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1 Introduction

This paper explores a connection between interprocedural dataflow analysis
and model checking of pushdown systems (PDSs). Various connections be-
tween dataflow analysis and model checking have been established in past
work, e.g., [1-5]; however, with one exception ([2]), past work has shed light
only on the relationship between model checking and bit-vector dataflow-
analysis problems, such as live-variable analysis and partial-redundancy elim-
ination. In contrast, the results presented in this paper apply to (i) bit-vector
problems, (ii) the one non-bit-vector problem addressed in [2], as well as
(iii) certain dataflow-analysis problems that cannot be expressed as bit-vector
problems, such as linear constant propagation [6] and affine-relation analy-
sis [7]. In general, the approach can be applied to any distributive dataflow-
analysis problem for which the domain of transfer functions has no infinite
descending chains. (Safe solutions are also obtained for problems that are
monotonic but not distributive.)

The paper makes use of a recent result that extends PDSs to weighted PDSs,
in which each transition is labeled with a value, and the goal is to determine
the meet-over-all-paths value (for paths that meet a certain criterion) [8]. The
paper shows how weighted PDSs yield new algorithms for certain classes of
interprocedural dataflow-analysis problems. These ideas are illustrated by the
application of weighted PDSs to both simple constant propagation and linear
constant propagation.

The contributions of the paper can be summarized as follows:

e Conventional dataflow-analysis algorithms merge together the values for
all states associated with the same program point, regardless of the states’
calling context. With the dataflow-analysis algorithm obtained via weighted
PDSs, dataflow queries can be posed with respect to a regular language of
stack configurations. Conventional merged dataflow information can also be
obtained by issuing appropriate queries; thus, the new approach provides
a strictly richer framework for interprocedural dataflow analysis than is
provided by conventional interprocedural dataflow-analysis algorithms.

e Because the algorithm for solving path problems in weighted PDSs can
provide a witness set of paths, it is possible to provide an explanation of
why the answer to a dataflow query has the value reported.

Another theme of the paper is to illustrate a number of classic concepts that
arise in interprocedural dataflow analysis (e.g., exhaustive vs. demand evalu-
ation, differential vs. non-differential propagation, etc.) from the viewpoint of
the weighted PDS framework.

The algorithms described in the paper have been implemented in two libraries,



WPDS [9] and WPDS++ [10], that solve reachability problems on weighted
PDSs. These libraries have been used to create prototype implementations
of context-sensitive interprocedural dataflow analyses for uninitialized vari-
ables, live variables, linear constant propagation, and the detection of affine
relationships. WPDS is available on the World Wide Web, and may be used
by third parties in the creation of dataflow-analysis tools; WPDS++ will be
made available in mid-2005.

The remainder of the paper is organized as follows: Section 2 introduces termi-
nology and notation used in the paper, and defines the generalized-pushdown-
reachability (GPR) framework. Section 3 presents algorithms for solving GPR
problems. Section 4 shows how the GPR framework can be used to solve
interprocedural dataflow-analysis problems. Section 5 presents differential al-
gorithms for solving GPR problems. Section 6 discusses related work. Appen-
dices A and B present some technical results that are used in Section 5.

2 Terminology and Notation

In this section, we introduce terminology and notation used in the paper.

2.1 Pushdown Systems

A pushdown system is a transition system whose states involve a stack of
unbounded length.

Definition 1 A pushdown system is a triple P = (P,T', A), where P and T’
are finite sets called the control locations and the stack alphabet, respec-
tively. A configuration of P is a pair (p,w), where p € P and w € T'*.
A contains a finite number of rules of the form (p,v) —p (p',w), where
p,p € P, v €T, and w € I'*, which define a transition relation = between
configurations of P as follows:

Ifr = (p,7) —p (0, w), then (p,yw'y =Lsp (pf, wrw') for all w' € T*.

We write ¢ =p ¢ to express that there exists some rule r such that ¢ %p c;
we omit the subscript P iof P is understood. The reflerive transitive closure
of = is denoted by =*. Given a set of configurations C, we define pre*(C) oo
{d]3eceC:cd=*c}andpost*(C) E {c | Ic € C: c =* '} to be the sets of
configurations that are reachable—backwards and forwards, respectively—from
elements of C wvia the transition relation.



Without loss of generality, we assume henceforth that for every (p,v) — (p', w)
we have |w| < 2; this is not restrictive because every pushdown system can
be simulated by another one that obeys this restriction and is larger by only
a constant factor; e.g., see [11,12].

Because pushdown systems have infinitely many configurations, we need some
symbolic means to represent sets of configurations. We will use finite automata
for this purpose.

Definition 2 Let P = (P,I', A) be a pushdown system. A P-automaton is a
quintuple A = (Q,T',—,P, F) where Q D P is a finite set of states, - C @ X
[' x Q is the set of transitions, and F' C () are the final states. The initial
states of A are the control locations P. A configuration (p,w) is accepted
by A if p =5* q for some final state q. A set of configurations of P is regular
if it is accepted by some P-automaton. (We frequently omit the prefix P and
simply refer to “automata” if P is understood.)

Example 3 We will use a running example to explain the definitions and
algorithms given in Sections 2 and 3. We consider the pushdown system P.,
with control locations p and q, stack alphabet {a,b, c,d}, and the following five
rules:

= <p’ CL) — (q, b)a ro = <p’ a) — (p’ C>’ rs = <Qab> — (p, d)a
ra=(p,c) = (p,ad), 5= (p,d) = (p,e).

Fig. 1(b) shows part of the transition relation = generated by these rules.
Fig. 1(a) shows a P.,-automaton (henceforth called Aey) that accepts the set
of configurations Cop = {{q,bd?*) | k > 0}. The configurations of Cep are
encircled by dotted lines in Fig. 1(b).

A convenient property of regular sets of configurations is that they are closed
under forwards and backwards reachability. In other words, given an automa-
ton A that accepts the set C, one can construct automata Ay« and Ay
that accept pre*(C) and post*(C), respectively. The general idea behind the
algorithm for pre* [13-15,11] is as follows:

Let P = (P,T', A) be a pushdown system and A = (Q,T’,—¢, P, F) be a P-
automaton accepting a set of configurations C'. Without loss of generality we
assume that 4 has no transition leading to an initial state. pre*(C) is obtained
as the language of an automaton Ay« = (Q,I', —, P, F') derived from A by a
saturation procedure. The procedure adds new transitions to A according to
the following rule:



(a) (b)

Fig. 1. (a) Automaton Ac,. (b) The transition system generated by Pey.

If (p,v) — (P, w) and p’ 5* ¢ in the current automaton, add a transition
(7, 9)-

In [15] an efficient implementation of this procedure is given, which requires
O(|QI?|Al) time and O(|Q]|A| + [—l|) space.

Example 4 Applying this procedure to automaton A., from Ez. 8 yields the
automaton shown in Fig. 2(a), which indeed accepts the set pre*(Cly), includ-
ing all the configurations to the right of the dotted line in Fig. 2(b).

An automaton Ap,s+ accepting post*(C') can be obtained from a P-automaton
A= (Q,T,—, P, F) by a two-phase procedure. To simplify the presentation,
we allow the procedure to compute A,,,+ in the form of an automaton with e-
transitions (that is, its transitions are a subset of @ x (I'U{e}) x Q). However,
we assume that the initial automaton A has no such e-transitions. The entire
procedure is shown below:



(p, ddd) k (g,bdd) =— (p,add) =— (p,dadd) =—

(a) (b)

Fig. 2. (a) Automaton accepting pre*(Cez). (b) Extent of pre*(Cez) in Pey.

e Phase I
For each pair (p/,7') such that P contains at least one rule of the form
(p,7) = (P',7'7"), add a new state gy .
e Phase II (saturation phase)
In this phase, new transitions are added to the automaton until no more
rules can be added. (The symbol <> denotes the relation (<3)* 2 (<)*.)
The rules for adding new transitions are as follows:
- If (p,7) = (p',e) € A and p < ¢ in the current automaton, add a
transition (p/, €, q).
- If (p,7) = (¢',7") € A and p ~> ¢ in the current automaton, add a
transition (p', 7, q).
CIf (p, ) = (p',¥'¥") € A and p ~b ¢ in the current automaton, first

add (p',7, ¢y ,») and then (gy 4, 7", q).

Aost= can be constructed in time and space O(npna(ny +n2) +npng), where
np = |P|, na = |Al, ng = |Q|, no = | =0, n1 = |Q\P|, and ny is the number
of different pairs (p', ') such that there is a rule of the form (p,y) — (o', 77"
in A [11].

In Sections 3 and 5, we develop generalizations of these procedures.



2.2 Weighted Pushdown Systems

A weighted pushdown system is a pushdown system whose rules are given
values from some domain of weights. The weight domains of interest are the
bounded idempotent semirings defined in Defn. 5.

Definition 5 A bounded idempotent semiring is a quintuple (D, ®, ®,0,1),
where D is a set, 0 and 1 are elements of D, and & (the combine operation)
and ® (the extend operation) are binary operators on D such that

(1) (D,®) is a commutative monoid with 0 as its neutral element, and where
@ is idempotent (i.e., for alla € D, a® a = a).

(2) (D,®) is a monoid with the neutral element 1.

(8) ® distributes over @, i.e., for all a,b,c € D we have

a®(bdc)=(a®b)®(a®c) and  (a®b)@c=(a®c)® (b®c).

(4) 0 is an annihilator with respect to ®, i.e., for alla € D, a®0 =0 = 0®a.
(5) In the partial order T defined by: Ya,b € D, a C b iff a & b = a, there
are no infinite descending chains.

Defn. 5(1) and Defn. 5(5) mean that (D, ®) is a meet semilattice with no
infinite descending chains.

Definition 6 A weighted pushdown system is a triple W = (P,S, f)
such that P = (P, T, A) is a pushdown system, S = (D, ®,®,0,1) is a bounded
tdempotent semiring, and f: A — D is a function that assigns a value from D
to each rule of P.

Let 0 € A* be a sequence of rules. Using f, we can associate a value to o,
ie. if 0 = [ry,..., ], then we define v(o) & f(r) ® ... ® f(ry). Moreover,
for any two configurations ¢ and ¢’ of P, we let path(c,c’) denote the set of

all rule sequences [ry, ..., 7] that transform c into ¢, i.e., ¢ ST VNS

We now define two kinds of generalized pushdown reachability (GPR)
problems:

Definition 7 Let W = (P, S, f) be a weighted pushdown system, where P =
(P,T,A), and let C C P x I'* be a regular set of configurations. The gen-

eralized pushdown predecessor (GPP) problem is to find for each
ce€ P xTI*:

o 5(c) E ®{v(o) | o € path(c,d),c € C};

e o witness set of paths w(c) C U path(c,c) such that @ v(o) = d(c).
cdeC g€w(c)



The generalized pushdown successor (GPS) problem is to find for each
ce P xI™:

e 5(c) E®{v(o)| o € path(d,c),d € C};

e o witness set of paths w(c) C U path(c,c) such that @ v(o) = d(c).
cdeC g€w(c)

Notice that the extender operation ® is used to calculate the value of a path.
The value of a set of paths is computed using the combiner operation &. In
GPP and GPS problems, because of Defn. 5(5) (i.e., “no infinite descending
chains”), for each ¢ € P x I'* it is always possible to identify a witness set
w(c) that is finite.

3 Solving Generalized Pushdown Reachability Problems

Throughout this section, let W denote a fixed weighted pushdown system:
W = (P,S, f), where P = (P,T,;A) and § = (D,®,®,0,1). Let C de-
note a fixed regular set of configurations, represented by a P-automaton
A = (Q,T, =, P, F) such that A has no transition leading to an initial state.

GPP problems are multi-target meet-over-all-paths problems on a graph; GPS
problems are multi-source meet-over-all-paths problems on a graph. In both
cases, the vertices of the graph are the configurations of P, and the edges are
defined by P’s transition relation. The target (source) vertices are the vertices
in C. Both the graph and the set of target (source) vertices can be infinite,
but have some built-in structure to them; in particular, C' is a regular set.

Because GPR problems concern infinite graphs, and not just an infinite set
of paths, they differ from other work on meet-over-all-paths problems. As in
ordinary pushdown-reachability problems [13-15], the infinite nature of GPR
problems is addressed by reporting the answer in an indirect fashion, namely,
in the form of an (annotated) automaton.

Answer automata without their annotations are identical to the A, and
Aos+ automata created by the algorithms of [15,11]. The annotations allow
us to obtain §(c) and w(c) values. For instance, as described in Section 3.1,
for each ¢ € pre*(C), the values of (c) and w(c) can be read off from the
annotations by following all accepting paths for ¢ in the automaton created
by the algorithm for solving GPP problems; for ¢ ¢ pre*(C), the values of
d(c) and w(c) are 0 and (), respectively. (A similar statement can be made for
¢ € post*(C) and the automaton created by the algorithm for solving GPS
problems; see Section 3.2.)



3.1 Solving Generalized Pushdown Predecessor Problems

This section presents the algorithm from [8] for solving GPP problems. The
algorithm is presented in several stages:

e We first define a context-free grammar that characterizes certain sequences
of transitions that can be made by a pushdown system P and an automaton
A for C.

e We then turn to weighted pushdown systems and the GPP problem. We
use the grammar characterization of transition sequences, together with
previously known results on a certain kind of grammar-valuation problem
[16,17], to derive an algorithm for solving GPP problems.

e However, the initial solution is somewhat inefficient; to improve the per-
formance, we specialize the computation to our case, ending up with an
algorithm for creating an annotated automaton that is quite similar to the
pre* algorithm from [15,11].

3.1.1 Languages that Characterize Transition Sequences

In this section, we make some definitions that will aid in reasoning about the
set of paths that lead from a configuration c¢ to configurations in a regular
set, C'. We call this set the pre* witnesses for ¢ € P x I'* with respect to C:
PreStarWitnesses(c, C) = Uy path(c, ).

It is convenient to think of PDS P and P-automaton A (for C') as being
combined in sequence, to create a combined PDS, which we will call PA. PA’s
states are P U ) = @, and its rules are those of P, augmented with a rule
(g,7) < (¢, €) for each transition ¢ 1+ ¢’ in A’s transition set —.

We say that a configuration ¢ = (p,y172...7,) is accepted by PA if there
is a path to a configuration (g, €) such that ¢; € F. Note that because A
has no transitions leading to initial states, PA’s behavior during an accepting
run can be divided into two phases—transitions during which PA mimics P,
followed by transitions during which PA mimics .A: once PA reaches a state
in (@ \ P), it can only perform a sequence of pops, possibly reaching a state
in F. If the run of PA does reach a state in F, in terms of the features of the
original P and A, the second phase corresponds to automaton .4 accepting
some configuration ¢ that has been reached by P, after P was started in
configuration c. In other words, PA accepts a configuration c iff ¢ € pre*(C).

The first language that we define characterizes the pop sequences of PA.

Definition 8 (Pop Sequence) A pop sequence for q € Q, v € I, and ¢' € Q
is a sequence of transitions of PA’s transition relation that (i) starts in a



Production for each
(1) PopSeqynyy — € ¢ 5 q € =
(2) PopSeqq, . .y — € (p,7) = (P,e) €A
(3) PopSeqq,,., — PopSeqqy .o (p,7) = @,7) €A qeQ
(4) PopSeqy, q — PopSeqy v q4) PopSeqy gy — (p,7) = (P,7'7Y") €A,0,4 €Q

Fig. 3. A context-free grammar for the pop sequences of PA, and the PA rules that
correspond to each production.

