
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

An Improved Algorithm for Slicing Machine Code ∗

Venkatesh Srinivasan
University of Wisconsin–Madison, USA

venk@cs.wisc.edu

Thomas Reps
University of Wisconsin–Madison

and GrammaTech, Inc., USA
reps@cs.wisc.edu

Abstract
Machine-code slicing is an important primitive for building
binary analysis and rewriting tools, such as taint trackers,
fault localizers, and partial evaluators. However, it is not
easy to create a machine-code slicer that exhibits a high
level of precision. Moreover, the problem of creating such a
tool is compounded by the fact that a small amount of local
imprecision can be amplified via cascade effects.

Most instructions in instruction sets such as Intel’s IA-32
and ARM are multi-assignments: they have several inputs
and several outputs (registers, flags, and memory locations).
This aspect of the instruction set introduces a granularity is-
sue during slicing: there are often instructions at which we
would like the slice to include only a subset of the instruc-
tion’s semantics, whereas the slice is forced to include the
entire instruction. Consequently, the slice computed by state-
of-the-art tools is very imprecise, often including essentially
the entire program.

This paper presents an algorithm to slice machine code
more accurately. To counter the granularity issue, our algo-
rithm performs slicing at the microcode level, instead of the
instruction level, and obtains a more precise microcode slice.
To reconstitute a machine-code program from a microcode
slice, our algorithm uses machine-code synthesis. Our ex-
periments on IA-32 binaries of FreeBSD utilities show that,
in comparison to slices computed by a state-of-the-art tool,
our algorithm reduces the size of backward slices by 33%,
and forward slices by 70%.

∗ Supported, in part, by a gift from Rajiv and Ritu Batra; by AFRL under DARPA
MUSE award FA8750-14-2-0270, and DARPA STAC award FA8750-15-C-0082; and
by the UW-Madison Office of the Vice Chancellor for Research and Graduate Edu-
cation with funding from the Wisconsin Alumni Research Foundation. Any opinions,
findings, and conclusions or recommendations expressed in this publication are those
of the authors, and do not necessarily reflect the views of the sponsoring agencies. T.
Reps has an ownership interest in GrammaTech, Inc., which has licensed elements of
the technology reported in this publication.

Categories and Subject Descriptors F.3.2 [Semantics of
Programming Languages]: Program Analysis

Keywords Program slicing, machine code, microcode-
level SDG, granularity issue, program reconstitution,
machine-code synthesis, IA-32 instruction set

1. Introduction
One of the most useful primitives in program analysis is slic-
ing [18, 34]. A slice consists of the set of program points
that affect (or are affected by) a given program point p and
a subset of the variables at p.1 Backward slicing computes
the set of program points that might affect the slicing cri-
terion; forward slicing computes the set of program points
that might be affected by the slicing criterion. Slicing has
many applications, and is used extensively in program anal-
ysis and software-engineering tools (e.g., see pages 64 and
65 in [3]). Binary analysis and rewriting has received an in-
creasing amount of attention from the academic community
in the last decade (e.g., see references in [29, §7], [4, §1], [10,
§1], [14, §7]), which has led to the development and wider
use of binary analysis and rewriting tools. Improvements in
machine-code2 slicing could significantly increase the pre-
cision and/or performance of several existing tools, such as
partial evaluators [30], taint trackers [9], and fault localiz-
ers [35]. Moreover, a machine-code slicer could be used as a
black box to build new binary analysis and rewriting tools.

State-of-the-art machine-code-analysis tools [5, 10] re-
cover an instruction-level system dependence graph (SDG)3

from a binary, and use an existing source-code slicing al-
gorithm [18, 25] to perform slicing on the recovered SDG.
(An instruction-level SDG is an SDG in which nodes are
entire instructions.) However, the computed slices are ex-
tremely imprecise, often including the entire binary. Instruc-
tions in most Instruction Set Architectures (ISAs) such as
IA-32 [19] and ARM [2] are multi-assignments: they have
several inputs and several outputs (e.g., registers, flags, and

1 In the literature, program point p and the variable set are called the slicing criterion
[34]. In this paper, when we refer to a program point p as the “slicing criterion,” we
mean p and all the variables used at p.
2 We use the term “machine code” to refer generically to low-level code, and do
not distinguish between the actual machine-code bits/bytes and the assembly code to
which it is disassembled.
3 The SDG is an intermediate representation used for slicing; see §2.1.



memory locations). The multi-assignment nature of instruc-
tions introduces a granularity issue during slicing: although
we would like the slice to include only a subset of an in-
struction’s microcode,4 the slice is forced to include the
entire instruction. This granularity issue can have a cas-
cade effect: irrelevant microcode included at an instruction
can cause irrelevant instructions to be included in the slice,
and such irrelevant instructions can cause even more irrel-
evant instructions to be included in the slice, and so on.
Consequently, straightforward usage of source-code slic-
ing algorithms on an instruction-level SDG yields imprecise
machine-code slices.

In this paper, we present an algorithm to perform more
precise context-sensitive interprocedural machine-code slic-
ing. Our algorithm is specifically tailored for ISAs and other
low-level code that have multi-assignment instructions. Our
algorithm works on SDGs recovered by existing tools, and
is parameterized by the ISA of the instructions in the binary.

Our improved slicing algorithm should have many po-
tential benefits. More precise machine-code slicing could
be used to improve the precision of other existing analyses
that work on machine code. For example, more precise for-
ward slicing could improve binding-time analysis (BTA) in
a machine-code partial evaluator [30]. More precise slicing
could also be used to reduce the overhead of taint trackers
[9] by excluding from consideration portions of the binary
that are not affected by taint sources. Beyond improving ex-
isting tools, more precise slicers created by our technique
could be used as black boxes for the development of new bi-
nary analysis and rewriting tools (e.g., tools for software se-
curity, fault localization, program understanding, etc.). Our
more precise backward-slicing algorithm could be used to
extract an executable component from a binary, e.g., a word-
count program from the wc utility. (See §6.1.) One could con-
struct more accurate dependence models for libraries that
lack source code by slicing the library binary. A machine-
code slicer is a useful tool to have when a slicer for a specific
source language is unavailable.

We have implemented our algorithm in a tool, called MC-
SLICE, which slices Intel IA-32 binaries. MCSLICE uses
the instruction-level SDG recovered by an existing tool,
CodeSurfer/x86 [5]. MCSLICE performs slicing at the mi-
crocode level instead of the instruction level. MCSLICE first
converts the instruction-level SDG into a microcode-level
SDG (µ-SDG): MCSLICE splits each node containing a
multi-assignment instruction into multiple microcode nodes
(each new node contains an individual assignment), and re-
computes data-dependence edges between the newly created
microcode nodes. MCSLICE uses quantifier-free bit-vector
(QFBV) logic formulas to explicitly represent the microcode
at each node. MCSLICE then uses an existing interprocedu-
ral context-sensitive slicing algorithm [18, 25] to slice over

4 In this paper, we use the term “microcode” as a synonym for a specification
of an instruction’s concrete operational-semantics.

the constructed µ-SDG. The final slice includes only the mi-
crocode that is relevant to the slicing criterion.

Some clients of the slicing algorithm might require the
results to be reported as executable machine code instead
of a microcode slice (e.g., executable procedure/component
extraction). This requirement introduces a new issue: how
to reconstitute a machine-code program from a microcode
slice; the slicing algorithm must now generate machine code,
which is at a higher level, from the microcode fragments
included in the slice. MCSLICE addresses the program-
reconstitution issue via machine-code synthesis: MCSLICE

uses an existing machine-code synthesizer [31] to synthe-
size machine code for the microcode in the slice. By this
means, MCSLICE obtains an executable machine-code pro-
gram from a precise microcode slice.

Contributions. The paper’s contributions include the fol-
lowing:
• We identify the granularity issue caused by using source-

code slicing algorithms on an instruction-level SDG, and
show how the issue can lead to very imprecise machine-
code slices (§3.1).

• We present an algorithm for machine-code slicing that is
more precise than prior work. Our algorithm overcomes
the granularity issue by converting an instruction-level
SDG into a microcode-level SDG, and using an existing
slicing algorithm over the microcode-level SDG (§4.1).

• We show how machine-code synthesis can be used to
reconstitute a machine-code program from a microcode
slice (§4.2).

• As a case study of an application of our slicing algorithm,
we show how to use our improved slicer to extract an
executable component from a binary (§6.1).

• Our algorithm uses QFBV formulas to represent mi-
crocode, and thus is not tied to a specific binary-analysis
platform. Consequently, our algorithm can be used to im-
prove slicing in other binary-analysis platforms that suf-
fer from the granularity and program-reconstitution is-
sues. (See §2.1.)

Our methods have been implemented in an IA-32 slicer
called MCSLICE. We present experimental results with MC-
SLICE, which show that, on average, MCSLICE reduces the
sizes of slices obtained from a state-of-the-art tool by 33%
for backward slices, and 70% for forward slices.

2. Background
In this section, we briefly describe how state-of-the-art tools
recover from a binary an SDG on which to perform machine-
code slicing (§2.1), and a logic to express the semantics of
IA-32 instructions (§2.2).

