Interconvertibility of a Class of Set Constraints and
Context-Free-Language Reachability!

David Melski? Thomas Reps?
Computer Sciences Department Computer Sciences Department
University of Wisconsin University of Wisconsin

December 4, 1998

Abstract

We show the interconvertibility of context-free-language reachability problems and a class of set-
constraint problems: given a context-free-language reachability problem, we show how to construct a
set-constraint problem whose answer gives a solution to the reachability problem; given a set-constraint
problem, we show how to construct a context-free-language reachability problem whose answer gives a
solution to the set-constraint problem. The interconvertibility of these two formalisms offers an concep-
tual advantage akin to the advantage gained from the interconvertibility of finite-state automata and
regular expressions in formal language theory, namely, a problem can be formulated in whichever for-
malism is most natural. It also offers some insight into the “O(n®) bottleneck” for different types of
program-analysis problems and allows results previously obtained for context-free-language reachability
problems to be applied to set-constraint problems and vice versa.

Key Words: definite set constraints, contest-free-language reachability, path problem, program analysis,
complezxity of program-analysis problems.

1 Introduction

This paper concerns algorithms for converting between two techniques for formalizing program-analysis prob-
lems: context-free-language reachability and a class of set constraints. Context-free-language reachability
(CFL-reachability) is a generalization of ordinary graph reachability (i.e., transitive closure). It has been
used for a number of program-analysis applications, including interprocedural slicing [23, 25], interprocedural
dataflow analysis [24], and shape analysis [37].

Set constraints have been applied to program analysis by using them to collect (a superset of) the set
of values that the program’s variables may hold during execution. Typically, a set variable is created for
each program variable at each program point. Set constraints are then generated that approximate the
program’s behavior. Program analysis then becomes a problem of finding the least solution of the set-
constraint problem. Set constraints have been used for program analysis, including [2, 17, 19, 29, 43], and
type inference, including [3, 4].

I This work was supported in part by the National Science Foundation under grants CCR-9100424 and CCR-9625667, and by
the Defense Advanced Research Projects Agency (monitored by the Office of Naval Research under contracts N00014-92-J-1937
and N00014-97-1-0114) and in part by a grant from IBM.

21210 West Dayton Street, Madison, WI 53706; {melski,reps}Q@cs.wisc.edu

Numerous classes of set constraints have been identified and studied. Except for Section 5, the class of
set constraints considered in this paper is a subclass of what have been called definite set constraints [18];
throughout the paper, the term “set constraints” refers to the class of set constraints defined in Section 2.2.

The principal contribution of this paper is to relate these two formalisms:

We give a construction for converting a CFL-reachability problem into a set-constraint problem. This
construction can be carried out in O(n + e) time, where n is the number of nodes in the graph, and e
is the number of edges in the graph.

We give a second construction for converting a set-constraint problem into a CFL-reachability problem.
Again the construction can be carried out in time linear in the size of the set-constraint problem.

We gain several benefits from knowing that these two program-analysis formalisms are interconvertible:

There is an advantage from the conceptual standpoint: When confronted with a program-analysis
problem, one can think and reason in terms of whichever paradigm is most appropriate. (This is
analogous to the situation one has in formal language theory with finite-state automata and regular
expressions, or with pushdown automata and context-free grammars.) For example, CFL-reachability
leads to natural formulations of interprocedural dataflow analysis [25] and interprocedural slicing [40,
23]. Set-constraints lead to natural formulations of shape analysis [30, 43]. Each of these problems could
be formulated using the (respective) opposite formalisms—our interconvertibility result formulates this
idea precisely—but it would be awkward.

These constructions also offer some insight into the “O(n?) bottleneck” for program-analysis problems.
That is, a number of program-analysis problems are known to be solvable in time O(n?), but no sub-
cubic-time algorithm is known. This is sometimes (erroneously) attributed to the need to perform
transitive closure when a problem is solved. However, because transitive closure can be performed in
sub-cubic time [13], this is not the correct explanation. We have long believed that, in many cases,
real source of the O(n?®) bottleneck is that a CFL-reachability problem needs to be solved. This paper
shows this to be the case for the class of definite set-constraint problems.!

CFL-reachability is known to be log-space complete for polynomial time (or PTIME-complete) [1,
38, 48]. Because the CFL-reachability to set-constraint construction can be performed in log-space,
this paper demonstrates that a class of set-constraint problems are also PTIME-complete. Because
PTIME-complete problems are believed not to be efficiently parallelizable (i.e., cannot be solved in
polylog time on a polynomial number of processors), this paper extends the class of program-analysis
problems that are unlikely to have efficient parallel algorithms.

A demand algorithm computes a partial solution to a problem, when only part of the full answer is
needed. For example, a demand algorithm might be used to compute the results of a program analysis
only for points in the innermost loops of a given program. Because CFL-reachability problems can
be solved in a demand-driven fashion (e.g., see [37, 36]), this paper shows that (in principle) set-
constraint problems can also be solved in a demand-driven fashion. To our knowledge, this has not
been investigated before in the literature on set constraints.

CFL-reachability lends itself to analysis of languages with a lazy semantics [37]. Set constraints with
strict semantics are more readily used to analyze languages with a strict semantics. However, our
interconvertibility results show that CFL-reachability can be used to analyze strict languages, and set
constraints with strict semantics can be used to analyze lazy languages.

1The source of the O(n®) bottleneck has also been attributed to the need to solve a dynamic transitive-closure problem.
The basis for this statement is that several cubic-time algorithms for solving program-analysis problems maintain the transitive
closure of a relation in an on-line fashion (i.e., as a sequence of insertions into the relation is performed). At the present time,
no sub-cubic-time algorithm is known for this version of the dynamic transitive-closure problem.

In a CFL-reachability problem, new base facts (in the form of graph edges or grammar productions) are not added to the
problem in an on-line fashion. (When dynamic programming is used to solve CFL-reachability problems, additional edges are
inserted in the graph; however, in this case, the edges are added by the algorithm and not inserted by an outside agent.) Thus,
we feel that the statement “a CFL-reachability problem needs to be solved” offers a declarative characterization of the source
of the O(n3) bottleneck.

Az=BC A production of a context free grammar

AV, V3) An edge labelled A from node V; to node V;
cVi,...,V2) An atomic expression of arity r used in set constraints
X De(Vy,..., Vi) A set constraint

X=a A production of a regular term grammar

Table 1: Notation used throughout this paper.

A different class of set constraints has been used by Heintze to formulate analysis problems for a higher-
order language (ML) [17]. In Section 5, we show how set-constraint problems of this class can be converted
to CFL-reachability problems while preserving cubic-time solvability (i.e., cubic in the size of the original
problem). A notable aspect of this result is that it demonstrates that the CFL-reachability framework
is capable of expressing analysis problems, such as program slicing and shape analysis, for higher-order
languages. All previous applications of CFL-reachability to program analysis have been limited to first-order
languages.

For all three constructions there is a thorny issue that we must address: When we plug the various
parameters that characterize the size of the transformed problems into the standard formulas for the worst-
case asymptotic running time in which the transformed problems can be solved, it appears that both of our
constructions cause a blowup in the time required to solve the problem. That is, from the standpoint of worst-
case asymptotic running time, it appears that we do worse by performing the transformation and solving the
transformed problem. If this were true, it would not be a satisfactory demonstration of interconvertibility.
In Sections 3.5, 4.4, and 5.3 we examine this issue and show that, in fact, the asymptotic running time of
the constructed problems is the same as the problems they were constructed from.

We assume that the reader is familiar with context-free grammars. In Section 2, we define CFL-
reachability and a class of set-constraint problems, and describe dynamic-programming algorithms that
can be used to solve them. Section 2 also defines regular term grammars, which are used to give finite
presentations of solutions to set-constraint problems. In Section 3, we show how to express CFL-reachability
using set constraints and discuss the running time of the dynamic-programming algorithm on the resulting
problem. In Section 4, we discuss how to restate set-constraint problems as CFL-reachability problems and
again examine the running time of the dynamic-programming algorithm. In Section 5, we show how to
encode a second class of set-constraint problems as CFL-reachability problems. In Section 6 we show how to
express CFL-reachability problems with this second class of set-constraints. Section 7 offers some concluding
remarks.

2 Background

To understand the interconvertibility result, it is necessary to have a grasp of the problem domains that we
are working with and the algorithms for solving these types of problems. Table 1 summarizes some of the
notational conventions we will use in the paper.

2.1 CFL-Reachability

In this section, we define CFL-reachability and describe a dynamic-programming algorithm for solving the
all-pairs CFL-reachability problem.

Definition 2.1 Let CF be a context-free grammar over an alphabet of terminal symbols 7" and non-terminal
symbols N. (Unless explicitly noted, we will follow the convention of starting terminal symbols with lowercase
letters, and starting non-terminal symbols with uppercase letters.) Let G be a directed graph whose edges
are labeled with members of ¥ = TUN. Each path in G defines a word over ¥, namely, the word obtained by
concatenating, in order, the labels of the edges on the path. A path in G is an S-path if its word is derived
from the start symbol S of grammar CF. We define four varieties of context-free-language reachability
problems (CFL-reachability problems), as follows:

O

The all-pairs S-path problem is to determine all pairs of nodes ny and ny such that there exists an
S-path in G from n; to na.

The single-source S-path problem is to determine all nodes ny such that there exists an S-path in G
from a given source node n; to ns.

The single-target S-path problem is to determine all node n; such that there exists an S-path in G
from n; to a given target node na.

The single-source/single-target S-path problem is to determine whether there exists an S-path in G
from a given source node n; to a given target node ns.

2.1.1 Solving CFL-Reachability Problems

We now give a dynamic-programming algorithm for solving all-pairs CFL-reachability problems. We are
given a graph G whose edges are labelled with terminal symbols from a context-free grammar. To find the
S-paths in this graph, we go through a process of “filling in” the graph with new edges, which are labelled
with non-terminal symbols. A new edge labelled A from node i to node j indicates that there is an A-path
from node 7 to node j. (As indicated in Table 1, we use the notation A(i,j) to represent an edge labelled A
from node ¢ to node j.) When this process is completed, there will be an edge labelled S between any two
nodes connected by an S-path. This idea is formalized in the following algorithm:

Algorithm 2.1 (CFL-Reachability Algorithm)

1.

Normalize the grammar: In order for this process to work efficiently, we first convert the grammar
to a normal form in which the right-hand side of each production has at most two symbols from T'U N2.
This can be done by introducing new non-terminal symbols. Thus, a production such as

A:=aBCd

might be converted into these productions:

An=4 A"
A w=aB
A w=0Cd

This transformation can be done in time linear in the size of the grammar and causes a linear blowup
in the size of the grammar. When the grammar is in normal form, each production will have one of the
forms A := M N, B := P, or C ::= ¢, where A, B, and C are nonterminals, M, N, P are terminals
or nonterminals, and € represents the empty string.

Create the initial worklist: Let W be a worklist of edges. Initialize W with all of the edges in the
original graph.

Add edges for e-productions: The production A ::= € indicates that there is a length-0 A-path
from each node i to itself (see Figure 1(a)). Hence:

for each production of the form A ::= € do
for each node ¢ in the graph do
if the edge A(i,4) is not in G then add A(i,i) to G and to W fi
od
od

2The normal form used is similar to Chomsky Normal Form, except that epsilon productions are allowed, and there are no
restrictions on where terminal symbols may appear.

A

A
2 —— ~ ~A _— ~
AR -~ ~ - C w* ¢ C ~
A B }:.. . B =./'k K s, B A,
i i I i [i
(a) for A =€ (b)for A:=B (c) for A= BC (d) for A:=C B

Figure 1: Edge induction in the CFL-reachability Algorithm (Algorithm 2.1). The figures show how a
production of the context-free grammar causes the algorithm to add, or induce, an edge in the graph
(dashed lines show induced edges).

4. Add edges for other productions: To determine where to add other edges to the graph, the current
edges must be examined.

while W is not empty do
Select and remove an edge B(i, j) from W

/* Step 4.1: look for productions of the form A ::= B (see Figure 1(b)). */
for each production of the form A ::= B do

if the edge A(7,j) is not in G then add A(i,j) to G and to W fi
od

/* Step 4.2: look for productions of the form A ::= B C. For each such production, for each */
/* edge C(j,k), add A(i, k) (see Figure 1(c)). */
for each production of the form A ::= B C do
for each outgoing edge C(j, k) from node j do
if the edge A(i, k) is not in G then add A(i, k) to G and to W fi
od
od

/* Step 4.3: look for productions of the form A ::= C' B. For each such production, for each */
/* edge C{k,i), add A(k,j) (see Figure 1(d)). */
for each production of the form A ::= C' B do

for each incoming edge C(k,7) into node i do

if the edge A(k,j) is not in G then add A(k,j) to G and to W i

od

od
od

5. Return the set {(Z,4)|S(i, j) € G}.

O

Note that the other varieties of CFL-reachability problems—single-source, single-target, and single-
source/single-target problems—can be solved by solving the corresponding all-pairs problem. [24] describes
a demand version of the CFL-Reachability Algorithm (tailored for a certain matched-parenthesis reachabil-
ity problem) that is usually more efficient for the single-source, single-target, and single-source/single-target
CFL-reachability problems. (In some cases, the demand algorithm in [24] performs the same amount of work
as the CFL-Reachability Algorithm given here.) Section 7.6 gives a more detailed discussion of demand al-
gorithms.

We now show that the running time of the CFL-Reachability Algorithm is bounded by O(|E|3n3), where
3 is the set of terminals and nonterminals in the normalized grammar, and n is the number of nodes in the
graph. The running time is dominated by the amount of work performed in steps 4.2 and 4.3. In these steps,

O(|z]) possible edges
from each source.

O(n) possible
source nodes. i

Figure 2: In a graph from a CFL-reachability problem,
the number of edges into any given node is bounded
by O(|X|n), where ¥ is the alphabet of the grammar,
and n is the number of nodes in the graph.

each edge added to the graph is potentially paired with each of its neighboring edges. This is equivalent to
saying that each pair of neighboring edges is considered; that is, for each node j, each incoming edge A(3, j)
is potentially paired with each outgoing edge B(j, k).

For any given node j, the number of incoming edges is bounded by |X|n (see Figure 2). Similarly, the
number of outgoing edges from j is bounded by |X|n. This means that the total number of edge pairings
that j ever participates in is bounded by |E|2n2. For any given edge pair B(i,j) and C{j, k), the number
of productions that may have “B C” as the body of the production is bounded by |X|. Node j is one of
n nod:?s; consequently the total amount of work performed during any run of the algorithm is bounded by
O(1Z|"n?).

For a fixed grammar, |X| is constant, and therefore an all-pairs CFL-reachability problem can be solved
in time O(n3) (where the constant of proportionality is cubic in |X]).

2.2 Set Constraints

In this section, we define a class of set constraints. The material in this section is a summary of work done
by Heintze and Jaffar [16, 17, 18].

2.2.1 Set Expressions and Set Constraints

In the class of set constraints we deal with, a set expression is either a set variable (denoted by V, W, X|
etc.) or has one of the following forms:

e ¢(Vi,...,V;). An expression of this form is called an atomic expression, and c is called a constructor
or a function symbol. When set constraints are used for program analysis, atomic expressions are
typically used to model data constructors of the language being analyzed (e.g., cons). All constructors
have a fixed arity greater than or equal to zero. We will follow the convention of abbreviating nullary
constructors as ¢, rather than writing ¢().

°c; 1(V). An expression of this form is called a projection. Projections can be used to model selection

operators (such as car and cdr). The subscript of a projection indicates which field of the corresponding
constructor is selected.

In the class of problems we consider, all set constraints are of the form V D sexp, where sexp is a set
expression.
The following example should clarify how set constraints can be used for program analysis:

Example 2.2 Suppose a program contains the following bindings:
x = cons(y,z) w = cdr(x)

This would generate the constraints X D cons(Y,Z) and W D cons;*(X). In the second constraint, the
projection conss; '(X) models cdr, asking for the second element of each cons value in X. O

2.2.2 Solutions to Set Constraints

A ground term over a set of constructors is either a nullary constructor or has the form ¢(v; ...v,) where
V1 ...v, are ground terms. Thus, given the nullary constructor a and the unary constructor suce, examples
of ground terms include a, succ(a), succ(suce(a)), ete.

A solution to a collection of set constraints is a mapping from set variables to sets of ground terms of
constructors such that the constraints are satisfied. If we have a mapping 7 from set variables to sets of
ground terms, then the mapping can be extended to map set expressions to sets of values:

o Z(c(Vr,...,V3)) = {c(v1,...,v)|lvs € Z(V1),..., v € Z(V;)}
o Z(c; ' (V) = {uile(v, ..., vr) € I(V)}

(Note that this definition of Z is strict with regards to the arguments of constructors; the expression
¢(V1,...,V,) is mapped to a nonempty value if and only if V;,...,V, are all mapped to nonempty val-
ues.) 7 is said to satisfy a constraint X D sexp if Z(X) D Z(sexp). T is said to be a solution to a collection
of constraints if 7 satisfies each of the constraints.

An issue of how to represent a solution to a collection of set constraints arises because a solution may
consist of an infinite set. Furthermore, a collection of set constraints may have multiple solutions.

Example 2.3 Consider the following constraints:
XDa X D suce(X)

One solution to these constraints maps X to the infinite set {a, succ(a), succ(succ(a)), .. .}. Another solution
maps X to the infinite set {cons(a,a), succ(cons(a,a)), ..., a, succ(a), succ(succ(a)),...}. O

We will always be interested in least solutions (under the subset ordering), e.g., the first of the two solutions
listed in the above example. Heintze formalizes this idea in [16]. Note that a collection of set constraints
must always have a solution. In particular, the map that sends each variable to the set of all ground terms
is a trivial solution to any collection of constraints. (This is not generally true of all classes of constraints;
it holds here because our constraints never restrict a ground term from appearing in the solution set of any
variable.)

The solution to a collection of set constraints can be written as a regular term grammar [14], which is a
formalism that allows certain infinite sets of terms to be represented in a finite manner. There are standard
algorithms for dealing with regular term grammars (e.g., for determining membership) [14].

A regular term grammar consists of a finite, non-empty set of non-terminals, a set of function symbols, and
a finite set of productions. Each function symbol has a fixed arity. Productions are of the form N = term
where N is a non-terminal. A term is a non-terminal or of the form c(term.,...,term,), where c is a
function symbol of arity r. As with other grammars, a derivability relation is defined. Given a production
N = term, term; derives termsy (denoted by termi = terms) if terms is obtained from term; by replacing
an occurrence of N in term, with term. The reflexive, transitive closure =* is defined as usual.

The regular term grammar that describes the least solution of Example 2.3 above has these productions:

X=a X = succ(X)

2.2.3 Solving Set Constraints

The reader may notice that in Example 2.3 the set constraints X D a and X D succ(X) look very sim-
ilar to the productions X = a and X = succ(X) of the regular term grammar specifying the solution.
Such constraints are said to be in ezplicit form [16]: A constraint is in explicit form if it is of the form
V 2 ¢e(Vi,...,V;). A collection of constraints in explicit form is converted to a regular term grammar by
taking the variables to be non-terminals and converting each D into =.

For any collection of constraints C, we say that a variable X is ground if the least solution to the
constraints of C that are in explicit form does not map X to the empty set (i.e., X is mapped to some
ground term in the least solution). We say that ¢(Vi,...,V;) is ground if V; ...V, are all ground.

The algorithm for solving set constraints involves augmenting the collection of set constraints with con-
straints in explicit form until no more can be added:

Algorithm 2.2 (SC-Reduction Algorithm) Given a collection of set constraints C, the following steps are
repeated until neither step causes C to change:

LIfX DY) and Y D ¢(V4,...,V,) both appear in C and the expression ¢(Vi,...,V,) is ground,
then add the constraint X D V; to C, if it is not already there.

2. fX DY andY D ¢(Vi,...,V,) both appear in C, and ¢(V4,...,V,) is ground, then add the constraint
X D e(Vh,...,V2) to C, if it is not already there.

