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A number of program-analysis problems can be tackled by transforming them into certain kinds of graph-reachability
problems in labeled directed graphs. The edge labels can be used to filter out paths that are not of interest: A path P
from vertex s to vertex t only counts as a “valid connection” between s and t if the word spelled out by P is in a certain
language. Often the languages used for such filtering purposes are languages of matching parentheses:

• In some cases, the matched-parenthesis condition is used to filter out paths with mismatched calls and returns. This
leads to so-called “context-sensitive” program analyses, such as context-sensitive interprocedural slicing and context-
sensitive interprocedural dataflow analysis.

• In other cases, the matched-parenthesis condition is used to capture a graph-theoretic analog of McCarthy’s rules:
“car(cons(x,y))=x” and “cdr(cons(x,y))=y”. That is, in the code fragment

c = cons(a,b);
d = car(c);

the fact that there is a “structure-transmitted data dependence” from a to d, but not from b to d, is captured in a
graph by using (i) a vertex for each variable, (ii) an edge from vertex i to vertex j when i is used on the right-hand
side of an assignment to j, (iii) parentheses that match as the labels on the edges that run from a to c and c to d, and
(iv) parentheses that do not match as the labels on the edges that run from b to c and c to d.

However, structure-transmitted data-dependence analysis is context-insensitive, because there are no constraints that fil-
ter out paths with mismatched calls and returns. Thus, a natural question is whether these two kinds of uses of paren-
theses can be combined to create a context-sensitive analysis for structure-transmitted data dependences. This paper
answers the question in the negative: In general, the problem of context-sensitive, structure-transmitted data-depen-
dence analysis is undecidable.

The results of this paper imply that, in general, both context-sensitive set-based analysis and ∞-CFA (when data
constructors and selectors are taken into account) are also undecidable.
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1. INTRODUCTION

A number of program-analysis problems can be tackled by transforming them into certain kinds of graph-
reachability problems in labeled directed graphs [20,9,5,4,6,15,19,28,30,16,29,25,32]. It is useful to con-
sider not just ordinary reachability (e.g., transitive closure), but a generalization in which the edge labels are
used, in effect, to filter out paths that are not of interest [4,15,28,30,16,29,25,32]: A path P from vertex s to
vertex t only counts as a “valid connection” between s and t if the word spelled out by P (i.e., the concate-
nation, in order, of the labels on the edges of P) is in a certain language.

Definition 1.1. Let L be a language over alphabet ΣL , and let G be a graph whose edges are labeled with
members of ΣL . Each path in G defines a word over ΣL , namely, the word obtained by concatenating, in
order, the labels of the edges on the path. A path in G is an L-path if its word is a member of L. An
instance of the (single-source/single-target) L-path problem asks whether there exists an L-path in G from a
given source vertex s to a given target vertex t.

Let L be a family of languages, and L ∈L be a language over alphabet ΣL . An instance of the L-reacha-
bility problem is an L-path problem instance < L, ΣL , G, s, t >.

Example. When the family of languages L in Defn. 1.1 is the context-free languages, we have the CFL-
reachability problem [38]. Consider the graph and the context-free grammar shown below. Note that
L(matched) is the context-free language that consists of strings of matched parentheses and square brack-

ets, with zero or more e’s interspersed.1

s t

[ [e

e

e

e(

)

]

] ]

matched → matched matched
| ( matched )
| [ matched ]
| e
| ε

In this graph, there is exactly one L(matched)-path from s to t: The path goes exactly once around the
cycle, and generates the word “[(e[])eee[e]]”.

A number of program-analysis problems can be viewed as instances of the CFL-reachability problem
[32]. In program-analysis problems, the languages used for such filtering purposes are often languages of
matching parentheses. In some cases, the matched-parenthesis condition is used to filter out paths with
mismatched calls and returns in order to implement so-called “context-sensitive” program analyses.

Example 1.2. The use of CFL-reachability in context-sensitive program analysis, as opposed to ordinary

graph reachability, is illustrated by the following example:2

1In this paper, the word “parentheses” is used in both the generic sense—to mean any kind of matching delimiter (e.g., round parenthe-
ses, square brackets, curly braces, angle brackets, etc.)—as well as in the specific sense of round parentheses. It should always be
clear from the context which of these two meanings is intended.
2In this example, we use C syntax. In later examples, we use C augmented with the operator cons, which denotes a pairing construc-
tor; the operators car and cdr, which select the first and second components of a pair, respectively; and the operator atom, which
constructs an atomic object (different from NULL) from a given string. This notation is used to simplify the way storage-allocation op-
erations are expressed in our examples. The use of these operators does not imply that our results apply only to the analysis of LISP
programs.
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Annotated Source Code Corresponding Data-Dependence Graph
int x, y;

void g() {
y = x;

}

void f() {
x = 0;
g();

p1: /* Could y be 0? 1? */
x = 1;
g();

p2: /* Could y be 0? 1? */
}

Enter f Exit f

y = x

p1: y p2: yx = 0 x = 1

0 1

}
2{

2
}
1

Enter g Exit gx = x_in y_out = yx_out = x

Call g Call gx_in=xx_in=x x=x_outx=x_out y=y_outy=y_out

}
2

}
1

{
1

y_in=y y_in=y

y = y_in

{
1

{
2

The diagram on the right shows the program’s data-dependence graph. (Strictly speaking, neither the two
large ovoid shapes nor the rectangular boxes labeled Call, Enter, and Exit are part of the data-depen-
dence graph. The two ovoids indicate which elements belong to which procedure; the rectangular boxes
provide some context about the control points in the program to which the various vertices are associated.)
Each directed edge in the graph represents a data dependence (also known as a flow dependence [21,22]):
An edge from vertex v1 to vertex v2 indicates that the value produced at v1 may be used at vertex v2. For
instance, the edge

0 x=0

in the dependence graph for procedure f indicates that the value of x after the execution of the statement
x = 0 could be (and, in this case, must be) 0.