2.1 SDG Recovery and Slicing for Machine Code
Slicing is typically performed using an Intermediate Rep-
resentation (IR) of the binary called a system dependence
graph (SDG) [15, 18]. To build an SDG for a program, one
needs to know the set of variables that might be used and



main:

1: push ebp

2: mov ebp,esp

3: sub esp,10

4: mov [esp],1

5: ...

[ESP7→(AR main,-4)][EBP7→ >], USE#={EBP, ESP}, KILL#={ESP, (AR main,0)}
[ESP7→(AR main,0)][EBP7→ >][(AR main,0)7→ >], USE#={ESP}, KILL#={EBP}
[ESP7→(AR main,0)][EBP7→(AR main,0)][(AR main,0) 7→ >], USE#={ESP}, KILL#={ESP}
[ESP7→(AR main,10)][EBP7→(AR main,0)][(AR main,0) 7→ >], USE#={ESP}, KILL#={(AR main,10)}
[ESP7→(AR main,10)][EBP7→(AR main,0)][(AR main,0) 7→ >][(AR main,10) 7→1] − , −

Figure 1: VSA state before each instruction in a small code snippet, and the USE# and KILL# sets for each instruction.

killed in each statement of the program. However in machine
code, there is no explicit notion of variables. In this section,
we briefly describe how CodeSurfer/x86 [5] (a state-of-the-
art tool for machine-code analysis) recovers “variable-like”
abstractions from a binary, and uses those abstractions to
construct an SDG and perform slicing.

CodeSurfer/x86 uses value-set analysis (VSA) [4] to
compute the abstract state (σVSA) that can arise at each pro-
gram point. σVSA maps an abstract location to an abstract
value. An abstract location (a-loc) is a “variable-like” ab-
straction recovered by the analysis [4, §4]. (In addition to
these variable-like abstractions, a-locs also include IA-32
registers and flags.) An abstract value (value-set) holds an
over-approximation of the values that each a-loc can have at
a given program point. For example, Fig. 1 shows the VSA
state before each instruction in a small IA-32 code snippet.
In Fig. 1, an a-loc of the form (AR main, n) denotes the
variable-like proxy at offset −n in the activation record of
function main, and > denotes any value. In reality, the VSA
state before instruction 4 contains value-sets for the flags set
by the sub instruction. However, to reduce clutter, we have
not shown the flag a-locs in the VSA state. For each instruc-
tion i in the binary, CodeSurfer/x86 uses the abstract state to
compute USE#(i, σVSA) (KILL#(i, σVSA)), which is the set
of a-locs that might be used (modified) by i. The USE# and
KILL# sets for each instruction in the code snippet are also
shown in Fig. 1.

To perform VSA, use/kill analysis, and other analyses,
CodeSurfer/x86 internally uses a specification of the con-
crete operational-semantics of IA-32 instructions written in
the Transformer Specification Language (TSL) [20]. Writing
a TSL specification for IA-32 instructions is similar to writ-
ing an IA-32 interpreter in first-order ML. (The TSL speci-
fication for the instruction add eax,ebx is given as Fig. 2.)
CodeSurfer/x86 reinterprets the TSL specification of an in-
struction i’s semantics to create different abstract transform-
ers for i, which can be used in different analyses.

CodeSurfer/x86 uses the results of VSA and use/kill anal-
ysis to build a collection of IRs, including an SDG and a
control-flow graph (CFG). An SDG consists of a set of pro-
gram dependence graphs (PDGs), one for each procedure in
the program. A node in a PDG corresponds to a construct
in the program, such as an instruction, a call to a procedure,
a procedure entry/exit, an actual parameter of a call, or a
formal parameter of a procedure. The edges correspond to
data and control dependences between the nodes [15]. For
example, in the system-dependence subgraph for the code

reg : EAX | EBX | . . .
f l a g : ZF | SF | . . .
i n s t r u c t i o n : ADD(EAX,EBX) | . . .
s t a t e : State (MAP[ reg , INT32 ] , / / r e g i s t e r s

MAP[ f l ag , BOOL] , / / f l a g s
MAP[ INT32 , INT8 ] ) / / memory

s ta te i n t e r p I n s t r ( i n s t r u c t i o n I , s t a t e S) {
wi th (S) (

State ( regs , f l ags , memory ) :
w i th ( I ) (
ADD(EAX,EBX) :

l e t v1 = regs [EAX ] ;
v2 = regs [EBX ] ;
res = v1+v2 ;
regs1 = regs [EAX 7→ res ] ;
f l ags1 = f l a g s [ ZF 7→ res == 0 ] ;
f l ags2 = f l ags1 [SF 7→ res <s 0 ] ;
f l ags3 = f l ags2 [CF 7→ −1∗(v1−1)<u v2 ] ;
f l ags4 = f l ags3 [AF 7→ −1∗(−16 | v1 & 15)

−1<u v2 & 1 5 ] ;
f l ags5 = f l ags4 [OF 7→ ( v1 >=s0 &&

v2 >=s0 || EAX<s 0) &&
(EAX >=s0 && res <s0 ||
v1 <s0 && res >=s 0 ) ] ;

f l ags6 = f l ags5 [PF 7→ ( ( res & 255 ˆ
( res & 255) >>l1 ˆ ( res & 255 ˆ
( res & 255) >>l 1) >>l2 ˆ
( res & 255 ˆ ( res & 255) >>l1 ˆ
( res & 255 ˆ ( res & 255) >>l 1)
>>l 2) >>l 4) & 1) == 0 ] ;

i n State ( regs1 , f lags6 , memory ) ,
. . .

) )
}

Figure 2: TSL specification for
the instruction add eax,ebx.

addr 0x0 @asm ”add %eax,%ebx”
label pc 0x0
t:u32 = R EBX:u32
R EBX 74:u32 = R EBX:u32 + R EAX:u32
R CF:bool = R EBX 74:u32 ¡ t:u32
temp:u32 = R EBX 74:u32 ∧ t:u32
temp 77:u32 = temp:u32 ∧ R EAX:u32
temp 78:u32 = 0x10:u32 & temp 77:u32
R AF:bool = 0x10:u32 == temp 78:u32
temp 80:u32 = ∼R EAX:u32
temp 81:u32 = t:u32 ∧ temp 80:u32
temp 82:u32 = t:u32 ∧ R EBX 74:u32
temp 83:u32 = temp 81:u32 & temp 82:u32
R OF:bool = high:bool(temp 83:u32)
temp 85:u32 = R EBX 74:u32� 7:u32
temp 86:u32 = R EBX 74:u32� 6:u32
temp 87:u32 = temp 85:u32 ∧ temp 86:u32
temp 88:u32 = R EBX 74:u32� 5:u32
temp 89:u32 = temp 87:u32 ∧ temp 88:u32
temp 90:u32 = R EBX 74:u32� 4:u32
temp 91:u32 = temp 89:u32 ∧ temp 90:u32
temp 92:u32 = R EBX 74:u32� 3:u32
temp 93:u32 = temp 91:u32 ∧ temp 92:u32
temp 94:u32 = R EBX 74:u32� 2:u32
temp 95:u32 = temp 93:u32 ∧ temp 94:u32
temp 96:u32 = R EBX 74:u32� 1:u32
temp 97:u32 = temp 95:u32 ∧ temp 96:u32
temp 98:u32 = temp 97:u32 ∧ R EBX 74:u32
temp 99:bool = low:bool(temp 98:u32)
R PF:bool = ∼temp 99:bool
R SF:bool = high:bool(R EBX 74:u32)
R ZF:bool = 0:u32 == R EBX 74:u32

Figure 3: BIL code for the
instruction add eax,ebx [11].
BIL is the UAL used in BAP.

snippet in Fig. 1, there is a control-dependence edge from
the entry of main to instructions 1, 2, 3, and 4; there is a
data-dependence edge from instruction 1, which assigns to
the stack-pointer register ESP, to instructions 2 and 3, which
use ESP, as well as from instruction 3 to instruction 4.

In a PDG, a procedure call is associated with two nodes:
a call-expression node, which contains the call instruction,
and a call-site node, which is a control node. PDGs are
connected together with interprocedural control-dependence
edges between call-site nodes and procedure-entry nodes,
and interprocedural data-dependence edges between ac-
tual parameters and formal parameters/return values. (See
Fig. 12 for an example SDG with interprocedural edges.)

CodeSurfer/x86 uses an existing interprocedural-slicing
algorithm [18, 25] to perform machine-code slicing on the
recovered SDG.

Other platforms for machine-code slicing. Apart from
CodeSurfer/x86, there are other machine-code analysis plat-
forms, such as Vine [29], REIL [13], and BAP [10]. Vine
and BAP perform VSA, and recover an SDG from a binary,
on which slicing can be done.

