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Every program should be accompanied by a specification that describes important aspects of the code’s

behavior, but writing good specifications is often harder than writing the code itself. This paper addresses

the problem of synthesizing specifications automatically, guided by user-supplied inputs of two kinds: (i)

a query Φ posed about a set of function definitions, and (ii) a domain-specific language L in which each

extracted property i8 is to be expressed (we call properties in the language L-properties). Each of the i8 is a

best L-property for Φ: there is no other L-property for Φ that is strictly more precise than i8 . Furthermore, the

set {i8 } is exhaustive: no more L-properties can be added to it to make the conjunction
∧

8 i8 more precise.

We implemented our method in a tool, spyro. The ability to modify both Φ and L provides a spyro user

with ways to customize the kind of specification to be synthesized. We use this ability to show that spyro

can be used in a variety of applications, such as mining program specifications, performing abstract-domain

operations, and synthesizing algebraic properties of program modules.
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1 INTRODUCTION

Specificationsmake us understand how code behaves. They also havemany uses in testing, verifying,
repairing, and synthesizing code. Because programmers iteratively refine their code to meet a
desired intent (that often changes along the way), writing and maintaining specifications is often
harder than writing and maintaining the code itself. A number of approaches have been proposed
for automatically generating specifications, but these approaches are restricted to certain types of
specifications, limited types of properties, and are based on dynamic testing—i.e., they yield likely
specifications that though correct on the observed test cases might be unsound in general.
In this paper, we present the first customizable framework for synthesizing provably sound,

most-precise (i.e., “best”) specifications from a given set of function definitions. Our framework can
be used to mine specifications from code, but also to enable several applications where obtaining
precise specifications is crucial—e.g., generating algebraic specifications for modular program
synthesis [Mariano et al. 2019], automating sensitivity analysis of programs [D’Antoni et al. 2013],
and enabling abstract interpretation for new abstract domains [Yao et al. 2021]. The engine/primitive
that drives the framework is an algorithm for the following problem: Given a query Φ posed
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about a set of function definitions, find a most-precise conjunctive formula—expressed in

the user-supplied, domain-specific language (DSL) L—that is implied by Φ.

Our algorithm synthesizes a set of properties {i8 }—each expressed in L—that are consequences
of Φ. Each i8 is a most-precise L-property for Φ: there is no L-property for Φ that is strictly more
precise than i8 . Furthermore, the set {i8 } is exhaustive: the conjunction of the properties

∧
8 i8 is a

best L-conjunction—i.e., no L-properties can be added to make the conjunction more precise.
This primitive is quite flexible. For instance, if the user desires a specification of the input-output

behavior of a function foo, then Φ is “out = foo(in).” Here the objective of specification synthesis
is to perform a kind of “projection" operation that provides information about the behavior of foo
solely in terms of the variables visible on entry and exit (i.e., the ones visible to a client of foo).
On the other hand, if the user wants a specification of the properties of combinations of the stack
operations push and pop, then Φ is >B1=push(B1, G1) ∧ (>B2, G2)=pop(B2). In this case, when given
an appropriate DSL L, our tool spyro synthesizes the L-properties (i) eq(>B1, B2) ⇒ G1=G2 (the
element >G obtained after (>B, >G) = pop(push(B, G)) is the pushed element G), (ii) eq(>B1, B2) ⇒
eq(B1, >B2) (the stack >B obtained after (>B, >G) = pop(push(B, G)) is the original stack B), and (iii)
eq(>B2, B1) ∧ G1=G2 ⇒ eq(>B1, B2) (after pop(B), a push of the popped element restores stack B).
Our approach is different from existing specification-mining algorithms in that it meets three

important objectives: (i) Expressiveness: The synthesized specifications are not limited to a
fixed type, but are customizable through the user-provided DSL. (ii) Soundness: The synthesized
specifications are sound for all inputs to the function definitions, not just for a specified set of test
cases.1. (iii) Precision: The synthesized specifications are precise in that no specification in the
DSL L is more precise than the synthesized ones—both at the level of each individual L-property
i8 and at the level of the synthesized best L-conjunction

∧
8 i8 .

2

The Key Challenge. Finding a sound L-property for Φ is trivial: “true” is always one. However,
finding a best L-property is difficult because it is a kind of optimization problem, requiring spyro

to find a most-precise solution. Proving most-preciseness of an L-property requires showing that
synthesizing a more precise L-property is an unrealizable problem—i.e., no such a property exists.

Key Ideas. Our algorithm is based on a form of counterexample-guided inductive synthesis (CEGIS)
that iteratively accumulates positive and negative examples of Φ. We build upon the algorithm for
synthesizing abstract transformers proposed by Kalita et al. [2022] and generalize it to the problem
of synthesizing specifications. Our algorithm uses three key ideas (the first and third of which differ
from Kalita et al.). First, although the overall goal of the framework is to obtain a specification as a
conjunctive formula, the core algorithm that underlies the synthesis process “dives below” this goal
and focuses on synthesizing a most-precise individual conjunct (i.e., a most-precise L-property for
Φ). The smaller size of individual L-properties compared to a full conjunctive L-conjunction is
better aligned with the capabilities of synthesis tools. Second, to handle competing objectives of
soundness and precision, the algorithm treats negative examples specially. Some negative examples
must be rejected by the L-property we are synthesizing and some may be rejected. Third, to speed
up progress, the algorithm accumulates must negative examples monotonically, so that once a
sound L-property is identified, may negative examples change status to must negative examples,
and the algorithm only searches for (better) L-properties that also reject those examples.

1As explained in §2, the framework requires a definition of the semantics of the function symbols that appear in query

Φ (e.g., push, pop, reverse, etc.) and DSL L. The specification obtained with our framework is sound with respect to the

supplied semantics, but our implementation sometimes uses bounded or approximate semantics
2Readers familiar with symbolic methods for abstraction interpretation [Reps et al. 2004] will recognize that our problem

is an instance of the strongest-consequence problem. Given a formula Φ in logic L1 (with meaning function J·K1), find the

strongest formula Ψ in a different logic L2 (with meaning function J·K2) such that JΦK1 ⊆ JΨK2.
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Our Framework. The core algorithm is a CEGIS loop that handles some negative-example classifica-
tions as “maybe” constraints, and guarantees progress via monotonic constraint hardening until an
L-property is found that is both sound and precise. By repeatedly calling the core algorithm to
synthesize incomparable L-properties, a most-precise L-conjunction is created.
The core algorithm relies on three simple primitives.

Synthesize: synthesizes an L-property that accepts a set of positive examples and rejects a set of
negative examples; it returns ⊥ if no such a property exists.

CheckSoundness: checks if the current L-property is sound; if is not, CheckSoundness returns
a new positive example that the property fails to accept.

CheckPrecision: checks if the current L-property is precise; if it is not, CheckPrecision returns
a new L-property that accepts all positive examples, rejects all negative examples, and rejects
one more negative example (which is also returned).

Our current implementation of each primitive relies on satisfiability modulo theory (SMT) solvers,
limiting the scope of our framework. Nevertheless, as long as one has implementations for such
primitives, the algorithm is sound. When the DSL L is finite, the algorithm is also complete.

Contributions. Our work makes the following contributions:

• A formal framework for the problem of synthesizing best L-conjunctions (§2).

• An algorithm for synthesizing best L-conjunctions (§3).

• A tool that we implemented to support our framework, called spyro. There are two instantiations
of spyro: spyro[sketch] and spyro[smt], which have different capabilities (see §4).
• An evaluation of spyro on a variety of benchmarks, showcasing four different applications of

spyro (§5): mining specifications [Lo et al. 2017], generating algebraic specifications for modular
program synthesis [Mariano et al. 2019], automating sensitivity analysis of programs [D’Antoni
et al. 2013], and enabling abstract interpretation for new abstract domains [Yao et al. 2021].

§6 discusses related work. §7 concludes. In the extended paper [Park et al. 2023a], §A contains
proofs; §B contains implementation details; and §C contains further details about the evaluation.

2 PROBLEM DEFINITION

In this section, we define the problem addressed by our framework. Throughout the paper, we use
a running example in which the goal is to synthesize interesting consequences of the following
query, which allows obtaining properties of up to two calls of the list-reversal function.

>;1 = reverse(;1) ∧ >;2 = reverse(;2), (1)

In particular, we are interested in identifying properties that are consequences of query formula (1)
and are expressible in the DSL defined by the following grammar Llist:

� := ⊤ | �% | �% ∨�% | �% ∨�% ∨�%

�% := isEmpty(!) | ¬isEmpty(!) | eq(!, !) | ¬eq(!, !) | ( {≤|< |≥|> |=|≠} ( + {0 | 1}

( := 0 | len(!)

! := ;1 | ;2 | >;1 | >;2

(2)

An L-property is a property expressible in a DSL L. We say that an L-property is sound if
it is a consequence of—i.e., implied by—the given query formula Φ. The goal of our framework
is to synthesize a set of incomparable sound and most-precise L-properties (i.e., a conjunctive
specification), not just any L-properties. For example, the Llist-property len(;1) ≤ len(>;1) is
sound but not most-precise (len(;1) = len(>;1) is a more precise sound Llist-property).

In the rest of this section, we describe what a user of the framework has to provide to solve this
problem, and what they obtain as output. The user needs to provide the following inputs:
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Input 1: Query. The query formula consists of a finite set of atomic formulae Φ = {f1, . . . , f=}

(denoting their conjunction). Each atomic formula f8 is of the form >8 = 5 8 (G8
1
, . . . , G8=), where >

8

is an output variable, each G89 is an input variable, and 5 8 is a function symbol. In our running

example, the query is given in Eq. (1).
Input 2: Grammar of L-properties. The grammar of the DSL L in which the synthesizer is to
express properties. In our example, the DSL Llist is defined in Eq. (2).
Input 3: Semantics of function symbols.A specification of the semantics of the function symbols
that appear in query Φ (e.g., reverse) and in the DSL L (e.g., len).
We assume semantic definitions are given in—or can be translated to—formulas in some logic

fragment. For pragmatic reasons, in our implementation semantic definitions are given as code that
is then automatically transformed into first-order formulas. For instance, the semantics of reverse
is given as a program in the sketch programming language [Solar-Lezama 2013] from which we
automatically extract the following bounded semantics i:

reverse (;, >;) for a given bound : > 0:

i0
reverse (;, >;) := ⊥

i=
reverse (;, >;) := [ieq (;, []) ⇒ ieq (>;, [])] ∧

∃Eℎ3 , ;C; , ;
′ [ieq (;, Eℎ3 :: ;C; ) ⇒ i=−1

reverse (;C; , ;
′) ∧ isnoc (;

′, Eℎ3 , >;)] if = > 0

(3)

We discuss this limitation—i.e., that the semantics is bounded—and how we mitigate it in Section 5.
Let+Φ be the set of all variables in Φ. We use iΦ to denote the formula that exactly characterizes

the space of valid models over the variables +Φ in Φ. For example, let ireverse (;, >;) be the formula
that exactly characterizes the result of reversing a list ; and storing the result in >;—e.g., (;, >;) =
( [1, 2], [2, 1]) is a valid model of ireverse. We use JiK to denote the set of models of a formula
i . Then, in our example JiΦ (;1, >;1, ;2, >;2)K = Jireverse (;1, >;1) ∧ ireverse (;2, >;2)K. Henceforth, we
omit variables in formulas when no confusion should result, and merely write iΦ.
Output: Best L-properties. The goal of our method is to synthesize a set of incomparable sound
and most precise L-properties that are consequences of query Φ. Ideally, the best L-property would
be one that exactly describes iΦ, but in general the language L might not be expressive enough to
do so. We argue that this feature is actually a desirable one!3 The customizability of our approach
via a DSL is what allows our work to focus on identifying small and readable properties (rather
than complex first-order formulas), and to apply our method to different use cases (see §5).

Because in general there might not be an L-property that is equivalent to iΦ, the goal becomes
instead to find L-properties that tightly approximate iΦ.

Definition 2.1 (A best L-property). An L-property i is a best L-property for a query Φ if and
only if ( i) i is sound with respect to Φ: JiΦK ⊆ JiK. ( ii) i is precise with respect to Φ and L:
¬∃i ′ ∈ L . JiΦK ⊆ Ji ′K ⊂ JiK. We use P(Φ) to denote the set of all best L-properties for Φ.

When we refer to “a sound L-property,” soundness is always relative to some iΦ. Strictly
speaking, we should say “a iΦ-sound L-property,” but iΦ should always be clear from context.
A best L-property is a strongest consequence of iΦ that is expressible in L. Because L is con-

strained, there may be multiple, incomparable L-properties that are all strongest consequences
of iΦ—thus, we speak of a best L-property and not the best L-property. In our running example,
len(;1) = len(>;1) is a best L-property and so is ¬eq(>;1, ;2) ∨ eq(;1, >;2). (Stated as an implication:
eq(>;1, ;2) ⇒ eq(;1, >;2).) The former states that the sizes of the input and output of reverse are the
same, while the latter states that applying reverse twice to a list yields the same list.
The goal of this paper is to find semantically minimal sets of incomparable best L-properties.