When no more constraints can be added, the constraints in explicit form are converted to a regular term
grammar; this describes the least solution [16]. O

The SC-Reduction Algorithm does not generate new atomic expressions; this means that when the
algorithm finishes, for a fixed variable Y, the number of constraints of the form Y D ¢(V4,Vs,...,V.) in C
is bound by O(k), where k is the number of atomic expressions used in C. The total number of constraints
in C of the form Y D ¢(V1,Va,...,V,) is bounded by O(vk), where v is the number of set variables used
in C. Thus, the total number of times the first reduction step is ever applied is bounded by O(pkv), where
p is the maximum number of projection constraints that can match with a given constraint of the form
Y D (W1, Va,..., V).

The total number of constraints in C of the form ¥ D X is bounded by O(v?). Thus, the total number
of times the second step is applied is bounded by O(v2k). Let t be the total number of constraints in the
original problem. In the worst case, v, k, and p are proportional to O(t), and the total number of steps is
bounded by O(#3).

The SC-Reduction Algorithm can be made to run in time O(t3) by using a worklist and a mark on each
variable to track groundness information:

1. Let W be a worklist of constraints. Initialize W to {X D a € C|a is a nullary constructor}.
2. Mark all set variables as having the property “not ground.”

3. Perform the reduction steps:

while W is not empty do
Select and remove a constraint X D sexp from W
if X D sexp is of the form X D ¢(V4,Vs,...,V,) then
for each constraint of the form Y D ¢;*(X) in C do
if Y DV;isnotin C then Insert Y D V; into C and W fi
od
for each constraint of the form Y O X in C do
if Y D e(Vi,Va,...,V;) isnot in C then Insert Y D ¢(V3,Va,...,V;) into C and W fi
od
else if X D sexp is of the form X DY then
for each constraint of the form Y D ¢(V4,V5,...,V,) in C such that V4, ..., V, are all ground

do
if X D ¢(V4,Va,...,V,) is not in C then Insert X D ¢(V;,V5,...,V;) into C and W fi

od
fi
if X is not marked as ground then
mark X as ground
for each constraint of the form Y D ¢(... X ...) in the original collection of constraints do
if all set variables used in ¢(... X ...) are ground then
Insert Y De(... X ...) into W
fi
od
for each constraint of the form Y D X in the original collection of constraints do
Insert Y O X into W
od
fi
od

To make this run in time O(#®), constant-time access is needed to certain subsets of C in different parts of
the algorithm; this can be achieved with a constant amount of overhead if the proper data structures (e.g.,
matrices) are maintained for storing the subsets. The number of constraints of the form X D ¢(V4,V5,...,V,)
that may appear on the worklist is bounded by O(kv); the number of reductions performed on a given
constraint of this form is bounded by O(p + v). The number of constraints of the form X D Y that may
appear on the worklist is bounded by O(v?); the number of reductions performed on a given constraint of
this form is bounded by O(k).

For each constraint X D sexp that appears on the worklist, a check is performed to see if X is marked
ground; these checks may contribute O (kv + v?) steps to the total running time. When X is first marked as
ground, an attempt is made to propagate the new groundness information to all of the original constraints
that use X in their right-hand side; note that groundness information need not be propagated to generated
constraints because generated constraints can only be created if their right-hand sides are ground. The
total number of attempts to propagate groundness information to an original constraint of the form Y D
c¢c(V1,Va,...,V,) is bounded by r. The total number of attempts to propagate groundness information to an
original constraint of the form Y D X is 1. Since r is constant, the total amount of work done to propagate
groundness information is bounded by O(t).

Thus, the entire algorithm runs in time O(pvk + kv? +t), which in the worst case is proportional to O(t?).

3 Transforming CFL-Reachability Problems into Set-Constraint
Problems

We now turn to the method for expressing a CFL-reachability problem as a set-constraint problem. We first
address how to encode the graph using set constraints. We then address how to encode the productions of the
context-free grammar. Finally, we examine the time needed to solve the resulting collection of constraints.

3.1 Encoding the Graph

The construction is based on the idea of representing each node ¢ with one variable X; and one nullary
constructor node;. These are linked by constraints of the form

X; Dnode;, fori=1...n

In essence, node; serves as a label identifying the node to which X; belongs.

We now need a way to associate a node with a set of edges to other nodes. (As in Section 2.1.1, “edges”
also means the A-edges that may be added to a graph to represent A-paths.) In the final solution, an edge
from node i to node j labelled A (where A is a terminal or nonterminal) is represented by the fact that
the term A(node;) is in the solution set for variable X;. In accordance with this goal, we use constraints
involving X; to indicate the set of targets of outgoing edges from node %, using unary constructors to encode

Rehdgg:
Dst;

Figure 3: Use of Dsty4 ;) and Rchd[Bl to encode production
A =B C. The variable Rchdip-1 ;) represents the set of
nodes reached by following B-edges from i. The variable
Dsty 4 ;) represents the set of nodes to which there should be
an A-edge from node 1.

the labels of edges. The argument to a constructor ¢ is the target of an encoded c-edge. For example, if the
initial graph contains an edge from node i to node j with label a, then the initial collection of constraints
includes

X; 2 a(X;)

The set of constraints constructed in this manner completely encodes the initial graph.

3.2 Encoding the Productions

To encode the productions, we first convert the context-free grammar to the normal form discussed in
Section 2.1.1. Thus, we assume that the right-hand side of each production has no more than two symbols.
Now consider a production of the form A ::= B C, where A is a nonterminal, and B and C are either
nonterminals or terminals. This production indicates that there is an A-path from node i to node k& when
there exists a node j such that there is an B-path from node i to node j, and a C-path from node j to node
k.

Consider a fixed node 7. To what nodes should node ¢ have an A-edge (i.e., to what nodes is there an A-
path)? The production A ::= B C indicates that we should add an A-edge from node ¢ to any nodes reached
by following B edges from node i and then following C' edges. In our representation of the graph, edges
are represented as constructors, and “following an edge” can be encoded using projection: in particular, the
production A ::= B C can be encoded for node ¢ by the following compound set constraint:

X; 2 A(CTH(BrY(X3)))

Note that this constraint does not belong to the class of set constraints introduced in Section 2.2; however,
by introducing some additional set variables and constraints, it can be rewritten into the proper form: We
introduce two set variables

Dsty 457, which represents the “destinations” of A-edges from node 4, and

Rchd[B which represents the nodes reached by following B-edges from node i.

We also generate the following constraints to encode A ::= B C:
RChd[Bl—lvi] D By (X)) (Follow B edges from node 1)
Dstiy5 2 Cy 1(Rchd[Bl—l’i]) (Follow C edges from those nodes)
X D A(Dstra) (Add A edges to the reached nodes)

10

Figure 3 depicts the use of the set variables Rchd[B and Dst[4 ; in this encoding.

These constraints encode the production A ::= B C, but only “locally” for node i. That is, the solution
to these constraints will give the A-paths starting at node i (assuming that the B-paths and C-paths are
also solved for). To find all A-paths in the graph, similar constraints are generated for all other nodes of the
graph.

We note that the set variables introduced to encode this production (i.e., Dst 4 ; and Rchd[B, i]) may

also be used in encoding other productions. For example, to encode A ::= B D, we need to generate only
one new constraint: Dst4 ; 2 Dy 1(R0hd[13;1,i])-

The above discussion shows how to encode a production of the form A ::= B C. In a normalized CFL
grammar, productions may also have the form A ::= B and A ::= e. To encode a constraint of the form
A = B at node i, we generate the constraints X; D A(Dst ;) and Dsts; 2 Bl_l(Xi). To encode a
constraint of the form A ::= €, we generate the constraint X; O A(X;).

This completes the construction of the set-constraint problem. As we show in the next section, the
solution to a constructed set-constraint problem C can be used to obtain the solution to the original CFL-
reachability problem P. In particular, let H be the regular term grammar that gives the solution to C. Then
there is an S-path from n to m in the solution to P if and only if X,, =* node,, under H. We give a formal
proof of this in the next section.

3.3 Correctness of the Construction

We now formally prove that the solution to a constructed set-constraint problem gives a solution to the
original CFL-reachability problem. More precisely, we have the following theorem:

Theorem 3.1 Let C be the collection of set constraints constructed to represent the context-free reachability
problem P. Let G be the graph that results from running the CFL-reachability Algorithm on P. Let H be
the regular term grammar that results from solving C. Then there is an edge A(i,j) in G if and only if
X; =* A(node;) under H.

To prove this theorem, we employ one lemma. In this lemma, C, P, H, and G are defined as in Theo-
rem 3.1. The key lemma, which is proved in Appendix A, is as follows:

Lemma 3.2 Let C' be the collection of constraints that results from running the SC-Reduction Algorithm on
C (i.e., C' is C unioned with the collection of constraints generated by the SC-Reduction Algorithm). Then
there is an edge A(i,j) in G if and only if C' contains X; D A(X;) and/or Dst 4 ; D node;.

Theorem 3.1 follows immediately from Lemma 3.2. Note that H contains no productions of the form
U = V. This means that X; =* A(node;) under H if and only if H contains productions of the form
X; = A(V) and V = node;. H contains productions of this form if and only if C' contains X; O A(X;) and
X; D node; or C' contains X; D A(Dstia,;)) and Dsti4 ;) D node; (where A is a nonterminal). Since C (and
hence C') must contain X; O node; and X; O A(Dsti4,;)) (for each nonterminal A, it follows that H contains
the required productions if and only if C' contains X; D A(X;) or Dsta,;) 2 node;.

3.4 Performing the Construction in Log-Space

It is also easily shown that the construction given in this section can be carried out by a log-space Turing
machine. A log-space Turing machine has a read-only input tape, a read-write work tape with O(log z) cells,
where z is the size of the input, and a write-only output tape.

We claim that there exists a log-space Turing machine P; that does the following: given an arbitrary
context-free grammar CF on the input tape, P; outputs an equivalent context-free grammar CF' that is in
normal form. Consider the following typical context-free production g:

N:=abCdFE

This production can be replaced with the following productions (which are in normal form):

11

N:=aT;

T ==bTy
T :=CTs
T3 =:=d Ty
Ty := F

A Turing machine P; can be written that processes each production ¢ as follows: it scans ¢ left to right;
for each position ¢ of the right-hand side of production ¢ (except the first and last positions), a production
T;—1 == a; T; is output, where a; is the symbol at position ¢, and 7; is a new non-terminal symbol. P,
requires space on the work tape for one counter cnt, which it uses to generate new non-terminal symbols.
Since the number of non-terminals introduced is proportional to the length x of the context-free grammar,
P1 needs at most O(log z) bits on the work tape for ent. Let P} be the log-space Turing machine that takes
a CFL-reachability problem as input, and outputs the same CFL-reachability problem but with a normalized
grammar.

We also claim that there exists a log-space Turing machine P» that, given a CFL-reachability problem
with a context-free grammar in normal form, performs the construction of Sections 3.1 and 3.2. P, operates
in two phases: in phase I, it scans each edge e of the graph G of the CFL-reachability problem and outputs a
corresponding constraint; in phase II, it encodes each production of the context-free grammar for each node
of the graph G. Phase I requires no space on the worktape. Phase II requires space on the work tape for
the following items:

1. an index idz1 into the input tape that points to the current production.
2. an index idz2 into the input tape that points to the current node.
3. a counter c¢nt for producing unique set variables for each constraint introduced during phase II.

The indices idz1 and idz2 can be represented with O(logz) bits, where z is the size of the input problem.
The counter cnt requires O(log p-n) bits, where p is the number of productions in the context-free grammar
CF, and n is the number of nodes in the graph G. Note that O(logp - n) < O(logz?) = O(2 - log z).

For any two log-space Turing machines Q and R, there is a log-space Turing machine that is equivalent
to the composition Q o R [28]. This means that there is a log-space Turing machine P that is equivalent
to Py o P} and performs the construction of this section for an arbitrary context-free grammar. Since CFL-
reachability problems are PTIME-complete (i.e., complete for PTIME under log-space reductions) [1, 38, 48],
this means that the given class of set-constraint problems are also PTIME-complete [28].

3.5 Analysis of the Running Time

In general, an all-pairs CFL-reachability problem can be solved in time O(n®), where n is the number of
nodes in the graph. The class of set constraints considered can be solved in time O(#3) where t is the number
of constraints. However, for a set-constraint problem constructed from a CFL-reachability problem, this
does not yield a satisfactory time bound—at least from the standpoint of showing that the two classes of
problems are interconvertible: encoding the graph potentially creates n constraints of the form X; D node;
and e constraints of the form X; D a(X;), where e is the number of edges in the graph. Encoding the
productions may create O(dn) constraints, where d is the number of productions. Because e can be as large
as n2, this would give a bound of O(n®) on the running time to solve the set-constraint problem.

However, as we now show, a sharper analysis yields a better bound on the running time for the con-
structed set-constraint problem. In the discussion below, we use the values defined in the following table:

12

k the number of atomic expressions in C
v the number of variables in C
p the maximum number of projection constraints that can
match with a given constraint in explicit form.
t the total number of constraints in C
d the number of productions in the context-free grammar
of the original problem.
s the number of symbols in the context-free grammar of
the original problem.
n the number of nodes in the graph of the original prob-
lem.
Recall that in Section 2.2.3, we gave a tighter bound of O(pkv + kv? + t) for the running time of the
SC-Reduction Algorithm on a collection C of set constraints.
Let C be a constructed set-constraint problem. Then the atomic expressions in C have one of the forms
A(Dstr4 ;1) and A(X;). This means that k is bounded by O(sn). Each variable in C has one of the forms
Dstrg 4, Rchd{Al_l,i], and X;. Thus, v is bounded by O(sn). A given constraint of the form RChd[Bl—l,i] o2CW)

matches with projection constraints in C of the form Dst 4 ; 2 Cy 1(Rchd[Bl—l,i]). A given constraint of the

form X; D B(X;) matches with projection constraints in C with one of the forms Dst 4, D By 1(Xz-) and
RChd[Bl—l,i] D B;'(X;). This means that p is bound by O(s).

Thus, the total time needed to solve C is bounded by O(s - sn - sn + sn - (sn)? + dn + n?). Since d is
bounded by s?, it follows that the run time is bounded by O(s®n®). Since s is a constant independent of the
input, this gives a bound on the running time of O(n?).

4 Solving Set-Constraint Problems Using CFL-Reachability

4.1 Encoding Set Constraints as Graphs
4.1.1 The Idea Behind the Construction

We now turn to the problem of encoding set-constraint problems as CFL-reachability problems. The basic
technique is a modification of work done by Reps in using CFL-reachability to do shape analysis [37]. In
essence, our encoding involves simulating the steps of the SC-Reduction Algorithm with the productions of
a reachability problem. In the following example, we show how the SC-Reduction Algorithm computes what
atomic expressions reach each set variable and consider how this can be simulated with a CFL-reachability
problem:

Example 4.1 Consider the following constraints:

ViDa
1258 %
Vs D cons(Vi, Va)
Vi D consy ' (V3)

The SC-Reduction Algorithm reduces the constraints V3 D a and Vo D V; by adding the constraint V> D a,
which indicates that the atomic expression a reaches V,. This will be simulated in the CFL-reachability
problem by nodes for a, Vi, and V5, together with edges Id{a, V1) and Id(V;,V5). The counterpart of the
reduction step is reachability in the graph: the path made of edges Id{a, V1) and Id(V,V3), together with
the production “Id ::= Id Id”, yields an edge Id(a, V). Just as the SC-Reduction Algorithm outputs the
regular term grammar production V5 = a because of the constraint V5 D a, we output the regular term
grammar production V, = a because of the edge Id(a, V3).

The SC-Reduction Algorithm also reduces the constraints V3 D cons(V1,Vs) and Vi D consy*(V3) by
adding the constraint V4 D V5. In the CFL-reachability problem, this will (roughly) be simulated by the edges
consy(Va, cons(Vi, Va)), Id(cons(Vi, Va), Vs) and consy * (V, V4) and the production “Id ::= consy Id consy'”.

13

oV, v,

Id Id COR /)nsz cons;’
.{\. .A/_\. .A/\.
v, Vi Vo (K *(K) V, V,
vV, OV, Vs=2cony(V,V,) cons(V,, V) V, 2 cons;(V;)

(a) (b) (c) (d)
Figure 4: Edges inserted in the constructed graph to model terms and
constraints.

This yields the edge Id(Va, V4), which models the constraint V4 O V5. Figure 5 shows the graph that is con-
structed to represent the set constraints used in this example; the construction of this graph is explained
below.

O

With this intuition in mind, we make our first attempt to construct a CFL-reachability problem that will
give the solution to a set-constraint problem. (For now, we ignore the clauses about ground expressions in the
SC-Reduction Algorithm. Section 4.1.2 covers the modifications needed to account for ground expressions.)

The CFL-reachability framework uses a graph and context-free grammar and finds paths in the graph.
We want to use this framework to find what atomic expressions reach each set variable; we construct a
graph containing a node for each atomic expression and each set variable. This graph will contain edges that
encode the set constraints. We construct a context-free grammar such that the CFL-reachability Algorithm
will find identity paths from nodes representing atomic expressions to nodes representing set variables.

The solution to the set-constraint problem (in the form of a regular term grammar) is obtained from the
reachability relations that hold in the graph. If node a represents an atomic expression, node V represents
a variable, and there is an identity path from a to V, then the production V = a is in the regular term
grammar.

More precisely, the graph for Example 4.1 is constructed as follows (the general construction is given in
Section 4.2):

e For each set variable V;, the graph contains a node labelled V;.

e Each atomic expression cons(V;,V;) used in the constraints is associated with a unique index. This is
for notational convenience; it is easier to refer to an expression by its index than by writing out the
expression.

For each atomic expression cons(V;,V;) with index k, the graph contains a node labelled (k) and the
edges cons1{V;, (k)) and consa(Vj, (k)). An edge cons.,(V;, (k)) indicates that the values that reach V;
are wrapped in the m** position of the cons value represented by node (k). (See Figure 4(c)).

e For each constraint of the form V; D Vj, the graph contains an edge Id(V;,V;). An edge labelled Id
indicates an identity path in the graph. An identity path from node j to node i indicates that the
values that reach node j also reach node i. (See Figure 4(a).)

e For each constraint of the form V; D cons(V;, V;), where the atomic expression cons(V;, V;) has index k,
the graph contains an edge Id((k),V;). This indicates that the atomic expression cons(V;,V;) reaches
Vi. (See Figure 4(b).)

e For each constraint of the form V; D cons, *(V;), the graph contains an edge cons, *(V;,Vi). An edge
cons,;l(Vj, V;) indicates that values at node 4 are taken from the k** position of cons values at node
Jj. (See Figure 4(d).)

Productions are introduced in the context-free grammar to encode the simplification steps of the SC-
Reduction Algorithm. The first reduction step of the SC-Reduction Algorithm is encoded via productions
that indicate the fact that values can pass through cons values by being wrapped in a cons and then
unwrapped by a projection:

14

Id _
P \/\/ - -~
7 // RN
s N\ \
Id / / \
/_\
(Je)'—d» v, .V, O A
con \ on
> feons, NS feons, \
|Id
1K) *(K)
\|d
Id \ Id / /
v \\ ! // //
oV, \ oV, 1 y) Y,
N .
cons;’ \ cons, // %
A Pid
W, W
Figure 5: The graph built to encode the con- Figure 6: The 'g'raph for. Example 4.1 after
. .) the CFL-reachability Algorithm has been run.
straints in Example 4.1. The nodes (j) and . .
. . Dashed lines represent edges inserted by the algo-
(k) represent the atomic expressions a and h .
cons(Vi, V3), respectively rithm. The nodes (j) and (k) represent the atomic
> el) expressions a and cons(V1, V»), respectively.

Id ::= cons; Id consl_1
Id ::= consy Id cons;1

In Example 4.1, the SC-Reduction Algorithm adds the constraint V; D V5, because of the constraints V3 D
cons(V1,Vs) and V4 D consy'(V3). Let cons(Vy,Vs) have index k. Then, in the constructed graph, the
CFL-reachability algorithm adds the edge Id(Vs,V,) because of the edges conss(Va, (k)), Id{(k),V3), and
consy ' (Va, Vi) (see Figure 6).