=
=)
.qC, p —
5 -
{
(1) PopSeqiq ) — € (2) PopSeq(p,yp) = € (3) PopSeqqy y,q) = PopSeqy y1.q)
g5 ¢ €= (p,7) = (p,e) € A 0,7) = ®,Y)eDqeq
P Control location
YI Stack element

—— PDS transition

- ---> Right-hand side PopSeq
~~~ N Sequence of PDS transitions
-------------- > Left-hand side PopSeq

Stack height

(4) PopSeqp, .q) = PopSeqqy 1 gy PopSeqy

(p,7) = (YY) €Dq,d €Q

q)

Fig. 4. Schematic diagram of the types of transition sequences captured by the
PopSeq productions from Fig. 3.

configuration (g, yw), (ii) ends in a configuration (¢', w), and (iii) throughout
the transition sequence the stack is always of the form w'w for some non-empty
string w' € I'*, except in the last step, when the stack shrinks to w.

Note that, in general, there are many similar pop sequences that differ only
in the untouched part of the stack (i.e., w). Moreover, for all w, there is a pop
sequence for ¢, v, and ¢’ with untouched stack w if and only if there is a pop
sequence for ¢, v, and ¢’ with (untouched) stack €.

The family of pop sequences for a given ¢, v, and ¢’ can be characterized by the
complete derivation trees® derived from nonterminal PopSeq(y - 4y, using the
context-free grammar shown in Fig. 3. Fig. 4 depicts the types of transition
sequences captured by the PopSeq productions from Fig. 3.

Example 9 Recall the pushdown system P., from Ex. 3. Its transition system

5 A derivation tree is complete if it has a terminal symbol or € at each leaf.

10



(cf. Fig. 1(b)) admits the sequence
(p,a) =25 (p, c) <2 (p, ad) <2 (g,bd) <2 (p, dd) <2 (p, d) <2 (p,e),

which is a pop sequence for p, a, and p in which the untouched part of the stack
1s empty. Fig. 5 shows how this sequence is captured by a complete derivation
tree of the grammar that corresponds to PAe,—the combined PDS created
from P., and Aey. (In this example, the pop-sequence derivation tree only
makes use of grammar rules that correspond to PDS rules of P.;.) The rule
sequence that makes up the pop sequence is obtained from a preorder listing
of the tree: subsequence [rary] corresponds to the part of the tree up to the
branching, [rirsrs] to the left branch, and [rs] to the right branch. Note that
the left branch s itself another pop sequence for p, a, and p.

PopSeq o) [ (Pa) ~ (b0

PopSeq ¢ [ (P — (pad]

POPSEqp 4 [rs: (@) ~ (@) PopSeq g [rs (P - (Pe)]
PopSeqq ) [ (@b ~ (p.d] £

PopSeq .. [fst (P.D) — (P

€

Fig. 5. A complete derivation tree for PopSeq(p,a,p).

Theorem 10 PDS PA has a pop sequence for q, v, and ¢ iff nonterminal
PopSeq(q.qy of the grammar shown in Fig. 3 has a complete derwation tree.
Moreover, for each complete derivation tree with root PopSeq(q’%q,), a preorder
listing of the derivation tree’s production instances (where Fig. 3 defines the
correspondence between productions and PDS rules) gives a sequence of rules
for a pop sequence for q, 7, and ¢'; and every such sequence of rules has a
derivation tree with root PopSeq, . )-

Proof [Sketch] To shrink the stack by removing the stack symbol on the
left-hand side of each rule of PA, there must be a transition sequence that
removes each of the symbols that appear in the stack component of the rule’s
right-hand side. In other words, a pop sequence for the left-hand-side stack
symbol must involve a pop sequence for each right-hand-side stack symbol
(see Fig. 4).

11



The left-hand and right-hand sides of the productions in Fig. 3 reflect the
pop-sequence obligations incurred by the corresponding rule of PA. O

To capture the set PreStar Witnesses({p, 172 - . - Yn), C), where C is recognized
by automaton A, we extend the context-free grammar from Fig. 3 by the set
of productions

Accepting[vwg---’Yn](p,q) - P"pseq(pmm) POpseq(qlﬁz,qz) PoPSﬁq(qn—lﬁn,q)
foreachpe Pg; €@, for1<i<n-—1; andgqe F

Accepted[y1v2 - --Ynlpy — Accepting[yiy2 - - Yul(p,g) foreachp e P,qe F

This language captures all ways in which PDS PA can accept (p, 7172 - - - Yn):
the set of pre* witnesses for (p,y172 . . . ¥,) corresponds to the complete deriva-
tion trees derivable from nonterminal Accepted[y17s - . . Vn)(p)- The subtree rooted
at PopSeqg, . .4, 8ives the pop sequence that PA performs to consume sym-
bol ;. (If there are no pre* witnesses for (p, 7172 - . . 7 ), there are no complete
derivation trees with root Accepted[y1v2 ... Ynl(p)-)

3.1.2 Weighted PDSs and Abstract Grammar Problems

Turning now to weighted PDSs, we will consider the weighted version of PA,
denoted by WA, in which weighted PDS W is combined with A, and each
rule {(q,7v) < {(¢', €) that was added due to transition ¢ -+ ¢’ in A’s transition
set — is assigned the weight 1.

We are able to reason about semiring sums (@) of weights on the paths that are
characterized by the context-free grammars defined above using the following
concept:

Definition 11 [16,17] Let (S,1) be a meet semilattice. An abstract gram-
mar over (S,M) is a collection of context-free grammar productions, where
each production 6 has the form

Xo — g@(Xlﬂ s an)

Parentheses, commas, and gy (where 0 is a production) are terminal sym-
bols. Every production 6 is associated with a function gg: S* — S. Thus,
every string o of terminal symbols derived in this grammar (i.e., the yield
of a complete derivation tree) denotes a composition of functions, and corre-
sponds to a unique value in S, which we call valg(a) (or simply val(«) when
G is understood). Let Lg(X) denote the strings of terminals derivable from a
nonterminal X. The abstract grammar problem is to compute, for each

12



Production for each

(1) PopSeqy. gy — 91(€) (¢:7:4') € =0
g =1

(2) PopSeq, .,y — 92(€) r={(p,7) = ) €A
g2 = [f(r)

(3) PopSeqy, o — 93(PopSeqyy v q) T=(p,7) = PY) €A qER
gp=Ar.f(r)®@uz
(4) PopSeq

pova) g4(P0pSeq(

) P0p56Q(ql ,’7"#1))

r=(p,y) = @,V €N qqd €Q

p'q

gr=Xx ) \y.f(r)@z®y
(5) Accepting[nive - Valp.a) = 95(PopSeqq, , 411 POPS€q(q, g g0)s - - - POPSEq g, | 7 )
peEP g e, forl<i<n-—1, andgqge F
g5 = AL1.AZ9 .. . ATp. 21 QT ® ... Q X,
(6) Acceptedyivs ... ]y = gs(Accepting[vive ... Ynlpa)
pePqgeF

g6 = AxT.T

Fig. 6. An abstract grammar problem for the weighted pre* problem.

nonterminal X, the value

me(X):= [l wvalg(a).

a€Lg(X)

The value mg(X) is called the meet-over-all-derivations value for nonter-
minal X .

Because the complete derivation trees with root Accepted|y,7s ... Vn](p) encode
the transition sequences by which WA accepts (p, 7172 - - - 7n), to cast a GPP
problem as a grammar problem, we merely have to attach appropriate pro-
duction functions to the productions so that for each rule sequence o, and
corresponding derivation tree (with yield) a, we have v(0) = valg (). This is
done in Fig. 6: note how functions gs, g3, and g4 place f(r) at the beginning
of the semiring-product expression; this corresponds to a preorder listing of a
derivation tree’s production instances (cf. Theorem 10).

Example 12 Consider once again the pushdown system P, introduced in
Ezx. 3 and suppose that we assign a non-negative integer weight to each rule.
Let Sp = (INp, min, +,00,0) be the Dijkstra semiring, whose domain is
the non-negative integers, and in which values along a path are added up.
Moreover, let Wy = (Pow,Sp, f) be a weighted pushdown system. For the

13



purpose of our example, let

f(rl) =5, f(TQ) = 47 f(Tg) =3, f(’l“4) =2, f(rf’)) =1

The transition relation of W,,, complete with the weights given by f, is shown
in Fig. 7.
(p;e)
1

(p,d) (g,b) (p,a) (p,da) =—

1 <p,icd> <L (p,ded)y ~—
2

(p, ddd) ~> (g, bdd) = (p, Tdd) <+ (p,daddy ~
4

Fig. 7. Weighted transition system of We;.

Fig. 8 shows the weighted version of the derivation tree from Fig. 5, where
the functions associated with the productions are taken from Fig. 6. In each
function, the A-operators capture the values obtained from the children of the
assoctated node, from left to right. Thus, the value obtained at the root is 16,
which is indeed the value of the pop sequence represented by the tree (cf. Fig. 7).

POpPSeq o) [ (P - (P.O]

AX5 +x l
POPSEqp.cp) [ (00—~ (p.ad)]
AXAY.2+X+y
PopSeqy o p) [r:: (P — (@b)] PopSeq, gy s (PO ~ (o)
X5+ X 1
PopSeqq ) [rs: @b ~ (p.d)] £
AX.3 + X
PopSeq, g s (P.d) ~ (P&l
1

€
Fig. 8. Complete derivation tree for PopSeq(p,a’p) with weights from Fig. 6.

To solve the GPP problem, we appeal to the following theorem:
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Theorem 13 [16,17] The abstract grammar problem for G and (S,M) can be
solved by an iterative computation that finds the maximum fized point when
the following conditions hold:

(1) The meet semilattice (S,M) has no infinite descending chains.
(2) Every production function gg in G is distributive, i.e.,

g('|_|,...,.|_|):. . [l 9(Tiys -, 2i,)
1€l i €1g (Zl,...,Zk)EhX---XIk
for arbitrary, non-empty, finite index sets I, ..., Iy.

(8) Ewvery production function gg in G is strict in T in each argument, where
T is the greatest element of (S,1).

The abstract grammar problem given in Fig. 6 meets the conditions of Theo-
rem 13 because

(1) By Defn. 5(1), the @ operator is associative, commutative, and idempo-
tent; hence, (D, ®) is a meet semilattice. By Defn. 5(5), (D, @) has no
infinite descending chains.

(2) The distributivity of each of the production functions gy, ..., g¢ over
arbitrary, non-empty, finite index sets follows from repeated application
of Defn. 5(3).

(3) By Defn. 5(1), @ has the identity element 0; hence, (D, ®) is a meet
semilattice with greatest element 0. Production functions gs, ..., g¢ are
strict in 0 in each argument because 0 is an annihilator with respect to ®
(Defn. 5(4)). Production functions g; and g are constants (i.e., functions
with no arguments), and hence meet the required condition trivially.

Thus, one algorithm for solving the GPP problem for a given weighted PDS
W, initial configuration (p,¥17s . ..7Vs), and regular set C' (represented by au-
tomaton A) is as follows:

e Create the combined weighted PDS WA.

e Define the corresponding abstract grammar problem according to the schema
shown in Fig. 6.

e Solve this abstract grammar problem by finding the maximum fixed point
using chaotic iteration: for each nonterminal X, the fixed-point-finding al-
gorithm maintains a value {(X'), which is the current estimate for X’s value
in the maximum fixed-point solution; initially, all [(X) values are set to
0; I(X) is updated whenever a value [(Y') changes, for any Y used on the
right-hand side of a production whose left-hand-side nonterminal is X.
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3.1.83 A More Efficient Algorithm for the GPP Problem

The approach given in the previous section is not very efficient: for a
configuration (p,1172...7n), it takes O(|Q|" !|F|) time and space just to
create the grammar productions in Fig. 6 with left-hand-side nonterminal
Accepting[y1Ys - . - Yn)(p,q)- However, we can improve on the algorithm of the
previous section because not all instantiations of the productions listed in
Fig. 6 are relevant to the final solution; we want to prevent the algorithm
from exploring useless nonterminals of the grammar shown in Fig. 6.

Moreover, all GPP questions with respect to a given target-configuration set
C involve the same subgrammar for the PopSeq nonterminals. As in the (ordi-
nary) pushdown-reachability problem [13-15], the information about whether
a complete derivation tree with root nonterminal PopSeq, ) exists (i.e.,
whether PopSeq(qmq,) is a productive nonterminal) can be precomputed and
returned in the form of an (annotated) automaton of size O(|Q| |A| + |—ol)-
Exploring the PopSeq subgrammar lazily saves us from having to construct
the entire PopSeq subgrammar. Productive nonterminals represent automa-
ton transitions, and the productions that involve any given transition can be
constructed on-the-fly, as is done in Alg. 1, shown in Fig. 9.

Fig. 9 presents an algorithm for creating a weighted automaton for the GPP
problem. In essence, the algorithm does the following: it starts with the au-
tomaton A, which accepts the set of configurations C. Each transition ¢ of the
automaton is labeled with an element from the semiring S (denoted by [(¢)).
Initially, all of the transitions in A are labeled with 1. We add transitions to
A according to the following saturation rule:

If r = (p,v) — (p/,w) and there is a path for string w from p’ to ¢ with
cost ¢ in the current automaton, either (i) introduce a transition (p, 7, q)
if the automaton does not already contain such a transition, or (ii) change
the label on (p, 7, q) if (p, v, ¢) already occurs in the automaton. The label
of transition (p, 7y, ¢) is computed as follows:

fr)®c if (p,7,q) is a new transition
(fry®e) & l(p,7,9) otherwise

The cost of a path in the automaton is computed by taking the ® of the
labels on the transitions along the path.

It is relatively straightforward to see that Alg. 1 solves the grammar problem
for the PopSeq subgrammar from Fig. 6: workset contains the set of transitions
(PopSeq nonterminals) whose value /(¢) has been updated since it was last

16



Algorithm 1
Input: a weighted pushdown system W = (P, S, f),
where P = (P,T',A) and S = (D, ®,®,0,1);
a P-automaton A = (Q,T', —¢, P, F') that accepts C,
such that A has no transitions into P states.

Output: a P-automaton Ay = (Q,T', —, P, F) that accepts pre*(C);
a function [ that maps every (g,7,q’) € — to the value of
mg(PopSeq(q,%q/)) in the abstract grammar problem defined in Fig. 6.

1 procedure update(t,v)

2 begin

3 — == U{t}

4 new Value :=[(t) d v

5 if newValue # [(t) then

6 workset := workset U {t}
7 I(t) :== newValue

8 end

9

10 — := —0; workset: = —¢; | := At.0

11 forallte —pdoli(t):=1

12 for all r = (p,v) — (p', &) € A do update((p,~,p'), f(r))

13  while workset # () do

14 select and remove a transition ¢t = (gq,~,q') from workset

15 for all r = (p1,71) < (g,7) € A do update((p1,71,q"), f(r) ® (1))
16 for all r = (p1,71) <= (g,7y2) € A do

17 for all tl = (q,a’y?aq”) € — do update((pla'ylaq”)a f(’f‘) ® Z(t) ® l(tl))
18 for all r = (p1,m) = (@', 727) € A do
19 if t' = (p',72,q) € — then update((p1,71,4"), f(r) 1({t') ®1(t))

20 return ((Q,T,—,P, F),l)

Fig. 9. An algorithm for creating a weighted automaton for the weighted pre* prob-
lem.

considered; in line 10 all values are set to 0. Lines 11-12 process the rules of
types (1) and (2), respectively. Lines 13-19 represent the fixed-point-finding
loop: lines 15, 17, and 19 simulate the processing of rules of types (3) and (4)
that involve transition ¢ on their right-hand side. A function call update(t, v)
computes the new value for transition ¢ in terms of /(¢) and v. Note that line 7
can change [(¢) only to a smaller value (with respect to C). The iterations
continue until the values of all transitions stabilize, i.e., workset is empty.

From the observation that Alg. 1 is simply a different way of expressing the
grammar problem for the PopSeq subgrammar, we know that the algorithm
terminates and computes the desired result. Moreover, apart from operations
having to do with /, the algorithm is remarkably similar to the pre* algorithm
from [15]—the only major difference being that transitions are stored in a
workset and processed multiple times, whereas in [15] each transition is pro-
cessed exactly once. Thus, the time complexity increases from the O(|Q|?|A|)
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complexity of the unweighted case [15] by a factor that is no more than the
length of the maximal-length descending chain to any value that appears in
the annotated automaton.

Given the annotated pre* automaton, the value of §(c) for any configuration
c can be read off from the automaton by following all paths by which c is
accepted—accumulating a value for each path—and taking the meet of the
resulting value set. The value-accumulation step can be performed using a
straightforward extension of a standard algorithm for simulating an NFA (cf.
[18, Algorithm 3.4]).

Example 14 Recall the weighted pushdown system W, introduced in Ex. 12.
