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1 Introduction

This paper explores a connection between interprocedural dataflow analysis
and model checking of pushdown systems (PDSs). Various connections be-
tween dataflow analysis and model checking have been established in past
work, e.g., [1-5]; however, with one exception ([2]), past work has shed light
only on the relationship between model checking and bit-vector dataflow-
analysis problems, such as live-variable analysis and partial-redundancy elim-
ination. In contrast, the results presented in this paper apply to (i) bit-vector
problems, (ii) the one non-bit-vector problem addressed in [2], as well as
(iii) certain dataflow-analysis problems that cannot be expressed as bit-vector
problems, such as linear constant propagation [6] and affine-relation analy-
sis [7]. In general, the approach can be applied to any distributive dataflow-
analysis problem for which the domain of transfer functions has no infinite
descending chains. (Safe solutions are also obtained for problems that are
monotonic but not distributive.)

The paper makes use of a recent result that extends PDSs to weighted PDSs,
in which each transition is labeled with a value, and the goal is to determine
the meet-over-all-paths value (for paths that meet a certain criterion) [8]. The
paper shows how weighted PDSs yield new algorithms for certain classes of
interprocedural dataflow-analysis problems. These ideas are illustrated by the
application of weighted PDSs to both simple constant propagation and linear
constant propagation.

The contributions of the paper can be summarized as follows:

e Conventional dataflow-analysis algorithms merge together the values for
all states associated with the same program point, regardless of the states’
calling context. With the dataflow-analysis algorithm obtained via weighted
PDSs, dataflow queries can be posed with respect to a regular language of
stack configurations. Conventional merged dataflow information can also be
obtained by issuing appropriate queries; thus, the new approach provides
a strictly richer framework for interprocedural dataflow analysis than is
provided by conventional interprocedural dataflow-analysis algorithms.

e Because the algorithm for solving path problems in weighted PDSs can
provide a witness set of paths, it is possible to provide an explanation of
why the answer to a dataflow query has the value reported.

Another theme of the paper is to illustrate a number of classic concepts that
arise in interprocedural dataflow analysis (e.g., exhaustive vs. demand evalu-
ation, differential vs. non-differential propagation, etc.) from the viewpoint of
the weighted PDS framework.

The algorithms described in the paper have been implemented in two libraries,



WPDS [9] and WPDS++ [10], that solve reachability problems on weighted
PDSs. These libraries have been used to create prototype implementations
of context-sensitive interprocedural dataflow analyses for uninitialized vari-
ables, live variables, linear constant propagation, and the detection of affine
relationships. WPDS is available on the World Wide Web, and may be used
by third parties in the creation of dataflow-analysis tools; WPDS++ will be
made available in late 2004.

The remainder of the paper is organized as follows: Section 2 introduces termi-
nology and notation used in the paper, and defines the generalized-pushdown-
reachability (GPR) framework. Section 3 presents algorithms for solving GPR,
problems. Section 4 shows how the GPR framework can be used to solve
interprocedural dataflow-analysis problems. Section 5 presents differential al-
gorithms for solving GPR problems. Section 6 discusses related work. Appen-
dices A and B present some technical results that are used in Section 5.

2 Terminology and Notation

In this section, we introduce terminology and notation used in the paper.

2.1 Pushdown Systems

A pushdown system is a transition system whose states involve a stack of
unbounded length.

Definition 1 A pushdown system is a triple P = (P,T', A), where P and T’
are finite sets called the control locations and the stack alphabet, respec-
tively. A configuration of P is a pair (p,w), where p € P and w € T'*.
A contains a finite number of rules of the form (p,v) —p (p',w), where
p,p € P, v €T, and w € T'*, which define a transition relation = between
configurations of P as follows:

Ifr = (p,7) <p (', w), then (p,yw') =2p (o', ww') for all w' € T*.

We write ¢ =p ¢ to express that there exists some rule r such that ¢ ﬁwp c;
we omit the subscript P if P is understood. The reflerive transitive closure
of = is denoted by =*. Given a set of configurations C, we define pre*(C) o
{d|3ceC: ¢ =*c}andpost*(C) E {c | e € C: ¢ =* '} to be the sets of
configurations that are reachable—backwards and forwards, respectively—jfrom
elements of C wvia the transition relation.



Without loss of generality, we assume henceforth that for every (p,~y) — (p', w)
we have |w| < 2; this is not restrictive because every pushdown system can
be simulated by another one that obeys this restriction and is larger by only
a constant factor; e.g., see [11,12].

Because pushdown systems have infinitely many configurations, we need some
symbolic means to represent sets of configurations. We will use finite automata
for this purpose.

Definition 2 Let P = (P,T', A) be a pushdown system. A P-automaton is a
quintuple A = (Q,T',—,P, F) where Q D P is a finite set of states, - C @ X
[' X Q is the set of transitions, and F' C () are the final states. The initial
states of A are the control locations P. A configuration (p,w) is accepted
by A if p =5* q for some final state q. A set of configurations of P is regular
if it is accepted by some P-automaton. (We frequently omit the prefix P and
simply refer to “automata” if P is understood.)

Example 3 We will use a running example to explain the definitions and
algorithms given in Sections 2 and 3. We consider the pushdown system P,
with control locations p and q, stack alphabet {a,b, c,d}, and the following five
rules:

T = <p7 CL) — <CI: b): ro = <p7 a) — <p7 C>7 r3 = <qab> — <p: d)v
ry = (p,c) = (p,ad), rs = (p,d) = (p,€).

Fig. 1(b) shows part of the transition relation = generated by these rules.
Fig. 1(a) shows a P.,-automaton (henceforth called A.,) that accepts the set
of configurations Cop = {{(q,bd?*) | k > 0}. The configurations of Ce, are
encircled by dotted lines in Fig. 1(b).

A convenient property of regular sets of configurations is that they are closed
under forwards and backwards reachability. In other words, given an automa-
ton A that accepts the set C, one can construct automata Ay, and Apy,s-
that accept pre*(C) and post*(C), respectively. The general idea behind the
algorithm for pre* [13,14,11] is as follows:

Let P = (P,T', A) be a pushdown system and A = (Q,T',—, P, F) be a P-
automaton accepting a set of configurations C'. Without loss of generality we
assume that 4 has no transition leading to an initial state. pre*(C) is obtained
as the language of an automaton A, = (Q,I', —, P, F') derived from A by a
saturation procedure. The procedure adds new transitions to A according to
the following rule:



(a) (b)

Fig. 1. (a) Automaton Ac,. (b) The transition system generated by Pe,.

If (p,v) — (P, w) and p’ 5* ¢ in the current automaton, add a transition
(7, 9)-

In [14] an efficient implementation of this procedure is given, which requires
O(|Q[?|A]) time and O(|Q||A] + |—¢]|) space.

Example 4 Applying this procedure to automaton A., from Ez. 3 yields the
automaton shown in Fig. 2(a), which indeed accepts the set pre*(Cey), includ-
ing all the configurations to the right of the dotted line in Fig. 2(b).

An automaton A,,s- that accepts post*(C) can be obtained from a P-automaton
A = (Q,T,—o, P, F), where — has no e-transitions, by the following two-
phase procedure:



(p, ddd) k (g,bdd) =— (p,add) =— (p,dadd) =—

(a) (b)

Fig. 2. (a) Automaton accepting pre*(Cez). (b) Extent of pre*(Cez) in Peg.

e Phase I
For each pair (p/,~') such that P contains at least one rule of the form
(p,7) = (P',7'7"), add a new state gy .
e Phase II (saturation phase)
In this phase, new transitions are added to the automaton until no more
rules can be added. (The symbol <> denotes the relation (<3)* = (<)*.)
The rules for adding new transitions are as follows:
- If (p,7) < (p/,e) € A and p < ¢ in the current automaton, add a
transition (p/, €, q).
- If (p,7) = (¢',7") € A and p ~> ¢ in the current automaton, add a
transition (p', 7, q).
I (p,y) = (p',¥'¥") € A and p ~b ¢ in the current automaton, first

add (p',7', gy ,y) and then (gy 7", q).

Aost+ can be constructed in time and space O(npna(ni + ng) + npns), where
np = |P|, na = |A|, ng = |Q|, ns = |6], n1 = |Q\P|, and ny is the number of
different pairs (p',7') such that there is a rule of the form (p,~vy) < (p',7'+")
in A [11].

In Sections 3 and 5, we develop generalizations of these procedures.



2.2  Weighted Pushdown Systems

A weighted pushdown system is a pushdown system whose rules are given
values from some domain of weights. The weight domains of interest are the
bounded idempotent semirings defined in Defn. 5.

Definition 5 A bounded idempotent semiring is a quintuple (D, ®, ®,0,1),
where D is a set, 0 and 1 are elements of D, and & (the combine operation)
and ® (the extend operation) are binary operators on D such that

(1) (D,®) is a commutative monoid with 0 as its neutral element, and where
@ 1is idempotent (i.e., for alla € D, a® a = a).

