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ABSTRACT
Automatic discovery of relationships among values of array
elements is a challenging problem due to the unbounded na-
ture of arrays. We present a framework for analyzing array
operations that is capable of capturing numeric properties
of array elements. In particular, the analysis is able to es-
tablish that all array elements are initialized by an array-
initialization loop, as well as to discover numeric constraints
on the values of initialized elements.

The analysis is based on the combination of canonical ab-
straction and summarizing numeric domains. We describe
a prototype implementation of the analysis and discuss our
experience with applying the prototype to several examples,
including the verification of correctness of an insertion-sort
procedure.
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[Semantics of Programming Languages]: Program anal-
ysis
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1. INTRODUCTION
An array is a simple and efficient data structure that is

heavily used. In many cases, to verify the correctness of
programs that use arrays an analysis needs to be able to
discover relationships among values of array elements, as
well as their relationships to scalar variables and constants.
For example, in scientific programing, a sparse matrix is rep-
resented with several arrays, and indirect indexing is used
to access matrix elements. In this case, to verify that all
array accesses are in bounds, an analysis has to discover up-
per and lower bounds on the elements stored in the index
arrays. Mutual-exclusion protocols, such as the Bakery and
Peterson algorithms [10, 16], use certain relationships among
the values stored in a shared integer array to decide which
processes may enter their critical section. To verify the cor-
rectness of these protocols, an analysis must be capable of
capturing these relationships.

Static reasoning about array elements is problematic be-
cause of the unbounded nature of arrays. Array operations
tend to be implemented without having a particular fixed
array size in mind. Rather, the code is parametrized by
scalar variables that have certain numeric relationships to
the actual size of the array. The proper verification of such
code requires establishing the desired property for any val-
ues of those parameters with which the code may be invoked.
These symbolic constraints on the size of the array preclude
the analysis from modeling each array element as an inde-
pendent scalar variable and using standard numeric analysis
techniques to verify the property.

Alternatively, an entire array may be treated as a single
summary numeric quantity. In this case, numeric properties
established for the summary quantity that represents an ar-
ray must be shared by all array elements. This approach,
known as array smashing [2], resolves the unboundedness
issue. However, the problem with this approach, as with
any approach that uses such aggregation, is the inability to
perform strong updates when assigning to individual array
elements;1 this can lead to significant precision loss.

In this paper, we present a static-analysis framework that
combines canonical abstraction [19, 11] and summarizing nu-
meric domains [7], and is more precise than array smashing.
The analysis uses canonical abstraction to partition an un-
bounded set of array elements into a bounded number of

1A strong update corresponds to a kill of a scalar variable; it
represents a definite change in value to all concrete objects that
the abstract object represents. Strong updates cannot generally
be performed on summary objects because a (concrete) update
only affects one of the summarized concrete objects.



groups. Partitioning is done based on certain properties of
array elements, in particular, on numeric relationships be-
tween their indices and values of scalar variables. The ele-
ments that have the same properties are grouped together.
Each group is represented by an abstract array element. The
abstraction is storeless in the sense that there is no static
connection between a concrete array element and an ab-
stract array element that represents it: after the properties
of a concrete array element change, it may be represented
by a different abstract element.

The analysis uses summarizing numeric domains to keep
track of the values and indices of array elements. Indices of
array elements are modeled explicitly; that is, two numeric
quantities are associated with each array element: the actual
value of the element and its index.

Intuitively, the analysis attempts to partition array ele-
ments into groups about which stronger assertions can be
established and maintained. For example, if an array ele-
ment is assigned to, the analysis tries to isolate that ele-
ment in a separate group, so that a strong update may be
performed. When analyzing array-initialization code, the
analysis attempts to keep array elements that were already
initialized in a separate group from the uninitialized ones.
For the verification of sorting routines, the analysis tries to
separate portions of arrays that have been sorted from the
unsorted portions, and so on.

Given a program that uses multiple arrays and non-array
variables, an important question is how to partition each
array to verify the desired property. We found that a simple
heuristic of partitioning arrays with respect to variables that
are used to access them is very effective in practice. The ar-
ray elements that are indexed by scalar variables are placed
by themselves into individual groups, which are represented
by non-summary abstract elements. Array segments in be-
tween the indexed elements are also placed into individual
groups, but these groups are represented by summary ab-
stract elements. Such a partitioning heuristic allows the
analysis to discover constraints on the values of array ele-
ments after simple initialization loops; this can be done fully
automatically.

More complex properties, such as verifying comparison-
based sorting algorithms, require extra care. To this end, in
Sect. 4.3, we introduce auxiliary predicates that are attached
to each abstract partition element and encompass numeric
properties that are beyond the capabilities of summarizing
numeric domains. Throughout the paper, we give several
examples of such auxiliary predicates and illustrate how they
can be used to establish the desired properties for several
challenging examples.2

The goal of the analysis is to collect an overapproximation
of the set of reachable states at each program point. We use
the abstract-interpretation framework [3] to formalize the
analysis. The abstract states that are obtained for each
program point are a set of triples; each triple consists of
an array partition, an element of a summarizing abstract
numeric domain, and a valuation of auxiliary predicates.

To implement a prototype of the analysis, we extended the
TVLA tool [11] to provide it with the capability to reason
about numeric quantities. TVLA uses three-valued logical

2The process of identifying auxiliary predicates and their abstract
transformers is not, at present, performed automatically. Sect. 6.2
discuses some possibilities for carrying out these steps automati-
cally.

structures to describe states of a program. We had to as-
sociate an element of a summarizing numeric domain with
each three-valued structure, to extend TVLA’s internal ma-
chinery to maintain numeric states correctly, and to extend
the specification language to incorporate predicates that in-
clude numeric comparisons. The summarizing numeric do-
main was implemented by wrapping the Parma library for
polyhedral analysis [1] in the manner described in [7]. We
then defined a set of predicates necessary for describing and
partitioning arrays. With this prototype implementation,
we were able to analyze successfully several kernel exam-
ples, including verifying the correctness of an insertion-sort
implementation.

The contributions we make in this paper are:

• We introduce an abstract domain suitable for analyz-
ing properties of complex array operations.

• More generally, we show how two previously described
techniques, canonical abstraction and summarizing nu-
meric domains, can be combined to work together.

• We describe a working prototype of the analysis, and
illustrate it with several non-trivial examples.

1.1 Related work
The problem of reasoning about values stored in arrays

has been addressed in previous research. Here we review
some of the related approaches that we are aware of.

Masdupuy, in his dissertation [13], uses numeric domains
to capture relationships among values and index positions
of elements of statically initialized arrays. In contrast, our
framework allows to discover such relationships for dynam-
ically initialized arrays. In particular, canonical abstraction
lets our approach retain precision by handling assignments
to array elements using strong updates.

Blanchet et al., while building a special-purpose static pro-
gram analyzer [2], recognized the need for handling values
of array elements. They proposed two practical approaches:
(i) array expansion, i.e., introducing an abstract element for
each index in the array; and (ii) array smashing, i.e., using
a single abstract element to represent all array elements.
Array expansion is precise, but in practice can only be used
for arrays of small size, and is not able to handle unbounded
arrays. Array smashing allows handling arbitrary arrays ef-
ficiently, but suffers precision losses due to the need to per-
form weak updates. Our approach combines the benefits of
both array expansion and array smashing by dynamically
expanding the elements that are read or written to so as to
avoid weak updates, and smashing together the remaining
elements.