To encode the second reduction step of the SC-Reduction Algorithm, the following production is put in
the context-free grammar:

Id :=1Id Id

In Example 4.1, the SC-Reduction Algorithm adds the constraint V2 D a because of the constraints V5 D V3
and V2 D a. Given that the atomic expression a has index j, the CFL-reachability algorithm adds the edge
Id{(3), V2) because of the edges Id{(j), V1) and Id{V;,Vs) (see Figure 6).

Figure 6 shows the graph constructed from Example 4.1 after the CFL-reachability Algorithm is run.
The regular term grammar that is the solution to the set-constraint problem can be obtained from this graph
by examining Id edges from nodes representing atomic expressions. Thus, the edges Id{(j), V1), 1d((j), Va),
and Id((j),Vs) indicate that the atomic expression a reaches set variables Vi, Vs, and Vj; this indicates
that the regular term grammar that represents a solution to the set constraints should contain the following
productions:

Vi=a
Vo=a
Vi=a

The edge Id{(k),Vs) indicates that the following production should be in the regular term grammar as well:
V3 = cons(V1, V)

15

4.1.2 Accounting for Ground Expressions

For any given set-constraint problem, the construction of Section 4.1.1 does yield a regular term grammar
that describes a solution to the problem. However, this regular term grammar does not necessarily describe
the least solution.

The problem is that a production of the form “Id ::= cons; Id cons; ” allows identity paths though
cons expressions that are not ground, and the production “Id ::= Id Id” propagates non-ground atomic
expressions. This is at odds with the simplification steps of the SC-Reduction Algorithm. We consider the
problem with productions of the form “Id ::= cons; Id cons; 1 first.

1y

Example 4.2 Let C be a collection of constraints. Suppose that C is a superset of the following constraints:

Vida
V3 D cons(Vi,V2)
ViD consl_l(V3)

In the least solution to C, V2 may or may not be ground. If V5 is ground, then cons(Vi,V2) is ground (since
V1 must be ground because of the constraint V5 D a), and the SC-Reduction Algorithm would perform the
following steps:

e Add the constraint V4 D V; (because of the constraints V3 D cons(Vi, Va) and Vi D consy ' (V3)).
e Add the constraint V4 D a (because of the new constraint V4 D V; and the constraint V3 D a).
e Qutput the production V4 = a (because of the new constraint V4 D a).

If V5 ultimately is not ground, then the expression cons(Vi,Va) is not ground, and the SC-Reduction Algo-
rithm does not perform the first two of these steps and might not generate the production V4 = a. (The
SC-Reduction Algorithm may still generate V4, = a as a result of reducing other constraints in C; but it
would not generate V4, = a as a result of reducing the particular constraints discussed above.)

Figure 7 shows a fragment of the graph created to represent these constraints by the construction from
Section 4.1.1. (In Figure 7 and the following discussion, we assume that the atomic expression a has index
Jj, and the atomic expression cons(Vi,V2) has index k.) The CFL-reachability algorithm will add the edge
Id(V1,V4) to this graph regardless of whether or not the expression cons(V1, V») is ground. This is because of
the production Id ::= cons; Id consy* and the edges cons; (Vi, (k)), Id{(k), V3), and consy " (V3,V4). Adding
edge Id(V1,V,) when the expression cons(Vi,V3) is not ground may lead to a non-minimal solution. In the
remainder of the section, we give a modified construction for transforming a set-constraint problem to a
CFL-reachability problem. With the modified construction, the edge Id{V1, V4) would be added if and only
if the expression cons(Vy, V2) is ground.

Remark: Example 4.2 illustrates why it is natural to use CFL-reachability for the analysis of lazy
languages: for these languages it is proper to infer that V4 receives the value a. Because Section 3 gives
a construction for converting CFL-reachability problems to set-constraint problems, this shows that set-
constraints with strict semantics can be used for the analysis of lazy languages. The latter is not surprising;
it is easy to get strict constraints to behave as if they have lazy semantics by artificially grounding each set
variable V by adding the constraint V' O dummy, where dummy is an otherwise unused nullary constructor.
For alternative treatments of lazy languages using set constraints see [26, 27].

Example 4.2 suggests that CFL-reachability might not be powerful enough to express analysis problems
for strict languages. The construction given in the remainder of this section shows that this is not the case.
O

We now give a modified construction in which the production Id ::= cons; Id consy ! is replaced with
productions that capture the groundness conditions. To do this we need a technique for tracking additional
Boolean information about set variables. (For example, we need to keep track of whether or not a set variable
is ground.) In the constructed CFL-reachability problem, set variables are represented by nodes, and we
will use cyclic edges to mark Boolean information: the value of a Boolean property of a variable will be
indicated by the presence or absence of a cyclic edge at a node. Some of these cyclic edges are generated

16

(JI)LVI V, oV,
oS cons,

\ I

\ |d| HQ

Figure 7: The edge Id(V1,V4) should be induced if and only if
cons(V1, V) is ground. If the edge Id(V1,V,) is added when cons(V7, V2)
is not ground, it may incorrectly cause the edge Id{a,V4) to be added,
and the production V; = a to be output.

The nodes (j) and (k) represent the atomic expressions a and
cons(V1, Va), respectively.

during the construction of the graph; others are induced by the CFL-reachability Algorithm. The graph and
context-free grammar must be constructed properly for this to happen.

In particular, we introduce a new kind of edge label, Ground, which will be used to indicate that a
variable or atomic expression is ground: an edge Ground(V;,V;) indicates that the variable V; is known to
be ground, while an edge Ground((j), (j)) indicates that the atomic expression with index j is known to be
ground. In Figure 7, the edges Ground(Vy, Vi) and Ground(V,V2) will be added to the graph if and only
if V1 and V3 are ground, respectively. The edge Ground((k), (k)) will be added to the graph if and only if
cons(Vy, Va) is known to be ground (i.e., if both V; and V; are ground).

We now illustrate the use of the Ground edges by means of Example 4.2. In Example 4.2, we want
the graph to contain the cyclic edge Ground((k), (k)) if and only if cons(V;,V2) is ground. In place of the
production Id ::= cons; Id consy ! we use the following production:

Id ::= cons; Ground Id consl_1

With this production, the CFL-reachability Algorithm will add the edge Id{V;,V,) if and only if the edge
Ground((k), (k)) is present (i.e., if and only if cons(V1,V>) is ground); see Figure 8(a).

We now show how to modify the graph and the productions to deal with Ground edges. Some Ground
edges are generated when constructing the graph. In particular, for every atomic expression of the form a
with index j, we generate the edge Ground{((j), (j)), because a nullary constructor is always ground.

Other Ground edges are induced during the running of the CFL-reachability Algorithm. In Example 4.2,
the atomic expression cons(Vy,Vs) is ground if and only if V7 and V3 are both ground. We modify the
construction so that the following edges are also introduced in the original graph:

edge(k)toVi((k), V1)
edgeVy to(k)(V1, (k))
edge(k)toVa((k), Va)
edgeVato(k)(Vz, (k))

These edges simply connect nodes Vi, Va2, and (k), and allow us to introduce the following production:

Ground ::= edge(k)toVy Ground edgeVito(k) edge(k)toVa Ground edgeVato(k)

17

Ground
]
L5 eV,
§ror
&
0
$¥
¢
M
Id Ground
\\ Id
v v
\ oV, oV,
AN
N cons; -
S, cons,
N
\Av v
LAVA LAA
(a) (b)
Legend
» Non-path edge
——p Path edge
— —» New edge (from path)
(k) cons(V,V;)
Figure 8: Use of Ground edges in producing Id edges.
Ground
G (k)
Rev_Id| |Id
edgeV.,toV, LAAN
J - \'?)Ground

Figure 9: Propagation of Ground edges from (k)
to V3. This is accomplished using the production
“Ground ::= edgeV3toV3 Rev_Id Ground Id edgeVstoV3”.

With this production and the edges used in it, the CFL-reachability Algorithm will induce the edge Ground((k), (k))
iff the edges Ground(Vi,Vi) and Ground(Va, V>) exist. See Figure 8(b).

There is one last situation we must take into account: Suppose that in Example 4.2 the atomic expression
cons(Vq,Va) (with index k) is known to be ground, and consider the constraint V3 D cons(V7,V2); this
implies that the variable V3 is also ground. In the graph constructed for this situation, we have the edges
Ground((k), (k)) and Id{(k), V3), and we want the edge Ground(Vs,Vs) to be added. In effect, we want the
Ground information at (k) to be propagated along the Id edge. To accomplish this, we introduce the edges

18

Rev_1d(V3, (k)) and edgeVstoV3(Vs, V3), and the following production:
Ground ::= edgeV3toVs Rev_Id Ground Id edgeVztoVs

With this production, the CFL-reachability Algorithm will add the edge Ground(Vs,Vs) to the graph (see
Figure 9).

There is one more issue that is not well illustrated in Example 4.2. In order to propagate ground
information along an Id edge, we need a corresponding Rev_Id edge. That is, for any edge Id(V;, V;) in the
graph, we need an edge Rev_Id(V;,V;) in the reverse direction. We now show how these Rev_Id edges are
created. Recall that some Id edges are induced by the CFL-reachability Algorithm. If the CFL-reachability
Algorithm induces an edge Id(V;, V;), then we want it to induce an edge Rev_Id(V;,V;). To have this happen
without changing the CFL-reachability Algorithm, we need to add more productions to the grammar. For
example, the following production indicates that the CFL-reachability Algorithm should induce an Id edge
(assuming an appropriate path exists in the graph):

Id ::= cons1 Ground Id consf1

Consequently, we need an equivalent “reverse” production to indicate that the corresponding Rev_Id edge
should be induced:

Rev_Id ::= rev_cons]' Rev.Id Ground rev_cons;

Figure 10 illustrates the use of this reverse production.

For this production to work, we need additional reverse edges: For every edge cons:(V;,V;) in the graph,
we want the edge rev_cons;(V;, Vi) to be in the graph; for every edge cons; *(V;,V;), we want the edge
rev_consy 1(Vj, V;) to be in the graph. Fortunately, these reverse edges can be added when we construct the
graph. They do not require the introduction of new productions. Notice also that an edge labelled Ground is
always cyclic. Hence, it can serve as its own reverse edge and so we do not need an edge labelled Rev_Ground.

Now that we have addressed the problems with constraints of the form Id ::= cons; Id cons;', we are
ready to address the production Id ::= Id Id. In fact there are two problems with this production:

1. Consider the constraints X DO Y and Y D cons(Z, W) represented by the edges Id(Y, X) and Id((k),Y).
The production Id ::= Id Id causes the edge Id{(k), X) to be introduced, regardless of whether or not
cons(Z,W) is ground.

2. Consider the constraints X D Y and Y D Z, represented by the edges Id(Y, X) and Id{Z,Y). The
production Id ::= Id Id causes the edge Id{Z, X) to be introduced.

In both of these cases, the simplification steps of the SC-Reduction Algorithm are not accurately represented.
To fix this, for each node (k) representing an atomic expression, we indicate that (k) represents an atomic
expression by introducing the edge ae{(k), (k)). We replace the production Id ::= Id Id with the following
production:

Id ::= Ground ae Id Id

This production accurately encodes the second reduction step of the SC-Reduction Algorithm.

4.2 Summary of the Construction

Above, we presented the concepts of the construction in terms of a specific example. In this section, we
present it for an arbitrary set-constraint problem. In general, the CFL-reachability problem—which consists
of a graph and a context-free grammar—is constructed as follows:

1. The context-free grammar contains the productions

Id ::== Ground ae Id Id
Rev_Id ::= Rev_Id Rev_Id Ground ae

2. For each set variable V;, the graph contains a node named V;, and a uniquely labelled edge edgeV;toV;(V;, V;).
The context-free grammar contains the production

19

oV — _
~

rev_cons| cons,

ZR
/
/
/
7
~

v

Ground e (K) \

()

Id Rev_ld< Id | Rev_Id
|
VA /
/
rev_cons,(cons; //
v -7
oV, — —— -
Figure 10: The production Rev_Id ::= rev.cons;' Rev.Id Ground rev.cons;
causes the CFL-reachability Algorithm to produce Rev_Id edges. (This produc-
tion is the counterpart of the production Id ::= cons; Ground Id cons| 1.)

Ground ::= edgeV;toV; Rev_Id Ground Id edgeV;toV;

3. For each atomic expression ¢(Vi, Va,...,V,) with index k used in the set constraints the graph contains
a node labelled (k) and an edge ae{(k), (k)). If ¢ is a nullary constructor (i.e., 7 = 0), then the graph
contains the edge Ground{(k), (k)). Otherwise, for each position j of this atomic expression, the graph
contains the edges

¢j{Vj, (k))
rev.c;((), V;)
edge(k)toV;((k), V;)
edgeV;to(k)(V;, (k))
and the context-free grammar contains the productions

Id == c; Ground Id c;l
-1

Rev_Id ::= rev_c;

Rev_Id Ground rev_c;
The context free grammar also contains the production

Ground == edge(k)toVi Ground edgeVito(k) edge(k)toVa Ground edgeVato(k)
edge(k)toV, Ground edgeV,to(k)

4. For each constraint of the form V; D Vj;, the graph contains edges Id(V;,V;) and Rev_Id(V;,V}).

5. For each constraint of the form V' D ¢(V4,Va,...,V.), where ¢(V1,Va,...,V,) has index k, the graph
contains edges Id{(k),V) and Rev_Id(V, (k)).

6. For each constraint of the form V; D ¢! (V;), the graph contains edges c; ' (V;, Vi) and rev_c; *(V;, V;).

After the CFL-reachability Algorithm is run on a constructed problem, a tree grammar representing the
solution to the original set-constraint problem is generated as follows: For each edge Id{(k), V;), where k is
the index of the atomic expression ¢(V1, Vs, ..., V,.) output the regular tree production V; = ¢(V1, Vs, ..., V,).

4.3 Correctness of the Construction

We claim that the solution to the CFL-reachability problem gives the solution to the original set constraint
problem. Specifically, we have the following theorem:

20

Theorem 4.3 Let C be a collection of set constraints, and let P be the CFL-reachability problem constructed
to represent C. Let H be the regular-tree grammar produced by the SC-Reduction Algorithm when run on C.
Let J be the regular-tree grammar produced from the solution to P (i.e., the grammar produced by outputting
a production for each edge of the form Id{(k),V) in the solution to P). Then, H = J.

To prove this theorem, we enlist the help of several lemmas, which are proved in Appendix B. In the following
lemmas, C and P are defined as in Theorem 4.3. We also have the following definitions:

C' is the collection of set constraints that results from running the SC-Reduction Algorithm on C (i.e., C’
is C unioned with the constraints generated by the SC-Reduction Algorithm).

G is the original graph of the CFL-reachability problem P.

G' is the graph that results from running the CFL-reachability algorithm on P (i.e., G' is G augmented
with the edges added by the CFL-reachability Algorithm).

Lemma 4.4 IfC' contains the constraint V2O ¢(V1,Va,...,V,), then G' contains the edge Id{(k),V), where
k is the index of ¢(V1,Va,...,V,).

Lemma 4.5 If G' contains the edge Id{(k),V), then C' contains the constraint V2 ¢(V1,Vs,...,V,) where
c(V1,Va,...,V,) is the atomic expression with index k.

By Lemma 4.4 and Lemma 4.5, we have that C' contains V D ¢(V1,Va,...,V,) iff G' contains Id{(k), V).
Theorem 4.3 follows immediately.

4.4 Cost of Solving the Constructed CFL-Reachability Problem

A CFL-reachability problem can be solved in time O(|S[*n?), where n is the number of nodes in the graph
and ¥ is the alphabet of the grammar. Ordinarily, || is considered to be a constant and is ignored; however,
in a constructed CFL-reachability problem, |X| is O(t), where t is the number of constraints and the constant
of proportionality depends on the maximum arity of the constructors. Since n is also O(t), this gives us a
bound on the running time to solve the context-free reachability problem of O(t%), which is worse than the
bound of O(t3) of the SC-Reduction Algorithm.

However, a closer examination of the CFL-reachability Algorithm shows that the worst-case time bound
is not realized on constructed CFL-reachability problems. We will focus our analysis on step 4 of the CFL-
reachability Algorithm (Algorithm 2.1). In this step, the algorithm processes each edge that appears in the
(final) graph. For each edge, it examines the productions in which that edge’s label appears on the right-hand
side, and attempts to add edges to the graph when it can complete the right-hand side of a production by
matching the edge with neighboring edges in the graph. Recall that the CFL-reachability Algorithm will
not add an edge to the graph if the edge already exists.

The cost accounting argument presented in this section goes as follows: We show that for each type
of label used in the graph, the number of edges with a label of that type is bounded by O(#?) (this gives
an upper bound on the number of edges that the CFL-reachability Algorithm must examine). Also, for
any given edge B(i, j) in a constructed graph, the amount of work performed can be broken down into two
categories:

1. The number of productions examined by the Algorithm: for a given edge B(3, j), this is the number
of productions in which B appears on the right-hand side of the production. In a constructed CFL-
reachability problem, this is bounded by O(t).

2. The number of edges that the CFL-reachability Algorithm attempts to add to the graph: in a con-
structed CFL-reachability problem, this is bounded by O(t) over all of the productions examined when
processing a given edge B(1, j).

Thus, the total amount of work performed by the CFL-reachability Algorithm on a constructed problem is
O(t?) * (O(t) + O(t)) = O(#%).

We start by showing how a constructed grammar can be normalized in Section 4.4.1. In Section 4.4.2, we
present Table 3 which summarizes all of the different types of edge labels that may be used in a constructed

21

Ground ::= edgeVitoV, Rev_Id Ground Id edgeVtoV,

v
Rev_Id Ground-ld
- U

v
G edgeVitoV,
— _

v
edgeVitoV, G-edgeVitoV,
-

Ground

Figure 11: Normalization of the production
Ground ::= edgeVjtoV; Revld Ground Id edgeVjtoV;.

CFL-reachability problem, including those introduced by the normalization of the grammar. For every given
type of edge label, Table 3 also shows a bound on the number of edges with a label of that type, and a
bound on the number of steps the CFL-reachability Algorithm performs on any given edge with a label of
that type.

Throughout the rest of the section, we use v to refer to the number of variables in the set constraint
problem, ¢ to refer to the number of constraints, n to refer the number of nodes in the graph (n = O(v +1)),
and r to refer to the maximum arity of a constructor.

4.4.1 Normalization of a Constructed Grammar

We start by converting the productions of the grammar to normal form. Consider the following prototypical
production:

Ground ::= edgeV;toV; Revld Ground Id edgeV;toV;

There are v productions of this form, one for each node V;. To normalize the production, we introduce
several new non-terminals and productions to replace the original production:

Ground == edgeV;toV; G-edgeV;toV;
G-edgeVjtoV; = G edgeV;toV;
G == Revld Ground-Id
Ground-Id ::= Ground Id

Figure 11 depicts this normalization. Note that edges labelled Id and Rev_Id may be ubiquitous; they
may occur anywhere in the graph. This means that the CFL-reachability Algorithm may use the above
productions and put edges labelled Ground-Id and G anywhere in the graph. However, for any given Vj,
there is only one edge labelled edgeV;toV; in the graph; this is the edge edgeV;toV;(V;,V;). This means
that for a fixed Vj, if the CFL-reachability Algorithm adds an edge G-edgeV;toV;(V;, V), then it must
use edgeV;toV;(V;,V;) to do so, and k = j. That is, all edges labelled G-edgeV;toV; must have node V;
as their destination, although they may have any node as their source. This in turn implies that for a
fixed node Vj, the number of incoming edges of the form G-edgeV;toV;(V;,V;) is bounded by O(n), and
the number of outgoing edges of the form G-edgeVy,toVi(V;, Vi) is bounded by O(n). Also, of all the edges
G-edgeV;toV;(V;, V;), only one, G-edgeV;toV;(V;,V;), can be combined with edgeV;toV;(V;,V;) to generate
Ground(V;,V;).
Now we consider the following prototypical production:

Id :=¢; Ground Id c;t

There are O(tr) productions of this form, one for each position of each different constructor type used in the
constraints. It is normalized to the following productions:
Id = ¢ Ground—Id—ci_1
Ground-Id-c;* = Ground-Id c¢;*
Ground-Id := Ground Id

22

The corresponding “reverse” production

Rev_Id ::= rev_c; Y Rev.Id Ground revc;

is normalized in a similar fashion:

Rev_Id := Revc; L_Rev_Id-Ground rev_c;
Rev_c;'-Rev_Id-Ground ::= revc;' Rev_Id-Ground
Rev_Id-Ground := Rev_Id Ground

Recall that Ground edges are always cyclic. This means that there are at most O(n) edges with the label
Ground, and at most O(n?) edges with the labels Ground-Id or Rev_Id-Ground. The number of edges
with labels of the form ¢;, c;', rev.c;, or revc;* is bounded by O(tr) (these edges are introduced only
when constructing the original graph). This means that the number of edges with a label of the form
Ground-Id-c;* or rev_c; *-Rev_Id-Ground is bounded by O(trn).