In the above program, procedure g has no parameters. However, our data-dependence graphs reflect a
somewhat nonstandard treatment of global variables: A global variable such as x is treated as if it were a
“hidden” value-result parameter whose value (and subsequent return value) is passed from one scope to
another via the special scope-transfer variables x_in and x_out. For example, the interprocedural data-
dependence edge

x_in=x
1

{
x=x_in

represents the passing of x from f’s scope to g’s scope at the first call on g. Note that data-dependence
edges for dependences transmitted from the caller to the callee (i.e., from f to g) are labeled by the sym-
bols “{1” and “{2”, whereas data-dependence edges for dependences transmitted from the callee back to
the caller are labeled by the symbols “}1” and “}2”. In particular, the data-dependence edges that repre-
sent how x and y are passed from f’s scope to g’s scope at the first call on g are labeled with {1; the data-
dependence edges that represent how x and y are passed from f’s scope to g’s scope at the second call on
g are labeled with {2. Likewise, the data-dependence edges that represent how x and y are passed back
from g’s scope to f’s scope after the two calls finish are labeled with }1 and }2, respectively.

Our data-dependence graphs also have vertices that correspond to various annotations in the program;
annotations, denoted here as comments, indicate that we are interested in a given variable at a given point in
the program. In the example above, the comments at p1 and p2 give rise to the vertices p1:y and p2:y.

A context-insensitive analysis that tracks dependences between constants and variables in the program
will report that y depends on 0 and 1 at both p1 and p2. The reason is that a context-insensitive analysis
ignores the fact that the only paths that can possibly be feasible execution paths are those in which returns
are matched with corresponding calls. For instance, the existence of the (mismatched) path
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0 x=0 x_in=x
1

{
x=x_in y=x

y_out=y
2
}

y=y_out p2:y (1.3)

in the graph shown above serves as “evidence” that p2:y depends on 0 (i.e., that the value of y at p2
could be 0).

In contrast, a context-sensitive analysis only reports possible transmissions of values along paths in
which returns are matched with corresponding calls. For this example, it reports that p1:y depends on 0
but not on 1 and that p2:y depends on 1 but not on 0 (i.e., y could have only the value 0 at p1 and 1 at
p2). The context-sensitive analysis can be expressed as a CFL-reachability problem with respect to a lan-
guage of matched indexed curly braces. It would say that path (1.3) is not a valid connection between 0

and p2:y, because the label {1 on the interprocedural data-dependence edge x_in=x
1

{
x=x_in

(which represents the transfer of x’s value from f to g as g is entered at the first call site) does not match

the label }2 on the edge y_out=y 2
}

y=y_out (which represents the transfer of y’s value back to f
when a return is performed in g from a call on g that originated at the second call site). On the other hand,
because {2 matches with }2, the (matched) path

1 x=1 x_in=x
{
2

x=x_in y=x

y_out=y
2
}

y=y_out p2:y (1.4)

does count as a valid connection between 1 and p2:y, and this path serves as evidence that the value of y
at p2 could be 1.

Problems in which CFL-reachability has been used to devise context-sensitive program analyses include

interprocedural slicing [15,28] and interprocedural dataflow analysis [30,16].3

CFL-reachability—and, in particular, a matched-parenthesis constraint—has also been used to capture a
graph-theoretic analog [29,25] of McCarthy’s rules [24] (i.e., “car(cons(x,y))=x” and
“cdr(cons(x,y))=y”), as illustrated in the following example.

Example 1.5. The following program illustrates the use of CFL-reachability in (context-insensitive)
structure-transmitted data-dependence analysis:

3There is an unfortunate clash in terminology that the reader should be aware of. The term “context-sensitive analysis” is standard in
the programming-languages community, where it means a static-analysis method in which the analysis of a called procedure is “sensi-
tive” to the context in which it is called: A context-sensitive analysis captures the fact that different call sites that call the same proce-
dure may have different effects on a program’s possible execution states. Context-sensitive analysis should not be confused with the
“context-sensitive languages” of formal-language theory. Unfortunately, the principle that context-free-language reachability is useful
in formalizing approaches to context-sensitive analysis was fully articulated [32] only after the term “context-sensitive analysis” had
been adopted by the programming-languages community [7,37].
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Annotated Source Code Corresponding Data-Dependence Graph
List *x, *y;

void f() {
x = cons(NULL,NULL);
y = car(x);

p1: /* Could y be NULL here? */
x = cons(x,NULL);
y = car(x);

p2: /* Could y be NULL here? */
y = car(y);

p3: /* Could y be NULL here? */
}

[

)

)

(

(

)
[

p3: y

y = car(x) y = car(x)

y = car(y)

Enter f Exit f

x = cons(x,NULL)

x = cons(NULL,NULL)

NULL

p2: y

p1: y

In this graph, the labels on the data-dependence edges serve a different purpose than the labels used in
Example 1.2: Here an edge labeled “(” corresponds to a data construction in which the value is placed in
the first position of a cons; an edge labeled “[” corresponds to a data construction in which the value is
placed in the second position of a cons; an edge labeled “)” corresponds to a selection via car; an edge
labeled “]” corresponds to a selection via cdr.