3The idea of imposing a limit on the expressibility of the language in which properties can be stated is related to the concept

of inductive bias in machine learning [Mitchell 1997, §2.7]: When there is no inductive bias, “[a] concept learning algorithm

is ... completely unable to generalize beyond the observed examples.”
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Definition 2.2 (Best L-conjunction). A potentially infinite set of L-properties Π = {i8 } forms a
best L-conjunction i∧ =

∧
8 i8 for query Φ if and only if ( i) every i ∈ Π is a best L-property for Φ;

( ii) every two distinct i8 , i 9 ∈ Π are incomparable—i.e., Ji8K \ Ji 9 K ≠ ∅ and Ji 9 K \ Ji8K ≠ ∅; ( iii) the
set is semantically minimal—i.e., for every best L-property i ∈ P(Φ) we have Ji∧K ⊆ JiK.

While there can be multiple best L-conjunctions, they are all logically equivalent and they
are all equivalent to a strongest L-conjunction. However, note that a strongest L-conjunction is
not necessarily a best L-conjunction; it could contain L-properties that are not best and could
potentially have repeated or redundant L-properties.

Theorem 2.1. If i∧ is a best L-conjunction, then its interpretation coincides with the conjunction
of all possible best properties: Ji∧K = J

∧
i∈P(Φ) iK.

We are now ready to state our problem definition:

Definition 2.3 (Problem definition). Given query Φ, the concrete semantics iΦ for the function
symbols in Φ, and a domain-specific language L with its corresponding semantic definition, synthesize
a best L-conjunction for Φ.

As illustrated in Section 3, given query (1), the DSL in Eq. (2), and the semantic definitions of
reverse, isEmpty, len, etc., our tool spyro synthesizes the set of L-properties shown below in
Eq. (4), and establishes that the conjunction of these properties is a best L-conjunction. (For clarity,
we write properties of the form ¬0 ∨ 1 as 0 ⇒ 1.)

len(;1) = len(>;1) len(;2) = len(>;2) eq(;2, >;2) ∨ len(;2) > 1

len(;1) > 1 ∨ eq(;1, >;1) eq(>;2, ;1) ⇒ eq(;2, >;1) eq(>;1, >;2) ⇒ eq(;1, ;2)

eq(>;1, ;2) ⇒ eq(;1, >;2) eq(;1, ;2) ⇒ eq(>;1, >;2)

(4)

Even though reverse is a simple function, its corresponding best L-conjunction (w.r.t. the
DSL L) for query (1) is non-trivial. For example, our approach can discover properties involving
single function calls (e.g., reverse behaves like the identity function on a list of length 0 or 1), but
also hyperproperties, i.e., properties involving multiple calls to the same function. For example,
the property eq(>;1, ;2) ⇒ eq(;1, >;2) states that applying the reverse function twice to an input
returns the same input, while the property eq(>;1, >;2) ⇒ eq(;1, ;2) shows that reverse is injective!

Moreover, because the user has control over the DSL L, they can change the language in which
properties are to be expressed. In particular, if the formulas returned by spyro are too complicated
for the user’s taste, they can modify L and reinvoke spyro until they are satisfied with the results.
Depending on the DSL, a best L-conjunction may need to be an infinite formula.

Example 2.1 (Infinite L-conjunction). Consider again the running example, and assume we
change the DSL to the one defined by the following grammar Linf:

Root := ;1 = CL ∧ ;2 = >;1 ⇒ >;2 = CL CL := [] | 1 :: CL | 2 :: CL

where “::” denotes the infix cons operator. There exists only one best Linf-conjunction, which has an
infinite number of conjuncts.

;1 = [] ∧ ;2 = >;1 ⇒ >;2 = [] ;1 = 1 :: [] ∧ ;2 = >;1 ⇒ >;2 = 1 :: []

;1 = 2 :: [] ∧ ;2 = >;1 ⇒ >;2 = 2 :: [] ;1 = 1 :: 1 :: [] ∧ ;2 = >;1 ⇒ >;2 = 1 :: 1 :: []

;1 = 1 :: 2 :: [] ∧ ;2 = >;1 ⇒ >;2 = 1 :: 2 :: [] . . .

Our implementation focuses on DSLs for which this problem does not arise. Assumptions on
DSLs are formally discussed in Section 3.
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All the inputs to the framework are reusable. To synthesize a best L-conjunction for a different
query Φ that still operates over lists, one only needs to supply the semantic definition of the
functions in Φ, and (if needed) modify the variable names generated by nonterminal ! of Eq. (2).
For example, for the function that takes a list and duplicates its entries >; = stutter(;)—e.g.,

stutter( [1, 2]) = [1, 1, 2, 2])—spyro synthesizes the following L-conjunction using the DSL Llist.

len(>;)=len(;)+1 ∨ len(;)>1 ∨ isEmpty(>;)

len(>;)≤0 ∨ len(;)=1 ∨ len(>;)>len(;)+1 len(>;)≤0 ∨ len(>;)>len(;)
(5)

Because our DSL does not contain multiplication by 2, spyro could not synthesize the property
that states that the length of the output list is twice the length of the input list. If we modify the
DSL Llist to contain multiplication by 2 and the ability to describe when an element appears both
in the input and output list, spyro successfully synthesizes the following new best L-properties:

len(>;) = 2 · len(;)

∀E . (∃G∈; . G=E) ⇒ (∃G∈>; . G=E) ∀E . (∃G∈>; . G=E) ⇒ (∃G∈; . G=E)

∀E . (∀G∈; . G≤E) ⇒ (∀G∈>; . G≤E) ∀E . (∀G∈>; . G≤E) ⇒ (∀G∈; . G≤E)

∀E . (∀G∈; . G≥E) ⇒ (∀G∈>; . G≥E) ∀E . (∀G∈>; . G≥E) ⇒ (∀G∈; . G≥E)

(6)

The ability to modify the DSL empowers the user of spyro with ways to customize the type of
properties they are interested in synthesizing. As we will show in Section 5, customizing the DSL
also allows us to use spyro for different applications and case studies—e.g., synthesizing abstract
transformers and algebraic properties of programs.

3 AN ALGORITHM FOR SYNTHESIZING BEST L-CONJUNCTIONS

In this section, we present the main contribution of the paper: an algorithm for synthesizing a best
L-conjunction. The algorithm synthesizes one most-precise L-property at a time. It keeps track of
the L-properties it has synthesized and uses this information to synthesize a new most-precise
L-property that is incomparable to all the ones synthesized so far.

3.1 Positive and Negative Examples

Given query Φ, the concrete semantics iΦ for the function symbols in Φ, and a domain-specific
languageL with its corresponding semantic definition, our algorithm synthesizes bestL-properties
and a best L-conjunction for Φ using an example-guided approach.

Definition 3.1 (Examples). Given a model 4 , we say that 4 is a positive example if 4 ∈ JiΦK and a
negative example otherwise.

Given a formulai and an example 4 , we writei (4) to denote 4 ∈ JiK and ¬i (4) to denote 4 ∉ JiK.
Given a set of examples �, we write i (�) to denote ∧4∈�iΦ (4) and ¬i (�) to denote ∧4∈�¬iΦ (4).

Example 3.1. Given the query >;1 = reverse(;1), the model that assigns ;1 to the list [1, 2] and >;1
to the list [2, 1] is a positive example. For brevity, we use the notation ( [1, 2], [2, 1]) to denote such an
example. The following examples are negative ones: ( [1], [2]), ( [1, 2], [1, 3]), ( [1, 2], [1]), ( [], [1]).
When considering the query from Eq. (1), which contains two calls on reverse,
( [1, 2], [2, 1], [1], [1]) is a positive example (where the values denote ;1, >;1, ;2, and >;2, respectively),
while ( [1, 2], [1, 3], [1], [1]) and ( [1, 2], [1, 3], [1], [0]) are negative examples.

Intuitively, a best L-property must accept all positive examples while also excluding as many
negative examples as possible.

Positive examples can be treated as ground truth—i.e., a best L-property should always accept all
positive examples—but negative examples are more subtle. First, there can bemultiple, incomparable,
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i1 ≡ len(;1)=len(>;1)

i2 ≡ len(;1)>1 ∨ eq(;1, >;1)

J>;1 = reverse(;1)K

([],[1, 2])

([1,2],[1])

([1],[2])

([1,2],[1,3])

([1],[1])

(a) Positive and Negative examples. Different neg-

ative examples are rejected by different best L-

properties i1 and i2

i3 ≡ eq(;1, >;1)

J>;1 = reverse(;1)K

([1],[2])

([1,2],[1,2])

( [1, 2], [2, 1] )

([1],[1])

(b) A possible soundness counterexample

( [1, 2], [2, 1]) produced when performing

CheckSoundness(i3, iΦ)

Fig. 1. The role of examples and CheckSoundness.

best L-properties, each of which rejects a different set of negative examples. Second, there may be
negative examples that no best L-property can reject—they are accepted by every best L-property.

Example 3.2. Consider again the query >;1 = reverse(;1) and the diagram shown in Figure 1a. The
L-properties i1 ≡ len(;1) = len(>;1) and i2 ≡ len(;1)>1 ∨ eq(;1, >;1) are both best L-properties.
While they both accept the positive example ( [1], [1]) and reject the negative example ( [], [1, 2]), we
can see that i1 rejects the negative example ( [1, 2], [1]) whereas i2 accepts it. Similarly i2 rejects
the negative example ( [1], [2]) whereas i1 accepts it. Finally, neither property rejects the negative
example ( [1, 2], [1, 3]). In fact, no best L-property in the given DSL can reject this example, and thus
any best L-conjunction will accept this negative example.

In most cases, we use common datatypes—integers or lists—as the domain of our examples;
however, more complicated definitions are sometimes required. If we are interested in queries
involving binary search trees (BSTs), a tree datatype can describe the syntactic structure of the
examples, but cannot capture BST invariants, e.g., for every node =, all values in the left (resp. right)
subtree of = must be ≤ (resp. ≥) =’s value. In our implementation, the set of valid BSTs is defined
using the following sketch program—called a generator—that uses BST insertion operations to
generate valid binary search trees:

generate_BST() := if (??) then emptyBST() else insert(generate_BST(), ??)

The code is then transformed into a bounded formula similar to the one in Eq. 3, but where the
holes (i.e., ??) at each recursive call are replaced with unknown variables. In this case, different
values for the holes result in different BSTs. In the rest of the paper, we assume that examples are
only drawn from their valid domains regardless of how this domain is expressed.

3.2 Soundness and Precision

Now that we have established how examples relate to best L-properties, we can introduce the two
key operations that make our algorithm work: CheckSoundness and CheckPrecision. These two
operations are similar to the ones used by Kalita et al. [2022] to synthesize abstract transformers, and
are used by the inductive-synthesis algorithm to determine whether an L-property is sound (i.e., a
validL-property) and precise (i.e., a bestL-property). We modify the definition of CheckPrecision
proposed by Kalita et al. [2022] to account for already synthesized best L-properties and thus
facilitate the synthesis of distinct best L-properties.
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3.2.1 Checking Soundness. Given an L-property i , CheckSoundness(i, iΦ) checks whether i is
an overapproximation of iΦ. In other words, CheckSoundness checks if there exists a positive
example 4+ ∈ JiΦK that is not accepted by i ; it returns that example if it exists, and ⊥ otherwise.
The soundness check can be expressed as ∃4+ .¬i (4+) ∧ iΦ (4

+).

Example 3.3 (CheckSoundness). Consider again the query >;1 = reverse(;1). We describe how
CheckSoundness operates using the example depicted in Figure 1b. The property i3 ≡ eq(;1, >;1) is
unsound because it does not overapproximate iΦ. CheckSoundness(i3, iΦ) would return a positive
example that is incorrectly rejected byi3—e.g., ([1,2],[2,1]).CheckSoundness(i1, iΦ) on the property
i1 ≡ len(;1) = len(>;1) would instead return ⊥ because the property i1 is sound (see Figure 1a).

3.2.2 Checking Precision. Given an L-property i , a set of positive examples �+ accepted by i , a
set of negative examples �− rejected by i , and a Boolean formulak denoting the set from which
examples can be drawn, CheckPrecision(i,k, �+, �−), checks whether there exist an L-property
i ′ and a negative example 4− such that: (i) i ′ accepts all the positive examples in �+ and rejects all
the negative examples in �− ; (ii)k (4−) and i ′ rejects 4− , whereas i accepts 4− . Formally,

∃i ′, 4− . k (4−) ∧ i (4−) ∧ ¬i ′ (4−) ∧ i ′ (�+) ∧ ¬i ′ (�−)

CheckPrecision can be thought of as a primitive that synthesizes a negative example and a
formula that can reject such an example at the same time (or proves whether the synthesis problem
does not admit a solution). The formula i ′ is a witness that the negative example 4− can be rejected
by some L-property. In our algorithm, the set k is used to ensure that the negative example
produced by CheckPrecision is not already rejected by best L-properties we already synthesized.