(2) (D,®) is a monoid with the neutral element 1.

(8) ® distributes over @, i.e., for all a,b,c € D we have

a®(bdc)=(a®b)®(a®c) and  (a®b)Q@c=(a®c)P® (b®c).

(4) 0 is an annihilator with respect to ®, i.e., for alla € D, a®0 =0 = 0®a.
(5) In the partial order T defined by: Ya,b € D, a T b iff a ® b = a, there
are no infinite descending chains.

Defn. 5(1) and Defn. 5(5) mean that (D, ®) is a meet semilattice with no
infinite descending chains.

Definition 6 A weighted pushdown system is a triple W = (P,S, f)
such that P = (P,T', A) is a pushdown system, S = (D, ®,®,0,1) is a bounded
idempotent semiring, and f: A — D is a function that assigns a value from D
to each rule of P.

Let ¢ € A* be a sequence of rules. Using f, we can associate a value to o,
ie., if ¢ = [r1,...,7r;], then we define v(0) € f(r1) ® ... ® f(ry). Moreover,
for any two configurations ¢ and ¢’ of P, we let path(c,c’) denote the set of

all rule sequences [ry, ..., 7] that transform c into ¢, i.e., ¢ Sy

We now define two kinds of generalized pushdown reachability (GPR)
problems:

Definition 7 Let W = (P, S, f) be a weighted pushdown system, where P =
(P,T,A), and let C C P x I'* be a regular set of configurations. The gen-

eralized pushdown predecessor (GPP) problem is to find for each
ce PxI*:

e 5(c) E@{v(o)| o € path(c,d),d € C};

e o witness set of paths w(c) C U path(c,c) such that @ v(o) = d(c).
cdeC g€w(c)



The generalized pushdown successor (GPS) problem is to find for each
ce PxI*:

o 5(c) E®{v(o) | o € path(c,c),d € C};

e o witness set of paths w(c) C U path(c,c) such that @ v(o) = d(c).
deC g€w(c)

Notice that the extender operation ® is used to calculate the value of a path.
The value of a set of paths is computed using the combiner operation &. In
GPP and GPS problems, because of Defn. 5(5) (i.e., “no infinite descending
chains”), for each ¢ € P x I'* it is always possible to identify a witness set
w(c) that is finite.

3 Solving Generalized Pushdown Reachability Problems

Throughout this section, let W denote a fixed weighted pushdown system:
W = (P,S,f), where P = (P,[';A) and § = (D,®,®,0,1). Let C de-
note a fixed regular set of configurations, represented by a P-automaton
A = (Q,T, =, P, F) such that A has no transition leading to an initial state.

GPP problems are multi-target meet-over-all-paths problems on a graph; GPS
problems are multi-source meet-over-all-paths problems on a graph. In both
cases, the vertices of the graph are the configurations of P, and the edges are
defined by P’s transition relation. The target (source) vertices are the vertices
in C. Both the graph and the set of target (source) vertices can be infinite,
but have some built-in structure to them; in particular, C' is a regular set.

Because GPR problems concern infinite graphs, and not just an infinite set
of paths, they differ from other work on meet-over-all-paths problems. As in
ordinary pushdown-reachability problems [13,14], the infinite nature of GPR
problems is addressed by reporting the answer in an indirect fashion, namely,
in the form of an (annotated) automaton.

Answer automata without their annotations are identical to the A, and
A5t automata created by the algorithms of [14,11]. The annotations allow
us to obtain §(c) and w(c) values. For instance, as described in Section 3.1,
for each ¢ € pre*(C), the values of (c) and w(c) can be read off from the
annotations by following all accepting paths for ¢ in the automaton created
by the algorithm for solving GPP problems; for ¢ ¢ pre*(C), the values of
d(c) and w(c) are 0 and 0, respectively. (A similar statement can be made for
¢ € post*(C) and the automaton created by the algorithm for solving GPS
problems; see Section 3.2.)



3.1 Solving Generalized Pushdown Predecessor Problems

This section presents the algorithm from [8] for solving GPP problems. The
algorithm is presented in several stages:

e We first define a context-free grammar that characterizes certain sequences
of transitions that can be made by a pushdown system P and an automaton
A for C.

e We then turn to weighted pushdown systems and the GPP problem. We
use the grammar characterization of transition sequences, together with
previously known results on a certain kind of grammar-valuation problem
[15,16], to derive an algorithm for solving GPP problems.

e However, the initial solution is somewhat inefficient; to improve the per-
formance, we specialize the computation to our case, ending up with an
algorithm for creating an annotated automaton that is quite similar to the
pre* algorithm from [14,11].

3.1.1 Languages that Characterize Transition Sequences

In this section, we make some definitions that will aid in reasoning about the
set of paths that lead from a configuration ¢ to configurations in a regular
set, C'. We call this set the pre* witnesses for ¢ € P x I'* with respect to C:
PreStar Witnesses(c, C) = Uyec path(c,c’).

It is convenient to think of PDS P and P-automaton A (for C') as being
combined in sequence, to create a combined PDS, which we will call PA. PA’s
states are P U = (), and its rules are those of P, augmented with a rule
(g,7) < (¢, €) for each transition ¢ -+ ¢’ in A’s transition set —.

We say that a configuration ¢ = (p,¥172...7,) is accepted by PA if there
is a path to a configuration (g, €) such that ¢; € F. Note that because A
has no transitions leading to initial states, PA’s behavior during an accepting
run can be divided into two phases—transitions during which PA mimics P,
followed by transitions during which PA mimics A: once PA reaches a state
in (@ \ P), it can only perform a sequence of pops, possibly reaching a state
in F. If the run of PA does reach a state in F, in terms of the features of the
original P and A, the second phase corresponds to automaton A accepting
some configuration ¢ that has been reached by P, after P was started in
configuration c. In other words, PA accepts a configuration c iff ¢ € pre*(C).

The first language that we define characterizes the pop sequences of PA.

Definition 8 (Pop Sequence) A pop sequence forq € Q, v € ', and ¢' € Q
is a sequence of transitions of PA’s transition relation that (i) starts in a



Production for each
(1) PopSeqy ) — € ¢ q €=
(2) PopSeqy, .. — € (p,7) = (p,e) € A
(3) PopSeqq, . — PopSeqy 4 ") = (,7) €Dqeq
(4) PopSeqq, s — PopSeqqy v oy PopSeqy g (p,7) = @, vy €A q,qd €Q

Fig. 3. A context-free grammar for the pop sequences of PA, and the PA rules that
correspond to each production.

Stack height
o

.q

(1) PopSeqiqy,q) — € (2) PopSeq(p,qp) — € (3) PopSeqqyy,q) = PopSeqy y,q)
g5 ¢ €= (p,7) = (p,e) € A 0,7) = ®,Y)eDqeq
P Control location
YI Stack element

——>  PDS transition
- -=-=> Right-hand side PopSeq

Stack height

-------------- » Left-hand side PopSeq
(4) PopSeqp, ,.q = PopSeqqy v gy PopSequg

(p,7) = @,7Y"Y") € Aq,¢ €Q

9)

Fig. 4. Schematic diagram of the types of transition sequences captured by the
PopSeq productions from Fig. 3.

configuration (g, yw), (ii) ends in a configuration (¢', w), and (iii) throughout
the transition sequence the stack is always of the form w’w for some non-empty
string w' € I'*, except in the last step, when the stack shrinks to w.

Note that, in general, there are many similar pop sequences that differ only
in the untouched part of the stack (i.e., w). Moreover, for all w, there is a pop
sequence for ¢, 7, and ¢’ with untouched stack w if and only if there is a pop
sequence for ¢, v, and ¢’ with (untouched) stack e.

The family of pop sequences for a given ¢, v, and ¢’ can be characterized by the
complete derivation trees® derived from nonterminal PopSeq . 4, using the
context-free grammar shown in Fig. 3. Fig. 4 depicts the types of transition
sequences captured by the PopSeq productions from Fig. 3.

