
61

Model-Assisted Machine-Code Synthesis

VENKATESH SRINIVASAN∗, University of Wisconsin–Madison, USA

ARA VARTANIAN, University of Wisconsin–Madison, USA

THOMAS REPS, University of Wisconsin–Madison, USA and GrammaTech, Inc., USA

Binary rewriters are tools that are used to modify the functionality of binaries lacking source code. Binary

rewriters can be used to rewrite binaries for a variety of purposes including optimization, hardening, and

extraction of executable components. To rewrite a binary based on semantic criteria, an essential primitive to

have is a machine-code synthesizer—a tool that synthesizes an instruction sequence from a specification of the

desired behavior, often given as a formula in quantifier-free bit-vector logic (QFBV). However, state-of-the-art

machine-code synthesizers such as McSynth++ employ naïve search strategies for synthesis: McSynth++
merely enumerates candidates of increasing length without performing any form of prioritization. This

inefficient search strategy is compounded by the huge number of unique instruction schemas in instruction

sets (e.g., around 43,000 in Intel’s IA-32) and the exponential cost inherent in enumeration. The effect is slow

synthesis: even for relatively small specifications,McSynth++ might take several minutes or a few hours to

find an implementation.

In this paper, we describe how we use machine learning to make the search inMcSynth++ smarter and

potentially faster. We converted the linear search in McSynth++ into a best-first search over the space of

instruction sequences. The cost heuristic for the best-first search comes from two models—used together—

built from a corpus of ⟨QFBV-formula, instruction-sequence⟩ pairs: (i) a language model that favors useful

instruction sequences, and (ii) a regression model that correlates features of instruction sequences with features

of QFBV formulas, and favors instruction sequences that are more likely to implement the input formula.

Our experiments for IA-32 showed that our model-assisted synthesizer enables synthesis of code for 6 out of

50 formulas on whichMcSynth++ times out, speeding up the synthesis time by at least 526×, and for the

remaining formulas, speeds up synthesis by 4.55×.

CCS Concepts: • Software and its engineering→ Automatic programming; • Computing methodolo-
gies → Supervised learning by regression;

Additional Key Words and Phrases: machine-code synthesis, machine learning, best-first search, n-gram

language model, regression model, IA-32 instruction set

ACM Reference Format:
Venkatesh Srinivasan, Ara Vartanian, and Thomas Reps. 2017. Model-Assisted Machine-Code Synthesis. Proc.
ACM Program. Lang. 1, OOPSLA, Article 61 (October 2017), 26 pages. https://doi.org/10.1145/3133885

1 INTRODUCTION
Binary analysis and rewriting has received an increasing amount of attention from the academic

community in the last decade (e.g., see references in [Song et al. 2008, §7], [Balakrishnan and Reps

∗
This author is now at Google, Inc.

Authors’ addresses: Venkatesh Srinivasan, University of Wisconsin–Madison, USA, venk@cs.wisc.edu; Ara Vartanian,

University of Wisconsin–Madison, USA, aravart@cs.wisc.edu; Thomas Reps, University of Wisconsin–Madison, USA ,

GrammaTech, Inc. USA, reps@cs.wisc.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Association for Computing Machinery.

2475-1421/2017/10-ART61

https://doi.org/10.1145/3133885

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

https://doi.org/10.1145/3133885
https://doi.org/10.1145/3133885

61:2 Venkatesh Srinivasan, Ara Vartanian, and Thomas Reps

2010, §1], [Brumley et al. 2011, §1], [ElWazeer et al. 2013, §7]), which has led to the development and

wider use of binary analysis and rewriting tools. Binary rewriting becomes particularly important

if one wishes to modify the functionality of a binary that lacks source code and/or the compiler

toolchain used to build the binary. Binary rewriting can be done for purposes of software reuse

(e.g., slicing [Srinivasan and Reps 2016], partial evaluation [Srinivasan and Reps 2015a], binary

translation [Bansal and Aiken 2008]), optimization (e.g., superoptimization [Bansal and Aiken

2006]), and software security (e.g., binary hardening [Abadi et al. 2005; Erlingsson and Schneider

1999; Slowinska et al. 2012]).

Recently [Srinivasan and Reps 2015b], it has been observed that a machine-code synthesizer
1

can be used to create a general framework for semantics-based binary rewriting (see §2.2), and one

can instantiate the framework with different analyses to create different rewriters, such as partial

evaluators [Srinivasan and Reps 2015a] and slicers [Srinivasan and Reps 2016]. A machine-code

synthesizer is a tool that synthesizes a straight-line instruction sequence that implements a semantic

specification of the desired behavior, which is often given as a formula in QFBV. A key challenge in

machine-code synthesis is the enormous size of the synthesis search-space: for example, Intel’s

IA-32 instruction-set architecture (ISA) has around 43,000 unique instruction schemas; this huge

instruction pool, along with the exponential cost inherent in enumerative synthesis, results in an

enormous search space for a synthesizer. For example, with this search space, a naïve enumerative

synthesizer will take a few days just to synthesize an instruction sequence of length 3 (Fig. 5 in

[Srinivasan and Reps 2015b]).

To cope with the enormous synthesis search-space, a state-of-the-art machine-code synthesizer

McSynth++ [Srinivasan et al. 2016] uses a master-slave architecture. The master splits the input

formula into a sequence of independent smaller sub-formulas, and delegates the sub-formulas to

slave synthesizers. The slaves perform the actual enumerative synthesis.McSynth++ brought down

the synthesis time from days to several minutes, but it is still not fast enough:McSynth++ times

out for larger QFBV formulas; even for smaller formulas, McSynth++ sometimes takes a few hours

to find an implementation (see Fig. 6). Consequently, if a binary-rewriter client supplies a formula

as input to McSynth++, the client has to wait several minutes or hours before McSynth++ finds an

implementation. This delay might not be tolerable for a client that has to invoke the synthesizer

multiple times to rewrite an entire binary, e.g., a machine-code partial evaluator [Srinivasan and

Reps 2015a].

A key limitation that McSynth++ suffers from is the core search strategy used by the slave

synthesizers: each slave performs a linear search over the space of instruction sequences, i.e., it

first exhausts one-instruction sequences, then moves to two-instruction sequences, and so on. The

slave subsequently tests every enumerated candidate for equivalence with the input formula.
2
One

can see that this search strategy is clearly inefficient: not all enumerated candidates are equally

likely to implement the input formula.

This paper describes how we used machine learning to make the search inMcSynth++’s slaves
smarter and almost always faster. Our technique is based on the following insight:

If a slave synthesizer can prioritize candidates, it can potentially find an implementation faster, while

retaining its completeness guarantees. In essence, the goal is to turn an enumerative synthesizer

into a best-first-search synthesizer that is informed by a trained model.

To implement this idea, we converted the linear search in McSynth++’s slaves into a best-first

search, where the cost heuristic comes from models learned from a huge corpus of specifications

1
We use the term “machine code” to refer generically to low-level code, and do not distinguish between the actual machine-code bits/bytes

and the assembly code to which it is disassembled.

2McSynth++ is equipped with two pruners (see §2.2) that prune away useless candidates prior to equivalence testing.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

Model-Assisted Machine-Code Synthesis 61:3

and implementations: 4.4 million ⟨QFBV-formula, instruction-sequence⟩ pairs. The model-assisted

best-first search prioritizes (i) instruction sequences that are commonly used to implement idioms

in programs, and (ii) instruction sequences that contain instructions that are highly likely to

implement the input formula (e.g., if the formula is φ ≡ EAX′ = EAX + 10, the search prioritizes

instruction sequences that contain the add instruction). We have equippedMcSynth++’s slaves
with this model-assisted best-first search to build an improved machine-code synthesizer called

McSynth-ML.
Given a huge corpus of ⟨QFBV-formula, instruction-sequence⟩ pairs,McSynth-ML first learns

(i) a language model for instruction sequences in the instruction set, and (ii) a regression model

that correlates features of a QFBV formula with features of its equivalent instruction sequence. In

particular, we use an n-gram model for the former, and k-nearest-neighbor (k-NN) regression for the

latter. McSynth-ML then performs the actual synthesis. Given an input formula φ,
• McSynth-ML uses features of φ along with k-NN regression to restrict the slave’s instruction

pool to contain only instructions that are highly likely to implement φ.
• McSynth-ML then begins a best-first search over the truncated instruction-sequence space

3

to find an implementation for φ. The cost heuristic for the search comes from both the n-gram

model and the k-NN-regression model: the former allows the search to prioritize useful

instruction sequences that are commonly used to implement idioms in binaries; the latter

allows the search to prioritize instruction sequences that contain instructions most likely to

implement φ, and steer the search away from instruction sequences with instructions that

are irrelevant to φ.
The effect of the model-assisted best-first search is potentially faster synthesis in slave synthe-

sizers. The transitive effect is potentially faster client binary-rewriters.McSynth-ML should also

allow existing clients to work on larger QFBV formulas for the purpose of obtaining output binaries

of better quality. Moreover,McSynth-ML should also facilitate building of new clients that were

impractical to build with McSynth++. (See §8 for possible future directions.)

Contributions. This paper’s contributions include the following:
• Our technique is the first of its kind to employ machine learning for the synthesis of low-level

code.

• While existing approaches for low-level-code synthesis employ enumerative, symbolic, and

stochastic search strategies [Phothilimthana et al. 2016b; Schkufza et al. 2013; Srinivasan and

Reps 2015b; Srinivasan et al. 2016], we employ a novel best-first search assisted by models

learned from a corpus of specifications and implementations.

• Our technique makes novel usage of language models to steer the search towards useful

instruction sequences; prior approaches have used language models only for purposes of

finding most likely completions of partial programs [Gvero and Kuncak 2015; Raychev et al.

2014].

• Ours is the first synthesis technique that employs a model (specifically, k-NN regression)

that uses features of both specifications and implementations; prior model-assisted synthesis

tools use features learned from only a corpus of programs [Gvero and Kuncak 2015; Raychev

et al. 2015, 2014]. We use the model to steer the search towards instruction sequences that

are highly likely to implement the input specification.