The matched-parenthesis path

NULL
(

x=cons(NULL,NULL)
(

x=cons(x,NULL)
)

y=car(x)
)

y=car(y) p3:y

from NULL to p3:y serves as evidence that the value of y at p3 could be NULL. The path

NULL
(

x=cons(NULL,NULL)
(

x=cons(x,NULL)
)

y=car(x) p2:y

does not serve as evidence that the value of y at p2 could be NULL, because the first occurrence of “(” has
no matching “)”. In fact, there is no matched-parenthesis path from NULL to p2:y, and a (context-insensi-
tive) structure-transmitted data-dependence analysis would conclude that the value of y at p2 cannot be
NULL.

The structure-transmitted data-dependence analyses given in [29] and [25] are context-insensitive,
because there are no constraints that filter out paths with mismatched calls and returns. Thus, a natural
question is whether the two kinds of uses of matching delimiters illustrated in Examples 1.2 and 1.5 can be
combined to create a context-sensitive analysis for structure-transmitted data dependences. The following
interprocedural variation on Example 1.5 illustrates what we would hope to gain from a context-sensitive,
structure-transmitted data-dependence analysis:

Example 1.6. Consider the following example program:
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List *x, *y;

void g() {
y = car(x);

}

void f() {
x = cons(NULL,NULL);
g();

p1: /* Could y be NULL here? */
x = cons(x,NULL);
g();

p2: /* Could y be NULL here? */
x = y;
g();

p3: /* Could y be NULL here? */
}

The relevant portions of this program’s data-dependence graph are shown below:

[

)

(

(

[

{
1

}
2

{
2

}
1

p1: y

p2: y p3: y

{
3

}
3

x = y

Enter f

Enter g Exit g

Exit f

y = car(x)

x = cons(x,NULL)

x = cons(NULL,NULL)

NULL

x = x_in y_out = yx_out = x

Call g Call g Call gx_in=xx_in=xx_in=x x=x_outx=x_outx=x_out y=y_outy=y_outy=y_out

}
2

}
3

}
1

For this example, a context-sensitive analysis should report that variable y can have the value NULL at p1
and p3, but not at p2. The following path from NULL to program point p3 serves as evidence that the
value of y at p3 could be NULL:

NULL
(

x=cons(NULL,NULL) x_in=x

1
{

x=x_in x_out=x
}
1

x=x_out

(
x=cons(x,NULL) x_in=x

{
2

x=x_in
)

y=car(x) y_out=y
2
}

y=y_out

x=y x_in=x
{
3

x=x_in
)

y=car(x)

y_out=y
}
3

y=y_out p3:y (1.7)
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In contrast, a context-insensitive analysis would also use the following path from NULL to program point
p2 as evidence that the value of y at p2 could be NULL:

NULL
(

x=cons(NULL,NULL) x_in=x

1
{

x=x_in x_out=x
}
1

x=x_out

(
x=cons(x,NULL) x_in=x

{
2

x=x_in
)

y=car(x) y_out=y
2
}

y=y_out

x=y x_in=x
{
3

x=x_in
)

y=car(x)

y_out=y
2
}

y=y_out p2:y (1.8)

The problem with this path is that there is a mismatch between the labels on the edge

x_in=x
{
3

x=x_in and the subsequent edge y_out=y 2
}

y=y_out. Consequently, this path
would be excluded from consideration by a context-sensitive analysis.

The other fact to note about Example 1.6 is that in path (1.7), although “(” symbols match with “)” sym-

bols, and “{i” symbols match with “}i” symbols, the two patterns of matched symbols are interleaved.4

This observation serves to motivate the study of interleaved matched-parenthesis languages carried out in
Sections 2 and 3.

This paper shows that it is impossible to create an algorithm that captures all, and only, interleaved
matched-parenthesis paths of the kind illustrated in Example 1.6: In general, the problem of context-sensi-
tive, structure-transmitted data-dependence analysis is undecidable. In other words, you can capture either
(i) the matching of calls and returns, or (ii) “car(cons(x,y))=x cancellation”, but not both simultane-
ously, in any amount of time. (Of course, there may be useful algorithms that compute approximate, but
safe, solutions to this problem, cf. [13].)

In terms of the programming-language features needed for this result to apply, higher-order functions are
not required: The main result of this paper implies that context-sensitive, structure-transmitted data-depen-
dence analysis is undecidable for first-order languages (both functional and imperative). This result applies
to such languages as C, C++, Java, ML, and Scheme, as well as to many others.

It should be noted that questions of the kind posed in Example 1.6 (i.e., “Does a given variable have a
given value at a particular point in a program?”) often turn out to be undecidable in their most general
form, and often there are several independent reasons why the problem is undecidable (e.g., it is undecid-
able whether a given statement is ever executed; it is undecidable whether a given path is ever executed;
etc.). This paper shows that context-sensitive, structure-transmitted data-dependence analysis is undecid-
able even if a conservative approximation is made that, for many other program-analysis problems, over-
comes other sources of undecidability. (In particular, we assume that all paths in a procedure’s control-flow
graph are executable.)