These platforms use Universal Assembly Language
(UAL) to represent the semantics of instructions. (Typically,
an instruction’s microcode is a sequence of UAL updates—
see Fig. 3.) The SDG recovered by BAP and Vine is sim-
ilar to the one recovered by CodeSurfer/x86 in that nodes



of the SDG are entire instructions, and not individual UAL
updates. Because of the program-reconstitution issue—and
because the “semantic gap” between instructions and mi-
crocode could potentially confuse users—BAP and Vine re-
port information at the entire-instruction level. (If results
were reported at the microcode level, it would be a bit
like having a source-level slicing tool report its results at
the machine-code level.) Consequently, BAP and Vine also
face the granularity and program-reconstitution issues dur-
ing slicing.

One can think of UAL as a flattened variant of the
QFBV representation of microcode used in MCSLICE. Con-
sequently, the techniques presented in this paper can be ap-
plied in a straightforward manner to other binary-analysis
platforms that use UAL. In particular, because our work pro-
vides a solution to the program-reconstitution issue, it pro-
vides a way to solve the analogous problem—and thereby
improve—UAL-based systems.

2.2 QFBV Formulas for IA-32 Instructions
The operational semantics (microcode) of IA-32 instructions
can be expressed formally by QFBV formulas. MCSLICE

uses QFBV formulas as the explicit representation of mi-
crocode in SDG nodes. We chose QFBV formulas to repre-
sent microcode because of the following reasons:
• QFBV provides a standard way of specifying microcode

that is not tied to a specific binary-analysis platform.
• Conversion of microcode specified in TSL, BIL, etc.,

to QFBV formulas is straightforward, and encoders that
perform this conversion are readily available. Conse-
quently, it is straightforward to use our technique with
any binary-analysis platform.

• The use of QFBV allows MCSLICE to be coupled with a
machine-code synthesizer [31], which synthesizes an in-
struction sequence from a QFBV formula. This approach
allows MCSLICE to reconstitute machine-code programs
from microcode slices.

• Usage of QFBV allows MCSLICE to be extended in
the future to use SMT-based techniques for constructing
more accurate SDGs.
Consider a quantifier-free bit-vector logic L over finite

vocabularies of constant symbols and function symbols. We
will be dealing with a specific instantiation of L, denoted
by L[IA-32]. (L can also be instantiated for other ISAs.) In
L[IA-32], some constants represent IA-32’s registers (EAX,
ESP, EBP, etc.), and some represent flags (CF, SF, etc.).
L[IA-32] has only one function symbol “Mem,” which de-
notes memory. The syntax of L[IA-32] is defined in Fig. 4.
A term of the form ite(ϕ,T1,T2) represents an if-then-else
expression. A FuncExpr of the form FE[T1 7→ T2] denotes a
function-update expression.

The function 〈〈·〉〉 encodes an IA-32 instruction as a
QFBV formula. While others have created such encodings
by hand (e.g., [26]), we use a method that takes a speci-
fication of the concrete operational semantics of IA-32 in-

T ∈ Term, ϕ ∈ Formula, FE ∈ FuncExpr

c ∈ Int32 = {..., -1, 0, 1, ...} b ∈ Bool = {True, False}
IInt32 ∈ Int32Id = {EAX, ESP, EBP, ...}

IBool ∈ BoolId = {CF, SF, ...} F ∈ FuncId = {Mem}
op ∈ BinOp = {+, −, ...} bop ∈ BoolOp = {∧, ∨, ...}

rop ∈ RelOp = {=, 6=, <, >, ...}
T ::= c | IInt32 | T1 op T2 | ite(ϕ,T1,T2) | F(T1)

ϕ ::= b | IBool | T1 rop T2 | ¬ϕ1 | ϕ1 bopϕ2 | F = FE

FE ::= F | FE1[T1 7→ T2]

Figure 4: Syntax of L[IA-32].

int add(int a, int b){
int c = a + b;
return c;

}
int square(int a){
int b = a * a;
return b;

}

int main(){
int a = 10, b = 20;
int c = add(a, b);
int d = square(c);

return a - b ;

}

Figure 5: Source code for the diff program, and the backward slice
with respect to the return value of main.

structions and creates a QFBV encoder automatically. The
method reinterprets each semantic operator as a QFBV
formula-constructor or term-constructor (see [21]). To write
formulas that express state transitions, all Int32Ids, BoolIds,
and FuncIds can be qualified by primes (e.g., Mem′). The
QFBV formula for an instruction is a restricted 2-vocabulary
formula that specifies a state transformation. It has the form∧

m

(I′m = Tm) ∧
∧

n

(J′n = ϕn) ∧Mem′ = FE, (1)

where I′m and J′n range over the constant symbols for registers
and flags, respectively. The primed vocabulary is the post-
state vocabulary, and the unprimed vocabulary is the pre-
state vocabulary. The QFBV formulas for the instructions in
Fig. 1 are given below. (To reduce clutter, we pretend that
the sub instruction sets only the zero flag ZF.)

〈〈push ebp〉〉≡ESP′=ESP−4∧Mem′=Mem[ESP−4 7→EBP]

〈〈mov ebp,esp〉〉 ≡ EBP′ = ESP

〈〈sub esp,10〉〉≡ESP′=ESP−10 ∧ ZF′=((ESP−10)=0)

〈〈mov [esp],1〉〉 ≡ Mem′ = Mem[ESP 7→ 1]

In this section, and in the rest of the paper, we show
only the portions of QFBV formulas that express how the
state is modified. QFBV formulas actually contain identity
conjuncts of the form I′ = I, J′ = J, and Mem′ = Mem for
constants and functions that are unmodified.

3. Overview
In this section, we use two example programs to illustrate
the granularity issue involved in slicing binaries using state-
of-the-art tools, and the improved slicing technique used in
MCSLICE.



add:
1: push ebp
2: mov ebp,esp
3: sub esp,4
4: mov eax,[ebp+12]
5: add eax,[ebp+8]
6: mov [ebp-4],eax
7: mov eax,[ebp-4]
8: leave
9: ret

square:
10: push ebp
11: mov ebp,esp
12: sub esp,4
13: mov eax,[ebp+8]
14: imul eax,[ebp+8]
15: mov [ebp-4],eax
16: mov eax,[ebp-4]
17: leave
18: ret

main:
19: push ebp
20: mov ebp,esp
21: sub esp,16
22: mov [ebp-16],10
23: mov [ebp-12],20
24: push [ebp-12]
25: push [ebp-16]
26: call add
27: add esp,8
28: mov [ebp-8],eax
29: push [ebp-8]
30: call square
31: add esp,4
32: mov [ebp-4],eax
33: mov eax,[ebp-16]
34: mov ebx,[ebp-12]

35: sub eax,ebx

36: leave
37: ret

Figure 6: Assembly listing for diff with the imprecise backward
slice computed by CodeSurfer/x86.

3.1 Granularity Issue in Machine-Code Slicing
Consider the C program diff shown in Fig. 5. The main

function contains calls to functions add and square. main
does not use the return values of the calls, and simply returns
the difference between two local variables a and b. Suppose
that we want to compute the program points that affect
main’s return value (boxed in Fig. 5). The backward slice
with respect to main’s return value gets us the desired result.
The backward slice is highlighted in gray in Fig. 5. (This
source-code slice is computed using CodeSurfer/C [1].)

Let us now slice the same program with respect to the
analogous slicing criterion at the machine-code level. The
assembly listing for diff is shown in Fig. 6. The correspond-
ing slicing criterion is the boxed instruction in Fig. 6. (The
EAX register holds the return value of main at the end of the
program. Hence, we slice with respect to the final assign-
ment to EAX, which is performed by the boxed instruction
in Fig. 6.) The backward slice with respect to the slicing cri-
terion includes the lines highlighted in gray in Fig. 6. (The
slice is computed using CodeSurfer/x86.) One can see that
the entire body of the add function—which is completely
irrelevant to the slicing criterion—is included in the slice.
What went wrong?

Machine-code instructions are usually multi-
assignments: they have several inputs, several outputs
(e.g., registers, flags, and memory locations), and several
microcode updates. This aspect of the language introduces
a granularity issue during slicing: in some cases, although
we would like the slice to include only a subset of an
instruction’s microcode updates, the slicing algorithm
is forced to include the entire instruction. For example,
consider instruction 29 in Fig. 6 whose QFBV formula is

〈〈push[ebp-8]〉〉≡ESP′=ESP−4 ∧
Mem′=Mem[ESP−4 7→Mem(EBP−8)].

int add(int a, int b){
int c = a + b;
return c;

}
int square(int a){
int b = a * a;
return b;

}

int main(){

int a = 10 , b = 20;

int c = add(a, b);
int d = 30;
int e = square(d);
return e;

}

Figure 7: Source code for the square program, and the forward
slice with respect to a.

add:
1: push ebp
2: mov ebp,esp
3: sub esp,4
4: mov eax,[ebp+12]
5: add eax,[ebp+8]
6: mov [ebp-4],eax
7: mov eax,[ebp-4]
8: leave
9: ret

square:
10: push ebp
11: mov ebp,esp
12: sub esp,4
13: mov eax,[ebp+8]
14: imul eax,[ebp+8]
15: mov [ebp-4],eax
16: mov eax,[ebp-4]
17: leave
18: ret

main:
19: push ebp
20: mov ebp,esp
21: sub esp,20

22: mov [ebp-20],10

23: mov [ebp-16],20
24: push [ebp-16]
25: push [ebp-20]
26: call add
27: add esp,8
28: mov [ebp-12],eax
29: mov [ebp-8],30
30: push [ebp-8]
31: call square
32: add esp,4
33: mov [ebp-4],eax
34: mov eax,[ebp-4]
35: leave
38: ret

Figure 8: Assembly listing for square with the imprecise forward
slice computed by CodeSurfer/x86.