Example 3.4 (CheckPrecision). Consider again the query >;1 = reverse(;1). We describe how
CheckPrecision operates using the example depicted in Figure 2. The property i4 ≡ len(;1) >

0 ∨ eq(;1, >;1) is sound but imprecise.
Figure 2a shows how running CheckPrecision(i4,¬iΦ, {([1], [1])}, {([], [1, 2])}) could for ex-

ample return i2 ≡ len(;1) > 1 ∨ eq(;1, >;1) and the negative example 4− = ( [1], []).
Figure 2b shows how running CheckPrecision(i4,¬iΦ, {([1], [1])}, {([], [1, 2])}) could alterna-

tively return i3 ≡ eq(;1, >;1) and the negative example 4− = ( [1, 2], [1, 3]). While i3 satisfies all
the requirements of CheckPrecision—i.e., it correctly classifies the current positive and negative
examples—the formula i3 is unsound because it incorrectly rejects, among others, the positive ex-
ample ( [1, 2], [2, 1]). Moreover, in this case CheckPrecision has returned the negative example
( [1, 2], [1, 3]), which—as observed in Example 3.2—is not rejected by any sound L-property!

3.2.3 Monotonicity of SoundL-properties. The fact thatCheckPrecision can return (i) an unsound
L-property, and (ii) a negative example that cannot be rejected by any sound L-property, makes
designing a synthesis algorithm that can solve our problem challenging.

A key property that we exploit in our algorithm is that, under some assumptions on the language
L, once a sound L-property is found, there must exist a best L-property that implies it. This
property allows searching for soundL-properties in a monotonic manner. Once a soundL-property
is found, the search space can be narrowed down to a smaller set that includes all L-properties
that are more precise than the one already found. We will show in Theorem 3.4 that this narrowing
is guaranteed to be finite under some assumptions about the language L.

We say that a relation ⪯ on a set - is a well-quasi order if ⪯ is a reflexive and transitive relation
such that any infinite sequence of elements G0, G1, G2, . . . from - contains an increasing pair G8 ⪯ G 9
with 8 < 9 . If the consequence relation⇒ for language L is a well-quasi order, we have that any
descending sequence of sound L-properties cannot be infinite—i.e., for any L-property i , there
exist only finitely many L-properties that imply i . Moreover, a well-quasi order has no infinite
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i4 ≡ len(;1) > 0 ∨ eq(;1, >;1)

i2 ≡ len(;1) > 1 ∨ eq(;1, >;1)

J>;1 = reverse(;1)K

([],[1, 2])

( [1], [ ] )

([1],[1])

(a) Possible result (i2, ( [1], [])) obtained when call-

ingCheckPrecision oni4 and the current examples.

i2 is sound.

i4 ≡ len(;1) > 0 ∨ eq(;1, >;1)

i3 ≡ eq(;1, >;1)

J>;1 = reverse(;1)K

([],[1, 2])

( [1, 2], [1, 3] )

([1],[1])

(b) Possible result (i3, ( [1, 2], [1, 3])) obtained when

calling CheckPrecision on i4 and the current ex-

amples. i3 is unsound.

Fig. 2. Possible results produced by CheckPrecision

anti-chains (i.e., there are no infinite sequences of pairwise incomparable elements). Clearly, if
L is finite, then⇒ is a well-quasi order, but finiteness is not a necessary condition. For example,
consider the absolute-value function > = abs(G), and a grammar L8=5 that defines properties of
the form −20 ≤ G ≤ 10⇒ > ≤ # (for any natural number # ). The set of properties is infinite, but
⇒ is a well-quasi order on the set of sound L8=5 -properties—i.e., for any concrete value of # , it is
only possible to decrease the value of # and strengthen the property a finite number of times.

Lemma 3.1 (Monotonicity of Sound L-properties). If⇒ is a well-quasi order on the set of
L-properties, for every sound L-property i , there exists a best L-property i ′ such that i ′ ⇒ i .

Consequently, if i is a sound L-property that rejects a set of negative examples �− , there must
exist a best L-property that also rejects the examples in �− . This property lets us infer when a set
of negative examples must be rejected by a best L-property (i.e., after a sound property is found).

3.3 Synthesizing One Most Precise L-property

We are now ready to describe the method used to synthesize an individual best L-property (Algo-
rithm 1). The procedure SynthesizeStrongestConjunct takes as input

• iΦ: a formula describing the behavior of the program,

• k : a formula describing the domain from which examples can be drawn,

• i8=8C : an initial sound L-property that rejects all of the examples in �−<DBC ,

• �+: a set of positive examples that must be accepted by the returned L-property,

• �−<DBC : a set of negative examples that must be rejected by the returned L-property,

and produces as output

• a sound L-property i that accepts all the examples in �+, rejects all the examples in �−<DBC ,

• an updated set of positive examples �+ that the synthesized L-property accepts,

• an updated set of negative examples �−<DBC that the synthesized L-property rejects.

We next discuss the procedure Synthesize, which SynthesizeStrongestConjunct uses to
identify L-properties that behave correctly on a finite set of examples.

Synthesis from examples. Besides CheckSoundness and CheckPrecision, which we have al-
ready discussed, SynthesizeStrongestConjunct uses the procedure Synthesize(�+, �−), which
returns—when one exists—an L-property i that accepts all of the examples in �+ (i.e., i (�+)) and
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Algorithm 1: SynthesizeStrongestConjunct (iΦ,k, i8=8C , �
+, �−<DBC )

1 i, i;0BC ← i8=8C ; �
−
<0~ ← ∅ // initial sound L-property that rejects �−<DBC

2 while true do
3 4+ ← CheckSoundness(i, iΦ) // check soundness first

4 if 4+ ≠ ⊥ then

5 �+ ← �+ ∪ {4+} // unsound, update positive examples

6 i ′ ← Synthesize(�+, �−<DBC ∪ �
−
<0~) // learn a new L-property

7 if i ′ ≠ ⊥ then

8 i ← i ′ // new candidate L-property

9 else

10 i ← i;0BC ; �
−
<0~ ← ∅ // no sound L-property rejects �−<0~, revert to i;0BC

11 else

12 �−<DBC ← �−<DBC ∪ �
−
<0~ ; �−<0~ ← ∅ // sound, so �−<0~ example is added to �−<DBC

13 i;0BC ← i // remember sound L-property

14 4−, i ′ ← CheckPrecision(i,¬iΦ ∧k, �
+, �−<DBC ) // sound, check precision

15 if 4− ≠ ⊥ then

16 �−<0~ ← �−<0~ ∪ {4
−} // update negative examples

17 i ← i ′ // new candidate formula

18 else

19 return i, �+, �−<DBC ∪ �
−
<0~ // sound and precise

rejects all of the examples in �− (i.e., ¬i (�−)). If no such a property exists—i.e., the synthesis
problem is unrealizable—Synthesize(�+, �−) = ⊥.

Example 3.5 (Example-based Synthesis). Figure 1a showed that there may be negative ex-
amples that no sound L-property can reject. Our algorithm uses �−<0~ to handle such examples

and make sure that they never end up in �−<DBC . With Llist from Eq. (2), if �+ = {([1], [1])},
�−<DBC = {}, and �−<0~ = {([1, 2], [1, 3])}, then Synthesize(�+, �−<DBC ∪ �−<0~) can return the L-

property len(;1) = 1, which is clearly unsound. In this case, CheckSoundness will repeatedly add
positive �+ (without changing �−<DBC and �

−
<0~) until Synthesize(�

+, �−<DBC ∪ �
−
<0~) returns ⊥—e.g.,

when �+ = {([1], [1]), ( [1, 2], [2, 1])}. Even when each member of a set of negative examples can be
rejected (individually) by a soundL-property, there may not exist a single soundL-property that rejects
all members of the set. For example, the negative examples {([1], [2]), ( [1, 2], [1])} in Figure 1a cannot
both be rejected by a single best L-property. If �+ = {([1, 2], [2, 1])}, �−<DBC = {([1], []), ( [1], [2])},
and �−<0~ = {([1, 2], [1])}, then Synthesize(�+, �−<DBC ∪ �

−
<0~) will return ⊥.

Preserved Invariants. We describe SynthesizeStrongestConjunct and the invariants it maintains.

Invariant 1: At the beginning of each loop iteration, the L-property i accepts all the examples
in the current set �+ and rejects all the examples in the current set �−<DBC ∪ �

−
<0~ .

In each iteration, SynthesizeStrongestConjunct checks if the current property is sound
using CheckSoundness (line 3). If the property is sound, it is then checked for precision using
CheckPrecision (line 14). The algorithm terminates once the property is sound and precise (line 19).
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After a new candidate is found by CheckPrecision, the set �−<0~ stores one negative example
that might be rejected by a sound L-property. If CheckSoundness determines that i is sound, the
example in �−<0~ is added to �

−
<DBC (line 12) in accordance with Lemma 3.1. If a new negative example

is returned by CheckPrecision, together with a new property i ′, the set �−<0~ is reinitialized, and

i ′ becomes the current property to check in the next iteration (lines 16 and 17).
The next invariant is guaranteed by Lemma 3.1 and by the fact that negative examples are added

to �−<DBC only when a sound property is found (line 12).

Invariant 2: There exists a sound L-property that rejects all the negative examples in �−<DBC .

When �−<DBC is augmented with �−<0~ in line 12, SynthesizeStrongestConjunct stores in i;0BC
the current sound L-property that rejects all of the negative examples in �−<DBC . In the next iteration,
if a new positive example is returned by CheckSoundness, the positive examples are updated,
and a new property is synthesized using Synthesize (line 6). If Synthesize cannot synthesize a
property that is consistent with the new set of examples, spyro discards the conflicting negative
example in �−<0~ and reverts to the last sound property it found (line 10).

Invariant 3: At the beginning of each loop iteration, the L-property i;0BC accepts all of the
examples in the current set �+ and rejects all of the examples in the current set �−<DBC .

Monotonically increasing the set of negative examples �−<DBC when a sound L-property is found
is one of the contributions of our algorithm. While the algorithm is sound even without line 12, this
step prevents the algorithm from often oscillating between multiple best L-properties throughout
its execution. We found that this optimization gives a 3.06% speedup to the algorithm (see §5.5).

Example 3.6 (Algorithm 1 Run). Consider again the query >;1 = reverse(;1), and a call to
SynthesizeStrongestConjunct (iΦ, ⊤, ⊤, ∅, ∅)—i.e., i8=8C = k = ⊤ and �+ = �−<DBC = ∅.
Iteration 1. The run starts withCheckSoundness(⊤, iΦ) (line 3), which returns⊥ because the property
⊤ is sound. Then all negative examples in �−<0~ are added to �−<DBC (line 12), but because �

−
<0~ =

�−<DBC = ∅, both sets remain empty. CheckPrecision (⊤, ¬iΦ, ∅, ∅) (line 14) returns a new candidate
i1 ≡ eq(;1, >;1) with a negative example ( [], [1, 2]) (line 14). This negative example is added to �−<0~

(line 16), and the code goes back to line 3.
Iteration 2. CheckSoundness(i1, iΦ) returns a positive example ( [1, 2], [2, 1]), �+ is updated to
{([1, 2], [2, 1])} (line 5), and Synthesize({([1, 2], [2, 1])}, {([], [1, 2])}) (line 6) returns a new can-
didate i2 ≡ len(;1)≠0.
Iteration 3. CheckSoundness(i2, iΦ) returns a positive example ( [], []), �+ is updated to
{([1, 2], [2, 1]), ( [], [])} (line 5). Synthesize(�+, {([], [1, 2])}) (line 6) returns a new candidate
i3 ≡ len(;1)>1 ∨ eq(;1, >;1). �

−
<0~ is unchanged, and the code goes to line 3.

Iteration 4. CheckSoundness(i3, iΦ) returns ⊥ because i3 is sound. Because the synthesizer found a
sound property, the negative example in �−<0~ is added to �−<DBC (line 12)—i.e., �

−
<DBC = {([], [1, 2])}.

Although i3 is a best L-property, CheckPrecision(i3,¬iΦ, �
+, {([], [1, 2])}) (line 14) returns i4 ≡

len(;1)=len(>;1) with a negative example ( [1, 2], [1]). �−<0~ is set to {([1, 2], [1])}, and the code

goes to line 3. The current set of examples is not enough for CheckPrecision to prove that i3 is indeed
a best L-property—i.e., CheckPrecision was able to satisfy all requirements from §3.2.2 by finding a
different, incomparable L-property i4 and an additional negative example.
Iteration 5. CheckSoundness(i4, iΦ) returns ⊥, and the negative example ( [1, 2], [1]) in �−<0~ is

added to �−<DBC (line 12). CheckPrecision(i4,¬iΦ, �
+, �−<DBC ) (line 14) returns ⊥, which means that

we found a sound and precise L-property. SynthesizeStrongestConjunct terminates with �−
X
= ∅,

i ≡ i4 ≡ len(;1) = len(>;1), �
+
= {([1, 2], [2, 1]), ( [], [])}, and �−<DBC = {([], [1, 2]), ( [1, 2], [1])}.
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The last invariant merely states that all the examples in �−<0~ are elements ofk .