The remainder of the paper is organized into four sections: The undecidability result is shown by a reduc-
tion from a variant of Post’s Correspondence Problem (PCP); Section 2 defines PCP and discusses a variant
of it that is particularly suited to our needs. Example 1.6 motivates our interest in languages with inter-
leaved patterns of matching delimiters; Section 3 shows that a certain set of L-path problem instances—
where L is a language of strings formed by interleaving two languages of matching parentheses—is unde-

4In this paper, the term “interleaved” is used in a somewhat restricted sense, compared to the standard usage in formal-language theory
(cf. [14, pp. 282]). The exact nature in which patterns of matched symbols are allowed to be woven together is defined precisely in
Sections 3 and 4.
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cidable. Section 4 relates the result from Section 3 to the undecidability of context-sensitive, structure-
transmitted data-dependence analysis. Section 5 discusses what our results imply about other program-
analysis problems.

2. A VARIANT OF POST’S CORRESPONDENCE PROBLEM

Our undecidability result is shown by a reduction from a variant of Post’s Correspondence Problem:

Definition 2.1. An instance of Post’s Correspondence Problem, or PCP, consists of two lists of strings, X
and Y , where X and Y each consist of k strings in { 0, 1 }+:

X = x1, x2, . . . , xk

Y = y1, y2, . . . , yk

The instance of PCP has a solution if there exists a nonempty sequence of integers i1, i2, . . ., i j , . . ., im such
that (i) for all 1 ≤ j ≤ m, we hav e 1 ≤ i j ≤ k, and (ii) xi1

xi2
. . . xi j

. . . xim
= yi1

yi2
. . . yi j

. . . yim
.

Example 2.2. Consider the following instance of PCP, where k is 3:

X = 0101, 101, 111
Y = 01, 011, 0111101

This instance of PCP has the solution 1, 2, 3, 1 because

x1 x2 x3 x1 = 0101 101 111 0101 = 01 011 0111101 01 = y1 y2 y3 y1.

PCP is known to be undecidable; for proofs, see Hopcroft and Ullman [14, pp. 193-198], Lewis and
Papadimitriou [23, pp. 289-293], or Harrison [8, pp. 249-256].

For our purposes, it is more convenient to work with the following variant of PCP:

Definition 2.3. (Parenthesis-PCP) Given an instance of PCP,

X = x1, x2, . . . , xk

Y = y1, y2, . . . , yk

we define the corresponding instance of parenthesis-PCP, or P-PCP, as

X = x1, x2, . . . , xk

Y R = yR
1 , yR

2 , . . . , yR
k

where, for 1 ≤ i ≤ k,

• xi is the string in { (, [ }+ equal to xi with 0 replaced by “(” and 1 replaced by “[”.

• yi is the string in { ), ] }+ equal to yi with 0 replaced by “)” and 1 replaced by “]”.

• The superscript “R” on a string denotes the reversed string.

A solution to an instance of P-PCP is defined with the aid of the following linear context-free grammar:5

balanced → ( balanced )
| [ balanced ]
| ( # )
| [ # ]

An instance of P-PCP has a solution if there exists a nonempty sequence of integers
i1, i2, . . ., i j , . . ., im such that (i) for all 1 ≤ j ≤ m, we hav e 1 ≤ i j ≤ k, and
(ii) xi1

xi2
. . . xi j

. . . xim
# yR

im
. . . yR

i j
. . . yR

i2
yR

i1
∈ L(balanced).

Example 2.4. The instance of P-PCP that corresponds to Example 2.2 is

5A linear context-free grammar is one in which at most one nonterminal appears on the right-hand side of each production.
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X = ( [ ( [, [ ( [, [ [ [
Y R = ] ), ] ] ), ] ) ] ] ] ] )

This instance of P-PCP has the solution 1, 2, 3, 1 because

x1 x2 x3 x1 # yR
1 yR

3 yR
2 yR

1 = ( [ ( [  [ ( [  [ [ [  ( [ ( [  #  ] )  ] ) ] ] ] ] )  ] ] )  ] ) ∈ L(balanced).

Clearly an instance of PCP has a solution if and only if the corresponding instance of P-PCP has a solu-
tion.

For a giv en instance of P-PCP,

X = x1, x2, . . . , xk

Y R = yR
1 , yR

2 , . . . , yR
k

ev ery solution (if one exists) corresponds to a string in the language generated by the following linear con-
text-free grammar:

S0 → xi S0 yR
i for 1 ≤ i ≤ k

| xi # yR
i for 1 ≤ i ≤ k

While not every string in L(S0) corresponds to a solution, all strings in L(S0) that are also in L(balanced)
correspond to a solution. That is, the given instance of P-PCP has a solution exactly when the language
L(S0) ∩ L(balanced) is non-empty. This observation implies the following theorem (cf. [23, pp. 293-294]):

THEOREM 2.5. It is undecidable for arbitrary linear context-free grammars G1 and G2 whether
L(G1) ∩ L(G2) is empty.

The fact that the existence of a solution to a given instance of P-PCP can be characterized by the non-
emptiness of the intersection of two linear context-free grammars underlies our result on the undecidability
of context-sensitive data-dependence analysis. However, for the purpose of investigating the latter problem,
it is useful to develop a slightly more elaborate way of characterizing the solutions to an instance of P-PCP:

Definition 2.6. If an instance of P-PCP

X = x1, x2, . . . , xk

Y R = yR
1 , yR

2 , . . . , yR
k

has a solution i1, i2, . . ., im, we say that the following string exhibits the solution in tagged form:6

(2.7){i1
xi1

{i2
xi2

. . . {im
xim

# yR
im

}im
. . . yR

i2
}i2

yR
i1

}i1
.