A GPP problem for W,, formulates a multi-target shortest-path problem on
its infinite transition system, where the targets are some reqular set of con-
figurations (say, Cey, see FEz. 8): In the automaton computed by Alg. 1, each
accepting path for some configuration ¢ corresponds to one or more pre* wit-
nesses for ¢ with respect to Cey; using minimum as the combiner ensures that
the value of the shortest path is retained. Fig. 10(a) shows the initial weighted
automaton accepting Cey, itn which all transitions are labeled with the 1-element
of the semiring (which in this example is the number 0). Applying the satura-
tion rule to this automaton leads to the following actions:

o Flirst, we havers = (p,d) — (p,e), and p =* p with weight 0 holds trivially.
Therefore, we add p -2 p with weight f(rs) = 1.

e Neat, we can consider the rule ry = {p,a) < (g,b) and the path ¢ -=* s,
with weight 0, which allows us to add a new transition p - s; with weight
f(Tl) +0=>5.

e This addition creates a path p —2%* s, with weight 5+ 0. Because we have
ry = (p,c) = (p,ad) and f(ry) = 2, the next addition is p - s, with
weight 7.

e Similar considerations lead to p % so with weight f(ry) +7 =11, p 5 s;
with f(ry) +11 =13, ¢ % p with f(r3) +1 =4, p % p with f(r)) +4 =9,
and p % p with f(ry) +9+1=12.

e At this point, the saturation procedure reaches a fixed point—i.e., the au-
tomaton shown in Fig. 10(b). For instance, we could still consider rule
ro = (p,a) — (p,c) and p —5* s1, which would contribute the value
f(ra) + U(p,c,s1) = 4 + 13 to the weight of p - s1. However, because
we already have l(p,a,s1) = 5 and min{5,17} = 5, this would not make a
difference.

The automaton produced by this procedure allows us to determine, for each
configuration ¢ € pre*(Cy), the length of the shortest path from ¢ to some
configuration in Cey. For instance, looking at cep := (p, dc) we find the accept-
ing path p % p % s1, whose value is 1+13 = 14. In fact, the shortest path in
Wer from ce, to a configuration in Ceyp is 0 = [r5rarersry] leading to (g, bdd),
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d(0)] | d(o)

Sor®

(a) (b)

Fig. 10. (a) Initial weighted automaton for Ce,. (b) Automaton after applying Alg. 1.

andv(o) =1+24+4+24+5=14.

Please note that the Dijkstra semiring is a particularly simple example for the
GPP framework in the following sense:

e Using min as the combiner operation imposes a total ordering on the semi-
ring domain. In general, the GPP framework can deal with partial orderings,
and the values obtained for each configuration can stem from the combina-
tion of multiple paths. In this sense, the value of 14 for ¢, can be seen as
a summary of all the paths leading to C,;, the summary in this case being
simply the value of the shortest path.

e The extender operator, +, is commutative. In general, this is not required,
and the order of arguments to ® in Alg. 1 really matters.

Section 4 will show some examples that do not exhibit these characteristics.

Alg. 1 is a dynamic-programming algorithm for determining §(c); Section 3.1.4
describes how to extend Alg. 1 to keep additional annotations on transitions
so that a path set w(c) can be obtained.

3.1.4 Generation of Witness Sets

Section 3.1.3 gives an efficient algorithm for determining 6(c); this section
addresses the question of how to obtain a w(c) set that is finite. For a given
configuration ¢, finding w(c) means identifying a set of paths 71, ..., 7 in the
transition relation of the weighted PDS such that, for 1 < i < k, each path
m; leads from ¢ to some ¢; € C, v(m;) = d;, and @F_; d; = 6(c). We note the
following properties:

e In general, £ may be larger than 1, e.g., we might have a situation where
d(c) = di @ dy because of two paths with values d; and ds, but there may
be no single path with value d; & d,.

e We want to keep w(c) as small as possible. If a witness set contains two
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paths m and 7, where v(m) C v(my), then the same set without y is still
a witness set.

As with many dynamic-programming problems, a “global reason” for an an-
swer can be obtained by recording “local reasons”. In this case, to obtain a
finite witness set w(c), we will create a directed hypergraph G,,, = (N, E),
where N C (= x D) and E C (N x A x N*).% A node n = (t,d) € N, where
t = (p,7,q), records that there exist pop sequences o1,..., 0 for p,v, ¢ and
d= €B§:1 d;, where dy, ..., d; are the semiring values accumulated along these
paths:

e If ¢t € — is a transition from A and d = 1, then £ = 1 and o; = ¢; this fact
is represented by a node (¢, 1) that has no incoming hyperedges.

e For a node n = (¢,d) for which ¢t € — is not a transition from A, each
hyperedge (n,7,n; ...n,,) corresponds to a collection of pop sequences for
P, 7, q; each of these pop sequences is of the form r7 ... 7, where each 7,
for 1 <i < m, is a pop sequence for n;.

Once Gyp is constructed, the information in it captures a witness set for any
given configuration c: if ¢;...¢,, is a path in A,,- by which c is accepted,
then w(c) consists of every sequence o . ..o, where, for every 1 < i < m,
o; is a pop sequence for (¢;,1(¢;)). (It should be noted that G,,, is a succinct
representation of w(c); in the worst case, (i) the length of a path in w(c) can
be exponential in the size of G,,,, and (ii) the cardinality of w(c) can be doubly
exponential in the size of Gp,,. Thus, in some cases it may be important for
witness sets to be reported as hypergraphs.)

Example 15 Fig. 11 shows what Gyop looks like for the automaton created in
Ex. 14. Hyperedges are shown as a collection of simple edges with the label
inside a box. Notice that the hyperedge labeled with rs has an empty sequence
of nodes as its source because it is derived from the rule r5 = (p,d) — (p,¢).

In Ex. 14, the configuration ce, = (p, dc) is accepted by the path p Ay p S5 5.
Therefore, w(cey) consists of the pop sequence for ((p,d, p), 1), followed by the
sequence for ((p,c,s1),13). (Because the semiring in this example is totally
ordered, we end up with just one pop sequence per transition.) The former
is merely [rs]; the latter is [ryrorar1]. In fact, these sequences together form
exactly the shortest path mentioned in Fx. 14.

To implement the idea outlined above, we extend Alg. 1 as follows: In line 10,
the empty hypergraph is created by setting N := () and E := (). In line 11, a

6 Each hyperedge is of the form (n,r,n...7n,); n is the target of the hyperedge;
N1,..., Ny, are its (ordered) sources. The order of source nodes matters; i.e., two
hyperedges that have the same source nodes in different orders are different hyper-
edges.
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((q,b,81),0) ((515d352)70) ((525d351)70)

((p,d,p),1) ((p,a,s1),5)

((g,6,p),4) ((p,c,52),7)

((p,a,p),9) ((p, a,s2),11)
((p,c,p),12) ((pyc,1),13)

Fig. 11. The graph G, for the automaton from Fig. 10(b).

Algorithm 2
1 procedure update(t,v,r,T)
2 begin
3 — == U{t}
4 new Value :=[(t) d v
5 if newValue = [(t) then return
6 workset := workset U {t}
7 N := N U{(t, newValue) }
8 // Record the contribution of v to newValue

9 E = EU{((t, newValue),r, (t1,1(t1)) - .. (tm,(tm)))} where ;..

10 // Copy hyperedges whose values are not subsumed by v
11 for all ((¢,1(t)),7', (t1,d1) ... (tm,dm)) € E do

12 ifoZ f(r') @ @, di then

13 E := EU{((t,newValue),r’, (t1,d1) ... (tm,dm))}
14 I(t) := newValue

15 end

Fig. 12. Modified update procedure.

tm =T

node (t,1) is added to N for every t € —,. Moreover, we replace the update

procedure by the revised version shown in Fig. 12.

In Fig. 9, update takes two arguments: ¢ and v. To create the witness structure
Opop, the update procedure given in Fig. 12 needs access to r, the rule used,
and 7', the list of transitions used; hence, update now takes four arguments: ¢,
v, r, and 1. The four calls on update in Fig. 9 are modified as follows:
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1), f(r),r,€)
P, 4), f(r) @ U(E), 7, t)
P, 4"), f(r) @1U(E) @ U(H), 7, 1)
line 19:  wpdate((p1,71,4"), f(r) @U(t) @ I(t),r, ' 1)

line 12: update
line 15: update
line 17:  update

((p,
((
((
((

®®

In line 5 of Fig. 12, if newValue = [(t), then the update does not change (%),
and nothing further needs to be done. In line 7, the node (¢, newValue) i
added to Gyp, and in lines 9-13 hyperedges to the new node are added.

e In line 9, the addition of ((¢, newValue),r, (t1,1(t1)) ... (tm,(tm))) records
the contribution of » and T to newValue. That is, r and T contributed
value v, which is supported by the witness information available in the
hyperedges that have target (;,1(¢;)), 1 < i < m.

e In addition, in lines 11-13 copies of the hyperedges that have target (¢,(t))
are created, but now with target (¢, newValue). The check in line 12 assures
that such hyperedges are added only if the values accumulated along the
corresponding pop sequences actually contribute to new Value.

In an implementation, one would also want to keep the hypergraph as small
as possible, which can be accomplished by garbage collecting the parts of G,
that cannot affect any node (¢,1(t)), where t € — and [(¢) is the current value
associated with ¢. Note that hyperedges created during update contain only
references to nodes created strictly earlier, and thus G,,, cannot contain cycles.
If each target node holds a reference to each of its incoming hyperedges, and
each hyperedge holds a reference to each of its source nodes, reference counting
can be used to identify the nodes and hyperedges that can be collected.

3.2  Solving Generalized Pushdown Successor Problems

This section presents an algorithm for solving GPS problems. Given a weighted
pushdown system P and a P-automaton .4 that recognizes a set of configura-
tions C, the algorithm creates an annotated P-automaton (with e-transitions,
cf. Section 2.1) that (i) recognizes post*(C), and (ii) for each ¢ € post*(C),
provides a way to read out the values of d(c) and w(c). Without loss of gener-
ality, we assume that (i) A itself contains no e-transitions, and (ii) .4 has no
transitions into P states.

The presentation in this section parallels that of Section 3.1; the algorithm for
solving GPS problems will be presented in several stages:

e We first define a context-free grammar that characterizes certain sequences
of transitions that can be made by a pushdown system P and an automaton
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A for C.

e We use the grammar characterization of transition sequences to derive an
algorithm for solving GPS problems.

e Again, to improve the performance we specialize the computation, ending
up with an algorithm for creating an annotated automaton that is quite
similar to the post* algorithm from [15,11].

Similar to what was done in Section 3.1, the first step is to make some defini-
tions that aid in reasoning about the set of paths that lead from configurations
in a regular set C' to a configuration c. We call this set the post* witnesses for
¢ € P x I'* with respect to C: PostStarWitnesses(c, C) = Ugec path(c, c).

Again, it is convenient to combine P and A in sequence to create a combined
PDS, which we will call A%P; however, here the transitions for A are reversed,
and the reversed automaton’s rules will precede those of P. As a prelude to
the construction of ARP, first consider the combination of P and A defined
as follows:

The states are P U Q = @, and the rules are those of P, augmented with a
rule (¢’,e) — (g,7) for each transition ¢ -5 ¢’ in A’s transition set —».

Strictly speaking, this way of combining P and A is not a PDS because PDSs
do not have rules of the form (¢',e) — (g,7v). However, such rules can be
accommodated by redefining the transition relation between configurations as
follows:

If r ={q,7) — (¢',w), then (g, yw') RUN (¢',ww') for all w' € T*.
If r = (g,€) < (¢, 7), then (g, w') == (¢, yw') for all w’ € I'*.
Using this extension of PDSs, A®P is defined as follows:

ARP’s states are PUQ U {qy.y | (p,7) = P',¥7") € A} (= QU {gy.y |
(p,7) = P,y € A}, because P C @), and its set of rules A’ is defined
as follows:

(1) For each rule r of the form (p,v) — (p',e) € A, A’ contains r.

(2) For each rule r of the form (p,v) — (p',7') € A, A’ contains 7.

1.1

(3) For each rule of the form (p,v) — (p',7¥'7") € A, A’ contains two rules:

(2, 7) = (@ s 7") and (g 1, €) = (P, 7).
(4) For each transition ¢ - ¢’ in A’s transition set —, A’ contains a rule

(¢',e) = (g,7)-

The two rules introduced in item (3) recast a rule of the form (p,7) —

®',7y'+") in terms of the extension in which ¢ is allowed on the left-hand

side of a rule. (It is intentional that if rule set A has two rules with right-hand
I 11

sides (p/, ¥'+") and (p’, ¥'¥"), only one copy of the rule (g, ,,e) — (p,7') will

23



Production for each
(1) PushSeq(, ., — € (¢:7,4') € =0
(2) PushSeqy, .y — PushSeqy, . PushSeq, .. (p,7) = (P,e) € A,q,¢ €Q,v €T
(3) PushSeqqy 4 — PushSeq, , » p,7) = @, YYeAqgeQ
(4) PushSeq(p,ﬁ,’qp,ﬁ,) — € (@ yy8) = (P ) € A
(5) PushSeq(qp,n,ﬁ,,’q) — PushSeq, , D,7) = {gpq,V") €A,gEQ

Fig. 13. A context-free grammar for the push sequences of A®P, and the A®P rules
that correspond to each production.

appear in A'.)

We say that a configuration ¢ = (p, 172 ... Vn), for p € P, is accepted by ARP
if there is a path to ¢ from a configuration (gy,¢), where ¢y € F. Note that
because A has neither e-transitions nor transitions leading to initial states,
AEP’s behavior during an accepting run can be divided into two phases:
transitions during which AP mimics A in reverse—and therefore generates
a configuration ¢’ € C, followed by transitions during which A®P mimics P,
starting from ¢/. An accepting run of ARP starts in a state ¢; € F; while
it remains in states in (Q \ P), A®P can only perform a sequence of pushes,
possibly reaching a state in P. At the first moment that the run of A®P reaches
a configuration ¢’ with a state in P, ¢/ must be a configuration accepted by
A (i.e., ¢ would be accepted if A were run in the forward direction), and
hence ¢ € C. During the second phase, A%P mimics transitions of P to reach
configuration c. In other words, P can reach c starting from configuration ¢
Consequently, A®P accepts a configuration c iff ¢ € post*(C).

Definition 16 (Push Sequence) A push sequence for ¢ € Q, v € I', and
q € Q is a sequence of transitions of A®P’s transition relation that (i) starts in
a configuration (¢', w), (ii) ends in a configuration (g, yw), and (iii) throughout
the transition sequence, the stack is always of the form w'w for some (possibly
empty) string w’ € ['*, where the contents of w is never inspected during any
transition of the transition sequence.

As with pop sequences, there are many similar push sequences that differ only
in the untouched part of the stack (i.e., w).

The family of push sequences for a given ¢', v, and ¢ can be characterized by
the complete derivation trees derived from nonterminal PushSeq, . ., using
the grammar shown in Fig. 13. Note that the subscripts and rules in Fig. 13
should be read from right to left: the push sequences for ¢, v, and ¢ are
characterized by PushSeq, , .. For instance, rule (2) says that if (i) starting in
state ¢’ there is a push sequence that ends in ¢ (pushing +') and (ii) starting in
q there is a push sequence that ends in p (pushing «y), then the concatenation
of these two sequences, followed by the application of rule (p,v) < (p,¢)
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(2) PushSeqqy v o Py7>49)
(p,7) = (Phe) €D, €@y €T

— PushSeq PushSeqq . q1)

E

2

(]

o

X

[§]

S

(/7]

(3) PushSeq(pw/,q) - PushSeq(p,%q) (4) PushSeq(p/ﬁ/’qp,w,) — €
<p7 7) — <pla’yl> € Aaq € Q <qp’,’7”€> — <pla’yl> € A
(5) PushSeq(qp,ﬁ, ) — PushSeqq, o)

p Control location " ,
’Y' Stack element <p7 7) — <qp’,7',’7 ) € A »q € Q

=——  PDS transition

- - =--=> Right-hand side PushSeq
~~~~ " Sequence of PDS transitions
-------------- > Left-hand side PushSeq