The production
Id ::= Ground ae Id Id

is normalized to

Ground-ae ::= Ground ae
Ground-ae-Id ::= Ground-ae Id
Id ::= Ground-ae-Id Id

The corresponding “reverse” production
Rev_Id ::= Rev_Id Rev_Id Ground ae

is normalized to

Ground-ae ::= Ground ae
Rev_Id-Ground-ae ::= Rev_Id Ground-ae
Rev_Id ::= Rev_Id- Ground-ae

Since Ground and ae edges are always cyclic, it follows that Ground-ae edges are always cyclic. This means
the number of edges with the label Ground-ae is bounded by O(¢), which implies that the number of edges
with the labels Ground-ae-Id and Rev_Id-Ground-ae are bound by O(tv).

We must also normalize productions having the following form:

Ground := edge(k)toVy Ground edgeVito(k) edge(k)toVa Ground edgeVato(k)
edge(k)toV, Ground edgeV,to(k)

There are O(t) productions of this form, one for each atomic expression used in each constraint. This
production is replaced by the following productions (which are not in normal form):

Ground == MarkVy GrAt(k) MarkVaGrAwk) ... MarkV,GrAt(k)
MarkVy GrAu(k) == edge(k)toVi Ground edgeVato(k)
MarkVy GrAu(k) == edge(k)toVa Ground edgeVato(k)
MarkV, GrAt(k) == edge(k)toV, Ground edgeV,to(k)

An edge label of the form MarkV; GrAt(k) can only appear on a cyclic edge MarkV; GrAt(k){(k), (k)) at node
(k). Such an edge has the effect of “Marking V; ground at node (k).” Productions of the form
MarkV; GrAt(k) ::= edge(k)toV; Ground edgeVito(k)

are normalized to the following productions:

23

MarkV; GrAt(k) == edge(k)toV; Ground-edgeV;to(k)
Ground-edgeVito(k) == Ground edgeV;to(k)

Finally, productions of the following form must also be normalized:
Ground ::= MarkVy GrAt(k) MarkVoGrAt(k) ... MarkV, GrAt(k)
There are O(t) productions of this form. It is normalized to the following productions:

Ground == MarkV;-V, GrAt(k)
MarkVy-Vo GrAwk) === MarkVy GrAt(k) MarkVa GrAt(k)
MarkVy-V3 GrAt(k) MarkVy-Vo GrAw(k) MarkVs GrAt(k)

MarkV; -V, GrAt(k) MarkVy-V,_1 GrAi(k) MarkV, GrAt(k)

With these normalized productions, the CFL-reachability Algorithm will add at most O(tr) edges with labels
of the form MarkV;-V; GrAt(k) (O(r) for each of O(t) productions). All of these edges will be cyclic.

4.4.2 Counting Steps

Table 3 lists the various forms of labels that may appear in a constructed graph. For each form of label, it
gives a bound on the number of edges with a label of that form (column 2), and shows the productions in
which a label of that form appears on the right-hand side (column 3). Also, for each kind of label, Table 3
shows how many productions the CFL-reachability Algorithm may use with a given edge with that kind of
label (column 4), and how many new edges the CFL-reachability Algorithm may attempt to produce as a
result of examining that edge (column 5). (The latter is the total for all the productions the CFL-reachability
Algorithm will examine.)

For example, consider the edge label Ground-Id. There may be O(n?) edges labelled Ground-Id in the
graph. When the CFL-reachability Algorithm takes a given edge of the form Ground-Id(V;,V},) from its work-
list, it could potentially examine O(tr) = O(t) productions of the form Ground-Id-c;' ::= Ground-Id c; ",
in which Ground-Id appears on the right-hand side. There is one production of this form for every position
of every different kind of constructor used in the set-constraint problem. When the algorithm considers
one of these productions, it will look for an edge of the form c;1<Vk,Vm), in an attempt to add the edge
Ground-Id-c; *(V;, V;,). However, edges of the form ¢; *(Vi, V,,) are introduced in the graph to encode pro-
jection constraints; this means that their number is bounded by O(¢). Thus, over all of the O(t) productions
of the form Id-c; ! ::= Id ¢;', the CFL-reachability Algorithm will find no more than O(t) matching edges
of the form ¢; ' (Vi, V;n), and so it will add no more than O(t) new edges as a result of processing any given
edge of the form Ground-Id(V;,Vy).

The accounting is more straightforward in most other cases. Table 3 summarizes the results. A bound
on the amount of work performed is found by summing column 4 and column 5 and then multiplying by
column 2. Since r is constant, and v and n are in the worst case proportional to ¢, the total running time of
the algorithm is bounded by O(t3).

5 Solving ML Set-Constraint Problems Using CFL-reachability

Heintze has used a modified class of set constraints for set-based analysis of ML programs [17]. We refer
to this class of set constraints as ML set constraints to distinguish them from the set constraints discussed
in the earlier part of the paper. (This class of set constraints can be used to express closure analysis—
the problem of determining the set of abstractions that can reach an application—and hence related work
includes [35, 47, 45].) In this section, we define ML set constraints and then show how to encode an ML
set-constraint problem as a CFL-reachability problem.

5.1 ML Set Constraints

Similar to set expressions defined in Section 2.2.1, an ML set expression (se) may be a set variable or a
constructor of the form ¢(Vi,...,V,). However, ML set expressions do not have explicit projections, but
instead may also have the following forms:

24

o case(Y1,c(Wy,...,W,) = Ya, W — Y3). Expressions of this form are used to model case statements.

The values in Y7 are matched against the expression ¢(V1,...,V;). The presence of a ground term of
the form ¢(vq,...,v.) in Y7 indicates that v; € V; for ¢ = 1...r and that the values of the entire case
expression are a superset of the values in Y,. W represents the default branch of the case expression.
It contains a superset of the values in Y; that are ground terms not of the form ¢(v,...,v.). The
presence of a ground value in Y; that is not a ¢ term indicates that the values of the entire case
expression are a, superset of the values in Yj.

Note that the value decomposition feature of case expressions serves as a replacement for the projection
operators of the set expressions described is Section 2.2.1.

“Abstraction constants” of the form Az.e. In program-analysis problems, such constants typically play
a role in modeling function abstractions: Each abstraction constant is manufactured from a function
abstraction in the program (e.g., the z and e in abstraction constant Az.e are derived in some fashion
from the textual definition of a function abstraction in the program). The e part of abstraction constant
Ax.e serves as a tag to distinguish this abstraction constant from other abstraction constants of the
set-constraint problem. The z part of abstraction-constant \z.e serves to link Az.e to two associated
set variables:

— Vz, which holds a superset of all the values that may bind to z during program execution.
— Range,, ., which represents the range of Az.e. It holds a superset of all the values that Az.e may

return during program execution.

In program-analysis problems, one would typically standardize names apart, so that each two different
abstraction constants Az.e and Ay.e' of the set-constraint problem would use different variable names

(z, y, etc.).
apply(sey, sex). Expressions of this form are used to model function application.

ifnonempty(se1, sex). Expressions of this form do not directly correspond to any language construct.
They are used to make set based analysis more accurate by preventing constraints that correspond to
certain infeasible execution configurations from contributing to the solution [17, 43].

ML set constraints are of the form V' D se, where se is an ML set expression. A solution to a collection of
ML set constraints is a mapping from set variables to a set of values such that the constraints are satisfied.
In this case a “value” may be an abstraction Az.e as well as a ground term composed of constructors. Given
a mapping Z from set variables to sets of values, the mapping can be extended to map set expressions to
sets of values as follows:

Z(c(Vi,..., Vo) = {c(vy- .., v0) oy € Z(Vh), ..., v € Z(V;)}
Z(Az.e) = {Az.e}

Z(ifnonempty(se1, sea)) =
if Z(se;) = {} then {} else Z(sesz);

Z(apply(se1, se2)) = {v: Azx.e € Z(se1) A L(se2) # {} Av € Z(Range,, .))}
provided Az.e € Z(sey) implies Z(se2) C Z(V,)

Z(case(ser, c(X1,...,Xn) <> se2,Y <> sez)) = S1 U S2, where
1. S1 ={v:v € I(sex) ANIec(vr,...,v,) € I(ser)}
2. Sy ={v:veI(ses) NI (v1,...,un) € I(se1) s.t. ¢ # ¢}
3. For all ¢ #¢, ¢(v1,-..,v,) € I(sey) implies v; € Z(X;),i =1...n
4. (vi,...,vn) € Z(se1) implies ¢'(vy,...,v,) € Z(Y)

Note that it is possible for an expression to be undefined in a given mapping. This can happen if the
mapping Z does not meet the requirements for interpreting the expression. A solution 7 to a collection of
constraints C must define each set expression used in C.

25

5.1.1 Solving ML Set Constraints

ML set constraints with the following form are said to be in explicit form:

Von
V2ocelV,..., V)
VD Ax.e

As before, a collection of ML set constraints C is solved by augmenting the collection with constraints in
explicit form until no more can be added. The constraints in explicit form can then be taken to be a regular
term grammar that represents the least solution to the constraints. The ML-SC-Reduction Algorithm is
defined below. Groundness is defined as in Section 2.2.3.

Algorithm 5.1 (ML-SC-Reduction Algorithm) Given a collection of ML set constraints C, the following
steps are repeated until neither step causes C to change:

1. if X D apply(X;,X2) and X; D Az.e both appear in C then

(a) add the constraint X DO Range,, , to C
(b) add the constraint V, D X5 to C

2. if X D case(Y1,c(Wy,...,W,) = Yy, W — Y3) and ¥; D ¢(Z1,...,Z,) both appear in C and the
expression ¢(Z1,...,Z,) is ground then

(a) add the constraint X D Y5 to C
(b) for i =1...n, add the constraint W; D Z; to C

3. if X D case(Y1,c(Wh,...,W,) = Ys, W Ys)and Y; D ¢'(Z4,-..,Z.) both appear in C where ¢’ # ¢
and the expression ¢'(Z1, ..., Z,) is ground then

(a) add the constraint X D Y3 to C
(b) add the constraint W D ¢(Zy,...,Z,) to C

4. if X D ifnonempty(Y1,Ys) appears it C and Y; is ground then add X D Y5 to C
5. if X D X' and X' D se both appear it C, where X' D se is in explicit form, then add X D se to C

When no more constraints can be added, the constraints in explicit form are converted to a regular term
grammar; this describes the least solution [17]. O

5.2 Solving ML Set-Constraint Problems Using CFL-reachability

The idea for encoding an ML set-constraint problem is the same as in Section 4.1: we view the ML SC-
Reduction Algorithm as computing what atomic expressions reach each set variable and construct a CFL-
reachability problem that computes the same information. The constructed graph contains a node for each
atomic expression and a node for each set variable. Where the ML SC-Reduction Algorithm produces the
explicit constraint V' D ae, the constructed CFL-reachability problem induces an identity path from the node
representing atomic expression ae to the node representing the set variable V.

In the rest of this section, we first describe how to construct a graph to encode a collection of ML
set constraints. Then we show what productions are used to encode the steps of the ML SC-Reduction
Algorithm for a given collection of ML set constraints. The techniques for handling groundness information
in the problem constructed here is the same as in Section 4.1.2. As in Section 4.1.2, for every edge from
node i to node j, we need a corresponding reverse edge from node j to node i. To simplify of presentation,
we will not explicitly list the reverse edges (nor the productions that generate them), but we assume that
they are also produced.

26

(\ edgeY,toX
1 edgeY,toY.
ogbo ? 4 ° .{—i\. geYLIor, o Te °
Y, W, W, X Y, Y, W Y,
X2case (Y, c(W, ..., W)=Y, WSY,) X2 case (Y, (W, ..., W)>Y, WY,
(c) (d)

retur n] input

o< inpl‘It o< return ° ° o o
vV, Ax.e Range, , . X V. V,
A x.e X2 apply(V,,V,)
(a) (b)
edgeY,toY,

ct non-c-vals

Figure 12: Edges inserted in the constructed graph to model ML set constraints.

5.2.1 Encoding ML Set Constraints

Given a collection of constraints C, the graph encoding these constraints is constructed as follows:

For each set variable V;, the graph contains a node labelled V;, and an edge edgeV;toVi{V;, V).

Each atomic expression ¢(Vi,...,V,) used in a constraint of the form V' D ¢(V4,...,V,) is associated
with a unique index.

Given an expression ¢(V4,...,V,) with index %, the graph contains a node labelled (k), and the edges
ae((k), (k)) and c-value((k), (k)). The edge c-value{(k), (k)) indicates that the node (k) can represent
a ¢ value. (The node (k) actually represents a c-value iff ¢(V1,...,V;) is ground; thus it is really the
presence of a pair of edges c-value((k), (k)) and Ground((k), (k)) that indicates that (k) is known to
be a ground ¢ term.) If ¢ is a nullary constructor, then the graph contains the edge Ground{(k), (k)).
Otherwise, for each position j of the atomic expression (where j = 1...r), the graph contains the
edges ¢;(V;, (k)), edge(k)toV;{(k),V;), and edgeV;to(k){V;, (k)).

For each constraint of the form V' D ¢(V4,...,V,), where the expression ¢(Vi,...,V,) has index k, the
graph contains an edge Id{(k), V) indicating that the atomic expression ¢(V7,...,V,) reaches V.

For each atomic expression Az.e, the graph contains a node labelled Az.e and an edge Ground({)z.e, Az.e).
The node Az.e is connected to the nodes representing the set variables V,, and Range,, , by the edges
input” (A\x.e, V) and return{Range,, ., \z.e) (See Figure 12(a)). An edge input™ (Az.e, V,) indicates
that values to which the abstraction Az.e is applied reach the variable V,,. An edge return{(Range,, ., Az.€)
indicates that Range,, . holds a superset of the values returned by the abstraction Az.e during program
execution.

For each constraint of the form V' D apply(V1, V), the graph contains the following edges:

— return—{V1,V). This edge indicates that V contains values that are returned by abstractions in
Vi.
— input(Va, V7). This edge indicates that values in V, are potential arguments of abstractions in V;.

See Figure 12(b).
For each constraint of the form V D Az.e, the graph contains an edge Id(Az.e, V).
For each constraint of the form V; D V;, the graph contains an edge Id(V;, V;).

For each constraint of the form X D case(Y1, c(Wi,...,W,) = Yy, W — Y3), the graph contains the
following edges:

27

;7 (Y1, W;) wherei=1...7
non-c-vals{ Y1, W)
edgeYstoY1({Y3, Y1)
edgeYstoY1(Y3, Y1)
edgeY1toX(Y1, X)

cUE N

Figure 12(c) illustrates point 1 above, and Figure 12(d) illustrates points 2 thru 5.

e For each constraint of the form X D ifnonempty (Y7, Y2) the graph contains the edges edgeY>to Y1 (Y, Y1)
and edgeY1toX(Y71, X)

5.2.2 Encoding the ML SC-Reduction Algorithm

The productions used to encode the ML SC-Reduction Algorithm are a superset of the productions used
to encode the SC-Reduction Algorithm. The productions introduced in Section 4.1.2 are again used to
propagate groundness information. For each node representing a variable V;, there is a production

Ground := edgeV;toV; Rev_Id Ground Id edgeV;toV;

For each atomic expression of the form ¢(Vi,...,V;) with index k, the context-free grammar contains the
following production:

Ground ::= edge(k)toVi Ground edgeVito(k)
edge(k)toVa Ground edgeVato(k)

edge(k)toV, Ground edgeV,.to(k)

In Section 3, the production Id ::= Ground ae Id Id encodes Step 2 of the SC-Reduction Algorithm;
now we use it to encode Step 5 of the ML SC-Reduction Algorithm. Similarly, productions of the form

Id ::=¢; Ground Id c;l

were used earlier to encode Step 1 of the SC-Reduction Algorithm; now they encode the actions taken by
Step 2(b) of the ML SC-Reduction Algorithm. (See Figure 14(a).)

New productions are needed to encode Steps 1, 2(a), 3, and 4 of the ML SC-Reduction Algorithm. In
the following examples, we introduce the productions used to encode these steps.

Example 5.1 Consider the following constraints:

X D apply(V1,V2)
Vi D Az.e

Given these constraints, Step 1(a) of the ML SC-Reduction Algorithm introduces X D Range,, .. This
constraint is added because the result of the apply expression includes values in the range of any abstraction
that reaches V7. In the constructed graph, the presence of the edge Id{\z.e,V;) indicates that the abstrac-
tion Az.e reaches V;. To simulate the actions of Step 1(a), the CFL-reachability algorithm uses the edges
Id{(\z.e, V1) and return—(V1, X), and the production Id ::= return Id return~. (See Figure 13(a).)

Given the above constraints, Step 1(b) of the ML SC-Reduction Algorithm introduces the constraint
Ve D Va; the semantics of the apply expression demand that for any abstraction Az.e that reaches Vi, the
values in V5 should reach X, This is simulated in the CFL-reachability Algorithm by the edges input(Va, V1),
Rev_Id{V1, Az.€), and input™ (Az.e,V,) and the production Id ::= input Rev_Id input™. (See Figure 13(b).)
O

In the following example, we introduce productions for encoding Step 2(a) and Step 3 of the ML SC-
Reduction Algorithm.

Example 5.2 Consider the following constraints:

28

Cadler-side entities Cadler-side entities

U
D

Input . return >o input return’
V, V, X V1 X
‘ | A
I | d'
Rev_Id ' Rev 1d||Id
v
[] [] []
va\ / Range, ,. va\\ / Range, ,.
input” eturn input ™Y return
A X A X.e
Callee-side entities Callee-side entities
(a) (b)

Legend
——» Non-path edge
—— Pathedge
— —» New edge (from path)

Figure 13: Graphs showing edge induction for constraints of the form
X D apply(V1,V5) and Vi D Az.e.

1. X D case(Yy, cons(Wy, Wa) — Yo, W— Y3)
2. Y7 D cons(V1,V3)
3. Y1 D suce(Zy)

Let cons(Vi, Va) and suce(Zy) have indices j and k, respectively, and suppose both expressions are ground.
Figure 14 shows the graph constructed to represent the above constraints (and many subgraphs of this
graph). The features of this graph are explained below.

Step 2(a) of the ML SC-Reduction Algorithm introduces the constraint X DO Y5 iff a ground cons
expression reaches Y7; in this example, X D Y; is introduced because of the constraint Y1 D cons(Vi, V2),
and the assumption that cons(V1,Vs) is ground. In the constructed graph, a node (m) represents a ground
cons expression iff the graph contains both of the edges Ground((m),(m)) and cons-value{(m), (m)). To
encode the actions of Step 2(a) on the above case constraint, the constructed graph contains the edges
edgeY>t0Y1(Y5, Y1) and edgeY;t0X({Y1, X) and the grammar contains the following production:

Id ::= edgeY>toY, Rev_Id cons-value Ground cons-value Id edgeYitoX

(See Figure 14(b).) (Note, the reason this production has two occurrences of the terminal symbol cons-value
has to do with limiting the possible blow-up in the running time required to solve the constructed CFL-
reachability problem. This feature will be explained in Section 5.3. The production is still correct if either
of these terminals is removed.)