Example 9 Recall the pushdown system P., from Ex. 3. Its transition system

5 A derivation tree is complete if it has a terminal symbol or € at each leaf.

10

~~~ Sequence of PDS transitions



(cf. Fig. 1(b)) admits the sequence
(p,a) =2 (p, ) =2 (p,ad) <2 (g,bd) =22 (p, dd) =22 (p,d) =2 (p,c),

which is a pop sequence for p, a, and p in which the untouched part of the stack
1s empty. Fig. 5 shows how this sequence is captured by a complete derivation
tree of the grammar that corresponds to PA.,—the combined PDS created
from P.p and Aey. (In this example, the pop-sequence derivation tree only
makes use of grammar rules that correspond to PDS rules of P.y.) The rule
sequence that makes up the pop sequence is obtained from a preorder listing
of the tree: subsequence [rary] corresponds to the part of the tree up to the
branching, [rirsrs] to the left branch, and [rs] to the right branch. Note that
the left branch s itself another pop sequence for p, a, and p.

Pop%q(p,a,p) [ry:(p.@) - (p.0]

PopSeq ¢ [+ (00 ~ (pad]

PopSeq, o) [r:: (P — (ab)] POpSeq, gp) [ i) ~ ()]
PopSeqq ) [ (@b ~ (p.d] £

PopSeqp, 4 [1st (Pd) — (pe)]

€

Fig. 5. A complete derivation tree for PopSeq(p,a,p).

Theorem 10 PDS PA has a pop sequence for q, v, and ¢ iff nonterminal
PopSeq(q .y of the grammar shown in Fig. 3 has a complete derwation tree.
Moreover, for each complete derivation tree with root PopSeq(q,%q,), a preorder
listing of the derivation tree’s production instances (where Fig. 3 defines the
correspondence between productions and PDS rules) gives a sequence of rules
for a pop sequence for q, v, and ¢'; and every such sequence of rules has a
derivation tree with root PopSeq, ., o)-

Proof [Sketch] To shrink the stack by removing the stack symbol on the
left-hand side of each rule of PA, there must be a transition sequence that
removes each of the symbols that appear in the stack component of the rule’s
right-hand side. In other words, a pop sequence for the left-hand-side stack
symbol must involve a pop sequence for each right-hand-side stack symbol
(see Fig. 4).

11



The left-hand and right-hand sides of the productions in Fig. 3 reflect the
pop-sequence obligations incurred by the corresponding rule of PA. O

To capture the set PreStar Witnesses({p, 172 - . - n), C), where C is recognized
by automaton A, we extend the context-free grammar from Fig. 3 by the set
of productions

Accepting[’ywz---’Yn](p,q) - P"pseq(pm,qﬂ POpseq(q1,72,qz) PoPS&q(qn—uvn,q)
foreachpe Pg; €@, for1<i<m—1; andgq € F

Accepted[y1v2---Ynlpy — Accepting[yiy2 - - Yul(p,g) foreachp e Pyqe F

This language captures all ways in which PDS PA can accept (p, 7172 - - - Yn):
the set of pre* witnesses for (p, 172 . . . ¥} corresponds to the complete deriva-
tion trees derivable from nonterminal Accepted[y17s - . . Vn)(p)- The subtree rooted
at PopSeqg, . ~..q:) 8ives the pop sequence that ‘PA performs to consume sym-
bol ;. (If there are no pre* witnesses for (p, 7172 - . . 7, there are no complete
derivation trees with root Accepted[y1v2 ... Ynl(p)-)

3.1.2 Weighted PDSs and Abstract Grammar Problems

Turning now to weighted PDSs, we will consider the weighted version of PA,
denoted by WA, in which weighted PDS W is combined with A, and each
rule (g,7) < (¢', €) that was added due to transition ¢ =+ ¢’ in A’s transition
set — is assigned the weight 1.

We are able to reason about semiring sums (@) of weights on the paths that are
characterized by the context-free grammars defined above using the following
concept:

Definition 11 [15,16] Let (S,1) be a meet semilattice. An abstract gram-
mar over (S,M) is a collection of context-free grammar productions, where
each production 6 has the form

X() — gg(Xl, e ,Xk)

Parentheses, commas, and gy (where 0 is a production) are terminal sym-
bols. Every production 0 is associated with a function gg: S* — S. Thus,
every string o of terminal symbols derived in this grammar (i.e., the yield
of a complete derivation tree) denotes a composition of functions, and corre-
sponds to a unique value in S, which we call valg(c) (or simply val(«) when
G is understood). Let Lg(X) denote the strings of terminals derivable from a
nonterminal X. The abstract grammar problem is to compute, for each

12



Production for each

(1) PopSeqyy. gy — 91(€) (¢,7:4) € =0
g =1

(2) PopSeqqy .y — ga(e€) r=(p,7) = {e) €A
g2 = f(r)

(3) PopSeqy, o — 93(PopSeqyy v g) T=(p,7) = (P,Y) €A, qERQ
g=v.f(r)®@uz
(4) PopSeq

D,7,q) - g4(P0pseq(

v o) PoPSedig o )
r={@) =P EAN LT EQ
ga =2z y.f(r)@zQy
(5) Accepting[y17Vz - - - Ynl(p.a) = 95(PoPSeqy 0 01y POPSY gy 0.00)s - - - » POPSEY g, | o )
peEPqge@, forl1<i:<n-—1, andge F
g5 = AL1.AZg .. . ATp. 21 QLo ® ... Q Xy,
(6) Acceptedyiva. ..y = gs(Accepting[viva . .. Ynlp,a))

pePqgeF

g6 = AT.x

Fig. 6. An abstract grammar problem for the weighted pre* problem.

nonterminal X, the value

me(X):= [l wvalg(a).

a€Lg(X)

The value mg(X) is called the meet-over-all-derivations value for nonter-
minal X.

Because the complete derivation trees with root Accepted|y,7ys ... Vn](p) encode
the transition sequences by which WA accepts (p, 7172 - - - n), to cast a GPP
problem as a grammar problem, we merely have to attach appropriate pro-
duction functions to the productions so that for each rule sequence o, and
corresponding derivation tree (with yield) «, we have v(0) = valg (). This is
done in Fig. 6: note how functions gs, g3, and g4 place f(r) at the beginning
of the semiring-product expression; this corresponds to a preorder listing of a
derivation tree’s production instances (cf. Theorem 10).

Example 12 Consider once again the pushdown system P, introduced in
Ezx. 3 and suppose that we assign a non-negative integer weight to each rule.
Let Sp = (INp, min, +,00,0) be the Dijkstra semiring, whose domain is
the non-negative integers, and in which values along a path are added up.
Moreover, let Wey = (Pow,Sp, f) be a weighted pushdown system. For the

13



purpose of our example, let

f(ri) =5, f(re) =4, f(rs) =3, f(ra) =2, f(rs) = 1.

The transition relation of W,,, complete with the weights given by f, is shown
win Fig. 7.

(p,e)
1
(p,d) 2 (g, b) 2 (p, a) ! (p,da) =— -
4
! (p,c) = (p,dc) =~
2
(p,dd) = (q,bd) =~ (p,ad) ~— (p,dad) ~—
4
L (p,ed) <— (p, ded) =— -
2
(p, ddd) -2 (g, bdd) i(p, add) + (p, dadd) =— -
4
1

Fig. 7. Weighted transition system of We,.

Fig. 8§ shows the weighted version of the derivation tree from Fig. 5, where
the functions associated with the productions are taken from Fig. 6. In each
function, the A-operators capture the values obtained from the children of the
assoctated node, from left to right. Thus, the value obtained at the root is 16,
which is indeed the value of the pop sequence represented by the tree (cf. Fig. 7).

POpPSeq, o) [ (P ~ (O]

X5+ X l
PopSeq, ¢y [rs (PO ~ (pad)]
AXAY.2 +X+y

PopSeqp o p) [r:: (P2 ~ (@b)] PopSeq, gy s (PO ~ (o)
A5+ x 1

PopSeq g 0p) [r5 @b ~ (] £
X3+ X

POpSeqp g ['s (. ~ (P&

1

€
Fig. 8. Complete derivation tree for PopSeq, , ) with weights from Fig. 6.

To solve the GPP problem, we appeal to the following theorem:

14



Theorem 13 [15,16] The abstract grammar problem for G and (S,M) can be
solved by an iterative computation that finds the maximum fized point when
the following conditions hold:

(1) The meet semilattice (S,M) has no infinite descending chains.
(2) Every production function gy in G is distributive, i.e.,

g('|_|,...,.|_|):. . [l 9(Tiyy -, i)
1€l i €1y (Zl,...,lk)EhX---XIk
for arbitrary, non-empty, finite index sets I, ..., I.

(8) Every production function gg in G is strict in T in each argument, where
T is the greatest element of (S,1).

The abstract grammar problem given in Fig. 6 meets the conditions of Theo-
rem 13 because

(1) By Defn. 5(1), the @ operator is associative, commutative, and idempo-
tent; hence, (D, ®) is a meet semilattice. By Defn. 5(5), (D, @) has no
infinite descending chains.

(2) The distributivity of each of the production functions gi, ..., g¢ over
arbitrary, non-empty, finite index sets follows from repeated application
of Defn. 5(3).

(3) By Defn. 5(1), @ has the identity element 0; hence, (D,®) is a meet
semilattice with greatest element 0. Production functions gs, ..., g¢ are
strict in 0 in each argument because 0 is an annihilator with respect to ®
(Defn. 5(4)). Production functions g; and g are constants (i.e., functions
with no arguments), and hence meet the required condition trivially.

Thus, one algorithm for solving the GPP problem for a given weighted PDS
W, initial configuration (p,¥17s...7s), and regular set C' (represented by au-
tomaton A) is as follows:

e Create the combined weighted PDS WA.

e Define the corresponding abstract grammar problem according to the schema
shown in Fig. 6.

e Solve this abstract grammar problem by finding the maximum fixed point
using chaotic iteration: for each nonterminal X, the fixed-point-finding al-
gorithm maintains a value /(X'), which is the current estimate for X’s value
in the maximum fixed-point solution; initially, all [(X) values are set to