Flanagan and Qadeer used predicate abstraction to in-
fer universally-quantified loop invariants [6]. To handle un-
bounded arrays, they used predicates over Skolem constants,
which are synthetically introduced variables with uncon-
strained values. These variables are then quantified out
from the inferred invariants. Our approach is different in
that we model the values of all array elements directly and
use summarization to handle unbounded arrays. Also, our
approach uses abstract numeric domains to maintain the nu-
meric state of the program, which obviates the need for calls
to a theorem prover.

Černý introduced the technique of parametric predicate
abstraction [20], in which special-purpose abstract domains



void array copy(int a[], int b[], int n) {
i ← 0; (⋆)
while(i < n) {

b[i] ← a[i];
i ← i + 1;

} (⋆⋆)
}

Figure 1: Array-copy function.

are designed to reason about properties of array elements.
The domains are parametrized with numeric quantities that
designate the portion of an array for which the desired prop-
erty holds. The abstract transformers are manually defined
for each domain. The analysis instantiates the domains by
explicitly modeling their parameters in the numeric state.
Our approach differs in two respects. First, in our approach
numeric states directly model array elements; which allows
the analysis to automatically synthesize certain invariants
that involve values of array elements. Second, our approach
separates the task of array partitioning from the task of es-
tablishing the properties of array elements. This separation
allows the user to concentrate directly on formulating aux-
iliary predicates that capture the properties of interest.

Canonical abstraction [19, 11] was first introduced for
the purpose of determining “shape invariants” for programs
that perform destructive updating on dynamically allocated
storage. However, it lacked the ability to explicitly repre-
sent numeric quantities. Also, [7] introduced a method for
extending existing numeric domains with the capability of
reasoning about unbounded collections of numeric quanti-
ties. However, static partitioning of numeric quantities was
assumed. Our work combines these techniques and shows
how their combination can be used for verifying properties
of array operations.

1.2 Paper organization
The paper is structured as follows: Sect. 2 gives an overview

of the analysis. Sect. 3 discusses concrete semantics. Sect. 4
introduces the abstraction. Sect. 5 details the analysis of
the running example. Sect. 6 outlines a prototype analysis
implementation. Sect. 7 describes our experiences with the
analysis prototype. Sect. 8 concludes the presentation.

2. RUNNING EXAMPLE
In this section, we illustrate our technique using a simple

example. The procedure in Fig. 1 copies the contents of
array a into array b. Both arrays are of size n, which is
specified as a parameter to the procedure. Let us assume
that the analysis has already determined some facts about
values stored in array a. For instance, assume that the values
of elements in array a range from −5 to 5. At the exit of the
procedure, we would like to establish that the values stored
in array b also range from −5 to 5. Furthermore, we would
like to establish this property for any reasonable array size,
i.e., for all values of n greater than or equal to one.

Our technique operates by partitioning the unbounded
number of concrete array elements into a bounded number
of groups. Each group is represented by an abstract array
element. The partitioning is done by introducing relations
between the indices of array elements and the value of loop
variable i. In particular, for the example in Fig. 1, our
technique will group the elements of the two arrays with in-

dices less than i into two summary array elements (denoted
by a<i and b<i, respectively). Array elements with indices
greater than i are grouped into two other summary array
elements (a>i and b>i).

Array elements a[i] and b[i] are not grouped with any
other array elements, and are represented by non-summary
abstract array elements ai and bi. Such partitioning allows
the analysis to perform a strong update when it processes
the assignment statement in the body of the loop.

Fig. 2(a) shows how the elements of both arrays are par-
titioned during the first iteration of the loop. Each of the
abstract array elements ai and bi represents a single con-
crete array element of the corresponding array. This allows
the analysis to conclude that the value of the concrete array
element b[0] that is represented by bi ranges from −5 to 5
after the assignment b[i] ← a[i].

As variable i gets incremented, the grouping of concrete
array elements changes. The element b[0], represented by
bi, moves into the group of the concrete array elements that
are represented by b<i. The abstract element bi represents
the array element b[1] that is extracted from the group
of concrete array elements that is represented by b>i. The
elements of array a are treated similarly. Fig. 2(b) shows
how the arrays a and b are partitioned during the second
iteration.

The analysis reflects the change in grouping of array ele-
ments by combining the numeric properties associated with
bi with the numeric properties associated with b<i. The new
numeric properties for the abstract element bi are obtained
by duplicating the numeric properties associated with b>i.
As a result, at the beginning of the second iteration, the
analysis establishes that the value of the concrete array el-
ement represented by b<i ranges from −5 to 5. Numeric
properties associated with abstract elements of array a are
treated similarly.

As the value of i increases with each iteration, more and
more of the concrete array elements of both arrays move
from the two groups subscripted by “> i”, to the two groups
subscripted by “i”, and finally, to the two groups subscripted
by “< i”. Fig. 2(c) shows how the arrays are partitioned on
the k-th iteration. The concrete array elements that are rep-
resented by b<i are the elements that have been initialized.
Suppose that the analysis has established that the values of
the elements represented by b<i at the beginning of the k-th
iteration range from −5 to 5. After interpreting the assign-
ment in the body of the loop, the analysis establishes that
the value of the element b[k], represented by bi, also ranges
from −5 to 5. After the increment of variable i, the numeric
properties associated with bi are combined with the proper-
ties associated with b<i. As a result, the analysis establishes
that the values of the concrete elements represented by b<i

at the beginning of the k + 1-st iteration range from −5 to
5.

An important thing to observe is that, even though the
partitions shown in Fig. 2 (b) and (c) describe different
groupings of concrete array elements, both partitions have
the same sets of abstract array elements. Therefore, from
the point of view of the analysis these partitions are the
same. To establish which concrete array elements are repre-
sented by a particular abstract element, the analysis directly
models the values of indices of array elements in the numeric
state associated with each partition.

Fig. 2(e) shows how the array elements are partitioned



2a1a an−10a

>iaia

...

2b1b bn−10b

>ibib

...

(a)

1a

ia

0a

<ia

1b

ib

0b

<ib

2a an−1

>ia

...

2b bn−1

>ib

...

(b)

ia

n−1a

ib

n−1b

0a

<ia

an−2...

0b bn−2

<ib

...

(d)

1a0a an−1

<ia

1b0b bn−1

<ib

...

...

(e)

ka

ia

kb

ib

k+1a an−1

>ia

...

k+1b bn−1

>ib

...0b bk−1

<ib

...

0a ak−1

<ia

...

(c)

Figure 2: Partitionings of array elements at different
points in the execution of the array-copy function:
(a) on the 1-st loop iteration; (b) on the 2-nd it-
eration; (c) on the k-th iteration; (d) on the last
iteration; (e) after exiting the loop.

after exiting from the loop. We have just shown that, on
each iteration, the analysis established that the values of the
concrete array elements that are represented by b<i range
from −5 to 5. After the loop, as shown in Fig. 2(e), b<i

represents all of the concrete elements of array b. Therefore,
the analysis is able to conclude that all the values stored in
b range from −5 to 5.

The analysis is also able to establish a more general prop-
erty, namely, that the value of each element of array b is
equal to the value of the element of array a with the same
index. Unfortunately, the numeric domains that are used
by the analysis are not capable of maintaining the numeric
relationships of this kind for the concrete array elements
that have been summarized together. To capture such rela-
tionships, we augment each abstract array element of array
b with an extra value that indicates whether the property
holds for (i) all, (ii) some, or (iii) none of the concrete array
elements represented by that abstract element. This is done
by introducing an auxiliary three-valued unary logic predi-
cate δ, which evaluates to the values 1, 1/2, and 0 on the
abstract elements of array b to represent cases (i), (ii), and
(iii), respectively.