Given the above constraints, Step 3(a) of ML SC-Reduction Algorithm introduces the constraint X O Y3
iff a ground expression of the form ¢(V4,...,V,) reaches Y1, where ¢ # cons; in this case, the constraint

Y1 D succ(Z;) and the assumption that succ(Z;) is ground mean that X D Y3 is generated. In the
constructed graph, the edges Ground((m), (m)) and c-value{(m),(m)) indicate that node (m) represents a

29

consl consz \
Groundg °) 3 \\\\\ Groundg (J)
d g cons-valuea
! i
’; ’; Ra/_ld) /Jid;;
/ Id T :
v" v \ edgeY,toY,
S - :
— cons' i X Yy Y
cons, edgeY,toX,
(a) Simulates Step 2(b) (b) Simulates Step 2(a)
Ground<_, e (k) Groundg (k)
Id Id l\\
Rev_ld id
edgeY.toY, !
L
[] [J [J o o
>é/ " v % Y
. —edgeY.toX, T
T Id non-cons-vals
(c) Simulates Step 3(a) (d) Simulates Step 3(b)
Z
Vi, .
2 ’ succ,
COHS\ /:ong Ground
roun
Ground< 3, “ () . .
succ-valu Figure 14: Graph fragments corresponding to the con-
cons-value straints in Example 5.2. Parts (a) thru (d) demonstrate,
Rev_ld Id respectively, the effects of the CFL-reachability algo-
Rev_ld rithm using the following productions:
Id edgeY,toY, (a) Id := consi Ground Id cons1 ~1
Id = consy Ground Id cons2
edgev,toY, (b) Id == edgeYstoY; Rev_Id cons-value Ground
iy v ® M v * v cons-value Id edgeYitoX
X Yl\(;{s-ll' Wo AW, Y. W Ya (¢) Id == edgeYstoYy, Rev_Id succ-value
edgeY,toX; cons. Ground succ-value Id edgeY;toX
(d) Id == Ground succ-value Id non-cons-vals

non-cons-vals

()

Part (e) shows the entire graph.

30

ground expression of the form ¢(V1,...,V,.). To encode the actions of Step 3(a) on the above case constraint,
the graph contains the edges edgeYstoY1(Ys, Y1) and edgeY1toX(Y7,X) and the grammar contains the
following productions:

Id ::= edgeY>toY1 Rev_Id c-value Ground c-value Id edgeYitoX

for each constructor ¢ such that ¢ # cons. (See Figure 14(c).) Note that there is one production of this form
for each constructor type for each case constraint. This means that the construction is no longer linear in
time, but its running time is bounded by O(t3). (See Section 5.3.)

Step 3(b) of the ML SC-Reduction Algorithm allows ground atomic expressions of the form ¢(V1,...,V;)
to pass from Y to Wiff ¢ # cons. In the current example, the constraint W D succ(Z;) is introduced. To
encode Step 3(b), we use the edge non-cons-vals(Yy, W), and constraints of the form

Id ::= Ground c-value Id non-cons-vals
for each constructor type ¢ such that ¢ # cons. (See Figure 14(d).) O

Finally, we must encode the action taken by Step 4 of the ML SC-Reduction Algorithm on a constraint
of the form X D ifnonempty(Yi, Y2). This is done using the edges edgeY>t0Y; and edgeYitoX and the
following production:

Id ::= edgeYstoY1 Ground edgeYitoX

As in Section 4, the regular term grammar that is the solution to the ML set-constraint problem can be
obtained from the solution to the constructed CFL-reachability problem by examining Id edges. For each
Id edge from a node representing an atomic expression ae, to a node representing a variable V, the regular
term grammar contains a production of the form V = qe.

5.3 Cost of Solving the Constructed CFL-Reachability Problem

As with the construction described in Section 4.4, when we plug the various parameters that characterize the
size of the constructed CFL-reachability problem into the standard formula for the worst-case asymptotic
running time of CFL-reachability, we have not preserved the O(t?) bound on the time to solve ML set-
constraint problems. In this section, by an argument similar to that used in Section 4.4, we show that the
constructed CFL-reachability problem can indeed be solved in O(t3).

Below, we first discuss why it is necessary to repeat terminal symbols in some of the productions presented
in the Section 5.2. In Section 5.3.2, we list the normalizations of the productions that are new to Section 5.
Finally, Table 4 summarizes the work done for each edge added by the CFL-reachability Algorithm while
solving a problem constructed from an ML set-constraint problem.

5.3.1 Repeating Terminal Symbols

In Section 5.2, we introduced some productions that have seemingly unnecessary repetitions of some terminal
symbols. In particular, a production of the form

Id ::= edgeYs3toY1 Rev_Id c-value Ground c-value Id edgeYitoX
causes the CFL-reachability Algorithm to induce an Id edge exactly when the production
1d ::= edgeY3toY; Rev_Id Ground c-value Id edgeYitoX

causes the CFL-reachability Algorithm to induce an Id edge. This follows from the fact that the labels c-value
and Ground always appear on cyclic edges. However, while the productions are functionally equivalent,
every normalization of the latter production either introduces a non-terminal that might label O(tn?) edges
and participate in O(t) productions, or introduces a non-terminal that might appear on O(tn) edges and
participates in O(#?) productions. Either way, the bound on the running time of the CFL-reachability
Algorithm increases to O(t*).

Adding the second c-value allows us to find a normalization that avoids this blowup. To see why, let us
examine in more detail what goes wrong when the production

31

Ground<_" e (k)
c-val uea

Ground-c-1d-edgeY,toX

EdgeY.toY,-Rev_Id
edgeY,toY,

P
3
< <
S
X

Id
Figure 15: Graph showing the need to double terminals in some
productions. The bold edges are used by the normalized produc-

tion Id ::= EdgeYstoYi-Rev_ Id Ground-c-Id-edgeY,toX; note that the edge
EdgeY>toYy-Rev_Id(Y3,(k)) may be used in O(t?) productions of this form.
However, suppose the edge FdgeYatoY:-Rev Id{Y3,(k)) is first paired with
the edge ¢ — value((k), (k)) to generate the edge EdgeYatoY;-Rev_Id-c(Y3, (k)).
An edge of this form can be used with only O(t) productions of the form
Id ::= EdgeYstoY1-Rev_Id-¢ Ground-c-Id-edgeY1toX to generate the same Id

edges.

Id ::= edgeYs3toY, Rev_Id Ground c-value Id edgeYitoX
is normalized to the productions:
1. Ground-c ::= Ground c-value
2. Ground-c-1d ::= Ground-c Id
Ground-c-Id-edgeY1toX ::= Ground-c-Id edgeYitoX
EdgeYstoYi-Rev_Id ::= edgeYatoY, Rev_Id

AN

1d ::= FEdgeYstoY1-Rev_Id Ground-c-I1d-edgeYytoX

Notice that there are O(t) productions of the form of the fifth production

types.
production. There may be O(¢n) edges labelled with this non-terminal

type d. For all edges labelled Ground-d'-Id-edgeYitoX that leave no

reachability Algorithm to search for a second edge that cannot exist.
In contrast, the production

Id ::= edgeY3toY, Rev_Id c-value Ground c-value Id edgeYitoX

can be normalized to

32

for each of O(t) different constructor
The problem with this normalization is with the non-terminal edgeY>toY;-Rev_Id and the fifth
, each involved in O(#?) productions
of the form of the fifth production above. Consider a particular edge edgeYatoY;-Rev_Id(i,j) that has
node j as its target. There can be at most one edge of the form d-value(j,j) for at most one constructor
de j, it must be the case that d =
d'. This means that there can be a maximum of O(t) edges which leave node j and have a label of the
form Ground-d'-Id-edgeY1toX. This implies that when the CFL-reachability Algorithm examines the edge
edgeYstoYy-Rev_Id(i, j) and looks at O(t?) productions, all but O(t) of these productions cause the CFL-

1. Ground-c ::= Ground c-value

2. Ground-c-1d ::= Ground-c Id

3. Ground-c-Id-edgeYitoX ::= Ground-c-Id edgeY;toX
4. FEdgeYotoY1-Rev_Id ::= edgeY>toY, Rev_Id

5. EdgeYstoYi-Rev_Id-c ::= FEdgeYstoY:-Rev_Id c-value
6. Id ::= EdgeYatoYi-Rev_Id-c Ground-c-I1d-edgeY1toX

In this normalization, the nonterminal EdgeYstoY;-Rev_Id-c may appear on O(t?) edges, but it participates
in only O(t) productions of the sixth form. In effect, production five, of which there are only O(t) for a
given edge of the form EdgeYstoY:-Rev_Id(i,j), forces the CFL-reachability Algorithm to determine what
constructor type, if any, is represented at node j before it starts to consider productions that include the
non-terminal Ground-c-Id-edgeYitoX. See Figure 15.

5.3.2 Normalization of the Constructed Grammar

Normalization of the context-free grammar in a constructed problem is done as in Section 4.4.1. In fact,
since the productions used to encode the ML SC-Reduction Algorithm are a superset of the productions used
to encode the SC-Reduction Algorithm, all of the normalizations from Section 4.4.1 are needed for a, CFL-
reachability problem constructed from an ML set-constraint problem; these normalizations are not repeated
here. We also do not show the normalization of “reverse” productions that have Rev_Id on their left-hand
side; the normalization of a reverse production is the reverse of the normalization for the corresponding
forward production.
The normalizations of the productions new to this section are as follows:

o Id ::= input Rev_Id input™ is normalized to
Input-Rev_Id ::= input Rev_Id
Id ::= Input-Rev_Id input™

o Id ::= return Id return— is normalized to

Return-1d ::= return Id
Id ::= Return-Id return—

o Id ::= ¢; Ground Id ci_1 is normalized to

Ground-Id ::= Ground Id
C;-Ground-Id ::= ¢; Ground-Id
Id ::= C;-Ground-Id ci_1

o Id ::= edgeYstoYy c-value Rev_Id Ground c-value Id edgeYytoX is normalized to

Ground-c ::= Ground c-value

Ground-c-Id ::= Ground-c Id
Ground-c-Id-edgeY1toX ::= Ground-c-Id edgeYitoX
EdgeYstoYi-Rev_Id ::= edgeYstoY, Rev_Id
FEdgeYotoYi-Rev_Id-c ::= edgeYstoY1-Rev_Id c-value
Id ::= FEdgeYstoY1- Rev_Id-c Ground-c-Id-edgeY;toX

e Id ::= Ground c'-value Id non-c-value is normalized to

Ground-c' ::= Ground c' -value
Ground-c'-Id ::= Ground-c' Id
Id ::= Ground-c'-Id non-c-values

33

o Id ::= edgeY>toY1 Ground edgeYytoX is normalized to

Ground-edgeY1toX ::= Ground edgeYtoX
Id ::= edgeYatoY, Ground-edgeYitoX

Table 4 together with Table 3 lists the costs entailed by the processing steps of the algorithm for solving
CFL-reachability problems from Section 2.1.1. A bound on the amount of work performed is found by
summing column 4 and column 5 and then multiplying by column 2. Since r is constant, and v, k, and n
are in the worst case proportional to t, the total running time of the algorithm is bounded by O(#?).

6 Solving CFL-Reachability Problems Using ML Set Constraints

In this section, we discuss how ML set constraints can be used to solve CFL-reachability problems. First
note that a projection constraint of the form

U2e (V)
from the class of set constraints presented in Section 2.2 can be modelled by the ML set constraint
UDcase(V,c(Th,....,Ti,...,T.) = T;, X = Y)

where T ...T,, X, and Y are new variables. Note that to have the same semantics as the projection
constraint, it is important that ¥ map to the empty set; otherwise, values from Y may reach U, which is
not part of the semantics of the projection constraint.

By replacing projections with case expressions in this fashion, the construction in Section 3 becomes a
transformation from CFL-reachability problems to ML set-constraint problems. The run time for an ML
set-constraint problem constructed in this way has a higher constant of proportionality than a constructed
set-constraint problem from Section 3, although the asymptotic run time is the same. In particular, the
construction from Section 3, a constraint of the form Rchdip-1 4 2 C(V) may pair with at most O(s)

S
projection constraints of the form Dsti4; 2 Cp 1(Rchd[Bl—l’z.]), where s is the number of symbols of the
context-free grammar of the original CFL-reachability problem.

In a constructed ML set-constraint problem, a constraint of the form Rehdig-1 ;1 2 C(V) may match at

most O(s) case constraints of the following form:
Dstra ;1 2 case(Rchd[Bl—17i], CT)—=>T,X—=Y)

However, the constraint Rchd[B!
constraints of the form

g2 C (V) may also match the “default” case of as many as O(s?) case

D(T)>T,X =Y)

Dstrg ;1 2 case(Rchd[Bl_l,i],
where D # C. This means that the time needed to solve a constructed ML set-constraint problem may be
O(s*n?), where n is the number of nodes in the original CFL-reachability problem. (The time needed to
solve a constructed set-constraint problem from Section 3 is O(s®n?).) Since s is a constant independent of
the input, the total run time is still bounded by O(n?).

Of course, it is also possible to optimize ML set constraints to allow “don’t care” defaults that will not
match anything. If this is done, the runtime for a constructed ML set-constraint problem is the same as the

runtime for a constructed set-constraint problem.

7 Related Work and Concluding Remarks

7.1 Broader Classes of Set Constraints

This paper has presented interconvertibity results for context-free reachability problems and two classes
set-constraints. However, the problem of satisfiability for some classes of set constraints is NEXPTIME-
complete [49, 7]. Since CFL-reachability is PTIME-complete [1, 38, 48], it is impossible to use CFL-
reachability to cover these classes of set constraints (and it is unclear whether one can develop a more

34

powerful graph-reachability techniques that would handle them). It is also not clear that CFL-reachability
can be used to model classes of set constraints in which intersection or negation is allowed.

7.1.1 Contravariant Set Constraints

We now sketch how the construction given in Section 4 can be modified to handle constructors that have
contravariant fields. In a class of set constraints that uses contravariance, each constructor has a signature
that indicates whether each field of the constructor is contravariant or covariant. In place of projections,
there is a reduction rule that reduces a constraint of the form

c(Uy,y...,U) D e(Vh,...,V2)
to the following constraints:

U; D V; for all i such that ¢ is covariant in field ¢
V; D U; for all j such that c is contravariant in field j

(Note, that in the class of set constraints discussed in this paper, constraints of the form ¢(Ui,...,U;) D
¢(V1,...,V,) are not permitted; a system that uses contravariant constraints should allow constraints of this
form, and might also allow constraints of the form ¢(Uy,...,U,) D X.)

Contravariance can be modeled by CFL-reachability by including the following elements in the construc-
tion of the CFL-reachability problem:

e Each atomic expression ¢(V1,...,V;) used in the constraints is associated with a unique index. As in
Sections 4 and 5, we refer to refer to an atomic expression by its index rather than by writing out the
expression.

For each atomic expression ¢(Vi,...,V;) with index k, the graph contains a node labeled (k) and the

graph contains the following edges:

ci{Vi, (k)) for all ¢ such that ¢ is covariant in field 4
e {(k), Vi) for all ¢ such that c is covariant in field 4
contra_c;{V;,(k)) for all j such that c is contravariant in field j.
contm_cj_l((k), V;) for all j such that c is contravariant in field j.

In addition, for each of the above edges, the graph contains the corresponding reverse edge. For exam-
ple, if the graph contains the edge ¢;(V;, (k)), then the graph also contains rev_c;{(k),V;). (Depending
on the constraint system being modeled and the other aspects of the constructed CFL-reachability
problem, some of these reverse edges may be unnecessary. For example, it may be possible to use the
edge c¢;'((k), V;) in place of the edge rev_ci((k), Vi).)

e For any constraint of the form ¢(Uh,..., U:) D ¢(V4,...,V,;), where the expression ¢(Ui,..., U.) has
index j and the expression ¢(V1,...,V,) has index k, the graph contains the edges Id{(k), (j)) and
Rev Id((j), (k))-

e For each constructor ¢, the grammar contains the following productions:

Id ==c¢; Id c¢;* for all 4 such that c is covariant in field .
Id ::= contra_c; Rev_Id contm_cj_1 for all j such that c is contravariant in field j.

In addition, the grammar should contain the corresponding “reverse” productions that have Rev_Id on
their left-hand side.

Example 7.1 Let the binary constructor abs be contravariant in its first field, and covariant in its second
field.

The constructor abs can be used in set expressions to represent a functional abstraction Az.e (in the
program that is being analyzed): let the set variable X represent (a superset of) the values that the program
variable £ may bind to at runtime and let the set variable Range,, , represents (a superset of) the values
that are returned by Az.e during program execution. Then we use the set expression abs(X, Range,, .) to
represent the functional abstraction A\z.e.

35

To represent the application (Az.e)(y), we use the set variables Y and App and the set constraint
abs(Y, App) D abs(X, Range,, .). Here, the set expression abs(X, Range,, ,) represents Az.e, the set vari-
able Y represents (a superset of) the values y may bind to, and the set variable App represents a superset
of the values that the expression (Az.e)(y) may return. Recall that the constraint

a’bs(Ya App) 2 abs(X, Ra’ngekz.e)
reduces to the following constraints:

XDY (which indicates that the values in y bind to the values in = as a result of the
application (\z.e)(y).)

App D Range,, . (which indicates that the set of values that (Az.e)(y) evaluates to is a superset
of the values returned by Az.e.

Now let us consider the CFL-reachability problem constructed to represent the constraint abs(Y, App) D
abs(X, Range,,). The graph constructed to represent abs(Y, App) DO abs(X, Range,, ,) contains the
edges contra_absy (Y, ()}, Rev_Id((j),(k)), and contra_absy*((k),X) (where j is the index of the expres-
sion abs(Y, App) and k is the index of the expression abs(X, Range,, .)). These edges, together with the
production

Id ::= contra_abs; Rev_Id contm_absl_1

cause the CFL-Reachability Algorithm to add the edge Id(Y, X), which encodes the constraint X D Y.
The constructed graph also contains the edges absy(Range,, ., (k)), Id((k), (7)), and absy {(j), App).
These edges, together with the production

Id ::= absy Id abs;1

cause the CFL-Reachability Algorithm to add the edge Id(Range,, ., App), which encodes the constraint
App 2 Range)\w.e‘

Thus the constructed CFL-reachability problem correctly captures the effects of reducing the constraint
abs(Y, App) D abs(X, Range,,, .)- O

7.2 Insight Into the Cubic-Time Bottleneck for Program Analysis

As pointed out in the Introduction, the results presented in this paper offer some insight into the source of the
cubic-time bottleneck for program analysis problems. Heintze and McAllester have also obtained results that
have a bearing on this issue by considering the problem of determining membership for languages defined by
2-way nondeterministic pushdown automata (2NPDA-recognition) [21]. The asymptotically best algorithm
known for solving the 2NPDA-recognition problem runs in O(n®) time, and they observe that if there is
a linear-time reduction from 2NPDA-recognition to a given problem, then that problem is unlikely to be
solvable in better than O(n?®) time. In [21] reductions are given from 2NPDA-recognition to problems of
flow analysis and typability in the Amadio-Cardelli type system. (This is consistent with something we had
observed in unpublished work, where we gave a linear-time reduction from the 2NPDA-recognition problem
to CFL-reachability.) Heintze and McAllester have also examined the complexity of set-based analysis with
data constructors [33, 20].

7.3 Applications of CFL-reachability

Dolev, Even, and Karp used CFL-reachability to devise a formal model for studying the vulnerability to
intrusion by a third party of a class of two-party (“ping-pong”) protocols in distributed systems to intrusion
by a third party [11]. In particular, they reduce the security-validation problem to a (single-source/single-
target) CFL-reachability problem in which labeled edges represent possible encoding and decoding operations
and the context-free language captures the interactions between possible actions that can take place during
the protocol.

Yannakakis surveys the literature up to 1990 on applications of graph-theoretic methods in database
theory [51]. He discusses many types of graph-reachability problems, including CFL-reachability.