The instruction updates the stack-pointer register ESP along
with a memory location. Just before ascending back to main

from the square function, the most recent instruction added
to the slice is instruction 10 in Fig. 6 whose formula is

〈〈push ebp〉〉≡ESP′=ESP−4∧Mem′=Mem[ESP−4 7→EBP].

The instruction uses the registers ESP and EBP. When the
slice ascends back into main, it requires the definition of ESP
from instruction 29 in Fig. 6. However, the slice cannot in-
clude only a part of the instruction, and is forced to include
the entire push instruction, which also uses the contents of
the memory location whose address is EBP − 8. The value
in location EBP − 8 is set by instruction 28 in Fig. 6. That
instruction also uses the value in register EAX, which holds
the return value of the add function. For this reason, instruc-
tion 28, and the entire body of add, which are completely
irrelevant to the slicing criterion, are included in the slice.
The granularity issue thus has a cascade effect—irrelevant
instructions included in the slice cause more irrelevant in-
structions to be included in the slice.

Consider another C program square, shown in Fig. 7. The
main function contains calls to functions add and square.
Suppose that we want to compute the program points that
are affected by the local variable a (boxed in Fig. 7). The for-
ward slice of the source code with respect to a, highlighted in



Figure 9: SDG snippet illustrating the construction of µ-SDG.

Figure 10: SDG snippet illustrating the construction of µ-SDG.

add:
push ebp
mov ebp,esp
leave
ret

square:
push ebp
mov ebp,esp
leave
ret

main:
push ebp
mov ebp,esp
lea esp,[esp-16]
mov [ebp-16],10
mov [ebp-12],20
lea esp,[esp-4]
lea esp,[esp-4]
call add
lea esp,[esp+8]
lea esp,[esp-4]
call square
mov eax,[ebp-16]
mov ebx,[ebp-12]
lea eax,[eax-ebx]
leave
ret

Figure 11: Code generated by MC-
SLICE from the microcode backward
slice for diff. Highlighted instructions are
created by machine-code synthesis.

gray in Fig. 7, gets us the desired result. The machine-code
forward slice with respect to the analogous slicing criterion
(boxed instruction in Fig. 8) includes the lines highlighted
in gray in Fig. 8. One can see that the entire body of the
square function—which is completely irrelevant to the slic-
ing criterion—is included in the slice.

The imprecision creeps in at instruction 25 in Fig. 8. The
QFBV formula for the instruction is

〈〈push[ebp-20]〉〉≡ESP′=ESP−4 ∧
Mem′=Mem[ESP−4 7→Mem(EBP−20)].

The instruction stores the contents of the memory location
whose address is EBP − 20 in a new memory location,
and updates the stack-pointer register ESP. The slice only
requires the microcode update that uses the location EBP
− 20. However, because of the granularity issue, the slice
also includes the microcode update to ESP. Because all the
downstream instructions directly or transitively use ESP, the
forward slice includes all the downstream instructions.

In both examples, the root cause of the imprecision is the
push instruction. (In our evaluation, we found that the push

instruction caused the second-highest amount of imprecision
in slices computed by CodeSurfer/x86—see Fig. 18.) In both
examples, the imprecision creeps in because the slice ends
up including both microcode updates that are part of the
semantics of push, instead of including the only update that
actually had to be included in the slice. (In the backward-
slicing example, only the update to the stack pointer ESP
actually had to be included in the slice; in the forward-slicing
example, only the update to a memory location actually had
to be included in the slice.)

3.2 Improved Machine-Code Slicing in MCSLICE

Given the (i) instruction-level SDG of a binary, and (ii) the
slicing criterion (SDG node to slice from), MCSLICE uses
the following steps to compute a more accurate slice:
1. MCSLICE converts the instruction-level SDG into a

microcode-level SDG (µ-SDG): MCSLICE splits each
SDG node containing a multi-assignment instruction into
multiple nodes, each containing a single microcode up-
date, and recomputes data-dependence edges between the
newly created nodes. A µ-SDG is just a variant of an
SDG in which some instruction nodes are replaced by
microcode nodes.

2. MCSLICE uses an existing interprocedural context-
sensitive slicing algorithm [18, 25] to compute the slice
over the µ-SDG. The final slice includes only the mi-
crocode updates that are relevant to the slicing criterion.

3. MCSLICE uses an existing machine-code synthesizer
[31] to reconstitute a machine-code program from the mi-
crocode slice.
This section illustrates the improved slicing algorithm on

our two examples from §3.1. We first use the program diff
to illustrate improved backward slicing. Then we use the
program square to illustrate improved forward slicing.

To convert the given instruction-level SDG into a µ-SDG,
MCSLICE first identifies nodes with non-control-modifying
multi-assignment instructions. Fig. 9(i) shows the SDG snip-
pet5 for the first few instructions in function main in the diff

5 In Fig. 9 and the remaining SDGs and µ-SDGs in the paper, we la-
bel each node with its microcode. To facilitate correspondence between
SDGs/µ−SDGs and assembly listings, we also include the instruction num-



Figure 12: Microcode slice over the µ-SDG for the diff program. The slicing criterion is node 35, which is indicated by the dashed box.

program, along with their respective USE# and KILL# sets.
Instruction 1 is a multi-assignment instruction with two in-
dependent microcode updates. MCSLICE splits node 1 into
two nodes 1 1 and 1 2, each containing a single microcode
update (Fig. 9(ii)). Initially, nodes 1 1 and 1 2 inherit the
USE# and KILL#sets, and the dependence edges of the par-
ent node. MCSLICE then recomputes the USE# and KILL#

sets of each newly created node n by projecting n’s exist-
ing sets based on the individual microcode update in n. MC-
SLICE then recomputes the data-dependence edges based on
the updated USE# and KILL# sets to create the final µ-
SDG. (To recompute data-dependence edges, MCSLICE per-
forms reaching-definitions analysis, for which it also uses
the CFG built by CodeSurfer/x86 as an additional input—
see §4.1.) The µ-SDG snippet, along with the updated USE#

and KILL# sets, is shown in Fig. 9(iii).

ber in each node’s label. To reduce clutter, we do not show microcode nodes
corresponding to flag updates in µ-SDGs.

We illustrate MCSLICE’s µ-SDG construction algorithm
on another SDG snippet. Fig. 10(i) shows the SDG snippet
for the instructions that were used to illustrate the granularity
issue for backward slicing in §3.1. Node 29 uses register
ESP (defined by the instruction in node 27) and the value
in memory location EBP − 8 (defined by the instruction in
node 28). Node 29 defines register ESP, which flows to the
instruction in node 30 (and then to the actual-in node ESP
in), and a memory location, which flows to the actual-in node
Actual 1. MCSLICE splits node 29 into two nodes 29 1 and
29 2, computes the new USE# and KILL# sets for 29 1 and
29 2, and recomputes the data-dependence edges. The final
µ-SDG snippet, along with the new USE# and KILL# sets,
is shown in Fig. 10(ii).

MCSLICE computes the remainder of the µ-SDG in a
similar manner, and the final µ-SDG for the diff program is
given as Fig. 12. (To reduce clutter in Fig. 12 and Fig. 13,
some intraprocedural control-dependence edges have been
omitted. The omitted edges do not cause additional nodes to



Figure 13: Microcode slice over the µ-SDG for the square program. The slicing criterion is node 12, which is indicated by the dashed box.

be included in the slice.) MCSLICE now computes the back-
ward slice over the µ-SDG with node 35 1 as the slicing cri-
terion. (Recall from §3.1 that we are interested in the pro-
gram points that might affect the return value of main, which
is available in the register EAX.) The nodes in the backward
slice are highlighted in gray in Fig. 12. Among the nodes in-
cluded in the slice, nodes 22, 23, 33, 34, and 35 1 directly
affect the return value of main, and the remaining nodes set
up the stack-pointer register ESP and frame-pointer register
EBP for downstream nodes. One can see that the slice com-
puted by MCSLICE is more precise than the backward slice
computed by CodeSurfer/x86 (cf. Fig. 6).

MCSLICE reconstitutes a machine-code program from the
microcode slice by synthesizing machine-code instructions
for each microcode node included in the slice. (If all the
microcode nodes corresponding to an old instruction node
are included in the microcode slice, MCSLICE simply reuses
the instruction in the old node.) For synthesis purposes,
MCSLICE uses MCSYNTH, a machine-code synthesizer that

synthesizes machine-code instructions from a QFBV for-
mula. The machine-code program produced by MCSLICE

from the microcode slice in Fig. 12 is shown in Fig. 11. (To
obtain executable code from a backward microcode slice,
MCSLICE performs a few additional steps—see §4.2.)