In general, suppose that i1, i2, . . ., i j , . . ., i p, is some nonempty sequence of integers such that, for all
1 ≤ j ≤ p, we hav e 1 ≤ i j ≤ k. Reg ardless of whether i1, i2, . . ., i j , . . ., i p is actually a solution to the
instance of P-PCP, we say that a string of the form

{i1
xi1

{i2
xi2

. . . {i j
xi j

. . . {i p
xi p

# yR
i p

}i p
. . . yR

i j
}i j

. . . yR
i2

}i2
yR

i1
}i1

exhibits a candidate solution in tagged form.

For instance, because the sequence 2, 1, 2, 3, 1 is not a solution to Example 2.4, the following string
exhibits a candidate solution in tagged form (but not a solution in tagged form):

(2.8){2 [ ( [ {1 ( [ ( [ {2 [ ( [ {3 [ [ [ {1 ( [ ( [ # ] ) }1 ] ) ] ] ] ] ) }3 ] ] ) }2 ] ) }1 ] ] ) }2.

In contrast, the following string exhibits a candidate solution to Example 2.4 in tagged form that is also a
solution in tagged form:

6For technical reasons having to do with the details of the constructions given in Sections 3 and 4, we will also work with some slight
variants of (2.7). For instance, in Section 3 we use a version of (2.7) in which each occurrence of “{ ” is immediately preceded by two
occurrences of the symbol e, and each occurrence of “ }” is immediately followed by two occurrences of e.
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(2.9){1 ( [ ( [ {2 [ ( [ {3 [ [ [ {1 ( [ ( [ # ] ) }1 ] ) ] ] ] ] ) }3 ] ] ) }2 ] ) }1.

3. AN UNDECIDABLE FAMILY OF L-PATH PROBLEM INSTANCES

In this section, we show how to formulate P-PCP in graph-theoretic terms. In particular, we construct an
undecidable family of L-path problem instances, where each problem instance corresponds to an instance
of P-PCP. Throughout the remainder of the paper, we assume that we have been given a fixed, but arbitrary,
instance of P-PCP consisting of the k pairs of strings

X = x1, x2, . . . , xk

Y R = yR
1 , yR

2 , . . . , yR
k

Our interest in P-PCP is motivated by the fact that a string that exhibits a P-PCP solution in tagged form
has two interleaved patterns of matched delimiters:

(i) The string xi1
xi2

. . . xi j
. . . xim

# yR
im

. . . yR
i j

. . . yR
i2

yR
i1

is in L(balanced).

(ii) The string {i1
{i2

. . . {i j
. . . {im

# }im
. . . }i j

. . . }i2
}i1

is in L(balanced ′), the language of balanced

strings made up of {i and }i , for 1 ≤ i ≤ k, defined by the following linear context-free grammar:

balanced ′ → {i balanced ′ }i for 1 ≤ i ≤ k
| {i # }i for 1 ≤ i ≤ k

It is important to note that, in general, in a string that exhibits a P-PCP solution in tagged form, the two
balancing processes can be out of sync. For instance, in the following prefix of string (2.9)

{1 ( [ ( [ {2 [ ( [ {3 [ [ [ {1 ( [ ( [ # ] ) }1

the last symbol, namely “}1”, does not match with the seventh-from-last symbol, namely “[”. However, we
can capture the structure of P-PCP solutions in tagged form via the intersection of two linear context-free
languages:

(i) The language L(S1) consists of strings of L(balanced) with an arbitrary number of symbols of the
form “{i” interspersed among the open-parenthesis and open-bracket symbols, and an arbitrary num-
ber of symbols of the form “}i” interspersed among the close-parenthesis and close-bracket symbols:

S1 → ( S1 )
| [ S1 ]
| ( # )
| [ # ]
| {i S1 for 1 ≤ i ≤ k
| S1 }i for 1 ≤ i ≤ k

(ii) The language L(S2) consists of all possible candidate solutions, in tagged form, to the given instance
of P-PCP:

S2 → {i xi S2 yR
i }i for 1 ≤ i ≤ k

| {i xi # yR
i }i for 1 ≤ i ≤ k

Languages L(S1) and L(S2) capture the two interleaved patterns of matched delimiters noted above: L(S2)
consists of all possible candidate solutions, in tagged form, to the given instance of P-PCP; L(S1) consists
of strings such that when all “{i” and “}i” symbols are excluded, we are left with a string in L(balanced).
Furthermore, the language L(S1) ∩ L(S2) consists of exactly the solutions, in tagged form, to the given
instance of P-PCP. For instance, for Example 2.4, strings (2.8) and (2.9) are both in L(S2), but only
string (2.9) is in L(S1); that is,

{1 ( [ ( [ {2 [ ( [ {3 [ [ [ {1 ( [ ( [ # ] ) }1 ] ) ] ] ] ] ) }3 ] ] ) }2 ] ) }1 ∈ L(S1) ∩ L(S2).