The analysis proceeds as follows: elements of array b start
with δ evaluating to 1/2, which indicates that the analysis
has no knowledge about the values stored in array b. On
each iteration, the property is established for the array ele-
ment bi, i.e., δ(bi) is set to 1. At the end of the iteration, the
concrete array element represented by bi is merged into the
group of elements represented by b<i. On the first iteration,
no b<i exists, so the properties of bi are directly transfered
to b<i, i.e., δ(b<i) = 1. On the following iterations, the new
value for δ(b<i) is determined by joining its current value,

expr ::= c

| v

| a[v]

| expr ⊙ expr

cond ::= expr ⊲⊳ expr

stmt ::= v ← expr

| a[v]← expr

| if(cond) stmt else stmt

| while(cond) stmt

| stmt; stmt

c ∈ V, v ∈ Scalar, a ∈ Array
⊙ ∈ {+,−,×} , ⊲⊳ ∈ {<,≤, =,≥, >}

Figure 3: An array-manipulation language.

which is 1, with the value δ(bi), which also equals to 1. As
a result, the analysis establishes that δ(b<i) = 1 after each
iteration, which indicates that the property of interest holds
for all initialized array elements.

3. CONCRETE SEMANTICS
Our goal is to analyze programs that operate on a fixed,

finite set of scalar variables and arrays. A concrete program
state stores a corresponding value for each scalar variable
and each array element. We denote the set of all possible
concrete program states by Sigma.

We denote the set of scalar variables and the set of arrays
used in the program by

Scalar = {v1, ..., vn} and Array = {A1, ..., Ak} ,

respectively. These sets are the same across all concrete
states that may arise as a result of program execution. Be-
cause we would like to reason about arrays of arbitrary size,
the set of elements of a particular array may differ from
state to state. We use the notation AS to denote the set of
elements of array A ∈ Array in state S. To ensure proper
sequencing of array elements, we assume that a concrete
state explicitly assigns to each array element its proper in-
dex position in the corresponding array.

Let V denote a set of possible numeric values (such as Z,
Q, or R). We encode a concrete state S with the help of the
following four functions:

• V alueS : Scalar → V maps each scalar variable to its
corresponding value,

• SizeS : Array → N maps each array to its size,

• V alueS
A : AS → V maps an element of an array A ∈

Array to its corresponding value,

• IndexS
A : AS → N maps an element of an array A ∈

Array to its index position in the array.

Example 1. Let program P operate on two scalar vari-
ables, i and j, and an array B of size 10. Suppose that at
some point in the execution of the program, the values of
variables i and j are 4 and 7, respectively, and the values
that are stored in array B are {1, 3, 8, 12, 5, 7, 4,−2, 15, 6}.
We encode the concrete state S of the program as follows:

Scalar = {i, j}, Array = {B}, BS = {b0, . . . , b9}

V alueS = [i 7→ 4, j 7→ 7] , SizeS = [B 7→ 10]



Notation:
c ∈ V, v ∈ Scalar, A ∈ Array, S ∈ Σ, D ⊆ Σ
⊙ ∈ {+,−,×} , ⊲⊳ ∈ {<,≤,=,≥, >}
elem(S,A, v) =

˘

u ∈ A : IndexS
A(u) = V alueS(v)

¯

Expressions:
[[c]](S) = c, [[v]](S) = V alueS(v)

[[A[v]]](S) =



V alueS
A(u) if ∃u ∈ elem(S,A, v)

⊥ otherwise

[[expr1 ⊙ expr2]](S) = [[expr1]](S) ⊙ [[expr2]](S)

Conditions:
[[expr1 ⊲⊳ expr2]](S) = [[expr1]](S) ⊲⊳ [[expr2]](S)

Assignments:
[[v ← expr]](S) = S [v 7→ [[expr]](S)]

[[a[v]← expr]](S) =



S [u 7→ [[expr]](S)] if ∃u ∈ elem(S,A, v)
⊥ otherwise

Errors:
[[.]](⊥) = ⊥

Set transformers:
[[v ← expr]](D) = {[[v ← expr]](S) : S ∈ D} (Assigns)
[[a[v]← expr]](D) = {[[a[v]← expr]](S) : S ∈ D} (Assigna)
[[cond]](D) = {S : S ∈ D and [[cond]](S) = true} (Cond)
D1 ⊔D2 = D1 ∪D2 (Join)

Figure 4: Concrete collecting semantics for the lan-
guage shown in Fig. 3.

V alueS
B = [b0 7→ 1, b1 7→ 3, b2 7→ 8, . . . , b9 7→ 6]

IndexS
B = [b0 7→ 0, b1 7→ 1, b2 7→ 2, . . . , b9 7→ 9]

In Fig. 3, we define a simple language suitable for express-
ing array operations. The language consists of assignment
statements, conditional statements, and while loops. Values
can be assigned to both scalar variables and array elements.
However, the language does not allow to use arbitrary ex-
pressions explicitly to access array elements. Only scalar
variables are allowed to index into arrays.

We define the program’s concrete collecting semantics as
follows. To each program point we attach a set of concrete
states, D. The set transformers shown in Fig. 4 are used to
propagate the sets of concrete states through the program.
Set transformers are defined for assigning to scalar vari-
ables (Assigns) and array elements (Assigna), interpreting
numeric conditionals of if-statements and while-statements
(Cond), and joining sets of concrete states at control merge
points (Join).

The goal of the analysis is to collect the set of reachable
program states at each program point. Determining the
exact sets of concrete states is, in general, undecidable. We
use the framework of abstract interpretation [3] to collect
at each program point an overapproximation of the set of
states that may arise there.

4. ABSTRACT DOMAIN
In this section, we define the family of abstract domains

that is the main contribution of this paper. The elements of
the abstract domains are sets of abstract memory configu-
rations. Each abstract memory configuration S# is a triple
˙

P#, Ω#, ∆#
¸

, in which P# specifies how arrays are par-

titioned, Ω# represents the corresponding abstract numeric

state, and ∆# stores the values of auxiliary predicates. We
denote the set of all possible abstract partitions by Σ#.

4.1 Array partitioning
The goals of array partitioning are twofold. First, we

would like to isolate in separate groups the array elements
that are assigned to. This allows the analysis to perform
strong updates when assigning to these elements. Second,
we would like to group elements with similar properties to-
gether to minimize the precision loss due to summarization.

In this paper, we explore an array-partitioning scheme
based on numeric relationships among indices of array ele-
ments and values of scalar variables. In particular, given a
set of scalar variables, we partition an array so that each
element whose index is equal to the value of any of the vari-
ables in the set is placed in a group by itself. Such groups
are represented by non-summary abstract array elements.
The consecutive array segments in between the indexed el-
ements are grouped together. Such groups are represented
by summary abstract array elements.

We define array partitions by using a fixed set of partition-
ing functions, denoted by Π. Each function is parametrized
by an array and a single scalar variable. Let A ∈ Array
and v ∈ Scalar. In a concrete state S, a function πA,v is
interpreted as:

πA,v : AS → {−1, 0, 1},

and is evaluated as follows:

πA,v(u) =

8

<

:

−1 if IndexS
A(u) < V alueS(v)

0 if IndexS
A(u) = V alueS(v)

1 if IndexS
A(u) > V alueS(v)

The choice of values is completely arbitrary as long as the
function evaluates to a different value for each of the three
cases. We denote the set of partitioning functions parame-
terized with array A by ΠA.

In a given concrete state, we partition each array A ∈
Array by grouping together elements of A for which all
partitioning functions in ΠA evaluate to the same values.
Each group is represented by an abstract array element: a
non-summary element if at least one partitioning function
evaluates to 0 for the array elements in the group; a sum-
mary element otherwise. If the set ΠA is empty, all of the
elements of array A are grouped together into a single sum-
mary element.