Fig. 14. Schematic diagram of the types of transition sequences captured by the
PushSeq productions from Fig. 13.

yields a push sequence that starts in state ¢’ and ends in p' (pushing «').
Fig. 14 depicts the types of transition sequences captured by the PushSeq
productions from Fig. 13.

Theorem 17 PDS ARP has a push sequence for ¢', v, and q iff nonterminal
PushsSeq(q 4\ of the grammar shown in Fig. 13 has a complete derivation tree.
Moreover, for each complete derivation tree with root PushSeqy ., a right-
to-left postorder listing of the derivation tree’s production instances (where
Fig. 18 defines the correspondence between productions and PDS rules) gives
a sequence of rules for a push sequence for ¢', v, and q; and every such sequence
of rules has a derivation tree with root PushSeq(, , -

Proof [Sketch] The argument is by induction on push-sequence length. Each
of the grammar rules of Fig. 13, when the right-hand side is read right to left,
followed by an application of the corresponding PDS rule shown in the last
column of Fig. 13, results in a push sequence corresponding to the left-hand-
side nonterminal symbol (see Fig. 14). Moreover, each push sequence of A%P
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Production for each
(1) PushSeqqy, q) — € (¢,7,¢) € =0
(2) SameLevelSeqy . ., — PushSeqq,, » (p,7) = (Pe) € A,geQ
(2" PushSeqqy v ) — SameLevelSeqq, . » PushSeqq. o P €P, ¢.¢ €Q
(3) PushSeqqy g — PushSeq, . o) p,v) = P, ¥)YeENgeQ
(4) PushSeq(p,ﬁ,’qp,w,) — € (Gpy ) = P, 7) e A
(5) PushSeq(qp, R PushSeq, .. o) p,7) = {gp 7"y €EA,gEQ

Fig. 15. A refactoring of the grammar from Fig. 13. In particular, rules (2) and (2')
above correspond to rule (2) of Fig. 13.

must end with an application of a rule of A®P, and hence can be decomposed
according to rules (1)-(5) of Fig. 13. O

In what follows, we will work with the PushSeq grammar shown in Fig. 15,
rather than than the one shown in Fig. 13. In Fig. 15, the only change is that
a new family of nonterminals is introduced, denoted by SameLevelSeq, . .,
and production (2) from Fig. 13 is broken into two productions: (2) and (2').
(This refactoring is introduced so that the post* algorithm that we finally end
up with-—Alg. 3—closely resembles the post* algorithm from Schwoon’s thesis
[11, Alg. 2].)

To capture the set PostStarWitnesses({p, 7172 ---7n),C), where C is recog-
nized by automaton A, we extend the context-free grammar from Fig. 15 by
the set of productions

Accepting[y172 - - - Ynl(p,q) = PushSeqp, , q,) PushSeq ... PushSeq

Q1:72JI2) anl,’Yn,‘I)

foreachp € P,q; € Q, for 1 <i<n—1; andgq€ F

Accepted[y1v2 - .- Ynlpy — Accepting[yiy2 - - - Val(p,g) for each p € P,q € F

(1)
This language captures all ways in which PDS ARP can accept (p, 7172 - - - Yn):
the set of post* witnesses for (p,7172...7,) corresponds to the complete
derivation trees derivable from nonterminal Accepted[y172 ... Vn]p). The sub-
tree rooted at PushSeq, . ., 4 gives the push sequence that AEP performs to
generate symbol ;. (If there are no post* witnesses for (p, 172 ... 7n), there
are no complete derivation trees with root Accepted[y172 - .. Val(p)-)

We are concerned with weighted pushdown systems, and thus consider the
weighted version of A®P, denoted by AFW, in which the rules in A’ receive
weights as follows:

(1) For each rule r of the form (p,y) < (p',e) € A, A’ contains r with weight
f(r).
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(2) For each rule r of the form (p,v) — (p',7") € A, A’ contains r with
weight f(r).

(3) For each rule 7 of the form (p,v) — (p',7'7") € A, A’ contains two
rules: (p,v) <= (gp,y,7") with weight f(r) and (gy,,e) = (p',7) with
weight 1.

(4) For each transition ¢ - ¢’ in A’s transition set —, A’ contains a rule
(¢',e) — (q,7) with weight 1.

As argued earlier, ARW accepts a configuration c iff ¢ € post*(C). Because the
complete derivation trees with root Acceptedy17, ... Vn](p) encode the transi-
tion sequences by which ARW accepts (p, 7172 - - Va), to cast a GPS problem
as a grammar problem, we have to attach appropriate production functions to
the productions of Fig. 15 so that for each rule sequence o, and corresponding
derivation tree (with yield) o, we have v(o) = valg(a).

This is done in Fig. 16. Notice that functions hy and hg reverse the order of
their arguments, and hg, hs, and hs place f(r) at the right-hand end of the
semiring-product expression. This corresponds to the fact that for AFW to
accept (p,717Y2---Yn), it must perform push sequences in the order 7,, ...,
~v1: each grammar rule’s left-hand-side push sequence requires that the push
sequences of the right-hand side be performed right to left, followed by an
application of the corresponding WPDS rule (cf. Theorem 17).

As in Section 3.1, not all instantiations of the productions listed in Fig. 15 and
Eqn. (1) are relevant to the final solution; we want to prevent the algorithm
from exploring useless nonterminals of the grammar from Fig. 15 and Eqn. (1).
Exploring the PushSeq subgrammar lazily saves us from having to construct
the entire PushSeq subgrammar.

Moreover, all path questions with respect to a given source-configuration set C'
involve the same subgrammar for the PushSeq nonterminals. Consequently, the
information about whether a complete derivation tree with root nonterminal
PushSeq, ., ) exists (i.e., whether PushSeq,, . is a productive nonterminal)
can be precomputed and returned in the form of an automaton. Productive
nonterminals represent automaton transitions, and the productions that in-
volve any given transition can be constructed on-the-fly, as is done in Alg. 3,
shown in Fig. 17.

Alg. 3 finds the productive PushSeq and SameLevelSeq nonterminals in the
grammar from Fig. 15:7 workset contains the set of transitions (nontermi-
nals) still to be considered, and the algorithm iterates until workset is empty.

" There is one slight exception to this statement. Nonterminals of the form
PushSeq((p, 7 rdy)) CAI only derive €, and hence are always productive. However,
line 20 treats such nonterminals lazily; they are only placed in the transition set if

there is a productive nonterminal of the form PushSeqq , ,m.q)) (see line 21).
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Production for each

(1) PushSeq(q 4 — hi(e) (¢,7,4) € =
hy =1

(2) SameLevelSeqy, . o — ha(PushSeqy, ., ) 7= (p,7) = (P,e) €A,q€Q
hy = Az.x ® f(r)

(2') PushSeq(y 4y = ho (SameLevelSeqyy ., PushSeq(q .y q))

PeEP q¢qdeq

hy = A Ay.y ® x©

(3) PushSeqy o) — h3(PushSeq(pmq)) r={p,y) = ®,¥)EAqeQ
hs =Az.z® f(r)

(4) PushSequy .y, ), — ha(e) (p,7) = ") €A
hy=1

(5) PushSeq(qp,‘vw,,’q) — h5(PushSeq(pmq)) r={p,y) =@, YY)EAeeR
hs =Az.z ® f(r)

(6) Accepting[v1Vz - - - Yul(p.g) = he(PushSeqq, , 4.y, PushSeqy, ., - PushSeq,. ., . )

2q2)7 "
peEPGeR, forl1<i<n—1,andqg€e F
he = AT1. ALy ... A2 2, @ ... Q Ty ® T
(7) Accepted[yiva ... Yn]p) = hr(Accepting[yviva ... Val(p.g)
pePqeF

hy = \z.x

Fig. 16. An abstract grammar problem for the weighted post* problem.

Lines 11, 17, 18, 20, and 21 process the productions of types (1), (2), (3), (4),
and (5), respectively. Lines 23 and 25 handle the productions of type (2).

As in Section 3.1.3, the time complexity increases from the O(npna(ni+ns)+
npng) complexity of the unweighted case [11] (where np = |P|, na = |A|,
ng = |Q|, no = |—=0|, m1 = |Q\P|, and ny is the number of different pairs
(p',v') such that there is a rule of the form (p,v) — (p',77") in A) by
a factor that is no more than the length of the maximal-length descending
chain to any value that appears in the annotated automaton.

3.2.1 Generation of Witness Sets
By analogy with Section 3.1.4, which provides a method for obtaining witness
sets for GPP problems, this section discusses how to extend Alg. 3 to allow

the recovery of witness sets for GPS problems.

The basic idea behind this extension is to adapt the method from Section 3.1.4,
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Algorithm 3
Input: a weighted pushdown system W = (P, S, f),
where P = (P,T',A) and S = (D, ®,®,0,1);
a P-automaton A = (Q,T', —¢, P, F') that accepts C, such that
A has no transitions into P states and has no e-transitions.

Output: a P-automaton A+ = (Q',T, —, P, F) with e-transitions
that accepts post*(C);
a function / that maps every (¢,7,q’) € — to the value of

ma(PushSeqq o)) in the abstract grammar problem defined in Fig. 16.
1 procedure update(t,v)
2 begin
3 — = U{t}
4 new Value := [(t) ® v
5 changed := (newValue # I(t))
6 if changed then
7 workset := workset U {t}
8 I(t) :== newValue
9 end
10

11— := —¢; workset: = —q; | := At.0

12 for allte€ —pdoi(t):=1

13 Q' :=Q; for all (p,7y) = (p',7'v") € Ado Q" :=Q U{gyy}
14 while workset # () do

15 select and remove a transition ¢ = (p, 7, q) from workset

16 if v # € then

17 for all r = (p,v) — (p',e) € A do update((p',¢,q),l(t) ® f(r))
18 for all r = (p,7) = (p',7') € A do update((p',7',q),l(t) ® f(r))
19 for all r = (p,v) = (®',7¥'7") € A do

20 update((p's 7' @y 1), 1)

21 update ((gy,7",0), (t) ® £(r))

22 if changed then

23 for all ¢’ = (p”,¢,qy ) do update((p”,7",q),1(t) ® f(r) ® (L))
24 else

25 for all ¢’ = (q,7',q") € — do update((p,v',q'),l(t') ® ()

26 return ((Q',T',—,P,F),l)

Fig. 17. An algorithm for creating a weighted automaton for the weighted post*
problem.

which records pop sequences, to record push sequences: we create a hypergraph
Gpush = (N, E), where N = (= x D) and E = (N x A’ x N*). Note that for
GPS problems we use A’ = A U {¢}; i.e., we allow hyperedges to be labeled
with either a rule or ¢, where the latter can be read as “no rule”.

A node n = (t,d) € N, where t = (p, 7, q), records that there exist push se-

quences o4, ...,0, forq,v,pand d = @le d;, where dy, . .., dj are the semiring
values accumulated along these paths. If ¢ € — is a transition from A and
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d = 1, then k¥ = 1 and 0, = ¢; this fact is represented by a node (¢,1) that
has no incoming hyperedges. For a node n = (¢,d) for which ¢ ¢ — is not
a transition from A, each hyperedge (n,7',n;...n,,) corresponds to a collec-
tion of push sequences for ¢, ~, p; each of these push sequences is of the form
Tm - ..Ti7', where each 7;, for 1 < i < m, is a push sequence for n;.%

Once G,y is constructed, the information in it captures a witness set for any
given configuration c: if ¢;...¢,, is a path in A+ by which c is accepted,
then w(c) consists of every sequence oy, ...o1, where, for every 1 < i < m, o;
is a push sequence for (¢;,[(¢;)).

The necessary changes to Alg. 3 are as follows: In line 11, the empty hyper-
graph is created by setting N := () and E := ). In line 12, a node (¢,1) is
added to N for every ¢t € —. For the update procedure, we re-use Alg. 2 from
Section 3.1.4 with two small modifications:

e Because Alg. 3 uses the variable changed, line 5 is replaced by

changed = (newValue # I(t))
if ~changed then return

e In line 12, the ® operator is applied in reverse order:
ifor/ <® dmi+1> ® f(r') then ...
i=1

(where f(e) =1).

Compared to Alg. 3, the new update procedure takes two additional arguments:
r, the rule, and 7T, the list of transitions used for the addition. The calls on
update in Fig. 17 are modified as follows:

p,€,9),1(1) ® f(r),r,1)

P, q),1(t) ® f(r), 1)

P74y y)s 1,€5€)

G 7" 0), U(E) ® f(r),m, 1)
p",7",0), 1) ® f(r) @ U(t'),e,t't)
p.7,d), 1(t") ® (1), €, tt)

line 17:  wupdate
line 18: wupdate
line 20: update
line 21: update
"

line 23: wupdate
line 25:  wupdate

8 When comparing this definition with that from Section 3.1.4, note that in addition
to substituting push sequences for pop sequences, we also change the order in which
push sequences are assembled from the source nodes of the hyperedges.
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The choice of the arguments for lines 17, 18, and 21 is self-explanatory. In
lines 23 and 25, we create a new transition by “contracting” two transitions,
i.e., without firing a pushdown rule; hence, we use ¢ for the rule. The only
complicated case is line 20. Here, recall that the rule r = (p,vy) — (o', y'v") is
responsible for one production of type (4), dealt with in line 20, and another
of type (5), processed in line 21. Because line 21 is already recording the fact

that r was applied, both arguments in line 20 are €.

4 Applications to Interprocedural Dataflow Analysis

This section describes the application of weighted PDSs to interprocedural
dataflow analysis. The approach presented here has been used to create anal-
yses for a variety of problems, including uninitialized variables, live variables,
linear constant propagation [6], and affine-relation analysis [7].

This section (as well as Section 5) illustrates several classic concepts in inter-
procedural dataflow analysis from the vantage point of weighted PDSs. It also
illustrates how algorithms from Section 3 provide a way to generalize previous
frameworks for interprocedural dataflow analysis [19,6].

The presentation is divided into four parts. Section 4.1 presents background
material on interprocedural dataflow analysis. Section 4.2 discusses how con-
ventional dataflow information can be obtained by formulating dataflow-analysis
problems as GPR problems. Section 4.3 shows how information that goes be-
yond what conventional dataflow-analysis algorithms provide can be obtained
by solving GPR problems. Section 4.4 discusses extensions.

4.1 Background on Interprocedural Dataflow Analysis

Dataflow analysis is concerned with determining an appropriate dataflow value
to associate with each node n in a program, to summarize (safely) some aspect
of the possible memory configurations that hold whenever control reaches n.
To define an instance of a dataflow problem, one needs

e The control-flow graph for the program.
e A meet semilattice (V, M) with greatest element T:
- Elements of V' represent sets of possible memory configurations. Each
point in the program is to be associated with some member of V.
- The meet operator 1M is used for combining information obtained along
different paths.
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e A value vy € V that represents the set of possible memory configurations
at the beginning of the program.

e An assignment of dataflow transfer functions (of type V' — V) to the edges
of the control-flow graph.

When (D, &, ®,0, 1) is a bounded idempotent semiring, (D, @) is a meet semi-
lattice. However, when interprocedural dataflow-analysis problems are formu-
lated as GPR problems, D is V' — V| not V. Consequently, we will use (V1)
and T when we wish to emphasize that we are discussing dataflow values, and
(D,®,®,0,1) when we turn to GPR encodings of dataflow-analysis problems.

Typically, a dataflow-analysis problem is formulated as a path-function prob-
lem: the path function pf, for path ¢ is the composition of the transfer func-
tions that label the edges of ¢. In intraprocedural dataflow analysis, the goal
is to determine, for each node n, the “meet-over-all-paths” solution:

MOP,, = [l pf, (vo),

g€Paths(enter,n)

where Paths(enter, n) denotes the set of paths in the control-flow graph from
the enter node to n [20].° MOP,, represents a summary of the possible memory
configurations that can arise at n: because vy € V represents the set of possible
memory configurations at the beginning of the program, pf,(v) represents the
contribution of path ¢ to the memory configurations summarized at n.

Interprocedural dataflow-analysis problems are often defined in terms of a
program’s supergraph (or “interprocedural control-flow graph”), an example of
which is shown in Fig. 18. A supergraph consists of a collection of control-flow
graphs—one for each procedure—one of which represents the program’s main
procedure. The flowgraph for a procedure p has a unique enter node, denoted
by e,, and a unique exit node, denoted by x,. The other nodes of the flowgraph
represent statements and conditions of the program in the usual way, 1© except
that each procedure call in the program is represented in the supergraph by
two nodes, a call node and a return-site node (e.g., see the node-pairs (ng, n3)
and (ng, n7) in Fig. 18). In addition to the ordinary intraprocedural edges that
connect the nodes of the individual control-flow graphs, for each procedure
call—represented, say, by call node ¢ and return-site node r—the supergraph
contains three edges: an interprocedural call-to-enter edge from c to the enter
node of the called procedure; an interprocedural exit-to-return-site edge from

9 For some dataflow-analysis problems, such as constant propagation, the meet-
over-all-paths solution is uncomputable. A sufficient condition for the solution to
be computable is for each transfer function f to distribute over the meet operator;
that is, for all a,b € V, f(aTb) = f(a) 1 f(b).
10 The nodes of a flowgraph can represent individual statements and conditions;
alternatively, they can represent basic blocks.
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int g, h;

void main() { Ae.g[g —0,h—0] P =
nl: g=h=0;  [pn: call f k-~ -
n2,n3: p(Q); Ae.e[g—0,h 0]
nd: if(...) { [ng: ret fromf fe—meeo _
n5: g=14; T Tz
n6,n7: p(Q);
}
n8: ...;
return; WClag)
} hedgrah-a]
n,: ret fromf "
void f() { ’ 5 }‘
n9: ...;
return;
}

Fig. 18. A program fragment and its supergraph. The environment transformer for
all unlabeled edges is Ae.e.

the exit node of the called procedure to r; an intraprocedural call-to-return-site
edge from c to r.!!

