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Recently, Sagiv, Reps, and Wilhelm introduced a powerful abstract-interpretation framework for

program analysis based on three-valued logic [84]. Instantiations of this framework have been

used to show a number of interesting properties of programs that manipulate a variety of linked

data structures. However, two aspects of the framework represented significant challenges in its

user-model. The work that is reported in this thesis addressed these two shortcomings, developed

solutions to them, and carried out experiments to demonstrate their effectiveness.

The first aspect is the need to specify the set of instrumentation relations, which define the abstrac-

tion used in the analysis. This thesis presents a method that refines an abstraction automatically.

Refinement is carried out by introducing new instrumentation relations (defined via logical formu-

las over core relations, which capture the basic properties of memory configurations). We present

two strategies for refining an abstraction. The simpler strategy is effective in many cases. The

second strategy uses a previously known machine-learning algorithm in a new way, namely, to

learn an appropriate abstraction (by learning defining formulas for additional instrumentation rela-

tions). An advantage of our method is that it does not require the use of a theorem prover. The use

of learning, in lieu of deduction-based techniques, constitutes a paradigm shift: the abstraction is

constructed by observing (and generalizing) properties of memory configurations.

The second aspect is the need to specify relation-maintenance formulas, which describe how the

effect of statements in the language (expressed using logical formulas that describe changes to

core-relation values) can be reflected in the values of instrumentation relations. (These formulas
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define the abstract transfer functions of the abstract semantics used for analyzing programs.) Man-

ual creation of relation-maintenance formulas is a time-consuming and error-prone process. This

thesis presents an algorithm to generate relation-maintenance formulas completely automatically.

The algorithm is based on the principle of finite differencing, and transforms an instrumentation

relation’s defining formula into a relation-maintenance formula that captures what the instrumen-

tation relation’s new value should be.

Thomas W. Reps
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program analysis based on three-valued logic [84]. Instantiations of this framework have been

used to show a number of interesting properties of programs that manipulate a variety of linked

data structures. However, two aspects of the framework represented significant challenges in its

user-model. The work that is reported in this thesis addressed these two shortcomings, developed

solutions to them, and carried out experiments to demonstrate their effectiveness.

The first aspect is the need to specify the set of instrumentation relations, which define the abstrac-

tion used in the analysis. This thesis presents a method that refines an abstraction automatically.

Refinement is carried out by introducing new instrumentation relations (defined via logical formu-

las over core relations, which capture the basic properties of memory configurations). We present

two strategies for refining an abstraction. The simpler strategy is effective in many cases. The

second strategy uses a previously known machine-learning algorithm in a new way, namely, to

learn an appropriate abstraction (by learning defining formulas for additional instrumentation rela-

tions). An advantage of our method is that it does not require the use of a theorem prover. The use

of learning, in lieu of deduction-based techniques, constitutes a paradigm shift: the abstraction is

constructed by observing (and generalizing) properties of memory configurations.

The second aspect is the need to specify relation-maintenance formulas, which describe how the

effect of statements in the language (expressed using logical formulas that describe changes to

core-relation values) can be reflected in the values of instrumentation relations. (These formulas

define the abstract transfer functions of the abstract semantics used for analyzing programs.) Man-

ual creation of relation-maintenance formulas is a time-consuming and error-prone process. This
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The algorithm is based on the principle of finite differencing, and transforms an instrumentation

relation’s defining formula into a relation-maintenance formula that captures what the instrumen-

tation relation’s new value should be.

The framework of [84] has been implemented in the TVLA tool [54, 93]. We have extended

TVLA with automatic abstraction refinement and finite differencing and applied it to a number

of programs that manipulate (cyclic and acyclic) singly- and doubly-linked lists, binary trees, and

binary-search trees. The tool was able to demonstrate a number of interesting properties, such as

the partial correctness of the programs.

Additionally, this thesis reports on the automated verification of the total correctness (partial cor-

rectness and termination) of the Deutsch-Schorr-Waite (DSW) algorithm. DSW is an algorithm

for traversing a binary tree without the use of a stack by means of destructive pointer manipula-

tion. Prior approaches to the verification of the algorithm involved semi-automated applications of

theorem provers or hand-written proofs. TVLA’s abstract-interpretation approach made possible

the automatic symbolic exploration of all memory configurations that can arise. With the intro-

duction of a few simple core and instrumentation relations, TVLA was able to establish the partial

correctness and termination of DSW.
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Chapter 1

Introduction

A particularly challenging setting for the static analysis of software arises when trying to es-

tablish properties of programs that manipulate linked data structures, when these programs are

written in a language that supports heap-allocated storage and destructive updating of address-

valued fields. Recently, Sagiv, Reps, and Wilhelm introduced a novel approach, based on 3-valued

logic, which addresses this setting [84]. Instantiations of the framework presented in [84], referred

to here as SRW, have been used to show the safety of heap manipulation in programs [26], find

opportunities for compile-time garbage collection [88], show the partial correctness of linked-list

sorting procedures [53], ensure the correct usage of various Java interfaces, collections, and itera-

tors [78, 96], and to show the partial correctness of tricky concurrent algorithms [95, 97].

In SRW, two related logics come into play: an ordinary 2-valued logic, as well as a related

3-valued logic. A memory configuration, or store, is modeled by what logicians call a logical

structure; an individual of the structure’s universe either models a single memory element or,

in the case of a summary individual, it models a collection of memory elements. A run of the

analyzer carries out an abstract interpretation to collect a set of structures at each program point

P . This involves finding the least fixed point of a certain set of equations. When the fixed point

is reached, the structures that have been collected at program point P describe a superset of all

the execution states that can occur at P . To determine whether a query is always satisfied at P ,

one checks whether it holds in all of the structures that were collected there. Instantiations of

this framework are capable of establishing nontrivial properties of programs that perform complex

pointer-based manipulations of a priori unbounded-size heap-allocated data structures. The TVLA

system (Three-Valued-Logic Analyzer) implements this approach [54, 93].
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Summary individuals play a crucial role. They are used to ensure that abstract descriptors have

an a priori bounded size, which guarantees that a fixed-point is always reached. However, the

constraint of working with limited-size descriptors implies a loss of information about the store.

Intuitively, certain properties of concrete individuals are lost due to abstraction, which groups

together multiple individuals into summary individuals: a property can be true for some concrete

individuals of the group but false for other individuals. It is for this reason that 3-valued logic is

used; uncertainty about a property’s value is captured by means of the third truth value, 1/2.

An advantage of using 2- and 3-valued logic as the basis for static analysis is that the language

used for extracting information from the concrete world and the abstract world is identical: every

syntactic expression—i.e., every logical formula—can be interpreted either in the 2-valued world

or the 3-valued world. The consistency of the 2-valued and 3-valued viewpoints is ensured by a

basic theorem that relates the two logics. Thus, formulas that define the concrete semantics, when

interpreted in 2-valued logic, define a sound abstract semantics when interpreted in 3-valued logic.

Unfortunately, unless some care is taken in the design of an analysis, there is a danger that

as abstract interpretation proceeds, the indefinite value 1/2 will become pervasive. This can de-

stroy the ability to recover interesting information from the 3-valued structures collected (although

soundness is maintained). A key role in combating indefiniteness is played by instrumentation

relations, which record auxiliary information in a logical structure. SRW annunciated the benefit

of introducing instrumentation relations as the Instrumentation Principle:

Observation 1.1 (Instrumentation Principle [84, Observation 2.8]). Suppose that S is a 3-

valued structure that represents the 2-valued structure S♮. By explicitly “storing” in S the values

that a formula ϕ has in S♮, it is sometimes possible to extract more precise information from S

than can be obtained just by evaluating ϕ in S.

Instrumentation relations provide a mechanism to fine-tune an abstraction: an instrumentation re-

lation, which is defined by a logical formula ϕ over the core relation symbols, captures a property

that an individual memory cell may or may not possess. In general, the introduction of additional
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instrumentation relations (whose values are stored and maintained in response to the changes ef-

fected by program statements) refines an abstraction into one that is prepared to track finer distinc-

tions among stores. This allows more properties of the program’s stores to be identified.

As a means of verifying properties of programs, the advantages of the methodology of SRW

are:

• No loop invariants are required.

• The methodology is based on abstract interpretation, and thus each run of the analysis must

terminate.

• The methodology applies to static analyses based on 3-valued first-order logic, and hence it

applies to programs that manipulate pointers and heap-allocated data structures, and elimi-

nates the need for the user to write the usual proofs required for abstract interpretation—i.e.,

to demonstrate that the abstract structures that the analyzer manipulates correctly model the

concrete heap-allocated data structures that the program manipulates.

The key challenge to wider applicability of SRW is the need to manually define instantiations

of the framework that are capable of yielding a precise answer to a query for a given program. It is

desirable to replace the need for user involvement with an automatic mechanism that is capable of

refining the abstraction in an adaptive fashion. Such a mechanism requires:

1. a parameterizable analysis framework, i.e., the ability to change the underlying abstraction

and abstract transformers,

2. the ability to create abstract transformers, given an abstraction (e.g., after refinement), and

3. the ability to select the next abstraction and to perform multiple iterations of the analysis.

While SRW addresses requirement 1, it includes no solution for requirements 2 and 3. Previously

known techniques for automatic abstraction-refinement, such as counterexample-guided abstrac-

tion refinement (CEGAR) [4,16,22,28,36,47,49,72], do not apply in our setting. A key difference

between our setting and the CEGAR approach is the abstract domain: prior work has used abstract
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domains that are fixed, finite, Cartesian products of Boolean values (i.e., predicate-abstraction do-

mains), and hence the only relations introduced are nullary relations. Our work applies to a richer

class of abstractions—3-valued structures—that generalize predicate-abstraction domains. A so-

lution to requirements 2 and 3 needs to be able to introduce unary, binary, ternary, etc. relations

(together with appropriate transformers), in addition to nullary relations. A second distinguishing

feature of our setting is that theorem provers have limited applicability. There do not currently

exist theorem provers for first-order logic extended with transitive closure capable of identifying

infeasible counterexample traces [38]; hence we needed to develop techniques different from those

used in tools such as SLAM, BLAST, etc.

1.1 Our Solution and Organization of the Thesis

Chapter 2 introduces terminology and notation; it presents the logic that we employ and de-

scribes the use of logical structures for representing memory stores.

Chapter 3 addresses requirement 2, which is an instance of the following fundamental challenge

in applying abstract interpretation:

Given the concrete semantics for a language and a desired abstraction, how does one

create the associated abstract transformers?

In our context, the semantics of statements is expressed using logical formulas that describe

changes to core-relation values. When instrumentation relations have been introduced to refine

an abstraction, the challenge is to reflect the changes in core-relation values in the values of the

instrumentation relations [3,23,32,61,84]. The algorithm presented in Chapter 3 provides a way to

create formulas that maintain correct values for the instrumentation relations, and thereby provides

a way to generate, completely automatically, the part of the transformers of an abstract semantics

that deals with instrumentation relations. The algorithm runs in time linear in the size of the in-

strumentation relation’s defining formula. This research was motivated by work on static analysis

based on 3-valued logic (SRW); however, any analysis method that relies on logic—2-valued or

3-valued—to express a program’s semantics may be able to benefit from these techniques.
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From the standpoint of the concrete semantics, instrumentation relations represent cached in-

formation that could always be recomputed by reevaluating the instrumentation relation’s defining

formula in the local state. From the standpoint of the abstract semantics, however, reevaluating a

formula in the local (3-valued) state can lead to a drastic loss of precision. To gain maximum ben-

efit from instrumentation relations, an abstract-interpretation algorithm must obtain their values in

some other way.

This problem, instrumentation-relation maintenance, is solved by incremental computation.

The new value that instrumentation relation p should have after a transition via abstract state trans-

former τ from state σ to σ′ is computed incrementally from the known value of p in σ. The

contributions of the work reported in Chapter 3 can be summarized as follows:

• We give an algorithm for the relation-maintenance problem; it creates a relation-maintenance

formula by applying a finite-differencing transformation to p’s defining formula. The algo-

rithm runs in time linear in the size of the defining formula.

• We present experimental evidence that our technique is an effective one, at least for the anal-

ysis of programs that manipulate (cyclic and acyclic) singly-linked lists, doubly-linked lists,

and binary trees, and for certain sorting programs. In particular, the relation-maintenance

formulas produced automatically using our approach are as effective for maintaining preci-

sion as the best available hand-crafted ones.

• This work is related to the view-maintenance problem in databases. Compared with that

work, the novelty is the ability to create relation-maintenance formulas that are suitable for

use when abstraction has been performed.

Chapter 4 presents inductive logic programming [50, 68, 69, 75, 77], [65, §10], a machine-

learning technique that is instrumental in our solution to requirement 3 (which itself is the subject

of Chapter 5). Chapter 4 describes an existing algorithm that implements the technique, discusses

some implications of using the algorithm in the setting of 3-valued logic, and presents some exten-

sions that we implemented while adapting the algorithm to the need that is articulated in require-

ment 3.
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Chapter 5 addresses requirement 3, which is an instance of the following fundamental challenge

in applying abstract interpretation:

Given a program and a query of interest, how does one create an abstraction that is

sufficiently precise to verify that the program satisfies the query?

We introduce an approach to creating abstractions automatically that, as in some previous work

[4, 16, 22, 36, 47, 49, 72], involves the successive refinement of the abstraction in use. Unlike pre-

vious work, the work presented in this thesis is aimed at the analysis of programs that manipulate

pointers and heap-allocated data structures (also known as shape analysis). However, while we

demonstrate our approach on shape-analysis problems, the approach is applicable in any program-

analysis setting that uses first-order logic.

Chapter 5 presents an abstraction-refinement method for use in static analyses based on 3-

valued logic (SRW), where the semantics of statements and the query of interest are expressed

using logical formulas. Refinement is performed by introducing new instrumentation relations

(defined via logical formulas over core relations, which capture the basic properties of memory

configurations). Our abstraction-refinement method uses two refinement strategies. The first strat-

egy, subformula-based refinement, analyzes the sources of imprecision in the evaluation of the

query, and chooses how to define new instrumentation relations using subformulas of the query.

The second strategy, ILP-based refinement, employs inductive logic programming (ILP) to learn

new instrumentation relations that can stave off imprecision due to abstraction. The steps of ILP

go beyond merely forming Boolean combinations of existing relations (as in many previously in-

troduced refinement techniques); ILP can create new relations by introducing quantifiers during

the learning process.

The choice of instrumentation relations is crucial to the precision, as well as the cost, of the

analysis. Until now, TVLA users have been faced with the task of identifying an instrumentation-

relation set that gives them a definite answer to the query, but does not make the cost prohibitive.

This was arguably one of the key remaining challenges in the TVLA user-model. The contributions

of the work described in Chapter 5 can be summarized as follows:
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• It establishes a new connection between program analysis and machine learning by showing

that ILP is relevant to the problem of creating abstractions automatically. We use ILP for

learning new instrumentation relations that preserve information that would otherwise be

lost due to abstraction.

• The method has been implemented as an extension of TVLA. The input required to specify

a program analysis consists of: (i) a transition system, (ii) a query (a formula that identifies

acceptable outputs), and (iii) a characterization of the program’s valid inputs. Only the

latter has a somewhat nonstandard form: the valid inputs must be specified by giving a

non-deterministic program (a transition system) that generates valid inputs (starting from

scratch). These “Data-Structure Constructors” are discussed in Sect. 5.2.4.