The values to which partitioning functions evaluate on the
array elements in a group uniquely determine the abstract
element that is used to represent that group. We continue
using the intuitive abstract-element naming introduced in
Sect. 2, e.g., b>i,<j denotes the group of array elements
whose indices are greater than the value of i, but less than
the value of j.

Formally, array partition P# maps each array in Array
to a corresponding set of abstract array elements. We say
that two array partitions are equal if they map all arrays in
Array to the same sets:

P#
1 = P#

2 ⇐⇒ ∀A ∈ Array
h

P#
1 (A) = P#

2 (A)
i

The following example illustrates array partitioning.

Example 2. Assume the same situation as in Ex. 1. Let
the set of partitioning functions Π be (πB,i, πB,j). The el-
ements of array B are partitioned into five groups, each of



which is represented by an abstract array element:
(i) {b0, b1, b2, b3}, represented by b<i,<j ;
(ii) {b4}, represented by bi,<j;
(iii) {b5, b6}, represented b>i,<j ;
(iv) {b7}, represented by b>i,j;
(v) {b8, b9}, represented by b>i,>j.

The abstract array elements bi,<j and b>i,j are non-summary,
while b<i,<j , b>i,<j, and b>i,>j are summary. Thus,

P# = [B 7→ {b<i,<j , bi,<j , b>i,<j , b>i,j , b>i,>j}]

Note, that since each abstract element of array A corre-
sponds to a valuation of partitioning functions in ΠA, there
can be at most 3|ΠA| abstract array elements of A. Thus,
the number of ways to partition array A (i.e., the number
of sets of abstract array elements that consistently represent
the corresponding array) is finite, although combinatorially
large. However, our observations show that only a small
fraction of these partitions actually occur in practice.

The approach that is presented in this section illustrates
only one of the possibilities for partitioning an array. We
found this partitioning to be useful when consecutive ar-
ray elements share similar properties, e.g., when analyzing
simple array-initialization loops and simple array-sorting al-
gorithms, which constitutes a large portion of actual uses of
arrays. However, in more complicated examples, e.g., when
using double indexing to initialize an array and using an ar-
ray to store a complex data structure (such as a tree), the
above array partitioning is not likely to succeed. We plan to
address the issue of improving array partitioning in future
work.

4.2 Numeric states
To keep track of the numeric information associated with

an array partition, we attach to each partition an element
of a summarizing numeric domain [7]. Summarizing nu-
meric domains are capable of modeling values associated
with summary objects and are automatically constructed
by extending standard relational numeric domains, such as
octagons [14] and polyhedra [5, 8]. Each quantity associ-
ated with an abstract object is modeled by a dimension in
the domain. Dimensions can be summary or non-summary
depending on the type of the corresponding object.

In array analysis, we use non-summary dimensions to rep-
resent the values of scalar variables, array sizes, and the
values and indices of non-summary abstract array elements.
Summary dimensions are used to model values and indices
of summary abstract array elements. Note that each ab-
stract array element has two dimensions associated with it:
one for the value, and one for its index position in the array.

We use the following notation to refer to the dimensions
of summarizing numeric domain: v denotes the dimension
that represents the values of scalar variable v; A.size de-
notes the dimension that represents the size of an array
A. Let u ∈ P#(A) denote an arbitrary abstract element
of array A. Then, u.value denotes the dimension that rep-
resents the value of u, and u.index denotes the dimension
that represents its index. For simplicity, we assume that
the summarizing numeric domain used in the analysis was
constructed by extending polyhedral numeric domain; thus,
we present numeric states as sets of linear constraints. A
constraint on a quantity associated with a summary object
is interpreted to hold for the quantities associated with all
concrete objects represented by that abstract object.

Example 3. Assume the same situation as in Ex. 2. The
numeric state associated with P# is described by the follow-
ing set of linear constraints:

i = 4, j = 7, B.size = 10

0 ≤ b<i,<j .index ≤ 3 1 ≤ b<i,<j .value ≤ 12
bi,<j .index = 4 bi,<j .value = 5

5 ≤ b>i,<j .index ≤ 6 4 ≤ b>i,<j .value ≤ 7
b>i,j .index = 7 b>i,j .value = −2

8 ≤ b>i,>j .index ≤ 9 6 ≤ b>i,>j .value ≤ 15

The definitions of a partial-order relation and of a join op-
eration for a summarizing domain depend on the underlying
numeric domain. For example, in a polyhedral domain, the
result of a join operation is computed by taking the convex
hull of the union of the arguments. Only numeric states
that have the same set of dimensions can be compared and
joined together. The set of dimensions is determined by the
array partition. Thus, only numeric states that are asso-
ciated with similar array partitions can be compared and
joined.

4.3 Beyond summarizing domains
Summarizing numeric domains can be used to reason about

collective numeric properties of summarized array elements.
However, the relationships among quantities that are sum-
marized together are lost. This precludes summarizing nu-
meric domains from being able to express certain properties
of interest, e.g., it is impossible to express the fact that a
set of array elements that are summarized together are in
sorted order. In Ex. 3, the numeric state S# is only able to
capture the property that the values of the concrete array
elements represented by b(<i,<j) range from 1 to 12, but not
that those elements are sorted in ascending order.

To capture properties that are beyond the capabilities of
summarizing numeric domains, we introduce a set of aux-
iliary predicates, denoted by ∆. In a concrete state S, a
predicate in δA ∈ ∆ maps each element of array A to a
boolean value: to 1 if the property of interest holds for that
element, and to 0 otherwise:

δA : AS → {0, 1} .

We specify the semantics of auxiliary predicates by supply-
ing a formula that is evaluated in concrete states.

When the elements of array A are summarized, we join
the corresponding values of δA in a 3-valued logic lattice [19].
In 3-valued logic, an extra value, denoted by 1/2, is added
to the set of Boolean values {0, 1}. The order is defined as
follows:

l1 ⊑ l2 iff l1 = l2 or l2 = 1/2

Thus,

1/2 ⊔ 0 = 1/2 ⊔ 1 = 0 ⊔ 1 = 1/2.

The resulting value is attached to the corresponding abstract
array element.

In an abstract memory configuration, we use an abstract
counterpart of the predicate, denoted by δ#

A , to map abstract
array elements to corresponding values:

δ#
A : P#(A)→ {0, 1, 1/2}

Let u ∈ P#(A) be an arbitrary abstract array element. The

value of δ#
A (u) is interpreted as follows: the value of 1 indi-

cates that the property holds for all of the array elements



represented by u; the value of 0 indicates that the property
does not hold for any of the array elements represented by
u; and the value of 1/2 indicates that property may hold for
some of the array elements represented by u, but may not
hold for the rest of the elements.

Example 4. Assume the same situation as in Ex. 3. We
introduce a predicate δB that evaluates to 1 for array ele-
ments that are in ascending order, and to 0 for the elements
that are not:

δB(u) =∀t ∈ B

IndexS
B(t) < IndexS

B(u)⇒

V alueS
B(t) ≤ V alueS

B(u)

In the concrete state shown in Ex. 1, δB evaluates to 1 for
the elements b0, b1, b2, b3, and b8; and to 0 for the remain-
ing elements. The values associated with the abstract array
elements are constructed as follows:
δ#

B (b<i,<j) =
F3

i=0 δB(bi) = 1 ⊔ 1 ⊔ 1 ⊔ 1 = 1

δ#
B (bi,<j) = δB(b4) = 0

δ#
B (b>i,<j) = δB(b5) ⊔ δB(b6) = 0 ⊔ 0 = 0

δ#
B (b>i,j) = δB(b7) = 0

δ#
B (b>i,>j) = δB(b8) ⊔ δB(b9) = 1 ⊔ 0 = 1/2

The part of an abstract memory configuration that stores
the interpretation of auxiliary predicates is denoted by ∆#

and is defined as:

∆#(δA, u) = δ#
A (u)

It only makes sense to compare and join the interpretations
that are defined for the same set of abstract array elements,
i.e., the interpretations that are associated with the same
array partition P#. We define a partial order relation for
interpretations of auxiliary predicates as follows:

∆#
1 ⊑ ∆#

2 ⇐⇒

∀δA ∈ ∆ ∀u ∈ P#(A)
h

∆#
1 (δA, u) ⊑ ∆#

2 (δA, u)
i

.