MCSLICE computes forward slices in a similar manner:
MCSLICE converts the input instruction-level SDG into a
µ-SDG, and uses an existing slicing algorithm to compute
the forward slice. For example, consider the square program
from §3.1. The µ-SDG created by MCSLICE for the program
is given as Fig. 13. MCSLICE computes the forward slice
over the µ-SDG with node 22 as the slicing criterion. (Recall
from §3.1 that we are interested in the program points that
might be affected by the local variable a in main.) The nodes
in the forward slice are highlighted in gray in Fig. 13. One
can see that the slice computed by MCSLICE is more precise
than the forward slice computed by CodeSurfer/x86 (cf.
Fig. 8).



4. Algorithm
In this section, we describe the slicing algorithm used in
MCSLICE. First, we describe how MCSLICE converts an
instruction-level SDG into a µ-SDG on which slicing can be
done (§4.1). Then, we describe how MCSLICE reconstitutes
an executable machine-code program from a microcode slice
(§4.2).

4.1 Construction of µ-SDG and Slicing
In this sub-section, we present the algorithm that MCSLICE

uses to build a µ-SDG for microcode slicing. Apart from
working with the SDG, the algorithms in this sub-section
also work with the CFGs of the procedures in the binary
because the algorithm for µ-SDG construction performs
reaching-definitions analysis on the CFGs (described later
in this sub-section).

Before presenting the algorithm, we present a primi-
tive called splitNode that splits a node containing a multi-
assignment instruction into multiple nodes, each of which
contains a single microcode assignment. For a given binary,
splitNode takes as input a node m that contains a multi-
assignment instruction, and the PDG6 and CFG of the pro-
cedure that contains m. (We assume that the SDG and CFGs
share a common set of instruction nodes.) splitNode splits
the instruction node m into microcode nodes, updates the
PDG and CFG, and returns the updated PDG and CFG.
splitnode effectively replaces an instruction node with its
microcode nodes in the PDG and CFG, and adds the required
edges in the graphs. In the PDG, this step results in more
precise, finer-grained data dependences between microcode
nodes of different instructions.

To simplify matters, we restrict our presentation of splitN-
ode to the case that arises in the IA-32 instruction set, where
the semantics of (most) instructions involves at most one
memory access or update. Exceptions to this rule are x86
string instructions, which have the rep prefix. In our imple-
mentation, splitNode does not attempt to split such instruc-
tions.

The algorithm for splitNode is given as Alg. 1. In Alg. 1,
for a given node n, n.microcode, n.use, and n.kill are the
microcode, USE# set, and KILL# set, respectively, asso-
ciated with n; PDG.nodes and PDG.edges (CFG.nodes and
CFG.edges) are the nodes and edges in the input PDG
(CFG). First, splitNode splits the microcode in m into in-
dividual microcode assignments. Recall from §2.2 that the
QFBV formula for an instruction’s microcode has the form
shown in Eqn. (1). Each conjunct in Eqn. (1) is an individual
microcode assignment to a register, flag, or memory loca-
tion. In Alg. 1, GetConjuncts returns the set of conjuncts

6 We do not split actual-in/out nodes and formal-in/out nodes because they
do not have multiple assignments; we do not split call-expression nodes
because they contain a control-modifying instruction. Consequently, the
effect of splitting an instruction node is localized to the procedure, and
therefore, splitNode does not need the entire SDG as input.

Algorithm 1 Algorithm SplitNode

Input: PDG, CFG, m
Output: Updated PDG, Updated CFG

1: conjuncts← GetConjuncts(m.microcode)
2: for each conjunct c ∈ conjuncts do
3: n← CreateNode( )
4: n.microcode← c
5: n.use← Project(n.microcode, m.use)
6: n.kill← Project(n.microcode, m.kill)
7: for each edge← 〈p,m, data〉 ∈ PDG.edges do
8: if p.kill ∩ n.use 6= ∅ then
9: PDG.edges← PDG.edges ∪ {〈p, n, data〉}

10: end if
11: end for
12: for each edge 〈m, s, data〉 ∈ PDG.edges do
13: if n.kill ∩ s.use 6= ∅ then
14: PDG.edges← PDG.edges ∪ {〈n, s, data〉}
15: end if
16: end for
17: for each edge 〈p,m, control〉 ∈ PDG.edges do
18: PDG.edges← PDG.edges ∪ {〈p, n, control〉}
19: end for
20: for each edge 〈m, s, control〉 ∈ PDG.edges do
21: PDG.edges← PDG.edges ∪ {〈n, s, control〉}
22: end for
23: for each edge 〈p,m〉 ∈ CFG.edges do
24: CFG.edges← CFG.edges ∪ {〈p, n〉}
25: end for
26: for each edge 〈m, s〉 ∈ CFG.edges do
27: CFG.edges← CFG.edges ∪ {〈n, s〉}
28: end for
29: end for
30: PDG.edges← PDG.edges −〈∗,m, ∗〉 − 〈m, ∗, ∗〉
31: PDG.nodes← PDG.nodes − {m}
32: CFG.edges← CFG.edges − 〈∗,m〉 − 〈m, ∗〉
33: CFG.nodes← CFG.nodes − {m}
34: return 〈PDG, CFG〉

in a QFBV formula (Line 1). splitNode creates a new mi-
crocode node for each conjunct using CreateNode (Line 3).

For each newly created node n, MCSLICE computes
n.use (n.kill) by projecting m.use (m.kill) with respect to
the microcode assignment in n. For example, if n.microcode
is Mem′ = Mem[ESP − 4 7→ EBP], and m.kill = {ESP,
(AR main, 0)} (node 1 2 in Fig. 9), n.kill is {(AR main,
0)}. Because the microcode in n can only kill a memory lo-
cation, n.kill gets only the memory a-locs from m.kill. In
Alg. 1, Project performs this projection operation (Lines 5
and 6).

For each microcode node n created from m, MC-
SLICE adds data-dependence edges between n and the
data-dependence predecessors and successors of m based
on USE# and KILL# sets (Lines 7–16). MCSLICE also
adds control-dependence edges between n and the control-



Algorithm 2 Algorithm for µ-SDG construction used in
MCSLICE

Input: SDG, CFG set
Output: µ-SDG

1: for each 〈PDG, CFG〉 ∈ 〈SDG, CFG set〉 do
2: PDG← RemoveSummaryEdges(PDG)
3: for each node m ∈ PDG do
4: if IsMultiUpdateNode(m) then
5: 〈PDG, CFG〉 ← splitNode(PDG, CFG, m)
6: end if
7: end for
8: RunReachingDefs(CFG)
9: for each node n ∈ PDG do

10: for each edge 〈p, n, data〉 ∈ PDG do
11: if p /∈ ReachingDefs(n) then
12: PDG.edges← PDG.edges − 〈p, n, data〉
13: end if
14: end for
15: end for
16: end for
17: SDG← RecomputeSummaryEdges(SDG)
18: return SDG

Figure 14: Example SDG and µ-SDG snippets to illustrate re-
moval of data-dependence edges via reaching-definitions analysis.

dependence predecessors and successors of m (Lines 17–
22). In a similar manner, n inherits the control-flow edges
of m (Lines 23–29). Finally, MCSLICE removes m and its
edges from the PDG and CFG (Lines 30–33).

The algorithm used by MCSLICE for µ-SDG construc-
tion is given as Alg. 2. Alg. 2 takes as input the SDG and
CFGs constructed by CodeSurfer/x86, and returns a µ-SDG.
For each PDG in the SDG, Alg. 2 first removes the sum-
mary edges from the PDG (via RemoveSummaryEdges) be-
cause the existing summary edges in the SDG reflect impre-
cise transitive dependences across procedure calls (Line 2).
Alg. 2 uses IsMultiUpdateNode to identify nodes that con-
tain non-control-modifying, multi-assignment instructions.
It then splits each such instruction node into microcode
nodes, and updates the PDG and CFG via splitNode (Lines
3–7).

Sometimes, even after splitting instruction nodes via
splitNode, the µ-SDG might still have some imprecision
that can be eliminated. Consider the code snippet given
below

push 1

mov [esp], 2

mov eax, [esp],

and its corresponding SDG given in Fig. 14(i). After
splitNode splits node 1, and recomputes data dependences,
the µ-SDG obtained is given in Fig. 14(ii). On all program
paths, node 1 2 will always come before 2, and one can see
that the data-dependence edge from node 1 2 to node 3 can
be eliminated. Reaching-definitions analysis tells us that the
definition of the memory a-loc in node 1 2 never reaches
node 3, and thus the data-dependence edge between the two
nodes can be eliminated.

Alg. 2 performs intraprocedural reaching-definitions
analysis on each CFG in the binary via RunReachingDefs

(Line 8). (For each call-site n that has actual-out nodes o1,
o2, . . . , om associated with it, RunReachingDefs uses the
transformer

fn(S) = S − 〈∗, l1〉 − 〈∗, l2〉 − . . . − 〈∗, lm〉
∪ {〈o1, l1〉, 〈o2, l2〉, . . . , 〈om, lm〉},

where l1, l2, . . . lm are the a-locs defined by the actual-out
nodes o1, o2, . . . om, respectively.) If there exists a data-
dependence edge e between nodes p and n in the µ-SDG
such that no definition at p reaches n, Alg. 2 removes the
edge e from the PDG (Lines 9–15). (In Alg. 2, ReachingDefs
returns the set of definitions that reach a node.)