Definition 18 A path of length j from node m to node n is a (possibly
empty) sequence of j edges, which will be denoted by [e1, ez, ..., €;], such that
the source of ey is m, the target of e; is n, and for all i, 1 < i < j —1, the
target of edge e; is the source of edge e; 1. Path concatenation is denoted by

The notion of an (interprocedurally) valid path is necessary to capture the
idea that not all paths in a supergraph represent potential execution paths.
A valid path is one that respects the fact that a procedure always returns to
the site of the most recent call. We distinguish further between a same-level
valid path—a path that starts and ends in the same procedure, and in which
every call has a corresponding return (and vice versa)—and a valid path—a
path that may include one or more unmatched calls:

Definition 19 The sets of same-level valid paths and valid paths in a
supergraph are defined inductively as follows:

' The call-to-return-site edges are included so that programs with local variables
and parameters can be handled. Functions on call-to-return-site edges extract (from
the dataflow information valid immediately before the call) dataflow information
about local variables that must be re-established after the return from the call.
The dataflow functions on call-to-return-site and exit-to-return-site edges permit
the information about local variables that holds at the call site to be combined with
the information about global variables that holds at the end of the called procedure.
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e The empty path is a same-level valid path (and therefore a valid path).

e Path p || le] is a valid path if either (i) e is not an exit-to-return-site
edge and p is a valid path, or (ii) e is an exit-to-return-site edge and p =
pr || [ec] || pt, where py is a same-level valid path, py, is a valid path, and
the source node of e. is the call node that matches the return-site node at
the target of e. Such a path is a same-level valid path if p, is also a
same-level valid path.

Example 4.1 In the supergraph shown in Fig. 18, the path
Emain — M1 — Mo — € —> Ng —> Ty — Nz —> Ny
is a (same-level) valid path; the path
€main — M1 — Ny —> €f — Ng

is a (non-same-level) valid path because the call-to-start edge ny — ey has no
matching exit-to-return-site edge; the path

€main —> N1 —> Ng —> € —> Ng —> Tf —> Ny

is not a valid path because the exit-to-return-site edge xy — ny does not corre-
spond to the preceding call-to-start edge ny — ey.

In interprocedural dataflow analysis, the goal shifts from finding the meet-over-
all-paths solution to the more precise “meet-over-all-valid-paths’, or “context-
sensitive” solution. A context-sensitive interprocedural dataflow analysis is
one in which the analysis of a called procedure is “sensitive” to the context
in which it is called. A context-sensitive analysis captures the fact that the
results propagated back to each return-site r should depend on the memory
configurations that arise at the call site that corresponds to r, but not on
the memory configurations that arise at call sites that do not correspond to
r. More precisely, the goal of a context-sensitive analysis is to find the meet-
over-all-valid-paths value for nodes of the supergraph [19,21,6]:

MOVP,, = [ pf, (vo),

g€ VPaths(entermain,n)

where VPaths(entery,,in, 7) denotes the set of valid paths from the main pro-
cedure’s enter node to n.

Although some valid paths may also be infeasible execution paths, none of
the non-valid paths are feasible execution paths. By restricting attention to
just the valid paths from enterp,,;,, we thereby exclude some of the infeasi-
ble execution paths. In general, therefore, MOVP,, characterizes the memory
configurations at n more precisely than MOP,,.
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Local Variables

Call-to-return-site edges introduce some additional paths in the supergraph
that do not correspond to standard program-execution paths. The intuition
behind this approach is that the interprocedurally valid paths of Defn. 19
correspond to “paths of action” for particular subsets of the runtime entities
(e.g., global variables). The path function along a particular path contributes
only part of the dataflow information that reflects what happens during the
corresponding run-time execution. The facts for other subsets of the runtime
entities (e.g., local variables) are handled by different “trajectories”, for ex-
ample, paths that take “short-cuts” via call-to-return-site edges.

The use of call-to-return-site edges is less precise that some other approaches
to handling local variables, such as the method proposed by Knoop and Steffen
[21] and the method used in Moped [22], both of which have a bit of the flavor
of a relational analysis. (See Lal et al. [23] for a description of how to generalize
WPDSs so that local variables can be handled in the more precise, relational
manner.)

The Examples Used in Later Sections

In the remainder of the paper, we illustrate the application of weighted PDSs
to interprocedural dataflow analysis using instances of two dataflow-analysis
problems: simple constant propagation and linear constant propagation. Our
choices were motivated by wanting to use the simplest example possible to
illustrate the benefit of the various methods presented in the paper.

e Section 4.2 illustrates how conventional dataflow information can be ob-
tained by solving GPR problems, using simple constant propagation.

e Section 4.3 uses linear constant propagation to illustrate how information
that goes beyond what conventional dataflow-analysis algorithms provide
can be obtained by solving GPR problems.

e Section 5 returns to simple constant propagation to illustrate differential
algorithms for solving GPR problems.

It should also be noted that even though these problems are all examples
of independent-attribute problems, the weighted PDS approach also applies
to relational analyses. (For material on independent-attribute and relational
analyses, see [24, Chapter 4].)
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4.2 Obtaining Conventional Interprocedural Dataflow Information

This section shows how conventional dataflow information can be obtained by
formulating dataflow-analysis problems as generalized pushdown reachability
problems. This method applies to distributive dataflow-analysis problems for
which the transfer functions are “composable” and are drawn from a meet
semilattice that has no infinite descending chains; that is,

e There must be finite representations for all elements in the set of functions
F that consists of the basic dataflow-transfer functions, closed under meet
and composition.

e I must form a meet semilattice with no infinite descending chains.

e The functions in F must be strict in the value T. This ensures that the
function Az.T is an annihilator for ®, where ©® is the reversal of function
composition—i.e., f @ g =g o f, where (g o f)(z) = g(f(z)). Note that
one consequence of this is that transfer functions that would otherwise be
constant (e.g., Az.c) must be modified to return T if the argument is T and
c otherwise. 12

For such problems, the semiring that will be used is (F,N,®, Az.T, Az.x).

The supergraph of each program to be analyzed is encoded as a weighted PDS
with the following properties:

e There is a single control location p

e Each supergraph node n is represented by a separate stack symbol 7,.

e Each intraprocedural edge, call site, and return statement is represented by
a WPDS rule:

(P, Yn) = (p,yw)  intraprocedural edge from n to n'
(D, Yn) = (D, YY) procedure call from call site n to n’, with return-site n”
(D, Yn) = (p,€) return statement n
Each rule is weighted by the semiring element for the appropriate dataflow
transfer function. It is not hard to see that with this encoding each wvalid path

in the program’s supergraph corresponds to a path in the PDS’s transition
system, and vice versa.

By applying Alg. 3 to an automaton that represents the single configuration
(p, entermain), which corresponds to the initial configuration of the program
(i.e., with no stacked return nodes), we can create an automaton that contains

12 An alternative approach is to drop the requirement that the functions in F be
strict in T, but define ® in terms of a variant of o that is strict in Az.T.
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Algorithm 4
Input: a weighted pushdown system W = (P, S, f),
where P = (P,T',A) and S = (D, ®,®,0,1);
a P-automaton A = (Q,T', —¢, P, F') that accepts C, such that
A has no transitions into P states and has no e-transitions.

Output: for each p € P and v € T', compute V,, := @{({p,yw)) |w e T*}

1 Let Apost» = (Q',T',—, P, F) and [ be the output from calling Alg. 3
2

3 forallge Q' \(PUF)doW,;:=0

4 for allge Fdo W,:=1

5 workset .= F

6 while workset # () do

7 select and remove a state g from workset

8 oldValue := W,

9 Woi=Bim(gpg)e— Wy ®1(1)
10 if oldValue # W, then workset := worksetU{q' | ¢' ¢ P, (¢',7,q9) € =}
11
12 for allp € Pandy €T do V5 := By 5,q0e (Wq ® (1))

Fig. 19. An algorithm that, for each p € P and v € T, computes V}, .

information about d(c) for all reachable configurations c. From this automaton,
we wish to obtain the conventional meet-over-all-valid-paths value for each
supergraph node n. This could be done by performing repeated queries on the
automaton—one query for each node n. However, the answers can be obtained
more efficiently (and in a more general setting) by performing a fixed-point
computation on the automaton itself, as described below.

Given a weighted pushdown system W and an automaton A that accepts
configurations in C, Alg. 4 computes, for each p € P and each v € I, the
value V, , = @{({p,yw)) | w € I'* }, where 0 is defined as for the generalized
pushdown successor problem in Defn. 7. That is,

Voo = D{0((p, yw)) | {p,yw) € post™(C) }
= P{v(o) | o € path(c, {p,yw)),c € C,w € T*}

and V,, = 0 if there is no w € I'* such that (p, yw) € post*(C).

(2)

We now sketch a proof that V,,, (vg) = MOVP,,, where v, represents the set
of possible memory configurations at enter,,iy,.

Theorem 20 Let W be a weighted pushdown system that encodes a dataflow
problem on supergraph G, as described earlier in this section. Let A be an
automaton that accepts the single configuration (p, enter,qim). Then, for the
output of Alg. 4, for each supergraph node n, we have

%,’Y’n (’1)0) = MOVPn,
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where vy represents the set of possible memory configurations at enterpqin.

Proof [Sketch] For every valid path ¢ in G from enterp,,i, to vertex n, there
is a sequence o of rules by which W, starting in configuration (p, enterman),
reaches a configuration (p,y,w), and vice versa. Furthermore, pf, = v(0).

The proof has two parts: first, we show that MOVP,, C V}, , (vp). Let S be a
finite set of paths in G such that

[{ pf,(vo) | s € S} = MOVP,

S must exist because we have restricted ourselves to WPDS problems in which
semirings have no infinite descending chains. Let T'= { o | o corresponds to s, s €
S }. For every o € T, o drives the weighted PDS from (p, enteryain) to (p, y,w),
for some w € I'*. Then we have

MOVP,, = pt,(vs) | s € S}
= (T{pf, | s € S}) (w)

= (B{v(o) o €T}) (v)
C Vo (v0) by Eqn. (2)

The second part of the proof uses a similar argument in the reverse direction
to show that V}, ,, (vo) C MOVP,,. It follows that V}, ,, (vo) = MOVP,. 0O

PyIn

Alg. 4 has three phases:

e In phase 1 (see line 1), it computes Ay,

e In phase 2 (lines 3-10), for every non-initial state ¢, the value W, is com-
puted. Conceptually, W, is obtained by following all accepting paths starting
at state ¢, accumulating a semiring value for each path, and then taking the
meet over all values. In the implementation, this is achieved by a fixed-
point computation that propagates values backwards over the transitions
of Apos+. This phase does not need to consider the e-transitions in A,
because the weights on all e-transitions have already been propagated to
non-e-transitions during Alg. 3.

e In phase 3 (line 12), the algorithm computes V,,, for each p € P and y € .

For other applications of weighted PDSs, a similar algorithm could be given
that works with pre*—the main difference would be that the order of the
operands of ® in lines 9 and 12 would have to be swapped.

Example 4.2 Fig. 18 shows an instance of constant propagation, a classic
dataflow-analysis problem. For constant propagation, a dataflow value con-
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Aee
Aee
Aee
Aee

enter, ., Jee
n, JAee
n, Aeeglg—0h—0]
n, JAe.gg—0,h—0]
n, Aeglg—0h—0]
ns Ae.glg—0,h—0]
ne Aeglg—1,h—0]
n, JAeeg—21h—0]
ng Ae.glg—0,h—0]
Aegg—>0h—0]
¢ Aegg—0hH0]

n; JAeeg—0,h—0]
N, Aeelg—1hi=0]

Fig. 20. The automaton Ap.+ computed by Alg. 3 for input automaton
A= ({p,q},T,{(p,entry .in,a) }, {p},{¢}) and the weighted PDS that corresponds
to Fig. 18. Each edge represents multiple transitions, one for each line of the label
on the edge.

sists of an environment transformer. For this problem, an environment maps
each program variable to a value in Z], the integers extended with L (sig-
nifying a non-constant value) and T (signifying no value, or “unmapped”).
An environment transformer takes an environment as input and outputs an
environment where some variables may be mapped to a new value, and others
are mapped to their previous value. A variable that is mapped to T cannot be
updated with a different value. Thus, we have

(Me.e[g— 3, h—5])([g— T,h—2])=[g— T,h+— 5]

Here, the environment transformer succeeds in updating the environment for
h, but not for g.

Environment transformers are assigned to program statements according to
the following table:

statement transformer
z =k; Ae.e[z — k|
z = ...; /* non-constant expression */ Ae.e[r — L]
other Ae.e

The semiring used for the constant-propagation problem is defined as follows:
0 is de.Aw.T; 1 is the identity function, Ae.e; the operations & and ® are
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defined by

f1® f2 = Ae.fi(e) M fa(e)
fi®fa=fao f1

where e, [ ey on environments e, es 1s defined component-wise using the 'l
operator for 7.1 :
u ifu=vorv=T
ullv=9qv ifu=T

LifuZvandu#T andv#T

The rules for the weighted PDS that encodes the constant-propagation problem
for the program shown in Fig. 18 are as follows:

(D, €main) = (P, m1) Ae.e (p,n6) = (p,ef n7) Ae.e
(p,m1) — (p,n2)  Ae.e[g — 0,h — 0] (p,ne) = (p,n7)  Ae.e[g— T,h— T]
(p,n2) — (p,er n3) Xe.e (p,n7) — (p,ng)  Ae.e
(p,n2) = (p,n3)  Ae.e[g— T,h+ T] (p,ng) = (P, Tmain) Ae.€
(p,n3) = (p,ng)  Ae.e Py Timain) <= (P, €)  Ae.e
(p,na) = (p,ns)  Ae.e (p,ep) = (p,ng)  Xe.e
(p,n4) = (D, Tynain) Ae.€ (p,n9) = (p,zy) Ae.e
(p,ms) = (pyme)  Ae.elg — 1] (p,zp) = (p,€) Ae.e

The input automaton A that accepts (p, enterman) together with the output
automaton Apes« obtained for this weighted PDS using post* are given in
Fig. 20. From Aps=, it is straightforward to compute the results of Alg. 4.
For example,

Vons = Ae.elg — L|[h+— 0].

Thus, at ng, g has a non-constant value, and h has the value 0.

4.8 Obtaining More Than Conventional Dataflow Information

Conventional dataflow-analysis algorithms merge together the values for all
states associated with the same program point, regardless of the states’ calling
context. With the dataflow-analysis algorithm obtained via weighted PDSs,
dataflow queries can be posed with respect to a regular language of stack
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int x;

void main() {
nl: x = 5;
n2,n3: pQ);
return;

}

void p() {
nd: if (...)
nb: x = x +

n6,n7: p(Q);

n8: x =x - 1; Iﬂlﬁ!ﬂﬂﬁn! s
} \
n9: else if (...) {
nl0: x = x - 1;

Xmain

E—

ni1,n12: p(O;
ni3: x = x + 1;
}

return;

}

Fig. 21. A program fragment and its supergraph. The environment transformer for
all unlabeled edges is Ae.e.

configurations. This will be illustrated by the examples in Section 4.3.3. Sec-
tion 4.3.3 also shows how this approach provides a new algorithm for ob-
taining meet-over-all-paths dataflow information in a demand-driven fashion.
Sections 4.3.1 and 4.3.2 lay the groundwork for these examples.

4.3.1 Background on “Interprocedural Distributive Environment” Problems

This section reviews the Interprocedural Distributive Environment (IDE)
framework for context-sensitive interprocedural dataflow analysis [6]. This
framework applies to problems in which the dataflow information at a program
point is represented by a finite environment (i.e., a mapping from a finite set
of symbols to a domain of values) that has no infinite descending chains, and
the effect of a program operation is captured by an “environment-transformer
function” associated with each supergraph edge. The transformer functions
are assumed to distribute over the meet operation on environments.

