
Compositional Recurrence Analysis Revisited ∗

Zachary Kincaid
Princeton Univ., USA

zkincaid@cs.princeton.edu

Jason Breck
Ashkan Forouhi Boroujeni

Univ. of Wisconsin, USA
{jbreck,ashkanfb}@cs.wisc.edu

Thomas Reps
Univ. of Wisconsin and

GrammaTech, Inc., USA
reps@cs.wisc.edu

Abstract
Compositional recurrence analysis (CRA) is a static-analysis
method based on a combination of symbolic analysis and
abstract interpretation. This paper addresses the problem
of creating a context-sensitive interprocedural version of
CRA that handles recursive procedures. The problem is
non-trivial because there is an “impedance mismatch” be-
tween CRA, which relies on analysis techniques based on
regular languages (i.e., Tarjan’s path-expression method),
and the context-free-language underpinnings of context-
sensitive analysis.

We show how to address this impedance mismatch by
augmenting the CRA abstract domain with additional oper-
ations. We call the resulting algorithm Interprocedural CRA
(ICRA). Our experiments with ICRA show that it has broad
overall strength compared with several state-of-the-art soft-
ware model checkers.

CCS Concepts •Theory of computation → Program
analysis; •Software and its engineering → Automated
static analysis

Keywords Invariant generation, Resource bounds

1. Introduction
Static analysis provides a way to obtain information about
the possible states that a program reaches during execution,

∗ Supported, in part, by a gift from Rajiv and Ritu Batra; by AFRL un-
der DARPA MUSE award FA8750-14-2-0270 and DARPA STAC award
FA8750-15-C-0082; and by the UW-Madison Office of the Vice Chancel-
lor for Research and Graduate Education with funding from the Wisconsin
Alumni Research Foundation. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the authors, and
do not necessarily reflect the views of the sponsoring agencies. T. Reps has
an ownership interest in GrammaTech, Inc., which has licensed elements of
the technology reported in this publication.

but without actually running the program on specific inputs.
Two important approaches to static analysis are
• abstract interpretation, which conservatively overapprox-

imates a program’s actions so that the analyzer can ex-
plore all the program’s reachable states (as well as some
unreachable states);
• symbolic analysis, which uses formulas to create precise

models of a program’s actions, but is usually forced to
forgo an exploration that accounts for all reachable states.
Compositional recurrence analysis (CRA) [14] is a static-

analysis method based on a combination of symbolic analy-
sis and abstract interpretation. It performs abstract interpre-
tation using an abstract domain of transition formulas, and
thus works with quite precise models of a program’s actions.
It conservatively explores all possible behaviors of a loop
by overapproximating the transitive closure of its body: the
formula for the loop body is converted into a system of lin-
ear recurrences, which are then solved to create a transition
formula for the loop that involves polynomial constraints.

Abstraction refinement is a widely used technique in
static analysis that tailors an abstraction to a property of
interest. Abstraction refinement enables analyzers to prove
complicated properties, but can also cause them to fail to
terminate. An interesting feature of CRA is that it can verify
complicated properties without using abstraction refinement.
CRA is guaranteed to terminate, and in practice it is gener-
ally faster than tools based on abstraction refinement. More-
over, it can generate—rather than just verify—invariants, in-
cluding resource bounds (see §5), and non-linear invariants
(see Ex. 4.12).

CRA analyzes a procedure’s behavior using a two-step
process, following Tarjan’s path-expression method [40] for
solving single-procedure dataflow-analysis problems. First,
for each node n in the procedure’s control flow graph (CFG),
it creates a regular expression Rn that recognizes all paths
from the procedure’s entry to n. Second, it evaluates the
regular expressions within the CRA domain by interpreting
each regular expression operator as a corresponding opera-
tor on transition formulas: + is disjunction, · is relational
composition, and ∗ over-approximates the reflexive transi-
tive closure of a transition formula by generating and solving
an appropriate system of recurrence equations.

CRA is compositional in the sense that it computes the
abstract meaning of a program by computing, and then com-
bining, the abstract meanings of its parts.
• At the intraprocedural level, CRA makes use of Tarjan’s

path-expression method to compose the meanings of sub-
parts via the interpretations of +, ·, and ∗ [14].
• At the interprocedural level, each procedure is analyzed

independently of its calling context to produce a summary
that is used to interpret calls to the procedure.
However, CRA is non-uniform: although recursion is a

kind of generalized loop construct, the algorithm that CRA
uses to summarize loops (based on generating and solving
recurrences) is not the same as the one it uses to summarize
recursive procedures (which relies on coarse abstraction and
widening). For instance, if a loop is re-coded using a tail-
recursive procedure, CRA is not able to identify the same
numeric invariants in the recursive version that it identifies
in the version with an explicit loop.

This paper addresses the problem of creating a context-
sensitive interprocedural version of CRA that handles loops
and recursion—including non-linear recursion—in a uni-
form way. The goal is to create a system that is both
• more resilient to different coding styles—so that if a loop

is re-coded to use tail-recursion, the same invariants are
identified, and
• more general, by bringing to bear on recursive procedures

the methods that CRA uses for generating and solving
recurrence equations.

To create such a system, we must deal with the “impedance
mismatch” between CRA’s reliance on Tarjan’s path-
expression method, which handles regular languages,
and the context-free-language underpinnings of context-
sensitive interprocedural analysis [5, 15, 33, 34, 38]. This is-
sue is challenging because at the technical level, the regular-
language viewpoint is baked into CRA: CRA’s recurrence-
solving step is coupled with interpreting Kleene-star (∗).

The inspiration for our work was the recently devel-
oped framework for Newtonian Program Analysis via Ten-
sor Product (NPA-TP) [35]. At first blush, it appeared that
NPA-TP overcomes the impedance mismatch because it pro-
vides a way to harness Tarjan’s path-expression method for
interprocedural analysis: NPA-TP has the surprising prop-
erty of converting an interprocedural-analysis problem—i.e.,
a context-free path problem—into a sequence of regular-
language path problems.

For NPA-TP to be applicable, the abstract domain must
support a few non-standard operations (i.e., a so-called
tensor-product operation and a detensor operation). While
the CRA domain can be extended with these non-standard
operations (§4.2), it fails to satisfy some properties on which
NPA-TP relies: (i) CRA has infinite ascending chains, and
thus NPA-TP[CRA] would not be guaranteed to terminate;
(ii) CRA does not have an effective equivalence procedure,

and thus it is not possible, in general, to ascertain whether an
NPA-TP[CRA] analyzer has reached a fixpoint.

We address these issues by developing a new framework,
which we call NPA-TP-GJ (NPA-TP with Gauss-Jordan
elimination, §4.3). Whereas Kleene iteration, NPA [13], and
NPA-TP do not converge at all when working with an ab-
stract domain, such as the CRA domain, that has neither ef-
fective equivalence nor the ascending-chain condition, the
NPA-TP-GJ algorithm (Alg. 4.20) is able to both detect and
enforce convergence.

Contributions. Our work makes three main contributions:
• We extend CRA to create ICRA, a context-sensitive in-

terprocedural version that handles loops and recursion—
including non-linear recursion—in a uniform way (§4.3).
• We present the NPA-TP-GJ framework, which represents

the interface and properties required for our approach.
NPA-TP-GJ is an interprocedural-analysis method that can
be used when the abstract domain has infinite ascending
chains and does not support effective equivalence (§4.3).
• We present the results of experiments with an implemen-

tation of ICRA (§5). The experiments show that ICRA has
broad overall strength, compared with several state-of-the-
art software model checkers.

Outline. §2 summarizes CRA. §3 states the problem that
the paper addresses. §4 presents the technical details of
our solution. §5 describes the implementation of Algorithm
NPA-TP-GJ and presents experimental results. §6 discusses
related work. Proofs can be found in [27, App. A].

2. Background
2.1 Algebraic Program Analysis
Algebraic program analysis is an alternative to the classic it-
erative style of program analysis; it takes an algebraic (rather
than order-theoretic) approach to approximating repetitive
behavior. We illustrate the difference between the algebraic
and iterative styles of program analysis with the example
shown in Fig. 1. The program’s CFG can also be represented
as the following recursive system of equations:

S :

X0 = ε+

(
X2 · i := i - 1

)
X1 = X0 · i > 0

X2 = X1 ·
(
x := x + i + y := y - i

)
X3 = X0 · i <= 0

We can view S as a grammar for the paths through the
program. For each variable (node, non-terminal) Xi, we
define Paths(Xi) to be the set of paths in the CFG that end at
node Xi, or equivalently the set of strings that are generated
from non-terminal Xi.

The problem that we are interested in is the classic prob-
lem from dataflow analysis of overapproximating the inter-
pretation of all paths that start at the beginning of a program
and end at a given program point [26, 38]. We formalize this
problem as follows. Suppose that we are given a space of

while (i > 0)
if (*) x := x + i
else y := y - i
i := i - 1

ܺ
ଵܺ
ܺଶ

i > 0
x := x + i y := y - ii := i - 1

ܺଷ
i ≤ 0

Figure 1: Example program and its CFG.

path properties D and a function J·K : Σ → D that maps
each program instruction to a path property representing it
(where Σ

def
= { i > 0 , i := i - 1 , . . .} denotes the set of

all program instructions). We suppose that D is equipped
with a sequencing operator ⊗ (with unit 1) and a choice op-
erator ⊕ (with unit 0). We define an approximation order &
on D by defining a & b iff a⊕ b = a, and lift J·K to paths by
defining Jp1 . . . pnK

def
= Jp1K⊗· · ·⊗JpnK. Our goal is

For each variable Xi, compute some path property
D(Xi) ∈ D, such that for each path p ∈ Paths(Xi), p
satisfies the property D(Xi) (i.e., D(Xi) & JpK).

In the terminology of abstract interpretation [10], we wish
to compute a function D that abstracts the path semantics of
the program within some abstract domain D.

DEFINITION 2.1. In the path semantics, the domain of path
properties is the set of all path languages: D

def
= 2Σ∗ . The

operations are: L1⊗L2
def
= {p1p2 : p1 ∈ L1 ∧ p2 ∈ L2};

L1⊕L2
def
= L1 ∪ L2; 0

def
= ∅; and 1

def
= {ε}. The semantic

function JaK
def
= {a} maps each instruction a to {a}.