• We present experimental evidence that the use of this approach in an iterative abstraction-

refinement loop can yield precise answers to queries. We tested the effectiveness of the

method using sortedness, stability, and antistability queries on a collection of programs that

perform destructive list manipulation, as well as by using it to establish partial correctness

of two binary-search-tree programs and total correctness of an in-situ list-reversal program

when applied to possibly-cyclic lists. The method is successful in all cases tested here.

Inductive learning concerns identifying general rules from a set of observed instances—in our case,

from relationships observed in a logical structure. An advantage of an approach based on inductive

learning is that it does not require the use of a theorem prover. This is particularly beneficial in our

setting because our logic is undecidable.

Chapter 6 discusses the Deutsch-Schorr-Waite (DSW) algorithm. DSW provides a way to

traverse a tree without the use of a stack by temporarily—but systematically—stealing pointer

fields of the tree’s nodes to serve in place of the stack that one ordinarily needs during, e.g., an

in-order tree traversal. The subtlety of the algorithm (and the complexity of analyzing it) is due

to the fact that, during the traversal, the algorithm visits each node of the tree three times, and

performs a kind of pointer rotation on each node visit [56]. By the time the algorithm finishes, it
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has restored the original values of each node’s left-child and right-child pointers, thus restoring the

original tree.

Richard Bornat singles out the algorithm as a key test for formal methods: “The [Deutsch-

]Schorr-Waite algorithm is the first mountain that any formalism for pointer analysis should

climb.” [9] Past approaches have involved hand-written proofs of complicated invariants to ver-

ify the partial correctness of the algorithm. Even with some automation, these efforts were usually

laborious: a proof performed in 2002 with the help of the Jape proof editor took 152 pages! [8]

The key advantage of TVLA’s abstract-interpretation approach over proof-theoretic approaches is

that a relatively small number of concepts are involved in defining an abstraction of the structures

that can arise on any execution, and verification is then carried out automatically by symbolic

exploration of all memory configurations that can arise.

Our initial intention was to apply our abstraction-refinement approach to automatically create

an abstraction that could be used to verify the correctness of the algorithm. However, DSW’s

complexity made it very challenging to verify the algorithm even using a manually-identified ab-

straction. Thus, although this represents only a partial victory for our techniques—finite differ-

encing was employed to automatically create the relation-maintenance formulas, but abstraction

refinement was not used to learn the appropriate abstraction—the verification of the algorithm’s

correctness constituted a standalone contribution, which was worthy of inclusion in this thesis.

The contributions of the work reported in Chapter 6 can be summarized as follows:

• We defined an abstraction (in the canonical-abstraction framework used by TVLA) that cap-

tures sufficient invariants of DSW to demonstrate partial correctness and termination. We

defined the abstraction using a few simple instrumentation relations—eight key formulas—

each containing only two atomic subformulas.

• We used the fact that each tree node passes through four states (induced by the original state

and the three visits to each node) to define a state-dependent abstraction, which requires

fewer structures to represent the memory configurations that can arise in DSW than would

be necessary without state dependence.
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• We used the abstraction to establish the partial correctness of DSW via automatic symbolic

exploration of all memory configurations.

• We used the state-dependent abstraction to establish that a certain measure strictly decreases

on each loop iteration, thus establishing that DSW terminates.

While studying the question of precision in analyses based on 3-valued logic, we encountered

a non-standard logic-minimization problem that arises in 3-valued propositional logic. Chapter 7

presents our results in regards to this problem. To illustrate the issue, consider the following trivial

example (where we use [[ϕ]](a) to denote the value of a formula ϕ with respect to an assignment

a of truth values to propositional variables): In 2-valued logic, the formula p ∨ ¬p is equivalent

to the formula 1; that is, in 2-valued logic, [[p ∨ ¬p]](a) = [[1]](a) = 1 for all assignments a that

assign some truth value to p. In contrast, p ∨ ¬p and 1 are not equivalent in 3-valued logic, as can

be seen by considering their values under various (3-valued) assignments:

[[1]]([p 7→ 0]) = 1 = [[p ∨ ¬p]]([p 7→ 0])

[[1]]([p 7→ 1/2]) = 1 6= 1/2 = [[p ∨ ¬p]]([p 7→ 1/2])

[[1]]([p 7→ 1]) = 1 = [[p ∨ ¬p]]([p 7→ 1])

In particular, for [p 7→ 1/2], the formula 1 provides a definite answer (i.e., 1), but p ∨ ¬p provides

an indefinite answer (i.e., 1/2).

As this example demonstrates, in 3-valued logic there is a notion of one formula being “better”

than another: among the formulas that are equivalent in 2-valued logic, some may evaluate to

a definite value on more 3-valued assignments. Our interest in this phenomenon is motivated

by the possibility of exploiting it to obtain better answers in applications that use 3-valued logic.

An answer of 0 or 1 provides precise (definite) information; an answer of 1/2 provides imprecise

(indefinite) information. By replacing a formula ϕ with a “better” formula ψ, we may improve the

precision of the answers obtained.

One might approach the problem of “improving”ϕ by simplifyingϕ’s subterms using rewriting

rules, such as

γ ∨ ¬γ −→ 1 γ ∧ ¬γ −→ 0.
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However, one is left with the question of whether such an approach always produces a formula that

is as good as possible.

In Chapter 7, we give an algorithm that uses a different approach; the algorithm always pro-

duces a formula that is “best” (in a certain well-defined sense). This work makes the following

contributions:

• We provide a formalization of the “semantic-minimization” problem: Given a formula ϕ,

the goal is to find a best formula ψ. (See Sect. 7.2.)

• We show that one can always find a best formula.

• We present several methods for creating a best formula.

Chapter 8 presents some concluding remarks on the lessons learned and possible future direc-

tions for this line of research.

Finally, the Appendix presents proofs of certain propositions. App. A presents a proof of the

correctness of our solution to requirement 2 and App. B presents proofs of propositions stated in

Chapter 7.
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Chapter 2

Background

The present chapter introduces terminology and notation; it presents the logic that we employ

and describes the use of logical structures for representing memory stores.

The first half of Sect. 2.1 introduces 2-valued first-order logic with transitive closure. These

concepts are standard in logic. The latter half of the section presents a straightforward extension

of the logic to the 3-valued setting, in which a third truth value—1/2—is introduced to denote

uncertainty. The remainder of the chapter summarizes the program-analysis framework described

in [84]. In that approach, memory configurations are encoded as logical structures, the semantics

of programs, as well as the properties of memory configurations, is encoded as logical formulas,

and abstract interpretation computes the set of logical structures that describe the memory config-

urations that can arise at each point in the program being analyzed.

2.1 First-Order Logic with Transitive Closure

2-Valued First-Order Logic with Transitive Closure The syntax of first-order formulas with

equality and reflexive transitive closure is defined as follows:

Definition 2.1 Let Ri denote a set of arity-i relation symbols. A formula over the vocabulary

R = {eq} ∪
⋃

iRi is defined by

p ∈ Rk ϕ ::= 0 | 1 | p(v1, . . . , vk)

ϕ ∈ Formulas | (¬ϕ1) | (ϕ1 ∧ ϕ2) | (ϕ1 ∨ ϕ2) | (∃v : ϕ1) | (∀v : ϕ1)

v ∈ Variables | (RTC v′1, v
′
2 : ϕ1)(v1, v2)
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The set of free variables of a formula is defined as usual. “RTC” stands for reflexive transitive

closure. In ϕ ≡ (RTC v′1, v
′
2 : ϕ1)(v1, v2), if ϕ1’s free-variable set is V , we require v1, v2 6∈ V .

The free variables of ϕ are (V − {v′1, v
′
2}) ∪ {v1, v2}.

We use several shorthand notations: (v1 = v2)
def
= eq(v1, v2); (v1 6=v2)

def
= ¬eq(v1, v2); and for

a binary relation p, p∗(v1, v2)
def
= (RTC v′1, v

′
2 : p(v′1, v

′
2))(v1, v2). We also use a C-like syntax for

conditional expressions: ϕ1 ? ϕ2 : ϕ3.1 The order of precedence among the connectives, from

highest to lowest, is as follows: ¬, ∧, ∨, ∀, and ∃. We drop parentheses wherever possible, except

for emphasis.

Definition 2.2 A 2-valued interpretation over R is a 2-valued logical structure S = 〈US, ιS〉,

where US is a set of individuals and ιS maps each relation symbol p of arity k to a truth-valued

function: ιS(p) : (US)k → {0, 1}. In addition, (i) for all u ∈ US , ιS(eq)(u, u) = 1, and (ii) for all

u1, u2 ∈ U
S such that u1 and u2 are distinct individuals, ιS(eq)(u1, u2) = 0.

An assignment Z is a function that maps variables to individuals (i.e., it has the functionality

Z : {v1, v2, . . .} → US). When Z is defined on all free variables of a formula ϕ, we say that Z

is complete for ϕ. (We generally assume that every assignment that arises in connection with the

discussion of some formula ϕ is complete for ϕ.)

The (2-valued) meaning of a formula ϕ, denoted by [[ϕ]]S2 (Z), yields a truth value in {0, 1}; it

is defined inductively as follows:

1In 2-valued logic, one can think of ϕ1 ? ϕ2 : ϕ3 as a shorthand for (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ϕ3). In 3-valued logic, it

becomes a shorthand for (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ϕ3) ∨ (ϕ2 ∧ ϕ3), as explained in Chapter 7.



13

[[0]]S2 (Z) = 0 [[ϕ1 ∧ ϕ2]]
S
2 (Z) = min([[ϕ1]]

S
2 (Z), [[ϕ2]]

S
2 (Z))

[[1]]S2 (Z) = 1 [[ϕ1 ∨ ϕ2]]
S
2 (Z) = max([[ϕ1]]

S
2 (Z), [[ϕ2]]

S
2 (Z))

[[p(v1, . . . , vk)]]
S
2 (Z) = ιS(p)(Z(v1), . . . , Z(vk)) [[∃v : ϕ1]]

S
2 (Z) = max

u∈US
[[ϕ1]]

S
2 (Z[v1 7→ u])

[[¬ϕ1]]
S
2 (Z) = 1− [[ϕ1]]

S
2 (Z) [[∀v : ϕ1]]

S
2 (Z) = min

u∈US
[[ϕ1]]

S
2 (Z[v1 7→ u])

[[(RTC v′1, v
′
2 : ϕ1)(v1, v2)]]

S
2 (Z)

=





1 if Z(v1) = Z(v2)

max
n ≥ 1,

u1, . . . , un+1 ∈ U,

Z(v1) = u1,

Z(v2) = un+1

n

min
i=1

[[ϕ1]]
S
2 (Z[v′1 7→ ui, v

′
2 7→ ui+1]) otherwise

S and Z satisfy ϕ if [[ϕ]]S2 (Z) = 1. The set of 2-valued structures is denoted by 2-STRUCT[R].

3-Valued Logic and Embedding In 3-valued logic, the formulas that we work with are identical

to the ones used in 2-valued logic. At the semantic level, a third truth value—1/2—is introduced

to denote uncertainty.

Definition 2.3 The truth values 0 and 1 are definite values; 1/2 is an indefinite value. For l1, l2 ∈

{0, 1/2, 1}, the information order is defined as follows: l1 ⊑ l2 iff l1 = l2 or l2 = 1/2. l1 ⊑ l2

denotes that l1 is at least as definite as l2. We use l1 < l2 when l1 ⊑ l2 and l1 6= l2. The symbol ⊔

denotes the least-upper-bound operation with respect to ⊑.

As shown in Fig. 2.1, we place two orderings on 0, 1, and 1/2: (i) the information order, denoted by

⊑ and illustrated in Fig. 2.1(a), captures “(un)certainty”; (ii) the logical order, shown in Fig. 2.1(b),

defines the meaning of ∧ and ∨; that is, ∧ and ∨ are meet and join in the logical order. 3-valued

logic retains a number of properties that are familiar from 2-valued logic, such as De Morgan’s

laws, associativity of ∧ and ∨, and distributivity of ∧ over ∨ (and vice versa). Because ϕ1 ?ϕ2 : ϕ3

is treated as a shorthand for (ϕ1 ∧ϕ2)∨ (¬ϕ1 ∧ϕ3)∨ (ϕ2 ∧ϕ3) in 3-valued logic (see Chapter 7),

the value of 1/2 ? V1 : V2 equals V1 ⊔ V2. We now generalize Defn. 2.2 to define the meaning of a

formula with respect to a 3-valued structure.
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Figure 2.1 (a) The information order (⊑) and its join operation (⊔). (b) The logical order and its

join operation (∨).

Definition 2.4 A 3-valued interpretation over R is a 3-valued logical structure S = 〈US, ιS〉,

where US is a set of individuals and ιS maps each relation symbol p of arity k to a truth-valued

function: ιS(p) : (US)k → {0, 1/2, 1}. In addition, (i) for all u ∈ US , ιS(eq)(u, u) ⊒ 1, and (ii)

for all u1, u2 ∈ U
S such that u1 and u2 are distinct individuals, ιS(eq)(u1, u2) = 0.

For an assignment Z, the (3-valued) meaning of a formula ϕ, denoted by [[ϕ]]S3 (Z), yields a

truth value in {0, 1/2, 1}. The meaning of ϕ is defined exactly as in Defn. 2.2, but interpreted

over {0, 1/2, 1}. S and Z potentially satisfy ϕ if [[ϕ]]S3 (Z) ⊒ 1. The set of 3-valued structures is

denoted by 3-STRUCT[R].

Defn. 2.4 requires that for each individual u, the value of ιS(eq)(u, u) is 1 or 1/2. An individual

for which ιS(eq)(u, u) = 1/2 is called a summary individual. In the abstract-interpretation context,

a summary individual abstracts one or more fragments of a data structure, and can represent more

than one concrete memory cell.

The embedding ordering on structures is defined as follows:

Definition 2.5 Let S = 〈US, ιS〉 and S ′ = 〈US′

, ιS
′

〉 be two structures, and let f : US → US′

be a

surjective function. We say that f embeds S in S ′ (denoted by S ⊑f S ′) if for every relation symbol

p ∈ R of arity k and for all u1, . . . , uk ∈ U
S , ιS(p)(u1, . . . , uk) ⊑ ιS

′

(p)(f(u1), . . . , f(uk)). We

say that S can be embedded in S ′ (denoted by S ⊑ S ′) if there exists a function f such that

S ⊑f S ′.

The Embedding Theorem says that if S ⊑f S ′, then every piece of information extracted from

S ′ via a formula ϕ is a conservative approximation of the information extracted from S via ϕ. To
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formalize this, we extend mappings on individuals to operate on assignments: if f : US → US′

is a

function and Z : V ar → US is an assignment, f ◦ Z denotes the assignment f ◦ Z : V ar → US′

such that (f ◦ Z)(v) = f(Z(v)).

Theorem 2.6 (Embedding Theorem [84, Theorem 4.9]). Let S = 〈US , ιS〉 and S ′ = 〈US′

, ιS
′

〉

be two structures, and let f : US → US′

be a function such that S ⊑f S ′. Then, for every formula

ϕ and complete assignment Z for ϕ, [[ϕ]]S3 (Z) ⊑ [[ϕ]]S
′

3 (f ◦ Z).