Our techniques have been implemented inMcSynth-ML, a model-assisted synthesizer for IA-32.

We evaluatedMcSynth-ML on a test suite consisting of 50 formulas. Our experiments show that

McSynth-ML synthesizes code for all 6 of the formulas on whichMcSynth++ times out, speeding up

3
To preserve its completeness guarantees, if synthesis with the truncated instruction pool fails to find an implementation,

McSynth-ML attempts synthesis with the untruncated instruction pool. See §4.2.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

61:4 Venkatesh Srinivasan, Ara Vartanian, and Thomas Reps

T ∈ Term, φ ∈ Formula, FE ∈ FuncExpr

c ∈ Int32 = {..., -1, 0, 1, ...} b ∈ Bool = {True, False}

IInt32 ∈ Int32Id = {EAX, ESP, EBP, ... }

IBool ∈ BoolId = {CF, SF, ... } F ∈ FuncId = {Mem}

op ∈ BinOp = {+, −, ...} bop ∈ BoolOp = {∧, ∨, ...} rop ∈ RelOp = {=, ,, <, >, ...}

T ::= c | IInt32 | T1 op T2 | ite(φ, T1, T2) | F(T1)

φ ::= b | IBool | T1 rop T2 | ¬φ1 | φ1 bopφ2 | F = FE

FE ::= F | FE1[T1 7→ T2]

Fig. 1. Syntax of L[IA-32].

their synthesis by at least 526×. For the remaining 44 formulas, McSynth-ML speeds up synthesis

by 4.55×.

While the paper itself addresses the problem of speeding up machine-code synthesis, the basic

idea described in the paper is not restricted to machine code, and could be used to speed up

other enumerative program synthesizers, as well. In particular, if one has available, or can create,

a corpus of ⟨specification, implementation⟩ pairs (e.g., via logs from a program verifier, or via

symbolic execution—see §3.1), machine-learning techniques can be used to build a modelM that

correlates features of implementations with features of specifications. Then an enumerative program

synthesizer S can (i) use best-first search as its core search strategy, whereM is used to steer the

best-first search toward most likely implementations, and (ii) use modelM to truncate the pool of

program elements that S uses for enumeration.

2 BACKGROUND
In this section, we briefly describe the logic in which input formulas are expressed (§2.1). The logic

allows a client to specify some desired state change in a specific hardware platform—in our case,

Intel IA-32 (the 32-bit subset of x86). We also motivate the problem of machine-code synthesis,

give an overview of a state-of-the-art machine-code synthesizerMcSynth++, and briefly describe

how binary-rewriter clients use a machine-code synthesizer to rewrite binaries (§2.2).

2.1 QFBV Formulas for Expressing Specifications
Input specifications toMcSynth-ML can be expressed formally by QFBV formulas. Because our

specifications express the desired IA-32 state transformation, we will use a variant of QFBV that is

specific to the domain of IA-32 instructions.
4

Consider a quantifier-free bit-vector logic L over finite vocabularies of constant symbols and

function symbols. We will be dealing with a specific instantiation of L, denoted by L[IA-32]. (Note

that L can also be instantiated for other ISAs such as ARM, MIPS, PowerPC, etc.) In L[IA-32], some

constant symbols represent IA-32’s registers (EAX, ESP, EBP, etc.), and some represent flags (CF, SF,
etc.). L[IA-32] has only one function symbol “Mem,” which denotes IA-32’s memory. The syntax of

L[IA-32] is defined in Fig. 1. A term of the form ite(φ, T1, T2) represents an if-then-else expression.

A FuncExpr of the form FE[T1 7→ T2] denotes a function-update expression.

4
This logic is the same variant of QFBV that is used as an input language in IA-32 analysis and translation tools that use

Satisfiability Modulo Theories (SMT) solvers. Thus, such formulas are naturally available in the symbolic components of

existing tools.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

Model-Assisted Machine-Code Synthesis 61:5

To write formulas that express state transitions, all Int32Ids, BoolIds, and FuncIds can be qualified

by primes (e.g., Mem′). The QFBV formula for a specification is a restricted 2-vocabulary formula

that specifies a state transformation. It has the form∧
m

(I′m = Tm) ∧
∧
n

(J′n = φn) ∧Mem′ = FE,

where I′m and J′n range over the constant symbols for registers and flags, respectively. The primed

vocabulary is the post-state vocabulary, and the unprimed vocabulary is the pre-state vocabulary.

For example, the QFBV formula for the specification “push the 32-bit value in the frame-pointer

register EBP onto the stack" is given below. (Note that the IA-32 stack pointer is register ESP.)

ESP′ = ESP − 4 ∧ Mem′ = Mem[ESP − 4 7→ EBP]

In this section, and in the rest of the paper, we show only the portions of QFBV formulas that

express how the state is modified. QFBV formulas actually contain identity conjuncts of the form

I′ = I, J′ = J, and Mem′ = Mem for constants and functions that are unmodified. Because we do not

want the synthesizer output to be restricted to an instruction sequence that is located at a specific

address, specifications do not contain conjuncts of the form EIP′ = T. (EIP is the program counter

for IA-32.)

Expressing semantics of instruction sequences. In addition to input specifications, Mc-
Synth++ also uses L[IA-32] formulas to express the semantics of the candidate instruction-sequences

it considers. The function ⟨⟨·⟩⟩ encodes a given IA-32 instruction-sequence as a QFBV formula.

While others have created such encodings by hand (e.g., [Saïdi 2008]), we use a method that takes a

specification of the concrete operational semantics of IA-32 instructions and creates a QFBV encoder

automatically. The method reinterprets each semantic operator as a QFBV formula-constructor or

term-constructor (see [Lim et al. 2011]).

Certain IA-32 string instructions contain an implicit microcode loop, e.g., instructions with the

rep prefix, which perform an a priori unbounded amount of work determined by the value in

the ECX register at the start of the instruction. In other applications that use the infrastructure

on which McSynth-ML is built, this implicit microcode loop is converted into an explicit loop

whose body is an instruction that performs the actions performed by the body of the microcode

loop. (More details about this conversion is available elsewhere [Lim et al. 2011, §6].) However, the

semantics cannot be expressed as a single QFBV formula. Because of this expressibility limitation,

neither McSynth++ nor McSynth-ML tries to synthesize instructions that use the rep prefix.

2.2 Overview of McSynth++
McSynth++ [Srinivasan et al. 2016] is an improved version of a priormachine-code synthesizer called

McSynth [Srinivasan and Reps 2015b]. In this section, we motivate the problem of machine-code

synthesis, and give an overview of McSynth++. (Note that the overview also includes components

inherited fromMcSynth.) We also summarizeMcSynth++’s algorithm while highlighting its key

limitations.

The motivation for machine-code synthesis arises in the context of more principled methods

for rewriting binaries (i.e., logic-based or semantics-based methods). For example, suppose that

one has an unoptimized binary that lacks source code, and one would like to optimize the binary.

An automated and semantics-based way of rewriting the binary would first run analyses like

value-set analysis [Balakrishnan and Reps 2010], def-use analysis [Lim and Reps 2013], etc. to

gather information about constants, and live registers and flags at various instructions in the binary.

Then one would

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

61:6 Venkatesh Srinivasan, Ara Vartanian, and Thomas Reps

Fig. 2. Master-slave architecture of McSynth++.

(1) convert instruction sequences in the binary into some semantic representation so that one

knows what the instruction sequence does,

(2) use the analysis results to transform the semantic representation, such that the transformed

semantic representation acts as a specification for an optimized instruction sequence, and

(3) find an instruction sequence that implements the transformed semantic representation.

Recall from §2.1 that a QFBV formula clearly describes what an instruction sequence does. Conse-

quently, one can use QFBV formulas as the semantic representation in the aforementioned recipe

for semantics-based binary rewriting.

Note that in the above recipe, a programmer or a binary analyst does not come up with a QFBV

specification; the specification comes from transforming a semantic representation of instructions

that are already in the binary.

One can use symbolic execution to perform step (1), and one can simplify QFBV formulas with

respect to analysis results to perform step (2). To perform step (3) one needs a tool that is capable

of searching for an instruction sequence that implements a QFBV formula. This step is where a

machine-code synthesizer comes in. By repeating steps (1), (2), and (3) on different straight-line

instruction sequences in a binary, one can produce an optimized binary. Note that if one has a

machine-code synthesizer for performing step (3), one can use different analyses and transformation

mechanisms in step (2) to build different semantics-based binary rewriters (e.g., partial evaluators

[Srinivasan and Reps 2015a], slicers [Srinivasan and Reps 2016], binary translators [Bansal and

Aiken 2008], etc.).

McSynth++ is a state-of-the-art machine-code synthesizer.McSynth++ synthesizes a straight-

line machine-code instruction sequence from a semantic specification of the desired behavior,

given as a QFBV formula. The synthesized instruction-sequence implements the input formula (i.e.,

is equivalent to the formula). McSynth++ is parameterized by the ISA of the target instruction-

sequence.

McSynth++ uses enumerative strategies for synthesis. However, an ISA like IA-32 has around

43,000 unique instruction schemas, which, when combined with the exponential cost inherent in

enumeration, results in an enormous search space for synthesis. McSynth++ attempts to cope with

the enormous search space using a master-slave architecture. The design of McSynth++ is depicted

in Fig. 2. Given a QFBV formula φ,McSynth++ synthesizes an instruction sequence for φ in the

following way:

(1) The master uses a combination of divide-and-conquer [Srinivasan and Reps 2015b, §4.3] and

flattening [Srinivasan et al. 2016, §4.1.2] strategies to split φ into a sequence of independent

sub-formulas, and hands over each sub-formula to a slave synthesizer.