Invariant 4: For every example 4 ∈ �−<0~ , we havek (4).

We say that a sound L-property i is precise for iΦ with respect to k if there does not exists a
negative example 4− ∈ JkK and L-property i ′ such that iΦ ⇒ i ′ ⇒ i and i ′ rejects 4− , whereas
i accepts 4− . The following lemma characterizes the behavior of SynthesizeStrongestConjunct.

Lemma 3.2 (Soundness and Relative Precision of SynthesizeStrongestConjunct). If
SynthesizeStrongestConjunct terminates, it returns a sound L-property i that accepts all the
examples in �+, rejects all the examples in �−<DBC ∪ �

−
<0~ , and is precise for iΦ with respect tok .

3.4 Synthesizing a Most-Precise L-conjunction

In this section, we present SynthesizeStrongestConjunction (Algorithm 2), which uses Syn-
thesizeStrongestConjunct to synthesize a best L-conjunction of L-properties.

On each iteration, SynthesizeStrongestConjunction maintains a conjunction of best L-
properties i∧, and uses SynthesizeStrongestConjunct to synthesize a best L-property that
rejects some negative examples that are still accepted by i∧ (i.e., negative examples in i∧ ∧ ¬iΦ).
It also maintains the set of positive examples �+ that have been observed so far.

Each iteration performs three steps: First, it uses SynthesizeStrongestConjunct to try to find
an L-property i that rejects new negative examples �−<DBC that no L-property synthesized so far
could reject—i.e, by calling SynthesizeStrongestConjunct withk = i∧ ∧ ¬iΦ (line 5).

Second, it checks whether i rejects some example that was not rejected by i∧ (line 7). If it does
not, the algorithm terminates, and returns the L-properties in Π synthesized so far. They are all
best L-properties and their conjunction is a best L-conjunction.
Finally, if we reach line 12, we know that i rejects negative examples in �−<DBC that i∧ did not

reject. Furthermore, because of the guarantees of SynthesizeStrongestConjunct, i is precise
with respect to i∧—i.e., no sound L-property i

′ exists that can reject more negative examples in i∧
than i could reject. However, there may be a more precise L-property that rejects more negative
examples outside of i∧ that i does not reject, while still rejecting all the negative examples in �−<DBC .
The call to SynthesizeStrongestConjunct in line 12 addresses this issue; it computes a best L-
property starting from i and makes sure that the L-property obtained rejects everything in �−<DBC

while allowing negative examples to be computed anywhere—i.e.,k = ⊤. (Compare this call with the
one on line 5, which only allows negative examples to be drawn from i∧.) Because precision with
respect to⊤ implies actual precision, we have that whenk = ⊤, if SynthesizeStrongestConjunct
terminates, it returns the best L-property i for iΦ by Lemma 3.2.

Example 3.7 (Algorithm 2 Run). Revisiting the query >;1 = reverse(;1), assume that i∧ has
been updated with the recently synthesized property len(;1) = len(>;1). We now describe the execution
of SynthesizeStrongestConjunct (iΦ, i∧, ⊤, {([1, 2], [2, 1]), ( [], [])}, ∅)—i.e.,k = i∧, i8=8C = ⊤,
�+ = {([1, 2], [2, 1]), ( [], [])} and �−<DBC = ∅.
Iteration 1. The run starts withCheckSoundness(⊤, iΦ) (line 3), which returns⊥ because the property
⊤ is sound. Then all negative examples in �−<0~ are added to �−<DBC (line 12), but because �

−
<0~ =

�−<DBC = ∅, both sets remain empty. CheckPrecision (⊤, i∧ ∧ ¬iΦ, �
+, ∅) (line 14) returns a new

candidate i1 ≡ len(;1) = 0 ∨ ¬eq(;1, >;1) with a negative example ( [1, 2], [1, 2]) (line 14). Note that
this negative example satisfiesk = i∧. This negative example is added to �−<0~ (line 16), and the code

goes back to line 3.
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Algorithm 2: SynthesizeStrongestConjunction(iΦ)

1 i∧ ← ⊤ // conjunction of best L-properties

2 Π ← ∅ // set of best L-properties

3 �+, �−<0~ ← ∅ // initialize examples

4 while ⊤ do
// find sound i that rejects examples in �−<DBC that are still in i∧

5 i, �+, �−<DBC ← SynthesizeStrongestConjunct(iΦ, i∧,⊤, �
+, ∅)

6 if �−<DBC = ∅ then

7 4− ← IsSat(i∧ ∧ ¬i) // check if i improves i∧

8 if 4− ≠ ⊥ then

9 �−<DBC ← {4
−}

10 else

11 return Π // return best L-conjunction

// refine i to reject more examples outside i∧ if possible

12 i, �+, _← SynthesizeStrongestConjunct(iΦ,⊤, i, �
+, �−<DBC )

13 Π ← Π ∪ {i} // i is a best L-property

14 i∧ ← i∧ ∧ i // Update conjunction

Iteration 2. CheckSoundness(i1, iΦ) returns a positive example ( [1], [1]), �+ is updated to
{([1, 2], [2, 1]), ( [], []), ( [1], [1])} (line 5), and Synthesize(�+, �−<DBC ∪ �

−
<0~) (line 6) returns a new

candidate i2 ≡ len(;1) > 1 ∨ eq(;1, >;1).
Iteration 3. CheckSoundness(i2, iΦ) returns ⊥, and the negative example �−<0~ is added to �−<DBC

(line 12), but because �−<0~ = ∅, the set �−<DBC remains the same. CheckPrecision(i2, i∧ ∧

¬iΦ, �
+, �−<DBC ) (line 14) returns ⊥, which means that we found a sound and precise L-property.

So SynthesizeStrongestConjunct terminates with i ≡ i2 ≡ len(;1) > 1 ∨ eq(;1, >;1),
�+ = {([1, 2], [2, 1]), ( [], []), ( [1], [1])}, �−<DBC = {([1, 2], [1, 2])} and �

−
X
= ∅.

Every iteration of the loop computes a best L-property, which is conjoined onto i∧ (line 14).

Invariant 5: Π is a set of incomparable best L-properties.

We are now ready to show that SynthesizeStrongestConjunction is sound.

Theorem 3.3 (Soundness of SynthesizeStrongestConjunction). If SynthesizeStrongest-

Conjunction terminates, it returns a best L-conjunction for iΦ.

Note: In some settings, we might know a priori that certain L-properties hold, and we would
not want to waste time synthesizing them. In such a situation, the formula i∧ in Algorithm 2
can be initialized to hold those properties, in which case Algorithm 2 would synthesize only best
L-properties that are not subsumed by i∧. For example, consider synthesizing a specification
for two calls of the list-reversal function, as shown in Section 2. We can initialize i∧ with trivial
properties—such as 4@(;1, ;2) ⇒ 4@(>;1, >;2)—that are true of every function definition. Furthermore,
after synthesizing a property like 4@(;2, >;1) ⇒ 4@(>;2, ;1), we can also include the symmetric
property 4@(;1, >;2) ⇒ (>;1, ;2) in the conjunction. This approach enables us to effectively filter out
redundant and trivial specifications during the synthesis process.
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3.5 Completeness

We observe that in SynthesizeStrongestConjunct, because positive examples in �+ are never
removed, any property stronger than a property that fails CheckSoundness at line 3 is never
considered again. Consequently, the sequence of unsound L-properties in an execution of Synthe-
sizeStrongestConjunct is non-strengthening. Thus, if a non-strengthening sequence of unsound
L-properties can only be finite, SynthesizeStrongestConjunct can only find finitely many
unsound L-properties.
Another key observation about SynthesizeStrongestConjunct is that at line 14 if

CheckPrecision(i, . . .) returns a sound property i ′ with a negative example 4− , CheckSound-
ness will return ⊥ in the next iteration, and the negative example 4− will be added to �−<DBC (from
�−<0~ in line 12). Therefore, any property weaker than i—i.e., i on the current iteration— will

never be considered during this execution of SynthesizeStrongestConjunct. (Recall from the
definition of CheckPrecision(i, . . .) that 4− satisfies i .) Thus, if a non-weakening sequence of
sound L-properties can only be finite, SynthesizeStrongestConjunct can only find finitely
many sound L-properties.
Based on the above two observations, Theorem 3.4 provides a sufficient condition for our

algorithm to terminate when DSL L generates an infinite set of formulas.

Theorem 3.4 (Relative Completeness). Suppose that⇒ is a well-quasi order on the set of sound
L-properties. Let⇐ denote the inverse of⇒, and suppose that⇐ is a well-quasi order on the set of
unsound L-properties. If Synthesize, CheckSoundness and CheckPrecision are decidable on L,
then SynthesizeStrongestConjunct and SynthesizeStrongestConjunction always terminate.

Above, our argument about the second observation involved line 12 of SynthesizeStrongest-
Conjunct. Nevertheless, Theorem 3.4 remains valid even if we eliminate line 12 from Synthesize-

StrongestConjunct—i.e., line 12 is an optimization.
During each iteration, SynthesizeStrongestConjunct either adds a new positive example to

�+ or adds a new negative example to �−<DBC . As a result, the number of iterations is also limited by
the size of the example domain.

Corollary 3.5. Suppose that either L contains finitely many formulas, or the example domain is
finite. If Synthesize, CheckSoundness and CheckPrecision are decidable on L, then Synthe-

sizeStrongestConjunct and SynthesizeStrongestConjunction always terminate.

4 IMPLEMENTATION

We implemented our framework in a tool called spyro. Following §2, spyro takes the following
inputs: (i) A query Φ for which spyro is to find a best L-conjunction. (ii) The context-free grammar
of the DSLL in which properties are to be expressed. (iii) A specification, as a logical formula, of the
concrete semantics of the function symbols in Φ and L. Synthesize and CheckPrecision may be
undecidable synthesis problems in general, but we show that these primitives can be implemented
in practice using program-synthesis tools that are capable of both finding solutions to synthesis
problems and establishing that a problem is unrealizable (i.e., it has no solution).
We implemented two versions of spyro: spyro[smt] supports problems in which semantics

are definable as SMT formulas, and spyro[sketch] supports arbitrary problems but relies on
the bounded/underapproximated encoding of program semantics of the sketch language [Solar-
Lezama 2013]. For the current implementations of spyro[smt] and spyro[sketch], it is necessary
to give the inputs in slightly different forms. In particular, input (iii) is provided to spyro[smt]
in SMT-Lib format, whereas it is provided to spyro[sketch] as a piece of code in the sketch

programming language.
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In spyro[smt], CheckSoundness is just an SMT query, and Synthesize and CheckPrecision

can be expressed as SyGuS problems. For the latter two primitives, spyro runs two SyGuS solvers in
parallel and returns the result of whichever terminates first: (i) CVC5 (v. commit b500e9d) [Barbosa
et al. 2022], which is optimized for finding solutions to SyGuS synthesis queries, and (ii) a re-
implementation of the constraint-based unrealizability-checking technique from [Hu et al. 2020]
that is specialized for finding whether the output of Synthesize and CheckPrecision is ⊥.

In spyro[sketch], Synthesize, CheckSoundness, and CheckPrecision are all implemented by
calling the sketch synthesizer (v. 1.7.6) [Solar-Lezama 2013]. We describe how each primitive is
encoded in sketch in Appendix B and how sketch’s encoding affects soundness in Section 5.

Timeouts.We use a timeout threshold of 300 seconds for each call to Synthesize, CheckSoundness,
and CheckPrecision. If any such call times out, SynthesizeStrongestConjunction returns
the current L-conjunction, together with an indication that it might not be a best L-conjunction.
(However, each of the individual conjuncts in the returned L-conjunction is a best L-property.)

Additional Tooling. In our evaluation, we used Dafny [Leino and Wüstholz 2014] to verify that
the properties obtained by spyro[sketch] were sound for inputs beyond the bounds considered
by sketch. Furthermore, for the SyGuS benchmarks only, we invoked CVC5 to verify whether
the properties obtained by spyro[sketch] exactly characterized the function (which is a sufficient
condition for an answer to be a “best” answer).

5 EVALUATION

We evaluated the effectiveness of spyro through four case studies: specification mining (§5.1),
synthesis of algebraic specifications for modular synthesis (§5.2), automating sensitivity analysis
(§5.3), and enabling new abstract domains (§5.4). For each case study, we describe how we collected
the benchmarks, present a quantitative analysis of the running time and effectiveness of spyro, and
a qualitative analysis of the synthesisedL-conjunctions. In §5.5, we describe additional experiments
to identify what parameters affect spyro’s algorithm.

We ran all experiments on an Apple M1 8-core CPU with 8GB RAM. All results in this section are
for the median run, selected from the results of three runs ranked by their overall synthesis time.