2.2 Stores as Logical Structures and their Abstractions

x 1 8 5
n n

Figure 2.2 A possible

store for a linked list

Program Analysis Via 3-Valued Logic The remainder of this chap-

ter summarizes the program-analysis framework described in [84]. In

that approach, concrete memory configurations (i.e., stores) are en-

coded as logical structures (associated with a vocabulary of relation

symbols with given arities) in terms of a fixed collection of core relations, C. Core relations are

part of the underlying semantics of the language to be analyzed; they record atomic properties of

stores. For instance, Fig. 2.3 gives the definition of a C linked-list datatype, and lists the relations

that would be used to represent the stores manipulated by programs that use type List, such as the

store in Fig. 2.2. (The core relations are fixed for a given combination of language and datatype; in

general, different languages and datatypes require different collections of core relations.) 2-valued

logical structures then represent memory configurations: the individuals are the set of memory

cells; a nullary relation represents a Boolean variable of the program; a unary relation represents

either a pointer variable or a Boolean-valued field of a record; and a binary relation represents a

pointer field of a record. In this example, unary relations represent pointer variables and binary

relation n represents the n-field of a List cell. Numeric-valued variables and numeric-valued

fields (such as data) can be modeled by introducing other relations, such as the binary relation dle

(which stands for “data less-than-or-equal-to”) listed in Fig. 2.3; dle captures the relative order

of two nodes’ data values. (Alternatively, numeric-valued entities can be handled by combining
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typedef struct node {

struct node *n;

int data;

} *List;

Relation Intended Meaning

eq(v1, v2) Do v1 and v2 denote the same memory cell?

x(v) Does pointer variable x point to memory cell v?

n(v1, v2) Does the n field of v1 point to v2?

dle(v1, v2) Is the data field of v1 less than or equal to that of v2?

(a) (b)

Figure 2.3 (a) Declaration of a linked-list datatype in C. (b) Core relations used for representing

the stores manipulated by programs that use type List.

abstractions of logical structures with previously known techniques for creating numeric abstrac-

tions [31].) Fig. 2.4 shows 2-valued structure S2.4, which represents the store of Fig. 2.2 using the

relations of Fig. 2.3. S2.4 has three nodes, u1, u2, and u3, which represent the three list elements.

x

dle

dle

n

dle

n

dle

u1

dle

u2

dle

u3

x

u1 1

u2 0

u3 0

n u1 u2 u3

u1 0 1 0

u2 0 0 1

u3 0 0 0

dle u1 u2 u3

u1 1 1 1

u2 0 1 0

u3 0 1 1

Figure 2.4 A logical structure S2.4

that represents the store shown in

Fig. 2.2 in graphical and tabular

forms using the relations of Fig. 2.3

(Relation eq is not shown explicitly;

each node has an eq self-loop, and

the relation in tabular form is the

identity matrix.)

Information can be extracted from logical structures by

evaluating formulas. A concrete operational semantics is

defined by specifying, for each kind of statement st in the

programming language, a structure transformer for each

outgoing control-flow graph (CFG) edge e = (st, st′). A

structure transformer is specified by providing a collection

of relation-transfer formulas, τc,st, one for each core rela-

tion c. These formulas define how the core relations of a 2-

valued logical structure S that arises at st are transformed

by e to create a 2-valued logical structure S ′ at st′; typi-

cally, they define the value of relation c in S ′ as a function

of c’s value in S. Edge e may optionally have a precon-

dition formula, which filters out structures that should not

follow the transition along e. The postcondition operator

post for edge e is defined by lifting e’s structure transformer to sets of structures.

Abstract stores are 3-valued logical structures. Concrete stores are abstracted to abstract stores

by means of embedding functions—onto functions that map individuals of a 2-valued structure S♮
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to those of a 3-valued structure S. The Embedding Theorem ensures that every piece of information

extracted from S by evaluating a formula ϕ is a conservative approximation (⊒) of the information

extracted from S♮ by evaluating ϕ.

To obtain a computable abstract domain, we need a way to ensure that the 3-valued structures

used to represent memory configurations are always of finite size. We do this by defining an

equivalence relation on individuals and considering the (finite) quotient structure with respect to

this equivalence relation; in particular, each individual of a 2-valued logical structure (representing

a concrete memory cell) is mapped to an individual of a 3-valued logical structure according to the

vector of values that the concrete individual has for a user-chosen collection of unary abstraction

relations:

Definition (Canonical Abstraction). Let S ∈ 2-STRUCT[R], and let A ⊆ R1 be some

chosen subset of the unary relation symbols. The relations in A are called abstraction relations;

they define the following equivalence relation ≃A on US :

u1 ≃A u2 ⇐⇒ for all p ∈ A, pS(u1) = pS(u2),

and the surjective function fA : US → US/ ≃A, such that fA(u) = [u]≃A
, which maps an

individual to its equivalence class. The canonical abstraction of S with respect to A (denoted by

fA(S)) performs the join (in the information order) of relation values, thereby introducing 1/2’s.

dlex

dle n,dle
n

u1
u23

x

u1 1

u23 0

n u1 u23

u1 0 1/2

u23 0 1/2

dle u1 u23

u1 1 1

u23 0 1/2

Figure 2.5 A 3-valued structure

S2.5 that is the canonical

abstraction of structure S2.4

Intuitively, canonical abstraction maps a group of individ-

uals that are indistinguishable according to the set of (unary)

abstraction relations A to a single individual.

If all unary relations are abstraction relations (A = R1), the

canonical abstraction of 2-valued logical structure S2.4 is S2.5,

shown in Fig. 2.5, with fA(u1) = u1 and fA(u2) = fA(u3) =

u23. In addition to S2.4, S2.5 represents any list with two or

more elements that is pointed to by program variable x, and in

which the first element’s data value is (definitely) lower than

the data values in the rest of the list (note the absence of either a 1-valued or 1/2-valued dle
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edge from individual u23 to individual u1). The following graphical notation is used for depicting

3-valued logical structures:

• Individuals are represented by circles containing their names and (non-0) values for unary

relations. Summary individuals are represented by double circles.

• A unary relation p corresponding to a pointer-valued program variable is represented by a

solid arrow from p to the individual u for which p(u) = 1, and by the absence of a p-arrow

to each node u′ for which p(u′) = 0. (If p = 0 for all individuals, the relation name p is not

shown.)

• A binary relation q is represented by a solid arrow labeled q between each pair of individuals

ui and uj for which q(ui, uj) = 1, and by the absence of a q-arrow between pairs u′i and u′j

for which q(u′i, u
′
j) = 0.

• Relations with value 1/2 are represented by dotted arrows.

Canonical abstraction ensures that each 3-valued structure is no larger than some fixed size, known

a priori.

2.2.1 Instrumentation Relations

The abstraction function on which an analysis is based, and hence the precision of the analysis

defined, can be tuned by (i) choosing to equip structures with additional instrumentation relations

to record derived properties, and (ii) varying which of the unary core and unary instrumentation

relations are used as the set of abstraction relations. The set of instrumentation relations is denoted

by I. Each arity-k relation symbol p ∈ I is defined by an instrumentation-relation definition

formula ψp(v1, . . . , vk). Instrumentation relations may appear in the defining formulas of other

instrumentation relations as long as there are no circular dependences.

The introduction of unary instrumentation relations that are used as abstraction relations pro-

vides a way to control which concrete individuals are merged together into an abstract individual,

and thereby control the amount of information lost by abstraction. Instrumentation relations that
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p Intended Meaning ψp

isn(v) Do n fields of two or more list nodes point to v? ∃ v1, v2 : n(v1, v)∧n(v2, v)∧ v1 6=v2

tn(v1, v2) Is v2 reachable from v1 along zero or more n fields? n∗(v1, v2)

rn,x(v) Is v reachable from pointer variable x ∃ v1 : x(v1)∧ tn(v1, v)

along zero or more n fields?

cn(v) Is v on a directed cycle of n fields? ∃ v1 : n(v1, v)∧ tn(v, v1)

Figure 2.6 Defining formulas of some commonly used instrumentation relations. The relation

name isn abbreviates “is-shared”. There is a separate reachability relation rn,x for every program

variable x. (Recall that v1 6=v2 is a shorthand for ¬eq(v1, v2), and n∗(v1, v2) is a shorthand for

(RTC v′1, v
′
2 : n(v′1, v

′
2))(v1, v2).)
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involve reachability properties, which can be defined using RTC, often play a crucial role in the

definitions of abstractions. For instance, in program-analysis applications, reachability properties

from specific pointer variables have the effect of keeping disjoint sublists summarized separately.

Fig. 2.6 lists some instrumentation relations that are important for the analysis of programs that

use type List.

x

tn,dle

tn,dle

dle

u1rn,x

tn,dle

u2rn,x

n,tn

dle
tn,dle

u3rn,x

n,tn

x rn,x cn

u1 1 1 0

u2 0 1 0

u3 0 1 0

n u1 u2 u3

u1 0 1 0

u2 0 0 1

u3 0 0 0

tn u1 u2 u3

u1 1 1 1

u2 0 1 1

u3 0 0 1

dle u1 u2 u3

u1 1 1 1

u2 0 1 0

u3 0 1 1

Figure 2.7 A logical structure S2.7 that represents the

store shown in Fig. 2.2 in graphical and tabular forms

using the relations of Figs. 2.3 and 2.6

Fig. 2.7 shows 2-valued structure

S2.7, which represents the store of

Fig. 2.2 using the core relations of

Fig. 2.3, as well as the instrumentation

relations of Fig. 2.6. If all unary re-

lations are abstraction relations (A =

R1), the canonical abstraction of 2-

valued logical structure S2.7 is S2.8,

shown in Fig. 2.8, with fA(u1) = u1 and

fA(u2) = fA(u3) = u23.

2.2.2 History Relations

tn,dle
x

tn,dle n,tn,dle
n

u1rn,x

u23rn,x

x rn,x cn

u1 1 1 0

u23 0 1 0

n u1 u23

u1 0 1/2

u23 0 1/2

tn u1 u23

u1 1 1

u23 0 1/2

dle u1 u23

u1 1 1

u23 0 1/2

Figure 2.8 A 3-valued structure S2.8 that is the

canonical abstraction of structure S2.7

We are sometimes interested in making

assertions that compare the state of a store at

the end of a procedure with its state at the

start. For instance, we may be interested in

checking that all list elements reachable from

variable x at the start of a procedure are guar-

anteed to be reachable from x at the end. To

allow the user to make such assertions, we

double the vocabulary: for each relation p,

we extend the program-analysis specification with a history relation, p0, which serves as an indeli-

ble record of the state of the store at the entry point. We will use the term history relations to refer
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to the latter kind of relations, and the term active relations to refer to the relations from the original

vocabulary. We can now express the property mentioned above:

∀v : r0
n,x(v) ⇔ rn,x(v). (2.1)

If Formula (2.1) evaluates to 1, then the elements reachable from x after the procedure executes

are exactly the same as those reachable at the beginning of the procedure, and consequently the

procedure performs a permutation of list x.

In addition to history relations, we introduce a collection of nullary instrumentation re-

lations that track whether active relations have changed from their initial values. For each

active relation p(v1, . . . , vk), the relation samep() is defined by ψsamep = ∀v1, . . . , vk :

p(v1, . . . , vk) ⇔ p0(v1, . . . , vk). We can now use samern,x() in place of Formula (2.1) when as-

serting the permutation property.

2.2.3 Abstract Interpretation

For each kind of statement in the programming language, the abstract semantics is again defined

by a collection of formulas: the same relation-transfer formula that defines the concrete semantics,

in the case of a core relation, and, in the case of an instrumentation relation p, by a relation-

maintenance formula µp,st.
2

Abstract interpretation collects a set of 3-valued structures at each program point. It can be

implemented as an iterative procedure that finds the least fixed point of a certain set of equations

[84]. (It is important to understand that although the analysis framework is based on logic, it

is model theoretic, not proof theoretic: the abstract interpretation collects sets of 3-valued logical

structures—i.e., abstracted models; its actions do not rely on deduction or theorem proving.) When

the fixed point is reached, the structures that have been collected at program point P describe a

2In [84], relation-transfer formulas and relation-maintenance formulas are both called “relation-update formulas”.

Here we use separate terms so that we can refer easily to relation-maintenance formulas, which are the main subject of

Chapter 3. The term “relation-maintenance formula” emphasizes the connection to work in the database community

on view maintenance (see Sect. 3.5). (“View updating” is something different: an update is made to the value of a

view relation and changes are propagated back to the base relations.)
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superset of all the execution states that can occur at P . To determine whether a property always

holds at P , one checks whether it holds in all of the structures that were collected there.

Fig. 2.9 illustrates the abstract execution of the statement y = x on a 3-valued logical struc-

ture that represents concrete lists of length 2 or more. Instrumentation relations and relation-

maintenance formulas have been omitted from the figure. The abstract execution of the statement

y = x is revisited in Ex. 3.2 of Chapter 3, which discusses relation-maintenance formulas.

Other Operations on Logical Structures focus [ϕ] is a heuristic that elaborates a 3-valued

structure—causing it to be replaced by a collection of more precise structures that, taken together,

represent the same set of concrete stores;3 the criterion for refinement is to ensure that the formula

ϕ evaluates to a definite value for all complete assignments to ϕ’s free variables. The operation

thus brings ϕ “into focus”.

By invoking focus before applying each structure transformer, focusing is used to reduce the

number of indefinite values that arise when relation-transfer and relation-maintenance formulas are

evaluated in 3-valued structures. The focus formulas aim to sharpen the values of relations when

applied to the individuals that are affected by the transformer. (This often involves the materializa-

tion of a concrete individual out of a summary individual.) For program-analysis applications, it

was proposed in [84] that for a statement of the form lhs = rhs, the focus formula should identify

the memory cells that correspond to the L-value of lhs and the R-value of rhs. This ensures that

the application of an abstract transformer performs a strong update of the values of core relations

that represent pointer variables and fields that are updated by the statement, i.e., does not set those

values to 1/2.

Not all logical structures represent admissible stores. To exclude structures that do not, we im-

pose integrity constraints. For instance, relation x(v) of Fig. 2.3 captures whether pointer variable

x points to memory cell v; x would be given the attribute “unique”, which imposes the integrity

constraint that x can hold for at most one individual in any structure: ∀ v1, v2 : x(v1) ∧x(v2) ⇒

v1 = v2. This formula evaluates to 1 in any 2-valued logical structure that corresponds to an

3This operation can be viewed as a partial concretization.
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Structure before

unary rels. binary rels.

indiv. x y

u1 1 0

u 0 0

n u1 u

u1 0 1/2

u 0 1/2

eq u1 u

u1 1 0

u 0 1/2

x // GFED@ABCu1
n // ?>=<89:;/.-,()*+u

n
��

Statement y = x

Relation-transfer formulas

τx,y=x(v) = x(v)

τy,y=x(v) = x(v)

τn,y=x(v1, v2) = n(v1, v2)

τeq ,y=x(v1, v2) = eq(v1, v2)

Structure after

unary rels. binary rels.

indiv. x y

u1 1 1

u 0 0

n u1 u

u1 0 1/2

u 0 1/2

eq u1 u

u1 1 0

u 0 1/2

x, y // GFED@ABCu1
n // ?>=<89:;/.-,()*+u

n
��

Figure 2.9 The relation-transfer formulas for x, y, and n express a transformation on logical

structures that corresponds to the semantics of y = x
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admissible store. Integrity constraints contribute to the concretization function (γ) for our abstrac-

tion [100]. Integrity constraints are enforced by coerce, a clean-up operation that may “sharpen”

a 3-valued logical structure by setting an indefinite value (1/2) to a definite value (0 or 1), or dis-

card a structure entirely if an integrity constraint is definitely violated by the structure (e.g., if it

cannot represent any admissible store). To help prevent an analysis from losing precision, coerce

is applied at certain steps of the algorithm, e.g., after the application of an abstract transformer.