(2) The slave enumerates templatized instruction-sequences, in which template operands

(or holes) replace one or more constant values. Each slave uses an instantiation of the

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

Model-Assisted Machine-Code Synthesis 61:7

Fig. 3. Design of McSynth++’s slave.

counterexample-guided inductive synthesis (CEGIS) framework [Srinivasan and Reps 2015b,

§4.1] along with two pruners—a footprint-based pruner [Srinivasan and Reps 2015b, §4.2] and

a bits-lost-based pruner [Srinivasan et al. 2016, §4.2.2]—to synthesize code for a sub-formula.

(The design of the slave is depicted as Fig. 3.)

(3) If a slave times out, the master uses an alternative split. (For example in Fig. 2, if synthesis of

code for φm, 1 times out, the master tries out an alternative split of φm-1, 1.) If all candidate

splits for a sub-formula time out, the master hands over the entire sub-formula to a slave.

(For example in Fig. 2, if all candidate splits of φm-1, 1 time out, the master supplies φm-1, 1 as

an input to a slave.)

(4) The master concatenates the results produced by the slaves, and returns the final instruction

sequence.

(5) Additionally for pragmatic purposes,McSynth++ uses a “move-to-front” heuristic [Srinivasan
et al. 2016, §4.3], which moves instructions

5
that occur in synthesized code to the front

of the instruction pool for use in the next synthesis task. This heuristic prioritizes useful

instructions: useful instructions “bubble up" the instruction pool over the course of several

synthesis tasks.

In the remainder of this section, we present an example to illustrate McSynth++’s algorithm, while

highlighting its key limitations. (The limitations of McSynth++ we present in this section lie in

McSynth++’s slave synthesizers.) Along the way, we provide details for only the components of

McSynth++ that are necessary to understand the design of McSynth-ML. A detailed description of

the design of McSynth++ is available elsewhere [Srinivasan and Reps 2015a; Srinivasan et al. 2016].

Consider the following QFBV formula φ:

φ ≡ EAX′ = Mem(ESP + 10) ∧ ESP′ = ESP + 18 ∧ ZF′ = (ESP + 10 = 0)

φ performs three updates on an IA-32 state: (i) it copies the 32-bit value in the memory location

pointed to by ESP + 10 to the EAX register, (ii) increments the stack-pointer register ESP by 18, and

(iii) sets the zero flag ZF according to the test ESP + 10 = 0.
McSynth++’s master splits φ into the sequence of independent sub-formulas ⟨φ1,φ2⟩ shown

below. The master splits φ in such a way that if one were to synthesize instruction sequences for φ1
and φ2 independently and concatenate the sequences in the same order, the result will be equivalent

5
In the remainder of this paper, when we use the terms “instruction” or “instruction-sequence,” we refer to a templatized

instruction or templatized instruction-sequence, respectively. If we refer to a concrete instruction-sequence, we will explicitly

say so.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

61:8 Venkatesh Srinivasan, Ara Vartanian, and Thomas Reps

to φ. Such a split is said to be legal (Defn. 2 in [Srinivasan and Reps 2015b]).

φ1 ≡ EAX′ = Mem(ESP + 10) φ2 ≡ ESP′ = ESP + 18 ∧ ZF′ = (ESP + 10 = 0)

McSynth++’s master then gives φ1 and φ2 to slave synthesizers.

We now illustrate the limitations inMcSynth++’s slave synthesizer using φ2 as an example. Note

that one implementation of φ2 is “add esp, 10; lea esp, [esp+8].” (For this example,

we pretend that the add instruction sets only the zero flag ZF. The lea instruction given above

increments ESP by 8without affecting flags.)McSynth++’s slave enumerates templatized instruction-

sequences of increasing length, and uses a CEGIS loop along with two pruners to synthesize code

for a sub-formula. However, the slave suffers from the following limitations:

Retaining instructions that are irrelevant to φ in the instruction pool. The slave does not
attempt to prune its instruction pool based on the QFBV operators present in the input formula φ.
The existing pruners in McSynth++ prune from the instruction pool instructions whose operands
are inconsistent with those of φ. (For example, the existing pruners will prune the instruction “add
ebp, ⟨Imm32⟩” because the instruction uses and modifies the EBP register, which is untouched

by φ2.) However, instructions whose opcode variants (defined in §3.1.1) are highly unlikely to

implement the input formula are left unpruned. (For example, instructions belonging to the IMUL

opcode variant could never be used to implement φ2; yet existing pruners do not prune instructions
such as “imul esp, ⟨Imm32⟩” from the instruction pool.) Consequently, candidate instruction-

sequences containing such instructions are wastefully enumerated and subsequently discarded by

the slave.

Linear search. The basic search strategy used by McSynth++’s slave is linear search: the slave
first exhausts all one-instruction sequences, followed by two-instruction sequences, and so on.

During the search, it might be better to prioritize (i) commonly used instruction-sequence prefixes

(e.g., instruction sequences that implement common idioms), and (ii) prefixes with instructions that

are highly likely to implement φ. However,McSynth++’s slave does not attempt to perform any

prioritization. For example, when a McSynth++ slave searches for an implementation for φ2, let us
assume that the slave encounters the prefix P1 ≡ “ror esp, ⟨Imm32⟩” (rotate right instruction)
before the prefix P2 ≡ “add esp, ⟨Imm32⟩” during its linear search. The slave would try to

expand P1 before P2, and would take a long time before it eventually enumerates the templatized

candidate C ≡ “add esp, ⟨Imm32⟩; lea esp, [esp+⟨Imm32⟩]." The slave then uses the

CEGIS loop to find the instantiation Cconc ≡ “add esp, 10; lea esp, [esp+8]” of C that

implements φ2. However, compared to P1, code like P2 is much more frequently found in binaries.

Furthermore, P2 contains an add instruction, which is much more likely to implement φ2 than the

ror instruction in P1. The slave could have found the implementation Cconc much faster had it

expanded P2 first.

The slave’s “move-to-front” heuristic suboptimally performs some prioritization by moving

instructions that occurred in previously synthesized implementations to the front of the instruction

pool in the current synthesis task. However, the heuristic would not always guarantee faster

synthesis, e.g., if there were no prior synthesis tasks.

In effect, McSynth++ takes around 10 minutes to synthesize an implementation for our example

φ. Given the enormous size of the search space thatMcSynth++ has to deal with, this number is

not high by itself. (Note that a naïve enumerative synthesizer would have taken several hours to

find an implementation for φ.) However, in the context of a binary-rewriting client that makes

several calls to the synthesizer (e.g., the machine-code partial evaluator WiPEr [Srinivasan and

Reps 2015a]), such synthesis times would cause the client to take hours or days to rewrite an entire

binary.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

Model-Assisted Machine-Code Synthesis 61:9

3 OVERVIEW
This section presents an example to illustrate the workings of McSynth-ML. Along the way, we
also provide necessary background on the models used by McSynth-ML.
At a high level,McSynth-ML has the same design asMcSynth++:McSynth-ML’s master splits

the input QFBV formula into a sequence of independent sub-formulas, and hands over each sub-

formula to a slave synthesizer. In fact,McSynth-ML uses the same master asMcSynth++. However,
McSynth-ML’s slave is an improved version of that of McSynth++. (McSynth-ML’s slave inherits the
footprint-based and bits-lost-based pruners from McSynth++.) McSynth-ML’s slave uses machine

learning to address the limitations of McSynth++’s slave in the following ways:

(1) McSynth-ML uses features of the input formula φ along with k-NN regression to prune from

the instruction pool instruction templates that are least likely to implement φ.
(2) McSynth-ML then uses best-first search instead of linear search as its core search strategy. To

prioritize instruction-sequence prefixes in the search, McSynth-ML uses a cost heuristic that

combines scores supplied by (i) an n-gram-based language model , and (ii) the aforementioned

k-NN-regression model. The former prioritizes common/useful IA-32 instruction sequences,

and the latter prioritizes instruction sequences containing instructions that are highly likely

to implement φ.
Step 1 is more of an optimization: instead of first enumerating a candidate C and then postpone

processing C because of C’s low value of the cost heuristic, step 1 eagerly truncates the instruction

pool so that C never gets enumerated.
6
Because of the smarter model-assisted search,McSynth-ML’s

slave is typically much faster than McSynth++’s slave.7

Because McSynth-ML uses models to assist synthesis, the models need to be trained on training

inputs before the actual synthesis. In the remainder of this section, we first describe how the models

are trained, and then the actual synthesis using McSynth-ML.

3.1 Training Phase
To train models that assist machine-code synthesis, one needs a huge corpus of specifications (QFBV

formulas) and their corresponding implementations (instruction sequences). However, creating

such a huge corpus via synthesis can take a very long time. (Recall from §2.2 that finding an

implementation withMcSynth++ can take several minutes. Finding implementations for millions of

specifications can take several days.) An important observation is that, while finding an instruction

sequence for a QFBV formula involves search/synthesis and is slow, converting an instruction

sequence into a QFBV formula can be done very quickly via symbolic execution. There are many

readily available tools that can perform this conversion [Lim et al. 2011]. We used this observation

to create a corpus of millions of equivalent ⟨QFBV-formula, instruction-sequence⟩ pairs as follows:

(i) we harvested several straight-line instruction sequences from binaries, (ii) converted each

instruction sequence I into a QFBV formula φ via symbolic execution, and (iii) added ⟨φ, I⟩ to the

corpus. It took almost 12 hours to create a corpus of 4.4 million pairs by this method. (This number

represents the total time spent to harvest and canonicalize instruction sequences from binaries,

and perform symbolic execution.) §6 provides more details about creating the training corpus.

3.1.1 k-NN regression. Our intended use case for k-NN regression during synthesis is to predict

how likely it is for an IA-32 instruction to occur in an implementation of the input formula. k-NN

regression is a non-parametric regression technique that stores all available training data and

6
To preserve the McSynth-ML’s completeness guarantees (Thm. 2), if synthesis with the truncated instruction pool fails to

find an implementation, McSynth-ML subsequently attempts synthesis with the untruncated instruction pool. (See §4.2.)

7
Note that McSynth-ML’s slave is not guaranteed to be faster because its heuristics are sensitive to training data.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

61:10 Venkatesh Srinivasan, Ara Vartanian, and Thomas Reps

predicts a numerical target based on a metric8 over its input space. In the next few paragraphs, we

describe a specific instantiation of k-NN regression that we use in our context.

