s, sel, s”;,0[) is added 1o Is” for every reference
(54, sel, s, 1) in Is (and Is7) such that s, is replaced by 57; and 5, by 57

4. The final step of merge replaces every set of references in Is” of the form (s, sel,s”;, ;) -+

(s;, sel, ", 1)) with the reference (s”;, sel, s"p [y v - L)
The claim that Is” subsumes both /s and Is’ follows from the definitions of merge and subsumption,

Various strategies can be used to partition structures in two merged stores. These strategies can once
again be classified according to whether they use labels, paths, or some combination of the two to group

structures,

77—

The basic label-driven strategy places two structures 51 and 5 in the same partition iff they have the
same allocation labels. Stransky discusses the allocation-labei-driven graph merging in considerable detail
[Str88,5tr90]. The extension of this partitioning strategy for set-valued labels groups s, with s, iff
label(s,) ~ label(5,) is non-empty, or there exists an s3 such that 5, is grouped with s; and
label(s3) ~ label (s;) is non-empty.

Larus’s labels-plus-paths technique groups s, with 5, if s5,’s and 52’3 labels subsume a common
identifier expression, or if there exists an 53 such that s, is grouped with $4 and 55’s and 55’s labels sub-
sume a common identifier expression [Lar89].

Let pathset be a set of prefix-closed identifier expressions. The basic path-driven partitioning strategy
groups 51 with 5 iff

. neither s; nor s, is named by an identifier expression in pathser; or
. both s, and s are named by identifier expressions in pathset, and either
§1 and s, are named by the same idexp € pathset, or
* there exists an 53 such that s, is grouped with s3, and s4 and s, are named by the same idexp.

Straightforward refinements of this technique repartition (some or all of) the related; into sets of structures
with related labels, values, or types. Figure 6.6 illustrates the use of a path-plus-labels partitioning strategy
to create a store that subsumes two related stores. Structurss in s; and s, have been partitioned wrt. {e,
W, X, ¥, 2, 2.hd, z.tl, 2.tl.hd, z.tl.¢l '}, and then repartitioned into sets of objects that have the same type.

The earlier discussion about the merits and limitations of store-partitioning strategies (cf. §6.1.1) applies
to the four strategies just described.

z[ﬁ/ ;i }]ms

hd lﬂ tl
AT _ nil
61 7 ’
h el
Store s Store 32 / \ Merged store / \
! o1 nilg o1 il

Figure 6.6. Using a path-plus-labels store-merging operator (o compute a store that subsumes wo slores, sy and 5.
$y U s, was partitioned w.r.t. (£ w, x, ¥, z, 2.hd, 2.tl, 2.tLhd, z.tlal). Small, boldface numbers show haw the sirategy

BTOUpS structures in §; U 54, and replaces them with new structures in the merged store.

-78—

6.3. Abstracting Occurrence Strings

Language 7 lacks procedure-valued variables. A straightforward technique for estimating occurrence
strings (i.e., augmented stack configurations) can therefore be derived from a program’s intraprocedural
and interprocedural control dependences. The technique developed here reduces every occurrence string (o
a canonical regular expression. These regular expressions, very roughly speaking, are strings of the form
(@i 1az] "»» 1ag) by by -- | bg)" -+~ (zy 125 | -+ | z,)* where each set of parenthesized pro-
gram points represents a maximal set of mutually recursive procedure calls, and (e.g.) at least one of the
b’s is control-dependent on one of the a’s—but not vice-versa. A more precise characterization of this
canonical form uses the notion of an approximate-occurrence-string tree:

DEFINITION (#nfolding sites). Let P be a program. Program P’s unfolding sites are the set of program
points in P that represent either call statements, or predicates of loops. [

DEFINITION (unfolding-site graph). Let P be a program and wusp be P’s unfolding sites. An unfolding-
site graph for P is a graph G, that depicts control dependences among P’s unfolding sites.
Specifically, G contains one node labeled p for every p in usp. Graph Gp also contains one edge
p —> q for every pair of program points p and ¢ in usp such that r; —, -+ —, r,, where £ 22,
ri=p,ry=q,each r; —, r;,, comesponds to either an intraprocedural 6 an interprocedural control
dependence {¢f. §3.2.1), and r; € usp for all i between 2 and k-1, inclusive. [

DEFINITION (approximate-occurrence-siring tree). Let P be a program, and G be P’s unfolding-sitc
graph. An approximate-occurrence-string tree for P is obtained from G by replacing every maximal
strongly connected component of G, with a single, representative, sclf-edge-free node. Lot ¢, for
example, be a maximal strongly connected component of G p. If ¢ contains one node labeled p, then the
node that replaces ¢ is labeled p*. If ¢ contains » nodes labeled p, - - p,, then the node that replaces
ciglabeled (py | ++* | poy'. O

Figure 6.7 depicts an cxample program, together with its unfolding-site graph and approximate-
occurrence-string tree. A program P’s unfolding sites are exactly those program points that can appear in
P’s occurrence strings, A program P’s unfolding-site graph is a varant of its procedure call graph (cf. §
10.8, [Aho86]) that depicts unfolding sites rather than procedures. Every path through P’s unfolding-site
graph that begins at initial,, the site of the initial call to procedure main (), corresponds 0 an occurrence
string that might arise during an execution of P,

Every path through P’s approximate-occurrence-string tree that begins at initial, estimates a set of
occurrence strings that might arise during an execution of P. More importantly, every occurrence siring
01" 0, that might arise during an execution of P can be reduced to a path through this tree. Specifically,
let f{o,) denote that node in P’s approximate occurrence string graph whose label contains oy, and
label (f (0,)) denote the label on node f (o). Then the string obtained by eliminating duplicate terms from
label (f (0,)) - - - label (f (0,)) is 2 bounded estimat¢ of 0, - - 0.

A limitation of the technique just described is its tendency to give pessimistic cstimates of occurrence
strings. A term (@, | - -+ | @q)* corresponds to the rather pessimistic assertion that any a; in a set of mutu-
ally control-dependent points can be invoked after any other a;. Straightforward adjustments to this algo-
rithm give sharper estimates of occurrence strings when mutually dependent program points are executed
in a fixed order. Assume, for example, that {p1, P2. P3 } is a maximal set of mutually control-dependent

—79 -
procedure main (3; Example program’s Example program’s approximate
update-site graph occurrence-string tree

ml] call P();
m2] call Q (%

end ;
procedure P (}
enc.i.:' .

recursive procedure Q(});
[ql] cal Q();

[q2] while
[q3] call Q();
[q4] while
od
od
end ;
endrec ;

Figure 6.7. An example program, together with its unfolding-site graph and approximate-occurrence-string tree.

statements. Assume, farthermore, that “{p} calt Q()", “[p2] call R()”, and “[p4] call P ()" are points
in procedures P, Q, and R, respectively, and that P, is always invoked before ¢ and R. Under these cir-
cumstances, it would be reasonable to use a term like (p1 p2p3) P1p2P3 | P1P2 | p1) In an abstract
occurrence string, instead of the less precise (p; | p2 | p3)*.

6.4. Abstracting Sets of States

The techniques described in Sections 6.1 through 6.3 for abstracting occurrence strings, labeled stores, and
sets of labeled stores can be used to generate bounded estimates of a program’s set of states. In particular,
V must limit the number of distinct occurrence strings and labeled stores that the analysis pairs with every

program point.

6.5, The Cost of Program Analysis

A careful analysis of the asymptotic complexity of using store graphs has been developed by Chase, Weg-
man, and Zadeck [Cha90]. These authors, in effect, argue that algorithms that use store graphs to estimate
program behavior can have poor worst-case performance. Let V', for axample, dencte a stateset estimation
operator that

* limits the number of structures in a store with a given allocation-point label, and

* merges every store that reaches each program point into one, representative store.

Roughly speaking, Chase, Wegman, and Zadeck argue that the worst-case running time of an analysis that

— 80—

uses V’ is O (§°), where § is the number of statements in a program P.? Chase er. al. use this argument to
motivate what they refer to as an efficient algorithm for program analysis. This second algorithm computes
one abstract store graph that represents every store might propagate to every point in a program. Chase et.
al. argue, roughly speaking, that this algorithm either runs in time O (§ log §), in ime O (§?), or in time
0 (S7)—depending on whether the number of references at a typical abstract structure is O (1), O (5), or
0(5?), respectively. This paper also observes that the efficient algorithm would probably not work well
for programs that contain procedures that allocate structures.

Other analyses of asymptotic complexity appear in theses by Chase, Ruggieri, and Hendren. Each of
these authors use stateset estimation operators that merge all stores that reach every program point into a
single store. Chase estimates a worst-case running time of O (S*) for his intraprocedural, label-driven
analysis [Cha87]. Ruggieri, who k-limits stores, estimates a worst-case running time!'® of
o (52 x V xo(S? % V), where V is the number of identifier expressions of length <k and « is the inverse
Ackermann function {Rug87]. Hendren estimates a worst-case running time of O (5% xK?) for interpro-
cedural analysis, where K is the length of a program’s longest identifier expression [Hen901.

Stransky’s thesis presents empirical observations about the performance of his store-graph-based Lisp
analyzer. The following two sentences, which are translated verbatim from Chapter 4 of [Str88], capture
the overail tone of this discourse:

The [heap-]graph is a disagreeable data structure to manipulate, and costly in space and in time of manipula-

tion ... The algorithms for [heap-graph] manipulation present no strictly theoretical difficulties, but are all

the same rather costly
The rest of the chapter contains an informal discussion of the costs of various operations on store graphs.
Stransky singles out the divide-and-shrink operation and the handling of recursive function calls as particu-
larly expensive operations.

Perhaps the most cogent observation that can be made about the expected cost of pointer program
analysis is that there is still much work to be done in this area. The asympiotic estimates and anecdotal
observations given here, while useful, do not adequately address the following, fundamental concerns

about program analysis:

. Can a program P’s form be used to determine the heuristics that should be used to analyze P?

. What is the cost of analyzing a “typical” program, according to a given heuristic?

. What improvement in quality of information (and increase in running time) might be expected from
an increase in precision?

» Would some combination 6f heuristics work better than any one approach attempted to date?

This last remark is prompted by the observation that the various strategies for partitioning and reducing
stores described in Section 6.1 work well for some program constructs, and poorly for others. This last
remark is also prompted by Havlak’s conjecture that it may be necessary to use easily discovered facts

9 Complexity estimates in Section 6.5 are given, when possible, as a function of the number of sr.atements‘that 4 Program contains.
These estimates, which are simplified versions of the ones given int the papers cited, were obrained by assumung that _Lhe number of al-
location siles and variables that a program manipulates are both propottional Lo the number of statements that it contains.

" The estimate of asymptotic complexity given for Ruggieri’s algorithm by Chase, Wegman, and Zadeck [Cha%0] is the estimare that

appears in equation (5.77) of Ruggieri’s thesis; this (improved) estimate appeared in the thesis's concluding chapter.

~-81—

about program evaluation to guide the discovery of harder ones {private communication]. It would be
interesting to determine, for example, whether a multi-pass analysis that generated progressively refined its

characlerization of a program’s aliases would prove more efficient than a comparable, one-pass analysis.
These concerns, however, are matters for further study.

6.6. Other Related Work

A recent paper by Guarna describes a technique for alias analysis that discovers possible recurrences
among a program’s identifier expressions ([Gua90a]; see also (Gua90]). Guarna’s technique for program
analysis attemnpts to discover {e.g.) whether a program’s identifier expressions satisfy identities such as
“x.hd =x.(tl.tl) .hd” and “x.ui"=y.di*". This algorithm uses statically gathered data about program
evaluation, together with an algebra of selector expressions, to discover such identities. Guama’s algo-
rithm for analyzing loops, for example, first determines what identifier expressions might be aliased after
the first few iterations of a given loop L. The algorithm then uscs the aforesaid algebra to derive new iden-
tities, and make conjectures about L’s subsequent evaluation. The third step of the algorithm then attempts
to verify the conjectured identities by rerunning the loop. There are pronounced similaritics between
Guarna’s work and the conjectured use of graph grammars discussed in Section 6.1.2. The prinicipal limi-
tation of Guarna’s work (as presented in [Gua%0a]) is the lack of a clear strategy for using rules to develop
the desired recusrences.

The strategy presented in Section 6.3 for abstracting occurrence strings is related 1o strategies for
abstracting stack configurations and states given by Harrison [Har89] and Deutsch [Deu90], respectively.
Sharper estimates of a program’s occurrence strings can be obtained by using (e.g.) superscripts of the
form ai + b, where a and b are integers and i an integer variable. This technique for estimating occurrence
strings is related to techniques that have been proposed for determining whether a iterations of a loop can
be run in parailel [Goh90, Bod90].

- 82 -

7. DO DEPENDENCES CAPTURE A POINTER PROGRAM’S BEHAVIOR?

Although there exists an extensive body of work that makes use of program dependence graphs, we were unable
10 find any published proof that program dependence graphs were “adequate” as a program representation....
In this paper, we prove that for a language with assignment statements, conditional statements, and while-
loops, a program dependence graph does capiure a program’s behavior.

—S. Horwitz, . Prins, T. Reps [Hor87a)

Dependence analysis became popular in the 1970°s, when Kuck, Muraoka, and Chen used a program’s
dependences to parallelize the execution of statements that manipulated arrays. Kuck et. al., however,
never gave a formal proof that their program-transformation techniques were sound. The use of informal
arguments to justify dependence-based program transformations persisted until 1987, when Horwitz, Prins,
and Reps showed the equivalence of programs with isomorphic control, flow, and def-order dependences,
relative to a simple, structured language (Hor88]. Intuitively, this theorem justifies program ransforma-
tions that permute a program’s statements, but leave its dependences intact.

Since 1987, other theorems have been proved that justify the use of dependences to reason about pro-
grams (¢f §7.5.2). None of these results, however, apply to languages that support reference variables,
dynamic allocation, and procedures. The current chapter takes a first step towards justifying the use of
dependences to represent programs in #like languages. Specifically, it shows that an analogue of Horwitz
et. al.’s result also holds for programs in language 7

Chapter 7 is divided into six sections.

Section 7.1 introduces the notion of a dependence-based representation (dbr). A dbr is a directed,
labeled graph that depicts a subset of a program’s dependences. Section 7.1 shows how operations on one
type of dbr, the (Horwitz-Prins-Reps) program dependence graph (pdg), can be used to reason about a
program’s behavior.

Section 7.2 defines an example dbr for programs in language #L This dbr, the heap-language system
dependence graph (hsdg), is a variant of the pdg that supports procedures and reference variables.

Section 7.3 proves a theorem about the representational soundness of Asdgs. This theorem, the Pointer-
Language Equivalence Theorem, states that programs with isomorphic hsdgs map cquivalent inputs o
equivalent outputs. Since Section 7.3 is fairly dense and rather specialized, the casual reader would do
well to read the sketch of the proof in the preface o Section 7.3, and skip the subsections.

Section 7.4 discusses the practical significance of the Pointer-Language Equivalence Theoren. Recall
that the definition of language #f (¢f. Chapter 2) makes simplifying assumptions about freclists, procedure
activation records, and atoms. The three subsections of Section 7.4 discuss how these assumptions affect
the applicability of this result to real implementations of pointer languages. The most interesting subsec-
tion is probably 7.4.1, which shows that programs with isomorphic hsdgs may behave differcntly in the
presence of a finite freelist.

Section 7.5 discusses related work. Section 7.5.1 surveys earlier dbrs. Section 7.5.2 reviews carlier
soundness theorems for dbrs.

Section 7.6 critiques the hsdg. The hsdg fails to incorporate three recent ideas for improving dbrs, The
first idea is that dbrs should be designed without def-order {and output) dependences (¢f. §7.5.1.3}. The

- 83—

second is that different vertices should be used to represent distinct values in the initial and final stores (cf.
§7.5.1.5). The third is that every interprocedural dependence should have one endpoint at a program point
that implements a call statement, and the other endpoint at a program point that implements a callee’s entry
(or exit) code (¢f §7.5.1.2). Section 7.6 explains why the presence of reference variables and dynamic allo-
cation in language A makes these goals hard to satisfy. Section 7.6 also discusses improvements to the
hsdg that might address these concems-—improvements, however, that require further research.

7.1. The Use of Dependence-Based Representations in Program Analysis

Algorithms that use dependences to model program behavior often organize a program’s dependences as a
graph. A graph that models a program P’s behavior generally contains one vertex for each of P’s points of
control, and one edge for each of P’s “interesting” dependences. For example, if V, is a vertex that
corresponds to point p, and V, a vertex that denotes a point g, then the edge (V. V) corresponds 1o a
dependence p —> ¢. Edges may be labeled with values that characterize a program’s dependences. An
edge, for example, that corresponds to a dependence d may be labeled with a value that gives d’s type, or
its distance, or the carriers of d—or all of the above. This organization is convenient because it allows cer-
tain key assertions about program behavior to be phrased in terms of operations on graphs.

Dependence-depicting graphs differ according to the types of languages they support, the typesz of
dependences they depict, and the types of labels they contain. In this thesis, an arbitrary dependence-
depicting graph will be referred to as a dependence-based representation (dbr). This term has been chosen
for historic reasons; more natural terms like “program graph”, “program dependence graph”, and “program
representation graph™ have already appropriated for specific types of dbrs (¢f. §7.5.1).

The types of applications that a dbr can support vary according (0 the information it contains. The dbr
depicted in Figure 7.1, for example, has been used to characterize program behavior w.r.t. a simple, struc-
tured language that lacks procedures, reference variables, arrays, and structures. This dbr, the Horwitz-
Prins-Reps program dependence graph (pdg), contains one edge for every flow, control, and def-order
dependence that the program exhibits. Every edge e in this dbr can have up to three sets of labels: one label
that identifies the type of d; a second set of labels that identifies the loops that carry d (if 4 is a flow depen-
dence); and a third label that identifies the points that witness d (if d is a def-order dependence).

Horwitz, Prins, Reps, and Yang proved that the HPR pdg characterizes several important aspects of a
program’s behavior (cf. §7.5.2). Horwitz, Prins, and Reps, for example, showed that a program transfor-
mation that leaves P’s pdg intact preserves P’s meaning [Hor88]. This result implies that the following
program is equivalent to the one shown in Figure 7.1:

(5] x:=g(); [6] f x50 then [7] x:=1 fi; [8] z:=1ix3

(1] x:=f(); (2] if x=0 then [3] x:=1 fi} [4] y:=1/x;

[9] print(y+z}
Reps and Yang also proved that the HPR pdg can be used to determine the set of statements that might
affect—or be affected by—the sequence of values computed at a point p. The algorithm for determining a
program P’s logically related statements, which was first proposed by Ottenstein and Ottenstein [Ott84], is
illustrated in Figures 7.2 and 7.3. To find the statements that might affect the evaluation of a statement s,
one computes the backward slice of a pdg G w.rt. st L.e., the set of paths m, that start at G's start vertex and
end at s (¢f. Figure 7.2). Any point that does not lic on a path in 7, cannot affect the sequence of values

84—

(1) x:=f)
[2] if x~0 then
[3] X =
fi
(4] y:=1/x
By x:=g0) S S S N
(8] if x=0 then
I7] x:=1
fi

i8] z:=1/x
{9] print(y + z)

Key:

— " truecontroldep. =\ [/ % ¥ 5 .
o P flow dep.
e delorder dep i

statement [i]

]
print(y + z)

Figure 7.1. A Horwitz-Prins-Reps pdg.

computed at 5. To find the statements that s might affect, one computes the forward slice of a pdg G w.r.L.
5: L.e., the set of paths m; that start at s and end in G (cf. Figure 7.3). Statement s cannot affect the sequence
of values computed at any point that does not lic on a path in ;. (N.B.: there is one trivial exception to
these observations; any statement can affect the evaluation of any other statement by causing £ to fail.)

Soundness proofs like the ones given by Horwitz et. al. are important, since not all dbrs are suitable for
reasoning about the same types of program behavior. The HPR pdg, for example, cannot be used to iden-
tify which of a program’s statements can be evaluated in parallel. Soundness proofs are important for 2
second reason: experience has shown that dbrs must sometimes capture subtle information about program
behavior, Horwitz, Prins, and Reps, for example, discovered that information about a dependence’s status
was needed to ensure that the following (inequivalent) programs were represented by different pdgs:

(11 =0 {1] x=0

[2] while pred, do {2] while pred, do

f31 yi=x [4] if pred, then [5] x:=1
[4] If pred, then [5] x:=1 fi 3] y»=x

od od

-~ 85~

The dependence [5] —>; [3] is both carried by, and independent of, the loop at [2] in the right-hand pro-

gram. The observation that (5] —; [3] is not independent of the loop at [2] in the left-hand program is
important, since it suggests that the two programs may have different meanings.

A detailed discussion of other important dbr-based program transformations is beyond the scope of this
thesis. This includes program integration [Rep89], vectorization {Bax89], loop interchange {All87], and
other optimizations discussed in Chapter 3.

7.2. A Dbr for Language #

The heap-language system dependence graph, whose definition is given below, is a new type of dbr for
language #.

DEFINITION. A heap-language system dependence graph (hsdg) is a labeled, directed graph that depicts
a pointer program’s control, flow, and def-order dependences w.r.t. a set of inputs. Specifically, et 2
be a pointer program, and /nSet a set of inputs. Let Sp be an hsdg that represents P w.r.t. InSet. Then
§p must contain:

{1] x:=f()
21 if x<0 then
(3] x:=1
fi
(4] yi=1/x
(5] x:=¢g()
[6] if x20 then
71 x:=1
fi

8T z:=1/x

[9] printly + 2)

Figure 7.2. The backward slice of the example program w.r.L. statement [8]. The statements in the slice, highlighted in
boidface, are those statements s such that there is a path from ENTRY to sto {8].

- 86—

{1] x:=f(})
[21 if x20 then
3] X:=1
fi
[4] y:=1/x
(5] x:=gl()
{6] if x-?O then
[7] xi=1
fi
(8] z:= 1/x

[9] print(y +2)

Figure 7.3. The forward slice of the example program w.r.L statement [2]. The statements in the slice, highlighted in
boldface, are those statements s such that there is a path from [2] to 5.

. One vertex for each of P’s program points {cf. § 3.2.1), initial, and final excepted. Vertices that
represent predicates and assignment statements are labeled with the name of the point that they
represent. The following labels are assigned to vertices that represent special program points:

* The vertex that represents the program point that initializes the store is labeled initial; .

* A vertex that represents a point that passes a retum address to a callee is labeled 8q := <refadr >.

* A vertex that defines a call site’s ith actual parameter, a;, is labeled §; =a..

* The vertex that represents procedure A’s entry point is labeled enter A.

* The vertices that represent the three points that initialize A’s local environment are labeled
_temp. prev = _local, local = _temp, and _local. _callctxt := _local. _prev._dy.

* The vertex that represents the point that initializes A’ ith formal parameter, f;, is labeled f; = &;.

. One edge for each of P’s control, flow, and def-order dependences. Specifically:

* One edge for each of P’s interprocedural control dependences, initial, —, main () excepted.

* One edge for each of P’s intraprocedural control dependences (¢f. §3.2.2). Edges that represent
true- and false-valued control dependences are labeled true and false, respectively.

* One edge for each of P’s flow and def-order dependences w.r.L InSet (c¢f. § 32.2). Every flow
and def-order dependence d is labeled with the call and loop sites that carry d {cf. §3.3).

-87—

Graph Sp may also coniain edges that correspond to spurious dependences: syntactically possible, but
non-existent, flow and def-order dependences in P. S, may contain an edge p —; ¢ if there is a path
from p to g in P’s control-flow graph. S, may also contain an edge p —¥4,(y g if Sp contains
p —¥ rand g —>, r. These edges are a concession to the limitations of program analysis; it is impos-
sible, in general, to determine a program’s exact data dependences (¢f. § 3.4). O

The hsdg is similar to another dbr for programs with procedures, the system dependence graph (sdg)
[Hor88a, Hor%0a]. The sdg, which is described in Section 7.5.1.5, is an extension of the pdg that supports
languages with procedures. Roughly speaking, the hsdg differs from the sdg in the following three ways:

. Each program in the model langnage supported by sdgs has exactly one sdg. This sdg depicts an
approximation to a program P’s flow and def-order dependences that is computed from P’s control-
flow graph. Pointer programs, on the other hand, can have more than one hsdg. A program P’s hsdg
varies according to how P’s dependences are computed:

* An hsdg that depicts P’s dependences w.r.t. a set of input stores /nSet may differ from one that dep-
icts P’s dependences w.r.t. an InSer’ that differs from /nSer.

* Hsdgs also vary according to how many spurious dependences they depict. For example, let H, and
H, be hsdg for a program P w.ii. the set of input stores /nSet. H; may depict a spurious depen-
dence p —>4 q that H, omits. (H, provides a more precise characterization of P's behavior; H,, on
the other hand, might be easier to compute).

. The languages that hsdgs and sdgs represent make different assumptions about procedure evaluation.
Hsdgs and sdgs therefore have different procedure initialization and finalization vertices. Sdgs, in
effect, give a cleaner characterization of the interface berween caller and callee than Asdgs.

. Hsdgs contains exactly one vertex, initialy, that models the initial state of a program’s store. Sdgs
may contain multiple vertices that depict the mitial definitions, and final uses, of specific variables in
the store. Sdgs, in effect, give a cleaner characterization of a program’s initial and final states.

Reasons why an sdg-like characterization of procedure calls, initial variable definitions, and final variable
uses are harder to obtain for language #fare given in Section 7.6.

An important feature of the Asdg is the lack of edges that depict data dependences that arise through the
freclist. Such dependences are omitted from hsdgs because they represent neediess constraints on program
execution. Consider, for example, the following example program P

p] @ :=gew(---) [***aandbarenot aliased before the evaluation of [p]

[q} b =new (")

Program P exhibits a freelist-mediated dependence p ~ ream G- Lot @ be the program obtained by rev-

Cl’Sil’]g P and q-
iq) bi=new(") /#** g and b are not aliased before the evaluation of [p]
[Pl a =new{---)

Clearly, programs P and @ generate indistinguishable final stores, up 10 how locations are paired with the

structures aliocated at p and g. The dependence p —ream ¢, 10 effect, is a constraint on the order m
which locations arc removed from P’s freelist. Such constraints, however, have no significant affect on

— 88—

programs in referentially transparent languages.

This claim that freelist-mediated dependences may be removed from Asdgs without compromising the
resulting characterization of program behavior is argued in Section 7.3.

7.3. A Basis for Reasoning about Pointer-Language Programs

A recent report by Pfeiffer and Selke takes a first step towards showing that dbrs can characterize the
semantics of pointer programs [Pfe91, Pfe91a]. Pfeiffer and Selke first define a dbr for a procedureless,
type-declaration-free subset of # They then show that this dbr, the Apdg, captures certain facets of pro-
gram behavior. Specifically, they show that two programs with isomorphic Apdgs have equivalent
behavior. They also show that the hpdg gives a sound characterization of a program’s slices. 7

Section 7.3 continues the work started in [Pfe91,Pfe9la]. This section’s principal theorem, the
Pointer-Language Equivalence Theorem, demonstrates that two programs P, and (5 with isomorphic
hsdgs exhibit equivalent behavior when applied to a store cy. Intuitively, computations P,y and
Q »: G5 are said to exhibit equivalent behavior iff either

. P o Oqrand Qo G4 fail 1o terminate successfully, or

. P .Gy and Q5 Gy compuie equivalent final stores, and there is an isomorphism between the points
of P, and O, such that P, and O, generate corresponding sequences of values at isomorphic pro-
gram points.

The notion of store equivalence captured in the Pointer-Language Equivalence Theorem is the standard

notion of store equivalence w.r.t. a referentially transparent language. Intuitively, stores oy and T, are

equivalent if the accessible portions of G, and T, are isomorphic, up to how structures are paired with

locations.

DEFINITION. Let &, be a member of Store ,, and gEnv be o’s global environment. Let Idexp be the set
of all path expressions in language %, including path expressions (such as local._prev.a) that are
accessible only to the implementation. An idexpe€ Idexp denotes a structure 5 in oy if
selexp (G, gEnv, idexp) = 5. (N.B.: selexp is defined in Appendix 1) O

DEFINITION. Let G,€ Store 5 be a store, and gEnv be o’s global environment. Let Idexp be the set of
all path expressions in language A Two identifier expressions idexp € Idexp and idexp’ € Idexp are
aliased w.1.t. O, if selexp (G, gEnv, idexp) = selexp (G, gEnv, idexp”). [

DEFINITION {equivalent stores in language 3). Let Gy and T, be members of Storey. Let Idexp be
the set of alf path expressions, including path expressions (such as _focal._prev.a) that are accessible
only to the implementation. Stores oy and T, are equivalent, Written Gy =g Tog, T

. for all idexp € Idexp, idexp denotes a structure of type ¢ w.I.L. Oy iff idexp denotes a structure of
type § w.r.L Ty;
. for all idexp € Idexp,

w.I.L. T, whose value is v; and
. for all idexp € Idexp and idexp’ € Idexp, idexp and idexp’ are aliased w.r.t. Oy iff idexp and idexp’

idexp denotes an aiom w.I.L. Gy whose value is v iff idexp denotes an atom

are aliased w.r.l. T, O

~89—

The following is a pictorial representation of the Pointer-Language Equivalence Theorem.

isomorphic hsdgs

hsdg(p }[) hsdg(Q g{)
P o (behavioral) equivalence Q P

Intuitively, this figure asserts that the behavioral equivalence of two programs P, and Q, can be esta-
blished by establishing that P, and Q,, have isomorphic Asdgs.

The Pointer-Language Equivalence Theorem is proved by reducing it to a second equivalence theorem.
This second theorem, the Spdg Equivalence Theorem, characterizes the representational soundness of a
dbr for a second, simpier language. Roughly speaking, this second language $ is a subset of # that lacks
dynamic allocation, procedures, loops, dereferencing, and aggregate variables. This second dbr, the spdg,
is similar to the Horwitz-Prins-Reps (HPR) pdg described in Section 7.1. The principal difference between
the HPR pdyg and the spdg is that the spdg, like the hsdg, portrays a more dynamic notion of data depen-
dence: i.e., one that reflects a program’s possible executions. An HPR pdg for program P must contain the
edge p ~>4 ¢ when P’s control-flow graph contains paths from p to ¢ that satisfy certain criteria—even if
statemenis along these paths never evaluate. An spdg for P, on the other hand, may omit p —>, g if none

of P’s evaluations exhibit p —, q. The Spdg Equivalence Theorem, roughly speaking, states that two
language § programs with isomorphic spdgs are behaviorally equivalent programs.

isomorphic spdgs
sPdQ(PS-osi Spdg{Q5'05}

P QS:G

S -G 5 . equivalence » S

The proof of the Pointer-Language Equivalence Thecrem takes the form of a seven-step reduction. The
first five steps in the proof reduce the statement of the Pointer-Language Equivalence Theorem to an
equivalent assertion about loop-free, procedure-free programs in 4 The final two steps of the proof reduce
this latter assertion to the Spdg Equivalence Theorem. This proof is presented in detail in the six subsec-
tions of Section 7.3. A sketch of the argument now follows.

Step 1. The Pointer-Language Equivalence Thecrem asserts that programs P, and @, exhibit
equivalent behavior when (1) P, and 0, have isomorphic hsdgs w.r.t. a set of stores /nSet, and (2) P ,;and
(s are run on an arbitrary o,.€ InSet. Step 1 specializes the statement of the theorem to an equivalent
assertion about a specific pair of computations. An equivalence relation is first defined on computations in
language . 1t is then argued that the Pointer-Language Equivalence Theorem holds if (e1) P41 04 and
Q 51 0, are equivalent for all G, € InSet such that P : 0, terminates.

—90 —

hsd,
a(P,) e
hsd .
Q(Pﬂ oﬂ])
Pﬂ L. equivalence
. " equival
p}{. G, uivalence

Step 2, 3, and 4 reduce assertion (e1) to a comparable assertion about flattened approximations to P,
and Q Bfs -

DEFINITION (flattened program (language #)). Let Py be a program in language A, Program P, is
flattened iff P ,; consists of one procedure, main(); P 4 contains no call and no while statements; and
every conditional statement in P, is of one of two forms:

* “if pred then fail else - §”

* “if pred then ---else fail i7 O

Intuitively, Steps 2 through 4 create simple, finite approximations to P, and Q ,—approximations that,
nevertheless, are behaviorally equivalent to P, and Q4 w.rt. O, This simplification of P, and Q. is
made possible by the hypothesis that P ;2 G, terminates. The principal reason for flattening P, and Q5 18
that this transformation makes it easier to argue that freelist-mediated dependences represent needless con-
straints on program evaluation (cf. Step 7).

Step 2 reduces assertion (1) to a comparable assertion about programs that lack procedure calls. This
reduction is performed in two stages. The trace of P2 G, is first used to in-line expand certain procedure
calls in P, and to replace others by fail statements. This reduction yields a second computation,
flat (P 5) 1 Gy, that is (*) closely related to P 5 Gy In particular, an auxiliary procedure A () is evaluated at
a specific point in P ,: Gy iff an in-line-expanded version of A (} is evaluated at a corresponding point in
flat(P) : &, Throughout Section 7.3, pairs of closely related computations like P, Gy and flat (P) Gy
are said to be congruent. Specifically, computations ¢ and reduced{c) are deemed congruent whenever (1)
reduced (c) is produced by transforming ¢, and (2) a close correspondence between reduced(c) and ¢
makes it possible to use one computation to reason about the other.

The sccond stage of the reduction uses the trace of Py Gy 10 in-line expand certain procedure calls in
Q.. and to replace others by fail statements. Let flat (Q) denote the reduced @, The definitions of
equivalence and congruence now imply that (e1) P, Gy and Q4 10y are equivalent if (*) P, 0, and
Aat(P) : Gy are congruent; (**) flat(Qs): 6y and flar(P)1 Oy are equivalent; and (***) Q4 0y and
Aat(Q,,): 6, are congruent, Claim (*) follows immediately from the reduction (see above). Claim (**)
follows from Step 3 (below) and a sccond argument that flat (P ;) and flai (Q) have isomorphic hsdgs.
Claim (***) is demonstrated by showing that the second stage of the reduction preserves the semantics of
Q5105 ie., that the reduction does not {e.g.) replace an evaluating call statement in Q4 with a fail state-
ment. In particular, assertions (*), (**), and the close correspondence between Q ! Oy and Aat(Q) 0w

are used 1o show the correctness of the reduction.

-91 -

To summarize this somewhat complicated argument, the reduction performed at Step 2 yields two pro-
grams, flat(P 5} and flat(Q »), that satisfy the following three assertions:
. P .05 and flat (P ,): 6, are congruent computations.

. @ Gy and flat (Q 5) : G4 are congruent computations whenever flat(P) : 6, and flat (Q) : Gy are
equivalent computations,

. flat(P 5 and flat (Q) have isomorphic hsdgs w.r.t. Gy

Step 2, in effect, reduces assertion (s1) 10 the claim that (e2) the equivalence of fat(P,):G, and
Aat(Qs) 1Oy is implied by the isomorphism of flat (P,,)'s and Aat(Q5)’s hsdgs.

+ " Jsomorphic hsdgs E,."o

L 3 hsdg(Q_ .o,)
hsdglp 0,) T™, icomonphic hidus .~ 05 O
hsdg(ﬂat(Pﬂ).cg{] : hsdg(ﬂatigj{]. o,
S e a0
Pg{: G}{ *e uivalence o
*a AleTl -
flat (P,):q, flat(Q) : 0,

Step 3 reduces assertion (82) io 2 comparable assertion about programs that lack loops. The trace of
fat{P) Gy is used to replace loops in flatr (P) and flat (Q ;) with nested if-then-clse statements. This
reduction yields two programs, flatter (P ,) and flatter (Q 50, that satisfy the following three assertions:

. Aat(P) : oy and flatter (P) : G4 are congruent computations,

. Aat(Q) : oy and Afatter (Q,): 0, are congruent compuiations whenever Aarter (P,):0, and
fatter (Q 5 : G4, are equivalent computations.

. flatter (P, and Aatter (Q 5 have isomorphic hsdgs w.I.L Gy

Step 3, in effect, reduces assertion (e2) to the claim that (e3) the equivalence of flatter (P ,): G, and
fatter (Q) : G, 1s implied by the isomorphism of flatter (P)’s and flatter (Q 5)'s hsdgs.

*wa_Jsomorphic_hsdgs s hsdg[ﬂat(Qﬂ),cg{]

50 e igomorphic hsdgs v hsdg (fatter(Q). ©_)

hsdglflat (PH)' o]

tt) i H
hsdy (flatter(Pg{) }{)) ‘

t(Q}[} 1G4y
ﬂatter{Qﬂ]]

\v s
flat (P,) : G 4 L—‘ ™.,

I equivalence
flatter(Pj{) e]

H

Y
H

Step 4 reduces assertion (#3) to a comparable assertion about programs that have exactly one valid exe-
cution path. The trace of fatter (Py): Gy is used to replace conditionals in flauer (P) and flauer (Q 5}
with conditionals that have at most one valid consequent. This reduction yields two programs, flattest (P ;)
and flartest (Q 5), that satisfy the following three assertions:

* flatter (P,): o, and flattest (P 5) : G4 are congruent computations.

-92~

. Aatter (Q) : G5 and flattest (Q 5): 64 are congruent computations whenever flattest (P,): 05 and
Aattest (Q) : G5 are equivalent computations.

P HAattest (P, and flattest(Q,) have isomorphic hsdgs w.r.t. T

Step 4, in effect, reduces assertion (#3) to the claim that {#4) the equivalence of flartest (P): G, and
flattest(Q 5 1 Oy is implied by the isomorphism of flatter (P ,,)'s and Slatter (0 ,)’s hsdgs.

hsdg (flatter(P}{)'oy{) ‘TE sd;[atter Qy) }(}

*, 1somorphlc h *s hs
- flattest ,
hsdg (lattest(P,).5) % (fattest(Q). 0,)

flatter{ Pﬂ,) X} “’"-.L ¢quivalence ..y fapter(Q ﬂ} 1o,

H e L equivalence
test : '
flattes (PHJ.U 3

Oy

Step 5 specializes assertion 4 to a pair of freelists, freep,, and freeq,. Let the expression flautest (P ,):
(Gu, freep) denote the result of evaluating flattest (P ,): 6, wr.t the freelist freep,. Step 5 shows that
assertion (ed) is equivalent to the claim that (e5) the equivalence of flattest(P ,): (Gy, freep,) and
HAattest (Q 5 1 (O, freeq 5y is implied by the isomorphism of flattest (P ,)’s and flartest (O ,,)'s hsdgs.

A,
2 isomorphic hsdgs w3\, hsdg (flattest(Q_

hsdg (ﬂattest[P o } Alsomorphic hsdgs - hsdg {ﬂattest(Q j{)
hsdg (flattest(P_), & " 5 oo
g(a CS(H) }[) -wv... E
Y i adest@ o
ﬂattest(PH] G}[: **..Y _ equivalence on oA
fattest(B,): (0, - freep,) ™= = flattest(Q,)i (0, freed,)

Here, freep ,, is an arbitrary freelist, and freeq , is a specific permutation of freep , whose form depends on
the form of flattest (P »).