Similar to what we observed for the language L(S0) ∩ L(balanced), the given instance of P-PCP has a solu-
tion exactly when the language L(S1) ∩ L(S2) is non-empty.
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We now show how to construct a graph (with two distinguished vertices, s and t) such that there is an
L(S1) ∩ L(S2)-path from s to t if and only if the given instance of P-PCP has a solution. Fig. 1 shows a
schematic diagram that illustrates the construction. For an instance of P-PCP X = x1, x2, . . . , x j , . . . , xk ,
Y R = yR

1 , yR
2 , . . . , yR

j , . . . , yR
k , the graph contains k regions of the form

{ }
j j

#

xj y
R

j

e e

Call the left part of such a region an x-string segment, and the right part a yR-string segment. Note that the
jth x-string segment begins with the sequence “e{ j”, whereas the jth yR-string segment ends with the

{{ }{ } }{
1 1

}
22 j j

#

xj y
R

j

k k

#

y
R

k
xk

#

y
R

2
x2

s t

e

e e

e
e

e e e e e e
e

#

x1 y
1

R

Figure 1. A schematic diagram of the graph that would be constructed for an instance of P-PCP
X = x1, x2, . . . , x j , . . . , xk ; Y R = yR

1 , yR
2 , . . . , yR

j , . . . , yR
k .
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sequence “} je”. The dotted edges labeled e around the outsides of Fig. 1 serve to connect each x-string
segment to all of the other x-string segments, and each yR-string segment to all of the other yR-string seg-
ments. Any number of x-string segments can be concatenated together to form a path in any order; how-
ev er, each such segment is labeled in the word of the path by the appropriate “{” symbol. Similarly, any
number of yR-string segments can be concatenated together to form a path in any order; however, each such
segment is labeled in the word of the path by the appropriate “}” symbol.

The fact that certain edges in Fig. 1 are dotted has no special significance; they are displayed in this way
to highlight the fact that these edges correspond to interprocedural data-dependence edges in dependence
graphs. This correspondence will be made clear in Section 4 (cf. Fig. 4).

By following one of the edges that is labeled with “#”, a path can pass from an x-string segment to a
yR-string segment. However, once a #-edge is taken, the path can only be extended with yR-string seg-
ments. Consequently, all paths from s to t are of the form:

s
e

some number of x-string segments # some number of yR-string segments
e

t

Here we see the reason for the remark made in footnote 6: In the word of a path from s to t, each occur-
rence of “{” is immediately preceded by two occurrences of the symbol e, and each occurrence of “}” is
immediately followed by two occurrences of e. Technically, the definition of a (candidate) P-PCP solution
in tagged form should be changed accordingly, and also each occurrence of “{i” in grammars S1 and S2

should be replaced with “e e {i”, and each occurrence of “}i” should be replaced with “}i e e”.
We now observe that

• If there is an L(S1) ∩ L(S2)-path P from s to t, a  solution to the instance of P-PCP can be read off from
the word of P by reading it as a P-PCP solution in tagged form.

• If the instance of P-PCP has the solution i1, i2, . . ., i j , . . ., im, then we can find an L(S1) ∩ L(S2)-path P
from s to t by

(i) following the e edge from s,

(ii) choosing x-string segments in the order xi1
, xi2

, . . ., xi j
, . . ., xim

, thereby generating a subpath

whose word is e {i1
xi1

e e {i2
xi2

. . . e e {i j
xi j

. . . e e {im
xim

,

(iii) following the #-edge from the ith
m x-string segment to the ith

m yR-string segment,

(iv) choosing yR-string segments in the order yR
im

, . . ., yR
i j

, . . ., yR
i2

, yR
i1

, thereby generating a subpath

whose word is yR
im

}im
e e . . . yR

i j
}i j

e e . . . yR
i2

}i2
e e  yR

i1
}i1

e,

(v) following the e edge to t.

The word of this path exhibits the solution to the instance of P-PCP in tagged form (modulo the extra
occurrences of e). As we observed earlier, L(S1) ∩ L(S2) consists of exactly the solutions, in tagged
form, to the given instance of P-PCP. Hence, the path constructed above is an L(S1) ∩ L(S2)-path from s
to t.

We shall call a graph constructed in the manner described above a P-PCP graph. For the particular case
of the instance of P-PCP introduced in Example 2.4, the corresponding P-PCP graph is shown in Fig. 2.

The above observations prove the following lemma:

LEMMA 3.1. Given an instance of P-PCP (with corresponding grammars S1 and S2, and P-PCP graph
G), there is an L(S1) ∩ L(S2)-path from s to t in G if and only if the instance of P-PCP has a solution.

4. UNDECIDABILITY OF CONTEXT-SENSITIVE, STRUCTURE-TRANSMITTED DATA-DEPEN-
DENCE ANALYSIS

In this section, we show how a slight modification of the construction presented in the previous section
implies that it would be impossible to create a precise algorithm for context-sensitive, structure-transmitted
data-dependence analysis. In particular, we construct a family of programs whose data-dependence graphs
encode the P-PCP graphs.
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Figure 2. The P-PCP graph that would be constructed for the instance of P-PCP given in Example 2.4. This graph
contains an L(S1) ∩ L(S2)-path from s to t whose word is

e e {1 ( [ ( [ e e {2 [ ( [ e e {3 [ [ [ e e {1 ( [ ( [ # ] ) }1 e e ] ) ] ] ] ] ) }3 e e ] ] ) }2 e e ] ) }1 e e,
which indicates that the instance of P-PCP given in Example 2.4 has the solution 1, 2, 3, 1.