0; I(X) is updated whenever a value [(Y') changes, for any Y used on the
right-hand side of a production whose left-hand-side nonterminal is X.
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3.1.83 A More Efficient Algorithm for the GPP Problem

The approach given in the previous section is not very efficient: for a
configuration (p,y172...7vn), it takes O(|Q|"~!|F|) time and space just to
create the grammar productions in Fig. 6 with left-hand-side nonterminal
Accepting[y1Ys - . - Yn)(p,q)- However, we can improve on the algorithm of the
previous section because not all instantiations of the productions listed in
Fig. 6 are relevant to the final solution; we want to prevent the algorithm
from exploring useless nonterminals of the grammar shown in Fig. 6.

Moreover, all GPP questions with respect to a given target-configuration set
C involve the same subgrammar for the PopSeq nonterminals. As in the (ordi-
nary) pushdown-reachability problem [13,14], the information about whether
a complete derivation tree with root nonterminal PopSeq, ) exists (i.e.,
whether PopSeq(qmq,) is a productive nonterminal) can be precomputed and
returned in the form of an (annotated) automaton of size O(|Q| |A| + |—ol)-
Exploring the PopSeq subgrammar lazily saves us from having to construct
the entire PopSeq subgrammar. Productive nonterminals represent automa-
ton transitions, and the productions that involve any given transition can be
constructed on-the-fly, as is done in Alg. 1, shown in Fig. 9.

Fig. 9 presents an algorithm for creating a weighted automaton for the GPP
problem. In essence, the algorithm does the following: it starts with the au-
tomaton A, which accepts the set of configurations C. Each transition ¢ of the
automaton is labeled with an element from the semiring S (denoted by (2)).
Initially, all of the transitions in A are labeled with 1. We add transitions to
A according to the following saturation rule:

If r = (p,7) — (p',w) and there is a path for string w from p’ to ¢ with
cost ¢ in the current automaton, either (i) introduce a transition (p, 7, q)
if the automaton does not already contain such a transition, or (ii) change
the label on (p, 7, q) if (p, v, ¢) already occurs in the automaton. The label
of transition (p, 7, ¢) is computed as follows:

fr)®c if (p, 7, q) is a new transition
(fry®e) & l(p,7,9) otherwise

The cost of a path in the automaton is computed by taking the ® of the
labels on the transitions along the path.

It is relatively straightforward to see that Alg. 1 solves the grammar problem
for the PopSeq subgrammar from Fig. 6: workset contains the set of transitions
(PopSeq nonterminals) whose value [(¢) has been updated since it was last
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Algorithm 1
Input: a weighted pushdown system W = (P, S, f),
where P = (P,T',A) and S = (D, ®,®,0,1);
a P-automaton A = (Q,T', —¢, P, F') that accepts C,
such that A has no transitions into P states.

Output: a P-automaton Aypex = (Q, T, =, P, F') that accepts pre*(C);
a function [ that maps every (g,7,q’) € — to the value of
m(;(PopSeq(qmq,)) in the abstract grammar problem defined in Fig. 6.

1 procedure update(t,v)

2 begin

3 — = U{t}

4 new Value :=[(t) ® v

5 if newValue # 1(t) then

6 workset := workset U {t}
7 I(t) :== newValue

8 end

9

10 — := —0; workset: = —q; [ := At.0

11 for allt € —ydoi(t):=1

12 for all r = (p,v) — (p,¢) € A do update((p,v,p'), f(r))

13  while workset # () do

14 select and remove a transition ¢t = (gq,~, ¢') from workset

15 for all 7 = (p1,m1) < (g,7) € A do update((p1,71,4), f(r) ®L(t))
16 for all » = (p1,11) — {(g,772) € A do

17 for all ¢' = (q,7727q’1) € — do update((p1,71,q"), f('r) ® Z(t) ® l(tl))
18 for all = (p1,m1) <= (@', 727) € A do
19 if t' = (pl,")’Q,Q) € — then Update((p1a717q,)af(r) ® l(t’) &® l(t))

20 return ((Q,T,—,P, F),l)

Fig. 9. An algorithm for creating a weighted automaton for the weighted pre* prob-
lem.

considered; in line 10 all values are set to 0. Lines 11-12 process the rules of
types (1) and (2), respectively. Lines 13-19 represent the fixed-point-finding
loop: lines 15, 17, and 19 simulate the processing of rules of types (3) and (4)
that involve transition ¢ on their right-hand side. A function call update(t, v)
computes the new value for transition ¢ in terms of /(¢) and v. Note that line 7
can change [(t) only to a smaller value (with respect to C). The iterations
continue until the values of all transitions stabilize, i.e., workset is empty.

From the observation that Alg. 1 is simply a different way of expressing the
grammar problem for the PopSeq subgrammar, we know that the algorithm
terminates and computes the desired result. Moreover, apart from operations
having to do with [, the algorithm is remarkably similar to the pre* algorithm
from [14]—the only major difference being that transitions are stored in a
workset and processed multiple times, whereas in [14] each transition is pro-
cessed exactly once. Thus, the time complexity increases from the O(|Q|?|A|)
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complexity of the unweighted case [14] by a factor that is no more than the
length of the maximal-length descending chain to any value that appears in
the annotated automaton.

Given the annotated pre* automaton, the value of §(c) for any configuration
¢ can be read off from the automaton by following all paths by which ¢ is
accepted—accumulating a value for each path—and taking the meet of the
resulting value set. The value-accumulation step can be performed using a
straightforward extension of a standard algorithm for simulating an NFA (cf.
[17, Algorithm 3.4]).

Example 14 Recall the weighted pushdown system W, introduced in Fx. 12.
A GPP problem for W, formulates a multi-target shortest-path problem on its
infinite transition system, where the targets are some reqular set of configura-
tions (say, Ceg, see Ex. 3): In the automaton computed by Alg. 1, each accept-
ing path for some configuration ¢ corresponds to one or more pre* witnesses
for c with respect to Cey; using mininum as the combiner ensures that the value
of the shortest path is retained. Fig. 10(a) shows the initial weighted automa-
ton accepting Coy, in which all transitions are labeled with the 1-element of
the semiring (which in this example is the number 0). Applying the saturation
rule to this automaton leads to the following actions:

e Flirst, we havers = (p,d) — (p,e), and p =* p with weight 0 holds trivially.
Therefore, we add p % p with weight f(rs) = 1.

e Neat, we can consider the rule ry = {(p,a) — (g,b) and the path ¢ -=* s,
with weight 0, which allows us to add a new transition p == s1 with weight
f(T1) +0=>5.

e This addition creates a path p —2%* s, with weight 5+ 0. Because we have
ry = (p,c) = (p,ad) and f(ry) = 2, the next addition is p - s, with
weight 7.

e Similar considerations lead to p % so with weight f(ry) +7 =11, p -5 s;
with f(ry) +11 =13, ¢ % p with f(r3) +1 =4, p % p with f(r|) +4 =9,
and p - p with f(ry) +9+1=12.

e At this point, the saturation procedure reaches a fixed point—i.e., the au-
tomaton shown in Fig. 10(b). For instance, we could still consider rule
ro = (p,a) — (p,c) and p -5 s;, which would contribute the value
f(ra) + U(p,c,s1) = 4 + 13 to the weight of p - s1. However, because
we already have l(p,a,s1) = 5 and min{5,17} = 5, this would not make a
difference.

The automaton produced by this procedure allows us to determine, for each
configuration ¢ € pre*(Ceg), the length of the shortest path from c to some
configuration in Cey. For instance, looking at cep := (p, dc) we find the accept-
ing path p % p % s1, whose value is 1+13 = 14. In fact, the shortest path in
Wes from ce, to a configuration in Ceyp is 0 = [rsrarerar:] leading to (g, bdd),
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Fig. 10. (a) Initial weighted automaton for Ce,. (b) Automaton after applying Alg. 1.

andv(oc) =14+2+4+2+5=14.

Please note that the Dijkstra semiring is a particularly simple example for the
GPP framework in the following sense:

e Using min as the combiner operation imposes a total ordering on the semi-
ring domain. In general, the GPP framework can deal with partial orderings,
and the values obtained for each configuration can stem from the combina-
tion of multiple paths. In this sense, the value of 14 for ¢, can be seen as
a summary of all the paths leading to C,;, the summary in this case being
simply the value of the shortest path.

e The extender operator, +, is commutative. In general, this is not required,
and the order of arguments to ® in Alg. 1 really matters.

Section 4 will show some examples that do not exhibit these characteristics.

Alg. 1 is a dynamic-programming algorithm for determining §(c); Section 3.1.4
describes how to extend Alg. 1 to keep additional annotations on transitions
so that a path set w(c) can be obtained.

3.1.4 Generation of Witness Sets

Section 3.1.3 gives an efficient algorithm for determining d(c); this section
addresses the question of how to obtain a w(c) set that is finite. For a given