The classical way to establish that a function D is a
solution to a system of equations S (in the sense that D
abstracts the path semantics) is to show that D is a solution
to a related system of inequations JSK over the abstract
domain D, where JSK is obtained by re-interpreting the
regular operators appearing in S with the corresponding
operators inD. For the S that corresponds to Fig. 1, we have

JSK :

X0 & 1⊕

(
X2⊗J i := i - 1 K

)
X1 & X0⊗J i > 0 K
X2 & X1⊗

(
J x := x + i K⊕J y := y - i K

)
X3 & X0⊗J i <= 0 K

We call a solution to JSK a post-fixpoint solution to S. It is
easy to see that if D is a post-fixpoint solution to JSK, then
D overapproximates the path semantics.

In an iterative program analysis, a post-fixpoint solu-
tion is computed as the limit of a sequence of approx-
imations. Define the Kleene iteration sequence 〈Dn :
{X1, X2, X3, X4} → D〉n∈N as follows:

D0(Xi) = 0
Dn+1(X0) = 1⊕

(
Dn(X2)⊗J i := i - 1 K

)
Dn+1(X1) = Dn(X0)⊗J i > 0 K
Dn+1(X2) = Dn(X1)⊗(J x := x + i K⊕J y := y - i K)
Dn+1(X3) = Dn(X0)⊗J i <= 0 K

Define D(Xi)
def
=
⊕

nD
n(Xi) to be the limit of this se-

quence. When D has no infinite ascending chains, the se-
quence 〈Dn〉n∈N eventually stabilizes, and we may compute
D effectively. IfD fails to satisfy the ascending-chain condi-
tion, then we use a widening operator to ensure convergence
[11]. Observe that if we take D to be the path semantics,
then D(Xi) coincides with Paths(Xi).

Algebraic program analysis is an alternative to this itera-
tive style. Rather than assuming the ascending-chain condi-
tion or a binary widening operator, we assume that the space
of program properties is equipped with a unary iteration op-
erator ∗. We compute D using a two-step process. The first
step is to apply Tarjan’s path-expression algorithm [40] to
compute, for each variable Xi in the system, a regular ex-
pression that recognizes the path language Paths(Xi):

Ŝ :

X0 = body∗

X1 = body∗ · i > 0
X2 = body∗ · i > 0 · (x := x+i + y := y-i)

X3 = body∗ · i <= 0

where body def

= i > 0 ·
(

x := x+i
+ y := y-i

)
· i := i-1 . The

second step is to evaluate each path expression within D,
using the algebraic operators ⊗, ⊕, and ∗ to interpret the
regular expression operators ·, +, and ∗, respectively:

D(X0)
def
= JbodyK∗

D(X1)
def
= JbodyK∗⊗J i > 0 K

D(X2)
def
= JbodyK∗⊗J i > 0 K⊗

(
J x := x + i K

⊕ J y := y - i K

)
D(X3)

def
= JbodyK∗⊗J i <= 0 K

where JbodyK def
= J i > 0 K⊗

(
J x := x+i K
⊕ J y := y-i K

)
⊗J i := i-1 K.

Again, if we take D to be the path semantics (where
L∗

def
=
⋃
n L

n, L0 = 1, and Ln+1 = Ln⊗L), then D(Xi)
coincides with Paths(Xi).

The essential difference between the iterative and alge-
braic approaches is that fixpoint computation is external to
the abstract domain in the iterative approach, but internal in
the algebraic approach: the iteration operator is a “built-in”
method for solving a particularly simple class of recursive
equations—i.e., X 7→ a∗ is a solution to the single-variable
recursive equation {X = 1⊕ (X ⊗ a)}. When a domain has
infinite ascending chains, the two approaches impose differ-
ent burdens on the analysis designer. The iterative approach
requires designing a (binary) widening operator that ensures
convergence by deliberate overapproximation. The algebraic
approach requires designing a (unary) ∗ operator. The ∗ op-
erator offers flexibility, because it need not necessarily be
computed using an iterative process. (Although the ∗ opera-
tor of the path semantics is defined as the limit of an iterative
process—i.e., L∗ def

=
⋃
n L

n—the analysis designer is free to
design a ∗ operator that overapproximates the ∗ operator of
the path semantics however they choose.)

The method developed in this paper combines elements
of both the iterative and algebraic styles of program anal-

ysis. First, the equations defining the paths through a pro-
gram are transformed (§4.3.1). For linear recursive systems,
the transformation results in a non-recursive system that
can be solved merely by interpreting the right-hand side of
each equation within a suitable algebra (as in the algebraic
method). For general systems, the transformation results in
a recursive system of a restricted form, which can be solved
using an iterative method (§4.3.2). Post-fixpoint solutions of
the transformed system are generally not post-fixpoint solu-
tions of the original system; however, they do overapproxi-
mate the path semantics of the original system. The correct-
ness of the approach is captured by the following principle:

OBSERVATION 2.1. [Path-Preservation Principle]. A
post-fixpoint solution of a transformed (but equivalent)
system of equations overapproximates every path of the
original equation system. �

We make use of Obs. 2.1 in the soundness argument for
the program-analysis algorithm presented in §4.

2.2 Compositional Recurrence Analysis
Compositional Recurrence Analysis (CRA) [14] is a pro-
gram analysis that follows the algebraic style. The space of
path properties supported by CRA (i.e., the carrier of the se-
mantic algebra of CRA) is the set of transition formulas over
(not necessarily linear) integer arithmetic. Letting x denote a
finite set of program variables, a transition formula ϕ(x,x′)
is a formula over the variables x plus a set of primed copies
x′, representing the values of the variables before and after
executing a path, respectively. The sequencing operation is
relational composition and choice is disjunction:1

ϕ⊗ψ def
= ∃x′′.ϕ(x,x′′) ∧ ψ(x′′,x′) ϕ⊕ψ def

= ϕ ∨ ψ
The heart of CRA is its iteration operator. Given as input a
transition formula ϕbody that summarizes the body of a loop,
the iteration operator computes a formula ϕ∗body that sum-
marizes any number of iterations. The iteration operator of
CRA uses an SMT solver to extract a system of recurrences
entailed by ϕbody, and then returns the closed form of the
system as the abstraction of the loop.

We illustrate how CRA analyzes loops using the exam-
ple system Ŝ from §2.1. (See [14] for algorithmic details.)
To compute the value of D(X0) (that is, a transition formula
that approximates every path starting and ending at the be-
ginning of the loop), we evaluate within the CRA algebra the
right-hand side of the equation for X0 in Ŝ(

i > 0 ·
(
x := x+i + y := y-i

)
· i := i-1

)∗
.

The evaluation proceeds by first evaluating the expression
inside the Kleene-star operator, which yields the following

1 In the implementation of sequential composition (and that of the deten-
sor operation defined in §4.2), fresh Skolem constants are introduced for
existentially quantified variables. We do not perform quantifier elimination
because the formulas are in non-linear integer arithmetic, which does not
admit quantifier elimination.

transition formula (representing one iteration of the body of
the loop):

ϕbody : i > 0 ∧
(

(x′ = x + i ∧ y′ = y)
∨ (x′ = x ∧ y′ = y− i)

)
∧ i′ = i− 1

It then applies the iteration operator to ϕbody to obtain a value
for X0. The iteration operator extracts the following recur-
rence (in)equations from ϕbody, and computes their closed
forms using symbolic summation:

Recurrence Closed form
i′ = i− 1 i(k) = i(0) − k
x′ ≥ x x(k) ≥ x(0)

y′ ≤ y y(k) ≤ y(0)

y′ ≥ y− i y(k) ≥ y(0) − k(k − 1)/2− ki(0)

x′ ≤ x + i x(k) ≤ x(0) + k(k − 1)/2 + ki(0)

x′ − y′ = x− y + i
x(k) − y(k) = x(0) − y(0)

+k(k − 1)/2 + ki(0)

(where i(k) denotes the value of i on the kth iteration of
the loop). Finally, the iteration operator introduces an exis-
tentially quantified non-negative variable k (representing the
iteration count of the loop), and conjoins the closed form of
every recurrence:

ϕ∗body : ∃k.k ≥ 0 ∧ i′ = i− k ∧ x′ ≥ x ∧ y′ ≤ y
∧ y′ ≥ y− k(k − 1)/2− ki
∧ x′ ≤ x + k(k − 1)/2 + ki
∧ x′ − y′ = x− y + k(k − 1)/2 + ki

3. Problem Statement
The problem addressed in the paper is the following:

Extend CRA to create a context-sensitive interprocedu-
ral version (ICRA) that handles loops and recursion—
including non-linear recursion—in a uniform way.

Recursion presents an obstacle because the set of paths
through a program that uses recursion is not regular: it is
context-free [33, 38], which places recursive behavior be-
yond the scope of what can be analyzed using CRA’s itera-
tion operator.

Recent work on Newtonian Program Analysis via Tensor
Product (NPA-TP) [35] has provided a crucial piece of the
puzzle. NPA-TP uses tensor products (§4.2) to extend the
algebraic approach to program analysis to linear recursive
systems of equations. To solve non-linear recursive equa-
tions, NPA-TP uses Newton iteration, an approach pioneered
by Esparza et al. [13] that generalizes Newton’s method for
numerical analysis. NPA-TP is a hybrid iterative/algebraic
approach in which a solution to a system of equations is
computed as the limit of a sequence (like in iterative pro-
gram analysis), but where each iterate is the solution to a
linearized model of the equations (which is solved alge-
braically). However, neither Newton iteration nor Kleene it-
eration is compatible with CRA:
• The CRA domain has infinite ascending chains, so New-

ton/Kleene iteration is not guaranteed to converge.