For instance, Fig. 3 shows a C program fragment whose data-dependence graph (see Fig. 4) corresponds
to the instance of P-PCP given in Example 2.4. A context-sensitive, structure-transmitted data-dependence
analysis should report that variable x may have the value atom("A") at program point t (which corre-
sponds to the fact that this instance of P-PCP has the solution 1, 2, 3, 1). In Fig. 3, the symbols “{ j” and
“} j” correspond to data dependences associated with the call from procedure f to procedure fj and the
return from fj to f, respectively; the symbol “(” corresponds to a data construction in which the value is
placed in the first position of a cons; the symbol “[” corresponds to a data construction in which the value
is placed in the second position of a cons; the symbol “)” corresponds to a selection via car; the symbol
“]” corresponds to a selection via cdr. Data dependences associated with calls to procedure f are labeled
by symbols of the form “ i”; data dependences associated with corresponding returns from f are labeled by
“ i”; the symbol “#” corresponds to a data dependence that occurs when a (recursive) call on f is finally
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bypassed.7

When inspecting Fig. 3, the reader should keep in mind that the left-to-right encoding of a string—where
a string consists of either all open parentheses or all closed parentheses—corresponds to working one’s way
out from the inner occurrence of x in the expression that encodes the string.

The idea illustrated in Figs. 3 and 4 carries over to all instances of P-PCP: In general, the pair of strings
x j , yR

j is encoded by a procedure of the form

List *x;

void f1() {
x = cons(NULL,cons(cons(NULL,cons(x,NULL)),NULL)); /* Encodes ([([ */
if (. . .) {

f();
}
x = car(cdr(x)); /* Encodes ]) */

}

void f2() {
x = cons(NULL,cons(cons(NULL,x),NULL)); /* Encodes [([ */
if (. . .) {

f();
}
x = car(cdr(cdr(x))); /* Encodes ]]) */

}

void f3() {
x = cons(NULL,cons(NULL,cons(NULL,x))); /* Encodes [[[ */
if (. . .) {

f();
}
x = car(cdr(cdr(cdr(cdr(car(cdr(x))))))); /* Encodes ])]]]]) */

}

void f() {
if (. . .) f1();
else if (. . .) f2();
else f3();

}

void main() {
s: x = atom("A"); /* A special value used nowhere else in the program */

f();
t: /* Could x be atom("A") here? */

}

Figure 3. The C program scheme that would be constructed for the instance of P-PCP given in Example 2.4. The rele-
vant part of this program’s data-dependence graph is shown in Fig. 4.

7The role of the labels “ ” and “ ” is similar to that of “{” and “}”, respectively, in that both kinds of parenthesis pairs encode proce-

dure call/return. However, and have been introduced as separate symbols to emphasize the fact that the calls to procedure f play a

different role in the construction than the calls to the fj procedures.
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void fj() {
x = cons(...x...); /* Construction expression encoding x j */
if (. . .) {

f();
}

x = ...car(...cdr(...x...)...)...; /* Selection expression encoding yR
j */

}

Procedure f has the form

void f() {
if (. . .) f1();
else if (. . .) f2();
.
.
.
else if (. . .) fk-1();
else fk();

}

Procedure main is the same as in Fig. 3.
The undecidability of context-sensitive, structure-transmitted data-dependence analysis follows from two

properties: (i) the data-dependence graph for a program of the form given above is very much like the P-
PCP graph for the given instance of P-PCP (see Fig. 1), and (ii) variable x can have the value atom("A")
at program point t if and only if there is a path from s to t whose word is in a language very similar to
L(S1) ∩ L(S2) (except that ’s and ’s must also be balanced).

For instance, the portion of the data-dependence graph shown in Fig. 4 (for the program given in Fig. 3)
is identical to the P-PCP graph shown in Fig. 2, except that certain dotted edges, corresponding to calls to f

and returns from f, now hav e labels of the form i or i .
8 Therefore, the path language of interest for iden-

tifying context-sensitive, structure-transmitted data dependences must now incorporate the labels i and i

(for 0 ≤ i ≤ k). Formally, this is accomplished by considering L(S1′) ∩ L(S2′)-paths, where the grammars
S1′ and S2′ are defined as follows:

S1′ → e 0 S1′′ 0 e

S1′′ → ( S1′′ )
| [ S1′′ ]
| ( # )
| [ # ]
| e {i S1′′ for 1 ≤ i ≤ k
| i S1′′ for 1 ≤ i ≤ k
| S1′′ }i e for 1 ≤ i ≤ k
| S1′′ i for 1 ≤ i ≤ k

S2′ → e 0 S2′′ 0 e

S2′′ → e {i xi i S2′′ i yR
i }i e for 1 ≤ i ≤ k

| e {i xi # yR
i }i e for 1 ≤ i ≤ k

We also change the notion of a P-PCP solution in tagged form to one in which each occurrence of xi

(except for the innermost one) is immediately followed by an occurrence of i , and each occurrence of yR
i

(except for the innermost one) is immediately preceded by an occurrence of i .

8The only elements omitted from the data-dependence graph shown in Fig. 4 concern dependences on NULL. These are irrelevant to
the question of how atom("A") flows through the program—and to our embedding of P-PCP graphs in data-dependence graphs.
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Figure 4. Relevant parts of the data-dependence graph for the program shown in Fig. 3. This corresponds to the P-
PCP graph shown in Fig. 2, except that certain dotted edges now hav e labels of the form i or i.

By the same argument used to prove Lemma 3.1, there is an L(S1′) ∩ L(S2′)-path from s to t in the data-
dependence graph if and only if the given instance of P-PCP has a solution. Therefore, a context-sensitive,
structure-transmitted data-dependence analysis would determine that x could have the value atom("A")
at program point t if and only if the given instance of P-PCP has a solution. Consequently, context-sensi-
tive, structure-transmitted data-dependence analysis is undecidable (i.e., an algorithm for context-sensitive,
structure-transmitted data-dependence analysis cannot exist).