configuration ¢, finding w(c) means identifying a set of paths 71, ..., 7 in the
transition relation of the weighted PDS such that, for 1 < ¢ < k, each path
m; leads from ¢ to some ¢; € C, v(m;) = d;, and @F_, d; = 6(c). We note the
following properties:

e In general, £ may be larger than 1, e.g., we might have a situation where
d(c) = di @ dy because of two paths with values d; and ds, but there may
be no single path with value d; & ds.

e We want to keep w(c) as small as possible. If a witness set contains two
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paths 7 and 7, where v(m;) C v(m2), then the same set without 7y is still
a witness set.

As with many dynamic-programming problems, a “global reason” for an an-
swer can be obtained by recording “local reasons”. In this case, to obtain a
finite witness set w(c), we will create a directed hypergraph G, = (N, E),
where N C (— x D) and E C (N x A x N*).% A node n = (t,d) € N, where
t = (p,7,q), records that there exist pop sequences oy,..., 0, for p,v, ¢ and
d= @le d;, where d;, ..., dj are the semiring values accumulated along these
paths:

e If ¢t € — is a transition from A and d = 1, then £ = 1 and o, = ¢; this fact
is represented by a node (t,1) that has no incoming hyperedges.

e For a node n = (¢,d) for which t € — is not a transition from A, each
hyperedge (n,7,n; ...n,,) corresponds to a collection of pop sequences for
P, 7, q; each of these pop sequences is of the form r7 ... 7, where each 7,
for 1 <i < m, is a pop sequence for n;.

Once Gpop is constructed, the information in it captures a witness set for any
given configuration c: if ¢;...t, is a path in A,.- by which c is accepted,
then w(c) consists of every sequence o . ..o, where, for every 1 < i < m,
o; is a pop sequence for (¢;,1(;)). (It should be noted that G,,, is a succinct
representation of w(c); in the worst case, (i) the length of a path in w(c) can
be exponential in the size of G,,,, and (ii) the cardinality of w(c) can be doubly
exponential in the size of Gp,,. Thus, in some cases it may be important for
witness sets to be reported as hypergraphs.)

Example 15 Fig. 11 shows what Gy looks like for the automaton created in
Ex. 14. Hyperedges are shown as a collection of simple edges with the label
instde a box. Notice that the hyperedge labeled with rs has an empty sequence
of nodes as its source because it is derived from the rule r5s = (p,d) — (p, ).

In Ezx. 14, the configuration ce; = (p, dc) is accepted by the path p Ay p 55 5.
Therefore, w(cey) consists of the pop sequence for ((p,d,p), 1), followed by the
sequence for ((p,c,s1),13). (Because the semiring in this example is totally
ordered, we end up with just one pop sequence per transition.) The former
is merely [rs]; the latter is [rarorar1]. In fact, these sequences together form
exactly the shortest path mentioned in Fx. 14.

To implement the idea outlined above, we extend Alg. 1 as follows: In line 10,
the empty hypergraph is created by setting N := () and F := (). In line 11, a

6 Each hyperedge is of the form (n,r,n...7n,); n is the target of the hyperedge;
N1,...,Nm are its (ordered) sources. The order of source nodes matters; i.e., two
hyperedges that have the same source nodes in different orders are different hyper-
edges.
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((q,b,81),0) ((sladsz)’O) ((SQ,d,Sl),O)

((p,d, p),1) ((p,a,51),5)

((g,6,p),4) ((p, ¢, 52),7)

((p,a,p),9) ((p, a,s2),11)
((p,c,p),12) ((pyc;51),13)

Fig. 11. The graph G, for the automaton from Fig. 10(b).

Algorithm 2
1 procedure update(t,v,r,T)
2 begin
3 — = U{t}
4 new Value :=[(t) ® v
5 if newValue = [(t) then return
6 workset := workset U {t}
7 N := N U{(t, newValue) }
8 // Record the contribution of v to newValue

9 E := EU{((t, newValue),r, (t1,1(t1)) - .. (tm,(tm)))} where ;..

10 // Copy hyperedges whose values are not subsumed by v
11 for all ((¢,1(¢)),r', (t1,d1) ... (tm,dm)) € E do

12 ifoZ f(r') @ @i, d; then

13 E := EU{((t,newValue), ', (t1,d1) ... (tm,dm))}
14 I(t) :== newValue

15 end

Fig. 12. Modified update procedure.

tm =T

node (t,1) is added to N for every t € —,. Moreover, we replace the update

procedure by the revised version shown in Fig. 12.

In Fig. 9, update takes two arguments: ¢ and v. To create the witness structure
Opop, the update procedure given in Fig. 12 needs access to r, the rule used,
and 7', the list of transitions used; hence, update now takes four arguments: ¢,
v, r, and T. The four calls on update in Fig. 9 are modified as follows:
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1), f(r),r,€)
P, 4), f(r) @ U(E), 7, t)
P, 4"), f(r) ®@1U(E) @ U(H), 7, 1)
line 19:  wpdate((p1,71,4"), f(r) Ut @ I(t),r, ' 1)

line 12: update
line 15:  update
line 17:  update

(P,
((
((
((

®®

In line 5 of Fig. 12, if newValue = [(t), then the update does not change (%),
and nothing further needs to be done. In line 7, the node (¢, newValue) i
added to Gyp, and in lines 9-13 hyperedges to the new node are added.

e In line 9, the addition of ((¢, newValue),r, (t1,1(t1)) ... (tm,(tm))) records
the contribution of » and T to newValue. That is, r and T contributed
value v, which is supported by the witness information available in the
hyperedges that have target (;,1(¢;)), 1 < i < m.

e In addition, in lines 11-13 copies of the hyperedges that have target (¢,(t))
are created, but now with target (¢, newValue). The check in line 12 assures
that such hyperedges are added only if the values accumulated along the
corresponding pop sequences actually contribute to new Value.

In an implementation, one would also want to keep the hypergraph as small
as possible, which can be accomplished by garbage collecting the parts of G,
that cannot affect any node (¢,(t)), where t € — and [(t) is the current value
associated with ¢. Note that hyperedges created during update contain only
references to nodes created strictly earlier, and thus G,,, cannot contain cycles.
If each target node holds a reference to each of its incoming hyperedges, and
each hyperedge holds a reference to each of its source nodes, reference counting
can be used to identify the nodes and hyperedges that can be collected.

3.2  Solving Generalized Pushdown Successor Problems

This section presents an algorithm for solving GPS problems. Given a weighted
pushdown system P and a P-automaton A that recognizes a set of configura-
tions C, the algorithm creates an annotated P-automaton that (i) recognizes
post*(C), and (ii) for each ¢ € post*(C), provides a way to read out the values
of 6(c) and w(c). Without loss of generality, we assume that (i) A contains no
e-transitions, and (ii) .4 has no transitions into P states.

The presentation in this section parallels that of Section 3.1; the algorithm for
solving GPS problems will be presented in several stages:

e We first define a context-free grammar that characterizes certain sequences
of transitions that can be made by a pushdown system P and an automaton

A for C.
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e We use the grammar characterization of transition sequences to derive an
algorithm for solving GPS problems.

e Again, to improve the performance we specialize the computation, ending
up with an algorithm for creating an annotated automaton that is quite
similar to the post* algorithm from [14,11].

Similar to what was done in Section 3.1, the first step is to make some defini-
tions that aid in reasoning about the set of paths that lead from configurations
in a regular set C' to a configuration c. We call this set the post* witnesses for
¢ € P x I'* with respect to C: PostStarWitnesses(c, C') = Ugec path(c, c).

Again, it is convenient to combine P and A in sequence to create a combined
PDS, which we will call A%P; however, here the transitions for A are reversed,
and the reversed automaton’s rules will precede those of P. As a prelude to
the construction of ARP, first consider the combination of P and A defined
as follows:

The states are P U Q = @, and the rules are those of P, augmented with a
rule (¢',e) < (q,7) for each transition ¢ -5 ¢’ in A’s transition set —».

Strictly speaking, this way of combining P and A is not a PDS because PDSs
do not have rules of the form (¢',e) — (g,7v). However, such rules can be
accommodated by redefining the transition relation between configurations as
follows:

If r ={q,7) — (¢',w), then (g, yw") RUN (¢',ww') for all w' € I'*.
If r ={q,e) — (¢',7), then (g, w’) e (¢',yw') for all w' € T'*.
Using this extension of PDSs, A®P is defined as follows:

ARP’s states are PUQ U {qy.y | (p,7) = /,77") € A} (= QU {gy.y |
(p,7) — (P',7v'9") € A}, because P C @), and its set of rules A’ is defined
as follows:

(1) For each rule r of the form (p,v) — (p',e) € A, A’ contains r.

(2) For each rule r of the form (p,7v) — (p',7') € A, A’ contains 7.

1.1

(3) For each rule of the form (p,v) — (p',7¥'7") € A, A’ contains two rules:

(P, 7) = @y ") and (gp v, €) = (P, 7).
or each transition ¢ — ¢ 1n A’s transition set —, contains a rule
4 F h . . ’y I . A’ . . AI . 1