In addition, most of the operations described in this section are not constrained to manipulate

3-valued structures that are images of canonical abstraction; they rely on the Embedding Theorem,

which applies to any pair of structures for which one can be embedded into the other. Thus, it

is not necessary to perform canonical abstraction after the application of each abstract structure

transformer. To ensure that abstract interpretation terminates, it is only necessary that canonical

abstraction be applied somewhere in each loop, e.g., at the target of each backedge in the CFG.
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Chapter 3

Finite Differencing of Logical Formulas

The present chapter addresses an instance of the following fundamental challenge in applying

abstract interpretation:

Given the concrete semantics for a language and a desired abstraction, how does one

create the associated abstract transformers?

In our context, the semantics of statements is expressed using logical formulas that describe

changes to core-relation values. When instrumentation relations (defined via logical formulas over

core relations) have been introduced to refine an abstraction, the challenge is to reflect the changes

in core-relation values in the values of the instrumentation relations. The algorithm presented in

this chapter provides a way to create formulas that maintain correct values for the instrumenta-

tion relations, and thereby provides a way to generate, completely automatically, the part of the

transformers of an abstract semantics that deals with instrumentation relations. The algorithm is

based on the principle of finite differencing, and transforms an instrumentation relation’s defin-

ing formula into a relation-maintenance formula that captures what the instrumentation relation’s

new value should be. The algorithm runs in time linear in the size of the instrumentation rela-

tion’s defining formula. This research was motivated by work on static analysis based on 3-valued

logic [84]; however, any analysis method that relies on logic—2-valued or 3-valued—to express a

program’s semantics may be able to benefit from these techniques.

The chapter is organized as follows: Sect. 3.1 defines the relation-maintenance problem.

Sect. 3.2 presents a method for generating maintenance formulas for instrumentation relations.

Sect. 3.3 discusses extensions to handle instrumentation relations that use transitive closure.
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Sect. 3.4 presents experimental results. Sect. 3.5 discusses related work. App. A contains the

proofs of certain propositions.

3.1 The Problem: Maintaining Instrumentation Relations

The execution of a statement st transforms a logical structure S, which represents a store that

arises just before st, into a new structure S ′, which represents the corresponding store just after

st executes. The structure that consists of just the core relations of S ′ is called a proto-structure,

denoted by S ′
proto. The creation of S ′

proto from S, denoted by S ′
proto := [[st]]3(S), can be expressed

as

for each c ∈ C and u1, . . . , uk ∈ U
S ,

ιS
′
proto(c)(u1, . . . , uk) := [[τc,st(v1, . . . , vk)]]

S
3 ([v1 7→ u1, . . . , vk 7→ uk]). (3.1)

In general, if we compare the various relations of S ′
proto with those of S, some tuples will have

been added and others will have been deleted.

We now come to the crux of the matter: Suppose that ψp defines instrumentation relation p;

how should the static-analysis engine obtain the value of p in S ′?

An instrumentation relation whose defining formula is expressed solely in terms of core rela-

tions is said to be in core normal form. Because there are no circular dependences, an instrumen-

tation relation’s defining formula can always be put in core normal form by repeated substitution

until only core relations remain. When ψp is in core normal form, or has been converted to core

normal form, it is possible to determine the value of each instrumentation relation p by evaluating

ψp in structure S ′
proto:

for each u1, . . . , uk ∈ U
S ,

ιS
′

(p)(u1, . . . , uk) := [[ψp(v1, . . . , vk)]]
S′

proto

3 ([v1 7→ u1, . . . , vk 7→ uk]). (3.2)

Thus, in principle it is possible to maintain the values of instrumentation relations via Eqn. (3.2).

In practice, however, this approach does not work very well. As observed elsewhere [84], when

working in 3-valued logic, it is usually possible to retain more precision by defining a special
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instrumentation-relation maintenance formula, µp,st(v1, . . . , vk), and evaluating µp,st(v1, . . . , vk)

in structure S:

for each u1, . . . , uk ∈ U
S ,

ιS
′

(p)(u1, . . . , uk) := [[µp,st(v1, . . . , vk)]]
S
3 ([v1 7→ u1, . . . , vk 7→ uk]). (3.3)

The advantage of the relation-maintenance approach is that the results of program analysis can

be more accurate. In 3-valued logic, when µp,st is defined appropriately, the relation-maintenance

strategy can generate a definite value (0 or 1) when the evaluation of ψp on S ′
proto generates the

indefinite value 1/2.

To ensure that an analysis is conservative, however, one must also show that the following

property holds:

Definition 3.1 Suppose that p is an instrumentation relation defined by formula ψp. Relation-

maintenance formula µp,st maintains p correctly for statement st if, for all S ∈ 2-STRUCT[R] and

all Z, [[µp,st]]
S
2 (Z) = [[ψp]]

[[st]]2(S)
2 (Z).

For an instrumentation relation in core normal form, it is always possible to provide a relation-

maintenance formula that satisfies Defn. 3.1 by defining µp,st as

µp,st
def
= ψp[c ←֓ τc,st | c ∈ C], (3.4)

where ϕ[q ←֓ ϕ′] denotes the formula obtained from ϕ by replacing each relation occur-

rence q(w1, . . . , wk) by ϕ′{w1, . . . , wk}, and ϕ′{w1, . . . , wk} denotes the formula obtained from

ϕ′(v1, . . . , vk) by replacing each free occurrence of variable vi by wi.

The formula µp,st defined in Eqn. (3.4) maintains p correctly for statement st because, by the

2-valued version of Eqn. (3.1), [[τc,st]]
S
2 (Z) = [[c]]

S′
proto

2 (Z); consequently, when µp,st of Eqn. (3.4)

is evaluated in structure S, the use of τc,st in place of c is equivalent to using the value of c when

ψp is evaluated in S ′
proto; i.e., for all Z, [[ψp[c ←֓ τc,st | c ∈ C]]]

S
2 (Z) = [[ψp]]

S′
proto

2 (Z). However—

and this is precisely the drawback of using Eqn. (3.4) to obtain the µp,st—the steps of evaluating

[[ψp[c ←֓ τc,st | c ∈ C]]]
S
2 (Z) mimic exactly those of evaluating [[ψp]]

S′
proto

2 (Z). Consequently, when
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we pass to 3-valued logic, for all Z, [[ψp[c ←֓ τc,st | c ∈ C]]]
S
3 (Z) yields exactly the same value as

[[ψp]]
S′

proto

3 (Z) (i.e., as evaluating Eqn. (3.2)). Thus, although µp,st that satisfy Defn. 3.1 can be

obtained automatically via Eqn. (3.4), this approach does not provide a satisfactory solution to the

relation-maintenance problem.

Example 3.2 Eqn. (3.5) shows the defining formula for the instrumentation relation isn (“is-shared

using n fields”),

isn(v)
def
= ∃ v1, v2 : n(v1, v) ∧n(v2, v) ∧ v1 6=v2, (3.5)

which captures whether a memory cell is pointed to by two or more pointer fields of memory cells,

e.g., see Fig. 3.1.

u2

u1

u

Figure 3.1 A

store in

which u is

shared; i.e.,

isn(u) = 1

Fig. 3.2 illustrates how execution of the statement y = x causes the value of

isn to lose precision when its relation-maintenance formula is created accord-

ing to Eqn. (3.4). The initial 3-valued structure represents all singly-linked lists

of length 2 or more in which all memory cells are unshared. Because exe-

cution of y = x does not change the value of core relation n, τn,y=x(v1, v2) is

n(v1, v2), and hence the formula µisn,y=x(v) created according to Eqn. (3.4) is

∃ v1, v2 : n(v1, v) ∧n(v2, v) ∧ v1 6=v2. As shown in Fig. 3.2, the structure created

using this maintenance formula is not as precise as we would like. In particular,

isn(u) = 1/2, which means that u can represent a shared cell. Thus, the final

3-valued structure also represents certain cyclic linked lists, such as

x, y // GFED@ABCu1
n // GFED@ABCu2

n // GFED@ABCu3
n // GFED@ABCu4

n // GFED@ABCu5gg

2

This sort of imprecision can usually be avoided by devising better relation-maintenance formu-

las. For instance, when µisn,y=x(v) is defined to be the formula isn(v)—meaning that y = x does

not change the value of isn(v)—the imprecision illustrated in Fig. 3.2 is avoided (see Fig. 3.3).

Hand-crafted relation-maintenance formulas for a variety of instrumentation relations are given

in [54, 84, 93]; however, those formulas were created by ad hoc methods.
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Structure before

unary rels. binary rels.

indiv. x y isn

u1 1 0 0

u 0 0 0

n u1 u

u1 0 1/2

u 0 1/2

eq u1 u

u1 1 0

u 0 1/2

x // GFED@ABCu1
n // ?>=<89:;/.-,()*+u

n
��

Statement y = x

Relation-transfer formulas

τx,y=x(v) = x(v)

τy,y=x(v) = x(v)

τn,y=x(v1, v2) = n(v1, v2)

τeq ,y=x(v1, v2) = eq(v1, v2)

Relation-maintenance formula µisn,y=x(v) = ∃ v1, v2 : n(v1, v) ∧n(v2, v) ∧ v1 6=v2

Structure after

unary rels. binary rels.

indiv. x y isn

u1 1 1 0

u 0 0 1/2

n u1 u

u1 0 1/2

u 0 1/2

eq u1 u

u1 1 0

u 0 1/2

x, y // GFED@ABCu1
n // ?>=<89:;/.-,()*+u

n
��

isn

OO

Figure 3.2 An illustration of the loss of precision in the value of isn when its

relation-maintenance formula is defined by ∃ v1, v2 : n(v1, v) ∧n(v2, v) ∧ v1 6=v2. The use of this

relation-maintenance formula causes a structure to be created in which the individual u may

represent a shared memory cell
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Structure before

unary rels. binary rels.

indiv. x y isn

u1 1 0 0

u 0 0 0

n u1 u

u1 0 1/2

u 0 1/2

eq u1 u

u1 1 0

u 0 1/2

x // GFED@ABCu1
n // ?>=<89:;/.-,()*+u

n
��

Statement y = x

Relation-transfer formulas

τx,y=x(v) = x(v)

τy,y=x(v) = x(v)

τn,y=x(v1, v2) = n(v1, v2)

Relation-maintenance formula µisn,y=x(v) = isn(v)

Structure after

unary rels. binary rels.

indiv. x y isn

u1 1 1 0

u 0 0 0

n u1 u

u1 0 1/2

u 0 1/2

eq u1 u

u1 1 0

u 0 1/2

x, y // GFED@ABCu1
n // ?>=<89:;/.-,()*+u

n
��

Figure 3.3 Example showing how the imprecision that was illustrated in Fig. 3.2 is avoided with

the relation-maintenance formula µisn,y=x(v) = isn(v). (Ex. 3.3 shows how this is generated

automatically.)
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To sum up, prior to the work presented in this chapter, the user needed to supply a formula µp,st

for each instrumentation relation p and each statement st. In effect, the user needed to write down

two separate characterizations of each instrumentation relation p: (i) ψp, which defines p directly;

and (ii) µp,st, which specifies how execution of each kind of statement in the language affects p.

Moreover, it was the user’s responsibility to ensure that the two characterizations are mutually

consistent. In contrast, with the new method for automatically creating relation-maintenance for-

mulas presented in Sects. 3.2 and 3.3, the user’s responsibility is reduced to defining the ψp. (This

obligation is addressed in Chapter 5.)

3.2 A Finite-Differencing Scheme for 2-Valued (and 3-Valued) First-Order

Logic

This section presents a finite-differencing scheme for creating relation-maintenance formulas.

The discussion will be couched in terms of 2-valued logic; however, by the Embedding Theorem

(Theorem 2.6, [84, Theorem 4.9]), the relation-maintenance formulas that we derive provide sound

results when interpreted in 3-valued logic. In 3-valued logic, as demonstrated in Fig. 3.3 (and

discussed further in Ex. 3.3), the resulting formula can lead to a strictly more precise result than

merely reevaluating an instrumentation relation’s defining formula.

A relation-maintenance formula µp,st for p ∈ I is defined in terms of two finite-differencing

operators, denoted by ∆−
st[·] and ∆+

st[·], which capture the negative and positive changes, respec-

tively, that execution of statement st induces in an instrumentation relation’s value. The formula

µp,st is created by combining pwith ∆−
st[ψp] and ∆+

st[ψp] as follows: µp,st = p?¬∆−
st[ψp] : ∆+

st[ψp].

The formula µp,st states the conditions under which the new value of p (i.e., its value in S ′) is 1.

These conditions are specified in terms of the old values of p, ∆−
st[ψp], and ∆+

st[ψp] (i.e., their val-

ues in S). The formula µp,st states that if p’s old value is 1, then its new value is 1 unless there is a

negative change; if p’s old value is 0, then its new value is 1 if there is a positive change.

Fig. 3.4 depicts how the static-analysis engine evaluates ∆−
st[ψp] and ∆+

st[ψp] in S and combines

these values with the old value p to obtain the desired new value p′′. The operators ∆−
st[·] and ∆+

st[·]

are defined recursively, as shown in Fig. 3.5. The definitions in Fig. 3.5 make use of the following
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evaluate
�p

retrieve
stored
value

execute statement st
S

p
p′′ b p′

∆–[�p]st

∆ + [�p]st

evaluate
∆ + [�p]stevaluate

∆–[�p]st

p ? ¬ ∆–[�p] : ∆ + [�p]st st

S′proto

Figure 3.4 How to maintain the value of ψp in 3-valued logic in response to changes in the values

of core relations caused by the execution of statement st

operator:

Fst[ϕ]
def
= ϕ ? ¬∆−

st[ϕ] : ∆+
st[ϕ]. (3.6)

Thus, maintenance formula µp,st can also be expressed as µp,st = Fst[p].

Eqn. (3.6) and Fig. 3.5 define a syntax-directed translation scheme that can be implemented

via a recursive walk over a formula ϕ. The operators ∆−
st[·] and ∆+

st[·] are mutually recursive. For

instance, ∆+
st[¬ϕ1] = ∆−

st[ϕ1] and ∆−
st[¬ϕ1] = ∆+

st[ϕ1]. Moreover, each occurrence of Fst[ϕi]

contains additional occurrences of ∆−
st[ϕi] and ∆+

st[ϕi].

Note how ∆−
st[·] and ∆+

st[·] for ϕ1 ∨ϕ2 and ϕ1 ∧ϕ2 exhibit the “convolution” pattern charac-

teristic of differentiation, finite differencing, and divided differencing.

Continuing the analogy with differentiation, it helps to bear in mind that the “independent

variables” are the core relations—which are being changed by the τc,st formulas; the dependent

variable is the value of ϕ. A formal justification of Fig. 3.5 is stated later (Theorem 3.5 and

Cor. 3.6); here we merely explain informally a few of the cases from Fig. 3.5:

∆+
st[1] = 0, ∆−

st[1] = 0. The value of atomic formula 1 does not depend on any core relations;

hence its value is unaffected by changes in them.