The join operation for interpretations of auxiliary predicates
is defined as follows: we say that ∆#

1 ⊔∆#
2 = ∆#, where for

all δA ∈ ∆ and for all u ∈ P#(A)

∆#(δA, u) = ∆#
1 (δA, u) ⊔∆#

2 (δA, u).

4.4 Abstract states
Examples 2, 3, and 4 illustrate the construction of an

abstract memory configuration that represents an arbitrary
concrete state. We use a function β : Σ → Σ# to refer to
this process of abstracting a single concrete state.

Let S#
1 =

D

P#
1 , Ω#

1 , ∆#
1

E

and S#
2 =

D

P#
2 , Ω#

2 , ∆#
2

E

de-

note two abstract memory configurations. We define a partial-
order relation for the abstract memory configurations as fol-
lows:

S#
1 ⊑ S#

2 ⇐⇒ P#
1 = P#

2 ∧ Ω#
1 ⊑ Ω#

2 ∧∆#
1 ⊑ ∆#

2

The join operation is only defined for the abstract memory
configurations with similar array partitions, i.e., when P#

1 =

P#
2 = P#. The resulting abstract partition is defined by

S# = S#
1 ⊔ S#

2 =
D

P#, Ω#
1 ⊔ Ω#

2 , ∆#
1 ⊔∆#

2

E

.

ai

bi

ai a>i

bi b>i

n = 1, i = 0,
ai.index = 0

−5 ≤ ai.value ≤ 5
bi.index = 0

n ≥ 2, i = 0,
ai.index = bi.index = 0
1 ≤ a>i.index ≤ n− 1
−5 ≤ ai.value ≤ 5
−5 ≤ a>i.value ≤ 5

1 ≤ b>i.index ≤ n− 1

δ#
b = [bi 7→ 1/2] δ#

b = [bi 7→ 1/2, b>i 7→ 1/2]

S#
0,1 S#

0,2

Figure 5: The abstract state at the entrance of the
loop (program point (⋆)) in Fig. 1. The abstract
state contains two abstract memory configurations:
one represents arrays of length 1; the other repre-
sents arrays of length 2 and greater.

Given a set of abstract memory configurations SS#, we
say that C# is a partition congruence class iff it is a maximal-
sized subset of SS#, all of whose members partition arrays
similarly (i.e., there exists P# such that for all S#

i ∈ C#,

P#
i = P#). We define the abstraction function for a set of

concrete states D ⊆ Σ as follows:

α(D) =



G

C# :
C# ⊆ {β(S) : S ∈ D}

is a partition congruence class

ff

Thus, an abstract state D# is a set of abstract memory con-
figurations with distinct array partitions. The concretiza-
tion function is defined as follows:

γ(D#) =
n

S : ∃S# ∈ D# s.t. β(S) ⊑ S#
o

.

We define a partial-order and a join operation for abstract
states as follows. Let D#

1 , D#
2 ⊆ Σ# denote two abstract

states. The partial-order relation is defined by:

D#
1 ⊑ D#

2 ⇐⇒ ∀S#
1 ∈ D#

1 ∃S
#
2 ∈ D#

2

h

S#
1 ⊑ S#

2

i

The join of two abstract states is performed by comput-
ing a union of the corresponding sets of abstract memory
configurations. The configurations that have similar array
partitions are joined together. This is similar in spirit to the
partially disjunctive heap abstraction described in [12].

5. RUNNING EXAMPLE REVISITED
In this section, we flesh out the schematic illustration of

the analysis that was given in Sect. 2. The analysis is applied
to the code shown in Fig. 1. We depict the abstract mem-
ory configurations that arise in the course of the analysis as
follows. The partition of the arrays is shown graphically:
solid boxes represent non-summary abstract array elements;
dashed boxes represent summary abstract array elements.
Numeric states are shown as sets of linear constraints. Aux-
iliary predicates are shown as maps from sets of abstract
array elements to corresponding values in {0, 1, 1/2}.

Consider the program in Fig. 1. The set of scalar variables
and the set of arrays are defined as follows: Scalar = {i, n}
and Array = {a, b}. The analysis uses the set of partitioning
functions Π = {πa,i, πb,i}. It is beyond the capabilities of
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1 ≤ a>i.index ≤ n− 1
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i = 1, n = 2,
ai.index = bi.index = 1

a<i.index = 0
−5 ≤ ai.value ≤ 5
−5 ≤ a<i.value ≤ 5

b<i.index = 0
b<i.value = a<i.value

i = 1, n ≥ 3,
ai.index = bi.index = 1
2 ≤ a>i.index ≤ n− 1
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0 ≤ a<i.index ≤ 1
3 ≤ a>i.index ≤ n− 1
−5 ≤ ai.value ≤ 5
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0 ≤ b<i.index ≤ 1

3 ≤ b>i.index ≤ n− 1
−5 ≤ b<i.value ≤ 5

δ#
b = [b<i 7→ 1, bi 7→ 1/2] δ#

b = [b<i 7→ 1, bi 7→ 1/2, b>i 7→ 1/2]

S#
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3
-rd

itera
tio

n
(a

fter
jo

in
)
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n = i + 1

ai.index = i
0 ≤ a<i.index ≤ i− 1
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−5 ≤ a<i.value ≤ 5

bi.index = i
0 ≤ b<i.index ≤ i− 1
−5 ≤ b<i.value ≤ 5

1 ≤ i ≤ 2
i = ai.index = bi.index
0 ≤ a<i.index ≤ i− 1

i + 1 ≤ a>i.index ≤ n− 1
−5 ≤ ai.value ≤ 5
−5 ≤ a>i.value ≤ 5
−5 ≤ a<i.value ≤ 5

0 ≤ b<i.index ≤ i− 1
i + 1 ≤ b>i.index ≤ n− 1
−5 ≤ b<i.value ≤ 5

δ#
b = [b<i 7→ 1, bi 7→ 1/2] δ#

b = [b<i 7→ 1, bi 7→ 1/2, b>i 7→ 1/2]

S#
J,3 S#
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−5 ≤ a<i.value ≤ 5

bi.index = i
0 ≤ b<i.index ≤ i− 1
−5 ≤ b<i.value ≤ 5

1 ≤ i
i = ai.index = bi.index
0 ≤ a<i.index ≤ i− 1

i + 1 ≤ a>i.index ≤ n− 1
−5 ≤ ai.value ≤ 5
−5 ≤ a>i.value ≤ 5
−5 ≤ a<i.value ≤ 5

0 ≤ b<i.index ≤ i− 1
i + 1 ≤ b>i.index ≤ n− 1
−5 ≤ b<i.value ≤ 5

δ#
b = [b<i 7→ 1, bi 7→ 1/2] δ#

b = [b<i 7→ 1, bi 7→ 1/2, b>i 7→ 1/2]