(¢',e) = (g,7)-

The two rules introduced in item (3) recast a rule of the form (p,v) —

(®',7'7") in terms of the extension in which ¢ is allowed on the left-hand

side of a rule. (It is intentional that if rule set A has two rules with right-hand
I I

sides (p/, v'+") and (p/,v'v"), only one copy of the rule {(gy ,, &) — (p,7') will
appear in A'.)
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Production for each
(1) PushSeq(, ) — € (¢,7,¢) € =0
(2) PushSeqqy v oy — PushSeqy, . . PushSeqq . . p,7) = P,ey € Aq,d €Q,y €T
(3) PushSeqqy 4 — PushSeq, , p,7) = @, YYEAgeR
(4) PushSeqqy g, ) = € (@ yr6) = (P, y) € A
(5) PushSeqq, , , nq — PushSeqq,, ) (1, 7) = (g, 7"y €N gEQ

Fig. 13. A context-free grammar for the push sequences of A®P, and the ARP rules
that correspond to each production.

We say that a configuration ¢ = (p, 7172 ... V), for p € P, is accepted by AXP
if there is a path to ¢ from a configuration (gy, ), where ¢y € F. Note that
because A has neither e-transitions nor transitions leading to initial states,
AEP’s behavior during an accepting run can be divided into two phases:
transitions during which A%P mimics A in reverse—and therefore generates
a configuration ¢’ € C, followed by transitions during which A%®P mimics P,
starting from ¢. An accepting run of AP starts in a state ¢ € F; while
it remains in states in (Q \ P), A®P can only perform a sequence of pushes,
possibly reaching a state in P. At the first moment that the run of A®P reaches
a configuration ¢’ with a state in P, ¢’ must be a configuration accepted by
A (i.e., ¢ would be accepted if A were run in the forward direction), and
hence ¢ € C. During the second phase, A%P mimics transitions of P to reach
configuration c. In other words, P can reach c¢ starting from configuration ¢'.
Consequently, A®P accepts a configuration c iff ¢ € post*(C).

Definition 16 (Push Sequence) A push sequence for ¢ € Q, v € T', and
q € Q is a sequence of transitions of ARP’s transition relation that (i) starts in
a configuration (¢', w), (ii) ends in a configuration (g, yw), and (iii) throughout
the transition sequence, the stack is always of the form w'w for some (possibly
empty) string w’ € I'*, where the contents of w is never inspected during any
transition of the transition sequence.

As with pop sequences, there are many similar push sequences that differ only
in the untouched part of the stack (i.e., w).

The family of push sequences for a given ¢, v, and ¢ can be characterized by
the complete derivation trees derived from nonterminal PushSeq(, , .y, using
the grammar shown in Fig. 13. Note that the subscripts and rules in Fig. 13
should be read from right to left: the push sequences for ¢, v, and ¢ are
characterized by PushSeq(, . .- For instance, rule (2) says that if (i) starting in
state ¢' there is a push sequence that ends in ¢ (pushing +') and (ii) starting in
g there is a push sequence that ends in p (pushing «y), then the concatenation
of these two sequences, followed by the application of rule (p,v) — (¢, ¢)
yields a push sequence that starts in state ¢’ and ends in p' (pushing 7).
Fig. 14 depicts the types of transition sequences captured by the PushSeq
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(2) PUShS€Q(p/,,Y/’q/)
(p,7) = (p,e) € A,q,¢ €Q,y €T

— PushSeq PushSeqq . q)

D5759)

=

f=)

o

N -

X

[§]

)

(7))

(3) PushSeqqy v o) — PushSeqq, o (4) PushSeq(p,,,y,’qp,ﬁ,) —e€
<p7 7) — <p177,> € Aaq € Q <Qp’,’7’76> — <p1771> € A
(5) PushSeq(q ) PushSeq(p,%q)

p Control location v " ,
’Y' Stack element <p7 7) — <qp',’y'17 ) € A 1q € Q

=——  PDS transition

- - =--> Right-hand side PushSeq
A~~~/ Sequence of PDS transitions
-------------- > Left-hand side PushSeq

Fig. 14. Schematic diagram of the types of transition sequences captured by the
PushSeq productions from Fig. 13.

productions from Fig. 13.

Theorem 17 PDS ARP has a push sequence for q', v, and q iff nonterminal
PushSeq(q o) 0f the grammar shown in Fig. 15 has a complete derivation tree.
Moreover, for each complete derivation tree with root PushSeq(q,%q,), a right-
to-left postorder listing of the derivation tree’s production instances (where
Fig. 18 defines the correspondence between productions and PDS rules) gives
a sequence of rules for a push sequence forq', v, and q; and every such sequence
of rules has a derivation tree with root PushSeq(, . -

Proof [Sketch] The argument is by induction on push-sequence length. Each
of the grammar rules of Fig. 13, when the right-hand side is read right-to-left,
followed by an application of the corresponding PDS rule shown in the last
column of Fig. 13, results in a push sequence corresponding to the left-hand-
side nonterminal symbol (see Fig. 14). Moreover, each push sequence of ARP
must end with an application of a rule of A®P, and hence can be decomposed
according to rules (1)—(5) of Fig. 13. O
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Production for each

1) PushSeq

€ (0,7.4") € =0

pea) — PushSeqq,y g (p,7) = (Phe) €D ge@
— SameLevelSeqy ., PushSeqq oy P € P, ¢, €Q

( ) ¢,7:4')
(2) SameLevelSeq
(2" PushSeq(p,ﬁ,’q,)
( P''59) — PushSeqq, , g P, =@ Y)eEAqeQ
( V) € (G 8) = (P, 7)€ A

(

4" PushSeqq, 4) (p,7) = {apy,7") €A g €Q

3) PushSeq
4) PushSeq
5) PushSeq

Fig. 15. A refactoring of the grammar from Fig. 13. In particular, rules (2) and (2')
above correspond to rule (2) of Fig. 13.

In what follows, we will work with the PushSeq grammar shown in Fig. 15,
rather than than the one shown in Fig. 13. In Fig. 15, the only change is that
a new family of nonterminals is introduced, denoted by SameLevelSeq, . .,
and production (2) from Fig. 13 is broken into two productions: (2) and (2').
(This refactoring is introduced so that the post* algorithm that we finally end
up with-—Alg. 3—closely resembles the post* algorithm from Schwoon’s thesis
[11, Alg. 2].)

To capture the set PostStarWitnesses({p,v1vs---7n),C), where C is recog-
nized by automaton A, we extend the context-free grammar from Fig. 15 by
the set of productions

Accepting[y1ya - ..'yn](p,q) — PushSeq(y, , 4,) PushSeq ... PushSeq(,

Q1,72,Q2) n—lv'anlI)

foreachp € P,q; € Q, for 1 <i<n—1; andq € F

Accepted[y1v2 .. Yol — Accepting[viy2 - - - Ynl(p,g) foreachp e P,g e F

1)
This language captures all ways in which PDS AP can accept (p, 7172 - - - Y ):
the set of post* witnesses for (p,7172...7,) corresponds to the complete
derivation trees derivable from nonterminal Accepted[y172 ... Vn]p). The sub-
tree rooted at PushSeq(, , ., 4 gives the push sequence that AEP performs to
generate symbol 7;. (If there are no post* witnesses for (p, 172 ... 7vn), there
are no complete derivation trees with root Accepted[y172 ... Vulp)-)

We are concerned with weighted pushdown systems, and thus consider the
weighted version of ARP, denoted by AFW, in which the rules in A’ receive
weights as follows:

(1) For each rule 7 of the form (p,y) < (p',e) € A, A’ contains r with weight
f(r).
(2) For each rule r of the form (p,v) — (p',7') € A, A’ contains r with

weight f(r).
(3) For each rule r of the form (p,7) — (¢',7'7") € A, A’ contains two
rules: (p,v) <= (gp,y, ") with weight f(r) and (gy,,e) = (p',7) with
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Production for each

(1) PushSeq(qy.q) — hi(e) (g,7.4") € =
hy =1
(2) SameLevelSeqy, . o — ha(PushSeqy, ., ) 7= (p,7) = (P,e) €A,q€Q
hy = Az.z ® f(r)
(2) PushSeq(y 4y — ho (SameLevelSeqqy ., PushSeqqq  4))
PeP qqdeq
hy = Az \yy®@
(3) PushSeqqy 4 — hy(PushSeqq, . ) 1= (p,7) = #7) €A qERQ
hs =Xz.x ® f(r)
(4) PushSeqy o, ) — ha(e) (p.7) = PV €A
hy=1
(5) PushSeq(qp,ﬁw,,’q) — h5(PushSeq(pmq)) r={p,y) =@, YY)EAeER
hs =Xx.x ® f(r)
(6) Accepting[y1v2 - - Ynlpg) — hG(PushSeq(pm’ql), PushSeq(g, 1.0)s -+ -5 PushSeq(qnfl’%’q))
peEP¢geR, forl1<i<n—1,andqg€e F
he = A1 ALy ... A2p.Z, @ ... R Ty ® T
(7) Acceptedyiyz .. Wl — hi(Accepting[yyz - - Ynlw.a)
peEPqgeF

hy = \z.x

Fig. 16. An abstract grammar problem for the weighted post* problem.

weight 1.
(4) For each transition ¢ - ¢’ in A’s transition set —, A’ contains a rule
(¢',e) — (q,7) with weight 1.

As argued earlier, A®W accepts a configuration c iff ¢ € post*(C). Because the
complete derivation trees with root Accepted[y172 ... Vn](p) encode the transi-
tion sequences by which ARW accepts (p, 7172 ... 7n), to cast a GPS problem
as a grammar problem, we have to attach appropriate production functions to
the productions of Fig. 15 so that for each rule sequence o, and corresponding
derivation tree (with yield) «, we have v(0) = valg(«).

This is done in Fig. 16. Notice that functions hy and hg reverse the order of
their arguments, and hq, hs, and hs place f(r) at the right-hand end of the
semiring-product expression. This corresponds to the fact that for ARW to
accept (p, 7172 - --Yn), it must perform push sequences in the order 7,, ...,
v1: each grammar rule’s left-hand-side push sequence requires that the push
sequences of the right-hand side be performed right-to-left, followed by an
application of the corresponding WPDS rule (cf. Theorem 17).