∆−
st[ϕ1 ∧ϕ2] = (∆−

st[ϕ1] ∧ϕ2) ∨(ϕ1 ∧ ∆−
st[ϕ2]). Tuples of individuals removed from ϕ1 ∧ϕ2 are

either tuples of individuals removed from ϕ1 for which ϕ2 also holds (i.e., (∆−
st[ϕ1] ∧ϕ2)), or

they are tuples of individuals removed from ϕ2 for which ϕ1 also holds, (i.e., (ϕ1 ∧ ∆−
st[ϕ2]).



33

ϕ ∆+
st[ϕ] ∆−

st[ϕ]

1 0 0

0 0 0

p(w1, . . . , wk),

p ∈ C, and τp,st

is of the form

p ? ¬δ−p,st : δ+
p,st

(δ+
p,st ∧ ¬p){w1, . . . , wk} (δ−p,st ∧ p){w1, . . . , wk}

p(w1, . . . , wk),

p ∈ C, and τp,st

is of the form

p∨ δp,st or

δp,st ∨ p

(δp,st ∧ ¬p){w1, . . . , wk} 0

p(w1, . . . , wk),

p ∈ C, and τp,st

is of the form

p∧ δp,st or

δp,st ∧ p

0 (¬δp,st ∧ p){w1, . . . , wk}

p(w1, . . . , wk),

p ∈ C, but τp,st

is not of the

above forms

(τp,st ∧ ¬p){w1, . . . , wk} (p∧ ¬τp,st){w1, . . . , wk}

p(w1, . . . , wk),

p ∈ I

((∃ v : ∆+
st[ϕ1]) ∧ ¬p){w1, . . . , wk} if ψp ≡ ∃ v : ϕ1

∆+
st[ψp]{w1, . . . , wk} otherwise

((∃ v : ∆−
st[ϕ1]) ∧ p){w1, . . . , wk} if ψp ≡ ∀ v : ϕ1

∆−
st[ψp]{w1, . . . , wk} otherwise

¬ϕ1 ∆−
st[ϕ1] ∆+

st[ϕ1]

ϕ1 ∨ϕ2 (∆+
st[ϕ1] ∧ ¬ϕ2) ∨(¬ϕ1 ∧ ∆+

st[ϕ2]) (∆−
st[ϕ1] ∧ ¬Fst[ϕ2]) ∨(¬Fst[ϕ1] ∧∆−

st[ϕ2])

ϕ1 ∧ϕ2 (∆+
st[ϕ1] ∧ Fst[ϕ2]) ∨(Fst[ϕ1] ∧∆+

st[ϕ2]) (∆−
st[ϕ1] ∧ϕ2) ∨(ϕ1 ∧ ∆−

st[ϕ2])

∃ v : ϕ1 (∃ v : ∆+
st[ϕ1]) ∧ ¬(∃ v : ϕ1) (∃ v : ∆−

st[ϕ1]) ∧¬(∃ v : Fst[ϕ1])

∀ v : ϕ1 (∃ v : ∆+
st[ϕ1]) ∧(∀ v : Fst[ϕ1]) (∃ v : ∆−

st[ϕ1]) ∧(∀ v : ϕ1)

Figure 3.5 Finite-difference formulas for first-order formulas
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∆+
st[isn(v)] =


∃ v1, v2 :


 (∆+

st[n(v1, v)] ∧ Fst[n(v2, v)])

∨ (Fst[n(v1, v)] ∧ ∆+
st[n(v2, v)])


 ∧ v1 6=v2


 ∧ ¬isn(v)

∆−
st[isn(v)] =






∃ v1, v2 :


 (∆−

st[n(v1, v)] ∧n(v2, v))

∨ (n(v1, v) ∧∆−
st[n(v2, v)])


 ∧ v1 6=v2




∧

¬




∃ v1, v2 :




(n(v1, v) ∧n(v2, v) ∧ v1 6=v2)

? ¬







 (∆−
st[n(v1, v)] ∧n(v2, v))

∨ (n(v1, v) ∧∆−
st[n(v2, v)])



 ∧ v1 6=v2





:


 (∆+

st[n(v1, v)] ∧ Fst[n(v2, v)])

∨ (Fst[n(v1, v)] ∧ ∆+
st[n(v2, v)])


∧ v1 6=v2







Figure 3.6 Finite-difference formulas for the instrumentation relation isn(v)

∆+
st[∃ v : ϕ1] = (∃ v : ∆+

st[ϕ1]) ∧ ¬(∃ v : ϕ1). For ∃ v : ϕ1 to change value from 0 to 1, there must

be at least one individual for which ϕ1 changes value from 0 to 1 (i.e., ∃ v : ∆+
st[ϕ1] holds),

and ∃ v : ϕ1 must not already hold (i.e., ¬(∃ v : ϕ1) holds).

∆+
st[p(w1, . . . , wk)] = (∃ v : ∆+

st[ϕ1]) ∧ ¬p, if p ∈ I and ψp ≡ ∃ v : ϕ1. This is similar to the pre-

vious case, except that the term to ensure that ∃ v : ϕ1 does not already hold (i.e., ¬(∃ v : ϕ1))

is replaced by the formula ¬p. Thus, when (∃ v : ∆+
st[ϕ1]) ∧ ¬p is evaluated, the stored value

of ∃ v : ϕ1, i.e., p, will be used instead of the value obtained by reevaluating ∃ v : ϕ1.

∆+
st[p(w1, . . . , wk)] = ∆+

st[ψp{w1, . . . , wk}], if p ∈ I and ψp 6≡ ∃ v : ϕ1. To characterize the posi-

tive changes to p, apply ∆+
st to p’s defining formula ψp.

One special case is also worth noting: ∆+
st[v1 =v2] = 0 and ∆−

st[v1 =v2] = 0 because the value

of the atomic formula (v1 = v2) (shorthand for eq(v1, v2)) does not depend on any core relations;

hence, its value is unaffected by changes in them.

Example 3.3 Consider the instrumentation relation isn (“is-shared using n fields”), defined in

Eqn. (3.5). Fig. 3.6 shows the formulas obtained for ∆+
st[isn(v)] and ∆−

st[isn(v)].
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For a particular statement, the formulas in Fig. 3.6 can usually be simplified. For instance,

for y = x, the relation-transfer formula τn,y=x(v1, v2) is n(v1, v2); see Fig. 3.2. Thus, by Fig. 3.5,

the formulas for ∆−
y=x[n(v1, v)] and ∆+

y=x[n(v1, v)] are both n(v1, v) ∧¬n(v1, v), which simplifies

to 0. (In our implementation, simplifications are performed greedily at formula-construction time;

e.g., the constructor for ∧ rewrites 0∧ p to 0, 1∧ p to p, p∧¬p to 0, etc.) The formulas in Fig. 3.6

simplify to ∆+
y=x[isn(v)] = 0 and ∆−

y=x[isn(v)] = 0. Consequently, µisn,y=x(v) = Fy=x[isn(v)] =

isn(v)?¬0 : 0 = isn(v). As shown in Fig. 3.3, this definition of µisn,y=x(v) avoids the imprecision

that was illustrated in Ex. 3.2. 2

Correctness of the Finite-Differencing Scheme

The correctness of the finite-differencing scheme given above is established with the help of

the following lemma:

Lemma 3.4 For every formula ϕ, ϕ1, ϕ2 and statement st, the following properties hold:1

(i) ∆+
st[ϕ]

meta

⇐⇒ Fst[ϕ] ∧¬ϕ

(ii) ∆−
st[ϕ]

meta

⇐⇒ ϕ∧¬Fst[ϕ]

(iii) (a) Fst[¬ϕ1]
meta

⇐⇒ ¬Fst[ϕ1]

(b) Fst[ϕ1 ∨ϕ2]
meta

⇐⇒ Fst[ϕ1] ∨ Fst[ϕ2]

(c) Fst[ϕ1 ∧ϕ2]
meta

⇐⇒ Fst[ϕ1] ∧ Fst[ϕ2]

(d) Fst[∃ v : ϕ1]
meta

⇐⇒ ∃ v : Fst[ϕ1]

(e) Fst[∀ v : ϕ1]
meta

⇐⇒ ∀ v : Fst[ϕ1]

Proof See App. A.

2

1To simplify the presentation, we use lhs
meta

⇐⇒rhs and lhs
meta
=⇒rhs as shorthands for [[lhs]]S

2
(Z) = [[rhs]]S

2
(Z) and

[[lhs]]S2 (Z) ≤ [[rhs]]S2 (Z), respectively, for any S ∈ 2-STRUCT and assignment Z that is complete for lhs and rhs .
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Lemma 3.4 shows that for 2-STRUCTs, ∆+
st[ϕ] specifies the tuples that are not in the relation

defined by ϕ, but need to be added in response to the execution of st, and that ∆−
st[ϕ] specifies the

tuples that are in the relation defined by ϕ that need to be removed. This lemma is used in the proof

of the following theorem, which ensures the correctness of the finite-differencing transformation

given in Fig. 3.5:

Theorem 3.5 Let S be a structure in 2-STRUCT, and let S ′
proto be the proto-structure for statement

st obtained from S. Let S ′ be the structure obtained by using S ′
proto as the first approximation to

S ′ and then filling in instrumentation relations in a topological ordering of the dependences among

them: for each arity-k relation p ∈ I, ιS
′

(p) is obtained by evaluating [[ψp(v1, . . . , vk)]]
S′

2 ([v1 7→

u′1, . . . , vk 7→ u′k]) for all tuples (u′1, . . . , u
′
k) ∈ (US′

)k. Then for every formula ϕ(v1, . . . , vk) and

complete assignment Z for ϕ(v1, . . . , vk), [[Fst[ϕ(v1, . . . , vk)]]]
S
2 (Z) = [[ϕ(v1, . . . , vk)]]

S′

2 (Z).

Proof See App. A.

2

For 3-STRUCTs, the soundness of the finite-differencing transformation given in Fig. 3.5 fol-

lows from Theorem 3.5 by the Embedding Theorem (Theorem 2.6):

Corollary 3.6 Let S, S ′ ∈ 2-STRUCT be defined as in Theorem 3.5. Let S♯ ∈ 3-STRUCT be

such that f : US → US♯

embeds S in S♯, i.e., S ⊑f S♯. Then for every formula ϕ(v1, . . . , vk) and

complete assignment Z for ϕ(v1, . . . , vk), [[Fst[ϕ(v1, . . . , vk)]]]
S♯

3 (f ◦ Z) ⊒ [[ϕ(v1, . . . , vk)]]
S′

2 (Z).

Optimized Formulas for Fst[ϕ]

For a non-atomic formulaϕ, the operator Fst[ϕ] as defined in Formula (3.6) evaluatesϕ because

it has no stored value for ϕ. As a result, the version of the operator Fst[·] as defined in Formula (3.6)

does not result in higher precision. One way to overcome this problem is to propagate Fst[·] into the

subformulas of ϕ, as shown in Fig. 3.7. The correctness of the operator Fst[·] as defined in Fig. 3.7

is guaranteed by Lemma 3.4. Generally, such propagation has the effect of generating smaller

finite-difference formulas. This may result in faster evaluation of the finite-difference formulas.

We rely on this optimization in our implementation.
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ϕ Fst[ϕ]

¬ϕ1 ¬Fst[ϕ1]

ϕ1 ∨ϕ2 Fst[ϕ1] ∨ Fst[ϕ2]

ϕ1 ∧ϕ2 Fst[ϕ1] ∧ Fst[ϕ2]

∃ v : ϕ1 ∃ v : Fst[ϕ1]

∀ v : ϕ1 ∀ v : Fst[ϕ1]

Figure 3.7 Optimized formulas for the operator Fst[ϕ] for non-atomic formula ϕ

Discussion

Because earlier in the thesis we touted the advantages of being able to apply related 2-valued

and 3-valued interpretation functions to a single formula, it may seem somewhat inconsistent for

us to make use of a transformation-based approach to maintaining instrumentation relations, in

lieu of an approach based on overloading. The reason that we use a transformation-based approach

is that it gives us an opportunity to simplify the resulting formulas (either on the fly, or in a post-

processing phase after finite differencing).

In the context of evaluation in 3-valued logic, simplification is important because even for-

mulas that are tautologies in 2-valued logic may evaluate to 1/2 in 3-valued logic. For instance,

p∨ ¬p yields 1/2 when p has the value 1/2, even when p is a nullary relation symbol. The finite-

differencing transformation that we implemented uses a formula-minimization procedure for 3-

valued logic that we developed. The minimization procedure described in Chapter 7 applies to

propositional logic; for propositional logic, it is guaranteed to return an answer that captures the

formula’s “supervaluational meaning” [94]. This procedure is used as a subroutine in a heuristic

method for minimizing first-order formulas; the method works on a formula bottom-up, applying

the propositional minimizer to the body of each non-propositional operator (i.e., each quantifier or

transitive-closure operator).
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A relation-maintenance formula that has been simplified in this way can sometimes yield a def-

inite value in situations where the evaluation of the unsimplified relation-maintenance formula—

or, equivalently, an overloaded evaluation of the relation’s defining formula—yields 1/2. (For

instance, minimizing p∨¬p yields 1, which evaluates to 1 even when p has the value 1/2.) Con-

sequently, the formula-transformation approach to the relation-maintenance problem leads to more

precise static-analysis algorithms.

Malloc and Free

In [84], the modeling of storage-allocation/deallocation operations is carried out with a two-

stage statement transformer, the first stage of which changes the number of individuals in the

structure. This creates some problems for the finite-differencing approach in establishing appro-

priate, mutually consistent values for relation tuples that involve the newly allocated individual.

Such relation values are needed for the second stage, in which relation-transfer formulas for core

relations and relation-maintenance formulas for instrumentation relations are applied in the usual

fashion, using Eqns. (3.1) and (3.3).

However, there is a simple way to sidestep this problem, which is to model the free-storage list

explicitly, making the following substructure part of every 3-valued structure:

freelist // GFED@ABCu1
n // ?>=<89:;/.-,()*+u

n
��

(3.7)

A malloc is modeled by advancing the pointer freelist into the list, and returning the memory

cell that it formerly pointed to. A free is modeled by inserting, at the head of freelist’s list, the

cell being deallocated.

It is true that the use of structure (3.7) to model storage-allocation/deallocation operations also

causes the number of individuals in a 3-valued structure to change; however, because the new

individual is materialized using the usual mechanisms from [84] (namely, the focus and coerce

operations), values for relation tuples that involve the newly materialized individual will always

have safe, mutually consistent values.
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p IntendedMeaning ψp

tn(v1, v2) Is v2 reachable from v1 along n fields? n∗(v1, v2)

rn,z(v) Is v reachable from pointer variable z along n fields? ∃ v1 : z(v1)∧ tn(v1, v)

cn(v) Is v on a directed cycle of n fields? ∃ v1 : n(v1, v)∧ tn(v, v1)

Figure 3.8 Defining formulas of some instrumentation relations that depend on RTC. (Recall that

n∗(v1, v2) is a shorthand for (RTC v′1, v
′
2 : n(v′1, v

′
2))(v1, v2).)

3.3 Extension of Sect. 3.2 for Reachability and Transitive Closure

Several instrumentation relations that depend on RTC are shown in Fig. 3.8.

Unfortunately, finding a good way to maintain instrumentation relations defined using RTC is

challenging because it is not known, in general, whether it is possible to write a first-order formula

(i.e., without using a transitive-closure operator) that specifies how to maintain the closure of a di-

rected graph in response to edge insertions and deletions. Thus, our strategy has been to investigate

special cases for classes of instrumentation relations for which first-order maintenance formulas

do exist. Whenever these do not apply, the system falls back on safe maintenance formulas (which

themselves use RTC).