Each pair ⟨φ, I⟩ in the corpus corresponds to a point in the input space. Each point in the

input space is identified bym binary features (features that take either 0 or 1 as their value), and

is associated with an output label, which is a numeric value. The input space is the following

mapping:

⟨f1, f2, . . . , fm⟩ 7→ l ,

where fi is the entry corresponding to the i th feature, and l is a numeric value.

In our case, the presence or absence of QFBV operators in the specification φ constitute the

features of the input space: an entry in the input feature-vector is 1 if φ contains the QFBV operator

corresponding to that entry; it is 0 otherwise. There are 70 QFBV operators in the logic described

in §2.1, and so the length of each input vector is 70 (i.e.,m = 70).

For a training-input pair ⟨φ, I⟩, the output label’s value denotes the probability that instruction

sequence I contains an instruction belonging to a specific opcode variant. (Note that the label’s

value is either 0 or 1.) An opcode variant is a conjunction of (i) the opcode category (e.g., ADD,

IMUL, OR, etc.), and (ii) the operands sizes. Some examples of opcode variants include ADD_32_32,

ADD_32_8, and IMUL_32_32_8.

For a given test-input formula, we are interested in predicting how likely it is for each of the

87 opcode variants in IA-32 to implement that formula. So we associate each output label with an

opcode variant, i.e., the input space is now the following mapping:

⟨f1, f2, . . . , fm⟩ 7→ ⟨l1, l2, . . . , ln⟩,

where fi is the entry corresponding to the i th feature, lj is the output label for the jth opcode

variant, and n is the number of opcode variants in IA-32. In the remainder of this section, we

use the term “label vector” to refer to the vector ⟨l1, l2, . . . , ln⟩. For example, if I of some training

input ⟨φ, I⟩ is “push ebp; add esp, 1,” the output labels corresponding to opcode variants

PUSH_32 and ADD_32_8 will be 1 in the label vector, and the remaining labels will be 0. However,

we emphasize that the labels are all independent, and our procedure is equivalent to training 87

separate k-NN-regression models, one for each opcode variant. In a discrete domain, there may

be many training-set items that lie on the same point in input space (e.g., two different formulas

can contain the same set of QFBV operators). In this case, we use the mean label count over all

instances at that point.

The training phase of k-NN regression simply involves obtaining an input feature-vector and

label vector for each ⟨φ, I⟩ pair in the corpus, and adding the pair of vectors to the input space of

the model. Later on in this section, we describe how the model is actually used to make predictions

during synthesis.

3.1.2 n-gram model. Our intended use case for the n-gram model is to estimate the commonness

of an IA-32 instruction sequence. Given a sequence of words X1,X2, . . . ,Xm whose probability we

would like to model, an n-gram model is a language model satisfying the Markov assumption

P(X1,X2, . . . ,Xm) =

m∏
i=1

P(Xi |Xi−1,Xi−2, . . . ,X1) ≈

m∏
i=1

P(Xi |Xi−1,Xi−2, . . . ,Xi−(n−1)). (1)

The assumption is that the probability of observing the i th word Xi in the context history of the

preceding i − 1 words can be approximated by the probability of observing it in the shortened

8
A metric or distance function is a function that defines a distance between two points in the input space. An example of a

metric commonly used in k-NN regression is Euclidean distance.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

Model-Assisted Machine-Code Synthesis 61:11

context history of the preceding n − 1 words. The conditional probabilities in the above equation

can be calculated from frequency counts as follows:

P(Xi |Xi−1,Xi−2, . . . ,Xi−(n−1)) =
count(Xi ,Xi−1,Xi−2, . . . ,Xi−(n−1))

count(Xi−1,Xi−2, . . . ,Xi−(n−1))

Typically, n-gram probabilities are not directly derived from frequency counts, and incorporate

some smoothing mechanism to account for unseen words or n-grams.
9

In our context, an n-gram is an instruction subsequence of length n (e.g., a bigram is a two-

instruction subsequence, a trigram is a three-instruction subsequence, etc.), and a word in an

n-gram is an individual instruction. Training the model only requires the instruction-sequence

component I of the ⟨φ, I⟩ pairs in the corpus, and just involves recording frequency counts for

various n-grams.

3.2 Synthesis Phase
We now illustrate the workings of McSynth-ML using the same example that was used in §2.2.

φ ≡ EAX′ = Mem(ESP + 10) ∧ ESP′ = ESP + 18 ∧ ZF′ = (ESP + 10 = 0)

McSynth-ML uses the same master as McSynth++, and so it splits φ into the same sub-formulas φ1
and φ2 from §2.2.

φ1 ≡ φ ≡ EAX′ = Mem(ESP + 10) φ2 ≡ ESP′ = ESP + 18 ∧ ZF′ = (ESP + 10 = 0)

McSynth-ML’s master then hands over φ1 and φ2, respectively, to slave synthesizers.

We now illustrate howMcSynth-ML’s model-assisted slave synthesizes code for φ2.McSynth-ML
first obtains a feature vector for φ2 based on the QFBV operators that appear in φ2. Some QFBV

operators that would have a 1 in their corresponding entries in the feature vector for φ2 are +
(QFBV_PLUS), ∧ (QFBV_AND), and = (QFBV_EQUALS).McSynth-ML then gives the feature vector

as input to the k-NNmodel, and obtains as output the label vector, which contains a k-NN-regression

probability for every opcode variant in IA-32. Given a query point q (input feature-vector), k-NN

predicts the probability distribution over the opcode variants as follows: k-NN finds the k training-

set items nearest to q using Euclidean distance as the metric, averages their label values, and returns

the resulting label vector as the output. Intuitively, the probability value for an opcode variant

represents the likelihood of an implementation of φ2 to contain an instruction belonging to that

opcode variant. McSynth-ML discards opcode variants whose probabilities are below a certain

threshold (say, 0.1 for this example). For our running example, this step reduces the size of the

instruction pool from 240 to 20 instructions. (Note that the pruners inherited from McSynth++ had

already reduced the size of the instruction pool from around 43,000 to 240.) Let us use P to denote

this remnant instruction pool.

Once the instruction pool has been truncated,McSynth-ML starts best-first search. The search

maintains a fringe of instruction-sequence prefixes of varying lengths. The search starts with the

empty prefix (ϵ). At any given point during the search, the prefix p that has the highest score

according to the cost heuristic c gets expanded, i.e., McSynth-ML appends every instruction in

P to p, thus expanding the contour of the fringe. The cost heuristic c for a prefix p is computed

via a combination of (i) p’s n-gram probability according to Eqn. (1), and (ii) the combined k-NN-

regression probability for the opcode variants of individual instructions in p. (c is defined in Line 25

in Alg. 3.) Because ϵ is the only prefix in the initial fringe,McSynth-ML expands it by appending

9
n-gram models that estimate probabilities directly from frequency counts encounter problems when confronted with any

n-grams that have not explicitly been seen before. In practice it is necessary to smooth the probability distributions by also

assigning non-zero probabilities to unseen words or n-grams.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

61:12 Venkatesh Srinivasan, Ara Vartanian, and Thomas Reps

Algorithm 1 Algorithm TrainModels

Input: Corpus, k , n
Output: ⟨kNNModel, nGramModel⟩

1: kNNModel← InitKNNModel(k)
2: nGramModel← InitNGramModel(n)
3: for each ⟨φ, I⟩ ∈ Corpus do
4: ipVector← GetQFBVOperators(φ)
5: labelVector← GetOpcodeVariants(I)
6: kNNModel.AddToModel(ipvector, labelVector)
7: nGramModel.UpdateCounts(I)
8: end for
9: return ⟨kNNModel, nGramModel⟩

every instruction in P to it. McSynth-ML then checks if any of the newly created candidates

implements φ2 via CEGIS. (Note that the pruners inherited from McSynth++ attempt to prune

away a newly created candidate before testing it via CEGIS.) None of the one-instruction sequences

in the fringe implement φ2, and so McSynth-ML looks for the next prefix to expand. Suppose

that the one-instruction prefix “mov esp, ⟨Imm32⟩” has the highest score according to the cost

heuristic.McSynth-ML expands it, and tests if any of the newly created two-instruction candidates

implementsφ2; none of them do. Note that now the fringe of the search contains both one-instruction

and two-instruction prefixes. Suppose that the one-instruction prefix “add esp, ⟨Imm32⟩” now
has the highest score according to the cost heuristic. McSynth-ML expands it, and tests the

resulting candidates via CEGIS. The instantiation “add esp, 10; lea esp, [esp+8]” of
the candidate C ≡ “add esp, ⟨Imm32⟩; lea esp, [esp + ⟨Imm32⟩]” implements φ2,
and so the slave returns that concrete instruction-sequence as the implementation for φ2.

The slave similarly finds the implementation “mov eax, [esp+10]” for φ1. McSynth-ML’s
master concatenates the two instruction sequences and returns the final implementation. The entire

synthesis task finishes in a few seconds.

4 ALGORITHM
In this section, we describe the algorithms used by McSynth-ML. First, we present the algorithms

for the training phase. Second, we present the algorithms for the synthesis phase. Third, we provide

correctness guarantees forMcSynth-ML’s algorithms. Finally, we present the threats to the validity

of our algorithms.

4.1 Training Phase
During the training phase, one needs to train the k-NN-regressionmodel and the n-gram language

model. Recall from §3 that the corpus for the training phase consists of millions of equivalent

⟨QFBV-formula, instruction-sequence⟩ pairs produced via symbolic execution. The algorithm for

training the models is given as Alg. 1. The algorithm takes as input the corpus, the hyperparameter

k for k-NN regression, and the length n of n-grams up to which the model should maintain n-gram

counts. (For example, if n = 3, the model maintains counts for unigrams, bigrams, and trigrams.)

The output is a pair of models: kNNModel and nGramModel.