At this point, we have a precise, fine-grained, microcode-
level PDG for each procedure in the binary. Alg. 2 uses
an existing algorithm (Fig. 5 in [25]) to compute sum-
mary edges for the SDG to capture context-sensitive tran-
sitive dependences across procedure calls (Line 17 via
RecomputeSummaryEdges), and returns the final SDG.

MCSLICE uses an existing context-sensitive interproce-
dural slicing algorithm (Fig. 9 in [18]) to compute a context-
sensitive microcode slice over the computed µ-SDG.
4.2 Reconstituting an Executable Machine-Code

Program
So far, we have described the algorithms used by MCSLICE

to address the granularity issue, and compute a context-
sensitive, fine-grained slice. However, the result of a mi-
crocode slice is at a lower level than machine code, and
some clients of MCSLICE might require the results to be re-
ported as executable machine code. In this section, we de-
scribe how MCSLICE reconstitutes an executable machine-
code program from a microcode slice.

To create executable machine code, MCSLICE has to re-
solve three issues: (i) parameter mismatches, (ii) allocation
and de-allocation of activation records, and (iii) removal of
computations that manipulate uninitialized values. In partic-
ular, the latter two issues do not arise in source-code exe-
cutable slicing. In the remainder of this section, we describe
these issues in greater detail, and how MCSLICE resolves
them.



int g1, g2;
void foo(int a, int b) {
g1 = a;
g2 = b;

}

int main(){
int a = 10, b = 20;
foo(a, b);
int c = 30, d = g1;
foo(c, d);

return g2 ;

}

Figure 15: Example program to illustrate the parameter-mismatch
problem in slicing.

Parameter mismatches [6, 18]. Although a backward mi-
crocode slice contains all program points that might affect
the slicing criterion, it might not be executable because of
the parameter-mismatch problem: a slice can include multi-
ple calls to the same procedure, with different subsets of ac-
tual parameters at different call-sites. However, the slice con-
tains the union of the corresponding formal-parameter sets,
which causes a mismatch between the actual parameters at a
call-site and the procedure’s formal parameters [6, 18]. For
example, consider the program shown in Fig. 15. The slicing
criterion is boxed in Fig. 15, and the program points included
in the slice are highlighted in light gray. On can see that the
slice includes only one of the two actual parameters at each
call-site, but both formal parameters in procedure foo.

To fix parameter mismatches, MCSLICE uses an existing
algorithm for monovariant executable slicing [6]. The algo-
rithm fixes call-sites by conservatively including in the slice
additional actual parameters to match the formal parameters
included in the slice. For example, the additional program
points included by the monovariant executable-slicing algo-
rithm are underlined in Fig. 15.

Note that the aforementioned monovariant executable-
slicing algorithm is a suboptimal way to fix parameter mis-
matches: the goal of slicing is to remove as many ex-
traneous program points as possible, but the monovari-
ant executable-slicing algorithm re-introduces removed pro-
gram points to fix call-sites. Specialization slicing [3] is a
polyvariant executable-slicing algorithm that produces opti-
mal executable slices by creating specialized copies of pro-
cedures according to the sets of parameters included at vari-
ous call-sites. One direction for future work is to incorporate
the specialization-slicing algorithm in MCSLICE to obtain
more precise executable machine code.

Allocation and de-allocation of activation records. To
create executable machine-code, activation records should
be be correctly allocated and de-allocated in all procedures
included in the slice. MCSLICE includes in the slicing crite-
rion the formal-outs corresponding to the stack pointer ESP
and frame pointer EBP of the main procedure so that all
relevant microcode that allocates and de-allocates activation
records are included in the microcode slice.

Removal of computations that manipulate uninitialized
values. After fixing parameter mismatches and including
the relevant microcode that allocate and de-allocate activa-

add:
push ebp
mov ebp,esp
leave
ret
square:
push ebp
mov ebp,esp
leave
ret

main:
push ebp
mov ebp,esp
sub esp,16
mov [ebp-16],10
mov [ebp-12],20
push [ebp-12]
push [ebp-16]

call add
add esp,8
push [ebp-8] *
call square
mov eax,[ebp-16]
mov ebx,[ebp-12]
sub eax,ebx

Figure 16: Machine code generated from the microcode slice
shown in Fig. 12 by a naı̈ve method.

tion records in the microcode slice, the final step creating
an executable machine-code program is to generate machine
code from the microcode slice. A naı̈ve way to generate ma-
chine code from a microcode slice is to add to the output
machine-code program each instruction for which any frag-
ment of its microcode is included in the microcode slice. For
example, if we use this sub-optimal method to generate ma-
chine code from the microcode slice shown in Fig. 12, we
would obtain the machine-code program shown in Fig. 16.
One can see that the code in Fig. 16 performs computations
on uninitialized values. For example, the instruction marked
by * in Fig. 16 pushes onto the stack the 32-bit value in the
memory location EBP− 8, which has not been initialized by
upstream instructions.

Moreover, code that performs computations on uninitial-
ized values in the executable machine-code program can
sometimes introduce exceptions that otherwise would never
occur in the original program. Consider a program that con-
tains the following instruction sequence:
1: ...

2: mov eax, 10

3: mov edx, 0

4: mov ebx, 2

5: idiv ebx

6: ...

Suppose that EDX:EAX denotes the extended 64-bit regis-
ter obtained from the 32-bit registers EDX and EAX. The
instruction sequence divides the contents of EDX:EAX (10)
by the contents of EBX (2), places the quotient (5) in EAX,
remainder (0) in EDX, and affects some flags. Suppose that a
backward slice only requires the microcode that defines the
flags. MCSLICE will compute a precise slice that includes
only the microcode that defines the flags in instruction 5; in-
structions 2, 3, and 4 will not be included in the slice because
the microcode corresponding to the division“EDX:EAX /
EBX” is not included in the slice.

In contrast, if MCSLICE were to emit the entire instruc-
tion 5, the output program might look as follows:
1: ... // 2, 3, 4 not included

5: idiv ebx // EBX might be uninitialized here

...

When this program executes, if EBX contains 0 when the
idiv instruction executes, then the program fails with an ex-
ception, which does not match the behavior of the original



Algorithm 3 Algorithm used by MCSLICE for generating
machine code from a microcode slice
Input: Microcode slice s
Output: Machine-code program s′

1: s′ ← ε
2: for each microcode node n ∈ s do
3: m← OldNode(n)
4: newNodes← NewNodes(m)
5: if newNodes ⊆ s then
6: s′← AddToProgram(s′, m.instruction)
7: s← s − newNodes
8: else
9: I← McSynth(n.microcode)

10: s′← AddToProgram(s′, I)
11: s← s− {n}
12: end if
13: end for
14: return s′

program. To avoid this issue, we want MCSLICE to generate
code only for the microcode included in the backward slice.

To reconstitute a machine-code program that does not
contain computations that manipulate uninitialized loca-
tions, MCSLICE uses machine-code synthesis. The algo-
rithm used for reconstitution in MCSLICE is given as Alg. 3.
The input to Alg. 3 is a microcode slice s. (Note that s does
not have parameter mismatches, and all relevant microcode
that allocate and de-allocate activation records are included
in s.) If all newly-created microcode nodes of an instruction
node m are included in the slice, MCSLICE simply gener-
ates back the instruction contained in m (Lines 5–7). (In
Alg. 3, OldNode returns the original instruction node cor-
responding to a microcode node; NewNodes returns the set
of microcode nodes that were created by splitting an orig-
inal instruction node; m.instruction is the instruction con-
tained in the old instruction node m.) However, if only a
subset of microcode nodes created from m are included in
the slice, then MCSLICE must generate an instruction (or in-
struction sequence) that is equivalent to each included mi-
crocode node. For this purpose, MCSLICE uses a machine-
code synthesizer. For each microcode node n included in the
slice, MCSLICE supplies the microcode in n as input to the
machine-code synthesizer MCSYNTH [31]. MCSYNTH takes
a QFBV formula as input, and synthesizes an instruction se-
quence that is equivalent to the QFBV formula. MCSLICE

inserts the synthesized instruction sequence into the gener-
ated code (Lines 8–12). (In Alg. 3, McSynth invokes the syn-
thesizer; we assume that the procedure AddToProgram takes
care of generating code in the correct order, creating new
procedures, etc.) Alg. 3 returns the final executable machine-
code program generated from the microcode slice.

For the microcode slice shown in Fig. 12, Alg. 3 produces
the machine-code program shown in Fig. 11.

5. Implementation
MCSLICE uses CodeSurfer/x86 [5] to obtain the SDG for a
binary, and the USE#/KILL# sets at each instruction.