Two IDE problems are (decidable) variants of the constant-propagation prob-
lem: copy-constant propagation and linear-constant propagation. The former
interprets assignment statements of the form x = 7 and y = x. The latter
also interprets statements of the form y = —2 x x + 5. Fig. 21 shows a pro-
gram fragment and supergraph that will be used to illustrate an analysis for
linear constant propagation. (To simplify the presentation, the environment
transformer on the edge €main — 11 is Ae.vg = Xe.e[z — L].)
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A X y A X y A X y A X y
o o o
AV.V AV.V AV.V v’ Avv Avv AV.=2V+5
AV.V A2 \'AY AVV  AVV
A X y A X y A X y A X y
(a) Xe.e (b) Xe.e[z —T] || (c) Xe.e[y — e(z)] || (d) Xe.e[y — —2 x e(z) + 5]

Fig. 22. The exploded representations of four environment-transformer functions
used in linear constant propagation.

By means of an “explosion transformation”, an IDE problem can be trans-
formed from a path problem on a program’s supergraph to a path problem on
a graph that is larger, but in which every edge is labeled with a much simpler
edge function (a so-called “micro-function”) [6]. Each micro-function on an
edge d; — do captures the effect that the value of symbol d; in the argument
environment has on the value of symbol dy in the result environment. Fig. 22
shows the exploded representations of four environment-transformer functions
used in linear constant propagation. Fig. 22(a) shows how the identity func-
tion Ae.e is represented. Fig. 22(b)-Fig. 22(d) show the representations of the
functions Xe.e[x — 7|, Ae.e[y — e(x)], and Ae.ely — —2 x e(x) + 5], which
are the dataflow functions for the assignment statements x = 7, y = z, and
y = —2 % x + 5, respectively. (The A vertices are used to represent the effects
of a function that are independent of the argument environment. Each graph
includes an edge of the form A — A, labeled with Av.v; these edges are needed
to capture function composition properly [6].)

Fig. 23 shows the exploded supergraph that corresponds to the program from
Fig. 21 for the linear constant-propagation problem.

4.3.2  From Exploded Supergraphs to Weighted PDSs

We now show how to solve linear constant-propagation problems in a context-
sensitive fashion by defining a generalized pushdown reachability problem in
which the paths of the (infinite-state) transition system correspond to valid
paths in the exploded supergraph from (emqin, A). To do this, we encode the
exploded supergraph as a weighted PDS whose weights are drawn from a
semiring whose elements are the functions

Fo={M.T}U{M.(axl+b)MNc|a€Z,bEZ,and c € Z] }.

The elements of Fj, correspond to the micro-functions for linear constant prop-
agation, closed under meet and composition.

Every function f € Fj.— {\l.T} can be represented by a triple (a, b, c), where

42



Fig. 23. The exploded supergraph of the program from Fig. 21 for the linear con-
stant-propagation problem. The micro-functions are all id, except where indicated.

a€Z,beL, ceZ],and

Fo Al ifl=T
. (a x 1+ b) M ec otherwise

The third component c¢ is needed so that the meet (&) of two functions can
be represented. (See [6] for details.) The semiring value 0 is Al.T; the semiring
value 1 is the identity function, whose representation is (1,0, T). We also
denote the identity function by #d. By convention, Al.Ll is represented by
(1,0, 1), and a constant function Al.b, for b € Z, is represented as (0,5, T).

The operations & and ® are meet and compose, respectively; they are defined
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as follows:

AN.TAANT=A.T
(a,b,¢) ® M. T = AL.T & (a,b,c) = (a,b,c)

( (al,bl,cl |_|C2) if a1 = a9 and by = by
(ai,bi,c) ifly = (b1 — b2)/(a2 — a1) € Z
(a2, b2,c2) @ (a1,b1,c1) = < and ¢; Meg # L, where a; = min(aq, a9)

andc:(al*l0+b1)l_lcll_lc2,

[ (1,0,1) otherwise

(@b, ) @ ML.T = N.T @ AL.T = M. T ® (a,b,¢) = AL.T
(ag,b9,¢2) ® (a1,b1,c1) = ((a1 * a2), (a1 * by + b1), ((a1 * ca + b1) Mey)).

Here it is assumed that 1+ T = Txx =2+ T =T +x =T forz € Z]
andthat zx 1L =1l xz=2+1 =_1+2 =1 for x € Z,. The second case
for (ag, be, c2) @ (as, b1, c1) is obtained by equating the terms a; * y + b; and
as * Yy + by and taking the solution for y, provided it is integral.

The encoding of the exploded supergraph as a weighted PDS is similar to the
encoding of the unexploded supergraph described in Section 4.2, except that
now there is a separate control location for each program variable (and also
one for A). Stack symbols, such as ny, ns, and ng, correspond to nodes of the
supergraph.

A few of the weighted PDS’s rules for the (exploded) intraprocedural edges
are as follows:

Intraprocedural edges in main Intraprocedural edges in p

(A, n1) = (A, ng) id (A, nyg) — (A, ns) id
(A,ny1) = (x,ny) ALS (x,n4) — (x,n5) id

(A, n3) = (A, Tmain) id (A, ns5) — (A, ng) id
(z,n3) = (T, Tmain) 1d (x,n5) — {(x,n6) AI+1

At each call site, each PDS rule that encodes an edge in the exploded repre-
sentation of a call-to-enter edge has two stack symbols on its right-hand side.
The second symbol is the name of the corresponding return-site node, which
is pushed on the stack:

Transitions for call site no  Transitions for call site ng  Transitions for call site n11

(A, n2) — (A, ep n3) id (A, ng) — (A, ep ny) id (A,n11) = (A, ep ni2) id

(z,n2) = (z,ep n3) id (z,ne) = (z,ep n7) id (z,n11) = (z,ep n12) 1id
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The process of returning from p is encoded by popping the topmost stack
symbols off the stack.

Transitions to return from p
<Aa ‘Z‘P) — <Aa 8) Zd

(, p) = (x,€) id

4.8.8  Obtaining Dataflow Information from the Weighted PDS of the Fi-
ploded Supergraph

For linear constant propagation, we are interested in a generalized pushdown
reachability problem from configuration (A, €mqin). Thus, to obtain dataflow
information from the exploded supergraph’s weighted PDS, we perform the
following steps:

e Define a regular language R for the configurations of interest. This can be
done by creating an automaton for R, and giving each edge of the automaton
the weight #d.

e Apply Alg. 1 to create a weighted automaton for pre*(R).

e Inspect the pre*(R)-automaton to find the transition A ==y qccepting_state.
Return the weight on this transition as the answer.

In the following, we often write (z, ), where « is a regular expression, to
mean the set of all configurations (z,w) where w is in the language of stack
contents defined by .

Example 4.3 For the query pre*({z,e, (n12 n7)* ns)), the semiring value
associated with the configuration (A, epmqin) is M.5, which means that the value
of program variable x must be 5 whenever p is entered with a stack of the form
“ep (M12 n7)* mg”; i.e., main called p, which then called itself recursively an
arbitrary number of times, alternating between the two recursive call sites.

A witness-path set for the configuration (A, epmqain) is a singleton set, consisting
of the following path:

Semiring value Configuration Rule Rule weight
A5 (A, emain) (A, emain) = (A, n1) 1id

AlL5 (A,mq) (Ayn1) — (x,n9) A5

id (z,n2) (z,n2) = (z,ep n3) id

id (z,ep n3) Accepted by query automaton
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Example 4.4 One example of a situation in which the stack is of the form
ep (n12 n7)* ng is when main calls p at ny (pushing ng); p calls p at ne (pushing
nz); and finally p calls p at nqy (pushing nys). In this case, the stack contains
ep Nia Ny n3. As expected, for the query pre*((x, e, nia nr n3)), the semiring
value associated with the configuration (A, €main) 18 ALD.

In this case, a witness-path set for the configuration (A, €pain) s a singleton
set, consisting of the following path:

Semiring value Configuration  Rule Rule weight
A5 (A, emagin) (A, emain) — (A,n1) 1d

AlL5 (A,mq) (A,n1) — (z,n9) AlL5

id (x,n9) (z,n2) = (z,ep, n3) id

id (z,ep n3) (x,ep) = (z,n4) id

id (z,n4 n3) (z,n4) = (x,m5) id

id (z,n5 n3) (z,n5) — (z,n6) All+1
All—1 (z,ne n3) (x,n6) = (z,ep n7) id
All—1 (z,ep ny n3) (x,ep) = (z,n4) id
All—1 (z,n4 n7 n3) (z,n4) — (z,n9) id
All—1 (z,ng n7 n3) (x,n9) — (z,m10) id

Al -1 (,n10 n7 ng)  (x,n1) = (x,n11) All—1
id (z,n11 n7 n3)  (z,n11) = (z,ep ni2) id

id (z,ep ni2 ny nz) Accepted by query automaton

Notice that the witness-path set for the configuration (A, emqin) is more com-
plicated in the case of the query pre*({z,e, ni2 n7; nz)) than in the case of
the query pre*({x,e, (ni2 n7)* n3)), even though the latter involves a regular
operator.

The next example represents a new algorithm for obtaining meet-over-all-
paths dataflow information in a demand-driven fashion. (Previous work on
demand-driven interprocedural dataflow analysis is discussed in Section 6.)

Example 4.5 Conventional dataflow-analysis algorithms merge together (via
meet, i.e., @) the values for each program point, regardless of calling context.
The machinery described in this paper provides a strict generalization of con-
ventional dataflow analysis because the merged information can be obtained by
1SSuIng an appropriate query.
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For instance, the value that the algorithms given in [21,6,19] would obtain for
the tuple (z, e,) can be obtained via the query pre*({z, e, (n7+mn12)* n3)). When
we perform this query, the semiring value associated with the configuration
(A, emain) s Al.L. This means that the value of program variable x may not
always be the same when p is entered with a stack of the form ‘e, (n; +

77,12)* ns 7,

For this situation, a witness-path set for the configuration (A, €mein) consists
of two paths, which share the first four configurations; the semiring value as-
sociated with (x,e, ng) is Al.L. =id @ Al.l —1:

Semiring value Configuration Rule Rule weight
Al L (A, emain) (A, emain) — (A, n1) id

Al L (A,mq) (A,n1) — (z,n9) A5

Al L (z,m2) (x,n2) = (z,ep n3) id
A.L(=id® NI — 1) {z,ep n3)

id (z,ep n3) Accepted by query automaton
All—1 (z,ep n3) (x,ep) = (x,n4) id
All—1 (z,n4 ng) (z,n4) — (z,m9) id
All—1 (z,ng ngz) (z,n9) — (z,m10) id
All—1 (z,m10 n3)  {(x,n10) = (x,m11) Al -1
id (z,n11 n3)  (x,m11) = (T, ep N12) id

id (z,ep nig ng) Accepted by query automaton

4.3.4  The Complexity of the Dataflow-Analysis Algorithm

Let E denote the number of edges in the supergraph, and let Var denote
the number of symbols in the domain of an environment. The encoding of an
exploded supergraph as a PDS leads to a PDS with Var control locations and
|A| = E - Var rules. If R is the regular language of configurations of interest,
assume that R can be encoded by a weighted automaton with |Q| = s + Var
states and ¢ transitions. Let [ denote the maximal length of a descending chain
in the semiring formed by the micro-functions.

The cost of a pre* query to obtain dataflow information for R is therefore no

worse than O(s?- Var-E -1+ Var®- E-1) time and O(s- Var- E + Var®- E +1)
space, according to the results of Section 3.1 and [15].
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4.8.5 How Clients of Dataflow Analysis Can Take Advantage of this Machin-
ery

Alg. 1 and the construction given above provide a new algorithm for inter-
procedural dataflow analysis. As demonstrated by Exs. 4.3, 4.4, and 4.5, with
the weighted-PDS machinery, dataflow queries can be posed with respect to a
regular language of initial stack configurations, which provides a strict general-
ization of the kind of queries that can be posed using ordinary interprocedural
dataflow-analysis algorithms.

For clients of interprocedural dataflow analysis, such as program optimizers
and tools for program understanding, this offers the ability to provide features
that were previously unavailable:

e As demonstrated by Exs. 4.3, 4.4, and 4.5, a tool for program understanding
could let users pose queries about dataflow information with respect to a
regular language of initial stack configurations.

e A program optimizer could make a query about dataflow values according
to a possible pattern of inline expansions. This would allow the optimizer
to determine—uwithout first performing an explicit expansion—whether the
inline expansion would produce favorable dataflow values that would allow
the code to be optimized.

The latter possibility is illustrated by Fig. 24, which shows a transformed
version of the program from Fig. 21. The transformed program takes advantage
of the information obtained from Ex. 4.3, namely, that in Fig. 21 the value
of z is 5 whenever p is entered with a stack of the form “e, (ni2 n7)* ns”.
In the transformed program, all calls to p that mimic the calling pattern
“(n12 n7)* ny” (from the original program) are replaced by calls to p’. In
p', a copy of p has been inlined (and simplified) at the first recursive call
site. Whenever the calling pattern fails to mimic “(niy n7)* ns”, the original
procedure p is called instead.

4.4 Extensions and Variations

Our definition of WPDSs imposes a distributivity property on semiring oper-
ations, i.e., for all a,b,c € D,

a® (b®c)=(a®b)®(a®c) and (a®db)Rc=(a®c)®(b®c)
(See Defn. 5(3).) This assumption restricts the dataflow-analysis problems

that can be encoded with WPDSs to ones with distributive transfer functions.
However, it is possible to loosen our requirements and replace Defn. 5(3) with
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int x; void p’ () {

if (...) {
void main() { if (...) { // Inlined call n6,n7
x = b; x =T7;
p’O; p(; // n6,n7; n6,n7
return; }
} else if (...) {
p’Q; // n6,n7; nli,n12
void p() { } // End inlined call n6,n7
if (.0 | }
x =x + 1; else if (...) {
pQO); x = 4;
x=x -1 pO;
} }
else if (...) { x = 5;
x=x-1; return;
pQO); }
x =x + 1;
}
return;

}

Fig. 24. A transformed version of the program from Fig. 21 that takes advantage of
the fact that in Fig. 21 the value of z is 5 whenever p is entered with a stack of the
form “e, (ni2 n7)* n3”.

a weaker monotonicity condition: for all a,b,c € D,
a@b®c)C (a®D) D (a®c) and (a®b)R@cC (a®c)® (b®c)
This allows a broader class of dataflow-analysis problems to be treated.

The formalization is nearly the same as in the distributive case—i.e., using
an automaton construction that is justified in terms of grammar flow anal-
ysis. The primary difference is that an iterative computation that finds the
maximum-fixed-point value for each transition would, in general, provide only
a safe solution rather than a precise one; that is, instead of the value §(c)
for a configuration ¢ (which corresponds to the meet-over-all-derivations value
for a particular grammar-flow-analysis problem), we would have to be content
with a value that approximates (C) 6(c). (This follows immediately from the
material in Section 3, which formalizes GPP and GPS problems in terms of
grammar flow analysis, and the theorems about the relationship between the
maximum-fixed-point solution and the meet-over-all-derivations value for a
monotonic grammar-flow-analysis problem [16,17].)

It would also be possible to abandon the “no-infinite-descending-chains” prop-
erty, i.e., Defn. 5(5), and instead use widening to ensure that the automaton-
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construction algorithms terminate [25,26].

5 Differential Algorithms for Generalized Pushdown Reachability
Problems

It has been observed that for some fixed-point-finding problems, it is pos-
sible to propagate changes in values (“deltas”), rather than full values [27].
(Subsequent work on differential fixed-point evaluation includes [28-30].)

Differential propagation can also be applied to GPR problems when the do-
main of weights supports an additional operator, denoted by —, which re-
turns a value that represents the difference between two values. 13 This section
presents differential algorithms for GPP and GPS problems. (The two differ-
ential algorithms can also be extended to provide witness sets; however, these
constructions will not be covered here.)

Differential dataflow-analysis algorithms can be seen as providing an adaptive
strategy that fits in between algorithms such as the ones presented by Sharir
and Pnueli [19] and Knoop and Steffen [21], and algorithms based on using
an explicit exploded supergraph [32,6]. That is, when differential propagation
is possible (i.e., when working with a weight domain for which a — opera-
tion is available), you do not have to perform an explicit “explosion” process.
The specification can be written just as it would be for the application of
a non-differential algorithm. Efficiency is obtained from differential propaga-
tion: rather than exploding every dataflow function ahead of time, which forces
propagation to be carried out at a fine-grained level, the differential approach
“peels oftf” an appropriate amount of work to propagate at each step. The
amount peeled off can be as small as what one gets via explosion (i.e., prop-
agation of one “factoid”), but when appropriate, larger collections of factoids
will be propagated together [28].