36

A variety of work exists that has applied graph reachability (of various forms) to analysis of imperative
programs. Kou [32] and Hecht [15] gave linear-time graph-reachability algorithms for solving intraprocedural
“bit-vector” dataflow-analysis problems. This approach was later applied to intraprocedural bi-directional
bit-vector problems [31]. Cooper and Kennedy used reachability to give efficient algorithms for interproce-
dural side-effect analysis [9] and alias analysis [10].

The first uses of CFL-reachability for program analysis were in 1988, in Callahan’s work on flow-sensitive
side-effect analysis [8] and Horwitz, Reps, and Binkley’s work on interprocedural slicing [22, 23]. Both papers
use only limited forms of CFL-reachability, namely various kinds of matched-parenthesis (Dyck) languages,
and neither paper relates the work to the more general concept of CFL-reachability. (Dyck languages had
been used in earlier work on interprocedural dataflow analysis by Sharir and Pnueli to specify that the
contributions of certain kinds of nonexecutable paths should be filtered out [46]; however, the dataflow-
analysis algorithms given by Sharir and Pnueli are based on machinery other than pure graph reachability.)

Dyck-language reachability was shown by Reps, Sagiv, and Horwitz to be of utility for a wide variety of
interprocedural program-analysis problems [41]. These ideas were elaborated on in a sequence of papers [25,
24, 40], and also applied to shape analysis of functional programs [37]. (See also [39] for a survey of this
work.)

The second author became aware of the connection between program analysis and the general concept of
CFL-reachability sometime in the fall of 1994. (Of the papers mentioned above, only [37] and [39] mention
CFL-reachability explicitly and reference Yannakakis’s paper [51].) The constructions of the present paper for
converting set-constraint problems to CFL-reachability problems—together with the fact that set constraints
have been used for program analysis—show that CFL-reachability using path languages other than Dyck
languages is also of utility for program analysis.

7.4 Slicing Higher-Order Functional Languages

Program slicing is an operation that identifies semantically meaningful decompositions of programs, where the
decompositions consist of elements that are not necessarily textually contiguous [50, 34, 23]. CFL-reachability
has been applied to the problem of slicing programs written in imperative Algol-like languages [23]. Regular-
tree grammars have been applied to the problem of slicing programs written in a first-order functional
language (that manipulates heap-allocated data structures) [42].

We now sketch how the technique developed in the construction given in Section 5 allows CFL-reachability
to be applied to the problem of slicing programs written in a higher-order functional language (again that
manipulates heap-allocated data structures). The latter problem has not been previously addressed in the
literature on program slicing.

Specifically the slicing algorithm will be formulated for a higher-order LISP-like functional language that
has the constructor and selector operations NIL, CONS, CAR, and CDR for manipulating heap-allocated
data (i.e., lists and dotted pairs), together with appropriate predicates (EQUAL, ATOM, and NULL), but
no operations for destructive updating (e.g., RPLACA and RPLACD). The constructs of the language are

T; (ATOM e;) (CONS e; e2) (OP op €1 e3)
¢ (NULL e¢;) (IF e; ez €e3) (DEFINE (f z1---z¢) ey)
(CAR e;) (CDR ¢) (EQUAL ey e3) (CALL fey---eg)

A program is a list of function definitions, with a distinguished top-level goal function, named main.
We assume that the distinguished atom “NIL” is used for terminating lists, and that there is also a special
empty-tree value (different from NIL) denoted by “?”.

Following Reps and Turnidge, we consider the problem of slicing a functional program P(z) in terms of
symbolically composing P(z) with an appropriate projection function 7 (y) [42]. Projection function 7 (y)
characterizes what information should be retained and what information should be discarded from the value
that P(x) computes. We consider projection functions that can be represented as regular language of access
paths, where an access path represents a sequence of CAR and CDR operations. We require that the set
of access paths defined by projection function 7(y) be prefix-closed. (In order to access a part of P(x)’s
return value along an access path p, it is also necessary to access every part of P(z)’s return value that is
reached along a prefix of p; requiring that 7(y) be prefix-closed is not strictly necessary, but it simplifies the
presentation below.)

37

subexpression corresponding graph subexpression corresponding graph
[] [
T; X ¢ C
o CAR e CDR
cons;! cons,
(CAR ey) °& (CDR e,) °&
e CONS f'F
ctrlOrAtomicU Id
cons, cons, Id
) ‘O)
(CONS €1 62) ©& °©& (IF €1 €2 63) & & &
cons;
1
o ATOM CoNS,(_ % EQUAL
ctrlOrAtomicUse Id Id
(ATOM e,) °& (EQUAL e; ey) °e o8&
o NULL o OP
ctrlOrAtomicUse ctrlOrAtomicUse ctrlOrAtomicUse
(NULL ey) °& (OP op €1 €3) o oe
e CALL
return” K 7ctr| OrAtomicUse
o f Tf
input, return
input, input, ‘/mpu;\
- KT e
(CALLfe; ... ex) °& o8& (DEFINE (f z; ... 21) ef) X X

Legend
e expression node
o incomplete expression

Table 2: Summary of the construction of a value-flow graph from each subexpression of a program. Reverse
edges (e.g., Rev_Id) are not shown. Each occurrence of a variable x generates a new node in the value-flow
graph. In addition to the edges shown above, there is an Id edge from each function parameter z; to each
use of z; and a Rev_Id edge from the use to the parameter. There is also an Id edge from each function
definition to a use of the function and a Rev_Id edge from each function use to the function definition. See
Figures 17 and 19 for complete examples of value-flow graphs.

m(P(x))’s return value is a pruned copy of P(x)’s return value in which every substructure that cannot
be reached by an access path in w(y) has been replaced by “?”. The slicing problem becomes one of
understanding what parts of P(z) affect the return value of 7w(P(z)). The slicing algorithm should therefore
identify the subexpressions of P(z) that could not affect a portion of P(z)’s return value that will be accessed
by m(y) (via an access path in 7(y)), and replace these subexpressions by '?. As long as the client of the
sliced program abides by the access “contract” given by 7(y), the values that can be inspected will be the
same as those generated by P(x).

We define a graph, called a value-flow graph, whose nodes represent the subexpressions of P(x) and
whose edges represent dependences among subexpressions, the passing of parameters and return values, etc.
Table 2 summarizes the construction of the value-flow graph from the subexpressions of P(z). With the
exception of ctrlOrAtomicUse edges, the edges in a value-flow graph are similar in function to the analogous
edges in Section 5.2.1. An edge ctrlOrAtomicUse(v, w) indicates one of the following facts: (i) the expression

38

QJO Cons'fQJQ cons; Legend

cons; cons; cons;| cons! | O start node
ConSz @O O accepting node
>0 O >O0¢___ > © reiecti d
3 3 COn jecting node
Consll@chons; cons, Sons: “eons cons; cangl
(a) (b) (©)

Figure 16: Example projection graphs: (a) shows the projection graph for the identity function; (b) shows
the projection graph for the projection function that accesses everything in the CAR of the return value and
discards everything in the CDR; and (c) shows the projection graph for the projection function that accesses
every odd element of a list and discards every even element.

w makes a control use of the values returned by v (i.e., either w calls a function value returned by v, or w
makes a branch decision based on a boolean value returned by v); (ii) the expression w makes an atomic use
of the values returned by v (i.e., w uses the values returned by v but never performs a CAR or a CDR on
those values). For purposes of slicing, an edge ctrlOrAtomicUse(v,w) indicates that if the values returned
by w can affect w(P(x)), then the values returned by v can affect 7(P(z)), although the CAR and the CDR
of values returned by v cannot affect 7(P(z)).

In adition to the value-flow graph, we define a projection graph that represents the deterministic-finite
automaton (DFA) that accepts the language of access paths defined by m(y). The projection graph has a
unique start node, one or more accepting nodes, and at most one rejecting node. Each transition in the DFA
is represented in the projection graph by a cons; 1 edge (representing a CAR operation) or a consy L edge
(representing a CDR operation). Figure 16 shows some example projection graphs.

To apply CFL-reachability to the slicing problem, a composite graph is created by connecting the value-
flow graph and the projection graph with the edges return— (main, start) and ctrlOrAtomicUse(main, start),
where main is the node in the value-flow graph that represents the definition of main and start is the start
node of the projection graph. (The edge return™ (main, start) indicates that we are interested in the values
returned by main. The edge ctrlOrAtomicUse{main, start) indicates that any execution of the program
makes a control use of the function main.) We define a language Slice, such that a Slice-path from a node v
in the value-flow graph to an accepting node in the projection graph indicates that the value computed by
subexpression v may affect the value returned by 7(P(x)):

Id Id Id

consy Id consl_1

consy Id cons;1

input; Rev_Id input; (for 1 < i < maximum number of function parameters)
return Id return™

€

UnbalRight consy" Id

UnbalRight consy* Id

Id

UnbalRight ctrlOrAtomicUse

CtrlOrAtomicSlice UnbalRight ctrlOrAtomicUse
UnbalRight

CtrlOrAtomicSlice UnbalRight

UnbalRight

CtrlOrAtomicSlice

Slice

Issues of groundness are ignored in this grammar. Furthermore, the productions for Rev_Id—which corre-
spond exactly to the productions for Id but in the “reverse” direction—have not been shown (see Section 4.1.2
for a discussion of reversing productions).

In this grammar, the nonterminal UnbalRight represents an unbalanced right path. An unbalanced right
path includes an excess of selection operators; an edge UnbalRight{v,w) indicates that the values returned
by the expression w may include substructures of the values returned by the expression v. The nonterminal
CtrlOrAtomicSlice represents a control or atomic slice path. An edge CtrlOrAtomicSlice(v, w) indicates that

39

cons'fQ‘;Qcons;1

cons;
cons;’
>Q-Cons; conk:?

retrn r7ctrIOrAtomicUse
/ \/
0

input,

/ @®Swap \ Legend

input,’ return O accepting node
© rejecting node
C @ CONS ® source of a Slice-path to an accepting node
e 1ot a source of a Slice-path to an accepting node

cons, |cons;

xe

Figure 17: Value-flow graph and projection graph for Example 7.2. Reverse edges are not shown.

the values returned by the expression w are affected (e.g., via a control dependence) by a substructure of
the values returned by the expression v.

Value-flow is performed by determining all sub-terms w for which there is no Slice-path from the node
that represents w to an accepting node and replacing them by ’?; this is done with one exception: formal
parameters are never replaced with ’?.

Example 7.2 Consider the following program:

(DEFINE (main y) (CALL Swap y))
(DEFINE (Swap x) (CONS (CDR x) (CAR x)))

Suppose that we are only interested in the CAR of the value returned by this program. Figure 17 shows the
value-flow graph for this program together with the projection graph for the CAR projection function.

The results of running the CFL-Reachability Algorithm on the graph in Figure 17 indicate that there
is no Slice-path from the node that represents the expression (CAR x) to an accepting node. There are
Slice-paths from all other expression nodes. For example, from the expression (CDR x), there is a path to
an accepting node that spells out the string

consy return Id return™ return return™ consl_l.

40

S i‘ ce
U nbaJ‘ Right

Id

\

ey,

cons, return Id return” return — return” cons;

Figure 18: Derivation tree for the string cons, return Id return™ return return™ consy L

This string can be derived from the nonterminal Slice as shown in Figure 18.
The sliced version of the above program is

(DEFINE (main y) (CALL Swap y))
(DEFINE (Swap x) (CONS (CDR x) (’?7)))

Example 7.3 To illustrate slicing of a higher-order function, consider the following program:

(DEFINE (main y) (CALL Swap y MyCons))
(DEFINE (Swap x pairfn) (CALL pairfn (CDR x) (CAR x)))
(DEFINE (MyCons z w) (CONS z w))

This program is very similar to the the program in Example 7.2 except that the function MyCons is passed
as a parameter to the function Swap. As in the previous example, suppose we are interested in the CAR
of the value returned by this program. Figure 19 shows the value-flow graph together with the projection
graph. The results of running the CFL-Reachability Algorithm on the graph in Figure 19 indicate that there
are no Slice-paths from the expression (CAR x) nor from the second argument of the function MyCons.
There are slice paths from all other expressions. For example, there is path from the expression (CDR x) to
an accepting node that spells out the string

input; Rev_Id rev_input, Id rev_input, Rev_Id input; Id consy return Id input, Rev_Id input, Id return—

return Id return™ return return™ cons; .
(1)
This string can be derived from the nonterminal Slice.

We observe that the slice path from (CDR x) to the accepting node contains a Rev_Id-path from the
variable pairfn to the function MyCons and an Id-path from MyCons to pairfn. These paths mean that pairfn
can take on the value MyCons. The Rev_Id-path spells out the string Rev_Id rev_input, Id rev_input, Rev_Id
and the Id-path spells out the string Id input, Rev_Id input; Id; both of these strings are substrings of (1).

The sliced version of the above program is

(DEFINE (main y) (CALL Swap y MyCons))
(DEFINE (Swap x pairfn) (CALL pairfn (CDR x) ’?))
(DEFINE (MyCons z w) (CONS z ’?))

The method described above yields executable slices. We now briefly discuss the relationship between
the semantics of a slice and the semantics of the orignal program. Let Q(x) be the program that results
from slicing P(x) with projection w(y). There are two important points:

41

cons;’ cons;’

cons;’
>0 -cons;

cors,

cons;’

1

/

returntr ctrlOrAtomicUse
\/
O]

main
input,’ return
CALL
return” | |ctrlOrAtomicUse

\

CALL
ctrlOr AtomicUse

Swap
input,
MyCons
A
Id
Sreturn
CONS
cons, cons,
Id 5
W
Id
Legend
O accepting node
© rejecting node
® source of a Slice-path to an accepting node
e 1ot a source of a Slice-path to an accepting node

Figure 19: Value-flow graph and projection graph for Example 7.3. Reverse edges are not shown.

e In a call-by-value language, it is possible that)(z) may terminate on inputs for which 7(P(z)) diverges.
Slicing can never introduce divergence; it can only introduce termination, which, from a pragmatic

standpoint, is quite reasonable. If 7(P(z)) does terminate, then 7(Q(z)) = w(P(x)).

e It is possible that Q(x) # 7(P(z)). In particular, Q(x) may contain additional material that is not in
w(P(x)). The reason that such extra information may exist is that slicing is a monovariant analysis.
Because different portions of a the result of a function may be needed at different call sites, a function in
a slice may return more information than is needed at a specific call site. In addition more information
may be present in a variable than is needed at all uses of that variable. For these reasons, a sliced
program may return more information than is actually needed. However, the information returned by

a sliced program is safe with respect to 7(y). In particular, 7(Q(z)) = w(P(x)).

[42] contains a more detailed discussion of the semantic relationship between a slice and its original program.

42

7.5 Connection to DATALOG

It is also interesting to note another fact about CFL-reachability problems: every CFL-reachability problem
can be stated as a chain program in DATALOG [51]; edges are represented as facts, and productions are
encoded as Horn clauses. In fact, the CFL-reachability Algorithm presented in Section 2.1.1 in effect emulates
semi-naive bottom-up evaluation of the equivalent DATALOG program. This suggests that the class of
DATALOG programs that run in cubic time may be useful for program analysis (see also [36, 5]). The
construction described in Section 4 also implies that the class of set-constraints studied in this paper may also
be solved by converting them to equivalent DATALOG programs. In fact, many parts of the set-constraint-to-
CFL-reachability-problem constructions are more easily expressed in DATALOG. In particular, the addition
of reverse edges, and the tracking of ground information is easy to express. The resulting DATALOG program
would not necessarily be a chain program, but it would still run in cubic time.

7.6 Demand Analysis

An erhaustive program-analysis algorithm associates with each point in a program a set of “facts” that
characterize (in some fashion) the execution state that holds whenever that point is reached during execution.
By contrast, a demand program-analysis algorithm computes a partial solution to a problem, when only
part of the full answer is needed — e.g., whether a particular fact (or set of facts) holds at a single specific
point [6, 52, 36, 12, 37, 24, 44]. Demand analysis can sometimes be preferable to exhaustive analysis for the
following reasons:

Narrowing the focus to specific points of interest. In program optimization, most of the gains are
obtained from making improvements at a program’s “hot spots”, such as the innermost loops, which
means that information obtained from program analysis is really only needed for selected locations in
the program. Thus, the use of a demand algorithm has the potential to reduce greatly the amount of
extraneous information computed. Similarly, software-engineering tools that analyze programs often
require information only at a certain set of program points. Because it is unlikely that a programmer
will ask questions about all program points, solving just the user’s sequence of demands is likely to be
significantly less costly than performing an exhaustive analysis.

Narrowing the focus to specific facts of interest. Even when information is desired for every program
point p, the full set of facts at p may not be required. For example, in a closure-analysis problem, we
may be interested in determining which abstractions reach a certain specific application, rather than
determining that information for all applications.

Sidestepping incremental-updating problems. A transformation performed at one point in the pro-
gram can affect the validity of program-analysis information for other points in the program: In many
cases, the old information at such points is no longer safe; the information needs to be updated before
it is possible to perform further transformations at such points. An incremental updating algorithm
could be used to maintain complete information at all program points; however, updating all inval-
idated information can be expensive. An alternative is to demand only the information needed to
validate a proposed transformation; each demand would be solved using the current program, thereby
ensuring that the answer is up-to-date.

Of course, determining whether a given fact holds at a given point may require determining whether other,
related facts hold at other points (and those other facts may not be “facts of interest” in the sense of the
second bullet-point above). It is desirable, therefore, for a demand-driven program-analysis algorithm to
minimize the amount of such auxiliary information computed.

For program-analysis problems that have been transformed into CFL-reachability problems, demand
algorithms are obtained for free, typically by solving a single-target or multi-target CFL-reachability prob-
lem [24]. Because an algorithm for solving single-target (or multi-target) CFL-reachability problems focuses
on the nodes that reach the specific target(s), it minimizes the amount of extraneous information computed.

The construction described in Sections 4.1 and 4.2 shows that set-constraint problems can also be solved
in a demand-driven fashion: apply the construction to convert the system of set constraints to a CFL-
reachability problem; convert each query to an appropriate single-target (or single-source) CFL-reachability

43

query, and solve accordingly; finally, convert the answer back to the form that would be expected from
solving a set-constraint problem.

It is likely that demand algorithms could be designed that operate on the set constraints directly; however,
to our knowledge, this has not been investigated before in the literature on set constraints.

8 Acknowledgements

We are grateful to the referees for their careful reading of, and extensive comments on, the paper. Jon
Kleinberg pointed out to us the use of CFL-reachability in reference [11].

A Correctness of the CFL-Reachability to Set-Constraint Con-
struction

Lemma A.1 Let C be a collection of set constraints containing the constraint V. O aey, where ae; is an
atomic expression that does not appear in any other constraint. Let C' be C unioned with the collection of
set constraints generated by running the SC-Reduction Algorithm on C. Then for any atomic expression aes
that is ground in C', if C' contains the constraints V D aes and U D aey, then C' also contains U D aes.

Proof: The SC-Reduction Algorithm generates a constraint of the form W D ae iff it is given constraints
of the form W D W' and W' D ae and ae is ground. Thus, if U # V, then the SC-Reduction Algorithm
generates the constraint U D aeq iff ae; is grounded and the following collection of constraints are present:

UDW;
Wy 2 W,

W,2V

This implies that such a collection of constraints must appear in C' if U D ae; is in C'. Tt follows that if C’
also contains the constraint V' D ae; where aes is ground, then the SC-Reduction Algorithm must also have
generated the constraint U D aey. O
Lemma 3.2 Let C be the collection of set constraints constructed to represent the context-free reachability
problem P. Let G be the graph that results from running the CFL-reachability Algorithm on P. Let C' be C
unioned with the collection of set constraints generated by running the SC-Reduction Algorithm on C. Then
there is an edge A(i,j) in G if and only if C' contains X; O A(X;) and/or Dst 4 ; D node;.
Proof of the = direction: First, we dispense with a technical detail that is the same in all parts of the
proof. In many subcases, we will be able to show that C’ contains constraints of the form U D ¢;*(W)
and W D ¢(Y) and need to argue that C' contains U D Y. In all the cases that arise in the proof, we can
show that C' must contain a constraint of the form Y D node;. This will follow either from the original
construction of C (if Y is one of the variable X;) or from the suppositions in effect at that point of the proof
(if Y is of the form Dst ;j). In either case, the groundness of ¥ will be assured. To avoid clutter in the
following discussion, we will not mention the groundness properties explicitly when we perform reductions.