5.1 Application 1: Specification Mining

We considered a total of 45 general specification-mining problems to evaluate spyro: 7 syntax-
guided synthesis (SyGuS) problems from the SyGuS competition [Alur et al. 2019], where the
semantics of operations is expressed using SMT formulas; 24 type-directed synthesis problems
from Synqid [Polikarpova et al. 2016], where the semantics of operations is expressed using
sketch; and 14 problems we designed to cover missing interesting types of properties (11 had
their semantics expressed using sketch and 3 had semantics expressed using SMT formulas).
Cumulatively, we have 10 benchmarks for which the semantics of operations is expressed using
SMT formulas, and 35 benchmarks for which the semantics of operations is expressed using sketch.
For the SyGuS and Synqid benchmarks, we “inverted” the roles from the original benchmarks:
given the reference implementation, spyro synthesized a specification. Each input problem consists
of a set of functions (1 to 14 functions per problem, and the size of each function ranges from 1 to
30 lines of code per function). The largest problem contains 14 functions (8 list functions and 6
queue functions) and the file contains a total of 140 lines of code. Most functions are recursive and
can call each other—e.g., dequeue calls reverse, which calls snoc, which calls cons.
For each set of similar benchmarks, we designed a DSL that contained operations that could

describe interesting properties for the given set of problems. The construction of each DSL depended
on syntactic information from the code: the number, types, and names of input and output variables,
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constants, and function symbols used in the code. We included operations that are commonly used
in each category, such as equality, size primitives, and emptiness checking, but avoided problem-
specific information. For benchmarks involving data structures with structural invariants (e.g.,
stacks, queues, and binary search trees), we provided data-structure constructors that guaranteed
that functions were only invoked with data-structure instances that satisfied the invariants. The
exact grammars are described in Appendix C.1. A DSL designed for a specific problem domain was
often reused by modifying what function symbols could appear in the DSL. Overall, we created 7
distinct grammars for 14 different SyGuS and arithmetic problems; 10 grammars for 72 Synqid

problems; and 3 grammars for 7 Stack and Queue problems. Although all but one of the DSLs
are finite, they are still large languages; our finite DSLs can express between 4 thousand and 14.8
trillion properties, thus making the problem of synthesizing specifications challenging.

5.1.1 �antitative Analysis, Part 1: Performance. spyro[smt] synthesized best L-conjunctions for
6/10 benchmarks for which the semantics was expressed using SMT formulas. It took less than 6
minutes each for it to solve the successful examples, and timed out on the remaining 4 benchmarks
(max4, arrSearch3, abswith the grammar from Eq. (22), and hyperproperties of diff)—spyro[smt]
typically times out when the synthesis algorithm requires many examples.

Although we did not consider this option in our initial set of benchmarks, for the 4 benchmarks
on which spyro[smt] failed, we also encoded the semantics of the function symbols in Φ and L
using sketch. spyro[sketch] could synthesize properties for all 4 benchmarks, and guaranteed
that 1/4 were best L-conjunctions (with respect to sketch’s bounded semantics), but for the other 3
benchmarks (max4, arrSearch3 and diff) spyro[sketch] timed out on a call to CheckPrecision.
However, the 3 L-conjunctions obtained by the time CheckPrecision timed out were indeed best
L-conjunctions: although most-preciseness was not shown by spyro[sketch] within the timeout
threshold, we found—using an SMT solver—that the L-conjunctions in hand on the synthesis
round on which the timeout occurred defined the exact semantics of the functions of interest,
which implies they were best L-conjunctions. The 1 problem for which spyro[sketch] established
most-preciseness terminated within 5 minutes. For the other 3 problems, if we disregard the
last iteration—the one on which most-preciseness of the L-conjunction was to be established—
spyro[sketch] found a best L-conjunction within 10 minutes.
spyro[sketch] could synthesize properties for 35/35 benchmarks for which the semantics was

expressed using sketch, and guaranteed that 34/35 were best L-conjunctions. It took less than 10
minutes to solve each List and Tree benchmark, except for the branch problem—spyro[sketch]
took about 30 minutes to find the best L-conjunction, but failed to show most-preciseness. It took
less than 15 minutes to solve each Stack, Queue, and Integer-Arithmetic benchmark. For nonlinSum,
spyro[sketch] was able to synthesize in 900 seconds a best L-conjunction from a grammar that
contains ≈14.8 trillion properties (see Eq. (23)).
As a baseline, we compared the running time of spyro to an estimate of the running time of

an algorithm that enumerates all sound properties in L. For each benchmark, we estimated the
cost of enumerating all terms in the grammar and checking for their soundness by multiplying the
size |L| of the language generated by the grammar by the average running time of each call to
CheckSoundness observed when running spyro on the same benchmark. As shown in Table 1,
while spyro demonstrated a small estimated speedup for smaller problems like emptyQueue (i.e.,
3.5×, with |L| = 64), spyro was 2-5 orders of magnitude faster than the baseline for problems with
large languages—104 ≤ |L| ≤ 6 · 107—and 8-10 orders of magnitude faster than the baseline for the
two problems with very large languages—1010 ≤ |L| ≤ 1.5 · 1013.

Together, spyro[sketch] and spyro[smt] synthesized properties for 41/45 benchmarks (45/45 if
we consider the 4 benchmarks rewritten using a sketch semantics), and guaranteed that 40 were
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best L-conjunctions (44 if we consider the 4 benchmarks rewritten using a sketch semantics and
our further analysis using an SMT solver).

5.1.2 �antitative Analysis, Part 2: Soundness. To assess whether the properties synthesized by
spyro[sketch] were indeed sound beyond the given input bound considered by sketch, we used
an external verifier: Dafny [Leino and Wüstholz 2014] (a general purpose semi-automatic verifier).
Dafny successfully verified that 23/35L-conjunctions synthesized by spyro[sketch] on non-SyGuS
benchmarks were sound without any manual input from us. We could increase this number to
33/35 by providing invariants or some logical axioms to Dafny—e.g., (∀; . len(;) ≥ 0). Dafny failed
to verify properties synthesized from enqueue and reverse, which require a more expressive L to
describe the order of elements.

5.1.3 �alitative Analysis. Fig. 3 shows the properties synthesized by spyro on one of our three
runs. In the SyGuS benchmarks, “[sketch]” denotes cases in which spyro[sketch] terminated
with a semantics defined using sketch, but spyro[smt] did not with a semantics defined using
SMT formulas. Due to space constraints, we omit max4 and arrSearch3. They are similar to max3

and arrSearch2, respectively, but result in many properties.

SyGuS Benchmarks. The L-conjunctions synthesized by spyro[smt] and spyro[sketch] are more
precise or equivalent to the original specifications given in the SyGuS problems themselves. In fact,
spyro found L-conjunctions that define the exact semantics of the given queries. Inspired by this
equivalence, we attempted to use a SyGuS solver (CVC5) on the SyGuS benchmarks to synthesize
an exact formula: we used a grammar of conjunctive properties (including the “and” operator,
unlike the grammars used by spyro), and the specification was the semantics of the function. For
6/8 cases, CVC5 timed out, thus showing that our approach (of synthesizing one L-property at a
time) is beneficial even in the artificial situation in which an oracle supplies the semantics of the
best L-conjunction. Moreover, directly synthesizing an L-conjunction—as CVC5 attempts—can
yield a set of conjuncts of which some are not most-precise L-properties.

Synquid Benchmarks. To evaluate the synthesized properties, we provided the synthesized L-
conjunctions to Synqid and asked it to re-synthesize the reference implementation from which we
extracted the properties. In 12/16 cases, Synqid could re-synthesize the reference implementation.
In 4/16 cases—elemIndex, ith, reverse, and stutter—the synthesized properties were not precise
enough to re-synthesize the reference implementation. For example, as stated at the end of §2,
for the stutter benchmark our DSL did not contain multiplication by 2 and spyro could not
synthesize a property stating that the length of the output list is twice the length of the input list.
After modifying the DSL to contain multiplication by 2 and the ability to describe when an element
appears in both the input and output lists, spyro successfully synthesized 7 properties in 154.71
seconds (see Eq. 6). From the augmented set of properties, Synqid could synthesize the reference
implementation of stutter. This experiment shows how the ability to modify the DSL empowers
the user of spyro with ways to customize the type of properties they are interested in synthesizing.

Other Benchmarks. A core property of Stack is the principle of Last-In First-Out (LIFO). spyro was
able to synthesize a simple formula that captures LIFO by looking at the relationship between push

and pop: given the query >B1=push(B1, G1) and (>B2, G2)=pop(B2), spyro synthesized the properties
eq(>B1, B2) ⇒ G1=G2 and eq(>B1, B2) ⇒ eq(B1, >B2).

A Queue is a data structure whose formal behavior is somewhat hard to describe. Unlike Stack,
the behavior of a Queue is not expressible by a simple combination of input and output variables.
spyro could synthesize formulas describing the behavior of each Queue operation by providing
a conversion function from a Queue consisting of two Lists into a List. For the query (>@, G) =
dequeue(@), spyro synthesized the property eq(toList(@), cons(G, toList(>@))).
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SyGuS

>=max2(G1, G2 )
>=G1 ⇒ >=G2
G2=G1 ∨ >>G1 ∨ >>G2

>=max3(G1, G2, G3 )
(G3≥G1 ∧ G3≥G2 ) ⇒ >=G3
G2=G3 ∨ >>G2 ∨ >>G3
G1<G2 ∨ >=G1 ∨ >=G3
G2=G1 ∨ >>G2 ∨ >>G1
G1<G3 ∨ >=G1 ∨ >=G2

>=diff(G, ~)
G=~+> ∨ ~=G+>
G≥~ ⇒ G=>+~
G>~+~ ∨ ~=G+> ∨ 0<G+>
G≤~ ⇒ ~=>+G

>1=diff(G1, ~1 ) [sketch]
>2=diff(G2, ~2 )
(~2=G2 ∧ G1=~1 ) ⇒ >2=>1
(G2=G1 ∧ ~1=~2 ) ⇒ >1=>2
(G1=~1 ∧ >1=>2 ) ⇒ ~2=G2
(>1=>2 ∧ G2=~2 ) ⇒ ~1=G1
(G2=~1 ∧ ~2=G1 ) ⇒ >2=>1

>=arrSearch2(G1, G2, : )
G2≤: ∨ >=0 ∨ >=1
:<G2 ∨ >=0 ∨ >=2
(:≥G1 ∧ :<G2 ) ⇒ >=1
(:≥G1 ∧ :≥G2 ) ⇒ >=2
:<G1 ⇒ >=0

>=abs(G ) (Eq. ??)
−G≥G ⇒ −>=G G≥−G ⇒ >=G

>=abs(G ) (Eq. ??) [sketch]
−G+2>=0 ∨ G−>+2=0
∨G+2>−1>0
−G+>=0 ∨ 2G+2>=0

>=abs(G ) (Eq. ??)
−20≤G≤10⇒ >≤20

Other: integer arithmetic

>=linSum(G ) (Eq. ??)
>=G ∨ −>=0
−G=G ∨ 1≤> ∨ >>G

>=linSum(G ) (Eq. ??)
4>=0 ∨ 3G−3>=0
−3G−>+4=0 ∨ −3G+4>−1>0
∨4G−>=0

>=nonlinSum(G ) (Eq. ??)
G>1 ∨ >=1 ∨ >=0
−><−G ∨ >=1 ∨ G=0
−>=> ∨ G=1 ∨ >>0

>=nonlinSum(G ) (Eq. ??)