S#
W,3 S#

W,4

Figure 6: Abstract memory configurations at the begining of the 1-st, 2-nd and 3-d iterations of the loop in
Fig. 1. The sets of abstract memory configurations in each row form corresponding abstract states. Last two
rows show the transformation of the abstract state on the third iteration, as is is joined and widened with
respect to the abstract state obtained on the second iteration.



after 1-st iteration after 2-nd iteration after 3-rd iteration final state

b<i

a<i

n = 1, i = n,
a<i.index = 0

−5 ≤ a<i.value ≤ 5
b<i.index = 0

b<i.value = a<i.value

n = 2, i = n,
0 ≤ a<i.index ≤ n− 1
−5 ≤ a<i.value ≤ 5

0 ≤ b<i.index ≤ n− 1
−5 ≤ b<i.value ≤ 5

n ≥ 2, i = n
0 ≤ a<i.index ≤ n− 1
−5 ≤ a<i.value ≤ 5

0 ≤ b<i.index ≤ n− 1
−5 ≤ b<i.value ≤ 5

n ≥ 1, i = n
0 ≤ a<i.index ≤ n− 1
−5 ≤ a<i.value ≤ 5

0 ≤ b<i.index ≤ n− 1
−5 ≤ b<i.value ≤ 5

δ#
b = [b<i 7→ 1] δ#

b = [b<i 7→ 1] δ#
b = [b<i 7→ 1] δ#

b = [b<i 7→ 1]

S#
1,5 S#

2,5 S#
3,5 S#

E,5

Figure 7: The abstract state (consisting of a single abstract memory configuration) that reaches program
point (⋆⋆) after the 1-st, 2-nd, and 3-d iterations of the loop in Fig. 1. The last column shows the stabilized
abstract state at (⋆⋆).

summarizing numeric domains alone to express the property
“for every index k, the value of b[k] is equal to the value of
a[k]”. To capture this property, we introduce an auxiliary
predicate δb, whose semantics in a concrete state S is defined
by

δb(u) = ∃t ∈ aS
ˆ

IndexS
b (u) = IndexS

a (t) ∧

V alueS
b (u) = V alueS

a (t)
˜

.

Fig. 5 shows the abstract state at program point (⋆). The
abstract state contains two abstract memory configurations:
S#

0,1 and S#
0,2. Configuration S#

0,1 represents the degenerate
case of each array containing only one element. Thus, each
array is represented by a single abstract array element, ai

and bi, respectively. The indices of both ai and bi are equal
to zero, and the value of ai ranges from −5 to 5.

Abstract memory configuration S#
0,2 represents the con-

crete states in which both arrays are of length greater than
or equal to two. In these situations, each array is represented
two abstract elements: ai and bi represent the first elements
of the corresponding arrays, while a>i and b>i represent the
remaining elements. The numeric state associated with this
partition indicates that the indices of the concrete array ele-
ments represented by ai and bi are equal to zero, the indices
of the concrete array elements represented by a>i and b>i

range from 1 to n−1, and the values of all concrete elements
of array a range from −5 to 5.

The auxiliary predicate δ#
b evaluates to 1/2 for all array

elements in the abstract memory configurations S#
0,1 and

S#
0,2. This means that, in the concrete states represented by

S#
0,1 and S#

0,2, the values of the concrete elements of array
b may either be equal to the values of the corresponding
elements of array a or not.

Fig. 6 shows the abstract states that the analysis encoun-
ters at the beginning of each iteration. Each entry in the
table represents an abstract memory configuration. The ab-
stract state at a particular iteration is the set of abstract
memory configurations shown in the corresponding row of
the table. Table columns correspond to distinct array par-
titions that arise during the analysis. Fig. 7 shows the evo-
lution, on successive iterations of the analysis, of the single
abstract memory configuration that reaches the exit of the
loop.

The analysis proceeds as follows. Both S#
0,1 and S#

0,2 sat-
isfy the loop condition and are propagated into the body of
the loop. The abstract state at the beginning of the first
iteration contains abstract memory configurations S#

1,1 and

S#
1,2, which are similar to S#

0,1 and S#
0,2, respectively. Af-

ter the assignment “b[i] ← a[i]”, two changes happen
to both abstract memory configurations: (i) the constraint
ai.value = bi.value is added to their numeric states, and (ii)

the value of auxiliary predicate δ#
b (bi) is changed to 1.

At the end of the first iteration, as variable i is incre-
mented, abstract memory configuration S#

1,1 is transformed

into configuration S#
1,5. The loop condition does not hold in

S#
1,5, thus, this memory configuration is propagated to the

program point after the exit of the loop. Abstract mem-
ory configuration S#

1,2 is transformed into two new abstract

memory configurations: S#
2,3 and S#

2,4. These memory con-

figurations, along with S#
1,1 and S#

1,2, form the abstract state
at the beginning of the second iteration.

At the end of the second iteration, the abstract mem-
ory configuration S#

2,3 is transformed into configuration S#
2,5,

which violates the loop condition, and is, thus, propagated
to program point (⋆⋆). The abstract memory configura-

tion S#
2,4 is transformed into two new abstract memory con-

figurations, S#
3,3 and S#

3,4, in which loop condition holds.
Because the abstract state accumulated at the head of the
loop already contains memory configurations with similar
array partitions, the numeric states and the values of aux-
iliary predicates for these abstract memory configurations
are joined. In particular, abstract memory configuration
S#

2,3 is joined with S#
3,3 to produce S#

J,3. Similarly, S#
2,4 is

joined with S#
3,4, resulting in S#

J,4. Furthermore, widening

is applied: S#
J,3 is widened with respect to S#

2,3, producing

abstract memory configuration S#
W,3; and S#

J,4 is widened

with respect to S#
2,4, resulting in S#

W,4.
On the third iteration, abstract memory configuration

S#
W,3 is transformed into S#

3,5, which is propagated to pro-

gram point (⋆⋆). Abstract memory configuration S#
W,4, is

transformed into memory configurations S#
W,3 and S#

W,4, which
were previously encountered by the analysis. At this stage,
the abstract state at the head of the loop stabilizes and the
analysis terminates.

All of the abstract memory configurations that reach pro-
gram point (⋆⋆) partition arrays similarly. The analysis joins
these memory configurations to produce the abstract state
that contains a single abstract memory configuration S#

E,5

shown in the last column of Fig. 7. It is easy to see that this
configuration represents only the concrete states in which (i)
the values stored in the array b range from −5 to 5 (follows
from “−5 ≤ b<i ≤ 5” constraint in the numeric state); and



(ii) the value of each element of array b is equal to the value
of the element of array a with the same index (follows from

the fact that δ#
b (b<i) evaluates to definite value 1).

6. ABSTRACT SEMANTICS
To make the abstraction described in previous sections

usable, we have to define the abstract counterparts for the
concrete state transformers shown in Fig. 4.

In [4], it is shown that for a Galois connection defined by
abstraction function α and concretization function γ, the
best abstract transformer for a concrete transformer τ , de-
noted by τ ♯, can be expressed as: τ ♯ = α◦τ ◦γ. This defines
the limit of precision obtainable using a given abstract do-
main; however, it is a non-constructive definition: it does
not provide an algorithm for finding or applying τ ♯.

We implemented a prototype of our analysis using the
TVLA tool [11], and defined overapproximations for the best
abstract state transformers by using TVLA mechanisms.
Space considerations preclude us from giving a full account
of the modifications that needed to be applied to TVLA, and
the exact definitions of the predicates needed to support ar-
ray operations. In the rest of this section, we give a brief
overview of TVLA, and sketch the techniques for modeling
arrays and defining abstract transformers.