In Alg. 1, InitKNNModel and InitNGramModel initialize parameters of the k-NN model

and the n-gram model, respectively (Lines 1 and 2). GetQFBVOperators(φ) returns an or-

dered list of ⟨opr, isPresent⟩ pairs, where isPresent is 1 if operator opr is present in φ; it is 0
otherwise (Line 4). GetQFBVOperators traverses the AST of φ, and collects QFBV operators.

GetQFBVOperators orders its output by QFBV operator. GetOpcodeVariants(I) returns

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

Model-Assisted Machine-Code Synthesis 61:13

Algorithm 2 Algorithm TruncateInstrPool

Input: φ, instrPool, kNNModel, tp
Output: instrPool

′
, labelVector

1: ipVector← GetQFBVOperators(φ)
2: labelVector← kNNModel.GetLabelVector(ipVector)
3: instrPool

′← ϵ
4: for each ⟨opc, prob⟩ ∈ labelVector do
5: if prob < tp then
6: continue
7: end if
8: instructions← instrPool.GetInstrByOpcodeVariant(opc)
9: instrPool

′
.Concat(instructions)

10: end for
11: return ⟨instrPool′, labelVector⟩

an ordered list of ⟨opc, isPresent⟩ pairs, where isPresent is 1 if instruction sequence I contains an

instruction belonging to the opcode variant opc; it is 0 otherwise (Line 5). Recall from §3.1.1 that the

opcode variant is a conjunction of opcode category and operand sizes. GetOpcodeVariants
inspects the ASTs of instructions in I to produce its output, which is ordered by opcode variant.

AddToModel adds an ⟨input-vector, label-vector⟩ pair to the input space of the k-NN-regression

model (Line 6). UpdateCounts teases apart the various n-grams of length up to n from the

instruction sequence I, and updates their counts in the model (Line 7). Recall from §3.1.2 that in

the context of McSynth-ML, an n-gram is an instruction subsequence of length n. Alg. 1 finally

returns the two models (Line 9).

4.2 Synthesis Phase
Recall from §3 thatMcSynth-ML uses the same master asMcSynth++, and so in this sub-section,

we describe only the algorithm used by McSynth-ML’s slave. In this sub-section, we use φ to refer

to a sub-formula given as input to a slave synthesizer.

Before presenting the algorithm used by the slave, we present a procedure called TruncateInstr-
Pool that uses features of φ along with k-NN regression to retain in the instruction pool only those

instructions that are highly likely to implement φ. The algorithm for TruncateInstrPool is given
as Alg. 2. The algorithm takes as inputs a formula φ, the instruction pool, and the k-NN model

built during the training phase. The role of the remaining input (tp) will be explained in the next

paragraph. TruncateInstrPool returns the remnant instruction pool, along with the label vector for

φ, as the output.
Alg. 2 first obtains the QFBV operators present in φ via GetQFBVOperators (Line 1). It

supplies that set of operators as the test vector to the k-NN-regression model, and queries for the

opcode-variant probabilities via GetLabelVector (Line 2). GetLabelVector produces as

output an ordered list of ⟨opc, prob⟩ pairs (ordered by opc), where opc is an opcode variant, and

prob is its corresponding k-NN-regression probability. Recall from §3.2 that prob represents the

likelihood of an implementation of φ to contain an instruction belonging to the opcode variant

opc. Starting with an empty instruction pool instrPool
′
(Line 3), TruncateInstrPool repeatedly adds

to instrPool
′
instructions from instrPool belonging to opcode variants whose k-NN-regression

probabilities are greater than a threshold value tp (Lines 4–10). TruncateInstrPool finally returns the
remnant instruction pool instrPool

′
, along with the label vector for φ (Line 11). instrPool

′
contains

only the instructions that, according to k-NN regression, are most likely to implement the input φ.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

61:14 Venkatesh Srinivasan, Ara Vartanian, and Thomas Reps

Algorithm 3 Algorithm McSynth-MLSlave

Input: φ, kNNModel, tp , nGramModel, max
Output: Cconc or FAIL

1: instrPool← ReadInstrPool()
2: for each instruction i ∈ instrPool do
3: if PruneFootprint(φ, i) or PruneBitsLost(φ, i) then
4: instrPool← instrPool − {i}
5: end if
6: end for
7: ⟨instrPool′, labelVector⟩ ← TruncInstrPool(φ, instrPool, kNNModel, tp)
8: prefixes← new PriorityQueue()
9: prefixes.insert(⟨ϵ , 0⟩)
10: while prefixes , ∅ do
11: ⟨p, prob⟩ ← prefixes.PopMax()
12: for each i ∈ instrPool′ do
13: C← Append(p, i)
14: ψC ← ⟨⟨C⟩⟩
15: if PruneFootprint(φ, C) or PruneBitsLost(φ, C) then
16: continue
17: end if
18: ret = CEGIS(φ, C,ψC)
19: if ret , FAIL then
20: return ret

21: end if
22: if C.length = max then
23: continue
24: end if
25: c ← (1 − λ)∗ nGramModel.GetProb(C) + λ ∗

∏
i ∈C labelVector.GetProb(OpcodeVariant(i))

26: prefixes.insert(C, c)
27: end for
28: end while
29: if tp = 0 then
30: return FAIL

31: else
32: return McSynth-MLSlave(φ, kNNModel, 0, nGramModel, max)
33: end if

Now we are ready to present the algorithm used byMcSynth-ML’s slave. Recall from §3 that the

slave performs the actual enumerative synthesis in McSynth-ML. The algorithm used by the slave

is given as Alg. 3. Alg. 3 takes the following inputs: (i) the input formula φ, (ii) a k-NN-regression
model, (iii) the threshold probability tp used in TruncateInstrPool, (iv) an n-gram-based language

model, and for pragmatic purposes (v) the maximum lengthmax of instruction-sequence prefixes to

enumerate during synthesis. The slave also takes a timeout value as an additional input (not shown

in Alg. 3). The output of Alg. 3 is either a concrete instruction-sequence Cconc that implements φ,
or FAIL if the slave could not find an implementation before the timeout expires.

The slave first reads the list of instructions from a file (via ReadInstrPool) (Line 1), and uses

the footprint-based pruner and the bits-lost-based pruner inherited fromMcSynth++ to prune away
useless instructions from the instruction pool via PruneFootprint and PruneBitsLost,
respectively (Lines 2–6). The slave then calls TruncateInstrPool, and obtains a smaller pool of

instructions (Line 7), and subsequently begins its best-first search. The fringe of the search is

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

Model-Assisted Machine-Code Synthesis 61:15

implemented as a priority queue, with instruction-sequence prefix as key and the cost heuristic

c (defined in Line 25) as priority. Recall from §3.2 that the cost-heuristic value c for a prefix p
is a combination of (i) the n-gram probability of p according to the language model (obtained

via nGramModel.GetProb), and (ii) the combined k-NN-regression probability of the opcode

variant of each instruction i in p (obtained via labelVector.GetProb(OpcodeVariant(i))). In
Line 25, λ denotes the weighting parameter for the scores obtained from the two models. The slave

initially inserts the empty prefix into the queue (Line 9). At any given point in the search, the

slave picks the prefix with the highest priority, and expands it by appending to it every instruction

in the instruction pool (Lines 11–13). The slave then checks if a candidate instruction-sequence

obtained via expansion is useless, and thus can be pruned away using the footprint-based and

bits-lost-based pruners (Lines 14–17). Candidates that escape pruning are tested for equivalence

with φ via CEGIS (Line 18). If CEGIS finds an instantiation Cconc of a candidate C that implements

φ, the slave returns that instantiation as the implementation (Lines 19–21). Otherwise, the slave

adds the (useful) candidate as a prefix in the priority queue (Line 26) provided that the length of

the candidate is not greater than max (Lines 22–24).

To preserve the completeness guarantees of McSynth-ML (see Thm. 2), if the slave fails to find

an implementation for an input φ with the truncated instruction pool, then the slave attempts to

find an implementation without truncating the instruction pool. In Alg. 3, if an implementation

could not be found when tp > 0, Alg. 3 recursively calls itself with tp = 0 (Line 32). Consequently

in that recursive call, TruncateInstrPool will default to merely returning the input instruction pool.

If an implementation could not be found even in this second attempt, the slave returns FAIL (Line

30).

4.3 Correctness
In this sub-section, we present the soundness and completeness guarantees of McSynth-ML. Because
McSynth-ML uses the same master as McSynth++, and correctness properties of McSynth++ have

been proven elsewhere [Srinivasan et al. 2016], we only discuss correctness of McSynth-MLSlave
(Alg. 3) in this section.

Theorem 1. Soundness. Alg. 3 is sound. (The formula ⟨⟨I⟩⟩ for instruction sequence I returned by
Alg. 3 is logically equivalent to the input QFBV formula φ.)

Proof. The CEGIS loop of the slave (Line 18 in Alg. 3) returns an instruction sequence I only if

⟨⟨I⟩⟩ is equivalent to φ. �

McSynth-ML’s slave has the same completeness guarantees as that of McSynth++ (Thm. 2 in

[Srinivasan et al. 2016]).

Theorem 2. Completeness. Modulo SMT timeouts and candidates that are pruned away because
of imprecision in BITS#required(φ) ([Srinivasan et al. 2016, §4.2.2]), if there exists an instruction sequence
I that (i) is equivalent to φ, and (ii) does not superfluously use/modify locations that are otherwise
unused/unmodified by φ, then Alg. 3 will find I and terminate.

Proof. McSynth-ML’s best-first search equipped with the n-gram-based and kNN-based cost

heuristic does not prune away instruction-sequence prefixes; it merely prioritizes them. Although

McSynth-ML initially tries to synthesize an implementation using a truncated instruction pool

produced by k-NN regression, if synthesis with the truncated pool fails, McSynth-ML attempts

synthesis with the untruncated instruction pool (Line 32 in Alg. 3). Consequently, the only sources

of incompleteness in McSynth-MLSlave are the pruners inherited from McSynth++ (Lines 3–5

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

61:16 Venkatesh Srinivasan, Ara Vartanian, and Thomas Reps

and 15–17 in Alg. 3), andMcSynth-ML’s slave has the same completeness guarantees as that of

McSynth++. �

4.4 Threats to Validity
There are three threats to the validity of our algorithms.

(1) The parameters of our models and algorithms need to be tuned forMcSynth-ML to synthesize
code effectively. If the parameters are significantly off, one cannot guarantee low synthesis

times using McSynth-ML. (§5 describes how we did the tuning for our experiments.)