The reason for fixing freep ; and freeq , before performing the translation to language S (Step 6) is that
the specified choice of freelists simplifies Step 7. Specifically, let computation p and computation denote
the reduced versions of flattest (P) : (G, freep) and flattest (Q)1 (Ts freeq s generated by Step 6. The
assumptions imposed on freep, and freeq s in Step 5 ensure that corresponding cvaluations of the simu-
lated new() operator in computationp and computation return the same simulated address. This close
correspondence between computationp’s and computationg’s simulated allocation operations simplifies
the proof that computation p and computationg are equivalent. In particular, this correspondence ensures
that the reduction described in Step 7 yields programs with isomorphic spdgs. This, in turn, allows the
Spdg Equivalence Theorem—the theorem upon which the whole argument rests—io be applied in a

straightforward manner.

-93_

Step 6 translates the computations in Step 5 into language 5. Let P, and Q denote the translated ver-
sions of flatten(Py) and flatten(Qy); O, the translated version of Gy and freeps and freeq, the
tanstated freepy and freeq,. The translated objects created in Step 6 satisfy the following three asser-
tions:

. flattest (F 31 (Oyy, freep) and P ;1 (O, freep) are congruent computations.

. flattest (Q 5 : (O, freeqs) and Qg:(0;, freeqs) are congruent computations whenever
P: (0, freep) and Q 5 : (0, freeq ;) are equivalent computations.

) P, and @ have similar spdgs w.rt. o5,

DEFINITION (similar spdgs). Twao spdgs are similar if they are isomorphic up to edges that represent
freelist-mediated data dependences,. O

Step 6, in effect, shows that assertion (s5) is cquivalent to the claim that (e6) the equivalence of
P;:(cs, freeps) and Q (G, freeqs) is implied by the similarity of Ps's and Q ;’s spdgs and the form of
freep s and freeq ;.

R PO LA,
"ty 1somorphic hSdgs *ey, hsdg (ﬂattest[Q }
hsdg (flattest(P)‘09{} A_"':. similar spdgsﬁf (o 3 5’“{
spdglp .) | e 5995'5
\7... :
Nbl- "'"""“"'."V.
i eqhivalence ¥ 1l t (g, free
flattest(P):(c freev : @ CS[QH](H q}R
H 3 , freeq)
P R S

-o.free)
PRI P

Step 7 completes the reduction. A dependence-breaking program transformation that substitutes con-
stants for accesses of the simulated freelist reduces P ¢ and ¢ 5 to two related programs, P and @;. Pro-
grams P ; and @ ; are then shown o satisfy the following three assertions:

* P.c5and P;: o are congruent computations.

. Qs:05 and Q ;: o are congruent computations whenever P;: 0 and Q05 are equivalent compu-
tations.

* P ; and Q ; have isomorphic spdgs wW.I.L Gs.

Step 7, in effect, reduces assertion (#6) to the claim that (¢7) the equivalence of P;:a and J5:0; is

implied by the isomorphism of P's and Qs spdgs.

- 04

5 freeq 5]
QS:(cs,freeq 5)

The observation that asscrtion (#7) is true by the Spdg Equivalence Theorem now completes the proof of
the Pointer-Language Equivalence Theorem.

This completes the sketch of the Pointer-Language Equivalence Theorem. The detailed presentation
given below differs from this sketch in the following two ways. The two sections that follow the current
section, Sections 7.3.1 and 7.3.2, first explain the technique used to simulate language H compulations in
language S. The remaining scctions then present the seven stages of the proof in a bottom-up (rather than
top-down) fashion: this simplifies the presentation by allowing successive sections to build on theorems
proved in previous sections.

7.3.1. Language S

Language 5, whose concrete syntax is shown in Figure 7.4, is a procedure-less, loop-less, goto-less
language that supports scalar variables and conditionals. It lacks reference variables, structures, and

Program — Stmu_list Cond — VAR is TYPE
. . —» SimpleExp > SimpleExp
Stru list -3 St {; Stmu]) —» SimpleExp & SimpleExp
Stre —» if Cond then Sunt_list else Stmi_list fi — SimpleExp < SimpleExp
> case Switch in (REF : Stmt_List}" esac — not Cond
—» assert Cond Switch —» VAR [freelist() | REF
— VAR = Exp
— fail Exp —3 PRIMEN (SimpieExp, - - ,SimpleExp)
- skip — SimpleExp
SimpleExp - VAR | ATOM | REF
TYPE is a set of type designators. REF - &0| &1]| - - - | undefined

VAR is a set of alphanumeric variable names.

ATOM is a set of atomic values. Elements of REF simulate references to structures. ATOM and REF are disjoint.

PRIMFN is a set of primitive functions.

Figure 7.4. The concrete syntax for language 5.

—9§ —

dynamic allocation. Appendix 7 gives an operational semantics for language 5. A skeich of this semantics
now follows.

Language S's meaning function, My, defines a program as a map from a (store,input-stream) pair to a
store. A store is a collection of variables. The input stream, hereafter called the freefist, is a list of simu-
lated references (i.e., elements of REF),

Elements of PRIMEN are self-contained, referentially transparent functions. Every fe PRIMFEN must
satisfy the following requirements:

» frewrmns | when invoked with a reference argument, or a variable that contains a member of REF.
s fneither reads nor updates unbound variables—the freelist stream included.

. f calls no other functions, except possibly itself.

s freturns a member of ATOM.

Successive calls to freelist{) return successive elements from the freelist. Calling freefist () when there
are no more clements in the stream of values causes a program to fail.

Most language constructs have their usual meaning. The statement “assert cond” is shorthand for
“if not cond then fail fi”. The case statement is equivalent 1o a nested if-then-else statement. A case
statement causes a program to fail when none of its guards are matched.

7.3.2. Reducing pointer-language programs to pointer-free programs

A computation in language # is reduced to a computation in language $ by using sets of special variables
and values to simulate the heap; operations on variables to simulate expressioi evaluation; and combina-
tions of operations to simulate statement evaluation.

Stores. A pointer store O is reduced to a language S-store by mapping every accessible structure in
Gy 10 a set of specially-named variables.!! Let oy, for example, be a store that contains 7 accessible
structures. Then o, is reduced to a set of variables {STRg.suffixe, -, STRg.suffixe1,
STR,.suffixg, -+, ST’RO_sufﬁx,,_l, oo STR,_ .suffixg, **+ » STRup.suffix, }, where gach set of
variables { STR;.suffixg, * -+ , STRy.suffix,—y } simulates an accessible structure in Gy, and each vari-
able STR;.suffix; characterizes some aspect of the structure that it simulates. The suffix; are strings that
vary according to the computation being simulated. Assume, for example, that a program P manipu-
lates one identifier, x; a procedure with two formal parameters, x and y; and a set of declared structures
with one selector, INTP. Assume, furthermore, that Gy only contains references of type x, ¥, and INTP.
Then the reduction maps every structure s in Gy (o the following ten variables:

. STR;. _TYPE, which gives the type of 5.

. STR _CURR, which references the current local environment when s is the global environment,
. STR _PREV, which references the previous local environment when s is an cnvironment.
. STR ._8,, which references a call site’s first actual parameter when s is a local environment.

A structure 5 in a store Oy is accessible if there a path in Oy from Gy's global environment Lo 5.

— 0§ -

. S’I’Ri._ﬁz, which references a call site’s second actual parameter when s is a local environment.
. STRi._ATOM, which contains the atomic value of s if 5 is an atom.

» S’I'Ri._TMP, which represents the value of field _TMP in s if s is the global environment.

. STRi.X, which represents the value of field x in 5 if 5 is an environment.

. STR,.Y, which represents the value of field y in s if 5 is a local environment,

. S'I'Ri.IN'I'P, which represents the value of field ingp in s if s is of type “integer pointer”.

In general, the number of suffix;’s is five (TYPE, _CURR, _PREV, _ATOM, _TMP), plus the max-
imum number of parameters for any one procedure, plus the number of distinct identifiers and selectors
that are (1) mentioned in a program’s text apd (2) present in the initial store.

Structures. An atomic structure s in a pointer store ¢ is simulated as follows. Let 5 be the ith struc-
fure in o, under some indexing scheme. Assume that s’s value is a. Then s is simulated by a set of
variables of the form S'I'Ri.sagjix, where STRi._TYPE contains atom, and S'I'Ri.“ATOM contains a.

Structures that contain references are simulated using values from REF. A valuc &i is treated as a
simulated reference to the structure STR;. Assume, for example, that the local environment fenv is the
jth structure in store Gy. Assume, furthermore, that field x in lenv references the ith structure in Gy
Then s is simulated by a set of variables of the form ST’Rj.suﬁ'Lx, where STRJ-._TYPE contains env, and
STRj.X contains &i.

Variables that simulate unused fields in structures and variables in STR; that simulate structures in a
program’s freelist are initialized to 1. Vanable set STRO is reserved for the global environment; the
precise strategy for assigning indices to other simulated structures is left specified.

Expression evaluation. Language # supports four kinds of expressions: cxpressions that involve the
relational operators Eq, <, =, and >; expressions that involve logical operators typeOf and not; store
access expressions; and expressions that allocate storage. Expressions in # that involve relational and
togical operators can be simulated directly in 5. Slightly more elaborate techniques are needed to simu-
late dereferencing and allocation.

Dereferencing. The evaluation of a store-access expression is simulated with case and assert state-
ments. Figure 7.5 illustrates the simulated evaluation of an example identifier expression, x.d.f, in the
context of the example assignment statement “{p] x.hd.tl = 10”. The outer case statement simulates
the application of the x selector to STR, the simulated global environment. The inner case statements
simulate the application of id to the structure denoted by x. The assert staiements shown in this figure
perform simulated run-time type checks; the meaning of STRy .hd, for example, is undefined when
STRb fails to simulate an object of type cons.

The value &maxref (¢f. Figure 7.5) is the largest simulated reference that a given reduction supports.
This prespecified limit ensures that reduced programs are finite. The existence of &maxref also Himits
the accuracy of the reduction. Simulated computations, for example, that allocate more than &maxref
locations must fail, due to storage overfiow.

The technique for simulating “[p] . hdal = 107 illustrated in Figure 7.5 assumes that x is #ot a local
identifier at statement [p]. If x had been a local identifier, then the evaluation of x.hd.tl would have
been simulated by making the implicit dereferencing of the pointer to the local environment explicit;
i.e., by first converting [p] to the equivalent statement “[p} _currx.hd.tl =107, and then using three

- Q7 —

case STRo X I
&0 -

&b: assert STR,. TYPE is cons;
case STRy. _HD in
&0 -

&c: assert STR,. TYPEis cons;

STR,TL =10
&maxref:
esac
& maxref:

gsac;

Figure 7.5. The simulation of “[p] x.hdal = 107, subject o the assumption that x is a global identifier at p. &maxref
is a prespecified limit on the range of simulated references.

tavels of case statements to simulate the evaination of _curr, X, and hd.

Allocation. The evaluation of the expression “new(conscell)” is simulated in the manner depicted in
Figure 7.6. The call to freelist obtains a reference to an unused STR, from the simulated freelist.
Three allocations are performed because fields of newly allocated structures are initialized to reference
nil-valued atoms. The freelist operator also simulates the evaluation of atoms and primitive functions,

which add new atoms to the store.

Throughout this chapter, it is assumed that every freclist passed to M is properly initialized. All
values in the freelist must be between &0 and &maxref. Furthermore, the value &x must not be
present in the initial freelist if STRx simulates an accessible structure in the initial store.

Executable statements. The subset of language 4{that is to be reduces to language S Supporis three

kinds of statements: assignments; conditionals; and initialization statements. Figure 7.5 illustrates the

simulation of an assignment statement. The simulation of conditionals and initialization statements is

straightforward.

This completes the description of the reduction. It can easily be seen that the expressive power of the
reduction is limited. The a priori bound on the domain of references precludes the simulation of stores that
any structures. The use of &maxref also preciudes the use of an arbitrarily long simu-

contain arbitrarily m
udes the simulation of non-terminaling pro-

lated freelist. Finally, the lack of calls and loops in § precl
grams.

with these limitations by reducing loop-free programs in language #H

The proof developed below copes
nate w.r.L a finite store ¢, then the number

w.r.L finite stores. If alanguage #{ program P is known to termi
of structures that P allocates w.r.t. G can be counted, and P :6’s

acterization of P : & thereby obtained aliows the creation of 2 reduced P that correctly evaluatcs a reduced

pattern of evaluation recorded. The char-

~98 ~
case freelist() in
&0
&a: STR,TYPE :=cons;
case freelist() in ek 2% inicialize HD field of new structure to reference nil atom

&0: -
&b: STR,.TYPE:=atom; STR, ATOM :=nil; STR,.HD = &b;
&maxref:
esac;
case freelist() in prww =% injtialize T1 field of new structure to reference nil atom
&0: ---
&c: STR.TYPE:=atom; STR; ATOM :=nil; STR,.TL = &¢;

&maxref:
esac;

& maxref:
esac ;

Figure 7.6, Simulating an occurrence of the expression “'new (conscell)”.

. This approach to reasoning about pointer programs yields assertions about the relationship between a
program’s hsdg and its terminating executions. (Theorems that specify how hsdgs characterize non-
terminating programs are beyond the scope of this thesis.)

7.3.3. An equivalence lemma for language §

The starting point for the proof of the Pointer-Language Equivalence Theorem is an equivalence theorem
for a type of dbr referred to here as the spdg—i.e., the language 5 pdg. A formal definition of the spdg is
given in Appendix 8. Informaily, the spdg is similar to the Horwitz-Prins-Reps (HPR) pdg described in
Section 7.1: both dbrs portray a program’s control, flow, and def-order dependences. There are also WO
important differences between the two dbrs. The first is that the language supported by the spdg (as
defined here) does not support loops. There is therefore no need to distinguish between loop-carried and
loop-independent dependences in spdgs. The spdg also portrays a more dynamic notion of data depen-
dence: Ie., one that accounts for a program’s possibie executions. For example, an HPR pdg for the pro-
gram
“[1] If pred then [2] x =1 fi; 3] y:=x"

must contain the edge [2] — [3}-—even if pred is uniformly false. An spdg for P, on the other hand, may
omit the edge [2] —>; [3] when (e.g.) statement {2} never evaluates. A language § program may therefore
have morc than one valid spdg; this observation is similar to the observation that a language H program

may have more than one Asdg.

i e A

-99_

The Spdg Equivalence Theorem, whose statement is given below, asserts that two programs that have
isomorphic spdgs w.r.t. & s¢t of inputs /nSer aiso have equivalent behaviors wr.t. InSet.

DEFINITION (value computed at a program point (language 5)). The value computed at an assign-
ment statement p is the value that p assigns to the variable on the lefi-hand-side of the assignment state-
ment. The value computed at a predicate is the (boolean) value of the predicate. [

DEFINITION (equivalent computations (language S). Let P, and O be programs in language $ such
that there exists an isomorphism f between the points of P g and Q. Let inpulp and inputg be inputs.
Let cp denote the computation Pg:inputp, and ¢y the computation Q:inpuly. Cp and cg are
equivalent w.LL f, written ¢ p = ¢ p (WL £), 1Uff

(1) neithercpnorcg terminates successfully, or

(22) ¢p and ¢y both terminate successfully;

(2b) ¢p and ¢ generate identical sequences of values at corresponding program points (w.r.t. f); and
(2¢) the final stores computed by cp and ¢ agree on the final vaiues of ail variables. U]

LEMMA (Spdg Equivalence Theorem). LetP € Program; and Q € Program s be programs. fet fbean
isomorphism between these programs’ points. Let /nSet be a set of inputs. Let Gp be an spdg for P
w.r.t InSet. Let Gg be an spdg for Q w.r.t. InSet. Assume that G p and G g are isomorphic w.r.t. f. Let
input, = (o, freep) € InSet and input, = (0, freeq) € InSet be inputs such that freep = freeq. Then
P :input, and Q : input, are equivalent computations. v

COROLLARY. ‘The theorem also holds when free # free’ and neither P nor § invokes freelist(). V

The pictorial characterization of the Spdg Equivalence Theorem, which was given in the preface to Sec-
tion 7.3, is repeated here for convenience.

_ isomorphic spdgs

spdg(P_ .G) spdgQ ¢ 0,)

: , freeq }
P :(c . .[reep)} Q.:(© q
3 (3 pS | o equivalence S S S

The Spdg Equivalence Theorem is proved by using a graph-rewriang semantics for pdgs to compare the
evatuation of 2 and Q. A sketchof a proof for a related theorem is given in (PfeSla]. The theorem proved

there, which is due to Selke, concermns an extended spdg for an enhanced § that supports loops.

The lemma developed in this section, the Simulation Equivalence Lemma, USeS the Spdg Equivalence
Theorem to show that programs with related spdgs exhibit equivalent behavior when run on related inputs.

The statement and proof of this theorem now follow.

DEFINITION {flattened program (language $). Let Pg be a program in language 5. Program P is
flattened if every conditional statement in P is of one of tw0 forms:

* “if pred then fail else RS
* “if pred then - - -else fail i° O

LEMMA (Simulation Equivalence Lemma). Lat P, and O be flatiencd programs in language S such

that there exists an isomorphism f between the points in P, and Q. Assume that s and (s contam 7

- 100 -

occurrences of the freelist() operator. Let inputp = (q;, freep), where freep is an n-element freelist

that names none of the accessible STR, in 0. Let inputg = (G;, freeq), where freeq s is that permuta-
tion of freep ; whose jth element is determined as follows:

. Let ¢ be the jth program point in Q ; that contains the freelist() operator (N.B.. this ordering is
well-defined for flattened programs);
. Let p be the point that corresponds to 4 under f;

. Then the jth element of freeq is the kth element of freep , where p is the kth program point in
P ; that contains the freelist() operaior.

Let G p be an spdg for P g w.rt. inputp, and G 5 an spdg for Q; w.r.t inpuiy. Assume that G, and G
are similar spdgs w.r.t. f (i.e., isomorphic up to freelist-mediated dependences), and that P ;: inputp ter-
minates successfully w.r.t. inputp. Then P inputp and Q ;. inputy are equivalent computations.

ProOOF. The Simulation Equivalence Lemma is proved by reducing it to the Spdg Equivalence
Theorem,

similar spdgs spdg ()
& g Q ‘G
Spdg(P.S ' 0.5) F‘t 1somOI'DhiC Spdgs ’r o, s ;{95 o}
(p. o) T
spdg ES 0‘5
QS ‘(G . freeq)

P (o ,freep)
5(5 pS

_1?5 : (05 . frecpS)

The first step in the proof reduces P and Q to comparable programs in a subset of $ that lacks freel-
ist() operators. Let P be the program obtained from P by replacing freclist operators in P; with
reference constants, “Iun particular, the freelist() operator at the jth point in P is replaced with the
expression &c, where &c is the jth reference in freep ;. Similarly, let Q ; be the program obtained by
using freeq ; to replace freelist() operators in Q5. The assumptions made about the relative order of
freep s and freeq s ensure that P ; and O have isomorphic sets of points.

The second step of the proof establishes the relationship between the untransformed and transformed
programs. Clearly, (s 1} P:inputp and P g:inputp are identical computations, up to the state of their
freelists. The hypothesis that P is a flatened program fixes the order in which values may be read
from P's simulated freelist. Furthermore, the assumption that Pg:inputp terminates successfully
implies that P:inputp must not exhaust its simulated freelist. Computations Q:inputy and
Qs inputy are also identical computations, up to the state of their freelists. This assertion, however, is
established indirectly, by first comparing £ ; : inpllp 10 Q s:inputg.

The next step of the proof shows that (#2) P 5 inputp and Qs : inputg are equivalent computations, This
assertion is demonstrated by constructing isomorphic spdgs for P and Q . Assertion (e2) the':n follows
from the corollary to the Spdg Equivalence Theorem, since neither P 5 nor {J ; access their freelists.

Let G be the dbr obtained from G p by (1) relabeling every vertex in G p that corresponds‘ to-an opc‘rzh
ion on the freelist with the corresponding operation (on reference constants) in G, and (2) Femoving
all edges from the resulting graph that represent freclist-mediated dependences. Let G be obtained

- 101 -

from G in a similar manner. Clearly, G p and G ¢ are isomorphic dbrs. It must now be shown that G p
and G are valid spdgs for P ¢ and Q , relative 1o their respective inputs. Assume, on the contrary, t};at
(e.g.) Gp fails to represent a (dynamic) data dependence p —>, g exhibited by P, :inputp. Then, by
the definition of data dependence, P :inpufp must contain a sequence of scat;s that gives rise to
p —>4 q. The close relationship between Py and P, however, now ensures that a comparable
sequence of slates gives rise to a comparable, missing dependence in G p-—a contradiction. A similar
argument shows that G g is an spdg for Q ; w.r.t. inputp.

This completes the demonstration of assertion (e2). Assertions (1) and (#2) are now used to demon-
strate that (¢3) O inputg and Q:inputy are identical computations, up to the state of their freelists.
Note, first of all, that assertion (e1) and the successful termination of P;:inpup imply that {*)
P tinputp terminates successfully, Furthermore, assertion (*) and assertion (e2) now imply that
O, : inputy terminates successfully——i.e., that the evaluation of Q;:inpuiy followed the lone non-
I‘;iling path through Q. An induction on the number of statements in Qs and O 5 now completes the
proof of assertion (s 3).

Summarizing the argument so far, there exist two programs P and ¢ that satisfy the following three
assertions:

o1. Computations P ginputp and P ;:inputp are identical, up to the state of their freelists.

2. Computations P giinputp and O siinpuiy compute identical sequences of values at corresponding
program points, and compute the same final stores.

3. Computations @ ;:inpuly and Q (inpulg are identical, up to the state of their freelists.

Taken together, these assertions imply that P glinputp and Q siinputg are equivalent computations. O

A final observation is in order about freep s and freeq ;. The decision to assume that freeq; was a specific
permutation of freep, in effect, represented a decision to handle all reasoning about referential man-
sparency at the level of language H {cf. proof step 5 in the preface to §7.3). An earlicr draft of this thesis
attempted 1o develop a version of the Simulaton Equivalence Lemma that characterized the effect of
evaluating P and Q; w.r.t. unrelated freelists, This approach, although reasonable in principle, proved
quite unattractive in practice: the fact that a language § computation is sensitive 10 the specific values of
reference constants grealy complicates the statement—and proof—of this alternative theorem.

7.3.4. Using the reduction to map from Hto 5

The current section presents the fifth and sixth steps in the proof of the Pointer-Language Equivalence
Theorem: i.e., the steps that reduce a pair of flauened language ¥ programs 10 4 comparable pair of
language 5 programs.

-~ 102 ~

hsdg (attest(P,). O) ppr- tsomorphlc hsdgs _ hsdg (flattest(Q o O
hsdg (flattest(P_}. & _)y isomorphic_hsdgs 7y ., sdg avest@)0,)

A Stmilar spdgs e

spdq(P ' 5) spdg(QS-GS)
flattest(P, L I“l“ valence .L testQ S,

equivalence

frec L, ﬂ ttest[(g, freeq)
ﬂattest(P) (G p N | equivalence Q?{) (f H qﬂ{
(05 ,freeps) QS'(GS' reeqj)

5 :
The principal assertion proved in this section, the Flattened Programs Equivalence Theorem, states that
flatiened programs with isomorphic Asdgs have equivalent behavior. The Flattened Programs Equivalence
Theorem is proved in two stages. The first stage demonstrates the correctness of the reduction described in
the sixth step of the proof sketch (i.e., the diagram’s “foreground brick”). This first resuit is termed the
Flattened Programs Lemma. The Flattened Programs Lemma is then used to demonstrate the correctness
of the reduction described in the fifth step of the sketch (i.e., the diagram’s “background brick™).

The Flattened Programs Lemma is proved by using the translation described in Section 7.3.2 to reduce
computations in language # to comparable computations in language 5. The statement of this lemma is for-
malized with the aid of the definitions given below, The first four definitions establish terminology for
comparing computations in language 7 and 5. The next two definitions formalize the reduction. The final
three definitions formalize the notion of equivalent computations in language .

DEFINITION {congruent program points). Let pt, be a point in a language 2 program P, and pi; a
point in a reduced version of this program, program P ;. Points pty and pt; are congruent (w.rt. Py
and P) iff pt. is the first of the points in P ; that simulates pt,. 1]

DEFINITION (congruent stores). Let G, be a member of Store,. Let o5 be a member of Store ;. Lot
Idexp be the set of all path expressions in language #. Stores 6, and G, are congruent \ff

. for all idexp € Idexp, idexp denoies a structure of type ¢ w.r.L. Oy iff idexp denotes a STR; w.r.t,
a; with STR, TYPE =1

o for all idexp € Idexp, idexp denotes the atom v in Oy iff idexp denotes a STR; w.r.l. O wilh
STR;.ATOM = v and STR,.TYPE = atom: and

. for all idexp € Idexp and idexp’ € Idexp, idexp and idexp’ are aliases w.r.t. Gy Iff idexp and idexp’
are aliases wrr ;. T]

This definition of congruence is an isomorphism between the accessible structures in O, and the
accessible STR.1 ino;.

DEFINTTION (congruent states). Two states are congruent siates if their program-point and store com-
ponents arc congruent, 0

DEFINITION (congruent computations). Let co=(hy, hy, -} be a computation in language M. and
Cs={81. 52, + -) a computation in language 5. Computations ¢, and ¢ ; arc congruent compuiations,

written ¢ o Sy O, A there s amap firom oy locg such that

- 103~

. fmaps every state A; to a congruent state s ;; and
o iff(h)=s5;and f(h;n) =5y, then j <k, and states s, - - 5., simulate the evaluation of the
pointath;. O

DEFINITION (reduceStore). The function reduceStore: Int X Program x Store ,—» Store s reduces
gtores in language to congruent stores in language 5, according to the rules described in Section 7.3.2.
In particular, let maxref be reduceStore’s first parameter, and used denote the number of accessible
structures in reduceStore’s third parameter; then STRO through STRus ed.1 simulate accessible struc-
wres in the store, and S'I'R.us od through S’I'Rmzmﬂf simulate structures in the initial freelist, The second
and third parameters determine the variables that make up the S'I‘Ri’s. |

DEFINITION (reducePgm). The function reducePgm: Int x Program s — Program; reduces a program
P, in language # to a program in language S. This reduction is accomplished by using the rules given
in Section 7.3.2 w reduce the statement list obtained by in-line expanding the call to procedure main ()
at point imitial,. (N.B.: An in-line-expansion of a procedure call is illustrated in Figure 7.7.)
reducePgm’s first parameter is (the integer value of) &maxref. O

Intuitively, the reducePgm ()} function performs exactly one in-line expansion because a flattened
program performs exactly one procedure call. This procedure call, an implicit call o procedure
main (), immediately follows the initialization of a program’s store {¢f. Chapter 2). This call to main (}
at point initial, must be eliminated before a program can be translated into language S.

DEFINITION (value computed at a program point (language 3)). The value computed at an assign-
ment statement p is the value that p assigns to the variable on the left-hand-side of the assignment state-
ment. The value computed at a predicate is the (boolean) value of the predicate. [

DEFINITION (equivalent values, sequences of values (language #)). Two values v, and v, are
equivalent iff either v, and v, are atoms and v; = v,, or v, and v are both references.

_curr. 8y 1= a % inirialize actual parameters

_curr. By == ay

_imp = cwr; [*** initialize new environment
_Curr = new(env);

_.Curr._prev = _j‘mp :

curr._f) = _curr._prev._ 8 fe** inirialize formal parameters

_eurr._fy = curr. prev. %

body, ; % avaluate procedure
_curr == _curr._prev E*% restore old environment
Figure 7.7. An in-line-expanded procedure call. Procedure A has k formals f, - - f; and body body 4. The expanded

call statement is “call A (a,, .4y

— 104 —

Letv=v "V, and w=w, - w, be sequences of values. Sequences v and w are equivalent iff
m = nand v; and w; are equivalent for all i between 1 and m inclusive, O

DEFINITION (equivalent computations (language 7{}). Let P, and @, be programs in language #{such
that there exists an isomorphism f between the points of P, and Q5. Let oy be a store. Let ¢p denote
the computation P : Gy, and ¢y the computation 0 : Gy cp and cp are equivalent w.r.t. f, writien
cp =y Cp (W.rt f), iff either

(1) neither cp nor ¢ g terminates successfully, or

(2a) cp and cg both terminate successfully;

(2b) ¢ p and ¢y compute equivalent sequences of values at corresponding points (w.r.t. f)and
(2c) the final stores computed by ¢p and ¢ g are equivalent. (]

The statement and proof of the Flattened Programs Lemma now follow.

DeFNITION The expression P (Ogy fly) denotes the computation of Pyidy wrt. a specific
flyc Free. O

LEMMA (Flattened Programs Lemma). Let o, be a store, and P, and Oy be flattened programs m
language 7 that have k allocation sites.'? Assume that P, and Q 5 have isomorphic hsdgs w.r.t. g, and
the two freelists freep,, and freeq , defined below, Let f be this isomorphism between the points in P 4
and Q;{.

Let freep , be a freelist that names & locations, none of which correspond w accessible locations in Gy
Let freeq 5, be that permutation of freep s, n(freep), whose jth element is determined as follows:

. Let ¢ be the jth program point in @, that contains a new() operator {(N.B.: this ordering is well-
defined for flattened programs);

. Let p be the point that corresponds to ¢ under £

. Then the jth element of freeq s is the kth element of freep . where p is the kth program pomt in
P . that contains 2 new()} operator.

Let inpuip, = (G, freep) and inputqs = (Cx, freeqq). 1E Py inpuipy terminates successfully, then
P inputqs =5 O 5 inpulgy; i.e., the two computations are equivalent.

PROOF (sketch). This lemma is proved by reducing it to the Simulation Equivalence Lemma. Let:

n denote the number of accessible structures in Gy,

o, = reduceStore(n +k =1, P o, Ot);

P, = reducePgmin+k—1,Px) Q= reducePgm(n+k—1,Qx).

freep = &n ' - - &n+k~1; freeqs = n(freep s}

inputps = (G, freep s); and inputqs = (ds, freeq).
A straightforward case analysis of the type of a reduced staiement can be used 10 show compulations in
M are mapped to congruent computations in S: le., that P inpulps =s Py inpuipe and

Technically, the implicit call to main () at the start of a program, which initializes main ¢ Y's local environment, muss also be counted
as an allocation site.

- 105 -

Q 52 inputqs =55 Q52 inputqs. The definitions of =y, =5, and =, now imply that the equivalence of
P s inputpye and Q 50 inputq, can be proved by demonstrating (*) the equivalence of P :inputp and
Qg :inputds.

Assertion (*) will be shown by demonstrating that P, O, inpuip., and inpuig, satisfy the
hypotheses of the Simulation Equivalence Lemma (cf. §7.3.3). Specifically, it must be shown that (1)
P:inpuip, terminates; that (2) freep and freeq s name k locations that are not accessible in o5 that
(3) freeq is a specified permutation of freep,;; and that (4) P; and Q ; have similar'® spdgs. Assertions
(1) through (3), however, are almost immediate—(2) and (3) follow from the construction of freep ; and
freeq, and (1) from the congruence of P, inputp, and P g:inpuip,. Assertion (4)—the assertion that
P and (¢ have similar spdgs—is demonstrated below,

A hypothesis of the Flattened Programs Lemma states that P, and @ 5, have isomorphic hsdgs. Let
GP 5 and GQ 4 be this pair of isomorphic Asdgs. GP , and GQ can now used to construct isomorphic
dbrs for P and Q g, as follows. Let sim be a function that pairs every point p in P with the point in P 5
that p simulates. Let
. static be the set of statically feasible (i.e., control-flow-graph-derivable) data dependences exhi-

bited by P;
e freedep be the set of freelist-mediated dependences in static;
. notinH be the set of p —>, g € static such that sim(p) —>, sim(q) is not represented in GP 5 ;
. spurious = notinff - freedep; and
. datadep = static — spurious.

Let GP be that spdg for P that depicts all of P’s control dependences and every data dependence in
datadep. Let GQ be constructed in a similar fashion. It can be verified that dbrs GP s and GQ; are
similar dbrs. Assertion (4) can therefore be established by showing that (i) GP; is a valid spdg for P
w.r.L inputps, and (ii) GQ; is a valid spdg for Q5 w.r.t. inpurq,. Since the proofs of (i) and (ii) are
similar, only the first is given,

Since GP; represents P;’s control dependences, assertion (i) can be proven by showing that GP;
represents all of P ;s dynamic data dependences w.r.t. inputp;. Assume, on the contrary, that GP fails
o depict a d;=p —>, ¢ exhibited by P;:inputp;. Then the definition of GP. implies that
ds € spurious; i.e., that sim{(p) —>4 sim(q) is a non-freelist-mediated dependence that is absent from
GP ,. The definition of dependence w.r.t. 5, however, also implies that P : inpuip; contains a sequence
of states that exhibits d. Furthermore, the congruence of P inputp; and P2 inputpy implies that the
corresponding sequence of states in P o.: inpuipy gives rise 10 sim(p) —>4 sim (g). This chservation
that P ,;: inputp,, exhibits sim(p) —>, sim(g) contradicis the hypothesis that GP is a valid hsdg for
Py WL inputp,. GP ; must therefore be a valid spdg for program P, O

The statement and proof of the Flattened Programs Equivalence Theorem now follows.

" Recall that 1we spdgs are simiar iff they are isomorphic, up o edges that represent freelist-mediated dependences.

- 106 —

LEMMA (Flattened Programs Equivalence Theorem). Let 6, be a store. Let Py and Q 5 be flattened
programs in language # such that P, and 5 have isomorphic hsdgs wr.t. 6. Assume, furthermore,
that P - Oy terminates successfully. Then Py 0, and Q : O are equivalent computations.

PROOF. Recall that the definition of 7 leaves the freelist component of a computation largely
unspecified. The expression P ,: Gy, in effect, denotes the evaluation of P, w.r.t. G, and any infinite
freelist fl, where every location in fl, is inaccessible in o,. The freelist component is not specified
because fixing the contents of the list does not affect a pointer program’s behavior in any material way.
More precisely, assume thal P ,,: 04 allocates no more than £ locations. Let Free, denote the set of ail
freelists that (1) contain at least k locations such that (2) none of these locations correspond to accessi-
ble structures in Gy Let freep, and freeq, be arbitrary elements of Free,. A straightforward induc-
tion shows that P 5 (G, freep s¢) and P . (g, freeq o) generate sequences of stales that have identical
program-point components and isomorphic store components. This observation also implies that
P 5;: G5 exhibits the same data dependences w.r.t. any initial freelist in Free;. 14

Let k& be the number of allocation sites in P, and Q4. Since Py and Q 4 are straight-line programs,
any computation involving P, and @, allocates no more than k structures. Let Free, be defined as in
the previous paragraph. The observations in the previous paragraph, together with the assumption that
P, and @, are loop-free programs, imp.ies that any freep ; and freeq ,, in Free, can be used (o reason
about P, 0 and Q4 : Gy, respectively. Furthermore, the observations about a cotnputation’s depen-
dences w.r.t. a specific freelist imply that G is an hsdg for P, w.rt. Oy iff Gp is also an hsdg w.rt.
G, and freep .

To summarize the argument to this point, P4 G4 and Q 51 Gy are equivalent compurations iff there
exist two freelists in Freey, freep s and freeq s, such that Py (g, freep o) and @ 5 (G g, freeq i) are
equivalent computations. Let freep ,, be an arbitrary member of free,, and freeg,; be that permutation
of freep ., thal satisfies the hypotheses of the Flattened Programs Lemma. The observation that P, (5,
Gp, G, Gup, freeps, and freeq , satisfy the hypotheses of the Flattened Programs Lemma now estab-
lishes the Flattened Programs Equivalence Lemma. [

73.5. Flattening programs i language

The current section discusses the second, third, and fourth steps in the proof of the Pointer-Language
Equivalence Theorem: i.e., the steps that reduce a pair of language A programs to a comparable pair of
flattened language # programs.

" A similar result is demonstrated in Chapter 5: the proof that evalPr, is monotone uses the referential transparency of s primitive
operations 1o argue that replacing a store with an isomorphic store has no appreciable affect on a computation’s cutcome.

- 107 -
hsdg(P . .G,) re I5"‘3''fnc:l‘Pl’ltic h:ldgs;1 —.) hsdglQ ..o,
hsdg(flat P,). G) ﬁ-s, mmi:{:’mc = i:d - ‘8. hsdglfiat (Q
hedg (Hatter(Pf’{ h o ﬁ".‘ i:;mo hicghsdg ‘r 'hSdg [ﬂatter[g 9{) H)
Y] *y
hsdg (fattest(P,). G_) e P hsdg (flattest(Q’). G)
Py{i GH‘." equitalence o
flat (P}{] (G gr h, pquivalence flafter(Q) : o
flattest Fy) 16, oY o Sauivalence flattest(Q g
fiattest(P] G equivalence HTH

H

The three reductions described in this section use the assumption that P, o, terminales 10 simplify Py
and Q. These reductions, which flatten conditionals, remove loops, and in-line expand procedure calls,
will be presented in somewhat less detail than the transformations given in the preceding sections. This
less formal style of presentation streamlines the proofs without detracting from the argument: formalizing
the definitions of the various congruences would have complicated the proofs without really clarifying the
intuition. A second reason for using this more relaxed style of presentation is that these types of reductions
are not new. Previous authors have used flanening transformations to theorems about the dbrs of richer
languages to theorems about simpler languages (c¢f. {Bin89,5eI90]). The only significant difference
between the arguments developed here and these earlier proofs is that observations about a program’s exe-
cution (rather than its control-flow graph) must be used to zigue that reduced programs have isomorphic
hsdgs. Furthermore, arguments about program behavior have already been used to establish comparable
assertions about dbrs in Sections 7.3.3 and 7.3.4: this concern arises (e.g.) in the proof of the Flattened Pro-
grams Lemma, where it must be shown that the map from #{to $ reduces programs with isomorphic hsdgs
lo programs with similar spdgs.

Step 4. The fourth step in the proof of the Pointer-Language Equivalence Theorem assumes that

L P, and Q 5 are auxiliary-procedure-free, procedure-call-free, loop-free programs;
. P, and Q 5 have isomorphic Asdgs w.r.L. a store G, and
. P 51 G, terminates successfully.

Step 4 then argues that (4) P 5 04 and Q 5 O, are equivalent computations. This is done by reducing P 5
and Q4 to comparable, flattened programs, and then applying the Flattened Programs Equivalence
Theorem to complete the proof.

Define a conditional 1o be unflattened iff neither its true nor its false consequent is of the form fail. Let
d be the maximum depth to which unflattened conditionals are nested in P and Q4. Let n be the number
of unflattened conditionals that enclose at least one unflattened conditional at depth d. Assertion (sd) is
now shown with a double induction on d and 5.