6.1 An extension of TVLA
TVLA models concrete states by first-order logical struc-

tures. The elements of a structure’s universe represent the
concrete objects. Predicates encode relationships among the
concrete objects. The abstract states are represented by
three-valued logical structures, which are constructed by ap-
plying canonical abstraction to the sets of concrete states.
The abstraction is performed by identifying a set of ab-
straction predicates and representing the concrete objects
for which these abstraction predicates evaluate to the same
values by a single element in the universe of a three-valued
structure. In the rest of the paper, we refer to these abstract
elements as nodes. A node that represents a single concrete
object is called non-summary node, and a node that repre-
sent multiple concrete objects is called summary node.

TVLA distinguishes between two types of predicates: core
predicates and instrumentation predicates. Core predicates
are the predicates that are necessary to model the concrete
states. Instrumentation predicates, which are defined in
terms of core predicates, are introduced to capture prop-
erties that would otherwise be lost due to abstraction.

An abstract state transformer is defined in TVLA as a
sequence of (optional) steps:

• A focus step replaces a three-valued structure by a
set of more precise three-valued structures that rep-
resent the same set of concrete states as the original
structure. Usually, focus is used to “materialize” a
non-summary node from a summary node. The struc-
tures resulting from a focus are not necessarily images
of canonical abstraction, in the sense that they may
have multiple nodes for which the abstraction predi-
cates evaluate to the same values.

• A precondition step filters out the structures for which
a specified property does not hold from the set of struc-
tures produced by focus. Generally, preconditions are
used to model conditional statements.

• An update step transforms the structures that satisfy
the precondition, to reflect the effect of an assignment
statement. This is done by changing the interpretation
of core and instrumentation predicates in each struc-
ture.

• A coerce step is a cleanup operation that “sharpens”
updated three-valued structures by making them com-
ply with a set of globally defined integrity constraints.

• A blur step restores the “canonicity” of coerced three-
valued structures by applying canonical abstraction to
them, i.e., merging together the nodes for which the
abstraction predicates evaluate to the same values.

We extended TVLA with the capability to explicitly model
numeric quantities. In particular, we added the facilities to
associate a set of numeric quantities with each concrete ob-
ject, and equipped each three-valued logical structure with
an element of a summarizing numeric domain to represent
the values of these quantities in abstract states. Each node
in a three-valued structure is associated with a dimension
of a summarizing numeric domain. TVLA specification lan-
guage was extended to permit using numeric comparisons in
logical formulas, and to specify numeric updates.

The operations that affect numeric states, such as per-
forming numeric updates and evaluating numeric compar-
isons, as well as creating, removing, merging, and duplicat-
ing nodes in the structure are handled by the correspond-
ing abstract transformers of a summarizing numeric domain.
The focus and coerce operations use the “assume” operation,
provided by the domain, to augment a numeric state with
extra constraints.

6.2 Modeling arrays
We encode concrete states of a program as follows. Each

scalar variable and each array element corresponds to an el-
ement in the universe of the first-order logical structure. We
define a core unary predicate for each scalar variable and for
each array. These predicates evaluate to 1 on the elements
of the first-order structure that represent the corresponding
scalar variable or the element of corresponding array, and
to 0 for the rest of the elements. Each element in the uni-
verse is associated with a numeric quantity that represents
its value. Each array element is associated with an extra
numeric quantity that represents its index position in the
array.

To model the array structure in TVLA correctly, extra
predicates are required. We model the adjacency relation
among array elements by introducing a binary instrumen-
tation predicate for each array. This predicate evaluates
to 1 when evaluated on two adjacent elements of an array.
To model the property that indices of array elements are
contiguous and do not repeat, we introduce a unary instru-
mentation predicate for each array that encodes transitive
closure of the adjacency relation.

Partitioning functions are defined by unary instrumenta-
tion predicates. Since a partitioning function may evaluate
to three different values, whereas a predicate can only eval-
uate to 0 or 1, we use two predicates to encode each par-
titioning function. Auxiliary predicates directly correspond
to unary instrumentation predicates.

To perform the abstraction, we select a set of abstrac-
tion predicates that contains the predicates corresponding



to scalar variables and arrays, the predicates that encode
the transitive closure of adjacency relations for each array,
and the predicates that implement the partitioning func-
tions. The auxiliary predicates are non-abstraction predi-
cates. The resulting three-valued structures directly corre-
spond to the abstract memory configurations we defined in
Sect. 4.

The transformers for the statements that do not require
array repartitioning, e.g., conditional statements, and as-
signments to array elements and to scalar variables that are
not used to index array elements, are modeled trivially. The
transformers for the statements that cause a change in ar-
ray partitioning, e.g., updates of scalar variables that are
used to index array elements, are defined as follows: focus
is applied to the structure to materialize the array element
that will be indexed by the variable after the update; then,
the value of the scalar variable, and the interpretation of the
partitioning predicates are updated; finally, blur is used to
merge the array element that was indexed by the variable
previously, into the appropriate summary node.

To update the interpretation of auxiliary predicates, the
programmer must supply predicate-maintenance formulas
for each statement that may change the values of those pred-
icates. Also, to reflect the numeric properties, encoded by
the auxiliary predicates, in the numeric state as the group-
ing of the concrete array elements changes, a set of integrity
constraints implied by the auxiliary predicates must be sup-
plied.

Aside from the integrity constraints and update formu-
las for the auxiliary predicates, the conversion of an arbi-
trary program into a TVLA specification can be performed
fully automatically. In the future, we plan to extend the
technique for differencing logical formulas, described in [17],
with the capability to handle numeric formulas. Such an ex-
tension will allow us to automatically compute safe abstract
transformers for the auxiliary predicates. Another technique
that may help to fully automate the analysis involves the use
of decision procedures to symbolically compute best abstract
transformers [18, 21].

7. EXPERIMENTS
In this section, we describe the application of the anal-

ysis prototype to four simple examples. We used a simple
heuristic to obtain the set of partitioning functions for each
array in the analyzed examples. In particular, for each ar-
ray access “a[i]” in the program we added a partitioning
function πa,i to the set Π. This approach worked well for
all of the examples, except for the insertion-sort implemen-
tation, which required the addition of an extra partitioning
function.

7.1 Array initialization
Fig. 8 shows a piece of code that initializes array a of

size n. Each array element is assigned a value equal to twice
its index position in the array plus 3. The purpose of this
example is to illustrate that the analysis is able to automat-
ically discover numeric constraints on the values of array
elements.

The array-partitioning heuristic produces a single parti-
tioning function πa,i for this example. The analysis estab-
lishes that after the code is executed the values stored in the
array range from 3 to 2× n + 1. No human intervention in
the form of introducing auxiliary predicates is required.

int a[n], i, n;

i ← 0;
while(i < n) {

a[i] ← 2 × i + 3;
i ← i + 1;

}

Figure 8: Array-initialization loop.

int a[n], b[n], c[n], i, j, n;

i ← 0;
j ← 0;
while(i < n) {

if(a[i] == b[i]) {
c[j] ← i;
j ← j + 1;

}
i ← i + 1;

}

Figure 9: Partial array initialization.

In contrast, other approaches that are capable of handling
this example [6, 20] require that the predicate that speci-
fies the expected bounds for the values of array elements is
supplied explicitly, either by the user or by an automatic
abstraction-refinement technique [9].

7.2 Partial array initialization
Fig. 9 contains a more complex array-initialization exam-

ple. The code repeatedly compares elements of arrays a and
b and, in case they are equal, writes their index position
into the array c. The portion of array c that is initialized
depends on the values stored in the arrays a and b. Three
scenarios are possible: (i) none of the elements of c are ini-
tialized; (ii) an initial segment of c is initialized; (iii) all
of c is initialized. The purpose of this example is to illus-
trate the handling of multiple arrays as well as partial array
initialization.