• The problem of determining whether two CRA transition
formulas are equivalent is undecidable, so there is no way
to tell if Newton/Kleene iteration has converged.
Our algorithm for ICRA, presented in §4.3, is based on

a new analysis framework, called NPA-TP-GJ. NPA-TP-GJ
adopts the idea from NPA-TP of working with a refactored
equation system obtained by rearranging expressions using
tensor product (§4.3.1). However, other aspects of NPA-TP-
GJ are significantly different. For instance, the key step of
NPA-TP-GJ has the flavor of Gauss-Jordan elimination: it
repeatedly carries out (i) a symbolic variation of NPA-TP’s
linearization step (but only applied to a single equation),
and (ii) substitution of a closed-form expression for the lin-
earized symbol into the other equations. (See Alg. 4.14.)

4. Technical Details
4.1 Recursive Equation Systems
This paper shows how CRA can be extended so that it can
apply its recurrence-solving techniques to recursive proce-
dures. This section formalizes this problem as the problem of
computing a property (within a suitable algebraic structure
called a quasi-weight domain) that overapproximates the set
of paths defined by a recursive equation system.

DEFINITION 4.1. Let Σ be an alphabet and let X =
{X1, . . . , Xn} be a finite set of variables. A system of equa-
tions S with regular right-hand sides over Σ andX consists
of one equation for each variable, X1 = R1, . . ., Xn = Rn,
where each Ri is a regular expression over the alphabet
X ∪ Σ. More compactly, we write S : {Xi = Ri}ni=1.

Quasi-weight domains are algebraic structures with oper-
ations to interpret the operators of regular expressions, the
domain of CRA being the motivating example for our inter-
est. The axioms of quasi-weight domains ensure that its op-
erations overapproximate the operations of the path algebra
described in Defn. 2.1.

DEFINITION 4.2. A quasi-weight domain D = 〈D,≡
,⊕,⊗, ∗, 0, 1〉 is a set D equipped with an equivalence rela-
tion ≡, a binary combine operator ⊕, a binary extend op-
erator ⊗, a unary closure operator ∗, and distinguished el-
ements 0 and 1, and that satisfies the following axioms:
1. The equivalence relation ≡ is a congruence with respect

to ⊕ and ⊗ (a1 ≡ a2 and b1 ≡ b2 implies a1⊕ b1 ≡
a2⊕ b2 and a1⊗ b1 ≡ a2⊗ b2). Note that≡ is not neces-
sarily a congruence with respect to ∗.

2. 〈D,⊕,⊗, 0, 1〉 is an idempotent semiring “up to equiva-
lence,” meaning that for all a, b, c ∈ D we have
(a) (Associativity) (a⊗ b)⊗ c ≡ a⊗(b⊗ c) and

(a⊕ b)⊕ c ≡ a⊕ (b⊕ c)
(b) (Unit) a⊗ 1 ≡ 1⊗ a ≡ a and a⊕ 0 ≡ 0⊕ a ≡ a
(c) (Commutativity) a⊕ b ≡ b⊕ a
(d) (Distributivity) a⊗(b⊕ c) ≡ (a⊗ b)⊕ (a⊗ c) and

(b⊕ c)⊗ a ≡ (b⊗ a)⊕ (c⊗ a)

(e) (Idempotence) a⊕ a ≡ a
3. The closure operator overapproximates reflexive transi-

tive closure, in the following sense:
(a) (Reflexivity) 1 . a∗

(b) (Transitivity) a∗⊗ a . a∗ and a⊗ a∗ . a∗
where . is the natural preorder on D: for any a, b in D,
a . b ⇐⇒ a⊕ b ≡ b.

Because ⊗ will be used to model sequencing of program
actions, there is no assumption that ⊗ is commutative. We
assume the following precedences for operators: ∗ > ⊗ >
⊕. We also sometimes use a ∈ D rather than a ∈ D.

EXAMPLE 4.3. The quasi-weight domain of paths 〈2Σ∗ ,≡
,⊕,⊗, ∗, 0, 1〉 is defined using⊕,⊗, 0, and 1 from Defn. 2.1.
The equivalence relation≡ is equality on languages, and the
iteration operation L∗

def
=
⋃∞
i=0 L

i is Kleene closure.

EXAMPLE 4.4. Let x denote a finite set of program vari-
ables. In the quasi-weight domain of CRA over the vari-
ables x, the carrier D is the set of all transition formulas
ϕ(x,x′) over the variables x and primed copies x′. The
equivalence relation ≡ is logical equivalence; the sequenc-
ing operator ϕ⊗ψ def

= ∃x′′.ϕ(x,x′′) ∧ ψ(x′′,x′) is sequen-

tial composition; the choice operation ϕ⊕ψ def
= ϕ∨ψ is dis-

junction; the iteration operation ϕ∗ is the defined by extract-
ing recurrences from ϕ and computing their closed forms as
described in §2.2; 1

def
= (x = x′) is the identity transition;

and 0
def
= false is the empty transition.

Note that all of the operations of the CRA quasi-weight
domain are effective except the equivalence relation. The
equivalence relation is used for developing the underlying
theory of NPA-TP-GJ, but does not play a role in any algo-
rithms. The motivation behind the inclusion of an explicit
equivalence relation in the definition of quasi-weight do-
mains (rather than quotienting by the equivalence relation
to obtain a simpler algebraic structure) is because the itera-
tion operator of CRA may produce inequivalent outputs for
equivalent inputs. (Because the theory of non-linear integer
arithmetic is undecidable, any non-trivial iteration operator
has this deficiency.)

DEFINITION 4.5. Let D = 〈D,≡,⊕,⊗, ∗, 0, 1〉 be a quasi-
weight domain, Σ be an alphabet, X = {X1, ..., Xn} be a
set of variables, J·K : Σ→ D be an alphabet interpretation,
and σ : X → D be a variable interpretation. We use J·Kσ to
denote the function that maps any regular expression over Σ
and X to an element of D by using J·K to interpret Σ, σ to
interpret X , and by using the operations of D in place of the
regular-expression operators 0, 1, +, ·, ∗. If R contains no
variables, we may omit the subscript σ.

We use J·KP to denote the obvious alphabet interpre-
tation for the quasi-weight domain of paths (as described
in §2.1): for any regular expression R, JRKP is the set of
paths recognized by R. For any system of equations with

regular right-hand sides S : {Xi = Ri} over Σ and
X = {X1, ..., Xn}, we define PathsS : X → 2Σ∗ to be the
least function (in pointwise set-inclusion order) such that for
each i, PathsS(Xi) = JRiKPPathsS .

We can now formalize the problem of interest.

Let S : {Xi = Ri}ni=1 be a system of recursive equations
with regular right-hand sides over an alphabet Σ and a
set of variables X = {X1, . . . , Xn}; let D = 〈D,≡
,⊕,⊗, ∗, 0, 1〉 be a quasi-weight domain; and let J·K : Σ→
D be an alphabet interpretation. A solution to S inD is any
map D : X → D such that for all i, for all p ∈ PathsS(Xi),
we have D(Xi) & JpK.

In what follows, we will describe a method for solving
systems of equations with regular right-hand sides. Our pre-
sentation of the method proceeds in two steps: first, we re-
view tensor products, which can be used to solve linear
recursive systems [35]; second, we present a hybrid itera-
tive/algebraic technique for solving general recursive sys-
tems based on tensor products and iteration domains.

4.2 Tensor Products
Intuitively, quasi-weight domains are well-suited for solv-
ing intraprocedural program analysis problems, such as
the one described in §2.1. Intraprocedural program analy-
sis problems correspond to left-linear systems of equations
(in which each right-hand-side is of the form

⊕
iXi · Ri

where Ri does not contain variables). Left-linear systems
correspond to regular languages, and the operators of quasi-
weight domains correspond to those of regular expressions.
For interprocedural-analysis problems, however, these oper-
ations are not sufficient. Just as one cannot describe the set
of paths of a recursive procedure using a regular expression,
one cannot use the operators of a quasi weight domain to
describe the operation of recursive procedures.

Recently, Reps et al. showed that algebraic program anal-
ysis can be extended to a linear system of equations by us-
ing a tensored domain [35]. As a warm-up exercise for §4.3,
where we present our method for solving an arbitrary system
of equations, this section describes a slight variation of the
Reps et al. method. Essentially all of the machinery intro-
duced in this section carries over to §4.3, but the setting in
which it is used here is somewhat less complicated.

Following Obs. 2.1, we proceed in two steps. First, we
define a way to transform a linear equation system into a
different, but equivalent, form (Eqn. (1)). The transforma-
tion involves the tensor-product domain of paths (Defn. 4.6),
and converts a linear equation system with regular right-
hand sides into a non-recursive equation system in which the
right-hand sides are regular expressions extended with ad-
ditional operators from the tensor-product domain. Second,
we describe the properties that a tensor-product domain must
satisfy to be used to interpret an extended regular expression,
and then describe the ICRA tensor-product domain.

DEFINITION 4.6. Let Σ be an alphabet. Define a quasi-
weight domain DT = 〈DT ,≡T ,⊕T ,⊗T , ∗T , 0T , 1T 〉 of
tensored paths as follows: a tensored path 〈p, p〉 is a pair
consisting of one “backward” path p and one “forward”

path p; the carrier DT
def
= 2Σ∗×Σ∗ is the powerset of ten-

sored paths. The ⊗T operator is coordinate-wise concate-
nation, with concatenation reversed for backward paths:

T1⊗T T2
def
= {〈p

2
p

1
, p1p2〉 : 〈p

1
, p1〉 ∈ T1, 〈p2

, p2〉 ∈ T2}
Similarly to the quasi-weight domain of untensored paths,

≡T is equality, ⊕T is union, and T ∗T
def
=
⋃
i T

i where

T 0 def
= {〈ε, ε〉} and T i+1 = T i⊗T T . The unit of ⊕T is

0T
def
= ∅, and the unit of ⊗T is 1T

def
= {〈ε, ε〉}.