(2) The models used by McSynth-ML should be trained with sufficient training data; failure to

do so might result in higher synthesis times.

(3) If one wishes to synthesize code that possesses a certain “quality" usingMcSynth-ML, the
implementations in the training data should also possess that “quality." For example, if one

wishes to find optimal implementations usingMcSynth-ML, one should generate training

examples using a superoptimizer [Bansal and Aiken 2006, 2008; Joshi et al. 2002; Massalin

1987; Phothilimthana et al. 2016a,b; Schkufza et al. 2013]. For our experiments, the instruction

sequences in our training data come from code sequences generated by a standard compiler

(gcc -O2), and so the implementations produced byMcSynth-ML resemble those produced

by a compiler.

5 IMPLEMENTATION
Because McSynth-ML is an extension of McSynth++, McSynth-ML has the same underlying

components as McSynth++: Transformer Specification Language (TSL) [Lim and Reps 2013] to

convert instruction sequences into QFBV formulas; ISAL [Lim and Reps 2013, §2.1] to generate

the templatized instruction pool for synthesis; and Yices [Dutertre and de Moura 2006] as its SMT

solver. Just like McSynth++, in McSynth-ML, memory is addressed at the level of individual bytes;

McSynth-ML is also capable of accepting scratch registers for synthesis [Srinivasan and Reps 2015b,

§4.4]. To implement k-NN regression, we used the scikit-learn toolkit [Pedregosa et al. 2011]. We

used the MIT Language Modeling Toolkit [Hsu and Glass 2008] for our n-gram model.

6 EXPERIMENTS
We testedMcSynth-ML on QFBV formulas obtained from instruction sequences from the SPECINT

2006 benchmark suite [Henning 2006]. Our experiments were designed to answer the following

research questions:

(1) In comparison with McSynth++, what is the speedup in synthesis time caused by McSynth-
ML’s best-first search assisted only by the n-gram model (λ = 0.0)? What is the speedup

when McSynth-ML’s best-first search is assisted only by k-NN regression (λ = 1.0)? What is

the speedup when the search is assisted by both models (λ = 0.25)?
(2) In comparison with McSynth++, on how many formulas doesMcSynth-ML timeout?

(3) In comparison with McSynth++, what is the reduction in the size of the instruction pool

caused byMcSynth-ML’s k-NN-based instruction-pool truncation?

(4) To help understand the breakdown of (potential) benefits of (i) instruction-pool trunca-

tion, and (ii) model-assisted search, how well does McSynth++ perform when its slaves are

equipped with only k-NN-based instruction-pool truncation and model-assisted best-first

search, respectively?

All experiments were run on a system with a quad-core, 3GHz Intel Xeon processor; however,

McSynth++’s algorithm is single-threaded. The system has 32 GB of memory.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

Model-Assisted Machine-Code Synthesis 61:17

Test suite (T): To answer the questions, we used a test suite that is similar to the one used

to testMcSynth++ in prior work [Srinivasan et al. 2016], consisting of QFBV formulas obtained

from a representative set of “important” instruction sequences that occur in real programs. In

the remainder of this section, we use T to denote the test suite. We used 10 binaries from the

SPECINT 2006 suite (astar, gcc, gobmk, h264ref, hmmer, libquantum, omnetpp, perl, sjeng, xalan).

The total number of non-control-modifying instructions in all binaries is around 1.8 million. For

each of the aforementioned SPECINT 2006 binaries, we harvested the most frequently occurring

instruction sequence of lengths 6 through 10, respectively (50 instruction sequences in total),

avoiding overlaps—i.e., for binary B, the fragments {I6, I7, . . ., I10} were chosen to be disjoint. We

converted each instruction sequence into a QFBV formula to produce a test suite of 50 formulas.

This test suite is more challenging for the synthesizer than the test suite that was used to test

McSynth++ in prior work [Srinivasan et al. 2016]: this test suite consists of larger formulas obtained

from longer instruction sequences.

Note that in general there is no restriction on the source of the input formula, and the formula

can come from any client; we simply chose to obtain the input formulas from instruction sequences

for experimental purposes.

Test suite for estimating the weighting parameter λ and truncation-threshold parameter tp (T ′):
To create the test suite that was used to estimate λ and tp , we used the same method as the one

outlined above to create test suite T , but we harvested the second most frequently occurring

instruction sequence from each binary, again avoiding overlaps. Note that T and T ′
are disjoint.

Training corpus: If a test formula t in either T or T ′
came from an instruction sequence in

binary B, the training data for t came from the 9 binaries other than B. For example, if a test formula

t came from a six-instruction sequence harvested from binary B1, the training data for t came from

binaries {B2, B3, . . ., B10}. The goal was to keep the training and test data independent from each

other.

To create the training data for a specific test formula t obtained from binary B, we harvested all

straight-line instruction sequences of lengths 1 through 4 from binaries other than B, which resulted

in a training corpus of around 4.4 million instruction sequences, and 612,000 unique instruction

sequences (after canonicalizing immediate operands) on average. (We report the average because

the size of the training data varies with the binary B from which t was obtained.)

Parameters for models: For our n-gram model, we chose to use Kneser-Ney smoothing. We used

10-fold cross-validation on the training corpus to pick 3 as the maximum length n up to which the

n-gram model has to maintain n-gram counts (see Alg. 1). We set as 2 the hyperparameter k of

k-NN regression (see Alg. 1) by the same cross-validation scheme.

Weighting parameter λ: We determined the weighting parameter λ (see Alg. 3) as follows: we
used the separate test suite T ′

of 50 formulas, and for different values of λ, we measured the

average synthesis time obtained viaMcSynth-ML forT ′
. We were able to obtain the lowest average

synthesis-time for the value λ = 0.25; so we set λ = 0.25 in our experiments.

Truncation-threshold parameter tp : We determined the truncation-threshold parameter tp (see

Alg. 2) as follows: using untruncated pools (i.e., truncation-threshold probability = 0.0), we syn-

thesized code for each formula in test suite T ′
. We recorded k-NN-regression probabilities of

opcode variants during each synthesis run for T ′
. Suppose that O is the set of opcode variants of

instructions occurring in the instruction sequences synthesized from formulas in T ′
. We chose

the truncation-threshold parameter tp to be the smallest non-zero k-NN-regression probability

recorded for any opcode variant in O . The value was around 0.1. ✷

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

61:18 Venkatesh Srinivasan, Ara Vartanian, and Thomas Reps

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

Sy
n

th
es

is
 t

im
e

-
M

cS
yn

th
-M

L
(s

ec
o

n
d

s)

Synthesis time - McSynth++ (seconds)

McSynth-ML: n-gram only

Fig. 4. Effect of only the n-gram model assisting McSynth-ML’s best-first
search for the corpus of 50 QFBV formulas.

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

Sy
n

th
es

is
 t

im
e

-
M

cs
yn

th
-M

L
(s

e
co

n
d

s)

Synthesis time - McSynth++ (seconds)

McSynth-ML: k-NN only

Fig. 5. Effect of only k-NN regression assisting McSynth-ML’s best-first
search for the corpus of 50 QFBV formulas.

In the remainder of this section, when we use the term “synthesis time,” we refer to the time

spent only by the slave synthesizers in McSynth++ and McSynth-ML, respectively; we do not

include the time spent by the masters becauseMcSynth++ andMcSynth-ML have identical masters.

However for all formulas in our test suite, the time spent by the master is negligible: less than 2%

of the total synthesis time.

To answer the first two research questions, we measured the synthesis time with (i) only the

n-gram-based language model supplying the cost heuristic for McSynth-ML’s best-first search
(λ = 0.0), (ii) only k-NN regression supplying the cost heuristic for McSynth-ML’s best-first search
(λ = 1.0), and (iii) both models supplying the cost heuristic for McSynth-ML’s best-first search
(λ = 0.25, determined by the method outlined above). We compared the numbers against the

baseline synthesis-time numbers obtained from McSynth++.
The results are shown in Figs. 4, 5, and 6, respectively. In the figures, the blue lines represent the

diagonals of the scatter plots. If a point lies below and to the right of the diagonal, the baseline

performs worse. All axes use logarithmic scales.McSynth++ timed out on 6 formulas. (The timeout

value was three days.) McSynth-ML did not timeout on any formula in the test suite. For the

formulas that timed out inMcSynth++ but did not timeout inMcSynth-ML, the average speedup in

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

Model-Assisted Machine-Code Synthesis 61:19

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

Sy
n

th
es

is
 t

im
e

 -
M

cS
yn

th
-M

L
(s

e
co

n
d

s)

Synthesis time - McSynth++ (seconds)

McSynth-ML Vs. McSynth++

Fig. 6. Effect of both models assisting McSynth-ML’s best-first search for
the corpus of 50 QFBV formulas.

1

10

100

1000

10000

6
_1

6
_2

6
_3

6
_4

6
_5

6
_6

6
_7

6
_8

6
_9

6
_1

0

7
_1

7
_2

7
_3

7
_4

7
_5

7
_6

7
_7

7
_8

7
_9

7
_1

0

8
_1

8
_2

8
_3

8
_4

8
_5

8
_6

8
_7

8
_8

8
_9

8
_1

0

9
_1

9
_2

9
_3

9
_4

9
_5

9
_6

9
_7

9
_8

9
_9

9
_1

0

1
0

_1

1
0

_2

1
0

_3

1
0

_4

1
0

_5

1
0

_6

1
0

_7

1
0

_8

1
0

_9

1
0

_1
0

Sy
n

th
es

is
 t

im
e

(s
ec

o
n

d
s)

Formula

Synthesis time for each formula - McSynth-ML

Fig. 7. Per formula synthesis-time numbers. (Formulas are sorted by the
length of the instruction sequence that produced the formula.)

synthesis time caused by improvements (i), (ii), and (iii) are over 573×, 222×, and 526×, respectively

(computed as a geometric mean). For the formulas that did not timeout, the average speedup in

synthesis time caused by improvements (i), (ii), and (iii) are 4.5×, 4.56×, and 4.55×, respectively.