Assume, on the contrary, that there is an edge A(i,j) in G such that C’ contains neither X; D A(X})
nor Dsts; 2 node;. Note that for each edge B{u,v) in the original graph of the context-free reachability
problem, C (and hence C') contains the constraint X,, O B(X,). Thus A(i, j) must have been generated by
the CFL-reachability Algorithm.

Without loss of generality, let A(7, j) be the first edge that the CFL-reachability Algorithm generates such
that C' contains neither X; O A(X;) nor Dst 4 ; 2 node;. There are three reasons that the CFL-reachability
algorithm might have introduced the edge A(i, j):

case 1: The context-free grammar contains the production A ::= €. In this case ¢ = j. However, for each
production of the form A ::= ¢, for each node k, C (and hence C') contains the constraint X3 2O A(Xk).
Thus in this case, C' must contain the constraint X; D A(X;).

44

case 2: The context-free grammar contains the production A ::= B, and the edge B(i,j) is present. Since
B(i, j) must be present before A{i,j), and A(i,j) is the first edge generated by the CFL-reachability
Algorithm such that C' contains neither X; O A(X;) nor Dst4 ;) 2 nodej, we conclude that C' must
contain X; D B(X;) and/or Dstp ;] 2 node;. The construction also guarantees that C' also contains
the constraints X; O A(Dst;4 ;) and Dsta,; 2 B7'(X;) (to encode the production A ::= B) and the
constraint X; D node; (to encode node j).

The constraints Dst;4 ;) 2 By YX;) and X; D B(X ;) combine to give the constraint Dsti4 ;) 2 Xj.
The constraints Dst4; 2 X; and X; D node; reduce to the constraint Dst4 ;) O node;. Thus, if C’
contains X; D B(Xj), it must also contain Dst4 ;) D node;.

If C' contains Dstp ; D nodej, then it must also contain the constraint X; O B(Dstp ;) (because
the variable Dst(p ; is introduced iff this constraint is introduced). The constraints Dst 4 ; 2 By " (X;)
and X; O B(Dstip ;) combine to give Dst 4 ; D node;. Thus, if C' contains Dst;g ;) O node;, it must
also contain Dstj4 ; 2 node;.

In either case C' must contain the constraint Dsty 4,5 2 node;.

case 3: The context-free grammar contains the production A ::= B C and the edges B(i, k) and C(k, j) are
present. C' must contain the constraints

Dstia,q 2 C7 " (Rehdip—1 ;) and
Rehdi— 3 2 By (X;)

to encode the production A ::= B C. Since the edge B(i, k) is present before A(i,j), C' must also
contain X; O B(Xy) and/or Dstip ; 2 nodey. This gives us two subcases:

case 3.a: Suppose C' contains X; D B(X}). This constraint and the constraint RChd[B;l,i] D By (X))
give the constraint Rchd[B D Xj. (Thus, in this case, C' must contain Rchd[B 2 Xy.)
Since the edge C(k,j) was present before edge A(i, j), C' must also contain X, DO C(X;) and/or
Dstic) 2 nodej. This gives two subcases:
case 3.a.i: Suppose C' contains X O C(X;). The constraints

Rchd, p-1 D) X} and
By il
X 2 C(X;)
combine to give the constraint Rchd Bl 2 C(X;). The constraints
Dstra,y 2 C7 ' (Rehdip—1 ;1) and
RChd[Bl—l’z-] 2 C(X;,)
reduce to the constraint Dst 4 ; 2 X;. This constraint combines with X; D node; to give
Dsty 4,5 D nodej. So in this case, C' must contain Dst4 ; 2 node;.
case 3.a.ii: Suppose C' contains Dstjc) 2 node;. The construction introduces a variable of the

form Dstic y iff it also introduces the constraint X O C(Dstic); thus C' must contain
Xy 2 C(Dstc). Given the constraints

RChd[Bl—l’i] D X, and

Xy 2 C(Dstic,))
the SC-Reduction Algorithm produces the constraint RChd[Bl—l’i] D C(Dstic). The con-
straints

Dstia,iy 2 C7 ' (Rehdip— ;1) and

RChd[Bl_l,i] 2 O(Dst[c’k])
reduce to Dsta,; 2 Dstcr). This constraint and Dstjc) 2 node; reduce to the constraint
Dsty 4 5 2 nodej. Thus, in this case, C' must contain Dst4 ; 2 node;.

case 3.b: Suppose C' contains Dstp ; D node. This implies that C' contains the constraint X; 2
B(Dstip ;) (since the variable Dstp ; is introduced iff this constraint is added to C during the
original construction). The constraints

45

Rehdi— 5 2 By Y(Xy)
X; D B(Dstp,))
reduce to the constraint Rchd[Bl 2 Dstp ;). The constraints
Rchdig—1 4 2 Dstip,; and
Dstip ;) 2 nodey
combine to give Rchd[Bl_17 ;) 2 nodey.
Again, we know that C' must contain X3 D C(X;) and/or Dstic r) 2 node;:

case 3.b.i: Suppose C’ contains X O C(X;). Since the only occurrence of the atomic expression
nodey, in C is in the constraint X DO mnodey, we can use Lemma A.1 and the presence of
Xk 2 C(X;) and Rchdig—1 3 2 nodey in C' to conclude that Rehdip—1 3 2 C(X;) is also in
C'. The constraints
Dstiy 5 2 C (Rchd[B—]) and
RChd[Bl—l’i] 2 C(X;)
reduce to the constraint Dstj4; 2 X;. This constraint combines with the constraint X; 2
node; to give Dst 4 ;) D node;. Thus in this case, C' must contain Dsta,5 2 node;.
case 3.b.ii: Suppose C' contains Dst|c r) 2 node;. Then C' must also contain X O C(Dstic,x))-
Again by use of Lemma A.1, and the presence of the constraints X 2 nodey, Dst/p ; 2 node,
and X D C(Dstc), we conclude that C' contains the constraint Dstp ;) O C(Dstic,x))- The
constraints
Dst[A’i] D) Cl_l(RCh’d[Bl_l,i]) and
Dst[B,i] D) C(Dst[c,k])
combine to give Dst4.;] 2 Dstic z) which combines with Dsticx) 2 node; to give Dstia ;) 2
node;. Thus in this case, C' must contain Dst 4,4 D node;.

For all of the possible cases that may cause the CFL-reachability Algorithm to introduce the edge A{i, j), we
have shown that C' contains X; O A(X;) or Dstj4 ;) D node;. This contradicts the assumption that A(i, j)
is the first edge introduced by the CFL-reachability Algorithm such that C' contains neither X; O A(X})
nor Dsti ;1 D nodej, and implies that there can be no such edge A(i, j). O
Proof of the < direction: We need to show that the presence of the constraint X; O A(X;) or the
constraint Dstj4 ;] D node; in C' allows us to assert that the edge A(i,j) appears in G.

The constraints in C (the initial collection of constraints constructed to represent the CFL-reachability
problem) must have one of the following forms:

Rehdig—1 5 2 BiY(X)) (Follow B-edges from node i; used to encode A ::= B C)

Dstyy 4 2 C’fl(Rchd[Bl—l’i]) (Follow C-edges from those nodes; used to encode A ::= B C)

X D A(Dstra) (Add A-edges to the reached nodes; used to encode A ::= B C and
A:=B

Dstrpq 2 B (X)) (Follow)B—edges from X;; used to encode A ::= B)

X; D node; (Encode X; as representing node 1)

X; D A(X;) (Encode an A edge from i to j)

X;DX; (Used to encode and A ::= ¢)

Following the rules of the SC-Reduction Algorithm, the constraints in C may give rise to constraints of
the following additional forms (which may appear in C'):

RChd[Al] D X DSt[A,Z'] 2 Xj
Rchd[A1 il D) Dst[A i Dst[A’,-] D) Dst[B,j]
Rchd[D B(X) Dst[B,j] 2 C(Xk)
Rchd[] D B(Dstip,;)) Dstij 2 C(Dstic,x))
Rchd[] 2 node; Dstj4) 2 node;

46

Selected constraint form
and associated assertion

Matching constraint form
and associated assertion

Produced constraint
and associated assertion

Rehdjy-1 4 2 ATT(X;)

Null assertion

Xi 2 A(X;)
(Encodes A(i, j))

Rchd[A—1 i] 2 Xj
10
“A(’i,j) E EG’”

Xi 2 A(Dst[A’i])
Null assertion

RChd[Al_l,i] 2 Dst[A,i]
Null assertion

Null assertion

Dstra,i) 2 By ' (Rehdig-1) Rehdyg—1 ;2 B(X;) Dstia: 2 X,
o

(Encodes A == C B) “Hk[C(z k) € Eg and B(k, j) € Eg]” “A(i,j) € Eg”

Rchd[c—1 i) B(Dst[B,]]) Dst[A,,-] 2 Dst[B,]-]

“C(i, j) € Eg” “Yn[B(j,n) € Eg imp. A{i,n) € Eg]”
Dstiaq 2 By '(Xs) X; D B(Xj;) Dstia ;1 2 X,
(Encodes A == B) (Encodes B(i, j) € Eg) “A(i,j) € Eq

X; D B(Dst[B,i]) Dsty,] 2 Dstip 4

Null assertlon

“Ik[A(i, k) € Eq and B(k, j) € Ec”

Rchd[A_l a2% X; 2 node; Rchd [A71,4] D node;
“Ali,) € B Naull Assertion “Ai, j) € Eg”
Xj 2 B(Xk) Rchd Z. D B(Xk)
(Encodes B(j, k)) “EIj[A(z j) € Eg and B(j, k) € Eg]”
X; D B(Dst[B,j]) RChd[Al_l,i] B B(Dst[B,j])
Null assertion “A(i,j) € Eg”
RChdA_1i 2D Dstra g Dstiaq 2 B(Xj;) RChdA—1 D B(X;)

“IH[A(, k) € Eg and B{k, j) € Ec]’

Dstiaq 2 B(Dst[B,j])

RChdA—1 4]) B(Dst[B]])

(Encodes B(j, k))

“A<i:j> € Eg” “A('L j) € Eg”
Dsty 5 2 X X; 2 node; Dst 4,5 2 node;
“A(i,j) € Eg” Null assertion “A(i,j) € Eg”

Xj 2 B(Xk) Dst[A,,-] 2 B(Xk)

“Jj[A(i, j) € Ec and B(j, k) € Eg]’

X; 2 B(Dstip ;1)

DSt[A,i] 2 B(DSt[B,j])

Null assertion “A(i,j) € Eg”
Dstra,5 2 Dstip j Dstip 5 2 nodey, Dst4,5) 2 node,
“Vn[B(j,n) € E¢ imp. A{i,n) € Eg]” | “B(j,k) € Eg” “A(i, k) € Eg”

Dst[B,j] 2 C(Xk)

“In[B(j,n) € Eg and C{n, k) € Eg]”

Dst[A,i] 2 C(Xk)
“In[A(j,n) € Eg and C{n,k) € Eg]”

Dstip,;1 2 C(Dst[c,k])
“B(j, k‘) € Eg”

Dstia, 2 C(Dst[c,k])
“A(j, k) € Eg”

Table 3: Summary of the reductions that the SC-Reduction Algorithm may perform on a constructed set-
constraint problem. For each line of the table, column 3 shows the constraint that results from reducing the
constraints shown in columns 1 and 2. Each constraint is shown with its purpose in the original construction,
or with its associated assertion in Lemma 3.2, where Eg denotes the set of edges in graph G. The highlighted
entries indicate the key result for Lemma 3.2.

Note that a constraint of the form X; D A(X;) cannot be generated by the SC-Reduction Algorithm;

this means that if X; 2 A(X

;) appears in C’, it must also appear in C. This means that X; D A(X
encodes A(i, j), or else j =4, and X; D A(X

the edge A(i,4). In either case, G contains the edge A(i, 7).

It remains for us to show that if C’ contains a constraint of the form Dst 4 ; D node;, then G contains
the edge A(i, 7). To do this, we associate as assertion about the graph G with every constraint generated by
the SC-Reduction Algorithm as shown below (where Eg is the set of edges of the graph G):

47

;) either

;) encodes a result of the production “A ::= €’ by representing

Constraint form: Associated assertion:

RChd[Al—lyi] 2 X; “A(i,j) € Eg”

Rchd[AT D Dsta 3 Null assertion

RChd[Al—17i] D B(X;) “Jk[A(i, k) € Eg and B(k,j) € Eg]”
Rchd[Al—l,i] D B(Dst[B,j]) “A(i,j) € Eg”

Rehdp g1 3 2 node; “A(i, j) € Eg”

Dstig5 2 X “A(i,j) € EG”

Dsty 4,5 2 Dstip j “Yn[B(j,n) € Eg impl. A{i,n) € Eg]”
Dstiaq D B(X;) “Ik[A(i, k) € Eg and B(k,j) € Eg)”
Dsty4 5 2 node; “A(i,j) € Eg”

Table 3 summarizes the reductions that may take place in a set-constraint problem created by our con-
struction; each constraint is shown with its associated assertion. It is clear that for all lines of Table 3, the
assertion A associated with a generated constraint V' D sezp (shown in column 3) is supported by the asser-
tions associated with the constraints (shown in columns 1 and 3) that were reduced to V' D sezp. Since the
(implicit) assertions associated with the constraints in C follow from the original construction, it follows that
for each constraint generated by the SC-Reduction Algorithm, the associated assertion is true. In particular,
for any constraint of the form Dstj4 ; O node; in C', it follows that G' contains the edge A(i, j) (see the two
highlighted boxes in Table 3). O

B Correctness of the Set-Constraint to CFL-reachability Con-
struction

In this section we prove the lemmas used in Section 4.3. We use the following definitions:
C is a collection of set constraints.
P is the CFL-reachability problem constructed to represent C.

C' is the collection of set constraints that results from running the SC-Reduction Algorithm on C (i.e., C’
is C unioned with the constraints generated by the SC-Reduction Algorithm).

G is the graph of the CFL-reachability problem P.

G' is the graph that results from running the CFL-reachability algorithm on P (i.e., G' is G augmented
with the edges added by the CFL-reachability Algorithm).

To prove Lemmas 4.4 and 4.5, it is useful to have the following observation:

Observation B.1 If G' contains the edges Ground(Vi,V1) ... Ground(V,,V,), and c¢(V1,Vs,...,V,) is an
atomic expression used in C with index k, then G' contains the edge Ground((k), (k)).

This follows from the construction of P. In particular, the CFL-reachability Algorithm will use the
production

Ground ::= edge(k)toVy Ground edgeVito(k) ... edge(k)toV. Ground edgeV,to(k)

with the appropriate edges to induce the edge Ground((k), (k)). (See Section 4.1.2 for details about how
groundness information is handled in the constructed CFL-Reachability problem.)

Lemma 4.4 If C' contains the constraint V2O ¢(Vi,Va,...,V;), then G' contains the edge Id{(k),V), where
k is the index of c(V1,Va,...,V2).
Proof: To show this, we must simultaneously prove the following:

(a) If C' contains V3 D Vs, then G' contains Id(Vs, V7).
(b) If Vis ground in C’, then G’ contains Ground(Vy, Vy).

48

Observe that the construction of G guarantees the following:
e If C contains V' D ¢(V4,Va,...,V,), then G (and hence G') contains Id{(k), V).
e If C contains V; D V3, then G (and hence G') contains Id(Vz, V7).

To prove the lemma and goals (a) and (b), we show that the following conditions hold when the SC-Reduction
Algorithm is run on C:

(1) If the SC-Reduction Algorithm generates the constraint V' 2 ¢(V1,Va,...,V,), then G’ contains the edge
Id{(k),V), where k is the index of ¢(V1,Va,...,V;).

(2) If the SC-Reduction Algorithm generates the constraint V; D Vs, then G’ contains the edge Id(V2, V7).
(3) If the SC-Reduction Algorithm marks the variable V as ground, then G’ contains the edge Ground(V,V).

The lemma follows immediately from condition (1).
Assume, on the contrary, that one or more conditions (1)-(3) fails. Then there must be some first action
taken by the SC-Reduction Algorithm that causes the conditions to fail. There are three cases:

case 1: Suppose the SC-Reduction Algorithm generates the constraint V' 2 ¢(Vi,Va,...,V;), and G' does
not contain the edge Id{(k), V).

The only way for the SC-Reduction Algorithm to generate this constraint is from the constraints

VDU and
U2 c(Vi, V..., Vi)

where ¢(V1, Vs, ..., V,) is ground. Since the SC-Reduction Algorithm has established that ¢(V3,Va,...,V;)
is ground, the variables V; ...V, must be marked as ground. Since this is the first failure of con-
ditions (1)-(3), G' must contain the edges Id{(k),U) and Id{U,V) and the edges Ground(Vi,V;)
... Ground(V,,V,). This allows us to use Observation B.1 to conclude that G' contains the edge
Ground{(k), (k)). Finally, G’ contains the edge ae((k), (k)).

Since the context-free grammar of P contains the production “Id ::= Ground ae Id Id,” it follows
that G' must contain the edge Id{(k), V), which contradicts our supposition.

case 2: Suppose the SC-Reduction Algorithm generates the constraint U D V;, and G’ does not contain the
edge Id(V;,U).
The only way for the SC-Reduction Algorithm to generate this constraint is from constraints of the
form

UDcyY(V) and
V2 (W, Ve,..., Vi)

where ¢(V1,Va,...,V,) is ground. The SC-Reduction Algorithm performs this reduction only if it has
already marked the variables V; ...V, as ground. (This follows because the SC-Reduction Algorithm
adds the constraint ¢(V3,V2,...,V;) to its worklist only if V; ...V, have been marked ground.) Since
this is the first failure of conditions (1)-(3), G' must contain the edge Id{(k),V) and the edges

Ground(Vy,V1)
Ground(Va, V3)

Ground(V,.,V;.)
By Observation B.1, we conclude that G also contains the edge Ground((k), (k)). From the construc-
tion of G, it follows that G’ contains the edges ¢;(V;, (k)) and ¢; *(V,U), as well.

We also have that the context-free grammar of P contains the production “Id ::= ¢; Ground Id 0;1_,,
Given the above edges and this production, the CFL-reachability Algorithm generates the edge Id(V;, U},
which contradicts our supposition.

49

case 3: Suppose the SC-Reduction Algorithm marks the variable V ground and G’ does not contain the
edge Ground(V,V).

There are two reasons why the SC-Reduction Algorithm might mark V as ground, which are covered
is the following subcases:

case 3.a: Suppose the SC-Reduction Algorithm marks V as ground because U is marked as ground
and the constraint ¥V D U is present. Since this is the first failure of any of the conditions (1)-
(3) above, we have that G' must contain the edges Ground(U,U) and Id(U,V). It follows from
the construction of P that G’ also contains the edges edgeVitoV(V,V) and Rev_Id(V,U). The
context-free grammar of P contains the production

Ground ::= edgeVtoV RevId Ground Id edgeVioV
This means that G' must contain the edge Ground(V, V), which is a contradiction.

case 3.b: Suppose the SC-Reduction Algorithm marks the variable V ground because V; ...V, are
marked ground and the constraint V' D ¢(V;, V5, ...,V,) is present. Since this is the first failure of
any of the conditions (1)-(3), G' contains the edge Id{(k),V). We also have that G’ contains the
edge Ground((k), (k)) (by the argument in case 1 above). By the construction of P, it follows that
G' also contains the edges edgeVtoV{(V, V) and Rev_Id(V,(k)). This means that the production

Ground ::= edgeVtoV RevId Ground Id edgeVioV
causes the CFL-reachability Algorithm to induce the edge Ground(V,V), which is a contradiction.