13In an algebra in which you can put values back together using a meet operator,
the proper term is “quotient operator”; when one can put values back together
with join, then one has a “difference operator” (e.g., see [31]). However, “difference
operator” is a more suggestive term (i.e., in terms of providing intuition about
the role of — ). In any case, by duality, a bounded idempotent semiring could be
considered to be a join semilattice, rather than a meet semilattice. Thus, we will
continue to refer to — as a difference operator.

However, the reader should be aware that because the formalization is based on
meet semilattices, we have ¢ — b J a (i.e., the difference of a and b is greater than
or equal to a, which may be counterintuitive).
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We assume that, for all a, b, and ¢, the following properties hold for —:

a®(b—a)=adb (3)
(@—1b) —c=(a—0bac (4)
aCbsb-—~a=0 (5)

Several other properties hold as consequences of Equs. (3)—(5):

(=2

a—a=0
b—adb
aCb=a-—cCb-— ¢ monotonicity in 1* argument

N N N N
=

Ne)
— — ~— —

(@b —~b=a—"—0> idempotence

Proofs of Eqns. (6)—(9) are given in Appendix A.

5.1 Differential Weighted pre*

Fig. 25 presents a differential algorithm for creating a weighted automaton
for a GPP problem. The algorithm is quite similar to Alg. 1 from Fig. 9; the
differences between the two algorithms, which are indicated with underlining
in Fig. 25, are as follows:

e Instead of using an explicit workset to record the transitions whose values
have changed, in Alg. 5 there is an additional value Jl(t) associated with
each transition ¢; §/(t) holds the accumulated change in #’s value since it
was most recently considered (see lines 4, 5, 12, and 13). On each iteration
of the loop body, a transition ¢ with a non-0 value of §i(t) is considered (see
line 12).

e In lines 14, 16, and 18, a change in a transition’s weight is calculated using
an expression of the form ... ® delta ® ...

e Whenever an update(t, del) is performed, 6/(t) is updated with the value
del — I(t) (see line 4).

(See Ex. 5.1 for a concrete example that illustrates the related algorithm for
differential weighted post*.)

We now wish to argue that Alg. 5 solves the GPP problem. In Section 3.1,
we argued that Alg. 1 solves the GPP problem because it solves the abstract
grammar problem for the productive PopSeq nonterminals in the grammar
from Fig. 6; Alg. 1 finds the maximum fixed-point solution, which by Theo-
rem 13 equals the desired meet-over-all-derivations value. The correctness of
Alg. 5 follows from a similar argument: it solves the GPP problem because it
also solves the abstract grammar problem for the productive PopSeq nonter-
minals in the grammar from Fig. 6—in essence, using a differential algorithm
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Algorithm 5
Input: a weighted pushdown system W = (P, S, f),
where P = (P,T',A) and S = (D, ®,®,0,1);
a P-automaton A = (Q,T', —¢, P, F') that accepts C,
such that A has no transitions into P states.

Output: a P-automaton Ay = (Q,T', —, P, F) that accepts pre*(C);
a function [ that maps every (g,7,q’) € — to the value of
mg(PopSeq(q,%q,)) in the abstract grammar problem defined in Fig. 6.

1 procedure update(t,del)

2 begin

3 — == U{t}

4 0l(t) := 6l(t) @ (del — I(t))

5 I(t) :=1(t) ® del

6 end

7

8 — = —q; 0 :=A.0; [ := A0

9 for allt € — do dl(t) :=1;1(t) :=1

10 for all r = (p,v) — (p,¢) € A do update((p,v,p'), f(r))

11 while there exists ¢ such that 6/(¢) # 0 do

12 select a t = (q,7,q’) such that dl(t) # 0

13 delta := 6l(t); 6l(t) :=0

14 for all r = <pla7l> — <q,7> € Ado upda’te((pl,’)/laq,)a f(’f‘) ®M)
15 for all r = (p1,71) <= (q,7y2) € A do

16 for all t’ = (¢',72,q") € — do update((p1,71,q"), f(r) ® delta @ I(t"))
17 for allr = (p1,71) <= (p',727) € A do
18 if t' = (p',72,q) € = then update((p1,71,4), f(r) @ (') @ delta)

19 return ((Q,T',—, P, F),l)

Fig. 25. A differential algorithm for creating a weighted automaton for the weighted
pre* problem. The algorithm is quite similar to Alg. 1 from Fig. 9; the differences
between the two algorithms are indicated with underlining.

for solving grammar-flow-analysis problems. The fact that a differential al-
gorithm can be used to solve grammar-flow-analysis problems follows from
previous work on differential algorithms for finding fixed points [27,28]. To
make the paper self-contained, and to elucidate more clearly the connection
between Algs. 5 and 6 and differential fixed-point finding for grammar-flow
analysis, Appendix B gives a specific differential algorithm for grammar flow
analysis (Alg. 8), and proves that the algorithm finds the maximum fixed-point
solution (or, equivalently, the meet-over-all-derivations solution).

5.2 Differential Weighted post*

Fig. 26 presents a differential algorithm for creating a weighted automaton
for the weighted post* problem. Again, the algorithm is quite similar to its
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Algorithm 6
Input: a weighted pushdown system W = (P, S, f),

where P = (P,[';A) and S = (D, ®,®,0,1);
a P-automaton A = (Q, T, —¢, P, F') that accepts C, such that
A has no transitions into P states and has no e-transitions.

Output: a P-automaton Ap.sx = (Q',T', =, P, F) that accepts post*(C);
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a function [ that maps every (g¢,7,q’) € — to the value of

me(PushSeqq ) in the abstract grammar problem defined in Fig. 16.

procedure update(t,del)
begin
— = U{t}
0l(t) := 6l(t) @ (del — I(t))
I(t) :=1(t) @ del
end

D update’(t,del)

begin
— = U{t}
delta := del — I(t)
I(t) :=1(t) @ del
return delta

end

— 1= —o; 0l := At.0; [ := At.0
for all t € —( do di(¢) := 1; I(t) :=
Q' := Q; for all (p,7) — (p',7v'7") € A do Q" := Q" U{gy}
while there exists t such that 6/(¢) # 0 do
select a t = (p,, q) such that dl(t) #
delta := 6l(t); dl(t) :=
if v # € then
for all r = (p,v) = (p',€) € A do update((p/, ¢, q) delta @ f(r)
for all r = (p,v) — (p',7') € A do update((p',v',q),delta @ f(r))
for all r = (p,v) = (P',v'7") € A do
update((p',7' gy )5 1)
delta’ := update’ ((gpy Y 1,7",q),delta ® f(r))
if delta’ # 0 then
for all ¢ = (p”,¢,qy ) do update((p",~",q), delta’ @ I(t"))

else
for all ¢’ = (q,7',q') € — do update((p,v',q'),l(t') ® delta)
return ((Q',T',—, P, F),l)

Fig. 26. A differential algorithm for creating a weighted automaton for the weighted
post™ problem. The algorithm is quite similar to Alg. 3 from Fig. 17; the differences
between the two algorithms are indicated with underlining.
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non-differential counterpart (i.e., Alg. 3 from Fig. 17); the differences between
the two algorithms are indicated with underlining in Fig. 26.

The ideas used in Fig. 26 are similar to the ones used in Fig. 25:

e Instead of an explicit workset of transitions whose values have changed,
Alg. 5 maintains an accumulated change in value, 6/(t), for each transition
t. On each iteration of the loop body, a transition ¢ with a non-0 value of
dl(t) is considered.

e A change in a transition’s weight is calculated using an expression of the
form ...®delta ® . ..

e Whenever an update(t,del) is performed, 6/(¢) is updated with the value
del — 1(t).

Example 5.1 To demonstrate Alg. 6, we extend the constant-propagation ez-
ample from Ez. 4.2 with a difference operator, a — b, which returns a restricted
to those variable updates where a and b differ. The operators @ and & are mod-
ified to handle partial environment transformers: a ® b has as its domain the
intersection of the domains of a and b; a®b has as its domain the union of the
domains of a and b. If the domain of a (b) does not include program variable
x in the domain of b (a), then a®b takes its mapping update for x from b (a).

The example discussed in FEzx. 4.2 illustrates the benefits of the differential
algorithm, because slightly different environment transformers are computed
along the two branches of the if statement (see Fig. 18). The environment
transformer for the path to ng that takes the false branch of the if statement
is Xe.e[g — 0, h +— 0]. When the true branch is taken, the environment trans-
former for the path to ng is Ae.elg — 1,h — 0]. Both the differential and
non-differential algorithms may propagate (at different stages) two different
update values for g: 0 or 1, and L. If the non-differential algorithm propa-
gates two update values for g, it must also propagate the update value 0 for h
twice; the differential algorithm will only propagate the update value O for h
once.

Consider an execution of Alg. 6 where the sequence of transitions selected by
line 20 is (p, entry,,gin, 9), (0, 11,9), (P,N2,q), ..., (p,n4,q), and corresponds
to the path through the false branch of the if statement. At this point, we have
3l((p,ns,q)) = l((p,ns, q)) = Ae.e[g — 0,h — 0]. Suppose that (p, ns, q) is the
next transition selected at line 20; the entire environment Xe.e[g — 0, h — 0]
is propagated to 6l(p, eTitmain, ¢) and 1(p, eTitmain, ¢) by the call to update on
line 24.

Eventually, Alg. 6 will process t = (p,n7,q) with §l(t) = I(t) = Ae.elg —
1,h — 0]. Because of the rule {p,n;) — (p,ng), this resulls in the call
update((p, ng, q), Ae.e[g — 1, h > 0] (on line 24), which yields §1((p, exitmain, q))
= Xe lg .e[g — L] (wheree |, denotes e restricted to {g}) and I((p, exitmain, q))
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Algorithm 7
Input: a weighted pushdown system W = (P, S, f),
where P = (P,T',A) and S = (D, ®,®,0,1);
a P-automaton A = (Q,T', —¢, P, F') that accepts C, such that
A has no transitions into P states and has no e-transitions.

Output: for each p € P and vy € T, compute V,, := @{((p,yw)) | w € T* }.
Let Apost» = (Q',T,—, P, F) and [ be the output from calling Alg. 3 or Alg. 6

forallge Q' \ (PUF) do dW,:=0; W, :=0
for allg € Fdo oW, :=1; W, :=1
while there exists ¢ such that éW, # 0 do

select a g such that 0W,; # 0

delta := 6Wgy; W4 :=0

for all t = (¢',7,9) €=, ¢ ¢ P do

Wy := Wy @ ((delta @ 1(t)) — Wy)

10 Wy =Wy @ (delta @ 1(t))
11
12 for allp € Pand y €' do V5 := D=y .q)c (Wg ® (1))

0 O Otk W N

Nel

Fig. 27. A differential algorithm that, for each p € P and v € T, computes V,, ,.
The algorithm is quite similar to Alg. 4 from Fig. 19; the differences between the
two algorithms are indicated with underlining.

= Xe.e[g— 0,h — 0].

When transition (p,ng, q) is next selected for processing (on line 20), only the
update for g will be propagated to 5l(p, exityain, ) and l(p, exitymain, q). In con-
trast, the non-differential algorithm would also propagate the update for h, even
though the update for h has not changed since the last time that (p,ns, q) was
processed. (Note, the realized savings in the cost of propagating the new envi-
ronment transformer would be much greater if there were more nodes reachable
from ng.)

The correctness of Alg. 6 follows from the same argument that was used to
justify Alg. 5 in Section 5.1: Alg. 6 solves the GPS problem because it solves
the abstract grammar problem for the productive PushSeq and SameLevelSeq
nonterminals in the grammar from Fig. 15; Alg. 6 uses a differential algorithm
for solving grammar-flow-analysis problems, which is justified by the mate-
rial on differential propagation for grammar-flow analysis that is presented in
Appendix B.
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5.3 A Differential Algorithm for Obtaining Conventional Dataflow Informa-
tion

The goal of conventional dataflow analysis is to obtain the meet-over-all-valid-
paths value for each node in the supergraph. As discussed in Section 4.2, these
values can be obtained by formulating such dataflow problems in the GPP
setting and using the fixed-point computation from Alg. 4, which computes,
for every supergraph node n,

MOVP,, = Vooyn = @{ 5(<p: ’an>) | we ™ }

To recap, Alg. 4 computes W, for every non-initial state g, where W, is the
value obtained by following all accepting paths starting at ¢, accumulating
semiring values for each path, and taking the meet over all these values. This
is achieved by propagating values backwards over transitions of A, .

In this respect, Alg. 4 is formulated in the same spirit as the non-differential
post™ algorithm from Fig. 17: whenever W, changes, Alg. 4 recomputes the
values of the predecessor states of ¢, using the full new value of W,,.

Alg. 7 in Fig. 27 presents an alternative method that can be used when a
— operation is available. Phases 1 and 3 (lines 1 and 12) are the same as in
Alg. 4; the differences in phase 2 are as follows:

e Instead of maintaining a workset, Alg. 7 maintains a value 6, for every g,
which reflects the accumulated change in W, since the last time ¢ was se-
lected in line 6. In lines 9 and 10, this value is used instead of W, to update
the predecessor states of q.

e A minor change is that (due to the previous change), in every iteration of
the while-loop, the values of the predecessors of the selected state g are
updated, instead of W, itself.

Note that the construction of the automaton and the computation of the V,, ,
values are not interleaved. In principle, either of Algs. 4 and 7 can be applied
to an automaton obtained from either of Algs. 3 and 6, although Algs. 6 and 7
can be applied only when a — operation is available.

(The comments from Section 4.2 about how to carry out a similar computation
on a pre* automaton apply here, as well.)
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6 Related Work

Several connections between dataflow analysis and model checking have been
established in past work [4,5,3,1]. The present paper continues this line of
inquiry, but makes two contributions:

e Previous work addressed the relationship between model checking and bit-
vector dataflow-analysis problems, such as live-variable analysis and partial-
redundancy elimination. In this paper, we show how a technique inspired
by one developed in the model-checking community [13-15]—but general-
ized from its original form [8]—can be applied to certain dataflow-analysis
problems that cannot be expressed as bit-vector problems.

e Previous work has used temporal-logic expressions to specify dataflow-
analysis problems. This paper’s results are based on more basic model-
checking primitives, namely, pre* and post*.

These ideas have been illustrated by applying them to simple constant propa-
gation and to linear constant propagation; in particular, linear constant prop-
agation is not expressible as a bit-vector problem.

Moped [22] is a system for PDS model checking that supports the ability to
model variables of finite data types (e.g., Booleans and integers with values
drawn from a finite range). Moped can be viewed as an implementation of
a particular class of WPDSs in which weights are limited to finite-domain
relations. In contrast, this paper allows weights to be drawn from a bounded
idempotent semiring, which means that its results apply to dataflow-analysis
problems that involve certain classes of abstract domains that have infinite
cardinality; such problems include linear constant propagation [6] and affine-
relation analysis [7].

Bouajjani, Esparza, and Toulli [33] independently developed a similar frame-
work, in which pre* and post* queries on pushdown systems with weights
drawn from a semiring are used to solve (overapproximations of) reachabil-
ity questions on concurrent communicating pushdown systems. Their method
of obtaining weights on automaton transitions differs significantly from ours.
Instead of deriving the weights directly, they are obtained using a fixed-point
computation on a matrix whose entries are the transitions of the pre* automa-
ton. This allows them to obtain weights even when the semiring does have in-
finite descending chains (provided the extender operator is commutative), but
leads to a less efficient solution for the “no-infinite-descending-chains” case. In
the latter case, in the terms of Section 4, their algorithm has time complexity
O(((s+Var)-E-Var+t)*-E-Var-(s+Var)-1l), i.e., proportional to Var®
and E3. All but one of the semirings used in [33] have only finite descending
chains, so Alg. 1 applies to those cases and provides a more efficient solution.
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The most closely related papers in the dataflow-analysis literature are those
that address demand-driven interprocedural dataflow analysis.

e Reps [34,35] presented a way in which algorithms that solve demand versions
of interprocedural analysis problems can be obtained automatically from
their exhaustive counterparts (expressed as logic programs) by making use
of the “magic-sets transformation” [36], which is a general transformation
developed in the logic-programming and deductive-database communities
for creating efficient demand versions of (bottom-up) logic programs, and/or
tabulation [37], which is another method for efficiently evaluating recursive
queries in deductive databases. This approach was used to obtain demand
algorithms for interprocedural bit-vector problems.

e Subsequent work by Reps, Horwitz, and Sagiv extended the logic-
programming approach to a class of dataflow-analysis problems called the
IFDS problems [32].'* They also gave an explicit demand algorithm for
IFDS problems that does not rely on the magic-sets transformation [38].

e Both exhaustive and demand algorithms for solving a certain class of IDE
problems are presented in [6]. The relationship between the two algorithms
given in that paper is similar to the relationship between the exhaustive [32]
and demand [38] algorithms for IFDS problems.

e A fourth approach to obtaining demand versions of interprocedural
dataflow-analysis algorithms was investigated by Duesterwald, Gupta, and
Soffa [39]. In their approach, for each query a collection of dataflow equa-
tions is set up on the flow graph (but as if all edges were reversed). The
flow functions on the reverse graph are the (approximate) inverses of the for-
ward flow functions. These equations are then solved using a demand-driven
fixed-point-finding procedure.