In the next three sections, we confine ourselves to important special cases for the maintenance

of instrumentation relations specified via the RTC of a binary formulaϕ1(v1, v2). In Sect. 3.3.1, we

consider the case that ϕ1(v1, v2) defines an acyclic graph. In Sect. 3.3.2, we consider the case that

ϕ1(v1, v2) defines a tree-shaped graph. Finally, in Sect. 3.3.3, we consider the case that ϕ1(v1, v2)

defines a deterministic graph, a possibly-cyclic graph, in which every node has outdegree at most

one (this class of graphs corresponds to possibly-cyclic linked lists). This collection of techniques

allows us to handle most common data structures, such as lists (singly- and doubly-linked; cyclic

and acyclic) and trees. The precision of all of these techniques is due to the fact that maintenance

of RTC to reflect unit-size changes (single-edge additions or deletions)2 is performed by first-order

logical formulas only. However, maintaining RTC of an arbitrary graph, as well as maintaining

2These techniques can be extended to handle bounded-size addition and deletion sets.
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RTC of restricted classes of graphs with arbitrary-size changes, is not known to be first-order ex-

pressible. In such cases, our algorithm returns a formula that uses the RTC operator; the evaluation

of such a formula may yield more indefinite answers than necessary.

3.3.1 Transitive-Closure Maintenance in Acyclic Graphs

Consider a binary instrumentation relation p, defined by ψp(v1, v2) ≡ (RTC v′1, v
′
2 : ϕ1)(v1, v2).

If the graph defined by ϕ1 is acyclic, it is possible to give a first-order formula that maintains p

after the addition or deletion of a single ϕ1-edge. The method we use is a minor modification of

a method for maintaining non-reflexive transitive closure in an acyclic graph, due to Dong and

Su [25].

In the case of an insertion of a single ϕ1-edge, the maintenance formula is

Fst[p](v1, v2) = p(v1, v2) ∨(∃ v′1, v
′
2 : p(v1, v

′
1) ∧∆+

st[ϕ1](v
′
1, v

′
2) ∧ p(v′2, v2)). (3.8)

The new value of p contains the old tuples of p, as well as those that represent two old paths (i.e.,

p(v1, v
′
1) and p(v′2, v2)) connected with the new ϕ1-edge (i.e., ∆+

st[ϕ1](v
′
1, v

′
2)).

The maintenance formula to handle the deletion of a single ϕ1-edge is a bit more complicated.

We first identify the tuples of p that represent paths that might rely on the edge to be deleted, and

thus may need to be removed from p (S stands for suspicious):

S[p, ϕ1](v1, v2) = ∃ v′1, v
′
2 : p(v1, v

′
1) ∧ ∆−

st[ϕ1](v
′
1, v

′
2) ∧ p(v′2, v2).

We next collect a set of p-tuples that definitely remain in p (T stands for trusted):

T [p, ϕ1](v1, v2) = (p(v1, v2) ∧¬S[p, ϕ1](v1, v2)) ∨ Fst[ϕ1](v1, v2). (3.9)

Finally, the maintenance formula for p for a single ϕ1-edge deletion is

Fst[p](v1, v2) = ∃ v′1, v
′
2 : T [p, ϕ1](v1, v

′
1) ∧T [p, ϕ1](v

′
1, v

′
2) ∧T [p, ϕ1](v

′
2, v2). (3.10)



41

u1

ba

ui ui + 1

uk

Figure 3.9 Edge (a, b) is being deleted;

ui is the last node along path u1, . . ., ui,

ui+1, . . ., uk from which a is reachable

Maintenance formulas (3.8) and (3.10) maintain p

when two conditions hold: the graph defined by ϕ1 is

acyclic, and the change to the graph is a single edge

addition or deletion (but not both). To see that un-

der these assumptions the maintenance formula for a

ϕ1-edge deletion is correct, suppose that there is a

suspicious tuple p(u1, uk), i.e., S[p, ϕ1](u1, uk) = 1,

but there is a ϕ1-path u1, . . . , uk that does not use the

deleted ϕ1-edge. We need to show that Fst[p](u1, uk) has the value 1. Suppose that (a, b) is the

ϕ1-edge being deleted; because the graph defined by ϕ1 is acyclic, there is a ui 6= uk that is the last

node along path u1, . . . , ui, ui+1, . . . , uk from which a is reachable (see Fig. 3.9). Because p(u1, ui)

and p(ui+1, uk) both hold, and because ui cannot be reachable from b (by acyclicity), neither tuple

is suspicious; consequently, T [p, ϕ1](u1, ui) = 1 and T [p, ϕ1](ui+1, uk) = 1. Because (ui, ui+1) is

an edge in the new (as well as the old) graph defined by ϕ1, we have Fst[ϕ1](ui, ui+1) = 1, which

means that T [p, ϕ1](ui, ui+1) = 1 as well, yielding Fst[p](u1, uk) = 1 by Eqn. (3.10).

Fig. 3.10 extends the method for generating relation-maintenance formulas to handle instru-

mentation relations specified via the RTC of a binary formula that defines an acyclic graph.

Fig. 3.10 makes use of the operator T [p, ϕ1](v, v
′) (Eqn. (3.9)), but recasts Eqns. (3.8) and (3.10)

as finite-difference expressions ∆+
st[ψp] and ∆−

st[ψp], respectively.

Figs. 3.11 and 3.12 show the formulas obtained via the finite-differencing scheme given in

Figs. 3.5 and 3.10 for positive and negative changes, respectively, for instrumentation relations

defined in Fig. 3.8.

3.3.1.1 Testing the Unit-Size-Change Assumption

To know whether this special-case maintenance strategy can be applied, for each statement st

we need to know at analysis-generation time whether the change performed at st, to the graph de-

fined by ϕ1, always results in a single edge addition or deletion. If in any admissible 2-STRUCT[R]
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ϕ ∆+
st[ϕ]

p(w1, . . . , wk),

p ∈ I

((∃ v : ∆+
st[ϕ1]) ∧ ¬p){w1, . . . , wk} if ψp ≡ ∃ v : ϕ1

(∃ v′1, v
′
2 : ∆+

st[ϕ1](v
′
1, v

′
2))

∧







∃ v′1, v
′
2 :

p(v1, v
′
1)

∧ ∆+
st[ϕ1](v

′
1, v

′
2)

∧ p(v′2, v2)




∧ ¬p(v1, v2)



{w1, w2}

if ψp ≡

(RTC v′1, v
′
2 : ϕ1)(v1, v2)

∆+
st[ψp]{w1, . . . , wk} otherwise

ϕ ∆−
st[ϕ]

p(w1, . . . , wk),

p ∈ I

((∃ v : ∆−
st[ϕ1]) ∧ p){w1, . . . , wk} if ψp ≡ ∀ v : ϕ1

(∃ v′1, v
′
2 : ∆−

st[ϕ1](v
′
1, v

′
2))

∧




¬




∃ v′1, v
′
2 :

T [p, ϕ1](v1, v
′
1)

∧ T [p, ϕ1](v
′
1, v

′
2)

∧ T [p, ϕ1](v
′
2, v2)




∧ p(v1, v2)



{w1, w2}

if ψp ≡

(RTC v′1, v
′
2 : ϕ1)(v1, v2)

∆−
st[ψp]{w1, . . . , wk} otherwise

Figure 3.10 Extension of the finite-differencing method from Fig. 3.5 to cover RTC formulas, for

unit-sized changes to an acyclic graph defined by ϕ1

relation p ∆+
st[ψp]

tn(v3, v4) ∆+
st[tn(v3, v4)]

= (tn(v3, v4) ∨(∃ v1, v2 : tn(v3, v1) ∧∆+
st[n(v1, v2)] ∧ tn(v2, v4))) ∧¬tn(v3, v4)

rn,z(v) ∆+
st[rn,z(v)]

= (∃ v1 : ∆+
st[z(v1) ∧ tn(v1, v)]) ∧ ¬rn,z(v)

= (∃ v1 : (∆+
st[z(v1)] ∧ Fst[tn(v1, v)]) ∨(Fst[z(v1)] ∧∆+

st[tn(v1, v)])) ∧ ¬rn,z(v)

cn(v) ∆+
st[cn(v)]

= (∃ v1 : ∆+
st[n(v1, v) ∧ tn(v, v1)]) ∧¬cn(v)

= (∃ v1 : (∆+
st[n(v1, v)] ∧ Fst[tn(v, v1)]) ∨(Fst[n(v1, v)] ∧ ∆+

st[tn(v, v1)])) ∧ ¬cn(v)

Figure 3.11 The formulas obtained via the finite-differencing scheme given in Figs. 3.5 and 3.10

for the positive changes in the values of the instrumentation relations defined in Fig. 3.8
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relation p ∆−
st[p]

tn(v3, v4) ∆−
st[tn(v3, v4)]

= (∃ v1, v2 : T [tn, n](v3, v1) ∧T [tn, n](v1, v2) ∧T [tn, n](v2, v4)) ∧ tn(v3, v4)

=


∃ v1, v2 :

(tn(v3, v1) ∧ ¬S[tn, n](v3, v1) ∨ Fst[n](v3, v1)) ∧

(tn(v1, v2) ∧ ¬S[tn, n](v1, v2) ∨ Fst[n](v1, v2)) ∧

(tn(v2, v4) ∧ ¬S[tn, n](v2, v4) ∨ Fst[n](v2, v4))


∧ tn(v3, v4)

=


∃ v1, v2 :

(tn(v3, v1) ∧ ¬(∃ v′1, v
′
2 : tn(v3, v

′
1) ∧∆−

st[n](v′1, v
′
2) ∧ tn(v′2, v1)) ∨ Fst[n](v3, v1)) ∧

(tn(v1, v2) ∧ ¬(∃ v′1, v
′
2 : tn(v1, v

′
1) ∧∆−

st[n](v′1, v
′
2) ∧ tn(v′2, v2)) ∨ Fst[n](v1, v2)) ∧

(tn(v2, v4) ∧ ¬(∃ v′1, v
′
2 : tn(v2, v

′
1) ∧∆−

st[n](v′1, v
′
2) ∧ tn(v′2, v4)) ∨ Fst[n](v2, v4))




∧ tn(v3, v4)

rn,z(v) ∆−
st[rn,z(v)]

= ∆−
st[∃ v1 : x(v1) ∧ tn(v1, v)]

= (∃ v1 : ∆−
st[z(v1) ∧ tn(v1, v)]) ∧ ¬(∃ v1Fst[z(v1) ∧ tn(v1, v)])

=





(∃ v1 : ((∆−
st[z(v1)] ∧ tn(v1, v)) ∨(z(v1) ∧∆−

st[tn(v1, v)])))

∧

¬


∃ v1 :




(z(v1) ∧ tn(v1, v))

? ¬∆−
st[z(v1) ∧ tn(v1, v)]

: ∆+
st[z(v1) ∧ tn(v1, v)]







=





(∃ v1 : ((∆−
st[z(v1)] ∧ tn(v1, v)) ∨(z(v1) ∧∆−

st[tn(v1, v)])))

∧

¬


∃ v1 :




(z(v1) ∧ tn(v1, v))

? ¬((∆−
st[z(v1)] ∧ tn(v1, v)) ∨(z(v1) ∧∆−

st[tn(v1, v)]))

: ((∆+
st[z(v1)] ∧ Fst[tn(v1, v)]) ∨(Fst[z(v1)] ∧ ∆+

st[tn(v1, v)]))







cn(v) ∆−
st[cn(v)]

= ∆−
st[∃ v1 : n(v1, v) ∧ tn(v, v1)]

= (∃ v1 : ∆−
st[n(v1, v) ∧ tn(v, v1)]) ∧¬Fst[∃ v1 : n(v1, v) ∧ tn(v, v1)]

= (∃ v1 : (∆−
st[n(v1, v)] ∧ tn(v, v1)) ∨(n(v1, v) ∧∆−

st[tn(v, v1)])) ∧ ¬Fst[∃ v1 : n(v1, v) ∧ tn(v, v1)]

Figure 3.12 The formulas obtained via the finite-differencing scheme given in Figs. 3.5 and 3.10

for the negative changes in the values of the instrumentation relations defined in Fig. 3.8
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there is a unique satisfying assignment to the two free variables of ∆+
st[ϕ1] and no assignment sat-

isfies ∆−
st[ϕ1], then the pair ∆+

st[ϕ1], ∆−
st[ϕ1] defines a change that adds exactly one edge to the

graph. Similarly, if in any admissible 2-STRUCT[R] there is a unique satisfying assignment to the

two free variables of ∆−
st[ϕ1] and no assignment satisfies ∆+

st[ϕ1], then the change is a deletion of

exactly one edge from the graph.

Because answering (unique-)satisfiability questions in this logic is in general undecidable, we

employ a conservative approximation based on a syntactic analysis of logical formulas. The anal-

ysis uses a heuristic to determine a set of variables V such that for each admissible structure, the

variables in V have a single possible binding in the formula’s satisfying assignments. We refer to

such variables as anchored variables. For instance, if relation q has the attribute “unique”, for each

admissible structure there is a single possible binding for variable v in any assignment that satisfies

q(v); in a formula that contains an occurrence of q(v), v is an anchored variable. (A conservative

algorithm for identifying anchored variables appears later in this section.)

If both free variables of ∆+
st[ϕ1] are anchored and ∆−

st[ϕ1] = 0, then the change adds one edge to

the graph defined by ϕ1. Similarly, if both free variables of ∆−
st[ϕ1] are anchored and ∆+

st[ϕ1] = 0,

then the change removes one edge from the graph. In these cases, the reflexive transitive closure

of ϕ1 can be updated using the method discussed above.

A Test for Anchored Variables Function Anchored, shown in Fig. 3.13, conservatively identi-

fies anchored variables in a formula ϕ. It is invoked as Anchored(ϕ, ∅). (In our application, at

top-level ϕ is always either ∆+
st[ϕ1] or ∆−

st[ϕ1].) Anchored uses a handful of patterns to identify

anchored variables. For example, if variable v1 is anchored and binary relation p has the attribute

“function”,3 then v2 is anchored as well. In essence, negations are handled by pushing the negation

deeper into the formula. In a disjunction, an anchored variable must be anchored in both sub-

formulas. The conjunction rule accumulates anchored variables in A by a process of successive

approximation, during which variables anchored in the left subformula are used to identify new

anchored variables in the right subformula and vice versa; this process is iterated until a fixed point

3For instance, in program-analysis applications a relation n(v1, v2) that records whether field n of v1 points to v2
is a function relation.
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ϕ Anchored(ϕ,A0)

0,1 A0

v1 = v2 v1 ∈ A0 → A0 ∪ {v2}[]v2 ∈ A0 → A0 ∪ {v1}[]A0

p() A0

p(v) unique(p)→ A0 ∪ {v}[]A0

p(v1, v2)

function(p)∧ v1 ∈ A0 → A0 ∪ {v2}

[] invfunction(p)∧ v2 ∈ A0 → A0 ∪ {v1}

[] A0

¬ϕ1

ϕ1 ≡ ¬ϕ2 → Anchored(ϕ2, A0)

[] ϕ1 ≡ ϕ2 ∨ϕ3 → Anchored(¬ϕ2 ∧ ¬ϕ3), A0)

[] ϕ1 ≡ ϕ2 ∧ϕ3 → Anchored(¬ϕ2 ∨ ¬ϕ3), A0)

[] ϕ1 ≡ ∀ v : ϕ2 → Anchored(∃ v : ¬ϕ2), A0)

[] ϕ1 ≡ ∃ v : ϕ2 → Anchored(∀ v : ¬ϕ2), A0)

[] A0

ϕ1 ∨ϕ2 Anchored(ϕ1, A0) ∩ Anchored(ϕ2, A0)

ϕ1 ∧ϕ2 µA.(Anchored(ϕ1, A ∪A0) ∪ Anchored(ϕ2, A ∪A0))

∃ v : ϕ1,∀ v : ϕ1 (Anchored(ϕ1, A0 − {v}) − {v}) ∪A0

(RTC v′1, v
′
2 : ϕ1)(v1, v2) (Anchored(ϕ1, A0 − {v

′
1, v

′
2})− {v

′
1, v

′
2}) ∪A0

Figure 3.13 Function Anchored conservatively identifies anchored variables in ϕ. A0 contains

variables known to be anchored due to the surrounding context.
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is reached. The rules for ∃ v : ϕ1 and ∀ v : ϕ1 contain recursive calls on Anchored with v removed

from the second argument (because bound variable v refers to a different occurrence of v from an

identically named v in A0). If v is anchored in ϕ1, it needs to be removed before this call returns,

to avoid confusion with a v in the outer scope (note the second subtraction of {v}). Finally, the

union ofA0 is performed because v may be inA0, in which case it has to be included in the answer.