2>=0 ∨ −G+2>−G2
=0

−4G+2>−G2
=0 ∨ 3G−4>+G2≤0

−G+2> > 4

3G+>>4 ∨ −3>=0 ∨ −G+2>−4G2
=−3

Queue

>@=emptyQueue( )
isEmpty(toList(>@) )
>@=enqueue(@, G )

eq(toList(>@), snoc(toList(@), G ) )
(>@, G )=dequeue(@)

eq(toList(@), cons(G, toList(>@) ) )

List

>;=append(;1, ;2 )
len(>; )=len(;1 )+len(;2 )
eq(;2, >; ) ∨ eq(;1, >; ) ∨ len(>; )>1
eq(;2, >; ) ∨ len(>; )=len(;2 )+1 ∨ len(;1 )>1
eq(;1, >; ) ∨ len(>; )>len(;1 )+1 ∨ len(;2 )=1

>;=deleteFirst(;, E)
eq(;, >; ) ∨ len(; )=len(>; )+1
(∃G∈; . G<E) ⇒ (∃G∈>; . G<E)
(∀G∈; . G≠E) ⇒ eq(;, >; )
(∀G∈; . G≥E) ⇒ (∀G∈>; . G≥E)
(∃G∈; . G<E) ∨ len(; )=len(>; )+1
∨(∀G∈>; . G≠E)
(∃G∈; . G>E) ⇒ (∃G∈>; . G>E)
(∃G∈; . G=E) ⇒ len(; )=len(>; )+1
(∀G∈; . G≤E) ⇒ (∀G∈>; . G≤E)

>;=delete(;, E)
(∀G∈; . G≥E) ⇒ (∀G∈>; . G>E)
(∀G∈; . G≠E) ⇒ eq(;, >; )
(∃G∈; . G>E) ⇒ (∃G∈>; . G>E)
eq(;, >; ) ∨ len(; )≥len(>; ) + 1
∀G∈>; . G≠E
(∃G∈; . G<E) ⇒ (∃G∈>; . G<E)
(∀G∈; . G≤E) ⇒ (∀G∈>; . G<E)

1=drop(;, E)
len(>; )==+len(; ) ∨ =>1
∨len(; )=len(>; )+1

len(; )==+len(>; )
eq(>;, ; ) ∨ ==1 ∨ len(; )>len(>; )+1

1=elem(;, E)
1 ⇔ (∃G∈; . G=E)

83G=elemIndex(;, E)
83G<len(; )
83G=−1 ∨ (∃G∈; . G=E)
83G>−1 ∨ (∀G∈; . G≠E)
(∃G∈; . G≠E) ∨ 0=83G+1 ∨ 0=83G

>=min(; )
∃G∈; . G=> ∀G∈; . G≥>

>;=replicate(=, E)
len(>; )== ∀G∈>; . G=E

>;=reverse(; )
eq(;, >; ) ∨ len(; )>1 len(; )=len(>; )

>;1=reverse(;1 )
>;2=reverse(;2 )
eq(>;1, ;2 ) ⇒ eq(>;2, ;1 )
eq(>;2, ;1 ) ⇒ eq(>;1, ;2 )
eq(>;2, >;1 ) ⇒ eq(;1, ;2 )
eq(;1, ;2 ) ⇒ eq(>;1, >;2 )

E=ith(;, 83G )
0<83G+1 len(; )=83G+1 ∨ len(; )>1
83G<len(; ) ∃G∈; . G=E

>;=snoc(;, E)
len(>; )=len(; )+1 ∃G∈; . G=E
(∀G∈; . G≥E) ⇒ (∀G∈>; . G≥E)
(∃G∈; . G<E) ⇒ (∃G∈>; . G<E)
(∃G∈; . G≠E) ⇒ (∃G∈>; . G≠E)
(∃G∈; . G>E) ⇒ (∃G∈>; . G>E)
(∀G∈; . G≤E) ⇒ (∀G∈>; . G≤E)

>;=stutter(; )
len(>; )=len(; )+1 ∨ len(; )>1 ∨ eq(;, >; )
isEmpty(; ) ∨ len(>; )>len(; )
eq(;, >; ) ∨ len(>; )>len(; )+1 ∨ len(; )=1

>;=take(;, =)
==len(>; ) ==len(; )∨len(; )≥len(>; )+1
eq(;, >; )∨len(; )==+1∨len(; )>len(>; )+1

Binary Tree

>C=emptyTree( )
isEmpty(>C )

>C=branch(E, C1, C2 )
len(>C )=len(C1 )+len(C2 )+1
(∃G∈C1 . G>E) ⇒ (∃G∈>C . G>E)
∃G∈>C . G=E
(∃G∈C1 . G≠E) ⇒ (∃G∈>C . G≠E)
(∀G∈C1 . G≤E) ∧ (∀G∈C2 . G≤E)
⇒ (∀G∈>C . G≤E)
(∃G∈C1 . G<E) ⇒ (∃G∈>C . G<E)
(∃G∈C2 . G≠E) ⇒ (∃G∈>C . G≠E)
(∀G∈C1 . G≥E) ∧ (∀G∈C2 . G≥E)
⇒ (∀G∈>C . G≥E)
(∃G∈C2 . G<E) ⇒ (∃G∈>C . G<E)
(∃G∈C2 . G>E) ⇒ (∃G∈>C . G>E)

1=elem(C, E)
1 ⇔ (∃G∈C . G=E)

>C1=branch(E, C1, C2 )
>C2=left(C )
eq(C2, C ) ⇒ ¬eq(>C1, >C2 )
eq(>C1, C ) ⇒ eq(C1, >C2 )
eq(C1, C ) ⇒ ¬eq(>C1, >C2 )

>C1=branch(E, C1, C2 )
>C2=right(C )
eq(C2, C ) ⇒ ¬eq(>C1, >C2 )
eq(>C1, C ) ⇒ eq(C2, >C2 )
eq(C1, C ) ⇒ ¬eq(>C1, >C2 )

>C1=branch(E, C1, C2 )
>E=rootval(C )
eq(>C1, C ) ⇒ eq(E, >E)

Binary Search Tree

>C=emptyBST( )
isEmpty(>C )

>C=insert(C, E)
len(>C )=len(C )+1 ∨ eq(C, >C )
(∃G∈>C . G=E)
(∀G∈C . G≥E) ⇒ (∀G∈>C . G≥E)
(∀G∈C . G<E)∨(∃G∈>C . G>E)∨eq(C, >C )
(∀G∈C . G≤E) ⇒ (∀G∈>C . G≤E)
(∀G∈C . G>E)∨(∃G∈>C . G<E)∨eq(C, >C )

>C=delete(C, E)
(∀G∈C . G≠E) ⇒ eq(C, >C )
(∃G∈C . G=E) ⇒ len(C )=len(>C )+1
(∀G∈C . G≥E) ⇒ (∀G∈>C . G>E)
∀G∈>C . G≠E
(∀G∈C . G≤E) ⇒ (∀G∈>C . G<E)
(∃G∈C . G<E) ⇒ (∃G∈>C . G<E)
(∃G∈C . G>E) ⇒ (∃G∈>C . G>E)

1=elem(C, E)
1 ⇒ (∃G∈C . G=E)
(∃G∈C . G=E) ⇒ 1

Stack

>B=emptyStack( )
isEmpty(>B )

>B=push(B, G )
len(>B )=len(B )+1

(>B, G )=pop(B )
len(B )=len(>B )+1

>B1=push(B1, G1 )
(>B2, G2 )=pop(B2 )
eq(>B1, B2 ) ⇒ G1=G2
eq(>B1, B2 ) ⇒ eq(B1, >B2 )
eq(>B2, B1 ) ∧ G1=G2 ⇒ eq(>B1, B2 )

Fig. 3. L-properties synthesized by spyro. Some properties are rewri�en as implications for readability.
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Finding: spyro can synthesize sound best L-properties and mine specifications for most of the
programs in our three categories. Furthermore, spyro synthesizes desirable properties that can be
easily inspected by a user, who can then modify the DSL L to obtain other properties if desired.

5.2 Application 2: Synthesizing Algebraic Specifications for Modular Synthesis

In many applications of program synthesis, one has to synthesize a function that uses an existing
implementation of certain external functions such as data-structure operations—i.e., synthesis is to
be carried out in a modular fashion. Even if one has to synthesize a small function implementation,
the synthesizer will need to reason about the large amount of code required to represent the external
functions, which can hamper performance. Mariano et al. [2019] recently proposed a new approach
to modular synthesis—i.e., functions are arranged in modules—where instead of providing the
synthesizer with an explicit implementation of the external functions, one provides an algebraic
specification—i.e., one that does not reveal the internals of the module—of how the functions in a
module operate. For example, to describe the semantics of the functions emptySet, add, remove,
contains and size in a HashSet module, one would provide the algebraic properties in Eq. 7,
which describe appropriate data-structure invariants, such as handling of duplicate elements.

contains(emptySet, G) = ⊥ G1 = G2 ⇒ contains(add(B, G1), G2) = ⊤

G1 ≠ G2 ⇒ contains(add(B, G1), G2) = contains(B, G2)

remove(emptySet, G) = emptySet G1 = G2 ⇒ remove(add(B, G1), G2) = remove(B, G2)

G1 ≠ G2 ⇒ remove(add(B, G1), G2) = add(remove(B, G2), G1)

(7)

While their approach has shown promise in terms of scalability, to use this idea in practice one
has to provide the algebraic specifications to the synthesizer manually, a tricky task because these
specifications typically define how multiple functions interact with each other.
In our case study, we used spyro to synthesize algebraic specifications for benchmarks used in

the evaluation of JLibSketch, an extension of the sketch tool that supports algebraic specifications
[Mariano et al. 2019]. We considered the 3 modules—ArrayList, HashSet, and HashMap—that
provided algebraic specifications, did not use string operations (our current implementation
does not support strings), and did not require auxiliary functions that were not present in the
implementation to describe the algebraic properties. For each module, JLibSketch contained
both the algebraic specification of the module and its mock implementation—i.e., a simplified
implementation that mimics the intended library’s behavior (e.g., HashSet is implemented using an
array). Given the mock implementation of the module, we asked spyro to synthesize most-precise
algebraic specifications.
For this case study, designing a grammar that accepted all possible algebraic specifications but

avoided search-space explosion proved to be challenging. Instead, we opted to create multiple
grammars for each module to target different parts of the algebraic specifications, and called spyro

separately for each grammar. For example, if the JLibSketch benchmark contained an algebraic
specification size(add(B, G)) = size(B) + 1, we considered the grammar to contain properties
of the form 6D0A3 ⇒ size(add(B, G)) = 4G? . All the DSLs designed for algebraic specifications
synthesis were reused by modifying what function symbols could appear in the DSL. The detailed
grammars are presented in Appendix C.2.
spyro terminated with a best L-conjunction for all the benchmarks (and grammars) in less

than 800 seconds per benchmark. spyro was slower than the enumerative baseline presented in
Section 5.1.1 for very small languages (|L| < 5) but faster in all other cases. The speedups were not
as prominent as for Application 1.
For all but one benchmark, the L-conjunctions synthesized by spyro were equivalent to the

algebraic properties manually designed by the authors of JLibSketch. For the implementation
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Table 1. Evaluation results of spyro. A few representatives benchmarks are selected from each application. A

(*) indicates a timeout when a�empting to prove precision in the last iteration. In that case, we report as

total time the time at which spyro timed out. The Enum. column reports the estimated time required to run

CheckSoundness for all formulas in the DSL L. This estimation is achieved by multiplying the size of the

grammar by the average running time of the CheckSoundness.

Problem | L |
Synthesize CheckSoundness CheckPrecision Last Iter. Enum. Total

Num T(sec) Num T(sec) Num T(sec) T(sec) T(sec) T(sec)

A
p
p
li
ca
ti
o
n
1

S
y
G
u
S

max2 1.57 · 105 6 0.13 12 0.06 9 1.37 0.05 787.32 1.55

max3 8.85 · 105 19 13.83 48 3.53 36 131.44 0.46 6.51 · 104 148.79

diff 5.66 · 107 18 19.41 41 1.06 28 236.61 0.48 1.46 · 106 257.08

arrSearch2 3.37 · 106 16 3.44 41 1.44 31 60.97 0.28 1.19 · 105 65.84

L
IA

abs (Eq. 22) 3.37 · 106 6 1.14 14 0.76 11 10.16 0.38 1.83 · 105 12.05

abs (Eq. 24) ∞ 22 3.98 23 0.15 3 0.67 0.70 ∞ 4.80

L
is
t

append 4.97 · 108 29 46.62 68 81.50 43 91.46 57.59 5.95 · 108 219.58

delete 2.99 · 106 24 39.49 66 87.15 49 107.07 18.41 3.94 · 106 233.71

min 2.38 · 105 5 6.02 14 13.71 11 14.42 2.53 2.38 · 105 34.15

reverse 1.73 · 106 6 7.28 16 18.11 12 16.84 7.83 1.96 · 106 42.23

reverse, reverse 6.40 · 104 20 26.64 52 96.65 40 76.37 32.21 1.19 · 105 199.66

St
ac
k

emptyStack 1.25 · 105 2 2.12 6 5.61 5 5.89 2.05 1.17 · 105 13.63

push 1.73 · 106 4 4.9 10 11.16 7 9.73 2.50 1.91 · 106 25.79

pop 1.73 · 106 4 4.84 11 12.16 8 10.97 12.02 1.93 · 106 27.98

push, pop 2.62 · 105 32 51.12 77 95.72 53 107.13 27.66 3.26 · 105 253.97

Q
u
eu
e emptyQueue 64 2 2.18 6 5.86 5 9.81 2.07 62.51 17.85

enqueue 5.93 · 105 4 5.4 11 16.82 8 270.26 200.15 9.06 · 105 292.48

dequeue 5.93 · 105 4 5.51 9 12.51 6 290.28 192.02 8.24 · 105 308.30

A
ri
th
m
et
ic linSum (Eq. 22) 1.01 · 107 7 6.69 20 14.50 15 15.33 5.33 7.31 · 106 36.52

linSum (Eq. 23) 2.90 · 1010 15 15.31 99 71.72 88 112.87 2.70 2.10 · 1010 199.90

nonlinSum (Eq. 22) 1.01 · 107 8 7.95 30 21.58 25 26.48 2.53 7.25 · 106 56.01

nonlinSum (Eq. 23) 1.48 · 1013 17 16.82 121 102.71 107 734.23 48.21 1.26 · 1013 853.77