Ifd =0, then n =0, and P, and Q , are fattened programs. Assertion (e4) is then immediate from the
Flattened Programs Equivalence Theorem (¢f. previous section).
Ifd>0and n >0, let prp be the program point of an unflattenied conditional in P4, that (1) is not

enclosed by any other unflattened condidonals, and (2) cncloses an unflastened conditional at depth 4. Let
Ptg be the corresponding point in Q. Assume (e.g.) that prp evaluates to true during the execution of

- 108 -

P ,: Gy The false consequents of the conditionals at ptp and pt are then replaced with a single fail state-
ment. This reduction decreases n and possibly d; it decreases n by 1, and decreases d by at least 1 when
n=1. This reduction also produces a pair of programs—all them P, and Q,—that have isomorphic
hsdgs. Furthermore, computations Py : Gy and Py : G4 are clearly congruent (i.e., closely related) compu-
tations. The equivalence of P, gy and @, : 04 can now be established by establishing (i) the equivalence
of P2 G5 and Q51 05 and (is) the congruence of @ 52 Gy and Q51 Gy

Assertion (i) —the equivalence of P y: Oy and __Q, 5 - Gy—Tfollows from the induction hypothesis and the
isomorphism of £,/'s and Q,'s hsdgs. Assertion (i1} is established using (i). In particular, (i) and the
equivalence of PGy and _Q s O 1mply that (*) pt, evaluates to ue in _Q_ 5 Furthermore, (**} the same
stores much reach ptg in Q5 Gy and Q42 0. Observations (*) and (**) now imply that pt g must evalu-
ate to true in (5! O5—thereby establishing (ii) the congruence of Q1 6, and 051 Oy

Step 3. The third step in the proof of the Pointer-Language Equivalence Theorem assumes that

. P ;cand Q ,, are auxiliary-procedure-free, procedure-call-free programs;
» P ;rand Q , have isomorphic Asdgs w.r.t. a store G, ; and
* P j;: G4 terminates successfully.

Step 3 then argues that (#3) P51 G5 and Q 5 Oy are equivalent computations. This is done by reducing P,
and Q , to related, loop-free programs, and then using step 4, assertion (s4) to complete the proof.

Let d be the maximum depth 1o which loops are nested in P, and Q. Let n be the number of loops that
enclose at least one loop at depth 4. Assertion (e3) is now shown with a double induction on 4 and n.

Ifd=0, then n =0, and P, and Q, are loop-free programs. Assertion (»3) is then immediate from
assertion (ed).

If d>0and n>0, let Lp be the program point of a loop in P, that (1) is not enclosed by any other
toops, and (2) encloses a loop at depth d. Let Ly be the corresponding loop in Q. The assumption that
P 4 Gy, terminates now fixes the number of times that the body of Ly evaluates w.rt. P,:Gy to some
value, k. Let P, and Q be the programs obtained by replacing Lp and L o with the k-ary approximation to
these loops dgpicted in Figure 7.8. This reduction decreases n and possibly d; it decreases n by 1, and
decreases d by at least 1 when n = 1. This reduction also produces a pair of programs—call them P, and
Q,—that have isomorphic hsdgs. (N.B.: the assertion that a data dependence is either carried by or
independent of L » (L) must be used to guide the placement of edges in P ’s (s} hsdg.) Furthermore,
COMpUtAtions Py Ggp and P51 Oy are clearly congruent computations. The equivalence of P ,: 0, and
010, can now be established by establishing (i) the equivaience of Py : Gy and @ 0y and (ii) the
congruence of Qs Gy and Q 5 Gor.

Assertion (i)—the equivalence of P y: 0y and O 5. Gx—Tfollows from the induction hypothesis and the

isomorphism of P,’s and Q ,'s hsdgs. Assertion (ii) is established using (i). In particular, letg; -+ ¢,
be the k + 1 predicates in Q 5 that correspond, under the reduction, 10 Lp's controlling predicate. Assertion
(D) and the congruence of P ,: Gy and P y: Gy imply that (*) g « -+ g cvaluate to true, and g, to false.

An induction on k that uses the correspondence between Oy 0y and @t Oy then establishes that (**) L
also evaluates k times in @ ,: Oy Assertion (**) implies (i) the congruence of Qar:Gpand Qyy: Oy

| gE—

U

~ 109 -
Example loop k—ary approximation to loop
[r] while pred do r.1] if pred then
body, body,;
od -2 if pred then
body,;
{p.3] if pred then
[Pkl if pred then
body,;
{p.k+1] If pred then fail &
ﬁ‘

Figure 7.8. A k-ary approximation to a while loop.

Step 2. The second step in the proof of the Pointer-Language Equivalence Theorem assumes that

» P ,cand Q ,, have isomorphic Asdgs w.r.L. a SIOTE Gy; and
. P, O terminates successfully.

Step 2 then argues that (82) P, G, and Q51 0y are equivalent computations. This is done by reducing £,
and Q , to related, auxiliary-procedure-free, call-statement-free programs, and then using step 3, assertion
(e3) to complete the proof.

Let ¢ be the number of calls to auxiliary procedures performed during the evaluation of P41 Gy Asser-
tion (#2) is now shown with an induction on ¢.

When ¢ = 0, the proof proceeds by an induction on the s, the number of call statements in the body of
P ,/s main () pracedure.

If s =0, then P, and Qs main() procedures contain no calls on auxiliary procedures. Let P, and
0 be the programs obtained from Py and Q , by removing their auxiliary procedures. Clearly, P,
;nd 0, have isomorphic Asdgs. Assertion (#3) now implies that PyiGu and Q 5. G are equivalent
com;")?uations. The observation that the unreduced and reduced computations are (trivially) congruent

now establishes (o 2).

If s > 0, let prp be a call site in P, and pt o the corresponding call site in (4. Since Pyl 0y makes
no calls on auxi]iary procedures, ptp could not have evaluaied during the execution of P s¢: Gy Replac-
ing ptp with a fail statement therefore reduces P ,: Gy t0 2 congruent computation. The argument 1s
now completed by (1) replacing the corresponding call site in Q ,, with a fail statement; (2) using the
induction hypothesis to show the equivalence of the reduced computations, and (3) using the assump-
tion that P 5, G, suceeeds to show that the replaced call site in Q 5 could not have evaluated.

If ¢ > Q, let ptp be the program point of 2 call statement in P 5's main () procedure that was invoked dur-

ing P,:0x. Lot pty be the corresponding call site in 0, The calls at pip and ptg are now in-line-
expanded, according to Figure 7.7. This reduction produces a pair of programs——call them Pyand Qo—

- 110 ~

that have isomorphic hsdgs. (N.B.: the assertion that a data dependence is either carried by or independent
of ptp (ptg) must be used to guide the placement of edges in P,/'s (Q 4 's) hsdg.) Furthermore, computa-
tions P 52 G and P 51 Oy are clearly congruent computations. The equivalence of Py Gy and Q41 Gy Can
now be established by establishing (i) the equivalence of P : G, and @ 5t 0y and (ii) the congruence of
Qu: Sorand O 5: Gar

Assertion (i)-—the equivalence of Py Oy and Qg o,—follows from the induction hypothesis and the
isomorphism of Py’s and Q 58 hsdgs. Assertion (if) is established using (i). In particular, (i) and the
congruence of P10y and P ,: Gy imply that (*) Q evaluates the expanded procedure call at pty. The
similarity of Q , and Q , also implies that (**) the same stores much reach any predicates that control the
evaluation of ptg in Qs Gy and Qs Gy Observations (*) and (**) now imply that call site p/g must
evaluate in O 5 : 6,—thereby establishing (ii) the congruence of Q ,: 65 and 40

73.6. The Pointer-Language Equivalence Theorem

The statement and proof of the section’s main theorem, the Pointer-Language Equivalence Theorem, are
given below. This theorem, roughly speaking, states that programs with isomorphic Asdgs map equivalent
inputs to equivalent final stores. The definition of the term equivalent computations, which was given in
Section 7.3.4, is repeated here for convenience.

DEFINITION (value computed at a program point (language H)). The value computed at an assign-
ment statement p is the value that p assigns to the variable on the left-hand-side of the assignment state-
 ment. The value computed ata predicate is the (boolean) value of the predicate. O

DEFINITION {equivalent values, sequences of values (language 5)). Two values v, and v, are
equivalent if either v, and v are atoms and v, = v4, or v; and v, are both refcrences.

Letv=v, v, and w=w ' w, be sequences of values. Sequences v and w are equivalent iff
m = n and v; and w; are equivalent for all i between 1 and m inclusive. [J

DEFINITION (equivalent computations (language #)). Let P, and Q 5 be programs in language # such
that there exists an isomorphism f between the points of P 5 and Q5. Let oy be a store. Let cp denote
the computation P Gy, and cg the computation Q;:0y. cp and cg are equivalent w.r.t. f, written
cp=gCp (wWrl f), iff

(1) neither ¢ p nor ¢ g terminates successfully, or

(2a) cp and ¢y both terminate successfully;
(2b) ¢p and ¢ compute equivalent sequences of values at corresponding points (w.r.t. f); and

(2c) the final stores computed by ¢p and c o are equivalent. O

THEOREM (Pointer-Language Equivalence Theorem). Let Py and Q5 be language # programs. Let
InSe: be a set of siores. Assume that P and 0 have isomorphic hsdgs w.r.t. InSet. Let Oy be a store n
InSet. Then P y: Gyeand Qo Oy arc equivalent computations.

PROOF. If neither Py Og nOr @ On terminates successfully, the theorem is immediate. Otherwise,

assume that one of these programs—say, P y—terminates on Gy

Let G p and G be the isomorphic hsdgs for Py and Q5 w.IL InSet. Since P, and Q5 exhibit strictly

fewer traces w.r.L. Gy than they do w.r.L. /nSet, G p and G o must also be fsdgs for Py and Q ; w.rl. Gy

p‘;..-_-__-_..a..aw.WALM,.._

-111 -~

The Pointer-Language Equivalence Theorem is therefore equivalent to the assertion that (#2) the iso-
morphism of G and G and the termination of P 5 &, imply the equivalence of P 5: 65 and @t Gy
The Pointer-Language Theorem therefore follows from the proof sketch for assertion (e2) given in Sec-
tion 7.3.5, Step 2.

hsdg{Pﬂ) > isomorphic hsdgs - hSdQ(QH)
* isomorphic_hsdgs 4

-,

hsdg(PH.cj{} hsdg(gg{ S,)
Pt L 9y
Pﬂ:cﬂ " Q04

This concludes the proof of the Pointer-Language Equivalence Theorem. [

7.4. Practical Implications of the Pointer-Language Equivalence Theorem

The definition of language # given in Chapter 2 makes simplifying assumptions about freelists, procedure
activation records, and atoms. This section considers how these assumptions affect the applicability of the
result proved in the previous section.

7.4.1. Freelists

The assumption that pointer-language programs have unboundedly long freelists is comparable 1o the
assumption, often made in optimizing compilers, that arithmetic can be reordered without causing arith-
metic overflow. Ignoring the possibility of overflow allows useful optimizations (o be performed that

Program MAX$81: Program MAX161: parbegin
11 a=P(1) 1] a:=P()
[2] display(a) 41 b:=P(2)
3] a:=nil parend
[2] display(a)
4 &:=P@) [5] display (b)
(5] display(b) {31 a:=nil
[6] b:=nil 6] & :=mnil

Function P () allocates 80 structures, but has no other side effects.
Function display () displays that part of the store that is referenced by its argument, but has no other side effects.

s. Programs MAX81 and MAX161, however,

Programs MAX81 and MAX161 exhibit isomorphic sets of dependence
ximum of 81 accessible structures.

have different peak memory requirements. Program MAX81's store contains a ma
Program MAX161's store contains a maximum of 160 accessible structures. MAXS81 will therefore succeed, and

MAX161 fail, if an implementation has (¢..) only 120 locations in its freelist.

Figure 7.9. Two programs with isomorphic hsdgs that retumn different results in the presence of a short freelist.

-112 -

might not otherwise be possible. Consider, for example, the two programs depicted in Figure 7.9. If P is a
time-consuming function call, then program MAX161 will run in considerably less time than program
MAX81. Program MAX161, however, also has a higher peak demand for memory than program MAX81.
Program MAX81 will therefore run to completion in some environments where program MAX161 fails.

Possible overflows that could arise from a reordering of a computation’s statements are not accounted
for the proof of the Pointer-Language Equivalence Theorem. The freelist problem has been sidesiepped by
assuming that a program’s successful completion is never dependent on the reuse of previousty allocated
storage. Although anomalies of the kind described in the previous paragraph are unfortunate, it is hard 0
see how they can be prevented without inhibiting many important—and normally valid—optimizations.
One possible solution to this problem is to let programmers specify that certain sections of a program
should not be optimized. A different approach to guaranteeing the safety of program optimizations in the
presence of heap allocation is discussed in {ChaBR8].

74.2. Procedure Activation Records

Treating a procedure activation record (PAR) as a heap-allocated structure simplifies the reduction by
allowing a uniform treatment of allocatable structures. A more realistic, stack-based model of procedure
evaluation would give a slightly less optimistic picture of a program’s interprocedural dependences, at the
cost of a considerably messier reduction.

The principle difference between the heap-based and stack-based models of procedure activation is that
the stack contains reusable locations, The decision to place a PAR P in the heap, in effect, is a commit-
ment that Ps use of space will not conflict with any of the PARs that are created before or after it. Con-
sider, for example, the following two-statement program.

1] call A(" -)Y; [2] caill B(---);
Assume that A and B are independent procedures. If A’s and B's PARs are allocated in the heap, then A
and B can be run in parallel. If A’s and B’s PARs are allocated in the stack, then statements that access A’s
PAR may be anti-dependent on the statement that invokes B.

7.4.3. Atoms

Figure 7.10 depicts three impiementation techniques for atoms. The first technique, which is depicted in
Figure 7.10(a), treats atoms as unshared, tagged structurcs that lack reference fields. The technique dep-
icted in Figure 7.10(a) is the one modeled in this chapter.

A second representation of atoms i3 depicted in Figure 7.10(b). Here, the equations for structures have
been rewritten so that fields have type Loc + ATOM, rather than type Loc. The representations depicted in
Figures 7.10(a) and 7.10(b) are equivalent under the assumption that programs have unbounded freelists.
Representation 7.10(a) was adopted in this thesis because it simplifies the presentation: it makes figures
more compact, and semantic equations more aniform. Representation 7.10(b) would be preferred in an

actual implementation, since it uses less space.

An alternative implementation of atoms, which treats atoms as shared objects, is depicted in Figure
7.10(c). Chase observes that realistic implementations of Lisp-like languages mix shared and unshared
atomns [Cha88). Indicator bits are typically set aside that specify whether a location contains a reference or

-113-

o ? R

before "x := rl” after "x = nil” after “y ;= x'

{a). Atoms as unshared structures

a: —- undef. a: - unidef, a: »- unidef,
° ® .
® . []
x: —- Lndef. x: nil x: nil
y: — % undef, y: =T undef. v: nil
before "x = nil" after "x := nil" after "y = X’
(b). Atoms as unshared values
@ unilu X "nil” X y
\ nil \ ﬂll
before "x = nil” after "x = nil’ after "y 1= x"

{c]. Atoms as shared structures .

Figure 7.10. Three possible implementations of atorns.

integers are typically stored as in Figure 7.10(b).

a constant. Commonly used atoms like nil and small
d large numbers, arc shared

Atoms that are too large to be stored in individual locations, such as strings an
10 conserve space.

over representation 7.10(c) to simplify the presentation. The deci-

Representation 7.10(a) was chosen
ficant, since the use of shared atoms complicates

sion to adopt the one representation OVer the other is signi
the proof of correctness. To see why, consider the following program, program P

[p] x:=10000; [q] y = 10000

If atoms arc represented as depicted in Figure 7.10(2), then statements p and g arc independent. If atoms

are represented as depicted in Figure 7.10(c), then q is {iow-dependent on p. Staiement p allocates a struc-

-~ 114 -

wure s that represents the value 10000, and statement g creates a reference o s.

Dependence p —; ¢, however, is a needless constraint on the example program’s evaluation. P is
obviously equivalent to the program P’ obtained by reversing p and g:
{q] y:=10000; [p] x:= 10000

To prove the equivalence theorem for an implementation of # with shared atoms, one could argue that P is
equivalent to the following program:

[P’} siructoen = 10000; [p] x = siruct oo 3 [q] ¥ = struct ;00

(and similarly for P’). The effort required to formalize this argument, however, does not seem commen-
surate with the benefits that would accrue from it.

7.5. Related Work

7.5.1. A brief history of dbrs

This section surveys earlier dbrs, and describes those dbrs that infiuenced the design of the hsdg in more
detail.

7.5.1.1. The early history of dbrs

Dbrs have been in existence since 1972. The first dbr, the Kuck-Muraoka-Chen data dependence graph
(ddg) (Kuc72), is a direct descendant of the Ramamoorthy-Gonzalez program gr . i1 {Gon6%). The pro-
gram graph, which was developed in the late 1960’s, is a directed acyclic graph, whose nodes represent
either statements, or sets of statements, and whose edges represent evaluation constraints (¢f. Figure 7.11).
These evaluation constraints, roughly speaking, correspond to control, flow, anti-, and output dependences.
The ddg differs from the program graph in the following two ways:

* Ddgs provide no information about a program’s control structure. Kuck et. al. simplified the
definition of their graph by stipulating that ddgs be used to represent structured programs.

* The program graph does not depict precedence constraints between individual statements in loops:
the set of all stalements in a given loop / are represented as a single node in a program graph. The
ddg, on the other hand, supported foops and nested loops. Kuck et. al. also developed strategies for
using ddgs to parallelize loops that access mlti-dimensional arrays.

The version of the ddg described in [Kuc72] represents what Kuck, Muraoka, and Chen then referred to
as a program'’s forward data dependences—and what would now be referred to as a program’s flow and
output dependences. Anti-dependences (there called reverse dependences) were climinated by variable
renaming. Subsequent work by the University of IHlinois group formalized the notions of flow, output,
input, and anti-dependence; these distinctions are made, for example, in Kuck’s 1978 text on compiler con-
struction [Kuc78]

Subsequent reports by the University of WWinois group uscd ddgs as a basis for program transformation.
The efforts of the lilinois group focused primarily on parallelizing array-manipulaling statemens in nested
loops. Figure 7.12, which gives an example ddg, is adapted from Wolfe's thesis {Wol82]. This ddg is
annotated with information that characterizes loop-dependence interactions.

-115-

(1]

i1 x := read() o)

o
(2] if x=0 then
{3} x:=1

{4] yi=1/x
(51 X :=read()

?
(6] if x=0 then

= {5 =
7 ﬂx ' X:= rcjad() "
(8] z:=1/x "‘-

(9] printly + z)

Key:

———&> precedence constraint

(l.e., flow, output, anti-,
or control dependence)

Figure 7.11. A Ramamoorthy-Gonzalez program graph.

doi=lten e anti-depend ~ Tteees
(1] aft} := (bli) + bli+1)) / 2 (min. distance = 0) @
{2] bii+1] := eli) v... lowdepend e-ee--

enddo (min. distance > 0)

Figure 7.12. An example data dependence graph, together with information about a program’s dependences.

The University of Illinois group used ddgs 10 optimize structured program fragments. A later paper by
Allen, Kennedy, Porterfield, and Warren describes a simple program transformation that extends the sct of
programs that ddgs can support [All§3a}. This rransformation converts a fragment that contains "TF -
GOTO" statements into an equivalent fragment whose "IF" statements guard structured blocks of code.
Ddg-based optimizations can then be applicd o the transformed fragment. A different approach to incor-
porating control-flow information into dbrs was developed by Ouenstein ([O78], cited in (Fer33}).
Ottenstein’s dbr, the data flow graph, represcnted a program as a pair of graphs: a data dependency graph,

together with its control flow graph.

- 116 -

References 1o other dbrs from the 1970s, including Dennis’ work on dataflow machines and the

Parafrasc compiler, arc given in the Ferrante, Ouenstein, and Warren report on program dependence
graphs [Fer87).

7.5.1.2. Program dependence graphs

In 1982, Ferranic and Ouenstein (re)discovered that control and dependence information could be com-
bined in a single dbr. The resulting dbr, the extended data flow graph (edfg), gives a selfcontained picture
of the dependences that constrain a program’s evaluation {Fer83). The edfg’s principle limitation is that
programs must be structured. This limitation was subsequently removed by Ferrante, Ottenstein, and War-
ren, who named the resulting structure the program dependence graph (pdg) [Fer83a]. Figure 7.13 depicts
a Ferrante-Ottenstein-Warren pdg; the depicted pdg shows a program’s flow, ouiput, and anti-dependences.
Various advantages of pdgs (resp. ddgs) were cited by Ferrante, Ottenstein, and Warren, and in a compan-
ion paper by Ottenstein and Ouenstein {Ott84}; most of these advantages are corollarics of the observation
that pdgs give a self-contained characterization of a program’s behavior.

.....

(1] x = {()
(2] if x=0 then

[3] x:=1 .:
(4] yi=1/x ::
(5] x = gf)

6] if x=0 then
{7] X =1

fi
(8] z:=1/x
(9l print(y + 2)

Key:

—==~ true control dep. e
"""""" = flow dep.

‘‘‘‘ 8 anti-dep.

""" 0" output dep.

Flgure 7.13. A Ferrante-Ottenstein-Warren pdg.

- 117 ~

A subsequent paper by Ferrante, Ouenstein, and Warren describes two additional kinds of pdgs [Fer871.
The first uses explicit load and store operators to model how programs alter internal state. This idea was
later rediscovered by Pingali et. al., who use loads and stores in a dataflow-graph-like dbr (¢f. § 7.2.4). The
second, the hierarchical pdg, gives a structured picture of a program’s dependences. A hierarchical pdg
for a program P is a collection of pdgs P, - - - P,, that represent different fragments of P. Each P; contains
a head vertex that represents that fragment’s overall behavior. Edges that are local w the P; represent
intra-fragment dependences. Edges between the heads of the different P;’s represent inter-region depen-
dences. Ferranie et. al observe that hierarchical pdgs can be used for vectorization and loop fusion.

Horwitz, Prins, and Reps adjusted the edge set of Ferrante er. al.’s pdg, replacing anti- and output depen-
dences with what was then a new kind of dependence—the def-erder dependence (cf. Fighre 7.1
[Hor87, Hor89]. The resulting pdg gives a better characterization of a program’s slices—i.e., its logically
related sets of statements (cf. Chapter 3, §7.2.5). Horwitz et. al. also added two new types of vertices (o a
pdg's vertex set. The one, the initial definition vertex, was added to account for variables that were refer-
enced before being used. The other, the final use vertex, allows programs to be analyzed w.r.t the final
values of specially selected variables (cf. Figure 7.14).

7.5.1.3. Def-order-dependence-free dbrs

Sections 7.5.1.3, 7.5.1.4, and 7.5.1.5 discuss successors of the pdg. One reason for the continuing interest
in new dbrs is the search for simpler, more elegant characterizations of program behavior. The use of def-
order dependences Lo characterize program behavior, for example, has tue following drawbacks:

J Def-order dependences, like output dependences, arise from the reuse of locations. They do not
reflect a true sharing of information between siatements.

. Def-order dependences are created by the interaction of three program points. This makes it harder
to tell whether one program point is def-order-dependent on a second. More specifically, if Pis a
program, and A is a fragment of P that contains two program points p and g, then an analysis of A
alone might not reveal whether ¢ is def-order-dependent on p w.r.t. P.

. Def-order dependences can proliferate in programs with multiply-defined varables. Figure 7.15
depicts a program that has O (n) assignment statements and O (n?) def-order dependences.

end{z) .

T R
Key: —T—e control dep. @ __________ _
""" - flow dep.

Figure 7.14. Initial definition and final use vestices.

1] x := read{) w
(2] Zi=X+Y S e .

- 118 ~

Three techniques have been proposed for creating def-order-dependence-free dbrs. The first technique,
developed by Alpern, Wegman, and Zadeck, uses assignment statements and variable renaming to elim-
inate a program’s output and anti-dependences [Alp88]. Alpem et. al.'s algorithm for eliminating output
and anti-dependences assumes that different definitions of a variable x that reach the same program point
lic along different paths in a program’s control-flow graph. The technique first places the statement
“x = ¢(x, x)" at each of x's jein birthpeints—i.e., at those program points where different definitions of x
first converge [Rei81]. The placement of ¢ nodes ensures that only one definition of a variable x is live
along any segment of a conuol-flow graph. Every occurrence of x is then subscripted with an index that
pairs the occurrence with the assignment statement that defines its value. The application of Alpem er.
al.’s construction to an example program is illustrated in Figure 7.16

The remaining two techniques are essentiaily variants of the Alpern-Wegman-Zadeck ¢ node. Felleisen
and Cartwright [Car89} use valve nodes to eliminate a program’s def-order dependences. Valve nodes are
assignment statements that block definition-free paths in control-flow graphs, Specifically, a valve node
“y .= x" is added to a path 1 in a program’s control-flow graph when (1) w does not contain an assignment
to x, and (2) a paralle! path does. Figure 7.17 illustrates the placement of a valve node in an example pro-
gram.

The remaining techrique, which was developed by Yang, Horwitz, and Reps, uses a different kind of ¢
node 1o render def-order dependences redundant [Yan89, Yan90]. The Yang-Horwiiz-Reps ¢ node is an
assignment statement “§,,, : X = 1" that is placed at a variable x's join birthpoint, The label subscript
identifics the syntactic construct that created the birthpoint, Figure 7.18 illustrates the placement of a ¢y

[1} x:=1
if pred, them [2} x:=2 fi

if pred, then [3] x:=3 fi This program exhibits one def-order dependence
e J o £

if pred, then [n] x=n fi for every jand ksuchthat 1 £j <k <n.

[p+l} ¥y =x

Figure 7.15. A program that has O (n) assignment statemens and O (n?) def-order dependences.

Before &-node placement After ¢—node placement
[p] x=0 x; =0
if pred then [g] x =1 fi it pred them x,:=1 fi
Xy =00, X4):
y=x Ys = Xas

Flgure 7.16. Alpern-Wegman-Zadeck o-node placement in an example program.

- 119 -
Before valve-node placement After valve-node placement
1] x:=0 (1] x:=0
{2} If pred then [3] x:=1 fi {21 if pred then (3} x =1 else 3.5) x:=x fi
4]y (4] y=x

Figure 7.17. Valve-node placement in an example program. Statement [3.5] is the vaive node.

node in an example program,

The Yang-Horwiiz-Reps ¢ node renders a dependence p —> 4,y ¢ redundant by fixing the relative exe-
cution order of p and q. Each ¢ node has two incoming fiow dependences. These dependences are paired
by the ¢ node with different paths in a program’s control flow graph. This pairing of dependences with
graphs, when combined with information about a program’s syntactic structure, fixes the relative execution
order of p and q.

Yang et. al. refer to their def-order-edge-free dbr as a program representation graph (prg). Figure 7.19
shows that the number of components in a program’s prg may be asymptotically of lower order than the
number of components in its pdg (i.e., Ofn) vs. O(nzj).

7.5.1.4. Interpretable dbrs

A second reason for the continued interest in new dbrs is the search for dbrs that can be executed
efficiently. This quest is motivated, in part, by the observation that dbrs expose a program’s potenuai
parallelism. This quest is also motivated by the observation that pdgs do not appear 1o be a good starting
point for dataffow-style program execution. Selke [Sel90] has given a graph-rewriting rewriting semantics
for pdgs. Although this semantics is useful for reasoning about how dependences constrain program exe-
cution, it has the following important limitation: useless, intermediate values of a variable x may be pro-
pagated to a statement » before r gets the proper value of x. Consider, for example, the following program
fragment:

Before &-node placement After ¢—nede placement
11 x:=90 1 x=0
[2] If pred then [3] x:=1 f {2} if pred then {3} x:=1 fi
[33] oy:x:=x
4] yi=x 4] »=x

Figure 7.18. ¢-node placement in an example progran.

- 120 -

Effect of inserting ¢ nodes into program in Figure 7.16

Before ¢—node insertion After ¢—node insertion

1] x:=1 M} x=1

if pred, then {2] x =2 fi if pred, then [2} x =2 fi; [2.5] &y x:=x;
if pred, then [3] x =3 fi if pred, then [3] x =3 fi; [3.5] 0;: x =x;
if pred, then [n] x:=n f it pred, then {r] x :=n fi; [n5] &y x:=x;
frtl] y=x [a+1] y:=x

The program on the left can be represented by a pdg that has O (n?) elements: O (n) vertices and flow-dependence
edges, and O {n*) def-order dependences.

The updated program can be represented by a prg that has O (n) vertices and flow dependences.

Figure 7.19. Using ¢ nodes to reduce the size of a dbr.

[Pl x:=10; if pred then [gq] x:=20 fi; [r] print(x);
If pred is true, then two values of x propagate to r: 10, which should not be printed, and 20, which should.

Ramalingam and Reps were among the first to argue that the program representation graph (prg) (cf.
§7.2.3) constitutes a good basis for dataflow-style program execution [Ram89]. This report, which gives a
dataflow-fike semantics for prgs, also discusses the limitations of using pdgs to execuie programs.

A second dataflow-like dbr was developed by Ballance, Maccabe, and Ottenstein [Bal90]. This dbr,
which Ballance er. al. call the program dependence web (pdw), uses Alpern-style ¢ nodes to aliminate out-
put dependences. An interesting feature of the program dependence web is that it can be interpreted 1 a
control-driven, data-driven, or demand-driven fashion.

Pingali, Beck, Johnson, Moudgill, and Stodghill describe a third type of interpretable dbr, the depen-
dence flow graph (Pin91]. Dependence flow graphs are paw-like dbrs that support explicit load and store
instructions. Dependence flow graphs also incorporate a notion of dependence that the authors refer 10 as
imperative dependence. Intuitively, an imperative dependence is exhibited by a pair of statements like
“load x: test x™ the test cannot proceed until the load of x 13 complete.

7.5.1.5. System dependence graphs

A third reason for the continued interest in new dbrs is the search for dbrs thal support more complex
languages. Pdgs, for example, only model intraprocedural aspects of program cvaluation. The first dbr for
languages with procedures, the system dependence graph (sdg), was developed by Horwitz, Reps, and
Binkley in 1988 [Hor88a, Hor90a]. The sdg is an enhanced pdg that uscs new kinds of edges and vertices
to represent call statements and procedures. The model language that Horwitz ¢t al. use 1s a simple, struc-
tured language. It supports scalar-vatued variables, if and while statements, and the following, tour-step,

value-result protocol {or parameter passing:

- 121 -

1. When a procedure B is called from procedure A, all non-local variables referenced or modified by B
are first copied into a special input buffer, 1.,

2. When control is first transferred from A to B, the initial values of B’s formal parameters and non-
local variables are obtained from 1.

3. When B finishes evaluating, the final values of all non-locals modified during the evaluation of B are
written into a special output buffer, w.

4. Control is then returned to A, which uses to update its copy of every variable altered by 8.

The example language that Horwitz et. al. assume simplifies the task of characterizing a program’s inter-
procedural evaluation. In languages that lack dynamic allocation, it is possible to identify a finite set of
variables that may be read or written during a call to a procedure A—that is, by the body of A proper, or by
procedures that might be invoked during A’s evaluation. Horwitz er. af. use this observation to control how
a program’s interprocedural dependences are represented. Let A and B, for example, be two procedures in
a program P. If A does not contain a statement that calls B, then P’s sdg lacks edges of the form (ap, bp),
where ap and bp are points in A and B, respectively. If A, on the other hand, calls B, then every interpro-
cedural data dependence that arises from a call on B is of the form (ap, bp), where ap is a special program
point that implements a call to B, and bp is a special program point that (intuitively) initializes or finalizes
B’s procedure activation record. Furthermore, every interprocedural control dependence that arises from a
call on B runs from the point that represents the call to B°s entry point. This technique for representing
interprocadural dependences, which will be referred to here as dependence encapsulation (or simply
encapsulation), yields a dbr that gives a good characterization of how procedures interact. Encapsulation
also allowed Horwitz er. al. to develop an efficient interprocedural slicing algorithm—one that uses special
edges to bypass parts of the sdg during siice computation {see below).

An sdg for a program P, Sp, is a collection of smaller dbrs that represent P’s procedures, linked by
edges that represent P’s interprocedural dependences. Graph Sp contains one dbr for each of P’s pro-
cedures. One of these dbrs, the distinguished pracedure dependence graph (distinguished ndg) depicts P’s
main procedure, The remaining dbrs, called procedure dependence graphs (rndys), depict P’s auxiliary
procedures—procedures that are called by main. (N.B.: the name ndy is used o distinguish the procedure
dependence graph from the similarly-named program dependence graph.)

A procedure dependence graph (ndy), roughly speaking, is an extended pdg that models procedure entry
and exit and supports call statements. ntdgs and pdgs both contain

. an entry vertex that corresponds to the initial locus of control;

. vertices that correspond to predicates and assignment statements;
. initial definition vertices;

. final use vertices; and

. edges that represent control, flow, and def-order dependences.

A mdy also contains five new kinds of vertices. Three of these vertices represent call statements. A calf
vertex depicts a procedure call per se. An actual-in vertex, which depicts the initial write of a value into
buffer 1, models Step 1 in the value-result protocol. An actual-out vertex, which depicts a final acquisition
of a value from w, models Step 4 in the protocol. The other two kinds of vertices model parameter passing
from the callee’s point of view.

-122-

. Formal-in vertices, which are analogous to initial definition vertices, model Step 2 in the calling pro-
tocol. More specifically, let £ be a procedure, and I its ndg. Then Ilp has one formal-out veriex
for every formal parameter and non-local variable that could be modified during a call to P.

. Formal-out vertices, which are analogous to final use vertices, model Step 3 in the calling protocol.
More specifically, let P be a procedure, and Ip its 1dg. Then ITp has one formal-in vertex for every
formal parameter and non-local variable that could be read during a call to P; that is, every variable
that could be read by a statement in P proper, or by a statement in a procedure that P calls.

Two example ndgs are depicted in Figure 7.20; variables of the form “w” and “on” represent slots in the
ransfer buffers.

A distinguished Tdy is an extended pdg that models a program’s main procedure. Figure 7.21 depicts an
example distinguished ndg.

ndys are linked by two kinds of edges that represent a program's interprocedural dependences. The first,
the interprocedural control dependence edge, links a call statement with the entry vertex of the called pro-
cedure. The second, the interprocedural flow dependence edge, links actual-in vertices to formal-in ver-

anter suma3

.
.
b
SNy
’

. L
-
- + e L)
’ - [
i . 1Y
- S, LY
’ .. T

- .

= SSRVYN RN

'
[
\J >

K .
- “-
-
W 4 Y
" Iy . &y
A [N T, -
-~y N
Cw@ =G D) Gead - eli=p) Ga=p @0

procedure sum3 (w,x,y,Z)

call sum {w,x.2};
call sum(z,y,2);

retum Procedure dependence graphs for sum3. sum.

procedure sum {m.n.1)
Fi=m+n;

® Solid arrows denote control dependences

® Dotted arrows denote flow dependences
return ® iotas and omegas are interprocedural linkage variables

Flgure 7.20. Example procedure dependence graphs.

—-i23 -

@m

‘Q

P i

T L R

procedure main () Distinguished procedure dependence graph for procedure main
g z % ® Solid arrows represent true-valued control dependences
callsum3{a.b,c,d} ® Dotted arrows represent flow dependences

end (d) ®

lotas and omegas are interprocedural linkage variables

Flgure 7.21. A distinguished procedure dependence graph

tices, and formal-out vertices to actual-out vertices. A third kind of edge, the summary edge, is a conveni-
ence edge that simplifies the computation of a program’s slices. Let a;, and 4, for example, be actual-in
and actual-out vertices associated with a call to a procedure B. If B uses the value of a,, 10 compute the
value of a,,,., then the dbr that contains a,, and a,,, has an interprocedural summary edge e from a;, W
This edge represents a transitive flow dependence from a site that defines an input parameter 10 a site
that uses it. Edge e allows the contribution to a slice made by a call on a procedure 8 to be determined
without examining B. Horwitz ef. al. use summary edges to obtain a polynomial-time algorithm for inter-
procedural slicing that is (1) more precise than the original algorithm given by Weiser {Wei84], and (2} as
precise as, but more efficient than, a subsequent algorithm given by Hwang, Du, and Chou [Hwa88]

Figure 7.22 gives a complete picture of an example sdg.
7.5.2. Previous soundness theorems for dbrs

Horwitz, Prins, and Reps were the first o investigate whether dependence graphs provide an adequate
representation of a program's semantics [Hor88]. Horwitz ef. al. proved that programs with isomorphic
pdgs computed identical final stores, relative 0 a structured language with scalar variables. Reps and Yang
strengthened this result by showing that terminating programs with isomorphic pdgs compuied identical
sequences of values at corresponding program points [Rep89]. A second proof of thc Equivalence
Theorem that develops a graph-rewriting semantics for pdgs was given by Selke [Sel89]. This work was
later extended by Selke to obtain a comparable theorem for dynamic pdgs [Pfe91a]
Reps and Yang were the first to investigate the semantics of program slicing

s, In [RepiY), Reps and
Yang showed that pdgs provide an adequate characterization of a program’s slices, relative to a structured

language with scalar variables. A second proof of the Slicing Theorem has been given by Sclke {S¢190]
This work was later extended by Selke to obtain a comparable theorem for dynamic pdgs [Pfe9lal

— 124 —

initialDef{d) initialDef(c finalUse(d)

.
]
[
.
]
t
[
]
'
N .
» +
]
H]
H .
' +
L]
[
b [
[]
H "
¥ v
] 1
' 1
. [
[l
H 1
1 []
. .
H]
[]
H [}
[}
.

¥

I'II.'IIIIII..

ARERASSy R ANE
¥

-)
l..-—-----...---...‘f...-.----..----.l..---.----
swsarmandeusanemnnm
.

.
.

[S T L METT TR PR PR
- -

B

’ * '

. -

. ’

-
K
-
-

\l
u. "
¥

13

N a
* h
7

anter sum3

L
¥
)
*
]
+

o *
+ ¥
[. . o
oty . eraunupandy? o
+ L H -
* *teranmannnse --as--.-nl(:
- L]
1 1 .
] * “
5 . X
. b
‘l . Y
' . .
' . Loty
‘I 1 -
L . Fhd
T . -
+) "
. e
+ 3
' -~
[} PLANE |
- L)
v A

\ ”,
“\ “\ Ammhu"
. eramsehamavr e
.
.

-

procedure main {}

: procedure sum3 (wx.y.z)
g - é call sum (w.x.z)

call sum3 (a. b, c. d) refﬂi}n sum (z.y.z)
end {d}

procedure sum (m.n.r}
ri=m+n
return

Figure 7.22. Example system dependence graph. Dashed lines with solid arrowheads are interprocedural How depen.
dence summary edges.