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As in Section 3.1, not all instantiations of the productions listed in Fig. 15 and
Eqn. (1) are relevant to the final solution; we want to prevent the algorithm
from exploring useless nonterminals of the grammar from Fig. 15 and Eqn. (1).
Exploring the PushSeq subgrammar lazily saves us from having to construct
the entire PushSeq subgrammar.

Moreover, all path questions with respect to a given source-configuration set C'
involve the same subgrammar for the PushSeq nonterminals. Consequently, the
information about whether a complete derivation tree with root nonterminal
PushSeqq ., o exists (i.e., whether PushSeqg ., o) is a productive nonterminal)
can be precomputed and returned in the form of an automaton. Productive
nonterminals represent automaton transitions, and the productions that in-
volve any given transition can be constructed on-the-fly, as is done in Alg. 3,
shown in Fig. 17.

Alg. 3 finds the productive PushSeq and SameLevelSeq nonterminals in the
grammar from Fig. 15:7 workset contains the set of transitions (nontermi-
nals) still to be considered, and the algorithm iterates until workset is empty.
Lines 11, 17, 18, 20, and 21 process the productions of types (1), (2), (3), (4),
and (5), respectively. Lines 23 and 25 handle the productions of type (2).

3.2.1 Generation of Witness Sets

By analogy with Section 3.1.4, which provides a method for obtaining witness
sets for GPP problems, this section discusses how to extend Alg. 3 to allow
the recovery of witness sets for GPS problems.

The basic idea behind this extension is to adapt the method from Section 3.1.4,
which records pop sequences, to record push sequences: we create a hypergraph
Gpush = (N, E), where N = (— x D) and E = (N x A’ x N*). Note that for
GPS problems we use A" = A U {¢}; i.e., we allow hyperedges to be labeled
with either a rule or ¢, where the latter can be read as “no rule”.

A node n = (t,d) € N, where t = (p, 7, q), records that there exist push se-
quences oy, . .., oy for ¢,v,pand d = @%_, d;, where dy, . .., d) are the semiring
values accumulated along these paths. If ¢ € — is a transition from A and
d =1, then k£ = 1 and o; = ¢; this fact is represented by a node (¢,1) that
has no incoming hyperedges. For a node n = (¢,d) for which ¢ ¢ — is not
a transition from A, each hyperedge (n,r',n;...n,,) corresponds to a collec-
tion of push sequences for ¢, ~, p; each of these push sequences is of the form

" There is one slight exception to this statement. Nonterminals of the form

PushSeq((p, +a, ) can only derive ¢, and hence are always productive. However,
V!

line 20 treats such nonterminals lazily; they are only placed in the transition set if

there is a productive nonterminal of the form PushSeq(, , 0) (see line 21).
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Algorithm 3
Input: a weighted pushdown system W = (P, S, f),
where P = (P,T',A) and S = (D, ®,®,0,1);
a P-automaton A = (Q,T', —¢, P, F') that accepts C, such that
A has no transitions into P states and has no e-transitions.

Output: a P-automaton Ap.sx = (Q',T', =, P, F) that accepts post*(C);
a function [ that maps every (g,v,q’) € — to the value of

ma(PushSeqq , o)) in the abstract grammar problem defined in Fig. 16.

procedure update(t,v)
begin
— == U{t}
new Value :=[(t) ® v
changed := (newValue # I(t))
if changed then
workset := workset U {t}
I(t) := newValue
end

© 00 O Ui W N =

11 — := —¢; workset := —q; [ := At.0

12 for allt € —¢ do i(t) :=1

13 Q' == Q;for all (p,7) = (p',77") € Ado Q' := Q" U{gy}
14 while workset # () do

15 select and remove a transition ¢ = (p, 7, q) from workset

16 if v # € then

17 for all r = (p,7) <= (p',€) € A do update((p,¢,q),l(t) ® f(r))
18 for all r = (p,v) — (p',7') € A do update((p',7',q),l(t) @ f(r))
19 for all r = (p,7) = (',¥'7") € A do

20 update((p', 7', @y '), 1)

21 Update((‘]p 7 ,7"59),1(t) ® f(r))

22 if changed then

23 for all # = (p", ¢, ) do update((p",",q), (t) ® £(r) ® I(¢")
24 else

25 for all ' = (¢,7',¢') € — do update((p,7',¢), [(t") ® I(?))

26 return ((Q',T',—,P,F),l)

Fig. 17. An algorithm for creating a weighted automaton for the weighted post*
problem.

Tm - .. 717", where each 7;, for 1 < i < m, is a push sequence for n;.®

Once G,ysp is constructed, the information in it captures a witness set for any
given configuration c: if ¢;...¢,, is a path in A+ by which c is accepted,
then w(c) consists of every sequence oy, . ..oy, where, for every 1 < i < m, o;

8 When comparing this definition with that from Section 3.1.4, note that in addition
to substituting push sequences for pop sequences, we also change the order in which
push sequences are assembled from the source nodes of the hyperedges.
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is a push sequence for (¢;,1(t;))-

The necessary changes to Alg. 3 are as follows: In line 11, the empty hyper-
graph is created by setting N := () and F := (. In line 12, a node (¢,1) is
added to N for every t € —. For the update procedure, we re-use Alg. 2 from
Section 3.1.4 with two small modifications:

e Because Alg. 3 uses the variable changed, line 5 is replaced by

changed = (newValue # I(t))
if —changed then return

e In line 12, the ® operator is applied in reverse order:
m
ifvr/ <® dmi+1> ® f(r') then ...
i=1

(where f(e) =1).

Compared to Alg. 3, the new update procedure takes two additional arguments:
r, the rule, and 7T, the list of transitions used for the addition. The calls on
update in Fig. 17 are modified as follows:

line 17:  update((p', €, q) I(t)® f(r),r,1)

((

line 18: update((p',7',q),(t) ® f(r),r,t)

line 20:  update((p ’,fy Q) 1,6,€)
((
((
((p,

line 21:  wupdate((gy ,7",q),L(t) ® f(r),r,1)
p"v q),1(t) ® f(r) ®1(t),,1't)

), () ©1(t), e, 1)

line 23: update
line 25: update

The choice of the arguments for lines 17, 18, and 21 is self-explanatory. In
lines 23 and 25, we create a new transition by “contracting” two transitions,
i.e., without firing a pushdown rule; hence, we use ¢ for the rule. The only
complicated case is line 20. Here, recall that the rule r = (p,vy) — (p',y'7") is
responsible for one production of type (4), dealt with in line 20, and another
of type (5), processed in line 21. Because line 21 is already recording the fact
that r was applied, both arguments in line 20 are €.
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4 Applications to Interprocedural Dataflow Analysis

This section describes the application of weighted PDSs to interprocedural
dataflow analysis. The approach presented here has been used to create anal-
yses for a variety of problems, including uninitialized variables, live variables,
linear constant propagation [6], and affine-relation analysis [7].

This section (as well as Section 5) illustrates several classic concepts in inter-
procedural dataflow analysis from the vantage point of weighted PDSs. It also
illustrates how algorithms from Section 3 provide a way to generalize previous
frameworks for interprocedural dataflow analysis [18,6].

The presentation is divided into four parts. Section 4.1 presents background
material on interprocedural dataflow analysis. Section 4.2 discusses how con-
ventional dataflow information can be obtained by formulating dataflow-analysis
problems as GPR problems. Section 4.3 shows how information that goes be-
yond what conventional dataflow-analysis algorithms provide can be obtained
by solving GPR problems. Section 4.4 discusses extensions.

4.1 Background on Interprocedural Dataflow Analysis

Dataflow analysis is concerned with determining an appropriate dataflow value
to associate with each node n in a program, to summarize (safely) some aspect
of the possible memory configurations that hold whenever control reaches n.
To define an instance of a dataflow problem, one needs

The control-flow graph for the program.

A meet semilattice (VM) with greatest element T:

- Elements of V' represent sets of possible memory configurations. Each
point in the program is to be associated with some member of V.

- The meet operator M is used for combining information obtained along
different paths.

A value vy € V that represents the set of possible memory configurations

at the beginning of the program.

An assignment of dataflow transfer functions (of type V' — V') to the edges

of the control-flow graph.

When (D, &, ®,0, 1) is a bounded idempotent semiring, (D, @) is a meet semi-
lattice. However, when interprocedural dataflow-analysis problems are formu-
lated as GPR problems, D is V' — V| not V. Consequently, we will use (V1)
and T when we wish to emphasize that we are discussing dataflow values, and
(D,®,®,0,1) when we turn to GPR encodings of dataflow-analysis problems.
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int g, h;

void main() {
nl: g =h = 0; - call f ko7 ’
n2,n3: p(Q);
nd: if(...) { : femmmm
nb: g =1;
n6,n7: p(Q);
}
n8: ...;
return;

}

void £() {
n9: ...;
return;

}

S———

e
’n7: ret fromf }~

Fig. 18. A program fragment and its supergraph. The environment transformer for
all unlabeled edges is Ae.e.