If we consider only formulas whose baseline synthesis-time numbers are 100 seconds or more,

the speedups are more pronounced: 12.3×, 13×, and 12.6×, respectively. The n-gram model has a

more pronounced effect on the speedup for formulas that timed out in McSynth++, whereas k-NN
regression has a more pronounced effect on the speedup for the other formulas.

One can see that the points in Figs. 4–6 form clusters. The points that occupy similar positions

in the three scatter plots are actually the same formulas. The following are the characteristics of

formulas in various clusters:

• Cluster along the diagonal: The master breaks these formulas into a sequence of sub-formulas

such that each sub-formula can be implemented by a one-instruction sequence. Consequently,

the slaves of McSynth++ find the implementations quickly, and the improvements inMcSynth-
ML do not cause much of a difference.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

61:20 Venkatesh Srinivasan, Ara Vartanian, and Thomas Reps

1

10

100

1000

10000

1 10 100 1000 10000

In
st

ru
ct

io
n

-p
o

o
l s

iz
e
–

M
cS

yn
th

-M
L

Instruction-pool size - McSynth++

Instruction-pool sizes

Fig. 8. Reduction in instruction-pool sizes caused by McSynth-ML’s k-NN-based truncation.

• Vertical cluster at the right end of the scatter plot: These are the six formulas that timeout in

McSynth++. Three of the formulas come from instruction sequences of length 9, and three

from sequences of length 10. The master breaks each of these formulas into a sequence of

sub-formulas such that there exists at least one sub-formula that can only be implemented

by a three-instruction sequence.McSynth++ times out attempting to find such an instruction

sequence.

• Other two clusters: The master breaks these formulas into a sequence of sub-formulas such

that each sub-formula can be implemented by a one-instruction sequence or a two-instruction

sequence. The slaves of McSynth++ do not timeout for these formulas, but spend a non-trivial

amount of time trying to find an implementation.

Fig. 7 shows the synthesis-time numbers produced byMcSynth-ML on a per-formula basis. Each

formula in the test suite is identified by m_n, where m is the length of the instruction sequence

that produced the formula, and n identifies a specific formula. The y axis uses a logarithmic scale.

One can see that the synthesis time does not increase with m. In general, if the master breaks up a

formula φ into a sequence of sub-formulas such that the sub-formulas can only be implemented by

longer instruction sequences, synthesis of code for φ takes longer. For example, suppose that φ1 is
obtained from an instruction sequence of length 6 and φ2 from a sequence of length 10. However, all

sub-formulas of φ2 can be implemented by one-instruction sequences, whereas φ1 has a sub-formula

that can only be implemented by a three-instruction sequence; then the synthesis time for φ1 will
be greater than that for φ2.
To answer the third research question, we measured the sizes of the instruction pools used

byMcSynth++ andMcSynth-ML, respectively, for each formula in the test suite. The results are

shown in Fig. 8. The blue line represents the diagonal of the scatter plot. If a point lies below and

to the right of the diagonal, the baseline has a larger instruction pool. The axes use logarithmic

scales. Synthesis of code for each formula in the test suite requires several slave invocations, and

each slave invocation creates a new instruction pool, which is represented by a single data point

in Fig. 8. Consequently in Fig. 8, there are more than 50 data points (369 exactly). The average

reduction in instruction-pool size caused by truncation based on k-NN-regression probabilities is

9.83× (computed as a geometric mean). One can notice this order-of-magnitude improvement in

Fig. 8: all the data points roughly lie along the dotted line that represents an order-of-magnitude

improvement over the baseline.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

Model-Assisted Machine-Code Synthesis 61:21

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

Sy
n

th
es

is
 ti

m
e

-
M

cS
yn

th
++

 w
it

h
 t

ru
n

ca
te

d
 in

st
ru

ct
io

n

p
o

o
ls

 (
se

co
n

d
s)

Synthesis time - McSynth++ (seconds)

McSynth++ with Truncated Instruction Pools Vs. McSynth++

Fig. 9. Effect of k-NN-based instruction-pool truncation on McSynth++ for
the corpus of 50 QFBV formulas.

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

Sy
n

th
es

is
 ti

m
e

-
M

cS
yn

th
-M

L
(s

ec
o

n
d

s)

Synthesis time - McSynth++ with truncated instruction pools (seconds)

McSynth++ with Truncated Instruction Pools Vs. McSynth-ML

Fig. 10. Comparison of McSynth-ML against McSynth++ with truncated
instruction pools.

To answer the fourth research question, we performed two control experiments in which we

used in McSynth++’s slaves (i) linear search with instruction pools truncated by k-NN regression,

and (ii) model-assisted best-first search with untruncated pools. The goals of these experiments are

to demonstrate how well (i) the linear search in McSynth++ can perform when it is presented with

the same instruction pools as McSynth-ML, and (ii) the model-assisted search in McSynth-ML can

perform when it is presented with the same instruction pools as McSynth++. We compared the

numbers against the synthesis-time numbers obtained fromMcSynth++ andMcSynth-ML. The
results are shown in Figs. 9–12. The blue lines represent the diagonals of the scatter plot. If a point

lies below and to the right of the diagonal, the baseline performs worse. All axes use logarithmic

scales.

For the 6 formulas that timed out in McSynth++, the average speedup in synthesis time caused

only by truncating instruction pools is over 200× (computed as a geometric mean), versus 526×

speedup for McSynth-ML. For 2 out of these 6 formulas, linear search performed better than

model-assisted best-first search. For the formulas that did not timeout, the average speedup in

synthesis time caused only by truncating instruction pools is 4× (computed as a geometric mean),

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

61:22 Venkatesh Srinivasan, Ara Vartanian, and Thomas Reps

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

Sy
n

th
es

is
 t

im
e

 -
M

cS
yn

th
+

+
 w

it
h

 m
o

d
el

-a
ss

is
te

d
 b

e
st

-f
ir

st

se
ar

ch
 (

se
co

n
d

s)

Synthesis time - McSynth++ (seconds)

McSynth++ with Model-Assisted Best-First Search Vs. McSynth++

Fig. 11. Effect of model-assisted best-first search on McSynth++ for the
corpus of 50 QFBV formulas.

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

Sy
n

th
es

is
 t

im
e

 -
M

cS
yn

th
-M

L
(s

e
co

n
d

s)

Synthesis time - McSynth++ with model-assisted best-first search (seconds)

McSynth++ with Model-Assisted Best-First Search Vs. McSynth-ML

Fig. 12. Comparison of McSynth-ML against McSynth++ equipped with
model-assisted best-first search.

versus 4.55× forMcSynth-ML. For 5 out of these 44 formulas, linear search performed better than

model-assisted best-first search.

For the 6 formulas that timed out in McSynth++, the average speedup in synthesis time caused

only by the model-assisted best-first search is over 38× (computed as a geometric mean), versus

526× speedup for McSynth-ML. Model-assisted best-first search performed better than linear

search for all of these 6 formulas. (McSynth++ equipped with model-assisted search did not timeout

for any of these 6 formulas.) For the formulas that did not timeout in McSynth++, the average
speedup in synthesis time caused only by the model-assisted best-first search is 1.78× (computed as

a geometric mean), versus 4.55× for McSynth-ML. For 10 out of these 44 formulas, linear search

performed better than model-assisted best-first search. One can see that k-NN-based instruction-

pool truncation has a more pronounced effect on the speedup than model-assisted best-first search.

A summary of our experimental results is presented in Table 1. In summary, in comparison with

McSynth++,McSynth-ML speeds up the synthesis time by over 526× for the 6 formulas that timed

out in McSynth++ but did not timeout in McSynth-ML. Moreover, McSynth-ML does not timeout

on any formula in our test suite. For the formulas that did not timeout in McSynth++, McSynth++

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

Model-Assisted Machine-Code Synthesis 61:23

Table 1. Summary of experimental resuts.

speeds up the synthesis time by 4.55×. If we consider only formulas whose baseline synthesis-time

numbers are 100 seconds or more, the speedup is 12.6×.

We also summarize the speedups produced by McSynth-ML in comparison with those produced

by McSynth [Srinivasan and Reps 2015b] and McSynth++.
• In comparison with a baseline enumerative machine-code synthesizer, McSynth’s search-
space pruning heuristics reduce the synthesis time by a factor of 473, and its divide-and-

conquer strategy reduces the synthesis time by a further 3 to 5 orders of magnitude.

• McSynth++ synthesizes code for 12 out of 14 formulas on whichMcSynth times out, speeding

up the synthesis time by at least 1981×, and for the remaining formulas, speeds up synthesis

by 3×.

• McSynth-ML synthesizes code for 6 out of 50 formulas on which McSynth++ times out,

speeding up the synthesis time by at least 526×, and for the remaining formulas, speeds up

synthesis by 4.55×. (The test suite of formulas used to compare McSynth++ to McSynth was

different from the test suite used to compare McSynth-ML toMcSynth++.)

7 RELATEDWORK
Search strategies in superoptimization. Superoptimization aims to find an optimal instruction

sequence for a target instruction-sequence. (A detailed comparison of superoptimization and

machine-code synthesis is available elsewhere: see the paragraph titled “Superoptimization” in

[Srinivasan et al. 2016, §7]. While early attempts at superoptimization used linear search as the

core search strategy [Bansal and Aiken 2006, 2008; Joshi et al. 2002; Massalin 1987], modern

superoptimizers use other approaches.