The tensor-product domain of paths T =
〈D,DT ,�,n〉 consists of the domain of paths D,
the domain of tensored paths DT , a tensor operation
� : D × D → DT and a detensor-product operation
n : D ×DT → D, defined as follows:

L1�L2
def
= {〈p1, p2〉 : p1 ∈ L1, p2 ∈ L2}

LnT
def
= {ppp : p ∈ L, 〈p, p〉 ∈ T}

DEFINITION 4.7. Let Σ be an alphabet and let X =
{X1, . . . , Xn} be a finite set of variables. A (tensored) ex-
tended regular expression over Σ and X is an expression
generated by the following grammar:

E,F ∈ Ext(Σ,X) ::= a ∈ Σ | Xi ∈ X | 0 | 1
| E + F | E · F | E∗ | EnET

ET , FT ∈ ExtT (Σ,X) ::= (E�F) | 0T | 1T
| ET +T FT | ET ·T FT | E∗TT

For any function σ : X → 2Σ∗ and any extended regular
expression E, we use JEKPσ to denote the set of paths in the
language of E. JEKPσ is defined as the interpretation of E
using the operations of T from Defn. 4.6 in place of the
operators 0, 1, +, ·, ∗, 0T , 1T , +T , ·T , ∗T , �, and n.

For extended regular expressions E and F , we write
E ' F to denote that for every function σ : X → 2Σ∗ ,
we have JEKPσ = JF KPσ .

As a concrete example, {aibi : i ≥ 0} is the classic
example of a non-regular language. It is not the language of
any regular expression, but it is the language of the extended
regular expression 1n(a� b)∗T .

Using extended regular expressions, we can transform a
linear system of equations
S : {Xi = ri+si,1 ·Xj1 · ti,1 + . . .+si,mi

·Xjmi
· ti,mi

}ni=1

over an alphabet Σ and set of variables X = {X1, . . . , Xn}
as follows. Let Z = {Z1, . . . , Zn} be a set of variables (one
for each Xi), and define the following left-linear system:

ST :

{
Zi = (1� ri) +T Zj1 ·T (si,1� ti,1) +T . . .

+T Zjmi
·T (si,mi � ti,mi)

}n

i=1

(1)

Using Tarjan’s path-expression algorithm, we can trans-
form ST into an equivalent non-recursive system of equa-

tions ŜT : {Zi = Ei}ni=1 in which the right-hand sides are
extended regular expressions. Finally, define system Ŝ to be
{Xi = 1nEi}ni=1. We have the following path-preservation
property:

PROPOSITION 4.8. [35] For each i, we have

PathsŜ(Xi) = PathsS(Xi) .

Tensor-product domains and (I)CRA. We now give a gen-
eral definition of a tensor-product domain. A tensor-product
domain is equipped with operations that correspond to the
extended-regular-expression operators. The operations are
required to satisfy conditions that imply that they approxi-
mate the corresponding operators on paths.

DEFINITION 4.9. A tensor-product domain T =
〈D,DT ,�,n〉 consists of two quasi-weight domains,
D and DT , along with the following two operations:
• A tensor-product operator, denoted by� : D×D → DT ,

such that for all a, b, c, a1, b1, a2, b2 ∈ D,

0� a ≡T a� 0 ≡T 0T
a� (b⊕ c) ≡T (a� b)⊕T (a� c)
(b⊕ c)� a ≡T (b� a)⊕T (c� a)

(a1� b1)⊗T (a2� b2) ≡T (a2⊗ a1)� (b1⊗ b2)

and for all a1 ≡ a2 and b1 ≡ b2, we have a1� b1 ≡T
a2� b2.
• A detensor-product operation n : D × DT → D, such

that for all a, b ∈ D and all p, q ∈ DT we have

an(p⊕T q) ≡ (an p)⊕ (an q)
(a⊕ b)n p ≡ (an p)⊕ (bn p)

an(p⊗T (b� c)) ≡ b⊗(an p)⊗ c
an(p⊗T q) ≡ (an p)n q

an 1T ≡ a

and for all a ≡ b and p ≡T q, we have an p ≡ bn q.

One can check that the tensor-product domain of paths
(Defn. 4.6) satisfies the conditions of Defn. 4.9. A second
example is the tensor-product domain of CRA, denoted by
CRAT .

EXAMPLE 4.10. Recall from Ex. 4.4 that CRA weights are
formulas over some specified set of variables x and primed
copies x′. The weights in CRAT are formulas over four sets
of variables x, x′, x, and x′. It is instructive to think of such
a formula as a set of pairs of transitions ((s, s′), (s, s′)).
Under this interpretation, the semantic definitions of the⊗T ,
�, and n operators are as follows:

T1⊗T T2 =

{
((s, s′), (s, s′)) : ∃s′′, s′′.((s

′′, s′), (s, s′′)) ∈ T1,
((s, s′′), (s′′, s′)) ∈ T2

}
R1�R2 = {((s1, s′1), (s2, s

′
2)) : (s1, s

′
1) ∈ R1, (s2, s

′
2) ∈ R2}

RnT = {(s, s′) : ∃s′, s.(s′, s) ∈ R ∧ ((s, s′), (s, s′)) ∈ T}

The operations of CRAT can be carried out syntactically
using variable renaming and existential quantification:

ϕT ⊗T ψT
def
= ∃x′′,x′′.

(
ϕT [x 7→ x′′,x′ 7→ x′′]

∧ ψ[x′ 7→ x′′,x 7→ x′′]

)
ϕT ⊕T ψT

def
= ϕT ∨ ψT

0T
def
= false

1T
def
= x = x′ ∧ x = x′

ϕ�ψ def
= (ϕ[x 7→ x,x′ 7→ x′]) ∧ (ψ[x 7→ x,x′ 7→ x′])

ϕnψT
def
= ∃x,x.

(
ϕ[x 7→ x′,x′ 7→ x]

∧ ψT [x 7→ x,x′ 7→ x′]

)
The iteration operator ∗T operates by finding closed forms
for recurrences just as described in §2.2, except over a
vocabulary of four sets of variables.

Tensor-product domains can be used to evaluate ex-
tended regular expressions in the same way that quasi-
weight domains can be used to evaluate regular expressions
(Defn. 4.5). Let T = 〈D,DT ,�,n〉 be a tensor-product
domain, J·K : Σ → D be an interpretation of an alpha-
bet Σ, and σ : X → D be an interpretation of a set of
variables X . We use J·Kσ to denote the function that eval-
uates an extended regular expression within T by interpret-
ing the extended-regular-expression operators 0, 1, +, ·, ∗,
0T , 1T , +T , ·T , ∗T , �, and n using their counterparts in
T , using J·K to interpret symbols in Σ, and σ to interpret
variables. We omit the σ subscript for extended regular ex-
pressions without variables. The crucial property of tensor-
product domains is that evaluation of extended regular ex-
pressions within a tensor-product domain overapproximates
the path semantics:

PROPOSITION 4.11. Let Σ be an alphabet, let T =
〈D,DT ,�,n〉 be a tensor-product domain, and let J·K :
Σ → D be an interpretation for the alphabet. For any reg-
ular expression E over Σ and any path p ∈ JEKP , we have
JEK & JpK.

Together, Props. 4.8 and 4.11 give a complete recipe for
applying Obs. 2.1 to solve a linear equation system S over a
tensor-product domain:
• Transform S to eliminate recursion—while preserving

paths—using Eqn. (1) and Tarjan’s method.
• Evaluate the right-hand sides of the resulting system

within the tensor-product domain.

EXAMPLE 4.12. We demonstrate the use of the CRA tensor-
product domain with a recursive multiplication routine.

mul():
if (y != 0)

y := y - 1; mul(); m := m + x

This program corresponds to the following (linear) system
of equations:

S :

{
X =

y = 0
+ (y != 0 · y := y - 1 ·X · m := m + x)

}

S can be transformed into a non-recursive system using an
extended regular expression:

Ŝ :

{
X =

y = 0
n ((y != 0 · y := y - 1)�(m := m + x))∗T

}
We can compute a summary for mul by evaluating the right-
hand side of the equation in Ŝ in the CRAT domain. The
crucial computation is the tensored iteration operation. The
input is the following tensored formula, which represents one
iteration of the “loop”:

y 6= 0 ∧ y′ = y− 1 ∧ m′ = m + x ∧ m′, x′, y′, x′ = m, x, y, x

Recurrence Closed form
y′ = y− 1 y(k) = y(0) − k
m′ = m + x m(k) = m(0) + kx(0)

From this for-
mula, we extract
the recurrences
shown to the right.
The output of the iteration operator is the following tensored
formula:

∃k.k ≥ 0 ∧
(

y′ = y− k ∧ m′ = m + kx
∧ m′, x′, y′, x′ = m, x, y, x

)
Finally, by evaluating the detensor-product operation, we
get the following summary for mul:

∃k.k ≥ 0 ∧ y′ = 0 ∧ y′ = y− k ∧ m′ = m + kx ∧ x′ = x

Notice that this formula constrains the number of decre-
ments of y to be equal to the number of increments of m,
which is crucial in showing that mul correctly implements
multiplication (when m is equal to 0 in the initial state).

4.3 Non-Linear Systems
This section describes a method for solving general (non-
linear) systems of equations with regular right-hand sides
over a tensor-product domain equipped with some additional
structure. The method is inspired by NPA-TP, and similarly
uses a variation of Kleene iteration in which each iterate
is computed by solving a simpler “regularized” model of
the original system of equations, obtained by rearranging
expressions using tensor product.

Our method overcomes two fundamental challenges:
• Quasi-weight domains may have infinite ascending chains.
• Quasi-weight domains may have undecidable equivalence.
The quasi-weight domain of CRA exhibits both of these
problems. Note that Kleene iteration is not an option for
solving the original system of equations.
• When there are infinite ascending chains, Kleene iteration

may not converge.
• When equivalence is undecidable, even if Kleene iteration

does converge, there is no way to tell.
However, as we show in the remainder of this section, it is
possible to carry out Kleene iteration on the “regularized”
model, due to its special properties (see Alg. 4.14). Our
solution is motivated by the following observation about
the CRA domain, which can be used to enforce and detect
convergence for that domain:

The iteration operator of CRA can be “factored”
through a simple abstract domain (its iteration do-
main), which has decidable equivalence and a widen-
ing operator. By re-arranging a system of equations
into a special form, from a successive-approximation
sequence in the CRA domain we can construct a de-
rived sequence in the iteration domain. We can use
equivalence checking in the iteration domain to de-
tect convergence of the successive-approximation se-
quence, and use the widening operator to ensure that
both sequences converge in finite time.