- 125~

The first proof of an equivalence theorem for a language with heap allocation and pointer variables was
given by Pfeiffer and Selke [Pfe91a). That paper proves an equivalence theorem for a procedurcless subset
of # The dbr that was used to represent programs in this report, the hpdyg, is essentially an hsdg that lacks
support for procedures and call statements. This report also showed that an hpdg gave an adequate charac-
terization of a program’s slices (cf. §7.1). The proof strategy used in [Pfe91a] is similar, but not identical,
to the one adopted in this thesis. The reduction defired in the earlier report eliminates most—~but not all—
of a program P's freelist-mediated dependences by mainining a separate freelist at each of £’s program

points. More precisely, it eliminates all freelist-mediated dependences of the form p —>, ¢, where p and ¢
are different program points. This partitioning, however, does not eliminate freelist-mediated dependences
of the form p —>, p, where p (e.g.) is a point inside a loop that allocates a structure. Intuitively, such
dependences persist because every point p is associaled with its own fragment of the freelist; the location
allocated by the kth evaluation of a point p is therefore dependent on the location allocated by the k—1st.
The reduction given here removes this restriction by first unrolling a program—thereby ensuring that every
allocation site in the reduced program evaluates no more than once.

Other work on the semantics of dependence-graph representations inclode

s Yang's thesis, which demonstrates the soundness of a dbr-splicing operation known as program
integration [Yan90};

. Selke's program-transformation calculus for pdgs {Sel90a];

. a semantics for prgs, developed by Ramalingam and Reps [Ramg9};

» Pingali e. al.’s soundness of representational soundness for the dependence-flow graph [Pin91]; and

] a report by Binkley, Horwitz, and Reps, which proves an equivalence theorem for sdgs [Bin89].
Binkley er. al.’s proof of the sdg Equivalence Theorem, which reduces two programs with iso-
morphic sdgs to two programs with isomorphic scalar pdgs, inspired the approach to proving facts
about hsdgs used here,

7.6. The Limitations of the /sdg
The hsdg fails W incorporate three recent ideas that have been used to improve the successors of the pdg:

The hsdg uses a program's def-order dependences to depict its behavior.

2. The hsdg provides a non-encapsulated characterization of a program’s dependences: not all interpro-
cedural dependences are captured by nodes that represent the interface between caller and callee.

3. Hsdgs do not use distinct vertices to model distinct values in a program’s initial and final stores.

This section explains how dynamic allocation and reference variables complicate the task of defining a dbr
that meets thesc three goals. The final two sections also propose ideas for future research--speculative
suggestions for developing a dbr that does not suffer (to the same extent) from limitations 1 and 2.

7.6.1. ¢ nodes vs. def-order dependences

The opening of Scction 7.5.1.3 argued that it was advantageous 1o develop dbrs that do nor use def-order
and output dependences to model a program’s behavior. Section 7.5.1.3 also sketched three alternatives 10
using def-order dependences to model program behavior. All three technigues, unfortunately, assume that

i p 9y, g is a def-order dependence, then p and ¢ must lie in disunet basic Mocks: e, that euvher p

- 126 ~

procedure main(} procedure Afref ¢, ref j)
(1] call Ala, b): fpl i=t
{21 call A(a. a): lal 7:=2;
return {r] print{)
refurn

This program exhibils the def-order dependence p —F4,; 9. The brst evaluation of r prints the value defined by
statement p; the second evaluation of r prints the value defined by statement ¢.

Figure 7.23. A program where pass-by-reference parameters give rise to def-order dependences in straight-line code.

must fail to dominate ¢, or ¢ must fail to post-dominate p (cf. §3.4.2). This assumption, however, 15 not
irue of a language in which the locations that two statements name can change, relative to one another, Hfa
procedure P, for example, has reference parameters, then two calls to P that create different aliases can
create def-order dependences in straight-line code. An example of a straight-line def-order dependence is
illustrated in Figure 7.23. In the first evaluation of 4, in which x and y are not aliased, statement r reads the
value that p assigns to x. In the second evaluation of A, in which x and y are aliased, statement r reads the

valye that g assigns to x.

One technique for eliminating straight-line def-order dependences is suggested by Ballance, Maccabe,
and Ottenstein [Bal90]. Ballance er. al. propose that procedure calls that exhibit different aliasing patierns
be treated as calls to different procedures Assume, for example, that procedure A has n reference parame-
ters. Ballance er. al. create a distinct copy of P for every possible aliasing pattern that a call to A could
exhibit. Each of the different copies of A is then anaiyzed separately, under a different assumption about
A’s aliases. Figure 7.24 illustrates their proposed workaround for the program in Figure 7.23,

A major disadvaniage of this technique is the potential for code explosion. Code replication might be
practical when there are only a few vanations in a program’s aliasing pattems. Code replication, however,

procedure main() procedure A, (refl i, ref j) procedure A, (ref i, ref /)
assert |+ ; assert i~}
(1} call A\ (a b pl =1 p} i=1
(21 call Ay(a ay, fql =23 qf =2
return [t} print (i) il print{i}
return return

The expression ¢ ~ j means that variable i is alinsed o vanable 5, ;e that § and j denete the same location.

Figure 7,24. The Ballance-Maccabe Ouenstein technigue for etiminating def-order dependences in straight-line code.
The program depicted above is a revised version of the one depicted in Figure ER R

~ 127 -

appears impractical for pointer programs, since pointer programs can exhibit a myriad of aliasing patterns.
This observation impiies that any attempt to develop a def-order-dependence-free dbr for pointer languages
will have to handle dependences that arise in straight-line code.

7.6.2. Why hsdgs aren’t encapsulated dbrs

Dynamic allocation also complicates the development of an encapsulated dbr for language # To under-
stand why this is so, consider how dynamic allocation complicates the task of describing the following
procedure’s behavior:

procedure copy(p, 43

local Ip, {g;

1] lp:=p:

(2] lg=gq;

(31 while pred do (4] lphd =lg.hd; [5] Ip = iptl; [6} Ig =lgtl od
return

Since statements (5] and [6] are embedded in a loop, no a priori bound can be imposed on the ngmber of
structures that copy might access. This observation implies that a ndg that names every structure that copy
might access could contain infinitely many formal-in and formal-out vertices.

It should be possible to define a mdy that gives an approximate characterization of the set of structures
that copy manipulates. More specifically, it should be possible to extend the definitions of actual-in,
actual-out, formal-in, and formal-out vertices (o obtain new vertices that transfer sets of values across pro-
cedure boundaries. These vertices—call them approximate transfer vertices—would use regular expres-
sions w name the potentially infinite sets of values transferred between caller and callee. Procedure copy,
for example, might be depicted as a Rdyg that has two formal-in vertices, four approximate formal-in ver-
tices, and one approximate formal-out vertex:

One formal-in veriex that initializes p.

One formai-in vertex that initializes g.

One formal-in vertex that initializes p. (1!)" .Ad.
One formal-in vertex that initializes p. (1)" 1.
One formal-in vertex that initializes g. (¢)" .hd.
One formal-in vertex that initiatizes g. (¢)" ¢,

A - L A

One formal-out vertex that finalizes p. ()" Ad.

The practical realization of this idea, however, requires more thought than it can be given at this time. A
second feature of language %, the alias-updating assignment statement, compiicates the choice of a good
set of approximate parameter-transfer vertices for a procadure like copy. A peor choice of approximate
transfer vertices can yield an excessively pessimistic charactenization of a procedure’s semantics. This
would be true, for example. of vertex 7 (above) when the loop at statement [3] never evaluates more than
Wwice. A poor choice of approximate transter vertices can alse yeld an excessively opumistc ife.,
incorrect) characterization of a procedure’s sermantics. This would be true, for example, of vertex 7 when

g s initally atiased to a location i the list headed by p.

— 128 —

7.6.3. Why hsdgs have one initial definition and no final use vertices

The presence of one mitial definition in Asdgs is another concession to the presence of aliases in pointer
languages. Since language H places no restrictions on the aliases in the initial store, it cannot be deter-
mined whether two identifier expressions initially denote the same object.

Final-ust vertices were omitted from hsdgs to simplify the presentation. If an end(- - -) statemnent were
added to language #{’s definition, then a program’s n final-use vertices would be immediately subordinate
to that program’s enter vertex. The effect of final-use vertices could be aiso obtained in a slightly
enhanced version of language that supports print statements (cf. Chapter 8).

OTHER REMARKS ABOUT CHAPTER 7

1t seems reasonable to ask whether it is possible to produce a more elegant proof of the Pointer-Language
Equivalence Theorem. Binkley and Selke, for example, prove theorems about semantic properties of dbrs
by first unfolding a program irrespective of a compultation’s initial store, and then reasoning about how the
resulting infinite program evaluates w.r.L a given initial store [Bin91, Sel90a]. The unfolding transforma-
tions used by Binkley and Seclke, however, exhibit the following, important property: a single unfolding of
a given syntactic construct (e.g., a while loop) yields a new program that has a bounded number of program
points. This is true in part because the languages considered by Binkley and Selke limit the number of dis-
tinct locations that any occurrence of a given program point can access. There is, however, no such a
priori bound on language s nar.s space; a single unfolding of a statement that contains a selector access
expression w.r.t. an infinite name space, for example, would yield 2 new program with an infinite number

of program points.

The main reason for using language § to reason about pointer-program dbrs was that this allowed earlier
results about pdgs 10 be applied 10 the study of pointer-language dbrs. This ability to appeal to earlier
theorems about pdgs—in particular, Setke’s version of the Equivalence Theorem—greatly simplified the
task of proving theorems about hsdgs. There are, on the other hand, two aesthetic objections that can be
raised against this use of language 5. The first is that the map from language /10 language 5 makes the
proof rather complicated. The second objection is that the very idea of a reduction is somewhat distasteful:
it should be possible to reason about # directly, without recourse to an auxiliary language.

The author has not thought very much about alternative strategies for proving theorems about hsdgs. Tt
may be possible, however, to dispense with the reduction by developing a graph-rewriting semantics {or
language #{ The postulated rewriting semantics would be an extension of the pdg-rewriting semantics
developed by Selke {Sel89]. Selke's semantics evaluates a vertex like “x = y” by propagating an updated
value of x to the vertices that are dependent on this vertex. The Asdg-rewriting semantics, on the other
hand, would evaluate assignment statements by propagating an updated fragment of a store graph to a
node’s successor nodes. The tricky thing about developing such a semantics 18 that it would be harder to
characterize exactly how one node affects another: to show, for example. that the resulting semantics 1s
confluent.

-129 -
8. A FEW CONCLUDING REMARKS

[Designing software is}] like a Russian doil. Every time we finally crack open one problem, we find there's
another one inside. —M. Kapor {Wall Street Journal, May 11, 1990]

If a writer has chosen to be silent on one aspect of the world, we have the right to ask him: Why have you spo-
ken of this rather than that? And since you speak in order to make g change, since there is no other way you
can speak, why do you want to change this rather than that?

—J.-P. Sanre, cited in [Kau63]

During the nine months that led up to the completion of this thesis, the author discovered how much of a
gap there can be between a collection of related results ang 2 well-rounded theory. The principal contribu-
tions of this thesis, which are given below, are arguably a solid contribution to the literature on dependence
analysis:

. Chapter 3 develops an alternative definition of def-order dependence: one that is more suitable for
pointer-program analysis than the existing definition of def-order dependence.

. Chapters 3 though 6 develop a broad-based approach for analyzing a pointer program’s data
dependences—one thal separates the mechanism for manipulating abstract states from the policy
used to ensure that analyses terminate.

» Chapters 4 through 6 demonstrate that this approach is safe w.r.t. the example language’s implemen-
tation semantics.

. Chapter 6 sets forth a new scheme for categorizing the various approaches to store approximation,
together with proposed extensions for making k-limiting practical.

. Chapters 7 defines a new dbr for the example pointer language considered in this thesis, and demon-
strates that this dbr gives a sound characterization of a program’s meaning.

. Chapter 7 alsoc demonstrates the importance of a new approach for arguing about dbrs—one that uses
observations about a program’s actual executions (rather than control-flow-graph-based estimates of
its executions) to understand its behavior.

Chapters 2 through 7, however, also point out many important limitations of the theory developed in this
thesis. The first of these limitations, which is mentioned in Chapter 2, is the omission of various common

operators and constructs from the exampie language.

Input and output were omitted from the example language to simplify the discussion of data depen-
dence. Recall that Chapter 3 uses run-time behavior as a basis for determining a program’s heap-
mediated data dependence. This notion of dependence is used because the semantics of pointer assign-
ment makes naive, control-flow-graph-based estimates of heap-mediated dependence unattractive
(§3.4.8). Control-flow-graph-based estimates of a program’s dependences, on the other hand, seem a
more natural starting point for estimating how programs manipalate input and output. The introduction
of a second style of definition into the thesis, unfortunately, would have complicated the presentation,

this thesis because the computation of array-mediated data dependence

Arrays arc not considered in .
this area has already been, and continues to be, an object of

is a challenging subject in its own right; .
extensive study (sce, e.g., [Wol91]). Also, Selke has shown that pdgs provide a sound model of pro-

grams that use arrays; this proof will be presented in her forthcoming thesis [private communication].

- 130 —

Goto statements are not considered in this thesis for two reasons. The first is that Selke also intends
w argue that pdgs can be used o model programs in languages that contain these constructs. A second
reason for not considenng gotos is that use of nonreducible (ie., multiple-entry point) loops {(cf.
[Aho861) complicates the notion of a carrier,

The analysis of higher-order procedures is another challenging topic of research. Reports by
Harrison and Deutsch cited in Chapter 5 propose techniques for analyzing programs in languages that
support higher-order procedures. Another interesting report on the analysis of higher-leve! languages is
Shivers’s approximation semantics for discovering the possible types of variables in Scheme programs
(Shig0]. More study s needed 0 determine whether these techniques, which emphasize the control-
flow-tracing aspect of program analysis, can be integrated with techniques for obtaining accurate esti-
maltes of store configurations discussed in Chapter 6.

One of the most difficult unsolved problems in program analysis is the development of efficient and
effective techniques that support reference arithmetic. One approach to handling pointer arithmetic in
C, discussed by Allen and Johnson, uses heuristics to identify reference expressions that are used to
step through arrays—and to replace these with operations on array indices [Ali88]. (N.B.: Allen and
Johnson also mention carlier algorithms for induction variabic climination by Morel and Renvoise, and
Chow; they state that these algorithms were not efficient enough for their purposes.) A second idea for
handling pointer arithmetic, suggested by Ebcioglu, uses a combination of static analysis and dynamic
reference checking to improve a program’s behavior {private communication]. The static analysis
would make the optimistic assumption that arithmetic operations on pomnters can be replaced by
equivalent, arithmetic-free operations that step through regular structures. The analysis would then
detect those points in a program’s execution at which this assumption might fail. Run-time checks
inserted at points of possible failure would then be used to verify that assumptions about reference
arithmetic are preserved at run-time. This proposal has much in common with recent work on combin-
ing static and dynamic type checking-discussed (e.g.) in a recent paper by Cartwright and Fagan
[Car91],

A second important limitation of this thesis is the lack of attention given (o alfernative characterizations
of program dependence. The algorithms developed in this thesis characterize the dependences that a pro-
gram might exhibit, w.r.t. a standard interpretation of 5 As Section 3.4 poinis out, there are other impor-
tant notions of dependence that these algorithms do not support. These algorithms, for example, do not
identify the set of dependences that a peinter program must exhibit. They also fail to capture a program’s
intended behavior (of. $3.4.9). Both of these goals can probably be accomplished by replacing the abstract
domain used in Chapters 5 and 6 with other, standard domains. More specifically, the interpretation
developed in Chapters 5 and 6, which ignores states that characterize possible errors in a program evalua-
tion, is modeled on a type of abstract domain known as a tower {or Hoare) powerdomain [Son87]. Stan-
dard techniques for modeling intended and must behavior use the convex (or Smyth-Plokin) and upper {or
Egli-Milner) powerdomains, respectively.

The pragmaric aspects of dependence computation have aiso been given short shrift. Chapter 6 observes
that more research should be done on the relative performance of the various lechmiques for csumating
stores. Chapter 6 also observes that the use of hybrid sture estimation technigues—including techmiques

that gencrate regular extimates of o Program’s SLOFEs-—warranis further investigation.

- 131 -

Section 7.6 observes that the hsdg's characterization of program behavior may be too complicated in
practice. Section 7.6 also suggested possible fixes for the Asdg’s two principal problems: i.e., its failure to

encapsulate interprocedural dependences, and its reliance on def-order dependence. These fixes, however,
are merely ideas for future research.

A final limitation of the thesis is its failure to demonstrate the soundness of other common transforma-
tions on dependence graphs: e.g., ransformations that slice and splice dbrs, and transformations that use

dbrs to parallelize a program’s execution. The two principal reasons for not proving additional theorems
about hsdgs are pragmatic.

. Since Chapter 7 is already long and involved, it seemed reasonable to devote a separate report to
these concermns. The author firmly believes that the reduction developed in Chapter 7 can be used to
show that other kinds of transformations on pointer-program dbrs are sound. This belief is based, in
part, on the simplicity of the insight that underlies the proof of the Pointer-Language Equivalence
Theorem: i.e., the observation that assertions about terminating pointer programs can be reduced to
comparable assertions about pointer-free languages.

. Making the effort 10 demonstrate additional theorems about hsdgs also seems inappropriate at this
time. As Section 7.6 observes, the hsdg has important limitations that make it unattractive for certain
types of program analysis. It seems reasonable to address this problem before attempting (e.g.) to
extend Selke’s calculus of pdgs to pointer-program dbrs,

This discussion of open prblems raises a final question about the content of the thesis: why have foun-
dational concerns been stressed at the expense of pragmatic ones? There are two answers (o this question.
The first is that the pointer-program analysis is a broad and complicated subject; the author had hoped to do
more, but simply ran out of time. The second, more defensible answer 1s that the author believed that such
concerns had not been given the attention they deserved, It is certainly important to develop new, more
effective algorithms for estimating pointer-program behavior. It is also important, however, to make sure
that these algorithms are correct—to ensure, in effect, that analyses are not simply generating “abstract
nonsense”. This thesis takes an important step in this direction: it shows that a family of algorithms yield
provably safe estimates of a program'’s behavior, and that these estimates can—with certain caveats about
freelists—be used to reason about program behavior. It is hoped that these results will provide a solid
foundation for the work that must surely follow.,

- 132 ~

9. ACKNOWLEDGMENTS AND DEDICATIONS

I would like to acknowledge ... 1.S. Bach, whose compositions ofien inspired my long hours of composing
{semantic domains, equations, and predicates, that is); and whose music will still be remembered long after
this dissertation has disappeared on some obscure microfilm. —U, Pleban {Ple81]

When ! first read Pleban’s remark, it brought to mind the artists who helped me last through long sessions
at the terminal: George Benson, Art Blakey, Dave Brubeck, Ron Carter, John Coltrane, Paul Desmond,
Duke Ellington, Art Farmer, Erroll Garner, Benny Goodman, Dexter Gordon, Stephane Grappelli, David
Grisman, Vince Guaraldi, Freddie Hubbard, Milt Jackson, Ahmad Jamal, Clifford Jordan, Jay McShann,
Thelonius Monk, Gerry Mulligan, Makato Ozone, Charlie Parker, Art Pepper, Oscar Peterson, Bud Powell,
Django Reinhardt, Wayne Shorter, Michael Urbaniak, and Teddy Wilson—and especially Bill Evans,
whose piano music helped me through long nights at the terminal,

The remaining acknowledgements are more personal. The following individuals are thanked for their
professional help and advice:

. my advisor, Thomas Reps, who impressed on me the importance of thoroughness, correctness, and
attention to detail, and whose insistence on clarity made this a much more readable dissertation;

» Marvin Solomon, who read this thesis, and first brought to Tom’s attention the Jones-Muchnick
paper that led to this work;

. Charles Fischer, who also read this thesis, and first suggested the term “embedding™;

. Richard Brualdi and Susan Horwitz, the other two members of my thesis committee;

. Lorenz Huelsberggen, who read and critiqued early drafts of this thesis;

. Robert Paige, who suggested that I investigate Schwartz’s work;

. Rebecca Selke, without whose help Chapter 7 would not have been written;

. Thomas Murtagh, who took time to send me a copy of Ruggieri’s thesis;

. David Chase, Patrick Cousot, Ron Cytron, Vince Guarna, Laurie Hendren, Flemming Nielson, Uwe
Pleban, Olin Shivers, and Jan Stransky, who generously provided copies of therr work;

. David Chase and Jan Stransky, who also took time to explain fine points of their work;

. Mark Wegman and Ken Zadeck, who shared with me their observations on pointer analysis;

e = Maya Gokhale, Lauren Smith, and the people at SRC, who invited me to speak about these results;

. G.A. Venkatesh, whose helpful observations on semantics finally started to make sense to me this
past year, years after he shared them with me;

. David Binkley and Wuu Yang, who were always ready to discuss their research; and

. The UW computer lab staff, who were quick o answer my many questions about troff and idraw.

The following people, who are connected with the UW—Madison, are thanked for showing me various
kindnesses:

. Professors Jim Larus and Jim Goodman, Tom Ball, Sam Bates, Dave Binkley, Tom Bricker, Bob
Holloway, Lorenz Huelsberggen, Robert Netzer, and Todd Proebsting, who lent emotional support
and encouragment;

. many others—including Mark Allmen, George Bier, Edie Epstein, Mike Franklin, Lou Goodman,
Wei Hsu, Rick Kessler, Sanjay Krishnamurthy, Tripp Lazarus, Gary Lewandoski, Dan Lieuwen,
Olvi Mangasarian, Amarnath Mukherjee, G. Ramalingam, Tony Rich, Cheng Scng, Jon Sorenson,

-133-

Divesh Srivastava, S. Sudharshan, Peter Sweeney, Phil Woest, and Wuu Yang—for simply being the
sort of people who smiled and said “hello” when passing through the halls;

. Verallyn Cline and Bonnie Griswold, for being two of the best instructors and friends that T had
while at the UW; and

. the department’s secretarial staff-~cspecially Laura Cuccia, Lorene Webber, and Lynn White—for
their warmth, efficiency, and friendliness.

I also wish to acknowledge the support of the following people, who are unconnected with the UW-—
Madison:

. My wife, Linda, who encouraged me to return to graduate school at the advanced advanced age of
30, and without whose support I could not have completed;

. my family, especially my parents and my grandmother, who have seen, experienced, and suffered
through so much more than I; and

. the out-of-town friends who made the much-appreciated effort to visit us in Madison: Marilyn
Feldhaus and David Gross, Anne Harnack, Debbic Heylmun, Wei Hsu and Diana Li, Jim McDonald,
Michael and Cindy Loui, David Sherman, and (especially) Chuck and Mary Ellen Netzel.

Finally, I think it appropriate to dedicate this thesis 10 the late Alan Perlis, who raught my first computer
course hack in 1972, and the late David Kamowitz (Ph.D., UW—Madison, 1986), the news of whose death
came as one of saddest surprises of my seven years in grad school.

Until it ends, there is no end.—Cyndi Lauper

But then it’s all over,—Charles Fischer

~134 -

Appendix . A Semantics for Language H

The following is a formal semantics for the language £ Additional remarks follow the semantics.

State = Point x Store X Freelist Freelist =Loc”

Store = Loc -»Struct StructDeclEnv = Type — pwr(Sel),
Struct = Type x Atom x Context X Selmap Context = Point

Selmap = Sel — Loc

The expression pwr{D), where D is a set, denotes the powerset of D.

M, Prog — Store — Store
My{prog, 6)=
let (structdecls, body)=prog in
let body' = expand (initialize {body))
and structDecls = evalStructDecls {structdecls)
and Jf = an infinite, nonrepeating list of locations not in &
in
let evalPgm = fix M f. M {(pt, o,). pt L final — o [| flevalPt({pt, &", 0N
In evalPgm((initial; , ¢, 1))
end’

Function fix is the least fixpoint functional.
The function initialize (text) appends the following three-line statemnent list to fext:

[initial;] initialize ; [initiat,] call main(); [final] skip

The function expand (text) replaces lext with a related program text that “materializes” fext’s points of control:

. Every siatement in fext of the form {p] call A{a. ', a,) is replaced by the following statements:

(p.is] _curr.“_Su = saqveContext [nextp]; J#%* pags return point callee ***/
Jex* [nextp] is point p’s controi-flow successor ***/

[p.iy] _curr._Si =4y ; J** pass actual parameters to callee **¥/
(pin] _cwrr._ B, =da;
[p-c] call A e+ perform the call ek f

. The following sequence of staiements is placed at the head of a procedure A with formals fy * - fa:
[Ai_s] _temp = new(env) ; /#** initialize new local environment Wk f

[Ai,] _temp, prev = _CWrr,

[Ai] _curr = _temp;

[Ado] _curr._callctxt = _curr. _prev. 8 #** ger return point from caller ok f
[Ad] _ewrf= ﬂcurr.jrw._&l H p** get values of formals from caller ***/

(Ai,) currfo= _curr._prev. 8,

. The statement "“[A.f] return” is placed immediately after the final executable statement in the body of A.

- 135 -

/* Aok **f declarations #4#* *** */

evalStructDecls: Decllist — StructDeclEny
evalStructDecls(decllist) =
let evallist =
Jix A f. A (declList, deciEnv).
declList &g — declEnv
[et {decl, decllist") = decllist in

let {type, (sely, «- -, sel,)) = deci
in f(decllist’, declEnv({ sel,, +- -, sel,} / type])
end’

in
let progDecis = evallisi (decllist, A type . @) In progDecis [/ atom] [2/ context]
end"

f* *** program points *** */

evalPt: State — State |
evalPt ((pt, o, fi)) =
case formOf (pt, body’) in

If (cexp), While{cexp): let nextpt; and rexipt s be pt’s true and false control-flow successors
- in (cond (pt, 6, cexp) — nextpty [| nextpt g, <,)
end
Assign (lexp, rexp): let nexipt be pt 's control-flow successor in
let (o, ', sre) = simplexp (pt, o, fl, rexp) In
fet (gt = idexpr (pt, &, lexp) in
let (o, A7, 190 =
((gettype (&', 1g1) =atom — addatom(c’, V', getval (&', 1gt)) [] (o', ', tg1))
in (rextpt, updref (6", src, sel, 2t Y

end’
Call{proc): let nextpt be proc’s entry point in (nexipt, o, f) end
Return(): let retpt = getext (s, idexpr(pt, o, _curr._callctx))

and prevenv = idexpr(pt, G, curr._prev)

and globalEny be o's global environment in
let o = updref (7, globalEnv, _curr, prevenv)
in (retpr, o, M

end’

Initialize () let nextpt be pt s control-flow successor
' and ¢’ beacopyof g
in
let globalEnv be ¢”'s global environment in

let 6" = newref (0, globalEnv, _curr, globaiEny)
in (nextpt, 5", 1)

end’

esac

Function formOf pairs every program point with its associated syntactic construct.

- 136 —
‘I* AR e expressions Ak jokok */
cond : Point xStore x Cond — Bool ;
cond (pt, O, cexp) =
case cexp in
TypeOf (exp,type): gettype(G, idexpr (pt, ©, exp)) = type
Eq(expy, expy): idexpr (pt, O, exp) =idexpr (pt, G, exp,)

Compare (expy, op, expy): let loc, =idexpr (pt, 0, exp,) and loc, = idexpr (pt, G, exp;) in
[gettype (0, loc), gettype (G, locy) } # { atom) — |
[getvai(s, loc,) op getval(o, locy)
end
Not{cexp): — cond (pt, G, cexp)
end

simplexp : Point X Store % Freelist x Exp — (Store x Freelist xLoc)
simplexp (pt, o, fl, exp) =
case exp in

Selexp (sexp): (o, fl, idexpr (pt, ©, sexp))

Atom{a): addatom (G, fl, a)

SaveContext{p): addcontext (G, fl, p)

New (type): tet (gq, fl;, loc) = addstruct (G, fl, type) in
if type Lenv then (oy, fI;, loc)
else

let initfields =fix L f. A (o, U/, selset).
selset = s (o', I, loc)
llet (o, 7, at)y = addatom (¢’, f, nil} in
let sel be an element of sefser in
let 0’ = newref (0", loc, sel, at)
in f{o™, A", selset - sel })
end’
in intfields(oy, fly, structDecls (type))
end
fi

end

Primop (op, expy, '+, exp,):
tet (ay, fl,, loc,)=simplexp (pt, 0, i, exp;) in

let (0., f,, loc,)=simplexp (pt, Go.p, a1, exp,)
in addatom (c,, fl,, oploc,, - -+, loc,))

end
esac

[Rk oRRk prmitive operations on stores ¥k kEx */
updref: Store x Loc x Sel xLoc — Store ,

updref (G, srec, sel, igt)=
{ gettype (O, src) Lenv v sel e structDecls (gettype (G, sre))) —» newref(s, sre, sel, tg) [L

- 137 —

newref : Store xLoc xSel x Loc —» Store |
newref (o, sre, sel, tgty= let (typ, val, cxt, map) =o(src) I ol (typ, val, cxt, map [igt / sel]) / src] end

addatom : Store x Freelist x Atom — Store % Freelist xLoc
addatom (G, f, val) = let (f, loc) = alloc () in (o[(atom, val, 1, 1)/ lec], /', loc) end

addcontext : Store X Freelist X Point — Store x Freelist x Loc
addcontext (G, fl, pt) = let (f, loc) = alloc(fl) In (c[(context, L, pt, 1)/ loc], f, loc) end

addstruct : Store X Freelist xType — Store x Freelist x Loc
addstruct (G, fl, typ) = let (', loc) = alloc (ff) in (s[Cyp, L, L, 1)/ loc}, f', loc) end

idexpr : Point xStore xIdexp — Loc |

idexpr (pt, O, id.sexp) =
let globalEnv be ¢'s global environment
in selexp (G, globalEny, (id € locallds (pt, body’) — _curr.id.sexp [] id.sexp))
end

locallds returns the set of variables that are local at point pt.

selexp : Store x Loc x{Ident +Sel)" — Loc |
selexp (G, loc, sexp) =
sexp e — loc [I let (sel, sexp’) = sexp and map = getmap (o, loc) in selexp (©, map (sel), sexp”} end

gemype : StorexLoc - Type = A(G,loc). let (fyp, , ,)=o(loc) in ryp end
getval : Store xLoc — Atom = As, loc)y . let (_, val, ,)Y=o(oc) in val end

getext : Store x Loc —» Context = A (05, loc) . let (

cxt,)= d(loc) in cxt end

getmap : Store xLoc — Selmap = L (o, loc). et {, _wmap)=a(loc) in map end

alloc : Freelist — Loc x Freelist =, fl . let (loc, AY=f in (loc, '} end

To simplify the semantics, the following variables are weated as global objects:

* body' (defined by M, and manipulated in evalPt and idexpr);
* structDecls (defined by M, and manipulated by updref);

A program point is a unique name associated with each of a program’s assignment statements, if and
while predicates, call, and skip statements. Program points, which are members of domain Peint, are used
to monitor a program’s evaluation. Points initial, initial,, and final are special points that correspond to
steps in a program’s initialization iermination routines, respectively. Other special points are associated
with procedure call and return.

Domain Loc is a domain of objects that “contain” structures. To simplify the semantics, it is assumed
that any loc € Loc can contain any type of structure.

Function M, is the program meaning function. Every initial store o passed to M,, must meet the four
requirements for initial stores given in Chapter 2.

Function evalStructDecls processes a program’s structure declarations. It generates a function,
structDecls, that names, for every user-defined type struct, those selectors that struct accepts. Function

— 138~

evalStructDecl also initializes two built-in types. Thesc types, confext and atom, accept no selectors.

Specially named references in the caller’s environment are used o pass parameters to callees. Reference
8, is reserved for the return context. References 8, -+ _&; are reserved for the first through kth
parameters of subroutine calls, respectively. The assumption that a program point is stored and accessed
like any other atom is another simplifying assumption.

The Initialize case of evalP! handles program initialization. The evaluation of the initial program point
(i.e., the clause “let ¢’ = copy (6)”) creates every object in the program’s store as that program begins its
evaluation.

Function cond evaluates conditional expressions. To simplify the definition of cond, no distinction is
made between the symbol for a comparison operation and the operation per se. Also, the domain of atoms
is assumed to be totally ordered by the relational operators “<”and “>7.

Function simplexp evaluates expressions. The following comments apply to simplexp:

* No distinction is made, in Primop case of simplexp, between the symbol for an operator and the
operator per se.

* The New case of simplexp initializes a non-environment structure s by linking each of s’s ficlds to
new, nil-valued atoms.

Functions addatom and addstruct add new atoms and structures 10 the store. Function newref adds new
references to the store. Function updref updates existing references in the store. Note that updref checks
that the structure named by its Joc argument accepts the structure named by its sel argument.

Functions idexpr and selexp interpret the meaning of selector expressions.

The alloc () function removes the first location from the freelist, and returns this location to the caller.
The definition of alloc () assumes that the freelist is inexhaustible.

- 139 —

Appendix 2. An Instrumented Semantics for Language #

This appendix describes an instrumented semantics for the language # function MI,,. MI,, differs from
M, in the following two regards. MI,, maintains a lazbel function that pairs every non-atomic object o with
the occurrence of the point that created o. M1, also maintains a computation’s occurrence string.

Semantics M1, has four altered and four new domains:

Statey = Point xStore; % Freelist x Occ % Label
Store; =Loc — Struct,

Struct; =Type x Atom x Context, xXSelmap Context, =PointxQcc Occ = Point”
Label =Loc — StructLabel x RefLabel StructLabel = Oce RefLabel = Sel - Qcc

Comments on specific differences between M, and M1, follow the semantics.

ML, : Prog - Store; — (Storey),
M, (prog, &) =
let (structdecls, body) =prog in
let body’ = expand (initialize (body))
and structDecls = evalStructDecls(structdecls)
in
let fI = an infinite, nonrepeating list of locations not in &
and label = A loc . (undefined, A sel . undefined)
and sce =g, the emply occurrence string
in
let evalPgm; = fix A f. A((pt, &, f', label’, oec’)). pt =final - o’ [l flevalPt; ((pt, &, f¥, label’, occ’y))
in evalPgm, ((initial, , o, fi, label, occ))

end’

The definitions of initialize, expand, and evalStructDecls are unchanged from Chapter 2.

— 140 —

/* L LR T prograin pO].ntS ek okl *l

evalPt; : State; —» State;

evalPt; (state) =

let (pt, o, fl, label, occ) = state and piocc = append(occ, pt) in
case formOf (pt, body’) in

If (cexp):

While (cexp):

Assign(lexp, rexp):

Call(proc):

Return():

Initialize () :

esac

end

let nextpty and nexiptr be pt's true and false control-flow successors
In {{cond {pt, 5, cexp) — nextpty {| nextpt), o, fl, label, occ)
end

let nextpiy and nexipt ; be pt’s true and false control-flow successors in
let nextocer = ptocc and nextoce y = removeSuffix (oce, pt)
and bool = cond (pt, G, cexp)

in ((bool - nextpt; [| nextpte), ©, fl, label, (bool — nextoccy (] nextoce)
end’

let nextpt be pt’s control-flow successor in
let (o', f', label, loc) = simplexp (state, rexp) in
let tgr = idexpr (pt, o', lexp) In
let (¢”, fI”, 151" =
((gettype (o', tgt) Eatom — addatom(c’, fI', gervai (o, tg)) | (o', I, 1gD))
in
let (0", label”) = updref (¢, label, ptoce, src, sel, igt)
in (nextpt, &', ", label”, occ)
end’

et nextpt be proc 's eniry point In (nextpt, &, fl, label, ptocc) end

let (reipt, retocc) = getcxt (O, idexpr(pt, &, _curr._callctxt))

and prevenv = idexpr{pt, G, _curr._prev)

and globalEnv be ¢’s global environment in
let (o, label’) = updref (o, label, ptocc, globalEnv, _curr, prevenv)
in (retpt, &, fl, label, retocc)

end’

let nextpt be pt's control-flow successor
and ¢ beacopyof o
and lgbel’ be the function that pairs every accessible non-atomic object in ¢ with ploce
in
tet globalEnv be G5 global environment in
let (o, label”") = newref (¢, label’, ptoce, globalEnv, curr, globallnv)
in (nextpt, o, fl, label”, occ’)
end’

Function formOf pairs every program point with its associated syntactic construct.

The expression removeSuffix (occ. pt) denotes the empty occurrence string iff occ is of the form pt ¥ for some notmega-
tive k. Otherwise, let occ be of the form py --- p,-pt", where pr#p; for some nonnegative & then
removeSuffix(oce, pty=p, -~ pj

— 141 -

R RRE R oxpracsions *HE Rk k[

The definition of cond is the same as in Chapter 2.

simplexp : State; x Exp - (Store; % Freelist x Label xLoc),
simplexp (state, exp) =
let (pt, 0, fl, label, occ) = state and ploce = append(oce, pt) in

case exp in

Selexp (sexp): (0, fl, label, idexpr (pt, G, sexp))
Atom{a): let (o', fI', loc) = addatom (G, fi, a) in (&, f, label, loc) end
SaveComtext (p): addeontext (G, fl, label, ptoce, p, occ)
New (type): let (o, fly, label,, loc) = addstruct (G, fl, label, ptocc, type) in

if rype Lenv then (o, fl,, label,, loc)

else

let initfields =fix A f. A (o', U, label’, selset) .
selset =@ — (¢, ', label’, loc)
(let (o”, £, at) = addarom (o, A, mil) in
let seibe an element of selser In
let (0’”, label”) = newref (0", label”, pioce, loc, sel, at)
In f{o™, f”. label”, selset — { sel })
end’
in initfields(o, fi, label, structDecls (type))
end

i

end
Primop (op, expy, *+*, exp,):

let ((oy, i, label)), loc|) = simplexp (state, exp,) in

let {(,, A, label), loc,) = simplexp {(pt, Gn1, fla1, label,_y, occ), exp,) In
let (o7, ', loc) = addatom (o,, fl,,, op{loc,, -+, loc,))
in (o', f', label,, loc)
end’
esac
end

JH #E¥ SRRk primitive operations on stores ¥k* kxk xf

updref : Store; x Label x Oce xLoc x Sel xLoc — (Store; x Label),

updref (o, label, ptoce, src, sel, tgt) =
if (gettype (o, src)=env v sel & structDecls (gettype (0, src))) then newref(o’, label’, ptoce, sre, sel, 1g1)
else |
fi

nawref Store, x Label x Qcc x Loc X Sel xLoc — (Store; x Label)|
newref (G, label, ptoce, src, sel, tgt) =
let (1ype, val, cxt, map) = o{sr¢) and {(srcdef, refdefs) = label(src) in
let newstruct = {type, val, oxt, map [tgt / sel]) and newib! = (srcdef, refdefs{ptocc / sel])
in (of newstruct / src], label [newlbl | sre])
end*

- 142 ~

addstruct : Store; x Freelist x Label % Oce X Type — Store; % Freelist x Label xLoc
addstruct (o, fl, label, ptoce, ype)
let (', loc)= alloc (1) in
let newstruct = (type, 1, bottom, 1) and newlbl = (ptoce, A sel . &)

in (of newstruct / loc), f7, label [newibl | loc |, loc)
end”

addcontext : Store; x Freelist x Label x Occ, x Point % Oce —» Storey % Freelist xLoc
addcontext (0, fl, label, ptoce, pt, occ)
let (fT, loc)= alloc (1) in
let newstruct = (context, L, (pt, occ), 1) and newibl = (ptoce, A sel . &)
in (o] newstruct / loc |, ¥, label | newibl / loc), o)
end”

The definitions of addatom, idexpr, selexp, getiype, getval, getext, and getmap are similar to the ones given in Chapter
2. The instrumented semantics’ versions of these functions accepts a member of Store; as a parameter.