The array-partitioning heuristic derives a set of three par-
titioning functions for this example, one for each array:
Π = {πa,i, πb,i, πc,j}. The analysis establishes that, after
the loop, the elements of array c with indices between 0
and j − 1 were initialized to values ranging from 0 to n− 1.
Again, no auxiliary predicates are necessary.

The abstract state that reaches the exit of the loop con-
tains four abstract memory configurations. The first config-
uration represents concrete states in which none of the array
elements are initialized. The value of j, in this domain el-
ement, is equal to zero, and, thus, the array partition does
not contain the abstract element c<j .

The second and the third memory configurations repre-
sent the concrete states in which only an initial segment of
array c is initialized. Two different memory configurations
are required to represent this case because the analysis dis-
tinguishes the case of variable j indexing an element in the
middle of the array from the case of j indexing the last ele-
ment of the array.

The last abstract memory configuration represents the
concrete states in which all elements of array c are initial-
ized. In the concrete states represented by this memory
configuration, the value of variable j is equal to the value
of variable n, and all elements of array c are represented by
the abstract array element c<j .



void sort(int a[], int n) {
int i, j, k, t;

i ← 1;
while(i < n) {

j ← i;
while(j > 0) {

k ← j - 1;
if(a[j] ≥ a[k]) break;

t ← a[j];
a[j] ← a[k];
a[k] ← t;
j ← j - 1;

}
i ← i + 1;

}
}

Figure 10: Insertion-sort procedure.

The initialized array elements are represented by the ab-
stract array element c<j . The array partition of the first
memory configuration does not contain element c<j , which
indicates that no elements were initialized. The numeric
states associated with the other abstract memory configu-
rations capture the property that the values of initialized
array elements range between 0 and n− 1.

7.3 Insertion sort
Fig. 10 shows a procedure that sorts an array using an in-

sertion sort. Parameter n specifies the size of array a. The
invariant for the outer loop is that the array is sorted up
to the i-th element. The inner loop inserts the i-th element
into the sorted portion of the array. An interesting detail
about this implementation is that elements are inserted into
the sorted portion of the array in reverse order. The pur-
pose of this example is to demonstrate the application of the
analysis to a more challenging problem.

The application of the array-partitioning heuristic yields
Π = {πa,j}. Unfortunately, this partitioning is not suffi-
cient. We also need to use variable i to partition the array
so that the sorted segment of the array is separate from
the unsorted segment. However, since i is never explicitly
used to index array elements, our array-partitioning heuris-
tic fails to add πa,i to the set of partitioning functions. To
successfully analyze this example, we have to manually add
πa,i to Π.

Summarizing numeric domains are not able to preserve
the order of summarized array elements. An auxiliary pred-
icate, defined similarly to the predicate δB in Ex. 4, needs to
be introduced. Our prototype implementation requires user
involvement to specify the explicit update formulas for this
predicate for each of the program statements. Fortunately,
the majority of the program statements do not affect this
predicate. Thus, the corresponding update formula for such
statements is the identity function. The only non-trivial
case is the assignment to an array element.

The human involvement necessitated by the analysis is (i)
minor, and (ii) problem-specific. In particular, only one aux-
iliary predicate needs to be introduced, Furthermore, this
predicate is not specific to a given implementation of a sort-
ing algorithm. Rather, it can be reused in the analysis of
other implementations, and even in the analysis of other
sorting algorithms.

Also, this example identifies some directions for future
research: (i) designing better techniques for the automatic
array partitioning, and (ii) automatically discovering and
maintaining auxiliary predicates.

7.4 Results
We ran the analysis prototype on an Intel-based Linux

machine equipped with a 2.4 GHz Pentium 4 processor and
512Mb of memory. Fig. 11 shows the measurements we col-
lected while analyzing the examples discussed above.

The measurements are severely affected by our decision to
implement the analysis prototype in TVLA. Because TVLA
is a general framework, the structure of an array has to be
modeled explicitly by introducing a number of instrumen-
tation predicates and integrity constraints. Consequently,
the majority of the analysis time is spent executing focus
and coerce operations to ensure that the array structure
is preserved. The measurements in Fig. 11 indicate that,
on average, focus and coerce account for about 80% of the
overall analysis time. Building a dedicated analysis imple-
mentation, in which the knowledge of the linear structure
of arrays is built into the abstract state transformers, would
recover the majority of that time.

Another shortcoming of the analysis prototype is that the
number of nodes it uses to represent an array in TVLA is
larger than the number of abstract objects created by array
partitioning described in Sect. 4.1. For example, extra non-
summary nodes are used to represent the first and the last
elements of each array. As a result, the reported number of
abstract objects in each abstract memory configuration as
well as the number of memory configurations in an abstract
state is greater than a dedicated analyzer would encounter.

Another factor that slows down the analysis is our use of
the polyhedral numeric domain. While offering a superior
precision, the polyhedral numeric domain does not scale well
as the number of dimensions grow. This property is partic-
ularly apparent when a polyhedron that represents the ab-
stract state is a multidimensional hypercube. In the array
copy example, the constraints on the values of elements of
both arrays form a 10-dimensional hypercube, which pro-
vides an explanation of why the analysis takes over 6 min-
utes. If the constraints on the values of array a are excluded
from the initial abstract state, the analysis takes merely 8
seconds.

Observation of the numeric constraints that arise in the
course of the analysis led us to believe that using less pre-
cise, but more efficient weakly-relational domains [15], may
speed up the analysis of the above examples without sacri-
ficing precision. We reran the analysis of the array copy ex-
ample, using a summarizing extension of a weakly-relational
domain. The analysis was able to verify the desired proper-
ties in 40 seconds, which is a significant improvement over
the time it takes to perform the analysis with a polyhedral
domain.

8. CONCLUSIONS
Canonical abstraction is a powerful technique that allows

static analysis to represent a (potentially unbounded) set of
concrete objects with a bounded number of abstract objects.
The partitioning imposed on the set of the concrete objects
is dynamic in a sense that the same abstract object may
represent different groups of the concrete objects within the
same abstract state. The net result is an ability to avoid per-



Example Abstract Memory Configurations (AMCs) Time for Time
Max AMCs per state Max nodes per AMC Coerce & Focus (%) (sec)

Array initialization 7 8 68.3 1.7
Partial initialization 35 20 86.3 194.0
Array copy 7 13 94.2 338.1
Insertion sort 38 14 85.5 48.5

Figure 11: Analysis measurements: maximal number of abstract memory configurations in an abstract state,
maximal number of abstract objects in an abstract memory configuration, percentage of the overall analysis
time spent on focus and coerce operations, and the overall analysis time.

forming weak updates, which greatly improves the precision
of the analysis. In this paper, we explore the possibilities
for combining canonical abstraction with existing numeric
analyses and applications of the combined analysis to the
problem of analyzing array operations.

The analysis we define in this paper is capable of automat-
ically establishing interesting array properties; in particular,
we show how it is able to capture numeric constraints on the
values of array elements after an array-initialization loop.
More sophisticated properties, such as verifying the imple-
mentation of comparison-based sorting algorithms, require
some human intervention to define necessary auxiliary pred-
icates along with their abstract transformers. The auxiliary
predicates that are introduced are problem-specific, rather
then program-specific, which allows them to be reused for
the analysis of other programs.

The prototype implementation of the analysis, although
not very efficient, can be used to analyze interesting array
operations in reasonable times.
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