We motivate our approach using the CRA domain. The
iteration operator of CRA can be thought of as a two-phase
process (cf. §2.2): given a formula ϕ representing the body
of a loop, we (1) compute a set of recurrences entailed by ϕ
using an SMT solver, and (2) compute closed forms for the
recurrences to use as an approximation of the reflexive tran-
sitive closure of ϕ. The loop-body formula ϕ is expressed in
a rich assertion language, which includes disjunction, quan-
tifiers, and non-linear terms. The recurrences computed by
phase (1), on the other hand, are relatively simple: each re-
currence (e.g., x′ = x+1, representing that x is incremented
in the loop) is a linear constraint, and so a set of recurrences
can be represented by a convex polyhedron. Thus, we can
express the iteration operator of CRA as the composition
of (i) an abstraction function that computes a polyhedron
(representing recurrences) from a transition formula, and (ii)
an abstract-closure function that computes a transition for-
mula from a polyhedron by computing closed forms. A key
feature of our approach is that the widening operator is de-
fined on the iteration domain—polyhedra—rather than on
the domain of CRA itself (i.e., transition formulas over non-
linear arithmetic). Polyhedra are a well-studied abstract do-
main, for which equivalence is decidable and widening op-
erators are readily available. Our implementation uses the
NewPolka implementation in APRON [1].

EXAMPLE 4.13. We use the Fibonacci function to show how
our analysis technique exploits
the two-phase structure of CRA’s

fib():
n := p
if (n <= 1) r := 1
else

p := n-1
fib()
t := r; p := n-2
fib()
r := r+t

iteration operator. The code for
fib is pictured to the right; it
uses two global variables, p (rep-
resenting the parameter) and r
(representing the return value),
and two local variables, n and
t. (Our technique handles local
variables using essentially the same technique presented in
[35, §8], but we omit the details.) The paths through fib are
captured by the following equation:

S :

{
X = n:=p ·

(
n <= 1 · r:=1

+ n > 1 · p:=n-1 ·X · right

)}
,

where right
def
= t:=r · p:=n-2 ·X · r:=r+t . The first step

in solving S is to re-arrange the system to use the tensored
iteration operator to model the first recursive call

Ŝ :

{
X =

(n:=p · n <= 1 · r:=1)

n (n:=p · n > 1 · p:=n-1 � right)∗T

}
Unlike the case of linear recursion (e.g., Ex. 4.12), Ŝ is still
recursive: X appears within the expression “right.” How-
ever, Ŝ has the property that every variable appears below
a star. We say that an occurrence of a variable in a (ten-
sored) extended regular expression is guarded if it appears
below a star; a variable with an unguarded occurrence is
called free. The significance of Ŝ having no free variables
is that it allows us to detect and enforce convergence of a
successive-approximation process via a “derived sequence”
of polyhedra.

We define two sequences by mutual recursion: 〈Dk〉k∈N
is a sequence of transition formulas representing summaries
for fib, and 〈βk〉k∈N is a sequence of polyhedra represent-
ing transitions of the “loop body” (appearing below the ∗T):
body = n:=p · n > 1 · p:=n-1 � t:=r · p:=n-2 ·X · r:=r+t .

For simplicity, we only sketch the high-level idea of our ap-
proach rather than give the exact sequences that would be
computed. The first (underapproximating) summary for fib
is D0(X)

def
= 0. We compute the first loop-body polyhedron

β1 = ⊥ by substituting D0(X) for X in body, evaluating
within the CRA algebra, and applying the abstraction func-
tion. We compute the second summary for fib by applying
the abstract-closure function to β1 (which yields 1), and us-
ing the result as the approximation of the loop:

D1(X) = p ≤ 1 ∧ r′ = 1 ∧ p′ = p

The next loop-body polyhedron β2 is computed from D1(X)
just as β1 was computed from D0(X), except that we addi-
tionally perform polyhedral widening using β1:

β2 = ⊥ O
(

p′ = p− 1 ∧ 1 < p ≤ 3 ∧ r′ = r

∧ p′ = p− 2 ∧ r′ = r + 1

)
=

(
p′ = p− 1 ∧ 1 < p ≤ 3 ∧ r′ = r

∧ p′ = p− 2 ∧ r′ = r + 1

)
The return value is always incremented by 1 because, ac-
cording to the summary D1(X), fib always returns 1. No-
tice that the precondition on the parameter to the second call
to fib has been propagated backward to yield the constraint
p ≤ 3; this propagation is a result of projecting out the lo-
cal variable n, which has the additional effect of equating
the values of n before and after the recursive call (n′ and n,
respectively). Continuing this process, we compute D2, β3,
and D3:

D2(X) =

(
p′ = p ≤ 1 ∧ r′ = 1

∨ ∃k.k ≥ 1 ∧ r′ = k + 1 ∧ k = p− 1 ∧ p ≤ 3

)
β3 = p′ = p− 1 ∧ 1 < p ∧ r′ = r ∧ r′ ≥ r + 1

D3(X) =

(
p′ = p ≤ 1 ∧ r′ = 1

∨ ∃k.k ≥ 1 ∧ r′ ≥ k + 1 ∧ k = p− 1

)

When computing β4, we find that the sequence has con-
verged: β4 = β3. Because every variable is guarded by a
Kleene-star, the fact that the sequence of loop-body poly-
hedra has converged implies that the sequence of function
summaries has also converged (Thm. 4.18), and D3(X) ≡
D4(X) is an overapproximating summary for fib.

More abstractly, the equation system for fib consists of
a single recursive equation with just one variable:

S : {X = d+ (a ·X · b ·X · c)} . (2)

By treating the first occurrence of X on the right-hand side
of Eqn. (2) as a variable and the second occurrence as
a symbolic constant, we created an equivalent system of
equations where every variable appears below a star

Ŝ : {X = (1� d)n(a� (b⊗X ⊗ c))∗T }.

Thus, Ŝ has no free variables. The goal is to find a solution
for Ŝ in the transition-formula domain. We define a “derived
sequence” 〈βk〉k∈N in the polyhedral domain:

βk
def
= βk−1 O α̃poly(a� (b⊗Dk(X)⊗ c)),

where α̃poly is a heuristic that creates a polyhedron that over-
approximates a transition formula [14, §IV & Alg. 2]. Con-
vergence of the derived sequence—i.e., βk = βk−1 for some
k—is enforced via the widening operator of the polyhedral
domain. When the derived sequence converges, so does the
D sequence (in particular, Dk+1(X) ≡ Dk(X)).

We now show how this process can be carried out in a
more abstract setting, for an arbitrary equation system over
any number of variables. Following the Path-Preservation
Principle (Obs. 2.1), we proceed in two steps. First, in §4.3.1,
we show how to transform a system of equations into an
equivalent system of equations with no free variables. Sec-
ond, in §4.3.2, we formalize iteration domains (of which
polyhedra are one concrete instance), and show how to solve
systems of equations without free variables using a tensor-
product domain equipped with an iteration domain.

4.3.1 Eliminating free variables
We now show how to transform a system of recursive equa-
tions with regular right-hand-sides into an equivalent system
of equations where the right-hand sides are extended regu-
lar expressions with no free variables. The transformation is
intuitively similar to Gauss-Jordan elimination, in that vari-
ables are successively eliminated in some order. However,
unlike in Gauss-Jordan elimination, only free occurrences of
variables are eliminated—and thus our method is only a par-
tial elimination method. Given an equationX = E, the vari-
able X is eliminated in two steps:
(i) Rewrite E as F +X nFT , where X is not free in F .

(ii) Replace the equation X = E with the equation X =
F nF ∗T (in which X is not free by construction), and
replace every free occurrence of X within the system of
equations with F nF ∗T .

factorX(a)
def
= a+X n 0T

factorX(Xi)
def
=

{
0 +X n 1T if X = Xi

X +X n 0T otherwise

factorX(E + E′)
def
= (F + F ′) +X n(FT +T F

′
T)

where factorX(E) = F +X nFT
and factorX(E′) = F ′ +X nF ′T

factorX(E · E′) def
= (F · F ′) +

(
X n

(
FT (1�F ′)

+T F
′
T (E� 1)

))
where factorX(E) = F +X nFT
and factorX(E′) = F ′ +X nF ′T

factorX(E∗)
def
= E∗ +X n 0T

factorX(EnET)
def
= (F nET) +X n(FT ·T ET)

where factorX(E) = F +X nFT
Figure 2: factorX(E).

Rewriting step (i) is accomplished by the function
factorX(E), defined in Fig. 2. The input to factor is a vari-
able X and a normal extended regular expression E, which
is an extended regular expression such that for every subex-
pression of E of the form F nET , ET is of the form F ∗TT .
The output is an extended regular expression F + X nFT
such that (1) E ' F + (X nFT), (2) F is normal, and (3)
X is not free in F . The complete free-variable-elimination
algorithm is as follows:

ALGORITHM 4.14 (Free-Variable Elimination). The input
is a system of equations S : {Xi = Ri}ni=1 with regular
right-hand sides over an alphabet Σ and a finite set of vari-
ables X = {X1, . . . , Xn}. We transform S into an equiva-
lent system Ŝ with no free variables by eliminating variables
one at a time, in a style reminiscent of Gauss-Jordan elim-
ination. We use Sk : {Xi = Ei,k}ni=1 to denote the system
of equations after k elimination rounds (we take S0

def
= S to

be the original system of equations, noting that each regular
expression Ri from the original system of equations is also
a normal extended regular expression Ei,0).
1. Repeat for each k = 1 to n:

(a) Let factorXk
(Ek,k) = F + (Xk nFT)

(b) Define Sk+1 : {Xi = Ei,k+1}ni=1 by:
• Ek,k+1

def
= F nF ∗TT

• For i 6= k, Ei,k+1 is obtained from Ei,k by replac-
ing each free occurrence of Xk with F nF ∗TT .

2. Return Ŝ def
= Sn+1.

THEOREM 4.15. Given a system of equations
S : {Xi = Ri}ni=1 with regular right-hand sides over an
alphabet Σ and a finite set of variables X = {X1, . . . , Xn},
Alg. 4.14 computes a system of equations Ŝ : {Xi = Êi}ni=1

where the right-hand sides are normal extended regular ex-
pressions over Σ and X with no free variables, and which is
equivalent to S in the sense that PathsS(Xi) = PathsŜ(Xi)
for all Xi.