MCSLICE uses Transformer Specification Language
(TSL) [20] to obtain QFBV encodings of instructions. We
worked with a specification of the IA-32 instruction set that
grouped around 43,000 non-privileged, non-floating point,
non-mmx instructions into 164 opcode variants. (These op-
code variants do not include the lock, rep, and repne pre-
fixes.) MCSLICE uses a concrete operational-semantics of
these 164 opcode variants, written in TSL, which provides
MCSLICE with a microcode-level specification of each in-
struction that can be instantiated from one of the 164 opcode
variants (i.e., using different registers, addressing modes,
etc.). The semantics written in TSL is reinterpreted to pro-
duce the QFBV formulas for individual instructions [21].
MCSLICE’s slicing algorithm will split any instruction that
• belongs to one of the 164 opcode variants,
• performs a multi-assignment, and
• does not modify control.

(Instructions that assign to only a single register, flag, or
memory location do not need splitting.) Many of the opcode
variants are rarely used by compilers, and our benchmark
suite of the binaries of 8 FreeBSD utilities compiled with
gcc (Table 1) included instructions belonging to 35 out of
the 164 opcode variants.

MCSLICE uses the machine-code synthesizer MCSYNTH

[31] parameterized for IA-32 to synthesize instruction se-
quences from QFBV formulas of microcode included in the
slice.

In CodeSurfer/x86, the abstract transformers for the anal-
yses used to build an SDG are obtained using TSL [20, §4.2].
In principle, if one were to replace the IA-32 semantics writ-
ten in TSL with the semantics of another ISA, one could
instantiate MCSLICE’s toolchain for the new ISA.

6. Experiments
We tested MCSLICE on binaries of open-source programs.
Our experiments were designed to answer the following
questions:
• In comparison to CodeSurfer/x86, what is the reduction

in slice size caused by MCSLICE?
• What percentage of the slice computed by MCSLICE con-

sists of entire instructions? (And what percentage con-
sists of microcode subsets?)

• Which kinds of instructions have only a subset of their
microcode included in slices?

All experiments were run on a system with a quad-core,
3GHz Intel Xeon processor running Windows 7, and 32 GB
RAM; however, MCSLICE’s algorithm is single-threaded.

Our test suite consisted of IA-32 binaries of FreeBSD
utilities [16]. Table 1 presents the characteristics of the ap-
plications. For each application, we selected one slicing cri-
terion for a backward slice and one for a forward slice, re-
spectively.



Table 1: Characteristics of applications in our test suite.

Application LOC No. of
instruc-
tions

No. of
nodes in
instruction-
level SDG

No. of
nodes
in µ-
SDG

Backward-slicing criterion Forward-slicing criterion

wc 295 790 1105 2173 Actual twordct of call to printf in main Locals linect, wordct, and charct in cnt

md5 331 821 2210 3410 Actual p of final call to printf in main Actual optarg of call to MDString in main

write 332 957 1825 3191 Actuals of final call to do write in main Local atime in main

uuencode 392 862 1069 1909 Actual output of call to do write in encode Initialization of global mode in main

cksum 505 815 1309 2377 Actual len in final call to pcrc in main Local lcrc in csum1

units 783 2119 6045 9519 Actuals of final call to showanswer in main Local linenum in readunits

msgs 951 2270 4769 8566 Actual nextmsg of final call to fprintf in main Local blast in main

pr 2207 4005 8548 14746 Local pagecnt in vertcol Local eflag in setup

1

10

100

1000

N
o

. o
f 

in
st

ru
ct

io
n

s 
in

 s
lic

e

<Application, slicing direction>

Slice-size comparison

CS/x86

McSlice

Backward Forward

Figure 17: Comparison of sizes of slices computed by
CodeSurfer/x86 and MCSLICE (log-scale).

For backward slices, we selected as the slicing criterion
one or more actual parameters of the final call to an output
procedure (e.g., printf, fwrite, or any user-defined output
procedure in the application). Only for pr did we deviate
from this rule and instead chose a variable that gets used
toward the end of the application, but is not passed to an
output procedure as an actual parameter. Our rationale for
choosing these slicing criteria was that variables that are
printed toward the end of the application are likely to be
important outputs computed by the application, and hence
it would be interesting to see which instructions affect these
variables.

For forward slices, we selected variables or sets of vari-
ables that were initialized in the beginning of the application.

To answer the first question, we computed the slices using
CodeSurfer/x86 and MCSLICE. CodeSurfer/x86 computes
machine-code slices, but MCSLICE computes microcode
slices. To facilitate meaningful comparison between the two
slice sizes, we report the number of instructions in the binary
for which any microcode fragment was included in the slice
computed by MCSLICE as the slice size for MCSLICE. The
results are shown in Fig. 17. Note that the y-axis uses a loga-
rithmic scale. The average reduction in slice size, computed
as a geometric mean, is 33% for backward slices and 70%
for forward slices. For the forward slices of write and units,
MCSLICE reduces the number of instructions in the slice by
over two orders of magnitude. The reduction in forward-slice
sizes is more pronounced because the number of downtream
instructions affected by the imprecision-causing idioms for
forward slices (e.g., imprecision caused by instruction 25

in Fig. 8) is much higher in practice than their upstream

0%

20%

40%

60%

80%

100%
Split of partial and entire instructions

No. of entire instructions in slice No. of partial instructions in slice

Backward

Opcode 
variant

Count 
- bwd

ADD 564

PUSH 410

SUB 445

CMP 280

TEST 265

AND 39

SHL 32

SAR 18

IMUL 14

IDIV 13

Opcode 
variant

Count 
- fwd

PUSH 45

TEST 3

AND 2

Forward

Figure 18: Split of partial and entire instructions in slices com-
puted by MCSLICE.

counterparts in backward slices. For msgs and pr, the for-
ward slice computed by MCSLICE contains many instruc-
tions because a procedure call was control dependent on a
node that was already in the slice. Because the call contains
push instructions, updates to the stack pointer were added
to the slice because of the control dependence, and conse-
quently, downstream instructions that used the stack pointer
were added to the slice.

To answer the second and third questions, for each slice
computed by MCSLICE, we performed the following com-
putation: for each instruction in the binary whose microcode
update was in the microcode slice, we checked if all mi-
crocode updates of that instruction were present in the slice,
or only a subset of microcode updates were present in the
slice. The former case means that the entire instruction is ef-
fectively included in the microcode slice, and the latter case
means that only a subset of the instruction’s semantics is in-
cluded in the slice. Fig. 18 shows the results. For backward
slices 60% of the slice consisted of entire instructions, and
the remaining came from microcode subsets of instructions.
For forward slices, that number was 84%. (The average per-
centages were computed as geometric means.) We also iden-
tified the top opcode variants that constitute the instructions
that were not included in their entirety in the backward and
forward slices, respectively. For forward slices, instructions
belonging to only three opcode variants caused all the impre-
cision in CodeSurfer/x86 slices. For the push opcode variant
in the table in Fig. 18, either the stack-pointer update or the
memory update was excluded from the slice. For the remain-
ing opcode variants, a subset of flag updates was generally
excluded from the slice.



Table 2: Comparison of sizes of original binary and extracted
component.

Application No. of instructions in
binary

No. of instructions in
extracted component

wc-lite 295 64
wc 790 242
cksum 815 338

6.1 Extracting Executable Components from Binaries
For two of our benchmark programs and an additional
micro-benchmark program, the backward slice computed by
MCSLICE extracts a meaningful component. For these three
programs, we used Alg. 3 to reconstitute a machine-code
program for the extracted component, and generated an ex-
ecutable slice (§4.2). Table 2 presents the characteristics of
the applications used for component extraction. wc-lite is
a scaled down version of the wc utility.7 For wc-lite, we
extracted a component that only counts lines in input files;
for wc, we extracted a component that only counts the words
in input files; for cksum, we extracted a component that only
computes the length of the input file. Table 2 shows the num-
ber of instructions in the original binary, and the number of
instructions in the extracted component. For all three pro-
grams, there were no parameter mismatches in the slice, and
so MCSLICE did not have to fix call-sites as described in
§4.2.

7. Related Work
Slicing. The literature on program slicing is extensive
[7, 22, 33]. Slicing has been—and continues to be—applied
to many software-engineering problems [17]. For instance,
recently there has been work on language-independent pro-
gram slicing [8], which repeatedly creates potential slices
through statement deletion, and tests the slices against the
original program for semantics preservation. Specialization
slicing [3] uses automata-theoretic techniques to produce
specialized versions of procedures such that the output slice
is an optimal executable slice without any parameter mis-
matches between procedures and call-sites.

The slicing techniques discussed in the literature use an
SDG or a suitable IR whose nodes typically contain a sin-
gle update (and not a multi-assignment instruction). Con-
sequently, the granularity issue never arises. The ways in
which the program-reconstitution issue for machine-code
slicing differs from creating executable source-code from
source-code slices have been discussed in §4.2.