5. CONCLUSIONS AND IMPLICATIONS FOR OTHER PROGRAM-ANALYSIS FRAMEWORKS

Earlier work by the author and his colleagues has demonstrated the usefulness of formulating program-
analysis problems in terms of graph-reachability questions [32]. This approach has been used to obtain a
number of positive results about program-analysis problems (specifically, polynomial-time algorithms for
solving a variety of different problems [15,28,30,16,29,34,25]). The present paper demonstrates that this
viewpoint is also valuable from the standpoint of obtaining negative results about program-analysis prob-
lems (see also [31]).

The undecidability result in this paper concerns a situation in which there are two interleaved patterns of
matching “events”. Viewed more broadly, the notions of “interleaved matched-parenthesis paths” and “P-
PCP solutions in tagged form” are two concepts that can provide insight into whether other program-analy-
sis problems are undecidable. For instance, Ramalingam showed recently that synchronization-sensitive,
context-sensitive interprocedural analysis of multi-tasking concurrent programs is undecidable [27]. His
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result was inspired by the one given in the present paper, using the insight that synchronization-sensitive,
context-sensitive interprocedural analysis also involves two interleaved patterns of matching events.

Set Constraints and Set-Based Analysis

Following earlier work by Reynolds [33] and Jones and Muchnick [18], a number of people in recent years
have explored the use of set constraints for analyzing programs. Set constraints are typically used to collect
a superset of the set of values that the program’s variables may hold during execution. Typically, a  set vari-
able is created for each program variable at each program point; set constraints are generated that approxi-
mate the program’s behavior; program analysis then becomes a problem of finding the least solution of the
set-constraint problem. Set constraints have been used both for program analysis [33,18,1,11,12], and for
type inference [2,3].

Melski and Reps have obtained a number of results on the relationship between certain classes of set
constraints and CFL-reachability [25]. Their results establish relationships in both directions: They showed
that CFL-reachability problems and a subclass of what have been called definite set constraints [10] are
equivalent. That is, given a CFL-reachability problem, it is possible to construct a set-constraint problem
whose answer gives the solution to the CFL-reachability problem; likewise, given a set-constraint problem,
it is possible to construct a CFL-reachability problem whose answer gives the solution to the set-constraint
problem. It is also shown in [25] that CFL-reachability is equivalent to a class of set constraints that was
designed to be useful for (context-insensitive) analysis of programs written in a higher-order language—so-
called “set-based analysis” [11]. The results of Sections 3 and 4 imply that if you start with a version of
context-insensitive set-based analysis that is at least as precise as the context-insensitive structure-transmit-
ted data-dependence analysis illustrated in Example 1.5, then it is impossible to create an algorithm for the
context-sensitive version of your set-based analysis, even for a first-order language.

Control-Flow Analysis

In [35], Sharir and Pnueli defined two methods for carrying out interprocedural dataflow analysis so as to
ensure that the propagation of dataflow information respects the fact that when a procedure finishes it
returns to the site of the most recent call. In one of their methods, the so-called “call-strings approach”,
each piece of dataflow information is tagged with a call string that records the history of uncompleted pro-
cedure calls along which that data has propagated. The call string on a piece of information is updated
whenever a propagation step associated with a call statement or return statement is performed. The infor-
mation that would be obtained, in principle, if call strings were allowed to grow arbitrarily long is called the
call-strings-∞ solution.

Sharir and Pnueli show that, for distributive dataflow-analysis problems over a finite semilattice, it is pos-
sible to restrict the length of call strings to some fixed length (where the bound on the length required is
quadratic in the size of the lattice and linear in the number of call sites in the program) and yet still obtain a
result that is equivalent in precision to the call-strings-∞ solution. By suitable means, approximate (but
safe) solutions can also be obtained using shorter call strings; limiting call strings to length k defines the
call-strings-k solution.

In considering algorithms for interprocedural dataflow analysis, one should be careful not to confuse two
separate issues:

(i) Whether an algorithm computes a solution equal in precision to the call-strings-∞ solution.

(ii) Whether an algorithm computes its solution by actually tracking entities labeled by call strings (e.g.,
of some length k).

A type-(ii) algorithm typically has worst-case running time that is exponential in k. Howev er, for suitably
restricted classes of interprocedural dataflow-analysis problems, there are algorithms with property (i), yet
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their worst-case running times are polynomial in the size of the program;9 these algorithms use dynamic
programming, rather than utilizing entities labeled with explicit call strings [30,34]. For the same class of
problems, a type-(ii) algorithm will, in general, have exponential running time.

These results provide an interesting contrast with those that have been obtained on a program-analysis
problem of interest to the functional-programming community: the problem of “k-CFA”, or “control-flow
analysis” (for higher-order programming languages) using call strings of length k [36,17,13,26]. The goal
of control-flow analysis is to track data and control flow in the presence of first-class (anonymous) func-
tions, data constructors, and selectors. Many of the algorithms that have been given for k-CFA are type-(ii)
algorithms (in the sense mentioned above), in that they actually track entities labeled by call strings of
length ≤ k. In general, the running time of these algorithms is exponential in k.

Similar to the concept of the call-strings-∞ solution to an interprocedural dataflow-analysis problem, the
∞-CFA solution is what would be obtained, in principle, if call strings were allowed to grow arbitrarily
long. The results of Sections 3 and 4 imply that, in general, when data constructors and selectors are to be
taken into account, ∞-CFA is undecidable. That is, in the presence of data constructors and selectors, the
∞-CFA solution cannot be computed.
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