The definition of alfoc is unchanged from Chapter 2.

M1, proper differs from M, proper in two ways. MI,; passes an initial label and occurrence string to
evalPgm;. evalPgm; then passes the current label and occurrence string to evalPt;.

evalPt; differs from M,’s version of evalPt; in the following ways:

. evalPt; accepts, and returns, instrumented states.

. The interpretation of the while statement updates a computation’s occurrence string.

. The interpretation of the return statement restores the previous occurrence string.

. The interpretation of the initialization statement affixes creation labels to newly created objects.
. Labeling information is passed to simplexp and updref.

simplexp differs from M,,’'s version of simplexp in the following ways:

. simplexp accepts an instrumented state, and returns an updated labe! parameter.
. The interpretation of the saveContext operator saves the current occurrence string.
Labeling information is passed to addstruct and newref.

The mstrumented semantics’ versions of updref, newref, and addstruct update program point labels on
newly defined objects,

— 143 -

Appendix 3. An Approximation Semantics for Language

The following is an instrumented approximation semantics for language % This semantics is discussed in
Section 5.1.

State , = Point x Store, x Freelist x Label A X0cc,

Store, =Loc — Struct,

Struct, = Kind x pwr(Type) x pwr(Atom) x Context a4 XSelmap
Selmap =Sel x Int 5 Loc

Label, =Loc — RefLabel, x Sell abel,,

Reflabel, =pwr(Occ,)

SelLabel, = Sel xdnt — pwr(Occ,)

Occ 4 is the domain of program-point regular expressions

MAy: Store, — pwr(Store,)
MA (prog. o) =
let (structdecls, body) = prog n
let body’ = expand (initialize (body))
and structDecls = evalStructDecls(structdecls)
in
let fI = an infinite, nonrepeating list of locations not in &
and label = A loc . ({ undefined |,) sel . { undefined })
in
let evalPgm, = fix A f. A (curr,, iterct).
let next, = union_from state & curr, : evaiPt, (state) in
let next’, = V{iterct, next,) in
next’. T curr, ~» curr, || S (next’,, iterct +1)
end’
in evalPgm, ({ {initialy, o, f1, label, £) L O

end

The definitions of evaiStructDecls, initialize, and expand are the same as in Chapter 2.

The ¢ relation identifies pairs of states that are redundant from the staidpoint of dependence computation. A
definition of © is given in Appendix 4.

The operator ¥ has the signature Nat x pwr(State) — pwr(State,). Itis assumed that V is extensive wI.l. T 1 ie.. that
next, o V{i,next,) for all i € Nar and all next, e pwr(State,). Tt is also assumed that V ensures that £ terminates on

O: e.g., by limiting the number of structures in stores, or by limiting the number of steps in an analysis. Possible
definitions for V are given in Chapter 6.

— 144 —

evalPt, : State, — pwr(State,)
evalPt, (state) =
let {pt, G, fl, label, occ) = stmt and ptoce = append(oce, pi) in
case formOf (pt, body') In

If (cexp):
let nextpty and nexipty be pt *s true and false control-flow successors In
let states,r = condy (pt, G, coxp) -» {(nextptr, &, A, label, 0cc)} | @
and states,p = condy (pt, G, cexp) —» { (neaptp, &, fl, label, occ)} (| @
in stares, v states,
end
While (cexp): .
let nextprr and nexipty be pt 's true and false control-flow successors
and nextoccy = piocc and nextocc = removeSuffix(occ, i)
in
let stares.t = condr(pt, G, cexp) — ((nextpty, &, A label, nextoccp}) [| @
and states.p= condy (pt, G, cexp) ~ {(nexipty, o, A, label, pextoce)Y | ©
In states,; U stares,p
end*

Assign (lexp .sel, rexp):
let nextpt be pt 's contro! flow successor in
union_from (o', ', label’, rvloc) € simplexp, (pt, state, rexp) :
union_from Ivloc € idexpr, (pt, o, lexp):
union_from (o™, A", label”) € updref(a’, ', label’, ptoce, vloc, sel, rvioc) .
{ {(nexipr, 67, ", labet”, occ))
end

Cali(proc): let nextpt be proc’s entry point in { (nextpt, ¢, fl, label, ptoce))} end
Return():
union_from cxrloc € idexpr, (pt, o, _curr, calletxr) :
union_from (retpt, apxocc) & getcxe, (G, extloc) ;
union_from prevenv ¢ idexpr, (pt, G, prev)such that consistent (retpt, label, prevenv) :
let globalnv be ¢"'s global environment in
“let (o7, label)= updref (o, label, ptocc, globalEny, _eurr, prevenv)
in {(retpt, &', fi, label’, apxoce)
end”
Initialize () :
let nextpe be pi's control-flow successor
and ¢ be acopy of
and label’ be the function that pairs every accessible non-atomic object in ¢ with { procc }
in
let globalfnv be ¢”’s global environment in
let (0", label") = newref (&, laberl, ptoce, globalEnv, curr, globalEnv)
in {(nexipt, &, fi, label, occ’y)
end’
esac
end

Function formOf pairs every program point with its associated syntactic construct.

The predicéte consistent (reipt, label, prevenv) is true iff retpe is a point in procedure P and prevenv's creation-point
label implies that prevenv might have been created by P.

~ 145

/* Aok ok expressions Ak drojeske */

condy : Point x Store, x Cond —s Bool
condr (pt, O, cexpy=

case cexp in

TypeOf (oxp.type): 3 loc e idexpr, (pt, &, exp) i maybe_oftype(o, loc, type)
Eq(expy, expy):
let may_coincide = A (loc”, loc”). loe' Sloc™
in 3 loc, g idexpr, (pt, ©, expy) : 3 locy € idexpr, (pt, 6, exp,) : may_coincide(loc, loc,)
end
Compare (exp,, op, exp,):

let may_satisfy = A (loc’, op', loc”) . truee (getval,

(0, loc’) op’ getval, (o, loc”))
in

3 locy € idexpr, (pt, o, expy): 3 locy & idexpr, (pt, o, expa):
maybe_atom (G, loc,) A maybe_atom(Q, loc;) A may_satisfy(loc,

op, locy)
end
Not (cexp): cond ; (pt, G, cexp)
esac
cond . : Point x Store, x Cond — Bool
condg (pt, 0, cexp) =
case cexp in
TypeOf (exp,type): I loc idexpr, (pt, G, exp) maybe_not_ofiype(o, loc, type)

Eq (expy, expy):
let may differ = A (o, loe, loc™),

in 3 loc, € idexpr, (o1, o, exp,
end

loc” # loc” v (lpe” & loe” A is_summary (&, loc")
)1 3 locy € idexpr, (p1, o, exps) s may_differ(a, loc , loc 1)

Compare (expy, op, exp,):

let may_not_sarisfy = A (loc’, op’, loc”™). falses (getva

L4 (o, loe”y op’ getval, (o, loc™))
in

3 loc, € idexpr, (pt, o, expy): 3 loc, € idexpr, (pt, o, exp,):

maybe_atom (g, loc,) A maybe_atom (o, loc;) A may_not_satisfy(loc , op, loc ;)
end

Not (cexp): condy (pt, G, cexp)
esac

— 146 —

simplexp, : State, X Exp —> pwr(Store, % Freelist x Label, xloc)
simplexp, (state, exp) =

let (pt, 0, fl, label, occ) = state and procc = append{occ, pt) in

case exp in
Selexp (sexp): union_from loc € idaicprA (pt, G, sexp}: { (G, fl, label, loc))
Atom{a): let (o', f', locy= addatom, (G, fl, a) in {(a", f', label, loc)}
SaveContext(p): | addeontext, (o, fl, label, pioce, p, occ)}
New (type) : let (&, fy, label,, loc) = addstruct, (o, fl, label, ptocc, type) in
if type Lenv then {(o,, i1, label,, loc)}
else
let initfields =fix A\ f. A (0, ft', label’, selset) .
selset E 3 — { (0, JE, label, loc))
fllet (o”, fI”, at) = addatom, (o', fI', nil) and sel be an element of selset in
let (077, label”Y = newref (0", label’, ptoce, loc, sel, at)
in f(o”, fi”, label”, selset — { sel })
end
in initfields(oy, 11, label,, siructDecls (type})
fi
end
Primop (op, expy, ** -, &xp,):

union_from (o, fl,, label\, loc) e simplexp . ((pt, G, fl, label, occ), exp,) -

union_from (<, A, label,, loc) e simplexp, ((pt, G, 1, i, label, |, ccc), exp,):

let (o', f', loc") = addatom, (o,. i, opllec,, - - -, loc,))

in { (o', /7, label, loc’) }

end’
es5ac

end

[* *% primitive operations on stores ¥ */

addatom , : Store , x Freelist x Atom — Store , x Freelist xLoc
addatom, (o, fl, val) = let (', loc) = alloc (1) in {(oi(ordinary, oype, val, |, 1)/ loc), f, loc) end

addstruct . : Store, x Fraelist x Label, x Occ % Type — Store, x Freelist xLabel , % Loc
addstruct, (o, fl, label, ptoce, type) =
let (f, loc)= alloc (fI} in
let struct’ = (ordinary, type, 1, A, L) and structlb! = ({ ptoce }, A (sel, int) . 2Y)
in (ol struct’ / loc |, fI', label[structibl’ | loc §, loc)
end’

addcontext , 1 Storey x Freelist x Label, x Occy X Point x Occy — Store, X Freelist x Label y x Loc
addcontext, (o, fl, label, ptoce, retpt, retocc) =
let (ff, loc)= ailoc(fl) in
let struct’ = (ordinary, context, L, (retpr, retocc), L) and structibl’ = ({ ptocc }, k (sel, idx) . &)
in (of struct’ 1 loc), ', label(structlbl’ | loc), loc)
end®

- 147 —

updref : Store, x Label,, x Oce 4 xLoc % Sel xLoc — pwr(Store, x Label)
updref (0, label, oce, sre, sel, tgt) =

if @oypee gertypéA (0. src} : sel € structDecls (type)) v maybe_oftype (G, src, env) then

if is_summary (o, src) then | updswrnnary (G, label, oce, src, sel, tgt)}
else { updordinary (o, label, occ, sre, sel, tgt)}
fi

else &

fi

updsummary : Store , x Label, x Oce, xLoc xSel xLoc —» Store, x Label,
updsummary (6, label, oce, sre, sel, tet) =

let (kind, types. val, cxt, map) = o(sr¢) and (structdefs, refdefs) = label(src)

In
let idx = If 3 j:map (sel, j)=1tgr then j else any j such that map (sel, j)=1 fi
in
let map” = map(tgt/(sel, idx)] and refdefy = refdefs[refdefs(sel, idx} v { occ } I (sel, idx))
in
let struct’ = (kind, types, val, cxt, map") and structibl’ = (structdefs, refdefs
in { (clstruct’ 1 src), label{structlbl srel) }
end’

updordinary : Store, x Label, x Occ, x Loc xSel x Loc — Store,, xLabel,
updordinary (G, label, oce, sre, sel, tgt) =

let (kind, types, val, cxt, map) = o(src) and (structdefs, refdefs)y = label(src)
in

let map” =& (sel', idx') . sel’ # sel —» map (sel, idx) {

and refdefs’ = A (sef, idx') . sel # sel — refdefs (sef, id<) [| @

in
let struet’ = (kind, types, val, cxt, map’) and structibl’ = (structdefs, refdefs’)
in
newref ((Glstruct’ | src), label{structlbl’ | src)), oce, sre, sel, tgt)
end’

newref : Store , x Label , X Occ x Loc x Sel x Loc ~» Store,, x Label,

newref (G, label, curroce, sre, sel, tgt) =
let (kind, type, val, cxt, map) = o(src) and (structdefs, refdefs) = label (src)
in :
let map” = map [tgt / {sel, 0)) and refdefs = refdefs[| curroce } / (sel, 0]
in

tet struct’ = (kind, rypes, val, cxt, map’) and structlbl’ = (structdefs, refdefs")
in

(a(struct’ 1 src), label[structibl | srely
end’

—~ 148 —

idexpr . Point xStore x Idexp — pwriloc)
idexpr, (pt, G, idsexp) =
let globalEnv be ¢'s global environment
in selexp (6, globalEny, (id € locallds(pt, body’) — _curr.id.sexp) id.sexp))
end :

selexp , : Store, xLoc x{Ident +Sel)” — pwr(Loc) - .
selexp , (0, loc, sexp) =
sexp Le - {loc }
0 let (sel, sexp’)=sexp and map = getmap, (0, loc) in
union_from i such that map (sel, iy= L selexp, (o, map (sel, i), sexp’)
end

is_surnmary : Siore, xLoc —» Bool = A(0, loc) . getkind, (state, loc') = summary

maybe_atom : Store, xLoc — Bool = \(0,loc). maybe oftype (0, loc, atom)

maybe_not_oftype : Store, xLoc xType — Bool = W (0, loc, type) . 3 type' gettype, (0, loc) 1 type” # type
maybe_oftype : Stare, xLoc xType — Bool = A(g, loc, type) . type & gettype, (o, loc)

getkind, : Store s xLoc — Kind = A (0, loc). let (knd, = v+ _)=0(loc) in knd end
gettype, : Storey xloc - Type = A(o,loc). let (, typ, , ,)=a(loc) in typ end
getvaly : Storey xLoc — Atom = X (6, loc). let (_, ,val, ,)Y=o(loc) in val end
getexty : Store, xLoc — Contexty = (o, loc). let (, , , ext, _J=0lloc) in cxt end
getmap, : Store, xLoc — Selmap = X (0, loc) . let (+ _+_» _omap)=0d(loc) in map end

alloc : Freelist — Loc xFreelist=A fl . let (loc, A= fl In (loc, ') end

~149 -

Appendix 4. Abstraction and Subsumption Relations

This appendix formally the abstraction and subsumption relations introduced in Chapter 5. The first rela-
tion, B>, relates objects in the instrumented semantics to abjects in the approximation semantics.

DEFINITION (fype abstraction). Let a be a type, and bset a set of types. Then bset abstracts a, written
a > bset,iffa € bser. [

DEFINITION (value abstraction). Let a and b be atoms. Then b abstracts a, written g > b, iffa=5 or
b=TH, O

DEFINITION. Let apxocc € ApproxQcc be an approximate occurrence string. Then L (apxoce) denotes
the family of program-point strings denoted by the regular expression apxocc. 0O

DEFINITION. Let apxoccset € pwr(ApproxOcc) be a set of approximate occurrence string. Then
L {apxoccset) denotes the union, over all apxocc in apxoceset, of L (apxocc).

DEFINITION (occurrence string abstraction). Let occ e Oce, and oce A € ApproxOcc. Then occ,
abstracts occ, written occ © occy, iff occ € L{oce,). O

DEFINITION (occurrence string abstraction). Let occ € Oce, and 0CC.q € pwriApproxOce). Then

0cC.p abstracts occ, written occ > occ.,, iff oce € L(oce,). O

DEFINITION (context abstraction). Let cxt = (pt, occ) e Contexty, and cxty = (pt4, occy) € Context,,.
Then cxt, abstracts cxt, written cxt & cxt,, iff pt = ptaand occ &> occy. O

DEFINITION (context abstraction). Let cxt = (pt, occ)e Contexty, and cxt,, € pwr(Context). Then

CXt. 4 abstracts cxt, written cxt O ext.,, iff there exists a cxt, € ¢xt, 4 such that cxr > exty, O

DEFINITION (admissible map). Let f: Loc — Sel — (Loc % Sel xInt) be a map. Map fis admissible iff
for all loc € Domain (f), and all sel, and sel, € Domain (f (loc)),

* f (oc, sel,) is of the form (_, sef;,).

* floc, sef }isof the form (loc”, ,) = f (loc, sel,) is of the form (oc’, ,). O

[ntitively, an admissible map is a map from structures and references to structures and references
that preserves the type and the source node of every reference. Every f of the form
Loc — Sel — (Loc x Sel xInt) defined below is assumed to be admissible.

DEFINITION (furuce, frep). Lt f: Loc —Sel — (Loc xSel xInt) be a map, and loc € Domain (f). Let
sel € Sel be any selector in Domain (f (loc)) and f (loc, sel) = (loc’, sel’, "), Then Fstruee l0c) denotes
loc’, and £, (loc, sel) denotes (sef’, i). O

DEFINITION (type, atom, ctxt, ref). Let oe Swre;. Let loc € Domain (o) be a location in o. Let
{typ, atm, cxt, map) = o(loc). Then type (loc) denotes typ; atom (loc) denotes atm: ctxt {loc) denotes
cxt, and ref (loc, sel} denotes map (sel). [

DEFINITION (kind, type, atom, ctxt, ref). Let o€ Store, and loc € Domain (). (N.B.: the definitions
of Storey, Labely, and the other domains of abstract objects are given in Appendix 3.) Let
(knd, typ, atm, cxt, map}=c(loc). Then kind (loc) denotes ind, type (loc) denotes typ; atem (loc)
denotes ann, ctxt (loc) denotes ctxe; and ref (loc, sel, i) denotes map (sel, i). (3

o

—150 —

DEFINITION (kind-preserving). Let se Storey and o, € Store,. Let f: Loc — Sel — (Loc x Sel xInt)
map G 10 g4. Then fis kind-preserving iff, for all loc and loc” € Domain (f),

" kind (foe (00)) = ordinary = £, (l0c) # f, (loc). 0O

DEFINTTION (type-preserving). Let oe Store; and o, € Store a- Let f:Loc — Sel — (Loc x Sel xInt)
map G 10 G, Then fis fype-preserving itf, for all loc € Domain),

* opelloc) > type (fune (loc)). 0O

DEFINTTION (atom-preserving). Let o€ Store; and Op € Store,. Let f: Loc ~— Sel — (Loc x Sel xInt)
Map G o o,. Then fis atom-preserving ift, for all loc e Domain (f),

* type (loc) = atom = atom e 1¥pe (f conier (loc)) A atom (o) B atom (fomee (loc)). T

DEFINITION {context-preserving). let oe Store; and o,e Stores. Let f:Loc —3Sel
(Loc x Sel xInt) map ¢ to G,. Then fis context-preserving iff, for all loc € Domain {7y,

* type (loc) = context = context e 1P€ (feoruer (o)) A ctxt (loc) B> ctxt (forn (loc)). O

DEFINITION (reference-preserving). Let oe Store; and o, € Store A Let f:Loc—Sel -
(Loc xSel xInt) map o to G4. Then fis reference-preserving iff, for all loc e Domain (f) and all
sel € Domain (f (loc)),

¥ oo (ref (loc, sel)) = 7ef (fstruee (l0C), sEI°,), Where (sel', i) = for Uoc, sel). 3

DEFINITION (store abstraction). Let e Store 1 and o4 € Store,. Store Ca abstracts o, writien

o & oy, iff there exists 3 map f: Loc — Sel — (Loc % Sel xfnt) such that

* S maps every accessible structure and reference in o into Ca;

* f'maps o’s global environment to G4’s global environment; and

* fis kind-, type-, atom-, context-, and reference-preserving.

DEFINITION (labeled store abstraction). lLet Is = (q, label) € Store; x Label and Isq = (o4, label ;)

€ Storey X Label,. Labeled store Is4 abstracts Is, written ls > Isq, iff there exisis a map

fiLoc — Sel — (Loc x Sel x{nt) such that

* ol o by £

* for all locations loc € Domain (), type(loc) = atom = lapel {loc) > label , Fsmuec(loc)); and

* for all locations loc € Domain (f) and all sel € Domain (f (loc)),
label (loc, sel) & label A Fsmue(loC), s€l’, 1), where (sel’, i) = FreeUoc, sel). 0O

DEFINTTION ~ (state abstraction). Let state = 1,0, A, label, occ) e State; and stare A=
(Pta, G4, fla, labely, occy) & State . State state, abstracts state, written state © state,, iff pt=pt,,
(0, label) > (oy, label), and occ > occy. 3

DEFINITION (stateset abstraction), Let state, e pwr(State;) and swate,, e pwr(State ;). Stateset
state,, absiracts state., written state, > state.,, iff for all state € state, there exists a

Staie, & state,, such that state; > state,. [

The second relation, C , relates objects in the approximation semantics to objects in the approximation
semantics.

DEFINTTION (type subsumption). Let aset and bset be sets of types. Then bset subsumes aset, written
aset C bset, iff aset < bser. 0

—-151 -

DEFINITION (value subsumption). Let a and b be atoms. Then b subsumes a, wrilten a T b, iff either
a=borb=TAT [

DEFINITION {occurrence siring subsumption). Let apxoce and apxocc’ € ApproxOcc. Then apxocc’
Subsumes apxoce, written apxoce S apxocc’, iff L{apxoce) < L {aproce). O3

DEFINITION (occurrence string subsumption). Let apxocc, and apxocc’, € pwr(ApproxOcc). Then
apxocc’, subsumes apxocc, , written apxocc. C apxocc’, ,iff L (apxoce,) < L{apxocc’,). O

DEFINITION (confext Subsumption). Let cxt = (pt, occ) and cxt’ = (pt ,occ’) € Context 4. Then cxt” sub-
Sumes cxt, written ext T cxt’, iff pt = pt and occ C occ’. I

DEFINITION {(context subsumption). Let ¢xt, and cxt’, € pwr(Context,). Then cxt’, subsumes cxt,,
written cxt, C cxt’, , iff for all exr e cxt, there existsa cxt’e cxt’, such that cxt’ cxr’. [J

DEFINTTION (admissible map). Let f:Loc —Sel »Int — (Loc x Sel xInt) be a map. Map fis admissi-
ble iff for all loc € Domain (f), all sel, and sely € Domain(f (loc)), all i 1 € Domain (f (loc, sel,)), and
all i, € Domain (f (loc, seloy)),

* foc, sel|,i,)is of the form (_ sely,).

* f(oc, sely, i) is of the form (loc”,) = f(loc, sely, i,) is of the form (o', ,). O

Every fof the form Loc — Sel — Inf - (Loc % Sel xInt) defined below is assumed 1o be admissible.

DEFINITION (f,pruees Srep). Let f: Loc — Sel — (LocxSel xInt) be a map, and loc € Domain (). Let
sel € Sel be any selector in Domain (f (oc)), i be any integer in Domain {(f (loc, sel)), and f (loc, sel) =
(loc’, sel’, I'). Then f ., (loc) denotes loc’, and f s (loc, sel, i) denotes (sel',i., O

DEFINITION (kind-preserving). Let ¢ and o e Storey. Let f: Loc — Sel - [nt —» (Loc x Sel x{nt) map
oto o’ Then fis kind-preserving iff, for all loc and loc’ € Domain),
* kind (f ey (foC)) = ordinary = kind (Joc) = ordinary A f,,.. (loc)# Sstree o™, 0O

DEFINITION (type-preserving). Let ¢ and o € Store ar Let f: Loc > Sel —Int — (Loc x Sel xInt) map
o to¢’. Then fis type-preserving iff, for all loc € Domain (),

Y opelloc) T type (fopy (oc)). O

DEFINITION (atom-preserving). Let ¢ and o’ e Stores. Let f:Loc —Sel —Int — (Loc x Sel xInt)
map < to ¢, Then fis arom-preserving iff, for all loc € Domain (f),

* atom e type (loc) = atom e 130€ (F srue (10C)) A atom (loc) T atom(f e (locy). O

DEFINITION (context-preserving). Let o and o € Stores. Let f: Loc — Sel —» Int — (Loc x Sel < fnt)
map ¢ o o’. Then fis context-preserving iff, for all loc € Domain (f),
* context € type (loc) = contexte ¥pe (Fsmeer (l0C)) A ctxt (loc) T ctxt Force (loc)y. 0O

DEFINITION (reference-preserving). Let ¢ and o’ € Store a- Letf:Loc — Sel - Int — (Loc x Sel xInt)
map o to ', Then fis reference-preserving iff, for all loc € Domain (f), all sel € Domain (f (loc)), and
all i € Domain (f (loc, sel)),

Fstruct (ref (loc, sel, D) = ref (e, (loc), sel’, 1), where (sel’, i) = f,¢ (loc, sel, i), 17

DEFINITION (store subsumption). Let ¢ and & Store,. Store o subsumes o, written o C o, iff
there exists a map f: Loc — Sel — Int — (Loc % Sel X Int) such that

- 152 -

fmaps every accessible structure and reference in & into o”;
fmaps ¢’s global environment to ¢”’s global environment; and
* fiskind-, type-, atom-, context-, and reference-preserving. [J

DEFINITION (labeled store subsumption). Let Is = (o, label Yand Is” = (&, label”) e Store 4 X Label, be

labeled stores. Labeled store IS subsumes Is, written [s C Is', iff there exists a map

FiLoc —»Sel —Int — (Loc x Sel X Int) such that

* CLC gbyf;

* for all locations loc & Domain (F) typeloc) # {atom)} = label(loc) T label (f . {loc)); and

* for all locations loc € Domain (f), all sel € Domain (f (o)), and all i € Domain (f (oc, seh)y,
label (loc, sel, i) C label 4 (Fowuce (o), 560, 1), Where (sel’, i = JFreeUloc, sel,). 0O

DEFINITION (state subsumption). Let state = (pt, o, A, label, occ) and state’ = (pt', &, ', label’, occ
€ State,. State state’ subsumes State, written state C state’, iff pt = pr, (o, label) C (o, label ", and
ecc T occ”. O

DEFINITION (stateset subsumption), Let state, and state’. € pwr(State). Statcset state’, subsumes
State,, written state, C state’,, iff for all State € state, there exists a swte’e state’, such that
state C state’., [

- 1583 -

Appendix 5. The Monoctonicity of evalP1,

This appendix demonstrates that MA.,/'s state transition function is monotonic w.r.t. C . Theproofisbya
series of lemmas that characterize the various components of evaiPt,’s definition.

LEMMA A.1 (monotonicity of getkind,, etc.). If 6 © o by fand loc € Domain (f), then

* getkind(s, loc) T getkind(o’, fpue: (loc));

¥ geype(o,loc) T gettype(S, fiup (l00));

* atom € getiype(0, loc) = getval(o, loc) C getval(, fopme (o));

* context € gettype (o, loc) = getcxt(o, loc) T getext(S, f o (00));

For all (sel, i} & Domain (f (10¢)), f et (map (sel, 1)) = map'(sel’, i"), where map = getmap (6, loc),
map’ = getmap (&, fome: (foc)), and (sel’, i) = Frgtloc, sel, i),

*

PROOF. Immediate from the definition of C . (N.B.: fipue and frep» which identify the structure-specific
and reference-specific parts of an embedding, are defined in Appendix 4.) [J

LEMMA A2 (monotonicity of maybe_atom, etc.). If 6 © &’ by fand loc € Domain (f), then
* maybe_atom (o, loc) = maybe_atom (&, foger (l0C));

* maybe_oftype (3, loc, type) = maybe_oftype (&, fane: (l0¢), type);

* maybe_not_oftype (G, loc, type) => maybe_not oftype (&, f et (l0C), type);

* is_summary (G, loc} = is_summary (&, f e ({0C)).

PROOF. Immediate from Lemma A.1 and the definitions of these four functions. [

LEMMA A.3. (monotonicity of selexp,). If o o by f and loc € Domain(f), then, for all sexp,
loc i € selexp, (G, loc, sexp) = fopme (loc 1ge) € 5elexp 4 (O, foruer (lo€), sEXP).

PROOF. By induction on the length of sexp.

If sexp=c¢, the empty selector string, then selexp, (o, loc, sexp) = loc and
selexp 5 (G, fopuer (l0C), s€XPY = f o, (loC).

If sexp is nonempty, let sexp be of the form sel.selexpr, where selexpr is possibly empty, and assume
that Lemma A.3 holds for selector expressions of length selexpr. If loc lacks a selector sel, then the
lemma is immediate. Otherwise, assume that the integers i, - - - {; denote valid selectors of type sel at
loc. Let these sclectors denote the locatons loc, - - - locy, respectively. Then
selexp , (o, loc, sel selexpr) is defined 10 be selexp, (0, loc |, selexpr) v

w selexp 4 (0, locy, selexpr). However, by the definition of T , £y, (foc) has references of type sel to
Sfsouee (OC)+ Fsiruce {10C). Then selexp, (0, loc, sel.selexpr) is a subset of

selexp 4 (&, fomue (l0Cy), selexpr)y o <+ U selexp (0, f e (l0C), selexpr). Lemma A3 now fol-
lows from the induction hypothesis. [

LEMMA A4 (monotonicity of idexpr,). 1f o C o by f and loc € Domain(f), then, for afl sexp,
loc g € idexpr, (pt, O, 5exp) = f i (I0C) € idexpr 4 (pt, &, sexp).

PROOF. Immediate from Lemma A.3 and the fact that the subsumption relation maps the global environ-
ment of g to the global environment of . O

LEMMA A.5 (monotonicity of newref). Let (o, label) © (o, label”) by f. Let occ T oce’. Let sre and gt
be in Domain(f). Assume that sr¢ has no selectors of type sel. Then

- 154 —

newref (0, label, acc, sre, sel, tgr) C newref (o, label, occ’, f e (57¢), s€l, et (tg1).

PROOF. Immediate from the definition of C . The new f maps (src, sel, 0} 10 (fomeer (7€), 5€1, 0) and is
otherwise unchanged. [

LEMMA A.6 (monotonicity of updordinary). Let (o, label) C (o, label’) by f. Let oce T oce’. Let sre
and gt be in Domain (f). Assume that Jotmce (57C) I8 an ordinary node. Then
updordinary (c, label, occ, sre, sel, tgt) © updordinary (&, label’, occ’, Fstrucr (7€), 5L, f e (t2)).

PROOF, Let struct = (kind, iypes, vai, cxt, map) =o(src) and (structdefs, refdefs) = label(src). Let
struct ,,,, be the updated struct obtained by setting all sel components of map to 1. Let lubel,,, be the
updated /abe! obtained by seting all se/ components of label o the cmpty set. Let
struct’ = (kind', types’, val’, cxt’, map’) = O(f ynies (57¢)), and (structdefs’, refdefs'y = label (f e, {src)). Let
SIrUCt np,, be the updated struct obtained by setting all se/ components of map’ o 1. Let lgbel’,,,, be the
updated /abel” obtained by setting all se/ components of label’ to the empty set. Since fi,.., (src) is an
ordinary node, src, by definition of subsumption, is the only node that is mapped to fy.., (src). Hence, by
the definition of subsumption, (Cnews label 1)) T (S s label,,.). Lemma A.6 now follows from Lemma
A.S5, since updordinary calls newref 10 add the new reference. [

LEMMA A.7 (monotonicity of updsummary). Let (o, label) © (¢, label Dby £ Letocc © occ’. Let sre
and tgr be in Domain (f). Then updsummary (c, label, occ, sre, sel, 1gt) © updsummary (<, label’, occ’,
Fstruat (s7C), sel, Fstruce (£81)).

PROOF. The new f maps the edge from sef 1o ‘gt added to g to the edge from f,,,.. (sre) to Fsrmuer (180
added to ¢’. The updated label’ subsumes the updated label because the new edge from f,,. (src) to
fsouee (181) is labeled { occ” }, and the new edge from src to gt islabeled {occ). O

LEMMA A.8 (monotonicity of updref). Let (a, label) C (o, label Vby f. Letocc C occ’. Let sre and tgt
be in Domain(f). Then updref (o, label, occ, src, sel, 1g1) © updref (o7, label’, oce’, Sstrues (57C),
sel, f oimice (181)).

PROOF. If src can support a selector of type sé!, then fpu, (57¢), by the definition of L , must also support
selectors of type sel. The proof now proceeds by an analysis of the kind of src.

If src is a summary structure, then St (S7C) must also be a summary structure. Lemma A.8 now fol-
lows from the monotonicity of updsummary (Lemma A.7).

If src and £y, (src) are ordinary structures, Lemma A.8 follows from the isontonicity of updordinary
{Lemma A.6).

If src is an ordinary structure and Fstruee (STC) @ summary structure, then updref(c, - -) uses updordi-
nary to add an edge r to o of type sef labeled currocc. Also, updref(a’, - -+) uses updsummary to add
an edge " to &” of type sel labeled curroce’. The embedding from the updated (o, label) to the updated
(¢’ label”) is an extension of Sfthatmapsrto. 3

LEMMA A9 (monotonicity of addcontext,). Let (o, label) = (&, label’) by f. Let ocec C occ’,
reipt =retpt’, and retocc T retoce’. Let (Ornews A nerws label gy, 106 10y} = addcontext o (G, f, label,
occ, reipt, retocc). Let (& pu, fpen, label’ .., loc’,,,) = addcontext, (o', f, label’, occ’, retpt’, retocc”.
Then (Gpe, label py) T (O ., label) by an fthat sends loc ,,, to loc”,,,.

— 155 --

PROOF. Immediate from the definition of addcontext,. [

LEMMA A.10 (monotonicity of addstruct,). Let (o, label) T (¢, label’) by f. Let occ © oce’ and
type C type’. Let (Cpws M pows label o, 10) = addstruct, (0, fl, label, occ, type). Let (S news [V neves
label yy, 10C) = addstruct, (&, f, label’, occ’, type”). Then (Cpews label noy) T (O nary, label’ o) by an
fthat sends loc .., t0 loc’,.,.

PROOF. Immediate from the definition of addstruct,. [

LEMMA A.11 (monotonicity of addatom,). Let (o,label) T (<, label”) by f. Let occ © occ’ and
value T value'. Let (Guew, fnerws D€Ly, 10C o) = addatom, (G, fi, label, occ, value). Let (& s flnews
label v, 10C) = addatom, (&, f, label’, occ’, value”). Then (Cpee, label ppn) T (O e, label .. by an
S that sends loc ..., 10 10¢ 0.

PROOF. Immediate from the definition of addatom,. [

LEMMA Al2 (monotenicity of simplexp,). Let state = (pt, 0, fl, label, occ) and
state’ = (pt', &', f', label’, occ”) be states such that state T state’ w.rt. an f that maps ¢ onto . Let
result, = simblexp 4 (state, exp) and result’, = simplexp 4 (state’, exp). Let (G, fluew, label ., loc,.,) be
a member of result.,. Then there exists a (O nows [/ news 1GBEL no 10C 10e) N resul, such that
(Cuew label) © (G new, label’,,,) by a (possibly extended) f that sends [0¢ e, t0 10¢" pno.

PROOF. The proof is by an analysis of the type of exp.

If exp is an identifier expression, then let loc, =idexpry (pt, ©, exp) and loc’, = idexpr, (pt, &, exp).
By the monotonicity of idexpr, (Lemma A4), loc € loc, = fune (loc) € loc’.. Lemma A.12 now
follows from the fact that sefexp, produces result, by pairing every loc e loc, with (g, fl, label), and
result’, by pairing every loc” € loc’, with (¢, ', label”).

If exp is an atom, then Lemma A.12 follows immediately from the monotonicity of addatom, {Lemma
A.11). The extended f maps the new atom in ¢ to the new atom in &,

If exp is a context, then Lemma A.12 follows immediately from the monotonicity of addcontext ,
(Lemama A.9). The extended f maps the new context in & to the new context in .

If exp is a new(fype) instruction, then let (oy, Ay, label |, loc,) = addstruct, (3, fl, label, ptocc, type),
and (¢"), 'y, label’), loc’\) = addstructs (¢, ff, label’, ptocc’, type’). By the monotonicity: of
addstruct, (Lemma A.10), (oy, label|) T (0, label,) by an extended f that sends loc, to loc’;. If
type = env, then Lemma A.12 1s immediate. Otherwise, the proof of the new case is completed by
using the monotonicity of addatom, (Lemma A.11) and newref (Lemma A.S) to argue that adding a set
of new references at loc; and loc’| to new nil atoms preserves the embedding from the updated
(o1, label) to the updated (o7, label’,).

Finally, if exp s the primitive operator op(expy, -~ -, exp,), then the definition of #Hensures that each of
the exp;’s are either atoms or identifier expressions that denote atoms. An induction on # can be used to
show that if simplexp, (state, exp) invokes op on a set of atoms loc, - - loc, then
simplexp 4 (state’, exp) invokes op on a set of atoms loc’, - - + loc’,, where each of the lo¢’; has a value
that subsumes the value of the corresponding loc . Lemma A.12 then follows from the assumption that
primitive operands are monotenic in all arguments. O

— 156 —

LEMMA A.13 (monotonicity of condr, condr). Let 6 T & by f. Then condr{(pt, G, cexp) implies
condr(pt, &, cexp), and condy (pt, G, cexp) implies cond g (pt, &, cexp).

PrOOF. This lemma is proved on the depth to which not operators are nested in cexp,
BASIS (cexp contains no negations). The proof is by an analysis of the type of cexp.

If cexp is the vpredicate typeOf (exp,type), then let locs =idexpr, (pi, G,exp) and
locs’ = idexpr, (pt, &', exp). If there exists a loc € locs that satisfies maybe_oftype, then, by the mono-
tonicity of idexpr, (Lemma A4), fipe (loc) isin locs”. By the monotonicity of maybe_oftype (Lemma
A2), fere (loc) also satisfies maybe oftype. Similarly, if there exists a loc € locs that satisfies
maybe_not_oftype, then fi,...(loc) is in locs’. By the monotonicity of maybe not oftype (Lemma
A2). forue (loc) also satisfies maybe_not_oftype.

If cexp is the predicate Eg(expy,expy), then let locs, = idexpr, (pt, G, exp),
locso = idexpr 4 (pt, G, expq), locs’| = idexpry (pt, &, expy), and locs’s = idexpr, (pt, &, expy). If ©
satisfies Eq, then locs; ~ locs, contains some location loc. Then, by the monotonicity of idexpr, ,
locs’y » locs’y must contain f,,.. (loc). Hence, ¢ satisfies Eq. If ¢ satsfies the converse of Eq, the
intersection of locs or locs, either contains a summary structure locy, or there exist a loc | € locs| and
a loc; € locsy such that Joc, #loc,. In the first case, the monotonicity of is_sununary ensures that
Jstruee (f0Co) 18 also a summary structure (Lemma A.2). In the second case, either loc, and loc, are
mapped to different structures, satisfying the converse of Egq, or loc; and loc are mapped to the same
sumr Ty structure, which also satisfies the converse of Egq.