A
p
p
li
ca
ti
o
n
2

H
as
h
Se
t

size, emptySet 3 2 0.62 6 1.80 5 1.62 0.62 0.90 4.04

size, add 1,315 7 2.39 14 4.56 9 3.40 0.70 428.31 10.36

contains, emptySet 3 2 0.60 6 1.80 5 1.64 0.64 0.90 4.04

contains, add 55 5 1.64 12 3.94 9 3.28 0.69 18.06 8.86

remove, emptySet 5 1 0.34 5 1.05 5 1.78 0.55 1.05 3.17

remove, add 181 7 3.38 15 6.20 10 13.23 3.86 74.81 22.81

A
p
p
li
ca
ti
o
n
3

Se
n
si
ti
v
it
y
E
d
it
D
is
t.

append 16,385 43 29.18 82 118.52 43 55.27 7.95 2.37 · 104 202.97

cons 769 6 2.49 10 4.18 4 2.02 8.69 321.44 8.69

cons_delete 769 19 9.00 36 15.80 19 12.70 11.75 337.51 37.50

deleteFirst 769 33 17.9 68 115.43 42 31.53 1.31 1385.38 164.86

delete 769 26 13.42 55 190.48 33 23.55 3.64 2663.26 227.45

reverse 257 13 6.00 27 61.43 16 10.11 3.32 594.24 77.53

snoc 769 29 15.44 61 37.21 36 25.72 5.80 700.07 78.38

stutter 257 14 6.29 26 13.66 14 8.51 3.03 135.02 28.47

tail 257 14 6.17 29 12.83 17 10.01 9.66 113.70 29.01

A
p
p
li
ca
ti
o
n
4

B
V
P
o
ly
h
ed
ra square 1.68 · 107 20 14.79 76 24.65 60 136.76 68.99 5.44 · 106 176.19

half 1.68 · 107 19 16.17 56 19.27 40 353.14 ∗ 5.77 · 106 388.57

squareIneq 1.68 · 107 45 105.24 70 20.24 28 95.41 98.74 4.85 · 106 220.89

conjunction 1.68 · 107 46 73.08 67 20.49 23 102.32 117.45 5.13 · 106 195.89

disjunction 1.68 · 107 48 178.05 62 22.69 15 102.73 105.71 6.14 · 106 303.47
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of HashMap provided in JLibSketch, for one specific grammar, spyro synthesized an empty L-
conjunction (i.e., the predicate true) instead of the algebraic specification provided by the authors
of JLibSketch—i.e., :1 = :2 ⇒ get(put(<,:1, E), :2) = E . Upon further inspection, we discovered
that the implementation of HashMap used in JLibSketch was incorrect and did not satisfy the
specification the authors provided, due to an incorrect handling of hash collision! After fixing the
bug in the implementation of HashMap, we were able to synthesize the algebraic specification.
Because algebraic properties often involve multiple functions, we were not able to separately verify
their correctness on all inputs using the Dafny verifier, but the fact that we obtained the same
properties that the authors of JLibSketch specified in their benchmarks is a strong signal that our
properties are indeed sound.

Finding: spyro can help automate modular synthesis by synthesizing precise algebraic specifica-
tions that existing synthesis tools can use to speed upmodular synthesis. Thanks to spyro’s provable
guarantees, we were able to uncover a bug in one of JLibSketch’s module implementations.

5.3 Application 3: Automating Sensitivity Analysis

Automatically reasoning about quantitative properties such as differential privacy [D’Antoni et al.
2013] in programs requires one to analyze how changes to a program input affect the program
output—e.g., differential privacy typically requires that bounded changes to a function’s input cause
bounded changes to its output. A common and inexpensive approach to tackle this kind of problem
is to use a compositional sensitivity analysis (either in the form of an abstract interpretation or of a
type system [D’Antoni et al. 2013]) in which one tracks how sensitive each operation in a program
is to changes in its input. For example, one can say that the function 5 (G) = abs(2G), when given
two inputs G1 and G2 that differ by : , produces two outputs that differ by at most 2: .

While for the previous function, it was pretty easy to identify a precise sensitivity property, it is
generally tricky to do so for functions involving data structures, such as lists, which are of interest
in differential privacy when the list represents a database of individuals [Wang et al. 2016]. In
this case study, we considered 9 list-manipulating functions (append, cons, deleteFirst, delete,
reverse, snoc, stutter, tail, and cons_delete) and used spyro[sketch] to synthesize precise
sensitivity properties describing how changes to the input lists affect the outputs. The cons_delete
benchmark uses the query deleteFirst(cons(G, ;), G) involving the composition of two functions.
For each function 5 , we used spyro to synthesize a property of the form

6D0A3 (G1, G2) ∧ dist(;1, ;2) ≤ 3 ⇒ dist(5 (;1, G1), 5 (;2, G2)) ≤ exp

where 6D0A3 can be the predicate true or an equality/inequality between G1 and G2 (the grammars
vary across benchamrks), dist is the function computing the distance between two lists (we run
experiments using both edit and Hamming distance), and the expression exp (the part to synthesize)
can be any linear combinations of len(G), len(~), 3 , and constants in the range -1 to 2. When
considering all combinations of functions, guards, and distances, we obtained 18 benchmarks. All
the DSLs designed for algebraic specifications synthesis were reused by modifying what function
symbols could appear in the DSL. The complete grammars are shown in Appendix C.3.
spyro terminated with a best L-conjunction for all the benchmarks (and grammars) in less

than 250 seconds per benchmark. spyro outperformed the enumerative baseline presented in
Section 5.1.1 for every problem (3.14× speedup for Hamming-distance sensitivity problems and
11.93× speedup for edit-distance sensitivity problems—geometric mean).

We observed that even for simple functions, sensitivity properties are fairly complicated and hard
to reason about manually. For example, spyro synthesizes the following sensitivity L-property for
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the function deleteFirst (�4 denotes the edit distance):

�4 (;1, ;2) ≤ 3 ⇒ �4 (deleteFirst(;1, G1), deleteFirst(;2, G2)) ≤ 3 + 2

However, if we add a condition that the element removed from the two lists is the same, spyro can
synthesize the following L-property that further bounds the edit distance on the output:

G1 = G2 ∧ �4 (;1, ;2) ≤ 3 ⇒ �4 (deleteFirst(;1, G1), deleteFirst(;2, G2)) ≤ 3 + 1

When inspecting this property, we were initially confused because we had thought that the edit
distance should not increase at all if identical elements are removed. However, that is false as
illustrated by the following tricky counterexample ;1 = [1; 2; 3], ;2 = [3; 2; 3] and G1 = G2 = 3.
Besides the L-property shown above with bound 3 + 1, spyro also synthesized (incomparable) best
L-properties with bounds len(;1) − len(;2) + 23 and len(;2) − len(;1) + 23 for the same query. All
combined, these L-properties imply that the edit distance should not increase when 3 = 0.

Because of the complexity added by the programs that compute the edit and Hamming distances,
by the use of unbounded data structures, and by the fact that sensitivity properties are hyperprop-
erties, we were not able to separately verify the soundness of they synthesized L-conjunctions on
all inputs using the Dafny verifier. However, we believe that the synthesized properties are indeed
sound given that they hold for lists up to length 7—i.e., the bound imposed by sketch.
Finding: spyro can synthesize precise sensitivity properties for functions involving lists; the

synthesized function would be challenging for a human to handcraft.

5.4 Application 4: Enabling New Abstract Domains

One of the most powerful relational abstract domains is the domain of convex polyhedra [Bagnara
et al. 2008; Cousot and Halbwachs 1978]. While programs typically operate over int-valued pro-
gram variables for which arithmetic is performed modulo a power of 2, such as 216 or 232, existing
implementations of polyhedra are based on conjunctions of linear inequalities with rational coeffi-
cients over rational-valued variables. This disconnect prevents polyhedra from precisely modeling
how values wrap around in int/bit-vector arithmetic when arithmetic operations overflow.
Heretofore, it has not been known how to create an analog of polyhedra that is appropriate

for bit-vector arithmetic. Yao et al. [Yao et al. 2021] recently defined two domains (Version 1 and
Version 2 below), but have only devised algorithms to support Version 2.

Version 1 (bit-vector-polyhedra domain): conjunctions of linear bit-vector inequalities
Version 2 (integral-polyhedra domain): conjunctions of linear integer inequalities

The case study described in this section shows that spyro provides a way to enable precise
polyhedra operations for Version 1. The main reason why operations for bit-vector polyhedra have
not been proposed previously is that it is challenging to work with relations over bit-vector-valued
variables. For example, let G and ~ be 4-bit bit-vectors. Fig. 4(a) depicts the satisfying assignments
of the inequality G + ~ + 4 ≤ 7 interpreted over 4-bit unsigned modular arithmetic. As seen in the
plot, the set of points that satisfy a single bit-vector inequality can be a non-contiguous region.
In general, a bit-vector inequality over unsigned bit-vector variables - = {G1, . . . , G=} has the

form
∑=

8=1 ?8G8 +@ ≤
∑=

9=1 A 9G 9 + B , where {?8 } ∪ {@} ∪ {A 9 } ∪ {B} are unsigned bit-vector constants,
and ≤ is unsigned comparison. Conjunctions of inequalities are a fragment of quantifier-free
bit-vector logic (LBV ). Let JiKBV denote the set of assignments to - that satisfy formula i ∈ LBV .
We instantiated spyro to take as input a formula i ∈ LBV and return a conjunction k of bit-

vector inequalities—i.e., the symbolic abstraction [Reps and Thakur 2016, §5] of i in the conjunctive
fragment LBV (∧) . Because spyro computes best L-properties, in this setting it computes the most-
precise symbolic abstraction—i.e., the formula Û computed by spyro is one representation of the
most-precise abstraction of i that is expressible as a conjunction of bit-vector inequalities.
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G + ~ + 4 ≤ 7

10G + 11~ + 0 ≤ 2G + 3~ + 7

12G + 5~ + 7 ≤ 2G + 8~ + 15

0G + 5~ + 3 ≤ 8G + 2~ + 4

12G + 7~ + 1 ≤ 12G + 3~ + 8

2G + 15~ + 3 ≤ 0G + 15~ + 15

10G + 0~ + 4 ≤ 0G + 15~ + 15

8G + 15~ + 4 ≤ 8G + 0~ + 4

(a) G + ~ + 4 ≤ 7 (b) ~ = G ∗ G (c) ~ ≤ G ∗ G

Fig. 4. Each subfigure illustrates a bit-vector formula (in green) and the most precise bit-vector polyhedron

computed by spyro (i.e., the inequalities above the formulas). Each colored cell in the plots represents a

solution in 4-bit unsigned modular arithmetic of the conjunction of the inequalities found by spyro: green cells

represent solutions to the original formula, whereas red cells are points that are solution to the inequalities,

but do not satisfy the original formula. In (a) and (b), the conjunctive formula represents the original formula

exactly (there are only green cells). In (b), the twelve occurrences of red cells are points that do not satisfy the

original formula, but are needed for a conjunctive formula to over-approximate the original formula.

As known from the literature ([Reps et al. 2004; Thakur et al. 2012; Thakur and Reps 2012] and
[Reps and Thakur 2016, §5]), operations needed for abstract interpretation, such as (i) the creation
and/or application of abstract transformers, and (ii) taking the join of two abstract-domain elements,
can be performed via an algorithm for symbolic abstraction. For instance, if k0 and k1 are two
formulas in LBV (∧) , we can perform the join k0 ⊔k1 by Û (k0 ∨k1). (Note that k0 ∨k1 is not a
formula of LBV .) For this reason, we say that spyro enables this new abstract domain.
In our experiments, we limited inequalities to two variables G and ~ on each side, and used

4-bit unsigned arithmetic. Our benchmarks were taken from an earlier study conducted by one of
the authors, which on each example used brute force to consider all 16,762,320 non-tautologies
of the 16,777,216 4-bit inequalities of the form 0G + 1~ + 2 ≤ 3G + 4~ + 5 . That study found that
some example formulas had hundreds of thousands of inequalities as consequences. We selected 9

interesting-looking formulas to use as benchmarks, including linear/nonlinear operations, equalities
and inequalities, Boolean combinations, and one pair of formulas on which to perform the join
operation. (See §5.4.2 and Appendix C.4.)