None of the demand algorithms described above support the ability to answer
a query with respect to a user-supplied language of stack configurations. As
with previous work on dataflow analysis, those algorithms merge together (via
meet, i.e., @) the values for each program point, regardless of calling context.
In addition, past work on demand-driven dataflow analysis has not examined
the issue of providing a witness set of paths to show why the answer to a
dataflow query for a particular configuration has the value reported.

The IFDS framework can be extended with the ability to answer a query with
respect to a language of stack configurations by applying the reachability algo-
rithms for (unweighted) PDSs [13-15] on the graphs used in [32,38]; however,
that approach does not work for the more general IDE framework. This paper
has shown how to extend the IDE framework to answer a query with respect

14 Logic-programming terminology is not used in [32]; however, the exhaustive algo-
rithm described there has a straightforward implementation as a logic program. A
demand algorithm can then be obtained by applying the magic-sets transformation.
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to a language of stack configurations, using our recent generalization of PDS
reachability algorithms to weighted PDSs [8].

It should be noted that, like the algorithms from [6], the algorithms for solv-
ing GPR problems given in Section 3 are not guaranteed to terminate for all
IDE problems; however, like the algorithms from [6], they do terminate for
all copy-constant-propagation problems, all linear-constant-propagation prob-
lems, and, in general, all problems for which the set of micro-functions contains
no infinite descending chains. The asymptotic cost of the algorithm in this pa-
per is the same as the cost of the demand algorithm for solving IDE problems
from [6]; however, that algorithm is strictly less general than the algorithm
presented here (cf. Ex. 4.5).

An application of the theory of PDSs to interprocedural dataflow analysis has
been proposed by Esparza and Knoop [2], who considered several bit-vector
problems, as well as the faint-variables problem, which is an IFDS problem [40,
Appendix A]. These problems are solved using certain pre* and post* queries.
With respect to that work, the extension of PDSs to weighted PDSs allows
our approach to solve a more general class of dataflow-analysis problems than
Esparza and Knoop’s techniques can handle; the witness-set generation algo-
rithm can also be used to extend their algorithms. (Esparza and Knoop also
consider bit-vector problems for flow-graph systems with parallelism, which
we have not addressed.)

Model checking of PDSs has previously been used for verifying security prop-
erties of programs [41-43]. The methods described in this paper should per-
mit more powerful security-verification algorithms to be developed that use
weighted PDSs to obtain a broader class of interprocedural dataflow informa-
tion for use in the verification process.

The methods described in this paper have been used to create implementations
of context-sensitive interprocedural dataflow analyses for uninitialized vari-
ables, live variables, linear constant propagation, and the detection of affine
relationships. The most ambitious of these is the implementation of affine-
relation analysis. This implements a solver for an interprocedural dataflow-
analysis problem due to Miiller-Olm and Seidl [7], which determines, for each
program point n, the set of all affine relations that hold among program vari-
ables whenever n is executed. This method can be re-cast as solving a GPR
problem (and solved with the same asymptotic complexity). Balakrishnan and
Reps have created such an implementation using the WPDS++ library [10].
This is used as one of several analysis phases in a system for analyzing mem-
ory accesses in x86 executables to recover intermediate representations that
are similar to those that can be created for a program written in a high-level
language [44].
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A Properties of the — Operation

Eqn. (6): Show that a — a =0

al a
sa—a=0 by Eqn. (5)

Eqn. (7): Show that b — a 3 b

b—~a) —b=b-"(a®db) by Eqn. (4)
=0b-—-0b —a by Eqn. (4)
=0—"—a by Eqn. (6)
=0 by Eqn. (5)
b a3b by Eqn. (5)
Eqn. (8): Show thataCTb=a — cCb — ¢
Suppose that a C b.
b—¢c)—(a—c)=b—(c®(a— ) by Eqn. (4)
=b—(cPa) by Eqn. (3)
=0b-—a) —c by Eqn. (4)
=0-"-c by Eqn. (5)
=0 by Eqn. (5)
(a—~c)C (¢ by Eqn. (5)
Eqn. (9): Show that (a — b) —b=a — b
(@b —b=a-—(bedb) by Eqn. (4)

=a— 0
B Differential Grammar-Flow Analysis

A grammar-flow-analysis problem gives rise to a set of equations over the vari-
ables {V[X] | X a nonterminal}. For brevity, we will also denote the variable

set by V. Each equation in the grammar-flow-analysis problem is of the form

VIX] = S, g(VIX1),..., V[X4). (B.1)

X—9(X1,...,X)EProds

Eqn. (B.1) can be summarized as

V =a), (B.2)

63



where G denotes the collection of right-hand sides from Eqn. (B.1). One non-
differential algorithm for finding the maximum fixed point is to form the iter-
ation sequence

70:?
z—|—1 71

Therefore, by Theorem 13 (“the maximum fixed point equals the meet-over-
all-derivations value”),

mczé (W),

To compare the answer produced by this iteration sequence with the one
produced by the differential algorithm presented below, it is useful to observe

that the exact same sequence of V; is produced by the iteration sequence
defined by

7_6’
z+1 vEBGV:)

(A simple inductive argument estabhshes that for alli > 0, Vf mye (Vz), hence,
Vi & G(Vf) = G(v) and thus Vz+1 G(V:))

We define the operator H(V) ey @ G(V) The maximum fixed point of H
equals the maximum fixed point of GG; thus, Theorem 13 implies that

mG:é ().

To perform differential propagation, we will use two vectors of variables, V}

and 0V. A differential algorithm for grammar flow analysis is presented as
Alg. 8 of Fig. B.1. By design, it is similar in style to Algs. 5 and 6 of Section 5.

We now prove several lemmas that establish certain properties of Alg. 8. The
first lemma shows that 6V [X] captures a part of V[X]’s value.

_)
Lemma 21 Fach time control reaches line 3 of Alg. 8, 6V 1 V} (i.e., for all
X € NT, 6V[X] 3 V[X]).
PROOF. The proof is by induction on the number of times that control

reaches line 3.

Base case: The property is established by lines 1 and 2.
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Algorithm 8
Input: an abstract grammar over (S, ®), with nonterminals NT and productions
Prods

Output: a value in S for each X € NT

1 (ﬁ}::ﬁ;v::ﬁ

2 forall X eNTdodV[X]:= P gVIXl:= P 90
X —g()€Prods X—g()€Prods

3 while there exists Y € NT such that V[Y] # 0 do

4 select a Y such that 6V[Y] # 0

5 delta := §V[Y]; 0V[Y]:=0

6 for all X — g(X1,...,Y,..., X}) € Prods do

7 SV[X] :=o0V[X] @ (g(V[X1],...,delta, ..., V[X;]) — V[X])

8 VIX]:=V[X]®g(V[Xi],...,delta, ..., V[X])

9 return

Fig. B.1. A differential algorithm for grammar flow analysis. (In line 2, “X — g()”
means a production with zero nonterminals on the right-hand side.)

Induction step: Assume that the property holds the i time that control
reaches line 3. The property holds the (i + 1) time that control reaches
line 3 because the property is maintained by lines 7 and 8: comparing the
corresponding arguments of @ on the right-hand sides of lines 7 and 8, we
have
e JV[X] 3 V[X], by the induction hypothesis, and
o (g(V[Xi),...,delta,..., V[Xi]) —VI[X]) T g(V[Xi],...,delta, ..., V[Xy]),

by Eqn. (7).
Hence, by the fact that & is monotonic in each argument, the value of §V [ X]
after line 7 is 3 the value of V[X] after line 8.

O

To be able to discuss how values are propagated by Alg. 8, we introduce the
following notation:

Definition 22 For all X € NT, at each moment during a run of Alg. 8, let
V[X] denote the value that V[X]| had when X was most recently selected at
line 4. If X has never been selected at line 4, V[X] is 0.

The next lemma shows that V' [X] captures the accumulated change in V[X]’s
value since it was most recently selected at line 4.

Lemma 23 For all X € NT, each time that control reaches line 6 of Alg. 8,
SVX]e V[X] =V[X].

PROOF. The proof is by induction on the number of times that control
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reaches line 6.

Base case: The first time that control reaches line 6, either X has never been
selected or the nonterminal in question is Y. In the former case, V[X] = 0,
dV[X] = V[X], and thus the desired property holds; in the latter case,
VY] =V[Y], §V[Y] = 0, and the property also holds.

Induction step: Assume that the property holds the i** time that control
reaches line 6. In general, the loop on lines 6-8 adjusts the values of §V[X]
and V[X], for many different X’s. We now show that each execution of
the pair of assignments in lines 7 and 8 preserves the desired property. Let
dV[X] and V[X] denote the values established in lines 7 and 8, respectively.

SVIX) =6VIX]® (g(V[X1], ..., delta, ..., V[X]) — V[X])

VX @ V[X]
= 6V[X] @ (9(V[X1], ..., delta, ..., V[X}]) — V[X]) ® V[X]
= 0V[X] ® (g(V[X1], -, delta, ..., V[Xy]) — (6V[X] @ V[X])) ® V[X] by the ind. hyp.
= 6V[X] @ ((g(V[Xy], ..., delta, .. V[Xk]) = §V[X]) — V[X]) ® V[X] by Eqn. (4)
= 6V[X] ® (g(V[X1], ..., delta, ..., V[X}]) — 6V[X]) ® V[X] by Eqn. (3)
= g(V[X1],...,delta, ..., V[X;]) @ 6V[X] @ V[X] by Eqn. (3)
=g(V[X1)],...,delta,...,V[Xy]) ® V[X] by the ind. hyp.
= V[X]

The next lemma characterizes the value for V[X] on each iteration, in terms
of certain values that arose in the past. (This will be used in the proof of
Theorem 25 to establish that Alg. 8 reaches a fixed point.)

Lemma 24 For all X € NT, each time that control reaches line 3 of Alg. 8,

VIX]E D g(VIXa], .. VIXR]).

X—g(X1,...,Xx )€ Prods

PROOF. The proof is by induction on the number of times that control
reaches line 3.

Base case: The property is established by lines 1 and 2.

Induction step: Assume that the property holds the i"* time that control
reaches line 3. Let V[Y]® be the value of V[Y] for the Y that will be selected
at line 4. By Lemma 23, V[Y]* = V[Y]° @ delta, where V[Y]° and delta are
the values of V[Y] and §V[Y], respectively, just before line 4.
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By the induction hypothesis, at line 4 we have, for all X € NT,

VIX]C @ g(V[Xa),-.., V[Xk])
X—9(X1,...,X)EProds
= &y g(VIXi],..., VY], ..., V[Xz])
X—-9(X1,.0,Y,.., X ) EProds
D @ g(V[Xa],..., V[Xy])

X—9(X1,....,Xg)EProds,Y ¢RHS

After the loop on lines 6-8 executes, we have

V[X] - @ g(V[Xl]aav[Y]oaaV[Xk])
X—9(X1y.0,Y,...,. X ) EProds
® D G(VTX, .., VIXR))
X—g(X1,...,Xt)€Prods,Y ¢RHS
® g(V[X1),-..,delta, ..., V[Xg])
X—g9(X1,...,Y,.... X)) EProds

- g(V[X1],...,V[Y]° @ delta, . .., V[Xz])

X—g9(X1,...,Y,...,. X} ) EProds
@ (V[Xl]aaV[Xk])
X—9(X1,...,Xk )€Prods, Y ¢RHS
= P g(V[X1],...,VIY],...,VIXi]),
X—9(X1,...,Y,.... X} )EProds
@ (V[Xl]aav[Xk])
X—g(X1,...,Xx )€Prods,Y ¢RHS

which reestablishes the property for the next time that control reaches
line 3: V[Y]® is the value that V[Y] had the last time that Y was selected
at line 4—i.e., V[Y]* = V[Y].

O

[43 7

The presence of “C” in Lemma 24, rather than “=”, is what requires us to
phrase the argument in the next theorem in terms of the maximum fixed point
of H, rather than in terms of the maximum fixed point of G.

Theorem 25 Alg. 8 finds the mazimum fized-point solution (and hence the
meet-over-all-derivations solution) of a given grammar-flow-analysis problem.

PROQF. Let WO | WI a...d W: be the sequence of values for 7 at line 3
on any run of Alg. 8.

First, we must show that Alg. 8 always terminates. We want to argue that
each iteration of the loop on lines 3-8 makes a certain amount of progress. In
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particular, we would like to show that each time a particular nonterminal Z
is selected on line 4, it has a strictly smaller value than the previous time that
Z was selected; because there are a finite number of nonterminals and (S, &)
has no infinite descending chains, this implies that Alg. 8 must terminate.

For Z to be selected on line 4, 6V [Z] C 0 must hold. However, 6V [Z] can only
receive a non-0 value in line 7—and only when the value of subexpression
(9g(V[Zi],...,delta,...,V[Z]) — V[Z]) is non-0. Moreover, whenever this
happens, it cannot be the case that V[Z] C g(V|[Zy],...,delta,...,V[Z]), or
else, by Equ. (5), (9(V[Z1],...,delta,...,V[Z]) — V[Z]) would be 0. This, in
turn, implies that the assignment on line 8 must also cause the value of V[Z]
to decrease. In other words, each decrease in the value of 6V [Z]—which must
occur for Z to be selected on line 4—must be accompanied by a decrease in
the value of V[Z]. Because (S, ®) has no infinite descending chains, V[Z] can
decrease in value only a finite number of times; consequently, each Z can be
selected only a finite number of times, and Alg. 8 must terminate.

Second, we show that WT is a fixed point of H. When Alg. 8 terminates, for
all X € NT, W,[X] = V[X]. Consequently,

(HW,)[X] = (W, ® G(W,))[X]

=ViX]e® D g(V[Xa],..., VX))
X—9(X1,....,Xg)EProds

=V[X] by Lemma 24

= W, [X]

which means that W: is a fixed point of H.
Third, we show by induction that, for 0 <7 < r, WZ | TTG):

Base case: Let Vi =H (6)) be the value in hand after the first round of non-
differential propagation. Because the first round of non-differential propaga-
tion can only produce non-0 values for productions with € on the right-hand
side, Wy = Vi. Moreover, \71) | 778; by Theorem 13.

Induction step: Assume that W; J mé. By Lemma 21, for all X € NT,
OV [X] 3 V[X]; in particular, for whatever Y is selected in line 4, 6V[Y] O
V1Y]. Consequently, because every production function is monotonic in each
argument, each time that control reaches line 8 we have

g(VIXi],...,8V[Y],..., VX)) D g(VIXi,..., V[V],..., VIXi]),

which implies that one application of H causes values to decrease at least
as much as one application of line 8.

Let n; be the number of iterations of the loop on lines 6-8 that are
performed during the ** iteration of the while loop. Thus, W;,1 J H "l(W,)
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That is, n; rounds of non-differential propagation via H cause values to
decrease at least as much as one iteration of the while loop during differential
propagation.

Finally, we observe that

z—|—1 JH™ Wz)
3 H™(md) by the induction hypothesis
= meé by Theorem 13

The last step follows from the fact that mé is the meet-over-all-derivations
solution, which by Theorem 13 equals the maximum fixed point of G (and
hence of H).

The argument given above shows that, for 0<e<r, W Zl mG In particular,
for the final value W:, we have Wr 3 m¢é. By Theorem 13, mé equals the
maximum fixed point of H, but in the second part of the proof we showed that

Wr is a fixed point of H. Taken together, these facts imply that W: =img. O
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