If cexr is a comparison operator, then Lemma A.13 follows from the monotonicity of the map from
atoms {o atoms.

INDUCTION HYPOTHESIS. Lemma A.14 holds when cexp contains & negations.

INDUCTION STEP. Let cexp be of the form not{cexp”). Then the assertion that condy{pt, G, cexp)
implies condy (pt, &, cexp), by the definition of condy, is equivalent to the assertion (hat
condp (pr, G, cexp”) implies condp (pt, &, cexp”). Lemma A.13 now follows from the induction
hypothesis. A similar argument shows that Lemma A.13 holds for condz when cexp is nested to depth
k+1l. O

LEMMA A.l4 (monotonicity of evalPt,). Let state = (pt, o, fl, label, occ) and
state’ = (pt’, &, f, label’, occ”) be states such that state & state” wrt. an f that maps ¢ onto ¢. Then
evalPt 4 {state, exp} T evalPt, (state’, exp).

Proo¥. The proof is by an analysis of the type of pt.

If pr is the predicate If (cexp), then let boolr = condy(pt, O, cexp), booly = condp (pt, G, cexp),
bool'y = condy{pt, &, cexp), and bool’y = condg (pt, 9, cexp). By the monotonicity of condr and
condp (Lemma A.13), boolr impﬁes bool’y and boolp implies bool’r. Lemma A.14 now follows
immediately from the definition of evalPt,.

The proof of Lemma A.14 for when pr is the predicate While (cexp) is similar.

If pt is the statement Assign(lexp.sel, rexp), then let rresuit, = simplexp, (pt, state, rexp} and

rresult’, = simplexp , (pt, state’, rexp). Let (o, A, label,, rvloc) be an arbitrary element of rresuit, .

~157 -

By the monotonicity of simplexp, (Lemma A.12), rresult’, contains a (d’,, fI',, label’,, rvloc”) such that
(6,, label,y T (o’,, label’,) by an f* that maps rvioc to rvioc”,

Let lresult, = idexpr 4 (pt, G, lexp) and Iresult, = idexpr s (pt, &’,, lexp). Let lvloc be an arbitrary
element of lresulr, . By the monotonicity of idexpr 4 (Lernma A4), f/gne (Vloc) € lresult,.

Let assign, = updref(c,, label,, ptocc, Wloc, sel, rvloc) and assign’, = updref(c’,, label’,, ptocc’,
£ et (WloC), s€l, PVl0C?). Let (G,, label ;) be an arbitrary element of assign.. By the monotonicity of
updref (Lemma A.8), assign’, contains a (¢”,, label’,) that subsumes (0,, label ;).

Temma A.14 now follows from the observation that evalPt, (state) returns
(nexipt, G, fla, label ;, occ) only if evalPt 4 (state”) returns (nexipt, & o, fa, label's, 0cC).

If pt is a call statement, then Lemma A.14 follows immediately from the definition of evalPt4 .

If pt is a return statement, let ctxloc, = idexpr, (pt, o, _curr._callctxt) and cexloc’, =
idexpr, (pt, o, _curr._calictxt). Let cloc be an arbitrary element of ctxdoc.. By the monotonicity of
idexpr 4 , fsouee (ClOCY € ctxloc’,.

Let ctxloc, = gercxt (G, cloc) and ctxloc’, = getext(S', fome: (cloc)). Let (retpt, apxocc) be an arbi-
trary element of ctxloe,. By the monotonicity of getcxt (Lemma A.l), etxloc’, contains a
{retpt, apxoce”) such that apxocc T apxocc’.

Let prevenv, = idexpr, (pt, ©, _curr._callctxt) and prevenv’, = idexpr (pt, 0, _curr._callctxt). Let
eloc be an arbitrary element of prevenv,. By the monotonicity of idexpr 4 , fsmue (eloC) € preveny’, .

By the definition of subsumption, eloc’s creation-point-label is a subset Of foiruee (€loc)’s. If eloc is
not consistent with retpr, then Lemma A.14 follows immediately. Assume, therefore, that eloc is con-
sistent with rerpe. Then the hypothesis that state and state’ have comparable label functions implies that
Fooruer C€loC) 15 consistent with refpt.

Let gEnv denote o’s global environment. By the definition of subsumption, the global environment
of O U8 fopur (gEnv). Let new, = updref(o,label, ptocc, gEnv, _curr, eloc) and new', =
updref (&, label’, ptocc’, fowuer (8ENV), _cUrr, fune (eloc)). Let (o,, label,) be an arbitrary element of
new.. By the monotonicity of wupdref, new’, conuins a (o’,. label’,) such that {(o,,label.} 2
(¢’,, label’,). Lemma A.l14 now follows from the observation that evaiPt, (state) returns
(retpt, ©,, fl, label ., apxocc) only if evalPt 4 (state”) returns (retpt, o, i, label’,, apxocc”).

Finally, if pt is an initialization statement, then Lemma A.14 follows immediately from the definition of
evalPt,. O

— 188 —

Appendix 6. The Congruence of evalPt; and evalPt,

This appendix demonstrates that MA s state-transition function abstracts that of MS,.

LEMMA A.l (congruence of getiype and gettype 4, etc.). 1f 0 I> G, by a map fand loc € Domain(f), then

* getrype (0, loc) > gettype o (G4, fonue (loC)); ,

* atom = gettype (G, loc) = gerval (0, loc) > getval, (G, forue (0C));

* context = gertype (G, loc) = getcxt (G, loc) D> getexty (Cu, fome (0O,

* For all sel € Domain(f (loc)), [(map(sel))= map'(sel’,i"), where map = getmap(c, loc),
map’ = getmap(Sa, fare: (loc)), and (loc’, sel’, i) = fr(loc, sel).

PROOF. Immediate from the definition of >. (N.B.: fan,, and f,,, which identify the structure-specific
and reference-specific parts of an embedding, are defined in Appendix4.) O

LEMMA A2, (congruence of selexp and selexp,). If ¢ > ¢, by a map £, and loc € Domain (f), then, for
all sexp, loc ., = selexp (0, loc, 5exp) = fomuer (0C g) € selexp 4 (S, froue (l00), sexp).

ProoF. By induction on the length of sexp.

If sexp =g, the empty selector string, then selexp (o, loc, sexp) = loc and
selexp 4 (S, f o (l0C), 5€XP) = fognuce (loC).

If sexp is nonempty, let sexp be of the form sel selexpr, where selexpr is possibly empty, and assume
that Lemma A.2 holds for selector expressions of length selexpr. 1f loc lacks a selector sel, then the
lemma is immediate. Otherwise, assume that the selector of type sel at loc references loc”. Then, by
the definition of >, f ..., (foc) has a reference of type sel 10 fy.. (Joc). Lemma A2 now follows
from the induction hypothesis. [

CoroLLARY 1. If o D> o, by a map £, and the evaluation of selexp (&, loc, sexp) accesses a structure or
reference at loc’, then the evaluation of selexp 4 (G4, fanes (I0C), s€xp) accesses the structure or correspond-
ing reference at .., (locD. O

COROLLARY 2. If (o, label) > (04, label,} by a map f, and the evaluation of selexp (o, loc, sexp)
accesses a structure or reference labeled op, then the evaluation of selexp 4 (Ga, fomue (loc), sexp) accesses
a structure or reference whose label subsumes op.

ProoF. Immediate from corollary 1 and the definitionof &>, O

LEMMA A3 (congruence of idexpr and idexpr,). If ¢ & o, by a map f, and loc &€ Domain{(f), then, for
all sexp, loc 4 = idexpr (pt, &, sexp) = fymy (l0C o) € idexpr 4 (pt, Gy, sexp).

PROOF. Immediate from Lemma A.2 and the fact that the abstraction relation maps the global environment
of ¢ to the global environmentofo,. O

COROLLARY 1. If ¢ > o, by a map £, and the evaluation of idexpr (pt, G, sexp) accesses a structure or
reference at location Joc, then the evaluation of idexprs (pr, G4, sexp) accesses the structure or the
corresponding reference at .., (loc). O

COROLLARY 2. If (o, label) &> (o,, label,) by a map £, and the evaluation of idexpr (pt, G, sexp) accesses
a structure or reference labeled op, then the evaluation of idexpr, (pt, G4, sexp) accesses a structure or
reference whose label abstracts op.

- 159 —

PROOF, Immediate from corollary 1 and the definition of >. O

LEMMA A4 {congruence of addcontext and addcontext,). Let (o, label} > (G,, label,) by f. Let
occ B> occy, retpt=retpt,, and retocc I retocc,. Let (&, f, label’, loc”) = addcontext (o, fl, label,
occ, reipt, retoce), Let (074, s, label’y, loc”y) = addcontexty (Ou, fla, label s, occa, reipt,, retoce 4).
Then (¢, label) > (¢”4, label’) by an fthat sends loc” to loc”,.

PROOF. Immediate from the definitions of addeontext and addcontext,. O

LEMMA A5 (congruence of addstruct and addstruct,). Let (@, label) B (o4, labely) by f. Let
occ D> occy and type D type,. Let (o, fi', label’, locy= addstruct (o, fl, label, occ, type). Let

(4, fi'a, label’ s, loc’) = addstruct , (G4, fla, label s, occy, typey). Then (07, label”y B> (074, label’,) by
an f that sends loc” 10 locs.

PROOF. Immediate from the definitions of addstruct and addstructy. O

LEMMA A6 (congruence of addatorm and a&datoma). Let (o, label) 0> (o4, label,) by f. Let
occ B occ, and value > value,. Let (o, f', label’, loc)y= addatom (o, fl, label, occ, value). Let

(Sa, fia, label ,, loc,) = addatoms (Ga, fla, labely, 0ccq, value,). Then (Guew, label) D (04, labely)
by an fthat sends loc” to loc”,.

PROOF. Immediate from the definitions of addatom and addatom,. O

LEMMA A.7 (congruence of simplexp and simplexp,). Let state = (pt,o, fl,label, occ) and
state , = (pt, G4, fla, label 4, occ 4) be states such that state O> state, w.r.t an f that maps ¢ onto 3. Let
(o, ', label’, loc”) = simplexp (state, exp) and resuit., = simplexp 4 (state, exp). Then there exists a
(4, fi's, label’ 4, loc’) in result,, such that (o7, label”) B> (Gg, label) by a (possibly extended) f that
sends loc” 10 loc’y.

PrOOF. The proof is by an analysis of the type of exp.

If exp is an identifier expression and idexpr (pt, o, exp) is undefined, then the lemma is immediate.
Otherwise, let loc” = idexpr (pt, &, exp) and loc”, = idexpr 4 (pt, G4, exp). Then, by the congruence of
idexpr and idexpr, (Lemma A.3), fope (loc) € loc’,. Lemma A.7 now follows from the fact that
selexp returns (G4, fa, label s, fume: (f0¢7) in result 4.

If exp is an atom, then Lemma A.7 follows immediately from the congruence of addatom and
addatom, (Lemma A.6). The extended f maps the new atom in o to the new am in g,.

If exp is a context, then Lemma A.7 follows immediately from the congruence of addcontext and
addcontext , (Lemma A.4). The extended fmaps the new context in ¢ to the new context in G,.

If exp is a new(type) insiruction, then let (o, fi”, label’, loc") = addstruct (o, fl, label, ptoce, type), and
(%4, fla, label’ 4, loc’4) = addstruct, (Gy, fla, label,, procc’, type”). By the congruence of addstruct
and addstruct, (Lemma A.5), (o, label) & (&, label”) by an extended f that sends loc” to loc”y. If
type = env, then Lemma A.7 is immediate. Otherwise, the proof of the new case is completed by using
the congruence of addatom and addatom, (Lemma A.6) to argue that adding a set of new references at
loc’ and loc’ to new nil atoms preserves the embedding from the updated (o, label”) to the updated
(4, label’s).

~160 —

Finally, if exp is the primitive operator op(expy, * - -, exp,), then the definition of #Hensures that each of
the exp;’s are either atoms, or identifier expressions that denote atoms. An induction on n can be used
to show that if simplexp(state, exp) invokes op on a set of atoms loc, -+ loc, then
simplexp 5 (state 4, exp) invokes op on a set of atoms loc”y - lo¢’,, where each of the loc”; has a value
that subsumes the valve of the corresponding loc;. Lemma A.7 then follows from the assumption that
the approximation semantics’ primitive operands are isotone in their arguments. O

LEMMA A.8 (congruence of cond, cond., condF). Let o &> o, by f. Then cond (pt, &, cexp) implies
cond (pt, G4, cexp), and —cond (pt, &, cexp) implies cond p (pt, G4, cexp)-

PROOF. This lemma is proved on the depth to which not operators are nested int cexp.
BASIS (cexp contains no negations). The proof is by an analysis of the type of cexp.

If cexp is the predicate (ypeOf {exp, type) expression, then let loc = idexpr(pt, ¢, exp) and
locs’ = idexpr 4 (pt, G4, exp). By the congruence of idexpr and idexpry, (Lemma A.3),
Foouer (o€) € locs’. If gettype (0, loc) = type, then the congruence of gettype and gettype , (Lemma A.2)
implies that type € gettype, (O, fune: (Ioc)). Then, by the definition of maybe_oftype,
condr(pt, G4, cexp) is true. Similarly, if gettype (o, loc) = type’, where type’ #type, then the
congruence of gettype and gettype, implies that ype’ & gettype 4 (O, fomue: loc)). Then, by the
definition of maybe_not_aftype, cond g (pt, Ga, cexp) is true.

If cexp is the predicate Eq(exp;, exp,), then let locy = idexpr (pt, G, expy), loc, = idexpr (pt, 0., expa),
locs'y = idexpr 4 (pt, ©4, €xp1), and locs’y = idexpr (!, Oa, expe). Then, by the congruence of idexpr
and idexpr, (Lemma A.3), fime (loc)) € locs’y and fpe (loc) € locs’y. 1f locy = loc,, then the fact
that f is a map implies that feme (foc|)= Fsruce (loc2). By the definition of may_coincide,
condr (pt, G4, cexp) is true. Otherwise, if locy #loca, then feither sends loc; and loc to the different
locations, or to the same location. In the former case, fogue (10€1) # e (l0C 1), and the definition of
may_differ implies cond g (pt, Ga, cexp) is true, Otherwise, fune (Jocy), by the definition of an embed-
ding, must be a summary structure. The definition of may_ differ again implies cond g (pt, Ga, chp) is
true.

The argument that the base case of Lemma A.8 is true when cexp is a comparison operator is similar o
the argument that primitive operators are isotone (cf. Lemma A.7).

INDUCTION HYPOTHESIS. The lemma holds when cexp contains k negations.

INDUCTION STEP. Let cexp be of the form not(cexp”). Then the assertion that cond (pt, @, cexp) implies
condy (pt, Gy, cexp), by the definition of condr, is equivalent to the assertion that - cond (pt, G, cexp’)
implies cond ¢ (pt, Oa, cexp’). Lemma A8 now follows from the induction hypothesis. A similar argu-
ment shows that Lemma A.8 holds for cond when cexp is nested to depth k+1. 0

LEMMA A9 (congruence of evalPt; and evalPt,). Let state = (pt, o, fl, label, occ) and
state 4 = (pt, O, fla, label o, 0cc 4) be states such that state > state, w.r.t. an £ that maps ¢ onto 6. Then
evalPt, (state, exp) and result’, = evalPt, (state’, exp). Then there exists a (074, 4, label’) in result’,

such that (¢, label”) B> (074, label’y).
PROOF. The proof is by an analysis of the type of pt.

— 161 -

If pt is the predicate If {cexp), let bool = cond (pt, G, cexp), boolr = condr (pt, G4, cexp), and boolp =
cond g (pt, G4, cexp). By the congruence of cond, condy, and condp (Lemma A.8), bool implies boolr
and — bool implies bool . Lemma A.9 now follows immediately from the definition of evalPt;.

The proof of Lemma A.9 for when pt is the predicate While (cexp) is similar.

If pt is the statement Assign (lexp.sel, rexp), then let (o,, fl,, label ., rvloc) = simplexp (pt, state, rexp)
and rresult, = simplexp, (pt, state’, rexp). By the congruence of simplexp and simplexp, (Lemma
A7), rresult’, contains a (0", fi’,, label’,, rvioc”) such that (c,, label,) &> (", label’,) by an f” that
maps rvioc to rvloc’.

Let Ivloc = idexpr (pt, ©,, lexp) and lresult’, = idexpr, (pt, o4 , lexp). Then, by the congruence of
idexpr and idexpr , (Lemma A.3), e (IVloc) € lresull’, .

Let (¢, label”) denote the effect of setting reference sel at Ivloc in & to rvioc, and updating /abel
accordingly. Let assign’, = updref(Ga_, ﬂ,;', labely , ptocc’, f'(Ivioc), sel, rvioc”). The definition of
updref now implies that there is a (¢4, fi’s, label’,) in assign’, that abstracts (¢, label’).

Lemma A.9 now follows from the observation that evalPt; (state) returns (nextpt, &', fi’, label’, occ)
only if evalPt, (state) retumns (nextpt, &'y, fi'a, label’y, occy).

If pt is a call statement, then Lemma A.9 follows immediately from the definition of evalPt;.

If pt is a rveturn statement, let cloc= idexy:{pt, &, curr._callctxt) and cixloc’, =
idexpr (pt, 64, curr._calictxt). Then, by the congruence of idexpr and idexpr a, Foruer {cloc) € ctxloc..

Let {retpt, retocc) = geicxt (0, cloc) and ctroc’, = getext (G4, fouer (cloc)). Let (retpt, apxocc a) be
an arbitrary element of ctxloc.. By the congruence of getcxt and getcxt, (Lemma A, cxloc’, con-

tains a (retpt, apxocc’) such that retocc B apxoce 4.

Let prevenv, = idexpr (pt, o, curr._calletxt) and prevenv’, = idexpr (pl, Oy, _curr._calletxt). Let
eloc be an arbitrary element of prevenv,. Then, by the congruence of idexpr and idexpr,,

Feores (€lOC) € preveny’, .

By the definition of abstraction, eloc’s creation-point-label is abstracted by fime: (eloc)’s label. Then
Feouee (€loc) must be consistent with rept.

Let gEnv denote o’s global environment. By the definition of abstraction, the global environment of
O4 1S forues (8EnV). Let (0,, label,) denote the effect of reseuting the local environment of &t eloc.
Let new’. = updref (G4, label 4, ptocc, fome (SEAV), _ctr?, fume (eloc)). By the definition of updref,
new’, contains a (o, label’,) such that (o,, label,) O (&, label’,). Lemma A.9 now follows immedi-
ately from the observation that evaiPt; (state) returns (retpt, o, fl, label ., retocc) iff evalPt , (state”
returns (reipt, &, 4, label’,, apxocc).

Finally, if pt is an initialization staement, then Lemma A.9 follows immediately from the definition of
evalPt;and evalPt,. O

—-162 -

Appendix 7. A Semantics for the Language 5

The following is a formal semantics for the language $.

State = Store x Freelist

Store =Var — Value Freelist =Ref* Value = Atom + Ref

M;: Prog — Store — Freelist — Store |

M; (prog, ©, fiy=

let program = finalize(initialize (prog)) In
let evalPgm = fix A f. A {((pt, &, fI)). pt =final - o’ [] flevaiPt, ((pt, &", f1)))
in evelPgm((initial, . o, f))

end’

Function jfix is the least fixpoint functional.

The functon initialize (prog) prepends a two-part prelogue w0 prog. The first part of this prologue is the statement
“[initial, } initiglize ;”. The second part simulates the call 1o main() at point “[initial, 1"; i.e., it simulates the alloca-

tion of main {)'s local environment, and subsequent transfer of control to main ()'s first statement.

The function finalize (prog) appends a two-part epilogue to prog. The first part of this epilogue simulates the implicit
return statement at the end of main(); i.e., it resets the local environment, and ransfers control to peint final. The

second part of this epilogue is the statemnent “[final] skip”.

evaiPt: State — State |

evalPt; (pt, o, D)

case formOf (pt, program) in

If (cexp):

Case (exp, cases) :

Assign (lexp, rexp):

Assert(cexp):

Initiaiize :

Fail :

end

let nextpty and nextpt p be pt's true and false conrol-flow successors
in (cond (pt, g, cexp) — nextpty {| nexapty, o, fI)
end
let (T, value) = rvalue (g, f, exp) in
let evalCase == fix A f. Acases’ .
cases’ =g ~+ | [| let ((cguard, cpoint), cases”) = cases’
in value - cguard — (cpoint, o, I 1] f (cases™)
end
in evalCase (cases)
end*

let nextpt be pt 's control-flow successor in

let (fF, value) = rvalue (o, fl, exp) in {nextpt, o[value / var},) end
end

let nextpt be pt 's control-flow successor

In cond(o, cexp) — (nexrpr, o,) [L

end

let nextpt be pt 's control-flow successor in
let c"beacopyof o in (rexipt,o’, 1) end

end

i

Function formQf pairs every program point with its associated syntactic construct.

— 163 -

cond : Store xCond — Bool |
cond (G, cexp) =
case cexp in
TypeOf (var, type}): var = type
Compare (expy, op, expy): let val; = simplexp (O, exp;) and val, = simplexp (0, exp,) In
{val,,valy) < Atom — (val, opvaly) [l L
end
Not{cexp): — cond (G, cexp)
esac

rvalue : Store x Freelist x Exp — (Freelist x Value),
rvalue (o, fl, exp) =

case exp in
Primop (op, exp,, *+, exp,): (. op(simplexp (G, sexp\), * -+, simplexp (0. sexp ,))
Freelist{(): read (f1}
Atom (exp), Var (exp): (A, simplexp(0, exp))

esac

simplexp : Store X Exp — Value = A (0, exp) . exp & Atom — exp {] olexp)

The variable program is treated as a global to simplify the semantics. This variable is implicitly referenced
by statements that delermine a program point’s control-flow successors.

The function read : Freelist —» (Ref % Freelist), accepts one argument, a stream 4. It returns L if 5 is
empty, and the first element of s paired with the tail of 5 otherwise.

4

—~164 —

Appendix 8. Definition of an Spdg

An S-language pdg (spdg) gives a control-flow-graph-based characterization of a program’s control depen-
dences, and an execution-based characterization of its flow and def-order dependences. The following is
the formal definition of an spdg.

A program Pg’s spdg must contain one edge for each of Pg’s static control dependences (¢f. §3.2.2.1).
Edges that correspond to true control dependences are labeled true; edges that correspond to false control
dependences are labeled false.

A program’s data dependences are defined with the aid of a state transition relation, |-g. This relation is
similar to state transition relations defined in Chapters 3 and 4: i.e.,

DEFINITION. A sfate in a language .§ computation is a (program-point,store.freelist) triple. [J
DEFINITION. The state transition relation -+ =g -+ —> --- is defined as follows:

prog s siare; —>° state; & state; = state;

prog f-g state; ~>" state; < Astate’: prog -5 state; —> " state’ A state j=evalPt(prog, state’)
prog s state; —>" state; <> An:prog |-y state; —yn state

prog s Sstate; m—)*'statej & dn>0:prog | state; -—)"srate,-

prog s state, —> -+ —> state,, < Vi:n<i<m-1:prog |-s state; —>'state;,; O

The expression evalPts (prog, state”) (once again) constitutes a minor abuse of notation. The function
evalPts {cf. Appendix 7) actually takes one formal parameter——a state—and four non-local parameters that
describe prog’s control-flow graph, structure declarations, and local identifiers. The definitions of data
dependence are now similar to the ones given in Chapter 3.

Ps's spdg w.r.t. InSet must depict p —>, ¢ whenever P exhibits p —>; ¢ W.LL InSet. Similarly, P¢'s
spdg w.r.t InSet must depict p ~~>4,(,, ¢ whenever Py exhibits p —>, ¢y 4 w.IL InSet. Labels that iden-

tify loop-carried and loop-independent dependences are not needed in the spdg, since S is a loop-free
language.

Program Pg’s spdg must also contain one edge for each of Pg’s stream-mediated data dependences.
Stream-mediated dependences, however, play only a minor role in the thesis; the proof of the Simulation
Equivalence Lemma reduces programs that access the simulated freelist to equivalent programs that do not
access the freelist,

— 165

REFERENCES

Abr87.
Abramsky, S. ed. and Hankin, C. ed., Abstract Interpretation of Declarative Languages, Ellis Hor-
wood Limited, Chichester, West Sussex, England (1987).

Aho86.

Aho, A.V., Sethi, R., and Ullman, J.D., Compilers: Principles, Techniques, and Toels, Addison-
Wesley, Reading, MA (1986).

AlIg3.
Allen, I R., “Dependence Analysis for Subscripted Variables and its Application to Program Transfor-
mations,” Ph.D. dissertation, Dept. of Math. Sciences, Rice Univ., Houston, TX (April 1983).

Allg3a.
Allen, J.R., Kennedy, K., Porterfield, C., and Warren, J., “Conversion of Control Dependence to Data
Dependence,” pp. 177-189 in Conference Record of the Tenth ACM Symposium on Principles of Pro-
gramming Languages, (Austin, TX, Jan. 24-26, 1983), ACM, New York, NY (1983),

AllB4,
Allen, J.R. and Kennedy, K., “Automatic Loop Interchange,” Proceedings of the SIGPLAN 84 Sympo-
sium on Compiler Construction, (Montreal, Can., June 20-22, 1984), ACM SIGPLAN Notices
19(6) pp. 233-246 (June 1984).

Allg6.
Allen, R., Baumgarmer, D., Kennedy, K., and Porterfield, A., “PTOOL: A Semi-automatic Parallel
Programming Assistant,” Tech Rep. COMP TR86-31, Dept. of Computer Science, Rice Univ., Hous-
ton, TX (January 1986).

AlIR7.
Allen, R. and Kennedy, K., “Automatic Translation of FORTRAN Programs to Vector Form,” ACM
Transactions on Programming Languages and Systems 9(4) pp. 491.542 (October 1987).

All88.
Allen, R. and Johnson, S., “Compiling C for Vectorization, Parallelization, and Inline Expansion,”
Proceedings of the ACM SIGPLAN 88 Conference on Programming Language Design and Implemen-
tation, (Atlanta, GA, June 22-24, 1988), ACM SIGPLAN Notices 23(7) pp. 241249 (July 1988).

Alp88.
Alpern, B., Wegman, M.N., and Zadeck, F.K., “Detecting equality of variables in programs,” pp. 1-11
in Conference Record of the Fifteenth ACM Symposium on Principles of Programming Languages,
(San Dicgo, CA, January 13-15, 1988), ACM, New York, NY (1988).

Ame89.
American National Standards Institute, Inc.,, “Fortran 8x Draft: May 1989,” FORTRAN Forum:
ACM SIGPLAN special interest publication on FORTRAN 8(4)(December 1989).

Bac78.
Backus, J., “Can Programming Languages be Liberated from the Von Neumann Style? A Functional

Py

~ 166 —

Style and an Algebra of Programs,” Comum. of the ACM 21(8) pp. 613-641 (August 1978).

Balg9,
Balasundram, V., “Interactive Parallelization of Numerical Scientific Programs,” Ph.D. dissertation
and Tech Rep. COMP TR89-95, Dept. of Computer Science, Rice Univ., Houston, TX (July, 1989).

Bal§9a. |
Balasundram, V. and Kennedy, K., “Compile-Time Detection of Race Conditions in a Parallel Pro-
gram,” pp. 175-185 in Proceedings of the Third International Conference on Supercomputing, Crete,
Greece (June 1989},

Bai90.
Ballance, R.A., Maccabe, A.B., and Ottenstein, K.J_, “The Program Dependence Web: A Representa-
tion Supporting Control-, Data-, and Demand-Driven Interpretation of Imperative Languages,”
Proceedings of the ACM SIGPLAN 90 Conference on Programming Language Design and Implemen-
tation, (White Plains, NY, June 20-22, 1990), ACM SIGPLAN Notices 25(6) pp. 257-271 (June 1990).

Bax89.
Baxter, W. and Bauer, III, H.R., “The Program Dependence Graph and Vectorization,” pp, 1-11 in
Conference Record of the Sixteenth ACM Symposium on Principles of Programming Languages,
(Austin, TX, Jan. 11-13, 1989), ACM, New York, NY (1989).

Ber66.
Bemstein, A.J., “Analysis of Programs for Parallel Processing,” IEEE Transactions on Electronic
Computers 13(5) pp. 757-763 (October 1966).

Bin8%.
Binkley, D., Horwitz, S., and Reps, T., “The Multi-Procedure Equivalence Theorem,” TR-890, Com-
puter Sciences Department, University of Wisconsin, Madison, W1 (November 19893,

Bin91i.
Binkley, D., “Multi-Procedure Program Integration,” pending (thesis), Computer Sciences Depart-
ment, University of Wisconsin, Madisor, WI (Aagust 1991).

Bod90.
Bodin, F., “Preliminary Report: Data Structure Analysis in C Programs,” Proceedings of the
Workshop on Parallelism in the Presence of Pointers and Dynamically-allocated Objects (Leesburg,
Virginia, March 1990), Technical Note SRC-TN-90-292, pp. 4.3.14.3.34 Supercomputing Research
Center/Institute for Defense Analysis, (1990).

Calg7.
Callahan, D., “A Global Approach to Detection of Parallelism,” Ph.D. dissertation and Tech Rep.
COMP TR87-50, Dept. of Computer Science, Rice Univ., Houston, TX (April 1987).

Carg9.
Cartwright, R. and Felleisen, M., “The Semantics of Program Dependence,” Proceedings of the ACM

SIGPLAN 89 Conference on Programming Language Design and Implementation, (Portland, OR,
June 21-23, 1989}, ACM SIGPLAN Notices 24(7) pp. 13-27 (July 1989).

- 167 —

Car91.
Cartwright, R, and Fagan, M., “Soft Typing,” Proceedings of the SIGPLAN *91 Conference on Pro-

gramming Language Design and Implementation, (Toronto, Ontario, june 7628, 1991), ACM SIG-
PLAN Notices 26(6) pp. 278-292 (June 1991).

Cha87.

Chase, D.R., “Garbage collection and other optimizations,” Ph.D. dissertation, Dept. of Computer
Science, Rice Univ., Houston, TX (August 1987).

Cha88.
Chase, D.R., “Safety Considerations for Storage Allocation Optimization,” Proceedings of the ACM
SIGPLAN 88 Conference on Programming Language Design and Implementation, (Atlanta, GA, June
9224, 1988), ACM SIGPLAN Notices 23(7) pp. 1-10 (July 1988).

Cha90.
Chase, D.R., Wegman, M., and Zadeck, F.K., “Analysis of Pointers and Structures,” Proceedings of
the ACM SIGPLAN 90 Conference on Programming Language Design and Implementation, {White
Plains, NY, June 20-22, 1990), ACM SIGPLAN Notices 25(6)(June 1990},

Cle88.
Cleary, T., (Translator’s Introduction to Sun Tzu's) The Art of War, Shambhalla, Boston, MA (1988).

Cou77.
Cousot, P. and Cousot, R., “Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints,” pp. 238-252 in Conference Record of the
Fourth ACM Symposium on Principles of Programming Languages, (Los Angeles, CA, January 17-
19, 1977), ACM, New York, NY (1977).

Cou78.
Cousot, P., “Méthodes Iteratives de Construction et d’ Approximation de Pointes Fixes ’Operateurs
Monotones sur un Trellis, Analyse Sémantique des Programmes,” Ph.D. dissertation, Université
Scientifique et Médicale de Grenoble/Institut National Polytechnique de Grenoble (March 1978).

Cou80.
Cousot, P. and Cousot, R., “Systematic Design of Program Analysis Frameworks,” pp- 70-85 in

Conference Record of the Sixth ACM Symposium on Principles of Programming Languages, {San
Antonio, TX, Jan. 29-31, 1979), ACM, New York, NY (1980).

CouB6.
Coutant, D., “Reargetable High-Level Alias Analysis,” pp. 157-168 in Conference Record of the
Thirteenth ACM Symposium on Principles of Programming Languages. (St. Petersburg, FL., Jan. 13-
15, 1986), ACM, New York, NY (1986).

Cyt86.
Cytron, R., Lowry, A. and Zadeck, K., “Code Motion of Control Structures in High-Level
Languages,” pp- 70-85 in Conference Record of the Thirteenth ACM Symposium on Principles of Fro-
gramming Languages, (St. Petersburg, FL, Jan. 13-15, 1986), ACM, New York, NY (1986).

— 168 —

Deb89.
Debray, S., “Static Inference of Modes and Data Dependences in Logic Programs,” ACM Transac-
tions on Programming Languages and Systems 11(3) pp. 418-450 (July 1989).

Denf0.
Deutsch, A., “On Determining Lifetime and Aliasing of Dynamically Allocated Data in Higher-order
Functional Specifications,” pp. 157-168 in Conference Record of the 17th ACM Symposium on Princi-
ples of Programming Languages, (San Francisco, CA, Jan. 17-19, 1990), ACM, New York, NY

(1990).

Die87.
Dietz, H., The Refined-Language Approach to Compiling for Parallel Supercomputers, UMI Research
Press, Ann Arbor, MI (May 1987).

Fer33.

Ferrante, J. and Ottenstein, K., “A Program Form Based on Data Dependency in Predicate Regions,”
pp. 217-236 in Conference Record of the Tenth ACM Symposium on Principles of Programming
Languages, (Austin, TX, Jan, 24-26, 1983), ACM, New York, NY (1983).

Ferf3a.

Ferrante, 1., Ottenstein, K., and Warren, J., “The Program Dependence Graph and Its Use in Optimi-
zation,” Res. Rep. RC10208, IBM T.J. Watson Research Center, Yorktown Heights, NY (August
1983).

Fer87.
Ferrante, J., Ottenstein, K., and Warren, J., “The Program Dependence Graph and Its Use in Optimi-
zation,” ACM Transactions on Programming Languages and Systems 9(3) pp. 319-349 (July 1987),

Ger7s.
Gerhart, 5.L., “Comreciness-Preserving Program Transformations,” pp. 54-66 in Conference Record of
the Second ACM Symposium on Principles of Programming Languages, (Palo Alto, CA, Jan. 20-22,
1975), ACM, New York, NY (1975).

Goh90,
Gohkale, M. and Smith, L., “Alias Analysis of Recursively Defined Structures,” FProceedings of the
Workshop on Parallelism in the Presence of Pointers and Dynamically-allocated Objects (Leesburg,
Virginia, March 1990), Technical Note SRC-TN-90-292, pp. 5.8.1-5.8.19 Supercomputing Research
Center/Institute for Defense Analysis, (1990).

Gon69,

Gonzalez, M.J. and Ramamoorthy, C.V., “A Survey of Techniques for Recognizing Parailel Process-
able Streams in Computer Programs,” pp. 1-15 in AFIPS Fall Joint Computer Conference {Las Vegas,
Nevada, November 18-20, 1969), (1969).

Gua%0.
Guamna Jr., V.A., “Dependence Analysis for C Programs Containing Pointers and Dynamic Data

Structures,” Proceedings of the Workshop on Parallelism in the Presence of Pointers and
Dynamically-allocated Objects (Leesburg, Virginia, March 1990), Technical Note SRC-TN-90-292,

- 169 —

pp. 5.15.1-5.15.25 Supercomputing Research Center/Institute for Defense Analysis, (1990).

Guad90a.
Guarna Jr., V.A., “Symbolic Alias and Side Effect Analysis of Pointers and Dynamic Memory Struc-

tures for the Parallelization of C,” Preprint, Motorola Microcomputer Diyision, Urbana Design Center
(October, 1990).

HabB6.
Habel, A. and Kreowski, H-J., “May We Introduce You to Hyperedge Replacement,” pp. 15-26 in
Proceedings of the Third International Workshop on Graph-Grammars and Their Application to Com-
puter Science, (Warrenton, Virginia, December 1986}, Lecture Notes in Computer Science 291, ed. H.
Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld Springer-Verlag, New York, NY (1986).

Har89.
Harrison, W.L., “The Interprocedural Analysis and Automatic Parallelization of Scheme Programs,”
Ph.D. Thesis, CSRD Tech. Rep. 860, Center for supercomputing research and development, Univer-
sity of Illinois at Urbana-Champaign, Urbana, IlL (February 1989).

Hed88.
H-4erman, L., “Compile Time Garbage Collection Using Reference Count Analysis,” M.Sc. disserta-
ton and Tech. Rep. COMP TR88-75, Dept. of Computer Science, Rice Univ., Houston, TX {August
1988).

Hen89.
Trendren, L. and Nicolau, A., “Interference Analysis Tools for Parallelizing Programs with Recursive
Data Structures,” in Proceedings of the Third International Conference on Supercomputing, Crete,
Greece (June 1989).

Hen90.
Hendren, L., “Parallelizing Programs with Recursive Data Structures,” Ph.D. Thesis, Tech. Rep. 90-
1114, Dept. of Computer Science, Cornell University, Ithaca, NY (April 1990).

Hoa78. : .
Hoare, C.AR., “Some Properties of Predicate Transformers,” Journal of the ACM 25(3) pp- 461-480
(July 1978).

Hoo86, .
Hood, R., Kennedy, K., and Miiler, H.A., “Efficient Recompilation of Module Interfaces In a
Software Development Environment,” Technical Report DCS-59-1R, Dept. of Computer Science,
Univ. of Victoria, Victoria, B.C. (1986).

Hor87.
Horwitz, S., Prins, J., and Reps, T, “Integrating Non-interfering Versions of Programs,” TR-690,
Computer Sciences Department, University of Wisconsin, Madison, WI (March 1987).

Horg7a.
Horwitz, $., Prins, J., and Reps, T., “On the Adequacy of Program Dependence Graphs for Represent-
ing Programs,” TR-699, Computer Sciences Department, University of Wisconsin, Madison, WI
(June 1987).

-~ 170 -

Hor88.
Horwitz, S., Prins, J., and Reps, T., “On the Adequacy of Program Dependence Graphs for Represent-
ing Programs,” pp. 146-157 in Conference Record of the Fifteenth ACM Symposium on Principles of
Programming Languages, (San Diego, CA, January 13-15, 1988), ACM, New York, NY (1988),

Hor88a. :
Horwitz, S., Reps, T., and Binkley, D., “Interprocedural Slicing Using Dependence Graphs,” TR-756,
Computer Sciences Department, University of Wisconsin, Madison, WI (March 1988).

Hor8%.
Horwitz, S., Pfeiffer, P., and Reps, T., “Dependence Analysis for Pointer Variables,” Proceedings of
the ACM SIGPLAN 89 Conference on Programming Language Design and Implementation, (Portland,
OR, June 21-23, 1989), ACM SIGPLAN Notices 24(7) pp. 28-40 (July 1989).

Hor89.
Horwitz, S., Prins, J., and Reps, T., “Integrating Non-interfering Versions of Programs,” ACM Tran-
sactions on Programming Languages and Systems 11(3) pp. 345-387 (July 1989).