Thm. 4.15 shows that the transformation performed by
Alg. 4.14 results in an equivalent system of equations. Fol-
lowing Obs. 2.1, any post-fixpoint solution to the trans-
formed system overapproximates every path of the original
equation system. §4.3.2 shows how to compute such a post-
fixpoint solution.

EXAMPLE 4.16. We now illustrate Alg. 4.14 on the
recursive-descent parser shown in Fig. 3. The initial equa-
tion system has the form

E = a · T · (b · E + (c+ 0))
T = d · ((e+ f · E · (g + 0)) + 0) · (h · T + (i+ 0)),

where 0 = abort() , a = cost++ , b =
currentToken == ’+’ · getNextToken() , etc.
The equation system simplifies to

E = a · T · (b · E + c) (3)
T = d · (e+ f · E · g) · (h · T + i). (4)

Let E be variable X1 and T be X2. Step 1a of Alg. 4.14
applies factorE to the right-hand side of Eqn. (3), to produce
a new equation for E. After simplification, we have the
following extended regular expression for E:

E = (a · T · c)n((a · T · b)� 1)∗T , (5)

Eqn. (5) is a non-recursive version of Eqn. (3): Eqn. (5)
says that an E consists of some number—say, n—of copies
of a·T ·b, followed by a·T ·c, followed by n copies of 1.2 Step
1b of Alg. 4.14 substitutes the right-hand side of Eqn. (5) for
the free occurrence ofE in Eqn. (4), and thus round 1 of step
1 of Alg. 4.14 produces Eqn. (5) and

T = d ·(e+f · [(a ·T ·c)n((a ·T ·b)� 1)∗T] ·g) ·(h ·T + i).

All occurrences of E have been eliminated, but three free
occurrences of T and two guarded occurrences of T remain.
The second and final round of Alg. 4.14 eliminates the free
occurrences of T , producing

E = a · ((d · e · i)n(left + right)∗T) · cn((a · T · b)� 1)∗T

T = (d · e · i)n(left + right)∗T , where
left = (a� c) ·T ((a · T · b)� 1)∗T ·T ((d · f)�(g · i))

right = d · (e+ f · [(a · T · c)n((a · T · b)� 1)∗T] · g) · h� 1.

As desired, all free occurrences of all variables have been
eliminated. When the method described in §4.3.2 is used to
solve this system, it computes summaries of procedures E
and T . Using the domain of CRA, the summary is strong
enough to prove that after parsing completes, cost ≤
tokenCount + 1—that is, the cost of parsing is linear in
the number of tokens.

4.3.2 Solving an equation system with no free variables
We now show how to solve a system of equations over
extended regular expressions with no free variables. The key

2 A similar characterization of E via an ordinary regular expression can be
obtained by rewriting Eqn. (3) as E = (a · T · b) · E + (a · T · c), which
has the solution (a · T · b)∗(a · T · c).

void getNextToken() { tokenCount++; ... }
void E() { // E ::= T (’+’ E)*

cost++; T();
if (currentToken == ’+’) {

getNextToken(); E();
} else if (currentToken == EOF_TOKEN ||

currentToken == ’)’) return;
else abort();

}
void T() { // T ::= (ATOM | ’(’ E ’)’) (’*’ T)*

cost++;
if (currentToken == ATOM) getNextToken();
else if (currentToken == ’(’) {

getNextToken(); E();
if (currentToken == ’)’) getNextToken();
else abort();

} else abort();
if (currentToken == ’*’) {

getNextToken(); T();
} else if (currentToken == EOF_TOKEN ||

currentToken == ’+’ ||
currentToken == ’)’) return;

else abort();
}

Figure 3: A recursive-descent parser.

idea is to equip the tensor-product domain with an iteration
domain, defined below.

DEFINITION 4.17. Let D = 〈D,≡,⊕,⊗, ∗, 0, 1〉 be
a quasi-weight domain. An iteration domain for D,
D] = 〈D],≤],O, α, cl〉, is a partially ordered set 〈D],≤]〉
along with the following operations.

An abstraction operator α : D → D] and an abstract-
closure operator cl : D] → D such that the following
properties hold:
1. For all a ∈ D, cl(α(a)) = a∗

2. For all a], b] ∈ D] such that a] ≤] b] we have cl(a]) .
cl(b]).
A widening operator O : D] × D] → D] such that the

following properties hold:
1. For all a], b] ∈ D], a] O b] is an upper bound of a] and
b] (a] ≤] a] O b] and b] ≤] a] O b])

2. For every infinite sequence 〈a]r : D]〉r∈N, the ascending
chain 〈b]r : D]〉r∈N defined as

b]1 = a]1 b]r+1 = b]r O a
]
r+1

eventually stabilizes.

Let Σ be an alphabet, let X = {X1, . . . , Xn} be a fi-
nite set of variables, and let S : {Xi = Ei}ni=1 be a sys-
tem of equations in which each Ei is an extended regu-
lar expression over Σ and X with no free variables. Let
T = 〈D,DT ,�,n〉 be a tensor product domain such that
both D and DT are equipped with iteration domains and let
J·K : Σ → D be an interpretation of the alphabet. We now
show how to compute a post-fixpoint solution D : X → D
to S. Operationally, we compute the solution via successive

approximation, where we widen and and check convergence
at each occurrence of ∗ and ∗T .

We define D as the limit of a sequence
〈Dk : X → D〉k∈N: D0 is the constant function λx.0;
then, for each k ≥ 1, define Dk(Xi)

def
= evalk(Ei), where

evalk(a) = JaK
evalk(Xi) = Dk−1(Xi)

evalk(E⊕F) = evalk(E)⊕ evalk(F)

evalk(E⊗F) = evalk(E)⊗ evalk(F)

evalk(E∗) = cl
(
bodyk(E)

)
evalk(EnET) = evalk(E)n evalkT (ET)

evalkT (E�F) = evalkT (E)� evalkT (F)

evalkT (ET ⊕T FT) = evalkT (ET)⊕T evalkT (FT)

evalkT (ET ⊗T FT) = evalkT (ET)⊗T evalkT (FT)

evalkT (E∗TT) = clT (bodykT (ET))

and bodyk(E) = bodyk−1(E) O α(JEKDk−1)

bodykT (ET) = bodyk−1
T (ET) OT αT (JET KDk−1) .

The values computed by bodyk and bodykT (over all k) im-
plicitly define the “derived sequence” within the iteration
domain. We say that S stabilizes at k if for every subex-
pression of the form E∗ that appears in any Ei, we have

bodyk(E) = bodyk−1(E),

and for every subexpression of the form E∗TT that appears in
any Ei, we have

bodykT (ET) = bodyk−1
T (ET) .

THEOREM 4.18. There exists a k such that S stabilizes at
k, and Dk is a post-fixpoint solution to S.

EXAMPLE 4.19. Ex. 4.13 is a high-level overview of how
our approach analyzes the Fibonacci function. Here we il-
lustrate one step of this process in greater detail: computing
the third iterate D3 of the system Ŝ. Write the system Ŝ as

Ŝ : {X = basen(rec∗T)} , where

base
def
= n:=p · n <= 1 · r:=1

rec
def
=

(
(n:=p · n > 1 · p:=n-1)

� (t:=r · p:=n-2 ·X · r:=r+t)

)
.

The value of D3(X) is computed by evaluating the right-
hand-side of the equation:

D3(X) = eval3 (basen(rec∗T))
= eval3(base)n eval3T (rec∗T)
= eval3(base)n clT (body3

T (rec)).

The expression base contains no variables, so it can be re-
interpreted within the CRA quasi-weight domain:

eval3(base) = J n:=p K⊗J n <= 1 K⊗J r:=1 K
=
(
n′ = p = p′ ∧ n′ ≤ 1 ∧ r′ = 1 ∧ t′ = t

)
The term body3

T (rec) refers to the third-iteration loop-body
polyhedron (called β3 in Ex. 4.13). Following the definition

of bodyT above, we have

body3
T (rec) = body2

T (rec) OT α̃poly,T (JrecKD2) .

where body2
T (rec) is the second-iteration loop-body polyhe-

dron (β2 in Ex. 4.13) and JrecKD2 is the value obtained by
evaluating rec in the tensor-product domain of CRA, using
D2(X) to interpret the variable X:

JrecKD2 =

(
(J n:=p K⊗J n > 1 K⊗J p:=n-1 K)

� (J t:=r K⊗J p:=n-2 K⊗D2(X)⊗J r:=r+t K)

)

=

(n′ = p ∧ n′ > 1 ∧ p′ = n′ − 1 ∧ r′ = r ∧ t′ = t)

�

 (t′ = r ∧ n′ = n)

∧
[

(p′ = n− 2 ≤ 1 ∧ r′ = 1 + t′)
∨(∃k.k ≥ 1 ∧ k = n−3 ∧ r′ = k+1+t′ ∧ n ≤ 5)

]
=

(n′ = p ∧ n′ > 1 ∧ p′ = n′ − 1 ∧ r′ = r ∧ t′ = t)

∧ (t′ = r ∧ n′ = n)

∧
[

(p′ = n− 2 ≤ 1 ∧ r′ = 1 + t
′)

∨(∃k.k ≥ 1 ∧ k = n−3 ∧ r′ = k+1+t
′ ∧ n ≤ 5)

]

We then project out the local variables n and t and apply the
abstraction operator to obtain the following polyhedron:

α̃poly,T (JrecKD2) = (p′ = p−1∧1 < p ≤ 5∧r′ = r∧r′ ≥ r+1).

Returning to the evaluation of body3
T (rec), we ap-

ply polyhedra widening to the previous iterate β2 and
α̃poly,T (JrecKD2):

body3
T (rec) = β2 OT α̃poly,T (JrecKD2)

= (p′ = p− 1 ∧ 1 < p ∧ r′ = r ∧ r′ ≥ r + 1)

Finally, returning to the evaluation of D3(X), we have

D3(X) = eval3(base)n clT (body3
T (rec))

=

(
p′ = p ≤ 1 ∧ r′ = 1

∨ ∃k.k ≥ 1 ∧ r′ ≥ k + 1 ∧ k = p− 1

)
.