5.4.1 �antitative Analysis. spyro[sketch] computed a sound bestL-conjunction for 9/9 formulas,
and guaranteed that 8/9 were best L-conjunctions. For the query ~ = G/2, spyro[sketch] timed
out on a call to CheckPrecision, but the obtained L-conjunction was indeed a best L-conjunction
because it defined the exact semantics of the query. spyro computed an L-conjunction for all the 9
benchmarks in less than 400 seconds per benchmark, which is 2-5 orders of magnitude faster than
the enumerative baseline presentd in Section 5.1.1. Each output L-conjunction contained between
1 and 6 L-properties. For this domain, sketch—and hence spyro[sketch]—is sound and precise
because we are working with bit-vector arithmetic of fixed bit-width.
spyro[sketch] could not terminate for most of our benchmarks when considering 8-bit arith-

metic. Because our examples contain several multiplications, this limitation is not surprising because
multiplication is one of the known weaknesses of sketch and its underlying SAT solver. Recently,
there have been promising advances in SAT solving for multiplication circuits [Kaufmann et al.
2022] that, if integrated with sketch, we believe would help spyro scale to larger bit-vectors.
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5.4.2 �alitative Analysis. Examples of results obtained by spyro are shown in Fig. 4. The result
that the most-precise abstraction of these formulas could be expressed using only a small number
of inequalities was surprising to the authors. In Fig. 4(c), the formula we are abstracting is i =df

~ ≤ G ∗ G ). Fig. 4(c) shows that, in addition to the green points that satisfy the non-linear inequality
~ ≤ G ∗G , the bit-vector-polyhedral abstraction found for i includes twelve “extra” points, indicated
by the red cells. Because spyro finds a most-precise sound bit-vector-polyhedral abstraction of
i , every sound bit-vector-polyhedral abstraction of i must also include those twelve points. In
an earlier study conducted by one of the authors, they used brute force to consider all 16,762,320
non-tautologies of the 16,777,216 4-bit inequalities of the form 0G + 1~ + 2 ≤ 3G + 4~ + 5 . That
study found that the following numbers of inequalities over-approximated the original formula:
564 for Fig. 4(a), 109,008 for Fig. 4(b), and 456 for Fig. 4(c). Thus, spyro showed that a most-precise
abstraction could be 2-4 orders of magnitude smaller than one obtained by brute force.
Finding: spyro can synthesize the most-precise sound bit-vector-polyhedral abstraction of a

given bit-vector formula i over 4-bit arithmetic. Furthermore, spyro surprised the authors by
showing that the most-precise sound bit-vector-polyhedral abstraction for the presented examples
could be precisely expressed with only a handful of bit-vector inequalities.

5.5 Further Analysis of spyro’s Performance

In the previous sections, we have shown that spyro can synthesize best L-conjunctions for a
variety of case studies. In this section, we analyze what parameters affect spyro’s running time.

Q1: How do Different Primitives of the Algorithm Contribute to the Running Time? On average, spyro
spends 13.69 % of the time performing Synthesize, 26.78 % performing CheckSoundness, and
42.33 % performing CheckPrecision (details in Tables 2 and 3 in App. C.5).

It usually takes longer for CheckSoundness and CheckPrecision to show the nonexistence
of an example—i.e., to return ⊥—than to find an example. CheckSoundness is one of the sim-
plest queries, but occupies a large portion of the running time because it is expected to return ⊥
many times, whereas CheckPrecision needs to return ⊥ only once for each call to Synthesize-

StrongestConjunct. The last call to CheckPrecision (i.e., the one that returns ⊥) often takes
a significant amount of time to complete (on average 19.61 % of the time spent on each run of
SynthesizeStrongestConjunct).
Finding: spyro spends most of the time checking soundness and precision.

Q2: What Parts of the Input Affect the Running Time? The number of L-properties in the language
L has a large impact on the time taken by Synthesize (Fig. 5a) and CheckPrecision.

The complexity of the code defining the semantics of various operators has a large impact on how
long CheckSoundness takes. insert, delete of BST and edit distance have relatively complicated
implementations, and CheckSoundness takes longer for these problems.
The size and complexity of the example space also affect the running time. The biggest factor

contributing to the size of the example space is the number of input and output variables used. The
number of possible examples, i.e., variable assignments, increases exponentially with the number
of variables. The size of the example space affects not only the number of total queries but also the
time that each query takes. Specifically, the number of positive and negative examples affects the
time taken by Synthesize or CheckPrecision (notice that CheckSoundness does not take the
examples as input), as shown in Figure 5b.

Finding: The running time of spyro is affected by the sizes of (i) the property search space, (ii)
the programs that describe the semantics of the operators, and (iii) the example search space.
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Fig. 5. Evaluation of the running time of spyro for different input sizes and optimizations.

Q3: How effective is line 12 in Algorithm 1? We compared the running times of spyro with and
without line 12 (Figure 5c). When line 12 is present, spyro is 3.06% faster (geometric mean) than
when line 12 is absent, but both versions can solve the same problems. The optimization is only
effective when the language has many incomparable properties that do not imply each other and
cause Synthesize to often return ⊥, thus triggering Line 10 in Algorithm 1—e.g., in all SyGuS
benchmarks the language L is such that the optimization is not used.

Finding: Freezing negative examples is slightly effective.

6 RELATED WORK

Abstract-interpretation techniques.Many static program-analysis techniques are pitched as tools
for checking safety properties, but behind the scenes they construct an artifact that abstracts the
behavior of a program (in the sense of abstract interpretation [Cousot and Cousot 1977]). One such
kind of artifact is a procedure summary [Cousot and Cousot 1978; Cousot and Halbwachs 1978;
Gopan and Reps 2007; Sharir and Pnueli 1981], which abstracts a procedure’s transition relation
with an abstract value from an abstract domain, the elements of which denote transition relations.

Our problem is an instance of the strongest-consequence problem [Reps and Thakur 2016]. Existing
techniques for solving this problem rely on properties of the language L that are typical of abstract
interpretation. Some techniques work from “below,” identifying a chain of successively weaker
implicants, until one is a consequence of i [Reps et al. 2004]. Other techniques work from “above,”
identifying a chain of successively stronger implicates, until no further strengthening is possible
[Thakur et al. 2012; Thakur and Reps 2012]. Ozeri et al. [2017] explored a different approach, which
works from above by repeatedly applying a semantic-reduction operation [Cousot and Cousot
1977]. (A semantic reduction operation finds a less-complicated description of a given set of states
if one exists.) Our work differs from methods that use abstract interpretation in several aspects.
First, our algorithm is the first to use both positive and negative examples to achieve precision.
Second, while our work supports a variety of DSLs specified via a grammar, existing methods
require that certain operations can be performed on concrete states and elements of the language
L (e.g., joins [Thakur and Reps 2012]), thus limiting the language that can serve as the DSL.

Type inference. Liquid type inference [Hashimoto and Unno 2015; Rondon et al. 2008; Vazou et al.
2014] can infer a weakest precondition from a given postcondition or a strongest postcondition from
a given precondition. To make the problem tractable, properties must be specified in a user-given
restricted set of predicates that are closed under Boolean operations. Although our work shares
some similarities—e.g., looking for properties over a restricted DSL—we tackled a fundamentally
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different problem because no pre- or post-condition is given as an input, and our algorithm instead
looks for best L-properties. Furthermore, our work is not restricted to functional languages.

Invariant inference. Several data-driven, CEGIS-style algorithms can synthesize program invariants.
These techniques look for any invariant that is satisfactory for a client verification problem, whereas
we do not assume there is a client for whom the properties are synthesized. Without a client, “true”
is a sound (and also weakest) but useless specification. The absence of a client requires synthesized
specifications to be precise, therefore requiring our new CheckPrecision primitive.

A closely related system is Elrond [Zhou et al. 2021], which synthesizes weakest library specifica-
tions that make verification possible in a client program. Elrond allows one to specify a set of target
predicates of interest, and finds quantified Boolean formulas with equalities over the variables
and the predicates. Because soundness (with respect to the library function) is only checked on
a set of inputs, Elrond tries to synthesize weakest specifications using an iterative weakening
approach. Their algorithm takes advantage of the structure of supported formulas (they can contain
disjunctions), but has some limitations (they can only contain equalities).
The key differences between Elrond and our work are: (i) Our work supports a user-supplied

DSL, which enables more generality, but prevents the use of techniques that rely on access to
arbitrary Boolean operations. (ii) Our work uses a parametric DSL that can contain complex user-
given functions, whereas Elrond only allows parametric atoms (i.e., user-defined Boolean function),
equality over variables, and Boolean combinations of them. Our tool spyro can synthesize the
L-property “2> = 0 ∨ −G + 2> − G2 = 0,” whereas Elrond does not consider arithmetic predicates.
(iii) The specifications generated by spyro are most precise with respect to the DSL L, allowing for
their reuse in multiple problem instances that use the same function. Such reuse is possible because
spyro ensures soundness of the synthesized properties. In contrast, Elrond operates in a closed-
box setting and uses a random sampler for soundness, intentionally weakening the synthesized
specifications to enhance the likelihood of soundness. (iv) Our work can synthesize arithmetic
properties efficiently (e.g., the ones considered in Sections 5.3 and 5.4) as well as complex algebraic
properties (e.g., the ones in Section 5.2). In theory, Elrond can describe all the necessary components
to express algebraic properties such as the property (B, G) = pop(push(B, G)), but one would need
to provide a function that combines pop and push. This approach is feasible if one is interested in
only a few possible ways of combining functions, but becomes infeasible once more combinations
are possible (e.g., for an arithmetic formula). In short, the two approaches have different goals.
The presence of a user-supplied DSL and absence of a client distinguish our work from other

prior work, e.g., abductive inference [Dillig et al. 2012], ICE-learning [Garg et al. 2014], LoopInvGen
[Padhi et al. 2016], Hanoi [Miltner et al. 2020], and Data-Driven CHC Solving [Zhu et al. 2018].

Dynamic techniques. Daikon [Ernst et al. 2001, 2007] is a system for identifying likely invariants by
inspecting program traces. Invariants generally involve at most two program quantities and are
checked at procedure entry and exit points (i.e., invariants form precondition/postcondition pairs).
In Daikon, the default is to check 75 different forms of invariants, instantiated for the program
variables of interest. The language of invariants can be extended by the user.

spyro differs from Daikon (and follow-up work, e.g., [Beckman et al. 2010]) in two ways: (i) The
language L is not limited to a set of predicates, and spyro scales to languages containing millions
of properties; (ii) the properties that spyro synthesizes are sound and provably best L-properties.
Furthermore, while Daikon’s dynamic approach can scale to large programs, we could not find a
way to encode our case studies as instances that Daikon could receive as input.

A similar tool to Daikon is QuickSpec [Smallbone et al. 2017], which generates equational
properties of Haskell programs from random tests. spyro differs from QuickSpec in two ways: (i)
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The language L is not limited to equational properties; (ii) the properties that spyro synthesizes
are sound and provably best L-properties.
Astorga et al. [2021] synthesize contracts that are sound with respect to positive examples

generated by a test generator. We see two main differences between that work and ours: (i) They
do not use negative examples, whereas we do. Negative examples are the key to synthesizing best
L-properties. (ii) Their work does not allow a parametrized DSL and their notion of “tight” is with
respect to a syntactic restriction on the logic in which the contract is to be specified.

Synthesis of bestL-transformers. The paper that inspired our work synthesizes most-precise abstract
transformers in a user-given DSL [Kalita et al. 2022]. We realized that their basic insight—use both
positive and negative examples; treat positive examples as hard constraints and negative examples
as “maybe” constraints—had broader applicability than just creating abstract transformers.
Our work differs in two key ways. First, because our goal is to obtain a formula rather than a

piece of code (their setting), we could take advantage of the structure of formulas—in particular,
conjunctions—to decompose the problem into (i) an “inner search” to find a best L-property that is
an individual conjunct (Alg. 1), and (ii) an “outer search” to accumulate best L-properties to form a
best L-conjunction (Alg. 2). Second, Alg. 1 exploits monotonicity—i.e., once a sound L-property is
found, there must exist a best L-property that implies it (Lemma 3.1). This observation allows us
to use a simplified set of primitives: our algorithm uses a Synthesize primitive, whereas theirs
requires aMaxSynthesize primitive—i.e., one that synthesizes a program that accept all the positive
examples and rejects as many negative examples as possible. Our ideas could be back-ported to
provide improvements in their setting as well: if the abstract domain supports meet (⊓), they could
run their algorithm multiple times to create a kind of “conjunctive” transformer, which would run
multiple, incomparable best L-transformers, and then take the meet of the results.

7 CONCLUSION

This paper presents a formal framework for the problem of synthesizing a best L-conjunction—i.e.,
a conjunctive specification of a program with respect to a user-defined logic L—and an algorithm
for automatically synthesizing a best L-conjunction. The innovations in the algorithm are three-
fold: (i) it identifies individual conjuncts that are themselves strongest consequences; (ii) it balances
negative examples that must be rejected by the L-property being synthesized and ones that may
be rejected; and (iii) it guarantees progress via monotonic constraint hardening.

Our work opens up many avenues for further study. One is to harness other kinds of synthesis
engines to implement Synthesize, CheckSoundness, and CheckPrecision. Recent work on
Semantics-Guided Synthesis (SemGuS) [Kim et al. 2021] provides an expressive synthesis framework
for expressing complex synthesis problems like the ones discussed in this paper. SemGuS solvers,
such asMESSY [Kim 2022], are able to produce two-sided answers to a problem: either synthesizing
a solution, or proving that the problem is unrealizable—i.e., has no solution—exactly what is needed
for CheckPrecision. On the theoretical side, while we have used first-order logic, it would be
interesting to try other logics, such as separation logic [Reynolds 2002] or effectively propositional
logic [Itzhaky 2014; Padon 2018]. On the practical side, our work could find applications in invariant
generation [Padon et al. 2022] and code deobfuscation [Blazytko et al. 2017].
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