Hor%0.
Horwitz, S., “Identifying the Semantic and Textual Differences Between Two Versions of a Pro-
gram,” Proceedings of the ACM SIGPLAN 90 Conference on Programming Language Design and
Implementation, (White Plains, NY, June 20-22, 1990), ACM SIGPLAN Notices 25(6)(July 1990).

Hor90a.
Horwitz, S., Reps, T., and Binkley, D., “Interprocedural Slicing Using Dependence Graphs,” ACM
Transactions on Programming Languages and Systems 12(1) pp. 26-60 (January 1990),

Hud86,
Hudak, P., “A Semantic Model of Reference Counting and its Abstraction (Detailed Summary),” pp.
351-363 in Proceedings of the 1986 ACM Conference on LISP and Functionat Programming, (Cam-
bridge, MA, August 4-6, 1986), ACM, New York, NY (1986).

Hud87.
Hudak, P., “A Semantic Model of Reference Counting and its Abstraction ,” pp. 45-62 in Abstract
Interpretation of Declarative Languages, Ellis Horwood Limited, Chichester, West Sussex, England
(1987).

Hudgs.
Hudak, P., “Exploring Parafunctional Programming: Separating the What from the How,” /EEE
Software, pp. 54-61 (January 1988).

Hud%1.
Hudak, P. and Young, J., “Collecting Interpretations of Expressions ,” ACM Transactions on Pro-
gramming Languages and Systems 13(2) pp. 269-290 {April 1991).

Hun76.

Hunt, J.W. and Mecllroy, M.D., “An Algorithm for Differential File Comparison,” Comp. Sci. Tech.
Rep. 41, Bell Laboratories, Murray Hill, NJ (1976).

- 171 -

Hwa88.
Hwang, J.C., Du, MW, and Chou, CR., “Finding Program Slices for Recursive Procedures,” in
Proceedings of IEEE COMPSAC 88, (Chicago, IL, Oct. 3-7, 1988), IEEE Computer Society, Wash-
ington, DC (1988).

Ino88.

Inoue, K., Seki, H., and Yagi, H., “Analysis of Functional Programs to Detect Run-time Garbage
Cells,” ACM Transactions on Programming Languages and Systems 10(4) pp. 555-578 (October
1988).

Jon79.
Jones, N.D. and Muchnick, §.S., “Flow Analysis and Optimization of Lisp-like Structures,” pp.
244-256 in Conference Record of the Sixth ACM Symposium on Principles of Programming
Languages, (San Antonio, TX, Jan. 29-31, 1979), ACM, New York, NY (1979).

Jong1.
Jones, N.D. and Muchnick, §.5., “Flow Analysis and Optimization of Lisp-like Structures,” pp.
102-131 in Program Flow Analysis: Theory and Applications, ed. S.S. Muchnick and N.D.
Jones,Prentice-Hall, Englewood Cliffs, NJ (1981).

Jong2,
Jones, N.D. and Muchnick, S.S., “A Flexible Approach to Interprocedural Data Flow Analysis and
Programs with Recursive Data Structures,” pp. 66-74 in Conference Record of the Ninth ACM Sympo-
sium on Principles of Programming Languages, (Albuquerque, NM, January 25-27, 19823, ACM,
New York, NY (1982).

Jon86.
Jomes, N.D. and Mycroft, A., “Data Flow Analysis of Applicative Programs Using Minimal Function
Graphs: Abridged Version,” pp. 296-306 in Conference Record of the Thirteenth ACM Symposium on
Principles of Programming Languages, (St. Petersburg, FL, Jan 13-15, 1986), ACM, New York, NY
{1986).

Jong8.
Jones, Neil D., “Challenging Problems in Partial Evaluation and Mixed Computation,” pp. 1-14 in
Pardal Evaluation and Mixed Computation: Proceedings of the IFIP TC2 Workshop on Partial
Evaluation and Mixed Computation {(Gammel Avemaes, Denmark, 18-24 October, 1987), ed. D.
Bjomer, A.P. Ershov, N, D, Jones Elsevier (North-HoHand) (1988).

Jor86.
Jorring, U. and Scherlis, W., “Deriving and Using Destructive Data Types,” in TC 2 Working Confer-
ence on Program Specification and Transformation, (Bad Tolz, West Germany, April 15-17, 1986),
(March 1986).

Jou91.
Jouvelot, P. and Gifford, D., “Algebraic Reconstruction of Types and Effects,” pp. 303-309 in Confer-
ence Record of the Eighteenth ACM Symposium on Principles of Programming Languages, (Orlando,
FL, January 21-23, 1991), ACM, New York, NY (1991).

-172 -

Kam76,
Kam, J.B. and Uliman, J.D., “Global Dataflow Analysis and Tterative Frameworks,” Journal of the
ACM 23(1) pp. 158-171 (January 1976),

Kau63.
Kaufmann, W., The Faith of a Heretic, Anchor Books, United States (1963).

Kil73.
Kildall, G., “A Unified Approach to Global Program Optimization,” pp. 194.206 in Conference

Record of the ACM Symposium on Principles of Programming Languages, (Boston, MA, October 1-3,
1973), ACM, New York, NY (1973).

Kuc72.
Kuck, D.J., Muraoka, Y., and Chen, §.C., “On the number of operations simultaneously executable in
FORTRAN-like programs and their resulting speed-up,” IEEE Trans. on Computers C-21(12) pp.
1293-1310 (December 1972).

Kuc78.
Kuck, D.J., The Structure of Computers and Computations, Vol. 1, John Wiley and Sons, New York,
NY (1978).

Kuc81.
Kuck, D.J., Kuhn, R.H., Leasure, B., Padua, D.A., and Wolfe, M., “Dependence Graphs and Compiler
Optimizations,” pp. 207-218 in Conference Record of the Eighth ACM Symposium on Principles of
Programming Languages, (Williamsburg, VA, January 26-28, 1981), ACM, New York, NY (1981).

Kuhg&0.
Kuhn, R. H., “Optimization and Interconnection Complexity for: Parallel Processors, Single-stage
Networks, and Decision Trees,” Ph.D. dissertation and Tech. Rep. R-80-1009, Dept. of Computer
Science, University of Illincis, Urbana, IL (February 1980).

Lam74.
Lamport, L., “The Parailel Execution of DO Loops,” Comm. of the ACM 17(2) pp. 83-93 (February
1974).

Lan90.
Landi, W. and Ryder, B.G., “Aliasing with and without Pointers: A Problem Taxonomy,” Tech. Rep.
CAIP-TR-255, Rutgers Univ., New Brunswick, NJ (September 1990),

‘Lan91.
Landi, W. and Ryder, B.G., “Pointer-Induced Aliasing: A Problem Taxonomy,” pp. 47-37 in Confer-
ence Record of the Eighteenth ACM Symposium on Frinciples of Programming Languages, (Orlando,
FL., January 21-23, 1991), ACM, New York, NY (1991).

Lar87.
Lams, LR, “Curare: Restructuring Lisp Programs for Concurrent Execution,” UCB/CSD 87/344,
Computer Science Division, Dept. of Elec. Eng. and Comp. Sci., Univ. of California — Berkeley,
Berkeley, CA (February 1987).

- 173 -

Lar83.
Larus, J.R. and Hilfinger, P.N., “Detecting Conflicts between Structure Accesses,” Proceedings of the
ACM SIGPLAN 88 Conference on Programming Language Design and Implementation, (Atlania,
GA, June 22-24, 1988), ACM SIGPLAN Notices 23(7) pp. 21-34 (J uly 1988).

Lar89.
Larus, J.R., “Restructuring Symbolic Programs for Concurrent Execution on Multiprocessors,” Ph.D.
dissertation and Tech. Rep. UCB/CSD 89/502, Computer Science Division, Dept. of Elec. Eng. and
Comp. Sci., Univ. of California — Berkeley, Berkeley, CA (May 1989).

Man74.
Manna, Z., Mathematical Theory of Computation, McGraw-Hill, New York, NY (1974).

MasB6.

Mason, L., The Semantics of Destructive Lisp, Center for the Study of Language and Information,
Menlo Park, CA (1986).

Mas90.
Mason, I. and Taicott, C., “Reasoning about Programs with Effects,” pp. 189-203 in Programming
Language Implementation and Logic Programming: Proceedings of an International Workshop,
(Link&ping, Sweden, August 1990), Lecture Notes in Computer Science 456, ed. P. Deransart, T.
Maluszymiski,Springer-Verlag, New York, NY (1990).

MIl88. .
Miller, B. and Choi, J.-D., ““A Mechanism for Efficient Debugging of Paralle! Programs,” Proceedings

of the SIGPLAN Conference on Programming Language Design and Implementation, (Atlanta, GA,
June. 22-24, 1988), ACM SIGPLAN Notices 23(7) pp. 135-144 (July 1988).

Mil76.

Milne, R. and Strachey, C., A Theory of Programming Language Semantics, Halsted Press, New
York, NY (1976). '

Mul87.
Mulmuley, K., Full Abstraction and Semantic Equivalence, The M.LT. Press, Cambridge, MA (1987).

Mur?1,
Muraoka, Y., “Parallelism Exposure and Exploitation in Programs,” Ph.D. dissertation and Tech. Rep,
R-71-424, Dept. of Computer Science, Univ. of Illinois, Urbana, IL {(February 1971),

" Myc81.

Mycroft, A., “Abstract Interpretation and Optimising Transformations for Applicative Programs,”
Ph.D. dissertation and Tech. Rep. CST-15-81, University of Edinburgh, Edinburgh, UK. (December
1981).

Myc83.
Mycroft, A. and Nielson, F., “Strong Abstract Interpretation Using Power Domains,” pp. 192-205 in
10th Collogquium on Automata, Languages, and Programming, (Barcelona, Spain, July 18-22, 1983),
Lecture Notes in Computer Science 154, ed. H. Ganzinger and N.D. Jones,Springer-Verlag, New
York, NY (1983},

—174 -

Myc8S. _
Mycroft, A. and Jones, N.D., “A Relational Framework for Abstract Interpretation,” pp. 156-171 in
Proceedings of a Workshop on Programs as Data Objects, (Copenhagen, DK, October 17-19, 1985),

Lecture Notes in Computer Science 217, ed. H. Ganzinger and N.D. Jones,Springer-Verlag, New
York, NY (1985).

Mye81.
Myers, E., “A Precise Inter-procedural Data Flow Algorithm,” pp. 219-230 in Conference Record of
the Eighth ACM Symposium on Principles of Programming Languages, (Williamsburg, VA, January
26-28, 1981), ACM, New York, NY (1981).

Nag79.
Nagl, M., “A Tutorial and Bibliographical Survey on Graph Grammars,” pp. 70-126 in Graph-
grammars and Their Application to Computer Science and Biology, (Rad Honnef, October 30-

November 3, 1978), Lecture Notes in Computer Science 73, ed. V. Claus, H. Ehrig, and G.
Rozenberg,Springer-Verlag, New York, NY (1979).

Nei88.

Neirynck, A., “Static Analysis of Aliases and Side Effects in Higher-order Languages,” Ph.D. disser-
tation, Computer Science Department, Cormell University, Ithaca, NY {February 1988).

Net9la. :
Netzer, Robert H. B. and Miller, Barton P., “Detecting Data Races in Parailel Program Executions,” in
Languages and Compilers for Parallel Computing, ed D. Gelernter, T. Gross, A. Nicolau, and D.
Padua, MIT Press (1991). Also appears in the 3rd Workshop on Programming Languages and Com-

pilers for Parailel Computing, Irvine, CA, (Aug. 1990).

Net91.
Netzer, Robert H. B. and Miller, Barton P., “Improving the Accuracy of Data Race Detection,” 3rd
ACM Symposium on Principles and Practice of Parallel Programming, pp. 133-144 Williamsburg,
VA, (April 1991).

Nic81.
Nielson, F., “Semantic Foundations of Dataflow Analysis,” M. Sc. Thesis, Tech. Rep. DAIMI PB-131,
Computer Science Dept., Aarhus Univ., Aarhus, Denmark (1981),

Nie84,
Nielson, F., “Abstract Interpretation Using Domain Theory,” Ph.D. dissertation and Tech. Rep. CST-
31-84, University of Edinburgh, Edinburgh, UK. (October, 1984).

Nie87.
Nielson, F., “Towards a denotational theory of abstract interpretation,” pp. 219-245 in Abstract
Interpretation of Declarative Languages, ed. S. Abramsky and C. Hankin Ellis Horwood Limited,
Chichester, West Sussex, England (1987).

Nieg0.

Nielson, F., “Theoretical Aspects of Semantics-based Language Implementation,” D. Sc, Thesis,
Tech. Rep. DAIMI PB-329, Computer Science Dept., Aarhus Univ., Aarhus, Denmark (August

~175-

1990),

Qat77,
Oates, S.B., With Malice Towards None: The Life of Abraham Lincoln, N.A.L, Penguin, Inc., New
York, NY (1977},

Ou7s.
Ouenstein, K.J., Data-Flow Graphs as an Intermediate Program Form, UMI Research Press, Ann
Arbor, MI (August 1978).

Ougd,
Ottenstein, K.J. and Ottenstein, L.M., “The Program Dependence Graph in a Software Development
Environment,” Proceedings of the ACM SIGSOFTISIGPLAN Software Engineering Symposium on

Practical Software Development Environmenis, (Pittsburgh, PA, Apr, 23-25, 1984), ACM SIGPLAN
Notices 19(5) pp. 177-184 (May 1984).

Pad79.

Padua, D.A., “Multiprocessors: Discussion of Some Theoretical and Practical Problems,” Ph.D.
dissertation and Tech. Rep. R-79-990, Dept. of Computer Science, University of Illinois, Urbana, IL
{November 1979),

Par83.
Partsch, H. and Stweinbriggen, R., “Program Transformation Systems,” ACM Computing Surveys
15(3) pp. 199-236 (September 1983).

Per82.
Perlis, AJ., “Epigrams on Programming,” ACM SIGPLAN Notices 17(9) pp. 7-13 (September 1982).

Pfe91.
Pfeiffer, P. and Selke, R., “On the Adequacy of Dependence-based Representations for Programs with
Heaps,” TR-992, Computer Sciences Department, University of Wisconsin, Madison, W1 (January
1991).

Ptedla.
Pfeiffer, P. and Selke, R., *“On the Adequacy of Dependence-based Representations for Programs with
Heaps,” in Proceedings of the International Conference on Theoretical Aspects of Computer Software,
(Sendai, Japan, September 24-27, 1991), Springer-Verlag, New York, N'Y (1991).

Pin91.
Pingali, K., Beck, M., Johnson, R., Moudgill, M., and Stodghill, P., “Dependence Flow Graphs: An
Algebraic Approach to Program Dependencies.” pp. 67-78 in Conference Record of the Eighteenth
ACM Symposium on Principles of Programming Languages, (Orlando, FL, January 21-23, 1991),
ACM, New York, NY (1991).

Ples1.
Pleban, U., “Preexecution Analysis Based on Denotational Semantics,” Ph.D. dissertation , Computer
Sciences Dept., Univ. of Kansas (1981).

Pod90.
Podgurski, A. and Clarke, L., “A Formal Model of Program Dependences and Its Implications for

-176 -

Software Testing, Debugging, and Maintenance,” {EEE Trans. on Software Eng. 16(%) pp. 965-978
(September 1990).

Ram#§9,
Ramalingam, G. and Reps, T., “Semantics of program representation graphs,” TR-900, Computer
Sciences Department, University of Wisconsin, Madison, WI (December 1989).

Rei81.
Reif, J.H. and Tarjan, R.E., “Symbolic Program Analysis in Almost Linear Time,” SIAM J. of Com-
put. 11(1) pp. 81-93 (February 1981).

Rep89,

Reps, T. and Yang, W., “The Semantics of Program Slicing and Program Integration,” Proceedings of
the International Joint Conference on Theory and Practice of Software Development (Colloquinm on
Current fssues in Programming Languages), (Barcelona, Spain, March 13-17, 1989), Lecture Notes in
Computer Science 352 pp. 360-374 Springer-Verlag, (1989).

Rey68.
Reynolds, J.C., “Automatic Computation of Data Set Definitions,” pp. 456-461 in fnformation Pro-
cessing 68: Proceedings of the IFIP Congress 68, North-Holland, New York, NY (1968).

Rug87.
Ruggieri, C., “Dynamic Memory Allocation Techniques Based on the Lifetime of Objects,” Ph.D.
dissertation, Purdue University, UMI Research Press, Ann Arbor, MI (August 1987).

Rug88.

Ruggieri, C. and Murtagh, T.P., “Lifetime Analysis of Dynamically Allocated Objects,” pp. 285-293
in Conference Record of the Fifteenth ACM Symposium on Principles of Programming Languages,
(San Diego, CA, January 13-15, 1988), ACM, New York, NY (1988).
SagdQ.
Sagiv, S., Francez, N., Rodeh, M., and Wilhelm, R., “A Logic-Based Approach to Data Flow Analysis
Problems (Prefiminary Version),” pp. 277-292 in Programming Language Implementation and Logic
Programming. Proceedings of an International Workshop, (Linkdping, Sweden, August 1990}, Lec-
ture Notes in Computer Science 456, ed, P, Deransart, T. Maluszyriski,Springer-Verlag, New York,
NY (1990). '
Sch75s.
Schwartz, J.T., “Optimization of very high level languages,” Computer Languages 1 pp. 161-218
(1975).
5el89.
Selke, R.P., “A Rewriting Semantics for Program Dependence Graphs,” pp. 12-24 in Conference

Record of the Sixteenth ACM Symposium on Principles of Programming Languages, (Austin, TX, Jan.
11-13, 1989), ACM, New York, NY (1989).

Selo0.

Selke, R.P., “Program Dependence Graphs: A Formal Treatment,” Technical Report TR90-130, Dept,
of Computer Science, Rice Univ., Houston, TX (1990).

- 177 -

Sel90a. .

Selke, R.P., “Transforming Program Dependence Graphs,” Technical Report TR90-131, Dept. of
Computer Science, Rice Univ., Houston, TX (August 1990).

SeoB8.
Seo, 1. and Simmons, R., “Syntactic Graphs: A Representation for the Union of All Ambiguous Parse
Trees,” Tech. Rep. AI87-64, Artificial Intelligence Laboratory, University of Texas at Austin, Aus-
tin, TX (October 1988).

Sha8l.
Sharir, M. and Pnueli, A., “Two Approaches to Interprocedural Data Flow Analysis,” pp. 189-233 in
Program Flow Analysis: Theory and Applications, ed. 8.5. Muchnick and N.D. Jones,Prentice-Hall,
Englewood Cliffs, NJ (1981).

Shi88.
Shivers, 0., “Control Flow Analysis in Scheme,” Proceedings of the ACM SIGPLAN 88 Conference
on Programming Language Design and Implementation, (Atlanta, GA, June 22-24, 1988), ACM SIG-
PLAN Notices 23(T) pp. 164-174 (July 1988).

Shi%0.
Shivers, O., “Data-Flow Analysis and Type Recovery in Scheme,” Tech. Report CMU-CS-90-115,
Dept. of Computer Science, Camegie-Mellon Univ., Pittsburgh, PA (March 1990).

Sin72.
Sintzoff, M., “Calculating Properties of Programs by Valuations on Specific Models,” pp. 203-207 in
Proceedings of an ACM Conference on Proving Assertions about Programs, (Las Cruces, NM, Janu-
ary 6-7, 1972), ACM SIGPLAN Notices, (January 1972).

Son87.
Sondergaard, H. and Sestoft, P., Non-determinacy and its Semantics, Institute of Datalogy, University
of Copenhagen, Copenhagen, Denmark (January 1987).

Str8s,
Stransky, J., “Analyse Sémantique de Structures de Données Dynamiques avec Apptication au Cas
Particulier de Langages LISPiens,” Ph.D. dissertation, Université de Paris-Sud, Centre d’Orsay (June
1988).

Sted0.
Stransky, 1., “A Lattice for Abstract Interpretaion of Dynamic (Lisp-Like) Structures,”
LIX/RR/90/03, L.IX., Ecole Polytechnique, Palaiseau, France {(June 1990).

Tay30.
Taylor, R. N. and Osterweil, L. J., “Anomaly Detection in Concurrent Software by Static Data Flow
Analysis,” [EEE Transactions on Software Engineering SE-6(3) pp. 265-277 (May 1980).

Ten74,
Tenenbaum, A., “Automatic Type Analysis in a Very High Level Language,” Ph.D. dissertation,
Computer Science Department, New York University, New York, NY (October 1974).

- 178 -

Tja70, _
Tjaden, G.S. and Flynn, M.J., “Detection and Parallel Execution of Independent Interactions,” /EEE
Trans. on Computers C-19 pp. 889-895 (October 1970).

Tow76.
Towle, R., “Control and Data Dependence for Program Transformations,” Ph.D. dissertation and
Tech. Rep. R-76-788, Dept. of Computer Science, Univ, of Illinois, Urbana, Il. (March 1976).

Weig0,
Weihl, W.E., “Interprocedural Data Flow Analysis in the Presence of Pointers, Procedure Variables,
and Label Variables. ,” pp. 83-94 in Conference Record of the Seventh ACM Symposium on Princi-
ples of Programming Languages, (Las Vegas, NV, January 28-30, 1980), ACM, New York, NY
(1980).

Weig4,
Weiser, M., “Program Slicing,” /EEE Transactions on Software Engineering SE-10(4) pp. 352-357
(July 1984).

Wol9l,
Wolf, MLE. and Lam, M.S., “A Data Locality Optimizing Algorithm,” Proceedings of the SIGPLAN
'9] Conference on Programming Language Design and Implementation, (Toronto, Ontario, June 26-
28, 1991), ACM SIGPLAN Notices 26(6) pp. 30-44 (June 1991).

Wol78.
Wolfe, M.J., “Techniques for Improving the Inherent Parallelism in Programs,” Tech. Rep. R-78-929,
Dept. of Computer Science, University of [llinois, Urbana, IL (July 1978).

Wold2.
Wolfe, M.J., “Optimizing Supercompilers for Supercomputers,” Ph.D. dissertation and Tech, Rep. R-
82-1105, Dept. of Computer Science, University of Illinois, Urbana, IL (October 1982).

Yang9.
Yang, W., Horwitz, S., and Reps, T., “Detecting program components with equivalent behaviors,”
TR-840, Computer Sciences Department, University of Wisconsin, Madison, WI (April 1989).

Yan90.
Yang, W., “A New Algorithm for Semantics-based Program Integration,” Ph.D. dissertation and TR-
962, Computer Sciences Depariment, University of Wisceonsin, Madison, WI (August 1990).

~179 -

Index of Authors

ADBTAIMNSKY, S, 11rverererrssreassmsrerimseatrersssimscesermsaseesbasss shsnssesssbsststs sasssenssbestHE 400 Es s maTna e Esabinsrthtasantarantasssrasnsass 35,53
AIO, Aeesiceerissessesse s rsserseassensurtostast erassessas eanensmarrar s araressatast rhATaRERRS ER ETS ST reneb b A LRSS RS 13,16,29,31,78,130

AIPEIT, Boovvivsrereieisessreisssesesesesnassassssassemearissssssssansossssssesssenssnenssssnsanss soesscs ot seas st Ens Thas rom et sest st st s s 118
BACKUS, J covreeseeneireisiesersissesrsessmssesssssssess abesassssas asas mos sesat st savsssssses ot snsvmmsn ssssass et sss iis hsbianss e b n s sm et st s b0 s 1,5
BAlGSUNGATAIN, V. crecirerriercirerseassnsnrmesseranssessssssaresnsassasansessasesstssssnsssbe st somes smssnanesses sesnssamssnsamceamssbistsans 14,30,32
BAILANCE, Rorereeieceeieeeeiresieresassasssiesasnrss sessrsasasas st essasshseest obbe sesmmesmrasansasnsse dbtIE AL R ELLOE SR ESESESE ST ER S P s R 200 32,120,126
BAUEE, H. oovvvesseeeerieneserrisesnsssarssesstesssessassesssnsass sasrasssesresssssss ot resbsssassn arsvas sesnasmare tans essmesst sbeatsss sitsbasmsanssnsnssnas 85
BAUIMZATIIET, D). 1oueuiveteercrrarrseeresemstassssssssssssasinss s sssas searasssssbesssssases seoth ants basseaerarrd bt s risssssans sutatasnsesssnase 2,34
BAXLEL, W o.oeeecesorisissresesssremsssssesmsesresntasssbssstastas esss entsasesmanss res iesa s4ebEE S8 S0mS S Em L AP AL 4T 10 R LAY Lh AT b s s e s ras 85
BEIMISIEITL, A oevevetinisssssssresessesesesstssassnssesstssitessabemers e s ae s £a o4 a4 48438 F4 508 £ D EHESeE S enE 208540 404102 amam g anem s minseaa s st ananees 28
BINKIEY, D cocceeerearereirnerserescnsscnsssstsmssassasmsarsrss sssssssassssssssasssnssaseasaessrasseass sssssasasnas 3,14,87,107,120,125,128
BOGIT, F. covvveretsieeiscisssssesessssassseesesstassssasmsssmises amssss asens s sesss srms saniassssbessinsasssssssnss ssssasonesissssssssnas 32,43,68,81
CRILANAN, D). evrveereessceeseseeresesiassstssesesersstsstatsssssnsssstassnsas st st sesearainbsssntensass bontabinananias srabs sbsbasess sussssssbansstesnse 14,32
CAMEWEIGNE, R ceeiereraverioressissessnesssnsrasassersses s 408158t bbbt sh s ha s s e s s srb st s 32,118,130
CHASE, Dererieeeeseseiissisesrsarstsr e sesesssrantbrsssa s e ch s e mnE TaTa Fad 4R et seTesE b sEaEnE s v 1 43,58-61,63,66,71-72,79-80,112
CREIL, Suuverereeiesvrereeeeemeasesseseressas s sesmansorsammssreemcse st is basasbed S asdsa £ e R aR P90 TE TS0 a0 SR RSB A RS SRR e R e syt e b8 3,28,82,114

CROU, €. vreereeeeeeeeeeetetnseosatsbaseravssssbessa s anssrabe bond SheasesRER e RER AR o SE ¥R R R 20444426 HE 4 2L A E SO e EA e 403 4004 s AR n S b e b an st a e ne 123
CIATKE, Lveeeveeereeee e teeeeaiessstebaeneessnssasossessabaesschsbese snamsenas emen ser 8 s He s et e E b nd S b e EA R SR Esm e e s e s b ans e ras 30-31
CIRATY, T woooevveeerueassresisenreeecstetieauesss s s b e e s Er R8RS o484 444848548 E S E 0540124 4140 AR SRR PR P 6
COUSOL, Prrooeeeererereesereeseeeramessssssasessssamssssssassssmssssasassssessssesescssaessesnesssnnicnsnse 4,35-36,44,53-55,59-60,62.64
T OUSOT, Rarereee et ettessteseesssssassesssstaesin e srosessessassesanst ses he RIS IR ERE PR S An ke aeaRn st st enesmnsns bobens 4,35-36,53-55,59.,64
COULANE, D reioririisiesiererasnasnneesnsesessnrnsessasmmmssesarssssserte tasts sesbsnesesssesnanesassasasaes brdbsbibistsansmnasasanssnses eercresianrrraanaens 62

DIEBIAY, S. covrervemerecmremcucmeeeenctsssrsasissases e e se s 84S SRS oA S8 s r e e AR E PSR4 AT SRS S R 30
DIEIULS, J. o ovvorsvesecescessresseseseseeseeressssssssessessasssasesssasssssssamassesssessessasec rsssssssasssmisresmassssssncssesassssssrsssrssssnass 1100
DIRUESCI, Al cor e eeeeeeeee e eestreesesesnssss st esesn e s sensteseebans s s be st shn et SRR SRS SRR e R e ren s sa bk Rn et R e e aR AT e 12,43,57-59,81,130
IHEEZ, Horeeeeeeieeememiesms s e itss s sesea et ens e sereaea s g srsde bbb SRR e bR e 43P A R TR P4 £ S e s S A AT A s s s 34
FREAIL, ML oot ces st sab s e 8 s e e 130
FRILEISEIL, VL. vvuevitieeeseacsssessasssressssnas e resnrss sessssesssensanss anmnvessnssbeset s sstar basbs asirtrsntnsas et enssarnnnarnsrnssitdisusis 32,118
JFEITATILE, T eevveeteeiesesseererensneerearerarereeressarsress e sesem s s sm s ra s ea svase 1518 40us £ 42 anr s e e ses bbb e E SR s st n s 3,14,29,115-117
FIVIN, M. covoiseueereecrreorersasssssssssrersssssssssessstsssasesssssssassa s st 4448 10031508 4 28 S S 28
FPLANCEZ, Nonereeeereieeoem it eassrasnes aneeress smsaesamcmseessasessshassha 4214 s 42 02 P9 R TT R S EEe e 402 H AR TS S 8 O b e E s e s bbby 62
GETRATL, S.oeuireeeririeersrsnssisssssasesaeressasse sesenssnstoson boLRSSE 9ETETE 22 PE 9S8 TR T2 E eSS AR TS AR A a RS T s s s b bbb 5
GIFTOTA, D ceoeeeevsrevssrssesscessressssncssnssnasssssasesttsssisssss srsssss sossesanssseassesenssobas st shass seiaresatar s IR L1 Sus s see o bbbt S 63

-~ 180 —

Gohkale, M. ..o, et et rr st et e s b r e vr e e S g e sre e sve sme s s e e R ve Ve va e e PN oo s R ueeTn rr e TEeR e Shbn e 32,43,68,81
GONZAIEZ, M...ovvouireeererneeessssessasens s essssanssenemssesesssssssasosessessess e es s sesms e s seee s e st seeeeee e eene 2,114

GUATTIA, V. oot isensrimmsnmses s sassssereseeseeesosesosssesesemse s s oess e+ om oo 20t 2me et e e ee e s eea 12,62-63,81
HADEL A oottt sessas st smasssa e ressees e s s e e seeee s e e eeee s s e e e e e e s e st e ee s eeees e en 75
HADKIN, Clnto sttt e ettt seness cosss et s e ees e es e es e s s e st sttt e ees st eeeee e sesenss 53
HEAEIMAN, L oo ieestetiiinceciee et et et ceeeeveseesenssensess s ss st se s e eeee e s e e e eeesees s 43,60

HIANGEL, Puvcvviervveresenrermessasesssssessesssseosessseeeeseesssssssons etare R eb et ae oLt b et rae e Ra s SR eeR bRt ba e 4ot seare e antsemn e 63

HOO, Rttt e snsast st easet s e eee s ses e e s sae e s e er et et me st st eee e e eeses s 32

00U, Kl ottt ert et set s s e e seeseest et sens e ees e e e sm e eeses et et eet s e st e eeen e sss 12,60
JORMSOM, St oottt cee st ee et emee s s ee e ee e s et ene e s st e e e e 130

JOITINE, Ul ettt et es e an s s e e et e e eee e st e s e s e et e e e ee s ees e oo 63

KeMEAY, Koot ser st ceee et ses s seserese e enes e s neeeeeeeees s s s e 2-3,14,30,32,34,85,115
Kreowski, Ha-J. ot sttt et st eeeeee s eeeemeeees s s sae e res e et et es 75
KU, Pttt rsen s s st v s se s en e s s e e et sens et st st eness s e e sene et s e e eas 1,3,14,16,28 32
LAIN, Ml ottt s bbb e st sttt st e sem s s e et e en et eoe e e es e tes e 129

LANAL W ot et a s s st sss bt s s ettt n e e oo e e 363,65

LIRCOIN, A ittt e s s e st ettt ee e e et en e et ene e oot e et e ee s et so ettt eens s 65

MANTA, Zio.ovrire s srmsnicnesessssssss e seseassssessas s e ss sansasasesss s ossnsmareeeaseseesstssestasssesessesseesseseresessems s sse e 33

- 181 -

MIIDET, Rttt ssses s e sts s st essesses s s o essessesesonsasesenseses st SRS E SRS A ER S R RSO RS £ ntbab e ba 1 rdarans 130
MOUGGILL Miucuceiiiiiirceicersrensreseseressesessssasessesssessssssessasessssssssesssnsas st set sassssmsacsssebss ibabasssassene 31-32,117,120,125
MUIET, Hiouoventienisacesessnmssserssecessanisnasesesserssesesarassssesssassssss sassessess siessssses e ssssnss sissssnsanos sssasas hasssusssnsnsesssnsanes 32
MUCRIUCK, S srrrses s esssresssarasenenssssesserseeseanerns st srsra et ranste 12,43,58-60,62-63,69-70,73
MUIMUIEY, Ko ot erereetesseresssse sarsrsrsssressessesssrsnsas e sassrassensasssatasaresnsensasases SO 43
MIUTBOKA, Y. iotiterrreirssereiritemisrsrasseses nestes s ssesesesssmssssessoessesssses st nmens varas srbassresssnseetsoesesasstassnssesmesen 3,28,82,114

INBITYTICK, A. oitiieiiiis s cits s s sssssas s cesesarbbs b sbese s ebossad b os 440 o464 20s b2 £k b2 bakRE LA SE 4140400 eR SRR S Sb1 st aEabrasaEsas st sarassesser 2943
BEIZET, Rueoerereererescceescve st reevecsmesresneas s et s sasaassssatasanscsns sesesnssanassss sees ore snssasassnssaessses easssusnsessnsrasesunsnsnvenes 30
INICOIAU, Anrerieeiereisesrassericsensnsaesraseasssssasrasrassotsessestereesssasasns st seas asessanse ressrs snnrsresesans snessssansssessnrmsanes 12,60,73
INTEISOTL, F. ottt et nse e st ssa s e b s rsns s s sn ae 0 svaras s suerase s b aba e e A s RS b od H o e AeR b b et s bbb e ien 35-36,64
OIES, St oottt sessstess s stastss reas et et rnbes se4 444 440454503418 S8 LSS SRR SR RS R PR S8 L on SR R AR RSN BER SR Sb LS8 SE BRSSO e 65
L0 7t | R P 30
OUENSIEIN, Koo rer v errvsnsse e ssssrnsrressessmesesmeneeeesesseneeeenemeens 3, 140,32.83.115-116,120,126
OUENSIEIN, L. o..oceeeirrrsrviensneererrenssrssevenressssvnssersrsesssnseravanssnsssseeresesenssssassersnessassmssncsssnnecss 3, 14,29,83,115-117
PAQUA, Dot cecectstesresteee e sae e et et saess s et er s vesesassns s st esnt s sheasnebanasaea s e s eana e A e s snne e e eanaseaneonn 1,3,14,16

PILIS, A e srisre v artes s s s e rsrre s s e eese e s ame e e e R AR eRs 4t Se et e A e sebe Rt AR hre e e s Rt an b e saa ertsesne shna sabannn 1
PLEIFERE, P.ovveviviveseiereisesisessesesssmesesesmsnssss st snsnssessans sensssasssenssareasasasessars sess ssssessssass senensnence 32,43,88,99,123,125
PIEDAN, UL ccocoriviniiinrimrinnmirnnsrnsnsrscnenrsssnsasrsssnnssssssrersssssnsssscisssonsssessssssssnsesssssemeennnennes 125%43,38-60,73,132
PIOKINL, 1 ceciiniiiniie s ctie s e crtmeesnmsvesse e snrannsaetes sessenbensassnsbnsnsns st enastesasan saresassnsransrsnatsrnnssinsnesssnesssersssnes 130
PRUELE A et srersseesseessns e sessareseseesssnssressssssessressansessemeasemsenss seenmsesnseenseassnnesmtesmssimrsninsers 20-20,58
POAGUISKL, A ettt s s ser e e e e n e e r e e e bbbt sh e R 30-31
POIIETHCLA, A o eeere et ceassassssretssreassaasnasessas s aemse e s ratme s ses s eaceme besebeemrd b bbb st der et st sbeat 234,115
PIANS, oottt re st ene st ses s st s e sesnas s a sme e e sn et e se e s 1,3,14-16,29,32-84,107,117,123
Ramalingam, G ..t iieiarrrerreesre i resersessassssessan restssasesss ssoms te st sas sassmssas ot sasns s srans smsssnsasenes 3,120,125
RamamOOITRY, C. iieieiiiitiesiniiii e e rerasesesesanseeseeseasses ohsssas 4 sasesen s shessas shesessssess exsnestonsessesssevassessveres 2,114
REIL, Jo oottt crseesessssnse e srsa s sasesees e sernsarass s resessare e e s assas s rh a4 b e r e e bt ped bt s st st b seaassnnssramssssnses B1O
REPS, Trivvrrerrirnesnnsrsieraniisemsassasisesersesssrnrmneneens 109,14-16,29,32.43,64,82-85 87,107,117-120,123,125
REYNOUAS, Joo ettt e res s e s s st e st et sra s s s e S e b eh i st Sm b e Rdaa S SRR b e RRe A aE A e R et eirraas 63
ROGCH, N.ooirvrrieeecrrsescrnererirssesrmesesrmensieeserssssssssassessssesnasnssesrrasasers srems srureenssaeacssestss sesnss atars semssssssssnsesesasassesss 62

RYAET, Bl it sr s ree s e e e s e et s sase e 0 se s e e g st b em e et £ttt et h e Sh S nh b bbb bR RS 3,63,65
SOREIIES, Wi rvercsiisetieststsesssseee st b et b str as ar bbb 1asbeshs a2 bbasbbe et e beR s besas S hbaa st S0sssnes sRsm e e sstemsa o s enemnebatab b aa b bn s b s 63

SEKE, H. ..eiaerenieaererirismiscssinies s s sta s e s e s s e s ae s s S E b e E e E e SR SRR R AR AT TR SR RS Spe Rttt 12,60

- 182 —

b b eiEeEEEESasesebrsesteateetttnetnmeneeerene s aeseae st e ts e saebam et aaste st seareors 3,16,88,99,107,119,123,125,128-131
SO, Tttt stsesne s s ststrarsssns besabare e et s5eerrenesesoe s nans et sas e eas et sesee st ereme oA sbtasss et et st esnbsns st arereerentenrntstsresrerriies | D2

SESIOTE, Pl iuiioisecueeecrrreseeermssssssiesesesessmsssencasssassossessosass sassansossssensesss sasss sasssss entassses sesmsassenssoesasassssatatsssntassaras 130
SEHNE, R et sece st s et ev e eras e rasas s sre s sen s s s saras e s s R Ae s Rt e Rt es sesrabe e nrarnnns 13,16,29,31,78,130
SHATIE, Ml.oiiieieiiiecerces s sanescsrastecerons et asesess s sresesse s reraser onsras sss e aes b o R ess s st e masebrespass s saassns s ssetssessssn 24-26,58
SHIVETS, O criricriieeire s ssrcis e e tenetes secsrereseerase st semeressessreresses seat ok et b Sh bt Sbbsbeb ot ek abdn et emmenns msreerenees 17,130
SIIMIMOTS, Runiiireitircsiiniiiiiieitsstisnrrartrsessrarsesssssssesssssssss ses sssesss s ses e ssrat ot vbessaseses s4e esabs e bresassusansssnssassntsmsens 62
SINIZOTE, Ml cioireeiiinis s r e ceseras e ceesevesenssarasasss e ss et 24 244102 Pt en s e e s eeme senenan s ems s Eamamtras erapasaspentstaneensnenas 63