(RTC v′1, v
′
2 : ϕ1)(v1, v2) is handled similarly to ∃ v : ϕ1 and ∀ v : ϕ1.

3.3.2 Transitive-Closure Maintenance in Tree-Shaped Graphs

Consider a binary instrumentation relation p, defined by ψp(v1, v2) ≡ (RTC v′1, v
′
2 : ϕ1)(v1, v2).

If the graph defined by ϕ1 is not only acyclic but is tree-shaped, it is possible to take advantage

of this fact.4 This fact has no bearing on the maintenance formula that reflects a positive unit-size

change ∆+[ϕ1] to the relation ϕ1 in the values of the relation p (see Formula (3.8)). However,

it allows a negative unit-size change ∆−[ϕ1] to the relation ϕ1 to be reflected in the values of

the relation p in a more efficient manner. In a tree-shaped graph, there exists at most one path

between a pair of nodes; if that path goes through the ϕ1 edge to be deleted, it should be removed

(cf. Formula (3.10)):

Fst[p](v1, v2) = p(v1, v2) ∧¬(∃ v′1, v
′
2 : p(v1, v

′
1) ∧∆−

st[ϕ1](v
′
1, v

′
2) ∧ p(v′2, v2)). (3.11)

Fig. 3.14 extends the method for generating relation-maintenance formulas to handle instru-

mentation relations specified via the RTC of a binary formula that defines a tree-shaped graph.

Fig. 3.14 recasts Eqn. (3.11) as a finite-difference expression ∆−
st[ψp].

When comparing the techniques of Sect. 3.3.1 for the maintenance of the RTC of a binary

formula ϕ1 with those presented in this section, we will refer to the method of Sect. 3.3.1 as

acyclic-ϕ1 maintenance and the method of this section as tree-shaped-ϕ1 maintenance.

4The special-case maintenance strategy that we describe in this section also applies only in the case that the change

to the graph is a single edge addition or deletion (but not both). We rely on the test described in Sect. 3.3.1.1 to ensure

that this is the case.
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ϕ ∆−
st[ϕ]

p(w1, . . . , wk),

p ∈ I

((∃ v : ∆−
st[ϕ1]) ∧ p){w1, . . . , wk} if ψp ≡ ∀ v : ϕ1

(∃ v′1, v
′
2 : p(v1, v

′
1) ∧∆−

st[ϕ1](v
′
1, v

′
2) ∧ p(v′2, v2)){w1, w2}

if ψp ≡

(RTC v′1, v
′
2 : ϕ1)(v1, v2)

∆−
st[ψp]{w1, . . . , wk} otherwise

Figure 3.14 Extension of the finite-differencing method from Fig. 3.5 to cover RTC formulas, for

unit-sized changes to a tree-shaped graph defined by ϕ1. The finite-difference expression ∆+
st[ψp]

is as defined in Fig. 3.10.

3.3.3 Reachability Maintenance in Deterministic Graphs

A deterministic graph is a graph in which every node has outdegree at most one. If the graph

defined by ϕ1 is deterministic, it is possible to give first-order formulas that maintain reachability

information in the graph in response to the addition or deletion of a single ϕ1-edge.

3.3.3.1 Abstractions of Possibly-Cyclic Linked Lists

The class of deterministic graphs corresponds exactly to the set of possibly-cyclic linked lists.

In particular, we will illustrate our techniques on panhandle lists, i.e., linked lists that contain a

cycle but in which at least the head of the list is not part of the cycle. (The lists shown in Fig. 3.15

are examples of panhandle lists.) Fig. 2.3 gives the definition of a C linked-list datatype, and lists

the core relations that would be used to represent the stores manipulated by programs that use type

List, such as the stores in Fig. 3.15.

Fig. 3.16(a) shows 2-valued structure S3.16, which represents the store of Fig. 3.15(a) using the

relations of Fig. 2.3.5 Fig. 3.16(b) shows 2-valued structure S3.16, which represents the store of

Fig. 3.15(a) using the core relations of Fig. 2.3, as well as the instrumentation relations of Fig. 2.6.

If all unary relations are abstraction relations (A = R1), the canonical abstraction of 2-valued

logical structure S3.16 is S3.17, shown in Fig. 3.17, with list nodes corresponding to u2 and u3 in

S3.16 represented by the summary individual u2 of S3.17 and list nodes corresponding to u5 and u6

5We will not show the dle relation in the rest of this chapter because it is not relevant to the problem of

reachability maintenance.
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1
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n
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(a)

3 9 1n n 4 3n n
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7n 2n 8n 5n

yx

(b)

Figure 3.15 Possible stores for panhandle linked lists. (a) A panhandle list pointed to by x. We

will refer to lists of this shape as type-X lists. (b) A panhandle list pointed to by x with y pointing

into the middle of the cycle. We will refer to lists of this shape as type-XY lists.

u3
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u4
n

u5
nu2

n
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n
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n

(a)

u3

n
u4

nisncnrn,x u5

n
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n
u1

n

x
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n
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n
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n
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rn,xrn,xrn,x
cnrn,x

cnrn,x

cnrn,x

cnrn,x

cnrn,x
(b)

Figure 3.16 A logical structure S3.16 that represents the store shown in Fig. 3.15(a) in graphical

form: (a) S3.16 with relations of Fig. 2.3; (b) S3.16 with relations of Figs. 2.3 and 2.6.

(Transitive-closure relation tn has been omitted to reduce clutter.)
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u3
n n

u5
nnn n

u7

x y

u1 u4

n

u6

n

u2

n

n

n nu8

Figure 3.18 Logical structure S3.18 that represents type-XY panhandle lists, such as the store of

Fig. 3.15(b). The relations of Fig. 2.6 have been omitted to reduce clutter. Their values are as

expected for a type-XY list: rn,x holds for all nodes, rn,y and cn hold for all nodes on the cycle,

and isn holds for u3.

in S3.16 represented by the summary individual u4 of S3.17. S3.17 represents any type-X panhandle

list with at least two nodes in the panhandle and at least two nodes in the cycle.

3.3.3.2 Reachability Maintenance in Possibly-Cyclic Linked Lists

n
u3

n
u4u2u1

n

x
n nn

isncnrn,x

rn,x rn,x
cnrn,x

Figure 3.17 A 3-valued structure S3.17

that is the canonical abstraction of

structure S3.16. In addition to S3.16, S3.17

represents any type-X panhandle list

with at least two nodes in the panhandle

and at least two nodes in the cycle.

Unfortunately, the relations defined in Figs. 2.3

and 2.6 do not permit precise maintenance of reach-

ability information, such as relation rn,x, in possibly-

cyclic lists. A difficulty arises when reachability in-

formation has to be updated to reflect the deletion of

an n edge on a cycle (e.g., as a result of statement

y->n = NULL). With the relations defined in Figs. 2.3

and 2.6, such an update requires the recomputation of

a transitive-closure formula, which generally results in

a drastic loss of precision in the presence of abstraction.

We demonstrate the issue on panhandle lists represented by the abstract structure S3.18 shown

in Fig. 3.18, i.e., lists of type XY . Statement y->n = NULL has the effect of deleting the n edge

leaving u5, thus making the nodes represented by u6, u7, and u8 unreachable from x.6 Note that

a first-order-logic formula over the relations of Figs. 2.3 and 2.6 cannot distinguish the list nodes

represented by u4 from those represented by u6, u7, and u8: all of those nodes are reachable

6Clearly, all nodes except u5 also become unreachable from y.
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from both x and y, none of those nodes are shared, and all of them lie on a cycle. Our inability to

characterize the group of nodes represented by u4 via a first-order formula requires the maintenance

formula for the reachability relation rn,x to recompute some transitive-closure information, e.g., the

transitive-closure subformula of the definition of rn,x, namely, n∗(v1, v). However, in the presence

of abstraction, recomputing transitive-closure formulas often yields 1/2. For instance, in S3.18,

formula n∗(v1, v) evaluates to 1/2 under assignment [v1 7→ u1, v 7→ u4] because of the many 1/2

values of relation n (see the dashed edges connecting u1 with u2, for example).

The essence of a solution that enables maintaining reachability relations for possibly-cyclic

lists in first-order logic is to find a way to break the symmetry of each cycle. The basic idea for

a solution was suggested to us by William Hesse and Neil Immerman. It consists of maintaining

a spanning-tree representation of a possibly-cyclic list. Reachability in such a representation can

be maintained using first-order-logic formulas. Reachability in the actual list can be expressed

in first-order logic based on the spanning-tree representation. We now explain our approach and

highlight some differences with the approach taken by Hesse [37].

Our approach relies on the introduction of additional core and instrumentation relations. We

extend the set of core relations (Fig. 2.3) with unary relation rocn, which designates one node

on each cycle to be the representative of the cycle. (We refer to such a node as a rocn node.)

Relation rocn is used for tracking a unique cut edge on each cycle, which allows the maintenance

of a spanning tree. Fig. 3.20(a) shows 2-valued structure S3.20, which represents the store of

Fig. 3.15(a) using the extended set of core relations. Here, we let u7 be the rocn node. In general,

we simply require that exactly one node on each cycle be designated as a rocn node. Later in this

section we describe how we ensure this.

Fig. 3.19 lists the extended set of instrumentation relations. We divide our description of the

abstraction based on the new set of relations into three parts, which describe (i) how the relations

of Fig. 3.19 define directed spanning forests, (ii) how we maintain precision on a cycle in the pres-

ence of abstraction, and (iii) how we generate maintenance formulas for instrumentation relations

automatically. The three parts highlight the differences between our approach and that of Hesse.
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p Intended Meaning Defining Formula

isn(v) Do n fields of two or more list nodes ∃ v1, v2 : n(v1, v)∧n(v2, v)∧ v1 6=v2

point to v?

sfen(v1, v2) Is there an n edge from v2 to v1 n(v2, v1)∧ ¬rocn(v2)

(assuming that v2 is not a rocn node)

sfpn(v1, v2) Is v2 reachable from v1 along sfen edges? sfe∗n(v1, v2)

tn(v1, v2) Is v2 reachable from v1 along n fields? sfpn(v2, v1)∨ ∃u,w :




sfpn(u, v1)∧

rocn(u)∧n(u,w)

∧ sfpn(v2, w)




rn,x(v) Is v reachable from pointer variable x ∃ v1 : x(v1)∧ tn(v1, v)

along n fields?

cn(v) Is v on a directed cycle of n fields? ∃ v1, v2 : rocn(v1)∧n(v1, v2)∧ sfpn(v, v2)

prx(v) Does v lie on an sfen path from x (does v ∃ v1 : x(v1)∧ sfpn(v1, v)

precede x on an n-path to a rocn node)?

pr is(v) Does v lie on an sfen path from a shared ∃ v1 : isn(v1)∧ sfpn(v1, v)

node (does v precede a shared node

on an n-path to a rocn node)?

Figure 3.19 Defining formulas of instrumentation relations. The sharing relation isn is defined as

in Fig. 2.6. Relations tn, rn,x, and cn are redefined via first-order-logic formulas in terms of other

relations.
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Defining Directed Spanning Forests Instrumentation relation sfen—sfe stands for spanning-

forest edge—is used to maintain the set of edges that form a spanning forest of list nodes. In

Hesse’s work, the spanning-forest edges retain the direction of the n edges. As a result, he main-

tains spanning forests, in which the edges lead to the roots of the spanning forest, which are des-

ignated as rocn nodes in our abstraction. For clarity of presentation, we define sfen to be the

reverse of n edges (all but the edges leaving rocn nodes). The graph defined by the sfen relation

then defines a directed spanning forest with rocn nodes as spanning-forest roots and with the usual

orientation of spanning-forest edges.

Instrumentation relation sfpn—sfp stands for spanning-forest path—is used to maintain the set

of paths in the spanning forest of list nodes. Binary reachability in the actual lists (see relation tn

in Fig. 3.19) can be defined in terms of n, rocn, and sfpn using a first-order-logic formula: v2 is

reachable from v1 if there is a spanning-forest path from v2 to v1 or there is a pair of spanning-

forest paths, one from the source of a cut edge (a rocn node) to v1 and the other from v2 to the

target of the cut edge (the n-successor of the same rocn node).

Unary reachability relations rn,x and the cyclicity relation cn can be defined via first-order

formulas, as well. We defined rn,x in terms of binary reachability relation tn. While we could

define cn in terms of tn, as well, we chose another simple definition by observing that a node lies

on a cycle if and only if there is a spanning-forest path from it to the target of a cut edge (the

n-successor of a rocn node).

Fig. 3.20(b) shows 2-valued structure S3.20, which represents the store of Fig. 3.15(a) using the

extended set of core and instrumentation relations. The relations prx and pr is will be explained

shortly.

Preserving Node Ordering on a Cycle in the Presence of Abstraction The fact that our tech-

niques need to be applicable in the presence of abstraction introduces a complication that is not

present in the setting studied by Hesse. His concern was with the expressibility of certain proper-

ties within the confines of a logic with certain syntactic restrictions. Our concern is with the ability

to maintain precision in the framework of canonical abstraction.
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Figure 3.20 A logical structure S3.20 that represents the store shown in Fig. 3.15(a) in graphical

form: (a) S3.20 with the extended set of core relations.(b) S3.20 with the extended set of core and

instrumentation relations (core relations appear in grey). Transitive-closure relations sfpn and tn
have been omitted to reduce clutter. The values of the transitive-closure relations can be readily

seen from the graphical representation of relations sfen and n. For instance, node u5 is related via

the sfpn relation to itself and all nodes appearing to the left or above it in the pictorial

representation.
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Unary reachability relations rn,x (one for every program variable x) play a crucial role in the

analysis of programs that manipulate acyclic linked lists. In addition to keeping disjoint lists

summarized separately, they keep list nodes that have been visited during a traversal summarized

separately from nodes that have not been visited: if x is the pointer used to traverse the list, then the

nodes that have been visited will have value 0 for relation rn,x, while the nodes that have not been

visited will have value 1. If a list contains a cycle, then all nodes on the cycle are reachable from

the same set of variables, namely, all variables that point to any node in that list. As a result, the

instrumentation relations discussed thus far cannot prevent nodes u4, u6, and u8 of S3.18 shown in

Fig. 3.18 from being summarized together. Thus, assuming that u7 is the rocn node, the canonical

abstraction of S3.18 is the 3-valued structure S3.21 shown in Fig. 3.21. The nodes represented by

u4, u6, and u8 of S3.18 are represented by the single summary individual u6 in S3.21. The symmetry

hides all information about the order of traversal via pointer variable y. Moreover, the values of

the sfpn relation (not shown in Fig. 3.21) lose precision because ancestors of the shared node in

the spanning tree are summarized together with its descendants in the spanning tree.

n
u3 u4u2u1 n

rn,xrn,x

n,sfen

rocnrn,x,cn
rn,y

n,sfen

sfen

nsfe
n

sfen

n
sfe

n

n
sfe

n

yx

isn
rn,x,cn

rn,y

rn,x,cn
rn,y

u6

u5

rn,xrn,y

cn

Figure 3.21 A 3-valued structure S3.21 that is the

canonical abstraction of structure S3.18 if

relations prx and pr is are not added to A and

node u7 is the rocn node.