Thus, there can be no action taken by the SC-Reduction Algorithm that causes conditions (1)-(3) to be
violated. O

Lemma 4.5 If G' contains the edge 1d{(k),V), then C' contains the constraint V2 ¢(V1,Vs,...,V,) where
c(V1,Va,...,V,) is the atomic expression with index k.
Proof: To show this, we need to prove a stronger property, namely that the following four conditions hold:

(1) If G’ contains the edge Id((k), V), then C’ contains the constraint V' 2 ¢(V1,Va,...,V,), where ¢(V1, V2, ..., V;)
has index k.

(2) If G’ contains the edge Id(V;,V;), then C' contains the constraint V; D V;.
(3) If G' contains the edge Ground(V,V), then the variable V is ground in C’.

(4) If G’ contains the edge Ground((k), (k)), then the atomic expression ¢(V;,Vs,...,V;) is ground in C’,
where ¢(V1,Va,...,V,) has index k.

Note that edges from G satisfy the above conditions. Thus, if G’ contains an edge e such that one or more
of the above conditions is not satisfied, then e must have been added by the CFL-reachability Algorithm.
Assume, on the contrary, that such an edge e exists in G'. Without loss of generality, let e be the first edge
generated by the CFL-reachability Algorithm that causes one (or more) of the above conditions to fail.

case 1: Suppose e has the form Id{(k), V) and condition (1) is violated. The only way the CFL-Reachability
Algorithm can generate this constraint is from the production “Id ::= Ground ae Id Id.” This
implies that the edges Ground{(k), (k)), Id{(k),U), and Id(U,V) are present before e. Since e is the
first failure of conditions (1)-(4), it follows that C contains the constraints

UDcW,Va,...,V.) and VDO U

and ¢(V1,Va,...,V,) is ground in C'. This means that C' must contain V' D ¢(V4,V5,...,V,), which
contradicts our assumption.

case 2: Suppose e has the form Id(V;,V;) and condition (2) is violated. To generate this edge, the CFL-
Reachability Algorithm must use a production of the following form:

Id ::= ¢; Ground Id ci—1

50

This implies that G’ must contain the edges

ci(Vi, (k)),
Gmund((), (K)),
1d((k), U), and

(U, V)

where k is the index of an atomic expression of the form ¢(...V;...). Since this is the first failure
of conditions (1)-(4), the edge Ground{(k),(k)) implies that ¢(...V;...) is ground in ', and the edge
Id((k),U) implies that C' contains the constraint U D ¢(...V;...). The edge ¢; (U,V]) encodes the
constraint V; D ¢; *(U), which must be in C. It follows that C' must contain the constraint V; O Vi,
which contradicts our supposition.

case 3: Suppose e has the form Ground(V,V) and condition (3) is violated. To generate this edge, the

CFL-Reachability Algorithm uses the following production:
Ground ::= edgeVtoV Rev_Id Ground Id edgeVtoV

It follows that G’ must contain either the edges Ground(U,U) and Id(U, V) or the edges Ground{(k), (k))
and Id((k),V). In either case, since this is the first failure of conditions (1)-(4), it follows that V is
ground in C’, which contradicts our supposition.

case 4: Suppose e has the form Ground{(k), (k)) and condition (4) is violated. Let ¢(Vi,Va,...,V,) be the

atomic expression with index k. The only way for the CFL-reachability Algorithm to generate the edge
Ground{(k), (k)) is by using the following production:

Ground ::= edge(k)toVy Ground edgeVito(k) ... edge(k)toV, Ground edgeV,.to(k)

This implies that the edges Ground(Vy, Vi) ... Ground(V,,V,) are present before e is generated. Since
the introduction of e is the first failure of conditions (1)-(4), this implies that the variables V; ...V,
are all ground in C’. But then ¢(Vi,Vs,...,V,) must also be ground in C’, which contradicts our
supposition.

Thus, the CFL-reachability Algorithm does not generate any edge that causes conditions (1)-(4) to fail. The
lemma is the same as condition (1). O

References

[1]
2]
(3]
[4]

[5]

[6]
[7]
(8]

F. Afrati and C. H. Papadimitriou. The parallel complexity of simple chain queries. In Proceedings of the 6yd
ACM Symposium on Principles of Database Systems, pages 210-214, 1987.

A. Aiken and B. Murphy. Implementing regular tree expressions. In Proceedings of the 1991 Conference on
Functional Programming Languages and Computer Architecture, pages 427-447, August 1991.

A. Aiken and B. Murphy. Static type inference in a dynamically typed language. In Eighteenth Annual ACM
Symposium on Principles of Programming Languages, pages 279-290, January 1991.

A. Aiken and E. Wimmers. Type inclusion constraints and type inference. In Proceedings of the 1993 Conference
on Functional Programming Languages and Computer Architecture, pages 31-41, Copenhagen, Denmark, June
1993.

U. Assmann. On edge addition rewrite systems and their relevance to program analysis. In J. Cuny, editor, 5th
Workshop on Graph Grammars and Their Application To Computer Science, volume 1073 of Lecture Notes in
Computer Science, Williamsburg, Virginia, November 1994 1995. Springer.

W.A. Babich and M. Jazayeri. The method of attributes for data flow analysis: Part ii. demand analysis. Acta
Inf., 10(3):265-272, October 1978.

L. Bachmir, H. Ganzinger, and U. Waldmann. Set constraints are the monadic class. In Symposium on Logic in
Computer Science, pages 75-83, June 1993.

D. Callahan. The program summary graph and flow-sensitive interprocedural data flow analysis. In SIGPLAN
Conference on Programming Languages Design and Implementation, pages 47-56, 1988.

51

[9]
[10]
[11]
[12]
[13]

[14]
[15]
[16]

17
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]

[30]

31]

32]
[33]

[34]

K.D. Cooper and K. Kennedy. Interprocedural side-effect analysis in linear time. In SIGPLAN Conference on
Programming Languages Design and Implementation, pages 57-66, 1988.

K.D. Cooper and K. Kennedy. Fast interprocedural alias analysis. In ACM Symposium on Principles of Pro-
gramming Languages, pages 49-59, 1989.

D. Dolev, S. Even, and R.M. Karp. On the security of ping-pong protocols. Information and Control, 55:57—68,
1982.

E. Duesterwald, R. Gupta, and M.L. Soffa. Demand-driven computation of interprocedural data flow. In ACM
Symposium on Principles of Programming Languages, pages 37-48, 1995.

M. J. Fischer and A. R. Meyer. Boolean matrix multiplication and transitive closure. In Conference Record of
the IEEE 12th Symposium on Switching and Automata Theory, 1971.

F. Gécseg and M. Steinby. Tree Automata. Akadémiai Kiadé, 1984.
M.S. Hecht. Flow Analysis of Computer Programs. North-Holland, 1977.

N. Heintze. Set-based program analysis. PhD thesis, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, October 1992.

N. Heintze. Set based analyis of ML programs. Technical Report CMU-CS-93-193, Carnegie Mellon University,
1993.

N. Heintze and J. Jaffar. A decision procedure for a class of set constraints. Technical Report CMU-CS-91-110,
Carnegie Mellon University, 1991.

N. Heintze and J. Jaffar. Set constraints and set-based analysis. In 2nd Workshop on Priciples and Practice of
Constraint Programming, May 1994.

N. Heintze and D. McAllester. Linear-time subtransitive control flow analysis. In SIGPLAN Conference on
Programming Languages Design and Implementation, 1997.

N. Heintze and D. McAllester. On the cubic bottleneck in subtyping and flow analysis. In LICS ’97: Proceedings
of the IEEE Symposium on Logic in Computer Science, 1997.

S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. In SIGPLAN Conference
on Programming Languages Design and Implementation, pages 35—46, 1988.

S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. ACM Transactions on
Programming Languages and Systems, 12(1):26-60, January 1990.

S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural dataflow analysis. In Proceedings of the Fourth
ACM SIGSOFT Symposium on the Foundations of Software Engineering, pages 104-115, October 1995.

S. Horwitz, T. Reps, M. Sagiv, and G. Rosay. Speeding up slicing. In Proceedings of the Third ACM SIGSOFT
Symposium on the Foundations of Software Engineering, pages 11-20, December 1994.

T. Jensen. Inference of polymorphic and conditional strictness properties. In Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, January 1998.

N. D. Jones. Flow analysis of lazy higher-order functional programs. In S. Abramsky and C. Hankin, editors,
Abstract Interpretation of Declarative Languages, pages 103-122. Ellis Horwood, Chichester, England, 1987.

N. D. Jones and W. T. Laaser. Complete problems for deterministic polynomial time. Theoretical Computer
Science 3, pages 105-117, 1977.

N. D. Jones and S. S. Muchnick. Flow analysis and optimization of LISP-like structures. Program Flow Analysis:
Theory and Applications, 1981.

N.D. Jones and S.S. Muchnick. Flow analysis and optimization of Lisp-like structures. In S.S. Muchnick and
N.D. Jones, editors, Program Flow Analysis: Theory and Applications, chapter 4, pages 102-131. Prentice-Hall,
1981.

U.P. Khedker and D.M. Dhamdhere. A generalized theory of bit vector data flow analysis. ACM Transactions
on Programming Languages and Systems, 16(5):1472-1511, September 1994.

L.T. Kou. On live-dead analysis for global data flow problems. J. ACM, 24(3):473-483, July 1977.

D. McAllester and N. Heintze. On the complexity of set-based analysis. In ICFP ’97: Proceedings of the Second
ACM SIGPLAN International Conference on Functional Programming, 1997.

K.J. Ottenstein and L.M. Ottenstein. The program dependence graph in a software development environment.
In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software De-
velopment Environments, pages 177-184, 1984.

52

(35]
[36]

(37]

(38]
[39]

[40]
[41]

42]

[43)
[44]
[43]
[46]
[47]
48]
[49]

[50]
[51]

[52]

J. Palsberg. Closure analysis in constraint form. toplas, 17(1):47-62, January 1995.

T. Reps. Demand interprocedural program analysis using logic databases. In R. Ramakrishnan, editor, Appli-
cations of Logic Databases. Kluwer Academic Publishers, 1994.

T. Reps. Shape analysis as a generalized path problem. In PEPM ’95: Proceedings of the ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-Based Program Manipulation, New York, NY, 1995. ACM.

T. Reps. On the sequential nature of interprocedural program-analysis problems. Acta Inf., 33:739-757, 1996.

T. Reps. Program analysis via graph reachability. In J. Maluszynski, editor, Proceedings of ILPS ’97: Interna-
tional Logic Programming Symposium, pages 5—19. The M.I.T. Press, Cambridge, MA, 1997.

T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph reachability. In ACM
Sympostum on Principles of Programming Languages, pages 49—61, 1995.

T. Reps, M. Sagiv, and S. Horwitz. Interprocedural dataflow analysis via graph reachability. Technical Report
TR 94-14, Datalogisk Institut, University of Copenhagen, 1994.

T. Reps and T. Turnidge. Program specialization via program slicing. In O. Danvy, R. Glueck, and P. Thiemann,
editors, Proc. of the Dagstuhl Seminar on Partial Evaluation, volume 1110 of Lecture Notes in Computer Science,
pages 409-429, Schloss Dagstuhl, Wadern, Germany, February 1996. Springer-Verlag.

J.C. Reynolds. Automatic computation of data set definitions. In Information Processing 68: Proceedings of the
IFIP Congress, pages 456-461, New York, NY, 1968. North-Holland.

M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis with applications to constant
propagation. Theoretical Computer Science, 167:131-170, 1996.

P. Sestoft. Analysis and Efficient Implementation of Functional Programs. PhD thesis, DIKU, University of
Copenhagen, 1991.

M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In S.S. Muchnick and N.D.
Jones, editors, Program Flow Analysis: Theory and Applications, chapter 7, pages 189-234. Prentice-Hall, 1981.

O. Shivers. Control flow analysis in scheme. In ACM SIGPLAN’88, Conference on Programming Language
Design and Implementation, June 1988.

J. D. Ullman and A. Van Gelder. Parallel complexity of logical query programs. In Proceedings of the 27th IEEE
Symposium on Foundation of Computer Science, pages 438—454, 1986.

Charatonik W and L. Pacholski. Set constraints with projections are in nexptime. In Proceedings of 85th Annual
IEEE Symposium on Foundations of Computer Science, pages 642—653, 1994.

M. Weiser. Program slicing. IEEE Transactions on Software Engineering, SE-10(4):352-357, July 1984.

M. Yannakakis. Graph-theoretic methods in database theory. In Proceedings of the Symposium on Principles of
Database Systems, pages 230—242, 1990.

F.K. Zadeck. Incremental data flow analysis in a structured program editor. In ACM Symposium on Compiler
Construction, pages 132-143, 1984.

53

44

Work performed for
a given edge

; Total of
Form of label # of edges Productions with label on the right-hand side # exam.med attempﬁ to
productions
add an edge
Id o(n?) Id ::= Ground-ae-Id Id 1 O(t)
Ground-ae-1d ::= Ground-ae Id 1 1
Ground-Id ::= Ground Id 1 1
Rev_Id O(n?) Rev_Id ::= Rev_Id Rev_Id-Ground-ae 1 O(t)
Rev_Id-Ground-ae ::= Rev_ld Ground-ae 1 1
G ::= Rev_Id Ground-Id 1 O(n)
Rev_ld-Ground ::= Rev_Id Ground 1 1
Ground O(n) Ground-edgeV;to(k) ::= Ground edgeV;to(k) o(t) O(t)
Ground-Id ::= Ground Id 1 O(n)
Rev_Id-Ground ::= Rev_Id Ground 1 O(n)
Ground-ae ::= Ground ae 1 1
Ground-ae-1d O(tv) Id ::= Ground-ae-1d Id 1 O(v)
Rev_Id- Ground-ae O(vt) Rev_Id ::= Rev_Id Rev_ld-Ground-ae 1 O(v)
Ground-ae O(t) Ground-ae-I1d ::= Ground-ae Id 1 O(v)
ae o(t) Ground-ae ::= Ground ae 1 1
¢ O(t) Id ::=¢; Ground-ld-ci_l 1 O(t)
rev_c; O(t) Rev_Id ::= Rev.c; '-Rev_ld-Ground rev_c; 1 O(t)
e ! O(t) Ground-ld-c; ' ::= Ground-ld c;' 1 O(n)
rev-c;l O(t) Rev-c;l-Rev_Id-Ground n= rev_c;l Rev_Id-Ground 1 O(n)
edgeVto(k) O(t) Ground-edgeV;to(k) == Ground edgeV;to(k) 1 1
edge(k)toV; o(t) MarkV; GrAt(k) ::= edge(k)toV; Ground-edgeV;to(k) 1 1
edgeV; toV; O(v) G-edgeVjtoV; == G edgeV;toV; 1 O(n)
Ground ::= edgeV;toV;, G-edgeV;toV; 1 1
G O(n?) G-edgeV;toV; = G edgeV;toV; O(v) 1
Ground-Id O(n?) G ::= Rev_Id Ground-Id 1 O(n)
Gmund-]d-ci_1 1= Ground-Id ci_1 o(t) o(t)
Rev_Id-Ground 0(n?) Rev_c; '-Rev_ld-Ground ::= rev.c; ' Rev_ld-Ground O(t) O(t)
Gmund-lcl-ci_1 O(tn) Id ::=¢; Ground-ld-ci_l 1 1
Rev_c; ' -Rev_Id-Ground O(tn) Rev_Id ::= Rev.c; '-Rev_ld-Ground rev_c; 1 1
G-edgeV; toV; O(n?) Ground := edgeV;toV; G-edgeV;toV; 1 1
MarkVa, GrAi(k) o(t) MarkVa, -Vao; GrAl(k) == MarkVa, -Va,_, GrA(k) MarkV,; GrAi(k) r r
MarkVa, -Va,;_, GrAt(k) o(¢) MarkVa, -Va; GrAt(k) == MarkVa, -Va,_, GrAt(k) MarkVa; GrAt(k) 1 1
MoarkVe, -Va, GrAt(k) O(¢) Ground ::= MarkV,, -Va, GrAi(k) 1 1
Ground-edgeV;to(k) O(t) MarkV; GrAt(k) ::= edge(k)toV; Ground-edgeV;to(k) 1 1

Table 3: Total work performelly the CHReachability Algorithm on a constructed problem. Column 1 shows the forms of the labels

used in a constructed problem. Column 2 gives a bound on the number of edges with labels of the form listed in column 1. Column 3
shows productions in which labels from column 1 appear on the right hand side. Column 4 shows the number of productions of the
form in column 3 that will be examined when considering a fixed edge with a label of the form in column 1. Column 5 shows the
number of new edges that may be produced in total for all of the productions counted in column 4. The total work performed is
bounded by (column 4 + column 5) * column 2.

qg

Work performed for
a given edge
. Total of
Form of label # of edges Productions with label on the right-hand side # exam-lned a.ttcmpf; to
productions
add an edge
Id O(n?) Ground-c-1d ::= Ground-c Id O(t) o(1)
return-Id ::= return Id 1 O(t)
Rev_Id O(n?) input-Rev_Id ::= input Rev_Id 1 o(t)
EdgeV;toV;-Rev_Id ::= edgeV;toV; Rev_Id O(t) o(t)
Ground O(n) Ground-edgeV;toV; ::= Ground edgeV;toV; o(t) o(t)
Ground-c ::= Ground c-value o(t) 1
c; O(¢) C;-Ground-Id ::= ¢; Ground-Id 1 O(n)
e ! O(t) Id := ¢;-Ground-1d _¢]' 1 O(t)
edgeV;toV; o(t) EdgeV;toV;-Rev_Id ::= edgeV;toV; Rev_Id 1 O(n)
Id ::= edgeVjtoV; Ground-edgeV;toV; O(t) O(t)
Ground-c-Id-edgeV;toV; ::= Ground-c-Id edgeV;toV; o(t) O(t)
Ground-Id O(n?) ¢;-Ground-Id ::= ¢; Ground-Id o(t) O(t)
Ground-edgeV; toV; O(t) Id ::= edgeVjtoV; Ground-edgeV;toV; O(t) O(t)
nput O(¢) input-Rev_Id ::= input Rev_Id 1 O(n)
input™ O(t) Id ::= input-Rev_Id input™ 1 O(t)
input-Rev_Id O(tn) Id ::= input-Rev_Id input™ 1 O(t)
return O(¢) return-Id ::= return Id 1 O(n)
return~ O(t) Id ::= return-Id return— 1 o(t)
return-1d O(tn) Id ::= return-Id return— 1 O(t)
Ground-c-1d O(tn) Ground-c-Id-edgeV;toV; ::= Ground-c-Id edgeV;toV; o(t) O(t)
Id ::= Ground-c-Id non-c’-vals O(t) O(t)
c-value O(t) Ground-c ::= Ground c-value 1 1
edgeV;toV; -Rev_Id-c ::= edgeV;toV;-Rev_Id c-value o(t) O(t)
Ground-c O(t) Ground-c-Id ::= Ground-¢ Id 1 O(n)
non-c’-vals O(t) Id ::= Ground-c-Id non-c’-vals o(t) O(t)
edgeV;toV;-Rev_Id O(tn) edgeV;toV;-Rev_Id-c ::= edgeV;toV;-Rev_Id c-value o(t) 1
edgeVitoV;-Rev_Id-c o(t?) Id ::= edgeV;toV;-Rev_Id-c Ground-c-Id-edgeV;toV;, O(t) o(t)
Ground-c-Id-edgeV; toVy, o(t?) Id ::= edgeV;toV;-Rev_Id-c Ground-c-Id-edgeV;toV}, O(t) O(t)

Table 4: Work performelly the CHReachability Algorithm on a problem constructed from an ML set-constraint problem. (See also
Table 3). Column 1 shows the forms of the labels used in a constructed problem. Column 2 gives a bound on the number of edges
with labels of the form listed in column 1. Column 3 shows productions in which labels from column 1 appear on the right-hand side.
Column 4 shows the number of productions of the form in column 3 that will be examined when considering a fixed edge with a label
of the form in column 1. Column 5 shows the number of new edges that may be produced in total for all of the productions counted in
column 4. The total work performed is boundelly (column 4 + column 5) * column 2.