Applications of more precise machine-code slicing.
WIPER is a machine-code partial evaluator [30] that spe-
cializes binaries with respect to certain static inputs. As a
first step to partial evaluation, WIPER performs binding-
time analysis (BTA) to determine which instructions in the

7 The source code for this micro-benchmark is given as Fig. 2 in [24].

binary can be evaluated at specialization time. For BTA,
WIPER uses CodeSurfer/x86’s forward slicing. To sidestep
the granularity issue, WIPER “decouples” the multiple up-
dates performed by instructions that update the stack pointer
along with another location (e.g., push, pop, leave, etc.).
The ad hoc instruction-decoupling algorithm used in WIPER

is a sub-optimal solution to address the granularity issue be-
cause multi-assignment instructions that do not update the
stack pointer also make the forward slice imprecise. MC-
SLICE computes more accurate forward slices, and could be
used in WIPER’s BTA to increase BTA precision.

Taint trackers [23, 27, 32] use dynamic analysis to check
if tainted inputs from taint sources could affect taint sinks.
Certain taint trackers such as Minemu [9] rely entirely on dy-
namic analysis to reduce taint-tracking overhead. MCSLICE

could be used to exclude from consideration portions of the
binary that are not affected by taint sources, thereby further
reducing taint-tracking overhead.

Conseq [35] is a concurrency-bug detection tool, which
uses machine-code slicing to compute the set of critical reads
that might affect a failure site. MCSLICE could be used to
compute more accurate backward slices, effectively reduc-
ing the number of critical reads that needs to be analyzed by
Conseq.

Taint explosion in pointer tainting. Taint tracking is com-
monly used to detect control-diverting attacks, e.g., warn the
user if a tainted input flows to the program-counter regis-
ter, and is about to be used as a jump target. Taint track-
ing also provides a conservative method to demonstrate the
absence of information flow. Pointer tainting [12] is a vari-
ant of taint tracking that additionally propagates taint to
the dereferenced value whenever a tainted pointer is deref-
erenced. Pointer tainting is commonly used to detect non-
control-diverting attacks such as memory-corruption attacks
against non-control data, e.g., a buffer overflow that modifies
a user’s privilege level.

One of the primary issues with pointer tainting is taint ex-
plosion caused by the stack-pointer register ESP and frame-
pointer register EBP. If ESP or EBP ever contains a tainted
pointer, all the values obtained by dereferencing those regis-
ters in later instructions get tainted. Because many instruc-
tions dereference ESP and EBP to access values on the stack,
if ESP or EBP ever gets falsely tainted, pointer tainting can
cause undesired taint explosion, e.g., to the kernel and other
unrelated processes. One of the containment techniques used
to control taint explosion is to use heuristics to check if the
current value in ESP and EBP is a legitimate address or a
valid index into a table, and untaint the value if it is [28].

While our work shows how multi-assignment instructions
involving ESP and EBP cause undesired explosion in slices
in a static context, the study on the effects of pointer tainting
[28] show how ESP and EBP registers act as vectors for
undesired taint explosion in a dynamic context.



8. Conclusion
In this paper, we described a new algorithm to slice machine
code. We presented experiments with MCSLICE, a tool that
incorporates the algorithm, which showed that MCSLICE

slices IA-32 binaries more precisely than CodeSurfer/x86,
a state-of-the-art tool for machine-code slicing. Our experi-
ments on binaries of FreeBSD utilities show that, in compar-
ison to slices computed by CodeSurfer/x86, our algorithm
reduces the sizes of backward slices by 33%, and forward
slices by 70%. For some binaries in our test suite, MCSLICE

reduces the size of the slice by over two orders of magni-
tude.

Acknowledgments
We thank Tom Johnson, Suan Yong, Brian Alliet, and
Junghee Lim for answering several questions during the im-
plementation of MCSLICE. We thank the anonymous review-
ers for their valuable feedback. The first author would like
to dedicate this paper to the late Prof. Susan Horwitz and the
second author, whose seminal paper “Interprocedural slicing
using dependence graphs” inspired him to pursue this work.

References
[1] P. Anderson, T. Reps, and T. Teitelbaum. Design and

implementation of a fine-grained software inspection
tool. TSE, 29(8), 2003.

[2] ARM instruction-set manual. http://
infocenter.arm.com/help/topic/com.
arm.doc.qrc0001m/QRC0001_UAL.pdf.

[3] M. Aung, S. Horwitz, R. Joiner, and T. Reps. Special-
ization slicing. TOPLAS, 36(2), 2014.

[4] G. Balakrishnan and T. Reps. WYSINWYX: What You
See Is Not What You eXecute. TOPLAS, 32(6), 2010.

[5] G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum.
Codesurfer/x86 – A platform for analyzing x86 exe-
cutables, (tool demonstration paper). In CC, 2005.

[6] D. Binkley. Precise executable interprocedural slices.
LOPLAS, 2:31–45, 1993.

[7] D. Binkley and K. Gallagher. Program slicing. In
Advances in Computers, Vol. 43. 1996.

[8] D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke,
and S. Yoo. ORBS: Language-independent program
slicing. In FSE, 2014.

[9] E. Bosman, A. Slowinska, and H. Bos. Minemu: The
world’s fastest taint tracker. In RAID, 2011.

[10] D. Brumley, I. Jager, T. Avgerinos, and E. Schwartz.
BAP: A Binary Analysis Platform. In CAV, 2011.

[11] D. Brumley, I. Jager, and E. S. S. Whitman. The BAP
handbook, 2014.

[12] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. Iyer.
Defeating memory corruption attacks via pointer taint-
edness detection. In DSN, 2005.

[13] T. Dullien and S. Porst. REIL: A platform-independent
intermediate representation of disassembled code for
static code analysis. In CanSecWest, 2009.

[14] K. ElWazeer, K. Anand, A. Kotha, M. Smithson, and
R. Barua. Scalable variable and data type detection in
a binary rewriter. In PLDI, 2013.

[15] J. Ferrante, K. Ottenstein, and J. Warren. The program
dependence graph and its use in optimization. TOPLAS,
9(3), 1987.

[16] FreeBSD utilities. http://www.opensource.
apple.com/source/.

[17] S. Horwitz and T. Reps. The use of program depen-
dence graphs in software engineering. In ICSE, 1992.

[18] S. Horwitz, T. Reps, and D. Binkley. Interprocedu-
ral slicing using dependence graphs. TOPLAS, 12(1),
1990.

[19] IA-32 instruction-set manual. http:
//www.intel.com/content/www/us/en/
processors/architectures-software-
developer-manuals.html.

[20] J. Lim and T. Reps. TSL: A system for generating ab-
stract interpreters and its application to machine-code
analysis. TOPLAS, 35(4), 2013.

[21] J. Lim, A. Lal, and T. Reps. Symbolic analysis via se-
mantic reinterpretation. Softw. Tools for Tech. Transfer,
13(1):61–87, 2011.

[22] G. Mund and R. Mall. Program slicing. In The Com-
piler Design Handbook: Optimizations and Machine
Code Generation, chapter 14. CRC Press, 2nd. edition,
2007.

[23] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation
of exploits on commodity software. In NDSS, 2005.

[24] T. Reps and T. Turnidge. Program specialization via
program slicing. In Proc. of the Dagstuhl Seminar on
Partial Evaluation, pages 409–429, 1996.

[25] T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. Speeding
up slicing. In FSE, 1994.

[26] H. Saı̈di. Logical foundation for static analysis: Ap-
plication to binary static analysis for security. ACM
SIGAda Ada Letters, 28(1):96–102, 2008.

[27] E. Schwartz, T. Avgerinos, and D. Brumley. All you
ever wanted to know about dynamic taint analysis
and forward symbolic execution (but might have been
afraid to ask). In S&P, 2010.

[28] A. Slowinska and H. Bos. Pointless tainting?: Evalu-
ating the practicality of pointer tainting. In EuroSys,
2009.

http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
http://www.opensource.apple.com/source/
http://www.opensource.apple.com/source/
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html


[29] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager,
M. Kang, Z. Liang, J. Newsome, P. Poosankam, and
P. Saxena. BitBlaze: A new approach to computer se-
curity via binary analysis. In Int. Conf. on Information
Systems Security, 2008.

[30] V. Srinivasan and T. Reps. Partial evaluation of ma-
chine code. In OOPSLA, 2015.

[31] V. Srinivasan and T. Reps. Synthesis of machine code
from semantics. In PLDI, 2015.

[32] E. Suh, J. Lee, D. Zhang, and S. Devadas. Secure pro-
gram execution via dynamic information flow tracking.
In ASPLOS, 2004.

[33] F. Tip. A survey of program slicing techniques. JPL, 3
(3), 1995.

[34] M. Weiser. Program slicing. TSE, SE-10(4), 1984.
[35] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz, G. Jin,

S. Lu, and T. Reps. Conseq: Detecting concurrency
bugs through sequential errors. In ASPLOS, 2011.


	Introduction
	Background
	SDG Recovery and Slicing for Machine Code
	QFBV Formulas for IA-32 Instructions

	Overview
	Granularity Issue in Machine-Code Slicing
	Improved Machine-Code Slicing in McSlice 

	Algorithm
	Construction of -SDG and Slicing
	Reconstituting an Executable Machine-Code Program

	Implementation
	Experiments
	Extracting Executable Components from Binaries

	Related Work
	Conclusion