Algorithm NPA-TP-GJ. Putting all the pieces together,
we now state Algorithm NPA-TP-GJ for solving non-linear
systems of equations.

ALGORITHM 4.20 (NPA-TP-GJ). The input is a system of
equations S : {Xi = Ri}ni=1 with regular right-hand
sides over an alphabet Σ and a finite set of variables
X = {X1, . . . , Xn}, a tensor-product domain T =
〈D,DT ,�,n〉, and an interpretation J·K : Σ → D. The
output is a mapping D : X → D such that for all i and all
p ∈ PathsS(Xi), D(Xi) & JpK.
1. Use Alg. 4.14 to transform S into a system of equations
Ŝ : {Xi = Êi}ni=1, in which each Êi is an extended reg-
ular expression over Σ and X that has no free variables.

2. k ← 0; D0 ← λx.0
3. Repeat

(a) k ← k + 1
(b) Dk(Xi)← evalk(Êi)
until Ŝ stabilizes

4. Return Dk

In the degenerate case when S is linear, left-linear, or
right-linear, the call on Alg. 4.14 in step (1) returns a solution

to S (or, more precisely, a system of equations Ŝ in which the
right-hand-sides do not contain any variables). In this case,
the evaluation loop stabilizes on the first pass.

5. Implementation and Experiments
NPA-TP-GJ is implemented on top of the WALi [25] sys-
tem for weighted pushdown systems. In particular, it uses the
implementation of Tarjan’s method from the FWPDS solver
[29] of WALi to create the initial equation system with reg-
ular right-hand sides from a specification of the problem to
be solved as a weighted pushdown system. We instantiated
NPA-TP-GJ for ICRA by augmenting the implementation of
CRA [14] (which, in turn, makes use of APRON [1] and Z3
[12]) with � and n to create a tensor-product domain, and
by implementing a subclass of WALi’s tensor-product do-
main interface that makes appropriate calls to operations of
the CRA abstract domain.

The implementation supports programs with multiple
procedures, including recursion and mutual recursion. It sup-
ports local variables via the method explained in [35, §8].
The merge function used when returning from a procedure
call is based on [35, Eqn. (54)].

Our experiments with ICRA were designed to answer the
following questions:
1. How fast is ICRA, compared to other tools?
2. How many assertions can ICRA prove, compared to other

tools?
3. How often is ICRA able to prove bounds on a program’s

resource usage, compared with C4B [7]?
Our experiments showed that ICRA has broad overall
strength, as shown by its aggregate performance on three in-
dependently developed benchmark suites.

Timings (with a timeout limit of 300 seconds) were taken
on a virtual machine (using Oracle VirtualBox), with a guest
OS of Ubuntu 14.04, host OS of Red Hat Enterprise Linux
6, and a 3.2 GHz quad-core Intel Core i5-4570 host CPU.

Assertion Checking. To assess ICRA’s assertion-checking
capabilities, we ran it on (i) the benchmarks in the Loops and
Recursive subcategories of the Integers and Control Flow
category from SV-COMP16 [39]; (ii) the suite of programs
from C4B [8, App. A], annotated with upper-bound resource
assertions of the bounds reported by C4B;3 and (iii) three
groups of new recursive programs: two groups are modified
versions of the SV-COMP16 subcategories loop-lit and loop-
new in which all loops were converted into recursive proce-
dures; the third group consists of a few newly-written recur-
sive programs, plus a few recursive programs from the test
suite of the CRA static-analysis tool. We compared ICRA’s
results against four state-of-the-art software model check-
ers: CPAchecker [3] and Ultimate Automizer [22], based on
predicate abstraction; LPI [24], based on policy iteration;

3 C4B obtains bounds for 34 of the 35 programs. The assertion in the 35th

program is the bound from SPEED [20].

Benchmark Total ICRA UAut. CPA LPI SEA
Suite #A Time #A Time #A Time #A Time #A Time #A

recursive 18/7 40.7 7 1952.1 8 1817.8 10 62.0 0 1334.0 14
rec.-simple 36/38 168.7 21 6979.3 28 2760.4 32 179.5 3 743.8 36
Rec. (tot.) 54/45 209.4 28 8931.4 36 4578.1 42 241.5 3 2077.8 50

loop-accel. 19/16 20.8 13 6696.5 7 4565.7 13 4227.7 13 2713.1 15
loop-invgen 18/1 53.1 16 1876.2 7 4909.6 2 1282.3 15 506.0 16
loop-lit 15/1 316.5 12 2722.9 5 2720.6 7 444.9 13 305.2 13
loops 34/32 209.7 22 3984.1 19 4380.1 28 3356.8 26 1821.5 27
loop-new 8/0 304.8 7 2147.9 1 1866.1 3 929.6 4 302.8 6
Loops (tot.) 94/50 904.8 70 17427.6 39 18442.2 53 10241.3 71 5648.6 77

C4B 35/0 30.3 30 6156.6 1 7817.8 2 6726.7 0 1867.6 29

misc 10/4 76.7 10 492.2 8 334.4 7 332.2 1 5.3 10
rec-loop-lit 15/1 312.7 9 2755.5 3 51.0 6 40.4 0 922.6 12
rec-loop-new 8/0 6.2 5 1546.9 2 25.6 2 19.6 0 905.7 4
Misc.-Rec. 33/5 395.6 24 4794.6 13 410.9 15 392.2 1 1833.7 26

Table 1: Column 2 shows the breakdown of programs into
ones with valid and invalid assertions. “X/Y” means that X
is the number of programs containing valid assertions and Y
is the number containing invalid assertions. The total number
of programs is X + Y. The two columns for each tool show
the running time (in seconds) and the number of assertions
proved. In each row, the fastest time and the greatest number
of assertions proved are shown in bold font.

and SeaHorn [21], a Horn-clause solver based on IC3. We
ran the versions of these tools that were submitted to SV-
COMP16.

Tab. 1 shows that the answers to questions 1 and 2 are
(1) Overall ICRA was faster, sometimes dramatically so.
The main reason is that ICRA had many fewer timeouts.

(2) ICRA correctly handled more valid assertions than all
the other tools except for SeaHorn.

The five tools have different success/failure-versus-timeout
profiles, and there are examples on which one tool succeeds
quickly but the other tools time out or fail. For instance,
ICRA took only 0.73 seconds to prove the assertion in rec-
gauss_sum_true-unreach-call (shown below), and was the
only tool to do so. This benchmark, from rec-loop-new, is a
recursive equivalent of an iterative SV-COMP16 benchmark.

int n, sum, i;
void rec() {

if (i <= n) { sum = sum + i; i++; rec(); }
}
int main() {

n = __VERIFIER_nondet_int();
__VERIFIER_assume(1 <= n && n <= 1000);
sum = 0; i = 1; rec();
__VERIFIER_assert(2*sum == n*(n+1));
return 0;

}
In contrast, for underapprox_true-unreach-call1 (see below),
ICRA was not able to establish the assertion, but the four
other tools were able to do so.

int main(void) {
unsigned int x = 0, y = 1;
while (x < 6) { x++; y *= 2; }
__VERIFIER_assert(y % 3);

}
We also compared the tools’ performance by computing two
numbers (X,Y)—each the geometric mean over a set of
benchmarks—of the ratios of the other tool’s times divided
by ICRA’s times. X is computed using all benchmarks; Y
is computed using only benchmarks on which neither ICRA
nor the other tool timed out or gave an error. The numbers

are Ultimate Automizer: (28.2, 9.03), CPAchecker: (16.5,
6.21), LPI: (6.31, 5.33), and SeaHorn: (0.93, 0.49). Because
SeaHorn has a substantial number of timeouts, the value
X = 0.93 is a bit misleading: there are a nontrivial number
of examples on which ICRA has much better performance;
it is a coincidence that the geometric mean ends up being so
close to 1.0.

Applications in Resource-Bound Analysis. For the ex-
periments discussed above, the C4B benchmarks were an-
notated with upper-bound resource assertions. We also ex-
plored the use of ICRA for generating upper and lower
bounds. (C4B itself can only establish upper bounds.)

The procedure in Fig. 4(a) illustrates the application of
ICRA to resource-bound analysis. Statements of the form
tick(k) represent manipulations of a resource such as
memory or time, by consuming some of the resource (if k
is positive) or freeing some of the resource (if k is negative).

ICRA can compute terms that upper-bound and lower-
bound both the final resource usage and the high-water mark
of resource usage.4 When computing bounds, it is useful to
treat positive and negative values of a program variable sepa-
rately, so ICRA searches for bounds that include terms of the
formmax(0, x) andmax(0, y−x) (as in [8]), and we use the
notation |[0, x]| and |[x, y]|, respectively, for such terms. For
the function perform, ICRA computes the following four
bounds, each of which is achieved by following paths of a
particular form:

Bound Path (line numbers)

final ≥ 4|[0, n]|+ 4 1→ 2→ 4→ perform(n-1) → 5
final ≤ 6|[0, n]|+ 6 1→ 2→ 3→ 4→ perform(n-1) → 5

hwm ≥ 7|[0, n]|+ 7 1→ 2→ 4→ perform(n-1) → 5
hwm ≤ 9|[0, n]|+ 9 1→ 2→ 3→ 4→ perform(n-1) → 5

In the last two paths, each occurrence of tick(-3) en-
countered at line 5 has no effect on the high-water mark.

4 The result of using ICRA for resource-bound analysis is only sound under
the assumption that, for all inputs, the program in question terminates.

void perform(int n) {
1. tick(7);
2. if(*)
3. tick(2);
4. if(n>0) perform(n-1);
5. tick(-3);

}

void start(int n, int m) {
int x = 0; int y = 0;
for (;;) {
if (x < n) {x++;y++;}
else if (y < m) {x++;y++;}
else break;
tick(1);

} }
(a) (b)

Figure 4: (a) Recursive procedure to show upper and lower
resource bounds; (b) speed_popl10_simple_single_2.c from C4B.