SINYHR, ML ittt ectniersac s s e srseran et v st s s s sn su b oe s aer A4 e g Rone e 1R g Re e st maerer e aa b arbeverAnEeREr o 130
SONAELZAATG, H. oottt smnes e pen e e s sene s escans st et are e sem s sbaes e srsmnssassen seems shemsat sesat st stsasanass st ane 130

SEEINBIUZZEIL, R ottt ittt s st ves s sresssrsrsssnssssaeesesaessss srses s srssnasess smtutsessbntos st susneasassanreresessnsunsastasssens 5
Stodghill, P. .cveeee e erobeetthetbbenat e nes st st r e e R e n e R e et e R res s red £eSdReS e £ab e bAS S b be 4 be s 31-32,117,120,125
SIACKEY, Gttt ittt s s es e s s bronsmaresmos e oo bR bbb bbb et bd s s bbb st bmonemeesetebantaticnss PO
SIANSKY, J. cretrrecrerrrreeerrennenseressorserareresnssmtsseassansasssss seeseenasssa et aresssssssessasesas snnsasssassn 43,58-60,68,72-73,77 80
TAICOLL, C. et cetceree st tr s eee e st s ea s s st st s s ee s st ameanar ar s smeress sranevasases seeenss ban e sares anarrsnasssesasneseennssanerts 63
TALAN, R oo e reres s crrsmr s s s eree vt e eesmesrsenssneas s ebesrerasse s sensaras v asseses sueresasanas rabas e sanrssssbansnnsasensanenssvasnsnnes 118
TAYIOE, R et etititieres it ss st st are s rsares sr s e sans s smes e £re s as abas sanEs o4 bad 4abEb b Ab KeE £ B8R4 b 8 sEb a4 e b et sbae bt 30
TEIETIDALITL, A.. ooveseitiieiiuaiiiiiseiiesisssessissstassmtesotossssossaresssssssss bassssissannsisssssesssssnts s sesssssssnssssssssssssmsasesssnssnsossste 69
THAACIL, . 1rveneereeirerccrrsrsesssressssssscsassassessasssassassanentastassessesss ses sssmassasesssessesesstnsesssnans senes snssnssaes ensnassnrasssenan: 28
TOWIE, Rl reriiiciiesis i eesebesnsssesssstsssessasssas iesarese sommesstabs et sietssesasnssssosassstsnsessnsosbssnasssesssts sasebsssssssssontorsnntnsnsssn 28
UTHINANL J. coeeeereeevneseeerrnrsnereisssseansasssssses srassse snassarans sassserassatansssancssnbasebesetssas vt pessasiss 13,16,29,31,59,78,130
TWWAITEIL, J. creeeierinerrsrmerserenerasresasrerentosnsanes sosensnsavassenssssnts s sonbsnstanasansasssssssarssnnes santenenseasssessane 3,14,29,115-117
WEEIMANL, Mo.....oiirveevirracrerorerensesieresseresrassesesassessssssss sesuessssassato st sesst smmsbssins sass smanssisssas 58-61,71,75,79-80,118
WWEIRL, W ittt innrtet et i sas e e tss beereva s reresa s as o des s ene s s rdba 1o EES L8 4 4RE 4 o408 0 £ bd o4 40 000800 08 et ed bbb nbad abebens 62-63
WWEISET, M. ooririecrnsreresrerenssemnisssrrosrisnsnrsarersssssssvsnsesestonbasrartentarebe sasbese st aesessns s sestrssssssereatsssansesenterssesassssns 123
BV EIHELITE, Rttt e sest e e s e nrset s s ars et s sasse s Rensbbe et sa s e s £atas e erenstn sensnenanaabsnnessansssnsasnessserassars 62
B0 0 O O U SUR 129
WWOLIER, Miuiicierrieeeesieesiererrressss s smressssssssesassesssmsassssstassresassssassersessensassensntvsnseneesnnranrernenenes 133,14,16,29.32 114
YaZE, Hloiiecin et cs e e st b s essm st s et sa b aat s stssn s sssbnnssassrmsratessesseressesnssnensansenssssnssserenesanss 12400
Yang, W ceecenennnineeerecsansnanes Leter et varar e e e e rAr T enaet st ebe s st et s b s e as s s 3,33,85,118-119,123,125
Y OUNE, Ju cvtrearrrrrrsvertrssersrntsessesiasssstrsresssesssereaste e sssnrntessnesases 1essesnsssaess 1eseeresessseraress semneemseeat s petinnsansermseenseranes 30
Zadeck, K. it rrers v arrs s renes s venrenees eevsrrreeceanesstatostatisnasesesesinninnntnnrntarannnn 3,58-61,71,79-80,118

- 183 -

Index of Terms and Definitions

abstract store

ADSEEACHON TIAD evrerveserrreseessssesssessssarmssrasesssssassspisss s sessessaassomaass s sme domssismms s s
ACLUALITL VETEER cvvnrnnvseseasssesscres onssorsrmsssenasssase s b ss s 4048 11001 00 Eo AR SRRSO S S s
ACTUAL-OUE VETTEX. +ovrevsrnessseessserearemsrinesstsssse s enss e sssrs s34 08 1SS 0R RIS S L L LTS S0
ACOINEA FUNCUOMS <vevsususssrsranresresssesesssssssssssas st secssomsssissssssstassanss 0Tt
admissible map (MA o 10 MA o) R R
admissible map (MI p to MA 5) R R Ry
BTy exc, o E———————tEEEEEVEE L G

APPIOXIMALE TTANSEET VEITEX wvvrrerrsrsssessssoersssssmsmmsss st s s s st s
approximate-occurrence-sring tree
atom() (MAH) eeeeseseneeesesee e s a4 RR R RS LR
atom() (MI}{) ..
AUOTII=DIESETVIZ vvveevesesenesssssenersssssesessass e e sssssss s em s RS et
atom-preserving map (MA o 0 MA 3 ORISR TR
atom-preserving map (MIM 10 MA% } eeeveseerssesanee et AR SRR
DACKWATA SHOE <vvvrncecesssssresseceneiasscsssssssrnrssssseserrst s e TSR
QLT VEITEX oovereueeersasesasesssnsnssreraresssasstomssamsssasssremmsssasass 100418 TT LS LESh

Call-Site-CATTIEA GEPEIACIICE 1oorevvsucresssmssnressssserarsssssaiss s s s S 00

CATTIETS OF A AEPETIACTICE .ovucriucerssmrssrerisssene st iR s e
carriers of @ dependence (ML,) ovvcrrcrerusrisssmmsssssssmmgismmssesmiss s e
carriers of a dependence (ML, , INFOTMAL AEITL) <veersesesrsssninresansnesammersessssnims s s st sna s s
carriers of a low dependence (MAH } erereusssenespesue LA AR S
carriers of a flow dependence (MS ;0) wrwmmmmrmsssssmmirmssmmsasrs st s

carriers of an occurrence-specific dependence

...

..

...

...

...

53
o8
89
45
13
54
121
121
54
151
149
&0
88
14
38
20
127
78
149
149
47
151
150
83
121
26
26
26
40
38
52
53
26

— 184 —

COnCrete Object vouvvvvvrerees ebetesesseseesraseeseseesseetrissssesresaborsataseesidsesssts atEs L IEEYS IS ST e Srs s R LS s re s et SEsannas 45
COTICTEHIZAtION INAD 11vvvrvvvensesssesesasseressrsessssssssssessssss snsrassassasaras et sassat aesms sass sossastast simsasasoscssinasssnnsbastsnsss 54
congruent computations (M 5 M r) eiuetersseseerensssaeasr et e e e R A 4R SR AR R SRS SRR R SR RASE 0 102
congruent computations (informal deffl) e s 90
congruent functions (M, MA 1) covcrrrecirismsiimsimesssss s s e s 54
congruent program points (M, M‘S) orreeercseesnrtesere e ssaras e enesare e iR A e aR s RA T SEe e b skt enR s 102
congruent states (M 20 M 5 } terverrerersssssrresassnsnssreenessases s ae et 44 LRSS SRR A R A SRR e sk s RS AR e 102
congruent stores (M 5 M r) ererueeereneresetrib AR Rasa R R RS eOd SR R RS SE SRS SRS s SR b 102
congruent stores CMH . MIH J teterueernesrassssetassreneesaesraneeiesAs L ERS RS R £ RE B SRR s Sh S s 2R e e 40
context abstraction (CONEXL-tO-COMIBXL) vuvmsierirersinrrnmarasrsrscsssssstsmamrars sossrrassasasssnssssssssassssnsasssns s 149
context ahSraction (COMEEXI-EO-SEE) .uvverniririirermsrmsnssssssserinsseonsrasssnarssisse st nssansssansnatrsnyprsa s stssssseninsnnsnsis 149
context SubSUMPLON (CONEXT-T0-COMEXL) 1ivurrnsresnsesssusmnammasssimsasiss ssintsasanasssen b ssass st b sn s sra s ss 151
CONLEXt SUDSUMPLION (SEL-LO-SEE) uevunrereranssssssrissssesmasmrmnscssasssimsttanmasserssrss sesss st st na s s s 151
COMIEXE-DIESEIVINE w.vevrernmurssmassvrsesesssosassssasssssnsansonsebscas o sas 88 11030878 4406 28408 LA SRS P T s b0 47
context-preserving map (MA . to MA . } etrereeernensnsnresseesressosnaareentsisstsrar Saasresimsmenssbetststs s saia i e 151
context-preserving map (MI,. to MA) etvervenesensaseensenaerassessesaR AR SRS R RSt S S beeseenne 150
CONMTOL AEPEIAEIICE rveueverereisssersrsssesesresisrseresssstiess e s s 8RS0 SRR SRS L 14
CONITOL AEPENUENCE WLl H woenteisinrarsrsreasasssssenscsaen s s s R s e SR e 17
ctxi() (MA 5 D ereerneetessssarenseeeres e e e R SRS R SRR S R RSSO S R E AR S R R AR 146

ext()y (M1,) eetreveeeressebeseneRee st e s a0 149
AR JEPEIIAEINCE 1.vvueruerererersianrasesrrarsssensassssbssts st assse s arm s ses s s 8RS0 e AL SR 13

data dependence STAPH (AAE) ..wwierisimrsmeries e et sib st str e st 114
data dependency (Tjaden and FIYIN) ...ovrmimrmsmresstssssiinisess st ssssan s 28
AALA TOW ZIAPN ceoveeiersiierneereeveser s isabes s aaranssssass s ses s o3 E s s AR R A B 115
ACAIIOCAHON OPETALOT 1.uevuvarrseretsssarsseremssassararssssmss ssasessnhssasssesseses s ssess b s 18 a0 asEse 1RSI ba LS TR 000 6
declaration AEPENAENCE ...occi ittt s bseat e o ree e bt h e s s 32
Aef-OTAET JEPENUETICE .uuvuererrrreremsierisrarsaionssasss e srasesstese satsmas s se Tt shd S8 be b o 48 S b 14
def-order dependence (MI e 10T C0 011 (R (5311 1) RO USROS ISP 38
def-order dependence (first defn.) (Ml) ettt 20
def-order dependence (second defn.) (Mg{) UV UO TSSO S TOP T 22
ABF-USE CHAIM .eevveseceeiiistcosreseerensssesasssmasasernssestsss seson aenssesas sssndohbasea e RO RO S S He s besaEas S s e b eRR RS0 T €2 n 29
dependence
dependence ENCAPSUIALION ... ivsceussieasessrens s e css e sb b e s S 121
dependence OW ZIADN .ot nerasseaes e s b s 120
dependence-based representation (dbr)
JElerMinate vAriable PIODPEILY wccciscivsmisisiaimisssmsessriessbabasssasssssrsssssssssms s tanasmsnsasasesasss st b s s 57
CITECHION VECIOL o.ovvvrevserererscsnsesessasessessnasaresssers sease sesdsratas b absssesess basassasasas dtasst s btbeT srssndbaResnEraTsagssnasasassonss 29

—~ 185 —

AIStANCE Of & AEPENAENCE ..v.mriesieeserssressersressaseissrssvasa s s st ar e s Ben e ts A s e s s s bt st st bR s a0 32
CESLATICE VECTOT 1vuevensssenemsssssssssasssssessessriressenssssass eatassassenrassesssssans ess s9amtes sotusssaraot sbabasass sessssermunsssrvesossases 28
distinguished procedure dependence SIAPH ... wicceussiimserssermsnsssissssssstsanssrssssss s s ssess s 121
divide-and-shrink AIZOTIRM ..coceieeeeeeececreerscsrssrissssstnmaresrsrartssstasa s ssrarers st st sba bas st anas st sansnssanassaaranens 66
OMUINANGE ..1ervsresseassercesesetestrreessessseaserrsssetsbsbisress soanssn rEosssaas s sidaaear masmasn assa s erbhribsELatssab b srasrntarassnsansit 29
EMBDEAGINE couueraeeuerrerorirrsrsssersssscassessmas s sasar s sbesrare b pen st s e AR RS R e e e s 008 45
enCIOSING PIOZTAM POIME coucuiveereirsrrsrisrrrssssesmmasnsnars emsessessbass stems e sassasnarsa i s 4aed bRt aa b s st 0k 17
equivalent computations (M 5) ererenenrrnre s e st ea AL RO RS A H R AT R R AR S e R S RES SRR S e S0 104
equivalent computations (M § et t et e sttt et et st st R A T PR e e e e et s b 99
equivalent sequences of Values (M.) oo s st s e 104
equivalent stores (M o) eeetitererereeres sttt seaeaeaere e be et SE AR A SRR R R R A SR SRR RS SRS bR b et 88
equivalent values (M o) eeerieeetriessaesettetiet sy o1 h SR SRR SRR £ RS S SRR P e 103
extended data HOW SIAPN ittt s s e s s s s 116
EXTETISIVE 1eeueveerseeseeenesmsosaeomeesiosasiess srrestnsenes pass semeredssn s o40aRaR e T sy R $1Yms £ e o8 42RO EE FA RS TR RS A E R T pn et S anamn s 49
[() MA e 151
f () (ML, e N T 149
fsmm()('MAH [OMA}{) ... 151

fslmc[()(MIH L e 149
fatse-valued control dependEnCe Wl H evciissssimsrre s st st ssss st e s asn s sh s s sansanes 17

first-Order ANALYSIS .ovvvievucrimiirerisesssissserssssrs st s sssasmssesebss b sas s sis s s verararasnens e rtetten s s s st nrane 35
flattened program (JANZUAZE F{)uviiuerersrmrermssssesssnsssssasasassrs s s s s s s s s s s e b s 90
flattened program (JANZUAEE S } wevvueeivsrmsessmnmmmmsccrssasstsast st st sitsb st ea s e st st b st st sesraaans 99
AOW QEPEITUBIICE ouvurrecoceaectiiisise et b iss e en e st bR e A s s i a0 14
fiow dependence (MA 3 Y ceteseresessnenenssararseoenet e eded e h SRR bR AR TSR eSS AR 4 SRE AR AL A AR A b e s 52
flow dependence (MIH SO O USSP TR DT PP PP T 40
flow dependence (Mlg{ B Eri 1671171 (07114 10 ST OO U VO UPP PRSP PP P 37
flow dependence (MS 5) eeererareer e e ae bt SRR e e A bR RS T 08 53
flow dependence (MM)T OOV RSO VTP RRTTe 19
FOPTIIAL-IN VETEX .oeeverieseresneeresrsarssvusresransssssanssnssesoressns rsiaranes ss 16 e0enesas anas vanensassanssmsesbis 1480 sassEETRSan s e s enasne s 122
FOTTIIAL-OUE VETIEX +vevsvsrerrarsseernssnssreersisesseseesssnessessnensmeressssenss sabatsnienstasbesnesesrosetsmessmint 1L sEa AT S LT e s ar e e s 122

FOTWALA STHCE +vvverereeveaenssenassssasossssasnsssessessstsssanssies tases srmteme e snssarsonnsssevases shsbn shat sbnessssssas sts aesttar i sansnanssnaas 84

GATDAZE COMBCHOM .ovviiissesssnisessiesssrsssassans s en s s bd AL L1181 e s
STAPN-METZINE OPETALOT v vvseveirsesissesasenrassesiestbisst s s s s as a8 e b AR s b2t A AR 76
ETAPh-TEWIIIE TUIE .. oiveiiisccuccrniirnner st st bbb s s T b 75

heap-language system dependence graph (HSELE) ceeveerreis sttt g e s 85

- 186 -

BIETATCRICAL PR ..vuvreecrucererieisecesssrsassssessessresnssnss sessonarsmessesss sesbiossesesbessebssssssas sasissrossassossesmonsassssansas 117
DSTOLY-IASEIISILIVE ANALYSIS cvureeveersseeemseenseesonsimseessssssssssssestsnessssessessesssaesssnssasssessssssas resnesessasssssssssstsasens 35
NISIOTY-SENSILIVE ANALYSIS ..vvvuesesssererssarensserssassssssntases meseesssnsssessseseseses sress sessnshssssassssssensnossssssssesnsssbssanss 35
TETIITIET EXDIBSSION. covvvcreceriiesireissassesessrssanssrmssssnsrssansramesst ot o4 seseassatssesssreshensasnesssassnsessqesssarsssasssnessssn 7
IMPETALVE ACPENABTICE wivirieererrireererreerriseisecrresarssasnassessssssrarsasssessebnesasssesintsestsss o tesansesasesensssasanss st ssnss 31
input dependence ..o seeriseecseessesssnenes eausvaRessesm e eE s s e R Rt asvanstese e nes e e SRa TSR SRS e snnRd skt s 14
input dependence (M, , informal defil) oemmiemmeee e 38
input dependence (M 9 oiteetest it seesmsaiareeb e e en b seeEase et abAA bt Hh At bR S e AR R s bssRer e e ne s arere s 20
INSITUMENIEA SCIMATLICS .erueermrerreressseemese et siesssessesssassbsstosas b sedsbarsba b smsEsE s b e raas e AR RS e T SRR RSO Ra s er 0o s 37
INSITUMENIEA SLOTE .covveeriaeieisiseinerrssssnssmtssrsssamontassnissnsseseseesssere convassnsset bavers bamt st b basbtss sbesbsearsssbasss stantsssns 37
INEENUEH BERAVIOT 1veeeivererreesrernsnarerirnermsssestsassssssssass sbeans s e e s rs b e sy s rer e ees£8Fa 2T S0 400 12040 E o bur b br bes Trtapnt S2n 31
interprocedural control dEPENAENCEvvevvsimimscrisnniris ssstas et s sssasars s s s es s sstsar e e sas e searansann 14
interprocedural control dependence W.rle H .o sr e s e s bbb 17
intraprocedural control dePENAENCEccveeeeree s s s b e e e e e 14
JOIN DIFEIPOINT «ooveceemrceenssresenamssnse s srrsemsresnsss srvessssnssnssnssssressssbers bpatesess saniessbhassass e sbassansab bt aassassnsns snnsnnns 118
KLIMUETE ©ouveieeirececesceemsstese s smssssst st e e astsranesr e san s e vrmssmeasvaessoeron byae s raber e b rabe bbb 8 abda bt eb e aeba s aesaabanneasenan 69
kind() (MA}(D erruresesessererraes e e ervn e s et Srene st et et bR AR AR Ar RS S £ 4O PSR RO R TR AP e 149
KATNIO-PIESEIVIIE cuevuceaerernnsreesaisessnesssranesmsusassensesrsstsrsstsbrsssrisssiansessensssmsnsssasas s resmasssssansssananssnssas sanenanssnass 47
kind-preserving map (MA . toMA J vaereeeansetheresnteatertatinentsantsas st e mer e sbe seeune s e eneaan et e anre Rt se e St et 151
kind-preserving map (M1 g W0 MA p d everreeretererirtasbertetantet e haa e et oAb e aA e ebaR bt aan At easeanresrerene ersenes 150
label-driven pArHHONINE SITALEEY coeereevrercreerearersrrrrsrasevsrsssretorssiebiesssmtes o sbssssessssssississasssssssosassnssnssanas 66
label-plus-path-driven partitioning SIAIEEY ..ecseeeeirisisimmmmrentaresrsrsss s sssssssssssassanssrssasersassarane 68
10T B (1 T 17U STV OOPPRPUPIOt 47
labeled SLOre ADSHACHON ..civvivevrreerrsssirerersraresseest e svsssessassers snrsresss s essassarasonsen siebantnsssssbiontasesasansensnran 47
labeled store abstraction {formal deffl.) .cvvvveriivcrncrecr s et b 150
labeled StOre CONAENSATIONvivcvvrersrerertcree s asears s rsssassses s resres b ame s an s s e s ssrebesssnebsabbn et eRba s baateas s tnina s 72
labeled Store SUDSHUMPIDI ..iiiiiieiriiisiirsiissiesessrersnsssrassssassserseesass o ssessssssnesesesessenasesmssessenssssaseassssnsns 152
lackadaisical eVAIUALION ... s s e s e et aaensan s 32
language (L(}) of an approximate OCCUITENCE SIIME .cveoivviciermteiresimicesrasssensnesrvssmsersssnsssssessess stes e 149
langnage (L(}) of an approximate OCCWTERCE SIMES SEL 1revieverereemrreireciniesererrameassrssssssssanse siasssssanass 149
LAZY EVAIUALION ..evrierearirerirerevrrrsrsreressesssssr e smasmss sesss e oecessesimsss sesbeseesses bren et on s saasssn st b st ee b e e snsessava st nss 32
loop-carried dEPENUEINCEiiiiiccieceee s iiriiesst s s s srs s st s e e T p e e A b e et e R e e st na s 26
loop-carried dependence (ALLER) ...o.ci v b e et 22
loop-independent dependence (ALIBN) ..ovvcvrrveriverressssserrresicssrensasrrarssnsirssssmssessrssrssasssasssssesessssssnses 23
occurrence string abstraction (SIANZ-T0-SEL) ...crvvrirriirrirmrirrrrsns e sers s mss st sresrrsssbsnsenssinesssssssnansrssannes 149
occurrence string absraction (SINE-tO-SIIME) wuovoie ittt ctsssassts s srsas e st sstas sssmssbssnsnmmiasens 149

OCCUITENCE SIring SUDSUMPLION (SEE-10-88L) 1vveroveemiriesereeatrisenssarerm st rrrrerasvrerare seces e sinasaserans snsaranesssscnsesas 151

~ 187 -

cccurrence string subsumption (SIONZ-I0«SITNE) -...cccveecerveerernrisssssmssismssmresreessasesesssssssserss rasrssasaranes 151
occurrence-specific flow dependence (MA 3 Y tereenmrer et e esane st st r e s R e e et sE e AR s R et oA s pr e e e e s e 51
occurrence-specific flow dependence (MI,) vevvee v sereee ettt st s 40
occurrence-specific flow dependence ('M851r) ttietiencentisenenn e enesres shear et RR A e naE s R RS RS e AT TR TS 53
OCCUITENCE-SITING ADSHACHOMN .vevveicresercrsreresersmseesassnssermassarersanssssessssss ssasassasssesterermsras assrsssss s pssssseguans 47
910150 2L (034721 l6 (53 1155 6 U4 Ly RO OV SRS PP 23
OFQINATY SEIUCLUTE ©vuevuvesersssssessssrressnsssssssrasssss siosssisiamnasssensssssssosba siassrssarsbsssssensasassssassasssbsnsssssssnsssrasons 46
OULPUL GEPENACIICE .oeereee e et remt s besms st s a e s e e ses s r e ah skt ne e st e e v e e A48 bbb AR bbb bbb 14
output dependence (M1, , INFOTMAL BEINL) ivireecveirieri s rrns e sssessrae e st s rssaness s snsaans s srs s e e e navamanss 38
OUIPUL AEPENAENCE (My;) evrmvsnrraincermssssismsssrsbs s ssssabass s b s e s b e 20
PATTLONINIZ SITASEY 1voveasirisiirinsiiesrmasess arassssns e esdes s b4 bs 8 40 Sh 8 bt R b et S e e sea AR i e S b et omm b bR n b st e sb R it e s s et 65
path-driven partitioninE SHALEEY .iuiiiiiiinriesimres e sseser b b s o sss s e e s ar e e erras s st T end 2 eras oas 69
path-plus-label-driven Partitioning SIAEZY ... srerrrirsrrrsrsraseisssissisinsssestsssssssnssssessesrississsrrnsaemses 71
DOIRLET JANEUADE ...cuerreerscessesensearensasesnen bbb araba s essasasisns st re b an b s an s hasaane e s resrmesbns b b ds b e et st b s s 3
POINEWISE TCAUCHON SIAETY .euvrececunsrssermsrressseeresseresassssssssnsnsasanssssnssnsasasasrssassnssstsessessesssnssss sasinssnssssnss 72
POSE-AOMINANCE .1uivsescvieeisiriscosstssesimsmssms sersssrssrarebesstsssabs e bas st assstatons sibssastasssssssase st sn s as s ansrstans onsssbsstsanes 29
PLEIIXACIOSEU ecunrrrisieirecreresenrarersessrrsenersstsssssssssssnsassorsssesnssssnsnsssss sessassssssasnsassetass sas e ssaneneasasassnsssssassss 71
Procedural dEPENUENCYooiiciriiiiirermnrs st srsss b ar st s s b st st aas s ne e s s b Sa bR s 28
PrOCEAUTE CAll ZTAPN .ovvrserererseeeresvrernsorsasias s it s b ssassbanstassass e sassnsea s e s s s He b s e s s 78
procedure dependence ETAPR ...t e s s s 121
program dependence graph (Ferrante-Otenstein-Warren} ... 116
program dependence Web (DAW) .. et sas s st st e s i s 120
PIOZIAM BEADI 1rrerveicrsieem ittt cesasen s sastsns s sas s sessrss s brems b s b s b bbb ot srd s 2t Ha A S s R Re s bbb vt 114
PIOZIAML POIME W.EL e erectsisibitiss st st sssrs e ses e s sra s sem s a0 ek b bbb 4 S aad 1 b e F s em e e s ernsem e s 17
Program representation Sraphl (DFg) .. s en it s bbb s e 119
program-dependence graph (HOrwitz-Prifi$-RePS) wcoiomiiiminit s ssssississinns s 83
DIWIE ctennerevesersenssenresnsnrenransons srerinsetcesbiisbs i 1EEREEA 4 S HE SO S oE 024 ae R 12 S5 e RS 002 e et £ AL AL S L RO IR L SR e A e E st s 47
race Condition ... ttheeteraEetes bR RS s A et e bR AT A AL bR SR SR TPt e nienen 30
read of a memory 0bject (M) vt 29
read of a memory object (MH B teereentntrraneentreresneberesssansn b e nenere R er st e raeer T e TSR A s hes e Sh s A tabe e he s b et ea e I8
read of a memory object at a state (MH) tteresrere e s et e tane e st sk Aaae et ek RE R e R RS R ST vee s e ks e nbeser s 18
read of a memory object at SLAe (M 1) oot 39
FEAUCEPZIM) coriiircerareserreerss e ersssrers ecossessiss s b s s st es b e b b s d a0 s S re et seds s s e R s e rn e bt st s Re s bt b2 103
TEAUCESIOTE() reverrerecimreeesesetremrerensbssssars sesssesresssasseseemeearas bebeneavmmmsrmemssertdsssss sanan st san st as atsnsaras erers e tsn b ban 103
FEAUCHON SIAIEEY vvrerenveresierareiassssasesasassssreressssermessrmsmrerebbsssdiohoimtonbaeriedssss sas shrbnss st et an e bassnsassu et saasraseses 66
ref() MA Y ertereeeretr et et she bt et et sbes st ne s R RS R e S ron e e R eR TR A e bR E A E e R AR RS SRR SRR SRR SR e s eh 149
ref() (MIE . } tverererresetasasarssasesessansasers s bbs A ARLE 1A LA SR SR SRRSO TR B SRR R SRRSO T SO BA LSRR B AbS b b s 149

—~ 188 —

reference of 4 [yPe At @ SHUCKITE «evrveeciinisissaenimssesisssssssssans 19
EferenCe-PrESEIVIME .orierrrroererroeastassssraonssnssisssnssonsnssasras ST FO—— JER— creeseranars S 47
reference-preserving map (MA . to MA) RS certrnensessses JYP— cverrnseress FRVR crseranraseies 151
reference-preserving map (MI o 10 MA 5) ST rerseeremsssine arreernraseans ertrrsseneains verererrenareresaennnas 150
referentially transparent ..o.c.eeer OO ST cerssrasaonrs SOV reiesesesaeesttsans s e eas 18
safe estimate reserarasreere reserneniarerksibase s arrabeas

second-order analysis ... 35

gemantic dependenceorrreristsmnimmsssreemneeres

spurious dependence rerrirereereneseseease e s vns vessevsennrneses teesreameeeeraraateresarevraryesssnt it s n T be e s arne et 87
state (M S) eeeueessare e e e a R s SR verananrarares rrenesnerrens reveneernsererersennas 164
State abSIACoN .vviraeenneenae ebeeuaeseereomnenettabarea R ensa s sas et ey SRR creresetirarea bttt st assaerannrars 47
state abstraction (formal defn.} ... tesseeereerasenanmetietsresesnasereressrssarury TS recrrernesanns teeseresesareeveaassnassnesnerstan 150

rreerereerrareensensesst e rrns 152
state transition relation (M1,) R revsaereeniens retveneeemnararaneains e sees reresrensmesessasteesateeitsssarTesasnr bt teREnaae 39

state subsumption ... eeesesteeseaeaseevareatasessaseseests st iresr e SRR AT s T L s r s e R e TS

state transition relation (M g) R revrveneereren e eeeeerasensaseeseeaneatirasestavererseskt st e tRre s et as T e 164
state transition relation (M.,) SO reereeeennes rerrasnasneene tvesesrrasesseenctessessarssiatttiENER S Srr e e abn s r s beas 19
statesel «ostraction sreeesranene reermrenanearns vessrenmnaien cresrermreaiaes aeeerestesernarintabinnvaes reresesnanarere s teaneans 47
stateset abstraction (formal deffl.) oo sebrsmensreeeeaes LerterereseeraesessensnmessrbedtiearRRraTLTTnanee sesaey 150
stateset subsumption ... reseeeeeeteentesesrersearoe s basraranns eereressessrentestsermemsrseeatesnresatenahedeensraeeraananits 152
SIALC SEMANLCS covereeresesessasrmrarrasesssiaraeses rersvreensenes rereseneeanens tteerisomesseesssanserreaeeieiiaEe s e n e bbb e e 33
S{0re ADSITACHON .uvveerceecsenimsverraneseeremsrssss e ens fereesnsererenstare s is sk e n R raean reereirerearaneeasrer s s 47

store abstraction (fOTMAl AETL) .ot 150

stream-mediated data dEPENAENICE ..cociieuiiiersesesmms s sis s s s s 16

SEOTE SUBSUMPLON vreeeeiierirnimrnrns e sssesnsnsarn s s ntans

structure denoted by an identifier expression (M p) IOV S 38
SEUCHUrEd TEAUCHION SITALEEY ovorerrasmssiesrsrnssaser et smmsis msss s s s s s b S 73
SUDSHMPUON FEIAON vvveescsnrassesrmsssesersseocemsssssrsssmssssssssseasemss s s s s s e 47
SUITITIALY BAZEC evvessressseesessossssseresssos o Heamssscemrasss 810088 S0 e RS ST T e 123
SUMMALY ZrAPR i Crrsserisenesian Ty eeetesrateaneesbestsinsvseeasiea i eR SRR prenarn e s R s s e 63
SUMMALY SIUCIEE wuvuvsirsemesssscsesesensssmsnsasassestssssssessases e resretereerasnteteiateeessoreaseaseraTs senrbbs s A TRt s bR Al 46
system dependence Zraph ... orssmsseserssssnsssierisssnn st 120
{rACE SEMAMICS ivivrrermssensareeses reverneer e st eeeetereervesiesveasataterevEesssaiaRseasne st sn s 36
wrue for all states between (MI 5 Y rcrereree e sana s eeeeeiterteasaeetesasimauteteenberieaaatsiibs I Teearer b b sy TR 40

true for all states between (M Y cevemenenere st snenssns b snase e s rrisasiernrerareene etetesseeestresrerntinrsseernnenenant 19

IBET TR L 1 i

true-valued controf dependence wr.t # ...
type abstraction ...
type SUbSUMPHON .cooneevirieiresscssnssssesssssssnens

-~ 189 —

...

...

...

type() (MA}{ I tivrrrerreerine e sranerarsvrn v e rarrE e e e RSt e ra st meara e e ave s aTrRe OOt
type{) (MI}[) reeteseerraranean e ae e e neneenrans e rereesheaenasreas

TYPE-PIESEIVINE wooeciemreiiesereeinsassannencasnrerensr
type-preserving map (MA . toMA) e
type-preserving map (MI 5 10 MA p |
unflattened conditionalocvvimmecininenn.
Unfolding Site .cocvvervvinerrvnrerrsrnreree s

unfolding-site graph ...

...

...

...

...

...

...

Update ZIAPN oot rierbssre et s etare

value abSITACLION ...cvivcervirenreareesrrasesssorasrernns

value computed at a program point (M,)

value computed at & program point (M s)

...

...

...

VRIS SUDSUINPIION L.iitieiiieeciiesimst e sessr s eressreseas sas s e ssasstsnte baasrasshs s basstsbass bt sannsasasnssnssnsssssansan ensssmssenans

valve NOAE vt
weak control dependenceoviiniiniienna.
write of a memory object (M,) wovevrneenn
write of a memory object (M 5) R

write of a memory object at a state (M,)

...

...

...

...

...

write of a memory object at 2 State (ML) oo

149
150
149
149
47
151
150
107
78
78
63
149
103
99
151
118
31
39
18
18
39

— 199 —

List of Figures

1.1, A GXAMPIE DBF coverersrerissirsssssssassossvossssssssmsss s e s by b8 4RSS L
2.1. Abstract SyNtax of JANZUAZE H vewrurienrmrreomiscessnsismssmss st s st s s s e
2.2. An example program in 1aNGUALE H .occririmiesimsiist s s

2.3
2.4,
2.5.
3.1
3.2
3.3.
3.4,
3.5.
3.6.
3.7
3.8.
3.9.

3.10, Declaration AEPENUAENCE ...vuviwsiisserssnssssarsrsesssesessssrses restos st e ab s s cre s

4.L
4.2.
5.1
5.2,
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
3.9.

5.10. Using path expressions to compress alias graphs

6.1.
6.2.
6.3.
6.4.
6.5.

Evaluation of an example Program ...

Continuation of Figure 2.3 .ccrecsenns

Language # °s implementation Of QI0MSseuirere s st s s
The five types of data dependenCe .. v i
Using variable renaming to break an anti-dependence ...
Output vs. def-order dependenCes ..o s oottt
Loop-carried dependenCe seessrismsmssssrmmsans e sssiassins s s
Using Sharir-Pnueli call strings to name dependences ..o
Using 0CCUITence Strings to NAME EPEndeNCES v mmmerirrsiimsssmmirsrasss st s s e

More examples that illustrate of the notion of a CAITIET .ovvvrrereresssnimmescsonessissnsansas

Using carriers to compare two programs’ flow dependences

Loop-carried dependence: Horwitz ef. al. vS. ALlEN .ot

A trace of an example COMPUEALIONvimnmirciissininminssis s s sesaras
A state in an inSTrumented COMPULALUOIN .covrrueius csisressarimess s bbbt s ss s e
Using one concrete store to estimate a second’s DERAVIOT .. civiiririserscsssaseni

Embeddings of Stores in abSACE SIOTES ettt s s

The effect of nondeterminism on store evaluation

Why edge removal at summary vertices is UNSATE ©oveevre e ccvirensceiesesreesniessestss s e i s bt s anasama e saes
The evaluation of return w.r.t. MA e
An example computation w.r.t. MI Hand MA i
Figure 5.6, continued—showing 1abels ON SIOTES ..ouvvicmninerimc st
A Static Semantics for LANZUAZE H ... ccuiiiimisisarere st st st e

A store graph and its corresponding alias graph i

The divide-and-shrink afgorithm for Hmiting SEOME SIZE .oomeeiiiims it
Path-based partitioning is NOt MONOIONIC WLl © coevrerrsisnsinismnsimsc s
A disadvantage of pointwise reduction StTALEEIES ..owrrrirrmeserrerrrmcissssrmssnsaies
A €XAMPLE PIOZIAM’S SIOTES wourvvsersrsrmssersssssesasss s sesrs s sb st b S S e

Using graph grammars to represent sets Of SIOES v nmrnsnsss s

.......................

.......................

.......................

.......................

........................

.......................

...

O 00 =1 N

10 -

15
15
16
23
24
25
27
27
28
33
36
37
45
46
48
49
50
51
52

61
61
67
70
73
74
75

- 191 -

6.6. Path-plus-1abels SIOME-METZING .cccvuverrrrrrersrrsosioessosseeesseseassasssssoseeessseesesessessssesssesesessos e seseesee s

6.7.
7.1
7.2
1.3.
74,
7.5.
7.6.
7.7.
7.8.

1.9. Hsdgs fail to account fOr GNILe FIEEISLS wvvuruuurumremreremmeeesreeseeseesssesseoe oo oo eeeeee e oo

7.10.
7.11.
7112,
7.13.
7.14,
7.15.
7.16,
7.17.
7.18.
7.19.
7.20.
7.21.
7.22.
7.23.
7.24,

An example data dependence Zraph (FAZ) ...ovwecorceceeeeeeeereesceeeesses seeesseers oo e
A Ferrante-Otuenstein-WarTell PAZ ...vvrwerervssueeeivseeeeeeecoseeeee s sorasssssessessseesssessssstssssse s

Alpern-Wegman-Zadeck ¢ NOGES ..uvuerioriveveserececccse e sesesvesenee e eeeeees st
VAIVE DOUES veovvrrteetereiasessessiscsseessres st s ss s sss s e e sesessscsesoenesssmees e aesen s s st e eemee e seseeeeees
Placement of an example § NOGEcoveveirveiereeececceeees e eeeeeeseesseesseessee oo eeeeseeee oo
Using ¢ nodes to reduce a dBr’s SIZ€ wovvueerveeeeveeeeee oo ee e

Example procedure dependence graphs (TAZS)ooceccoveovmrverveineesesseeeseeeeoooes e eeeeeeeeeeeesse
A distinguished procedure dependence SIADN ... eereeeee oo oo eseeoeeseeseos
Example system dependence graph (SE8) ... ooeeoreeevmeeeroeseeeereeseeseee s e oo

A def-order dependence in Straight-line COE ... ovveoreeoeeeeeeeeeeeeee oo ees oo

One technique for eliminating straight-line def-order dependencescocvenane.

77
79
84
85
86
94
97
98
103
109
11t
113
115
115
116
117
118
118
119
119
120
122
123
124
126
126