Typically, a dataflow-analysis problem is formulated as a path-function prob-
lem: the path function pf, for path ¢ is the composition of the transfer func-
tions that label the edges of ¢. In intraprocedural dataflow analysis, the goal
is to determine, for each node n, the “meet-over-all-paths” solution:

MOP,, = [l pf, (vo),

g€Paths(enter,n)

where Paths(enter, n) denotes the set of paths in the control-flow graph from
the enter node to n [19].? MOP,, represents a summary of the possible memory
configurations that can arise at n: because vy € V represents the set of possible
memory configurations at the beginning of the program, pf,(vo) represents the
contribution of path ¢ to the memory configurations summarized at n.

Interprocedural dataflow-analysis problems are often defined in terms of a
program’s supergraph (or “interprocedural control-flow graph”), an example of
which is shown in Fig. 18. A supergraph consists of a collection of control-flow
graphs—one for each procedure—one of which represents the program’s main
procedure. The flowgraph for a procedure p has a unique enter node, denoted
by e,, and a unique exit node, denoted by x,. The other nodes of the flowgraph
represent statements and conditions of the program in the usual way, 1° except
that each procedure call in the program is represented in the supergraph by

9 For some dataflow-analysis problems, such as constant propagation, the meet-
over-all-paths solution is uncomputable. A sufficient condition for the solution to
be computable is for each transfer function f to distribute over the meet operator;
that is, for all a,b € V, f(aTb) = f(a) 1 f(b).
10 The nodes of a flowgraph can represent individual statements and conditions;
alternatively, they can represent basic blocks.
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two nodes, a call node and a return-site node (e.g., see the node-pairs (nq, n3)
and (ng, n7) in Fig. 18). In addition to the ordinary intraprocedural edges that
connect the nodes of the individual control-flow graphs, for each procedure
call—represented, say, by call node ¢ and return-site node r—the supergraph
contains three edges: an interprocedural call-to-enter edge from c to the enter
node of the called procedure; an interprocedural exit-to-return-site edge from
the exit node of the called procedure to r; an intraprocedural call-to-return-site
edge from c to r. !

Definition 18 A path of length j from node m to node n is a (possibly
empty) sequence of j edges, which will be denoted by [e1, ez, ..., €], such that
the source of ey is m, the target of e; is n, and for all i, 1 < i < j—1, the
target of edge e; is the source of edge e;+1. Path concatenation is denoted by

The notion of an (interprocedurally) valid path is necessary to capture the
idea that not all paths in a supergraph represent potential execution paths.
A valid path is one that respects the fact that a procedure always returns to
the site of the most recent call. We distinguish further between a same-level
valid path—a path that starts and ends in the same procedure, and in which
every call has a corresponding return (and vice versa)—and a valid path—a
path that may include one or more unmatched calls:

Definition 19 The sets of same-level valid paths and valid paths in a
supergraph are defined inductively as follows:

e The empty path is a same-level valid path (and therefore a valid path).

e Path p || le] is a valid path if either (i) e is not an exit-to-return-site
edge and p is a valid path, or (i) e is an exit-to-return-site edge and p =
pr || [ec] || pi, where py is a same-level valid path, py is a valid path, and
the source node of e. is the call node that matches the return-site node at
the target of e. Such a path is a same-level valid path if p, is also a
same-level valid path.

Example 4.1 In the supergraph shown in Fig. 18, the path

Cmain —> N1 —> Ng —> € —>Ng — Ty —> N3 —> Ny

' The call-to-return-site edges are included so that programs with local variables
and parameters can be handled. Functions on call-to-return-site edges extract (from
the dataflow information valid immediately before the call) dataflow information
about local variables that must be re-established after the return from the call.
The dataflow functions on call-to-return-site and exit-to-return-site edges permit
the information about local variables that holds at the call site to be combined with
the information about global variables that holds at the end of the called procedure.
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is a (same-level) valid path; the path
€main —7 N1 —> N2 —> €5 —> Nyg

is a (non-same-level) valid path because the call-to-start edge ny — e; has no
matching exit-to-return-site edge; the path

€main —7 N1 —> No —> € —> Ng —> Ty —> Ny

is not a valid path because the exit-to-return-site edge vy — ny does not corre-
spond to the preceding call-to-start edge ny — ey.

In interprocedural dataflow analysis, the goal shifts from finding the meet-over-
all-paths solution to the more precise “meet-over-all-valid-paths”, or “context-
sensitive” solution. A context-sensitive interprocedural dataflow analysis is
one in which the analysis of a called procedure is “sensitive” to the context
in which it is called. A context-sensitive analysis captures the fact that the
results propagated back to each return-site r should depend on the memory
configurations that arise at the call site that corresponds to r, but not on
the memory configurations that arise at call sites that do not correspond to
r. More precisely, the goal of a context-sensitive analysis is to find the meet-
over-all-valid-paths value for nodes of the supergraph [18,20,6]:

MOVP,, = [ pf, (vo),

g€ VPaths(entermain,n)

where VPaths(entery,i,, n) denotes the set of valid paths from the main pro-
cedure’s enter node to n.

Although some valid paths may also be infeasible execution paths, none of
the non-valid paths are feasible execution paths. By restricting attention to
just the valid paths from enterp.,, we thereby exclude some of the infeasi-
ble execution paths. In general, therefore, MOVP,, characterizes the memory
configurations at n more precisely than MOP,,.

Local Variables

Call-to-return-site edges introduce some additional paths in the supergraph
that do not correspond to standard program-execution paths. The intuition
behind this approach is that the interprocedurally valid paths of Defn. 19
correspond to “paths of action” for particular subsets of the runtime entities
(e.g., global variables). The path function along a particular path contributes
only part of the dataflow information that reflects what happens during the
corresponding run-time execution. The facts for other subsets of the runtime
entities (e.g., local variables) are handled by different “trajectories”, for ex-
ample, paths that take “short-cuts” via call-to-return-site edges.
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The use of call-to-return-site edges is less precise that some other approaches
to handling local variables (e.g., the method proposed by Knoop and Steffen
[20] and the method used in Moped [21], both of which have a bit of the flavor
of a relational analysis).

The Examples Used in Later Sections

In the remainder of the paper, we illustrate the application of weighted PDSs
to interprocedural dataflow analysis using instances of two dataflow-analysis
problems: simple constant propagation and linear constant propagation. Our
choices were motivated by wanting to use the simplest example possible to
illustrate the benefit of the various methods presented in the paper.

e Section 4.2 illustrates how conventional dataflow information can be ob-
tained by solving GPR problems, using simple constant propagation.

e Section 4.3 uses linear constant propagation to illustrate how information
that goes beyond what conventional dataflow-analysis algorithms provide
can be obtained by solving GPR problems.

e Section 5 returns to simple constant propagation to illustrate differential
algorithms for solving GPR problems.

It should also be noted that even though these problems are all examples
of independent-attribute problems, the weighted PDS approach also applies
to relational analyses. (For material on independent-attribute and relational
analyses, see [22, Chapter 4].)

4.2 Obtaining Conventional Interprocedural Dataflow Information

This section shows how conventional dataflow information can be obtained by
formulating dataflow-analysis problems as generalized pushdown reachability
problems. This method applies to distributive dataflow-analysis problems for
which the transfer functions are “composable” and are drawn from a meet
semilattice that has no infinite descending chains; that is,

e There must be finite representations for all elements in the set of functions
F' that consists of the basic dataflow-transfer functions, closed under meet
and composition.

e [ must form a meet semilattice with no infinite descending chains.

For such problems, the semiring that will be used is (F,M, o, \z. T,