The stochastic superoptimizer STOKE [Schkufza et al. 2013] uses stochastic techniques for finding

an optimal instruction sequence. STOKE uses Markov Chain Monte Carlo (MCMC) sampling to

search through the space of instruction sequences, and encodes its cost heuristic in terms of

correctness and performance. To find implementations that are algorithmically different from the

input instruction-sequence, STOKE begins its search from random points in the space of instruction

sequences (instead of starting the search from the input instruction-sequence). The stochastic

search strategy, along with the fast MCMC sampling allows STOKE to quickly synthesize larger

programs (10 - 15 x86 instructions).

The GreenThumb superoptimizer framework [Phothilimthana et al. 2016b] employs a coop-

erative search strategy: complementary enumerative, symbolic, and stochastic search strategies

work in conjunction by exchanging the best programs each search instance has discovered so

far. The cooperative strategy, along with other improvements, allow instantiations of the Green-

Thumb framework to perform better than STOKE: the GreenThumb instantiations optimize the

benchmarks faster, and obtain better (faster) implementations.

STOKE and GreenThumb employ stochastic strategies for the search, which renders the search

incomplete. In comparison, McSynth-ML uses a model-assisted best-first search, which merely

prioritizes (reorders) the candidates during search, while maintaining completeness guarantees.

Moreover, unlike McSynth-ML, superoptimizers only use information obtained from the input

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

61:24 Venkatesh Srinivasan, Ara Vartanian, and Thomas Reps

instruction-sequence to guide the search; they do not use models learned from code-sequences to

guide the search.

Model-assisted synthesis. Recent works in program synthesis have employed models learned

from a corpus of programs to assist synthesis.

• Slang is a code-completion tool that uses API calls to fill holes in a partial program [Raychev

et al. 2014]. Slang learns two language models from a corpus of API-call sequences harvested

from programs: an n-gram model and a recurrent neural-network (RNN) model. Slang fills

the holes in a test program with the most likely API calls according to the models.

• anyCode synthesizes well-formed Java expressions from free-form queries containing a

mixture of English and Java [Gvero and Kuncak 2015]. anyCode uses a conjunction of the

following to synthesize and rank expressions: (i) natural-language processing (NLP) tools

to process the input English text, and (ii) language models and a probabilistic context-free-

grammar model built from corpus of Java programs.

• JSNice predicts names and types for identifiers in JavaScript programs [Raychev et al. 2015].

JSNice learns a probabilistic model (employing conditional random fields) for program

properties from a huge corpus of existing programs, and uses the model to predict names

and type annotations in a test program.

McSynth-ML advances the state-of-the-art in model-assisted synthesis in the following ways:

• While existing approaches commonly use language models to find most likely code comple-

tions, McSynth-ML uses a language model to assist in synthesizing an entire low-level code

sequence.

• None of the existing model-assisted-synthesis techniques employ a model that correlates

features of implementations with features of specifications, and subsequently use that model

to find the most likely implementation for a test specification. To the best of our knowl-

edge,McSynth-ML is the first model-assisted synthesizer that learns such a model to assist

synthesis.

8 CONCLUSION
In this paper, we presentedMcSynth-ML, the first low-level-code synthesizer that uses machine

learning to assist synthesis. Instead of the linear search used by McSynth++ (a state-of-the-art

machine-code synthesizer), McSynth-ML uses a novel model-assisted best-first search as the core

search strategy. The cost heuristic for the search comes from two models trained over a corpus of

4.4 million specifications (QFBV formulas) and implementations (instruction sequences). One model

is an n-gram-based language model, which steers the search towards common/useful instruction

sequences. The other is a k-NN-regression model that correlates features of implementations with

features of specifications, and steers the search towards instruction sequences that are highly

likely to implement the input formula. We evaluated McSynth-ML on a test suite consisting of 50

formulas. Our experiments show thatMcSynth-ML synthesizes code for all 6 of the formulas on

whichMcSynth++ times out, speeding up their synthesis by at least 526×. For the remaining 44

formulas,McSynth-ML speeds up synthesis by 4.55×.

One possible direction for future work is to develop binary-rewriting clients that deal with

large QFBV formulas, and subsequently measure the improvements to rewriting times caused by

McSynth-ML. Existing binary rewriters that use McSynth++ include the machine-code partial

evaluator WiPEr [Srinivasan and Reps 2015a] and the machine-code slicer McSlice [Srinivasan and

Reps 2016]. However, bothWiPEr andMcSlice perform rewriting on a per-instruction basis, and

produce formulas that could be implemented mostly by one-instruction sequences (and sometimes

by two-instruction sequences). For these small formulas, McSynth++ proves to be sufficient for

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

Model-Assisted Machine-Code Synthesis 61:25

purposes of synthesis. Potential candidates for rewriting tools that deal with larger formulas are

tools that perform rewriting on a per-basic-block basis: binary translators [Bansal and Aiken 2008],

deobfuscators [Yadegari et al. 2015], etc. It remains for future work to implement such a tool, and

compare the rewriting times obtained via McSynth++ and McSynth-ML.

ACKNOWLEDGMENTS
This work was supported in part by a gift from Rajiv and Ritu Batra; by AFRL under DARPA

MUSE award FA8750-14-2-0270 and DARPA STAC award FA8750-15-C-0082; by NSF under grant

CCF-1423237; and by the UW-Madison Office of the Vice Chancellor for Research and Graduate

Education with funding from the Wisconsin Alumni Research Foundation. Any opinions, findings,

and conclusions or recommendations expressed in this publication are those of the authors, and do

not necessarily reflect the views of the sponsoring agencies.

Thomas Reps has an ownership interest in GrammaTech, Inc., which has licensed elements of

the technology reported in this publication.

REFERENCES
M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. 2005. Control-flow Integrity. In CCS.
G. Balakrishnan and T. Reps. 2010. WYSINWYX: What You See Is Not What You eXecute. TOPLAS 32, 6 (2010).
S. Bansal and A. Aiken. 2006. Automatic Generation of Peephole Superoptimizers. In ASPLOS.
S. Bansal and A. Aiken. 2008. Binary Translation Using Peephole Superoptimizers. In OSDI.
D. Brumley, I. Jager, T. Avgerinos, and E. Schwartz. 2011. BAP: A Binary Analysis Platform. In CAV.
B. Dutertre and L. de Moura. 2006. Yices: An SMT Solver. (2006). http://yices.csl.sri.com/.

K. ElWazeer, K. Anand, A. Kotha, M. Smithson, and R. Barua. 2013. Scalable Variable and Data Type Detection in a Binary

Rewriter. In PLDI.
Ú. Erlingsson and F.B. Schneider. 1999. SASI Enforcement of Security Policies: A Retrospective. InWorkshop on New Security

Paradigms.
T. Gvero and V. Kuncak. 2015. Synthesizing Java expressions from free-form queries. In OOPSLA.
J. Henning. 2006. SPEC CPU2006 Benchmark Descriptions. SIGARCH Comput. Archit. News 34, 4 (2006), 1–17.
B. Hsu and J. Glass. 2008. Iterative Language Model Estimation: Efficient Data Structure and Algorithms. In Interspeech.
R. Joshi, G. Nelson, and K. Randall. 2002. Denali: A Goal-directed Superoptimizer. In PLDI.
J. Lim, A. Lal, and T. Reps. 2011. Symbolic Analysis via Semantic Reinterpretation. Softw. Tools for Tech. Transfer 13, 1 (2011),

61–87.

J. Lim and T. Reps. 2013. TSL: A system for generating abstract interpreters and its application to machine-code analysis.

TOPLAS 35, 4 (2013).
H. Massalin. 1987. Superoptimizer: A Look at the Smallest Program. In ASPLOS.
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,

J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine Learning

in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

P. Phothilimthana, A. Thakur, R. Bodik, and D. Ghurjati. 2016a. GreenThumb: Superoptimizer Construction Framework.
UCB/EECS-2016-8. University of California–Berkeley Tech Report. http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/

EECS-2016-8.pdf

P. Phothilimthana, A. Thakur, R. Bodik, and D. Ghurjati. 2016b. Scaling up Superoptimization. In ASPLOS.
V. Raychev, M. Vechev, and A. Krause. 2015. Predicting Program Properties from“Big Code". In POPL.
V. Raychev, M. Vechev, and E. Yahav. 2014. Code Completion with Statistical Language Models. In PLDI.
H. Saïdi. 2008. Logical Foundation for Static Analysis: Application to Binary Static Analysis for Security. ACM SIGAda Ada

Letters 28, 1 (2008), 96–102.
E. Schkufza, R. Sharma, and A. Aiken. 2013. Stochastic Superoptimization. In ASPLOS.
A. Slowinska, T. Stancescu, and H. Bos. 2012. Body Armor for Binaries: Preventing Buffer Overflows Without Recompilation.

In ATC.
D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. Kang, Z. Liang, J. Newsome, P. Poosankam, and P. Saxena. 2008.

BitBlaze: A New Approach to Computer Security via Binary Analysis. In Int. Conf. on Information Systems Security.
V. Srinivasan and T. Reps. 2015a. Partial Evaluation of Machine Code. In OOPSLA.
V. Srinivasan and T. Reps. 2015b. Synthesis of Machine Code from Semantics. In PLDI.
V. Srinivasan and T. Reps. 2016. An Improved Algorithm for Slicing Machince Code. In OOPSLA.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-8.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-8.pdf

61:26 Venkatesh Srinivasan, Ara Vartanian, and Thomas Reps

V. Srinivasan, T. Sharma, and T. Reps. 2016. Speeding-up Machine-Code Synthesis. In OOPSLA.
B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray. 2015. A Generic Approach to Automatic Deobfuscation of

Executable Code. In S&P.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 61. Publication date: October 2017.

	Abstract
	1 Introduction
	2 Background
	2.1 QFBV Formulas for Expressing Specifications
	2.2 Overview of McSynth++

	3 Overview
	3.1 Training Phase
	3.2 Synthesis Phase

	4 Algorithm
	4.1 Training Phase
	4.2 Synthesis Phase
	4.3 Correctness
	4.4 Threats to Validity

	5 Implementation
	6 Experiments
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