On the C4B test suite, ICRA is able to generate upper
bounds on resource usage for 28 of the 35 programs, and
nontrivial lower bounds on resource usage for 30 of the
programs. Whenever ICRA generates an upper bound, it is
the same as C4B’s bound (modulo four cases where it was
unclear where to materialize C4B’s implicit tick call, which
caused ICRA’s bound to be one unit different than C4B’s
bound). In seven cases, ICRA’s bound is more precise: it
generates both C4B’s bound, plus one or more additional
incomparable constraints. For example, for the procedure
shown in Fig. 4(b), ICRA generates the following bounds:

final ≤ |[0, n]|+ |[n,m]| final ≤ |[0,m]|+ |[m,n]|
final ≤ |[0, n]|+ |[0,m]|

C4B gets just the third, which is incomparable to the others.

6. Related Work
The NPA-TP-GJ algorithm and its instantiation for ICRA
rely heavily on prior work on CRA [14], NPA [13],
and NPA-TP [35]. In particular, the NPA-TP-GJ algorithm
adopts NPA-TP’s tensor-product operation so that various
terms in a non-linear equation can be rewritten into the
“symbolically” left-linear form X = F ⊕X nFT , and then
further rewritten as X = F nFT

∗T .
When we first began to think about extending CRA to cre-

ate a context-sensitive interprocedural version that handles
loops and recursion, our initial thought was to use NPA-TP,
because NPA-TP provides a way to harness Tarjan’s path-
expression method for interprocedural analysis. That prop-
erty meshes well with the way CRA couples its recurrence-
solving step with its reinterpretation of Kleene-star. How-
ever, there is a mismatch between CRA and NPA-TP, which
presented us with two substantial challenges:
• The CRA domain has infinite ascending chains.
• The problem of determining whether two CRA transition

formulas are equivalent is undecidable.
Consequently, if we merely instantiated the NPA-TP frame-
work with the CRA domain, the resulting algorithm would
not be guaranteed to converge, and even if it did converge,
we would not necessarily know that it had. The design of the
NPA-TP-GJ framework was driven by the need to address
these challenges for CRA.

ICRA relies on the fact that the logic fragment that CRA
employs to solve recurrences supports effective equivalence.
That property—along with the widening performed during

the body subroutine of eval, and the stabilization result given
in Thm. 4.18—ensures that ICRA will always terminate.

The elimination step in NPA-TP-GJ is related to Gauss-
Jordan elimination, in that variables are eliminated in some
order. Unlike in Gauss-Jordan elimination, variables are only
partially eliminated; so-called “free variables” are elimi-
nated, whereas variables that appear under ∗ or ∗T are
not eliminated. Past work on Gauss-Jordan elimination for
semirings or regular expressions includes [40], [17, §4.5],
[36, §4], [9, §7], and [2, §4].

The power of CRA is due to the ability of the iteration
operator to summarize loops. There are a number of related
techniques for loop summarization [4, 19, 28] and abstract
loop-acceleration [18, 23, 32]. (The latter computes the post-
image of a loop, rather than a summary.) Loop summariza-
tion in CRA is based on computing the closed forms for
recurrences satisfied by loop bodies. ICRA harnesses the
power of CRA’s loop summarization for computing sum-
maries of recursive procedures by computing abstract tran-
sitive closures of tensored transition formulas; i.e., in ICRA,
the input and output of the iteration operator are formulas
that each have four distinct vocabularies.

Ganty et al. [16] have created a Newton-based analysis
tool for recursive programs over the integers. Like ICRA, it
repeatedly applies a more basic analyzer to a transformed
version of the original program. However, there are several
differences in capabilities and approach.
• Their tool computes underapproximations of procedures;

ICRA computes overapproximations.
• When used with FLATA [6], their tool is limited to finding

summaries that are linear inequalities with at most two
variables. ICRA can compute polynomial summaries.
• Their tool performs a transformation that restructures the

linearized, possibly recursive, multi-procedure program
Pk obtained for Newton-round k into a non-recursive pro-
gram P ′k. The transformation introduces occurrences of
havoc and assume so that, during the analysis of P ′k, the
various parts of Pk are analyzed in an order different from
the order in which they would be executed in Pk. In con-
trast, ICRA is based on algebraic program analysis, and re-
lies on the properties of its tensor-product domain to tease
out the properties of the original program from the restruc-
tured equation system that it creates.

The relationship of ICRA to Ganty et al. is similar to the
relationship of Lal et al. [31] to Lal and Reps [30]. The sub-
jects in the two pairs of papers are different—interprocedural
analysis of sequential programs and analysis of concurrent
programs, respectively. However, in each pair, the first paper
performs algebraic program analysis using a tensor-product
domain, whereas the second uses a code transformation.

Some additional related work is discussed in [27, §6].

Acknowledgments
We thank the anonymous reviewers and shepherd A. Bouaj-
jani for their comments on the submission.

References
[1] APRON. APRON numerical abstract domain library. URL

http://apron.cri.ensmp.fr/library/.

[2] R. Backhouse and B. Carré. Regular algebra applied to path-
finding problems. J. Inst. Maths. Applics., 15, 1975.

[3] D. Beyer and M. Keremoglu. CPAchecker: A tool for config-
urable software verification. In CAV, 2011.

[4] S. Biallas, J. Brauer, A. King, and S. Kowalewski. Loop
leaping with closures. In SAS, 2012.

[5] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis
of pushdown automata: Application to model checking. In
CONCUR, 1997.

[6] M. Bozga, R. Iosif, F. Konečný, and T. Vojnar. Tool demon-
stration of the FLATA counter automata toolset. In Workshop
on Invariant Generation, 2012.

[7] Q. Carbonneaux, J. Hoffmann, and Z. Shao. Compositional
certified resource bounds. In PLDI, 2015.

[8] Q. Carbonneaux, J. Hoffmann, and Z. Shao. Com-
positional certified resource bounds (extended version).
YALEU/DCS/TR-1505, Yale Univ., New Haven, CT, Apr.
2015.

[9] B. Carré. An algebra for network routing problems. J. Inst.
Maths. Applics., 7, 1971.

[10] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In POPL, 1977.

[11] P. Cousot and N. Halbwachs. Automatic discovery of linear
constraints among variables of a program. In POPL, 1978.

[12] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In
TACAS, 2008.

[13] J. Esparza, S. Kiefer, and M. Luttenberger. Newtonian pro-
gram analysis. J. ACM, 57(6), 2010.

[14] A. Farzan and Z. Kincaid. Compositional recurrence analysis.
In FMCAD, 2015.

[15] A. Finkel, B.Willems, and P. Wolper. A direct symbolic
approach to model checking pushdown systems. ENTCS, 9,
1997.

[16] P. Ganty, R. Iosif, and F. Konečný. Underapproximation
of procedure summaries for integer programs. Softw. Tools
for Tech. Transfer, 2016. Corrected version available as
arXiv:1210.4289v3 (10.1007/s10009-016-0420-7).

[17] M. Gondran and M. Minoux. Graphs, Dioids and Semirings:
New Models and Algorithms. Springer-Verlag, 2010.

[18] L. Gonnord and P. Schrammel. Abstract acceleration in linear
relation analysis. SCP, 93, 2014.

[19] S. Gulwani and F. Zuleger. The reachability-bound problem.
In PLDI, 2010.

[20] S. Gulwani, K. Mehra, and T. Chilimbi. SPEED: Precise and
efficient static estimation of program computational complex-
ity. In POPL, 2009.

[21] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. Navas. The
SeaHorn verification framework. In CAV, 2015.

[22] M. Heizmann, J. Christ, D. Dietsch, E. Ermis, J. Hoenicke,
M. Lindenmann, A. Nutz, C. Schilling, and A. Podelski. Ul-
timate Automizer with SMTInterpol (competition contribu-
tion). In TACAS, 2013.

[23] B. Jeannet, P. Schrammel, and S. Sankaranarayanan. Abstract
acceleration of general linear loops. In POPL, 2014.

[24] E. Karpenkov, D. Monniaux, and P. Wendler. Program analy-
sis with local policy iteration. In VMCAI, 2016.

[25] N. Kidd, A. Lal, and T. Reps. WALi: The
Weighted Automaton Library, 2007. URL
http://www.cs.wisc.edu/wpis/wpds/download.php.

[26] G. Kildall. A unified approach to global program optimiza-
tion. In POPL, 1973.

[27] Z. Kincaid, J. Breck, A. Forouhi Boroujeni, and T. Reps.
Compositional recurrence analysis revisited. TR-1840, Comp.
Sci. Dept., Univ. of Wisconsin, Madison, WI, Oct. 2016. Re-
vised, Apr. 2017.

[28] D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich, and
C. Wintersteiger. Loop summarization using abstract trans-
formers. In ATVA, 2008.

[29] A. Lal and T. Reps. Improving pushdown system model
checking. In CAV, 2006.

[30] A. Lal and T. Reps. Reducing concurrent analysis under
a context bound to sequential analysis. Formal Methods in
System Design, 35(1):73–97, 2009.

[31] A. Lal, T. Touili, N. Kidd, and T. Reps. Interprocedural
analysis of concurrent programs under a context bound. In
TACAS, 2008.

[32] J. Leroux and G. Sutre. Accelerated data-flow analysis. In
SAS, 2007.

[33] T. Reps. Program analysis via graph reachability. IST, 40,
1998.

[34] T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted
pushdown systems and their application to interprocedural
dataflow analysis. SCP, 58, 2005.

[35] T. Reps, E. Turetsky, and P. Prabhu. Newtonian program
analysis via tensor product. In POPL, 2016.

[36] G. Rote. Path problems in graphs. In Computational Graph
Theory (Computing Supplementum 7). Springer-Verlag, 1990.

[37] B. Ryder and M. Paul. Elimination algorithms for data flow
analysis. ACM Comput. Surv., 18(3):277–316, 1986.

[38] M. Sharir and A. Pnueli. Two approaches to interprocedural
data flow analysis. In Program Flow Analysis: Theory and
Applications. Prentice-Hall, 1981.

[39] SVCOMP16. 5th Int. competition on soft-
ware verification (SV-COMP16), 2016. URL
https://sv-comp.sosy-lab.org/2016/.

[40] R. Tarjan. Fast algorithms for solving path problems. J. ACM,
28(3):594–614, 1981.