We break the symmetry of the nodes on

a cycle using a general mechanism via unary

properties akin to unary reachability relations

rn,x. In the definitions of relations prx of

Fig. 3.19, full reachability (relation tn) has

been replaced with spanning-forest reachabil-

ity (relation sfpn). The relations prx distin-

guish nodes according to whether or not they

are reachable from program variable x along

spanning-forest edges. The relation pr is is de-

fined similarly but using instrumentation rela-

tion isn; pr is partitions the nodes of a panhandle list into ancestors and descendants of the shared

node in the spanning tree. Fig. 3.22 shows structure S3.22 that is the canonical abstraction of S3.18
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Figure 3.22 A 3-valued structure S3.22 that is the canonical abstraction of structure S3.18 if node

u7 is the rocn node. S3.22 represents panhandle lists of type XY , such as the store of Fig. 3.15(b).

The only instrumentation relations shown in the figure are prx, pr y, and pr is . As in structure S3.18

shown in Fig. 3.18, rn,x holds for all nodes, rn,y and cn hold for all nodes on the cycle, and isn

holds for u3.

of Fig. 3.18, assuming that u7 is the rocn node. In S3.22, each of the nodes u4, u6, and u8 has a

distinct vector of values for the relations pr y and pr is , thus breaking the symmetry.

Automatic Generation of Maintenance Formulas for Instrumentation Relations In his the-

sis, Hesse gives hand-specified update formulas for a collection of relations that are used for main-

taining a spanning-forest representation of possibly-cyclic linked lists. Instead of specifying them

by hand, we rely on finite differencing, as described in previous sections of this chapter, to gener-

ate relation-maintenance formulas for all instrumentation relations. Finite-differencing-generated

maintenance formulas have been effective in maintaining all relations defined via first-order-logic

formulas, i.e., all relations of Fig. 3.19 except sfpn. Additionally, under certain conditions, finite-

differencing-generated maintenance formulas have been effective in maintaining relations defined

via the reflexive transitive closure of binary relations. The necessary conditions for this technique

to be applicable for the maintenance of relation sfpn are:

Graph-shape condition: the graph defined by sfen needs to be acyclic or tree-shaped;

Unit-size-change condition: the change to the graph effected by any program statement needs to

be a single-edge addition or deletion (but not both).
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The graph-shape condition applies in our setting because the graph defined by sfen defines a span-

ning forest (which is both acyclic and tree-shaped). The unit-size-change condition requires some

discussion.

The relation sfen is defined in terms of n and rocn. While we have not yet discussed the

relation-transfer formulas for core relation rocn, it should be clear that the value of the relation

rocn should only change in response to a change in the value of a node’s n field. There are two

types of statements that change the value of the n field and thus may have an effect that should

be reflected in the value of the sfen relation, namely, statements of the forms x->n = NULL and

x->n = y. The former destroys the n edge leaving the node pointed to by x, and the latter creates

a new n-connection from the node pointed to by x to the node pointed to by y. While both of these

statements add or remove a single edge of the n relation, it is not necessarily the case that they

add or remove a single edge of the sfen relation. When interpreted on logical structure S3.22 of

Fig. 3.22, statement y->n = NULL has the effect of deleting the n edge leaving u5, an action that

should result in the deletion of the sfen edge entering u5 (not shown in the figure). However, to

preserve the spanning-forest representation, we need to ensure that rocn holds only for nodes that

lie on a cycle and that sfen represents spanning-forest edges. This requires setting the value of rocn

for u7 to 0 and adding an sfen edge from u8 to u7. Because, as this example illustrates, a language

statement may result in the deletion of one sfen edge and the addition of another, neither of our

techniques for maintaining instrumentation relations defined via the transitive-closure operator

(Sects. 3.3.1 and 3.3.2) applies.

To work around this problem, we apply each transformer associated with statements

x->n = NULL and x->n = y in two phases. In one phase, we apply the part of the transformer

that corresponds to the relation n and reflect it in the values of all instrumentation relations. In the

other phase, we apply the part of the transformer that corresponds to the relation rocn and reflect

it in the values of all instrumentation relations. As we explain below, each phase of the two trans-

formers satisfies the requirement that the change add or delete a single edge of the sfen relation.

Additionally, by paying attention to the order of phases, we ensure that the graph defined by the

relation sfen remains acyclic and tree-shaped throughout the application of the transformers.
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To preserve the graph-shape condition in the case of statement x->n = NULL, we apply the

part of the transformer that corresponds to the relation n first:

τn,x−>n = NULL(v1, v2) = n(v1, v2) ∧¬x(v1). (3.12)

Unless x points to a rocn node (or x->n is NULL), this phase results in the deletion of the sfen edge

that enters the node pointed to by x. In the second phase, we apply the part of the transformer that

corresponds to the relation rocn:

τrocn,x−>n = NULL(v) = rocn(v) ∧ ∃ v1 : n(v, v1) ∧ sfpn(v, v1). (3.13)

This phase sets the rocn property of the source ns of a cut edge to 0, if there is no longer a spanning-

forest path from ns to the target nt of the same cut edge. When this happens and x does not point

to ns, i.e., the cut edge is not being deleted, this phase results in the addition of an sfen edge from

nt to ns.

To preserve the graph-shape condition in the case of statement x->n = y, we apply the part of

the transformer that corresponds to the relation rocn first:

τrocn,x−>n = NULL(v) = rocn(v) ∨(x(v) ∧ ∃ v1 : y(v1) ∧ sfpn(v, v1)). (3.14)

If there is a spanning-forest path from the node nx, pointed to by x, to the node ny, pointed to by y,

the statement creates a new cycle in the data structure. The update of Formula (3.14) sets the rocn

property of nx to 1, thus making nx the source of a new cut edge and ny the target of the cut edge.

Because there was no n edge from nx to ny prior to the execution of this statement,7 this phase

results in no change to the sfen relation. In the second phase, we apply the part of the transformer

that corresponds to the relation n:

τn,x−>n = NULL(v1, v2) = n(v1, v2) ∨(x(v1) ∧ y(v2)). (3.15)

Unless the node pointed to by x became a rocn node in the first phase, this phase results in the

addition of an sfen edge from ny to nx.

7By normalizing procedures to include a statement of the form x->n = NULL prior to a statement of the

form x->n = y, we ensure that x->n is always NULL prior to the latter assignment.
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The break-up of the transformers corresponding to statements x->n = NULL and x->n = y

into two phases, as described above, ensures that the sfen relation remains acyclic and tree-shaped

throughout the analysis (the graph-shape condition) and that the change to the sfen relation effected

by each phase is a unit-size change (the unit-size-change condition).8 Thus, it is sound to maintain

sfpn (= sfe∗
n) via the techniques described in either Sect. 3.3.1 or 3.3.2. Additionally, it is also

sound to maintain the remaining instrumentation relations via the techniques of Sect. 3.2 because

the remaining relations are defined by first-order-logic formulas. Soundness guarantees that the

stored values of instrumentation relations agree with the relations’ defining formulas throughout

the analysis. However, the stored values may not agree with the relations’ intended meanings. For

instance, if the n-transfer phase of the transformer for statement x->n = NULL removes a non-cut

n edge on a cycle, the sfen relation will temporarily not span the entire list. However, as long as we

do not query the results of abstract interpretation between the phases of a two-phase transformer,

the stored values of instrumentation relations agree with the relations’ intended meanings, as well

as their defining formulas.

3.4 Experimental Evaluation

To evaluate the techniques presented in this chapter, we extended TVLA to generate relation-

maintenance formulas, and applied it to a test suite of 5 existing analysis specifications, involving

24 programs (see Fig. 3.23).

The test programs consisted of various operations on acyclic singly-linked lists, doubly-linked

lists, binary trees, and binary-search trees, plus several sorting programs [53]. The system was

used to verify some partial-correctness properties of the test programs. For instance, Reverse, an

in-situ list-reversal program, must preserve list properties and lose no elements; InsertSorted and

DeleteSorted must preserve binary-search-tree properties; InsertSort must return a sorted list; Good

Flow must not allow high-security input data to flow to a low-security output channel. Chapter 5

discusses the verification of stronger properties, such as the partial correctness of several of the

8The test described in Sect. 3.3.1.1 validates our reasoning about the unit-size-change condition.
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# of non-identity Performance

Category Test Program maintenance formulas Analysis Time (sec.) % increase

schemas # inst. Ref. FD FD

total TC non-TC acyc. tree acyc. tree

Search 2 0 2 2 0.30 0.30 0.31 1.10 1.90

GetLast 3 0 3 4 0.31 0.32 0.32 2.23 2.22

SLL DeleteAll 11 2 9 15 0.30 0.32 0.30 4.97 -0.13

Shape Reverse 12 2 10 16 0.43 0.49 0.44 12.69 1.99

Analysis Create 11 2 9 21 0.28 0.31 0.28 9.61 -0.60

Delete 12 2 10 39 1.13 2.13 1.23 87.90 7.76

Merge 11 2 9 64 1.77 3.67 1.96 107.27 10.42

Insert 12 2 10 72 1.19 2.03 1.31 70.43 9.67

DLL Append 15 2 13 50 1.76 1.78 1.77 1.13 0.57

Shape Delete 16 2 14 74 8.35 8.78 8.38 5.15 0.36

Analysis Splice 15 2 13 96 1.06 1.69 1.10 59.70 3.79

Binary InsertSorted 13 2 11 43 1.25 1.28 1.28 1.97 1.54

Tree Lindstrom 10 2 8 43 40.44 82.29 41.48 103.47 2.57

Shape DSW 10 2 8 52 101.30 180.20 109.51 77.89 8.15

Analysis DeleteSorted 13 2 11 554 75.26 409.31 97.71 443.85 29.69

ReverseSorted 18 2 16 23 0.47 0.54 0.49 13.05 2.58

BubbleSort 18 2 16 80 5.74 8.91 6.42 55.32 11.77

SLL BubbleSortBug 18 2 16 80 5.41 7.61 6.01 40.75 11.14

Sorting InsertSortBug2 18 2 16 87 5.19 17.57 6.09 238.55 17.04

InsertSort 18 2 16 88 5.65 18.55 6.66 228.26 17.95

InsertSortBug1 18 2 16 88 18.94 32.93 20.25 73.84 7.27

MergeSorted 18 2 16 91 2.26 4.22 2.53 86.35 11.46

Information Good Flow 12 2 10 66 13.59 23.28 15.37 71.30 13.59

Flow Bad Flow 12 2 10 86 78.05 180.85 94.92 131.70 21.79

Figure 3.23 Results from using hand-crafted vs. automatically generated maintenance formulas

for instrumentation relations
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algorithms. Lindstrom and DSW are two variants of Deutsch-Schorr-Waite, a constant-space tree-

traversal algorithm that uses destructive pointer rotation. For Lindstrom and DSW, we verified

that the algorithms have no unsafe pointer operations or memory leaks, and that the data structure

produced at the end is, in fact, a binary tree. Chapter 6 discusses the verification of the total

correctness of Deutsch-Schorr-Waite, i.e., that the binary tree produced at the end is identical to

the input tree and that the algorithm terminates.

A few of the programs contained bugs: for instance, InsertSortBug2 is an insert-sort program

that ignores the first element of the list; BubbleBug is a bubble-sort program with an incorrect

condition for swapping elements, which causes an infinite loop if the input list contains duplicate

data values. (See [26, 53, 54] for more details.)

In TVLA, the operational semantics of a programming language is defined by specifying, for

each kind of statement, an action schema to be used on outgoing CFG edges. Action schemas are

instantiated according to a program’s statement instances to create the CFG. For each combina-

tion of action schema and instrumentation relation, a maintenance-formula schema must be pro-

vided. The number of non-identity maintenance-formula schemas is reported in columns 3–5 of

Fig. 3.23, broken down in columns 4–5 into those whose defining formula contains an occurrence

of RTC, and those that do not. Relation-maintenance formulas produced by finite differencing

are generally larger than the hand-crafted ones. Because this affects analysis time, the number of

instances of non-identity maintenance-formula schemas is a meaningful size measure for our ex-

periments. These numbers appear in column 6. The number of instances of non-identity schemas

for DeleteSorted is high because DeleteSorted includes three inline expansions of the routine

that finds the tree node that takes the place of the deleted node.9

The data structures manipulated by all programs in our test suite are acyclic and tree-shaped,

thus acyclic reachability maintenance (i.e., the techniques of Sect. 3.3.1), as well as tree-shaped

reachability maintenance (i.e., the techniques of Sect. 3.3.2), apply for the maintenance of reach-

ability relations. In the absense of hand-crafted maintenance formulas for reachability relations

9Work on interprocedural shape analysis provides a solution that does not require inline-expanded programs [42,

83].
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in possibly-cyclic linked lists, we could not extend our experiments to cover the techniques of

Sect. 3.3.3.2. Instead, we validate those techniques as part of the verification of properties of

Reverse when applied to possibly-cyclic linked lists (see Sect. 5.4.1).

For each program in the test suite, we first ran the analysis using hand-crafted maintenance

formulas, to obtain a reference answer in which CFG nodes were annotated with their final sets of

logical structures. We then ran the analysis using automatically generated maintenance formulas

with acyclic reachability maintenance and compared the result against the reference answer. For

all 24 test programs, the analysis using automatically generated formulas yielded answers identical

to the reference answers. Finally, we ran the analysis using automatically generated maintenance

formulas with tree-shaped reachability maintenance and compared the result against the refer-

ence answer. Again, for all 24 test programs, the analysis using automatically generated formulas

yielded answers identical to the reference answers.

Columns 7–11 show performance data, which were collected on a 3GHz PC with 3.7GB of

RAM running CentOS 4 Linux. The column labeled “Ref.” gives the references times. Columns

labeled “acyc.” give the data for the analyses that used automatically generated maintenance for-

mulas with acyclic reachability maintenance. Columns labeled “tree” give the data for the anal-

yses that used automatically generated maintenance formulas with tree-shaped reachability main-

tenance. In each case, five runs were made; the longest and shortest times were discarded from

each set, and the remaining three averaged. The geometric mean of the slowdowns when using the

automatically generated formulas with acyclic reachability maintenance was approximately 60%,

with a median of 55%, mainly due to the fact that the automatically generated formulas are larger

than the hand-crafted ones. The maximum slowdown was 444%. The highest slowdowns occured

in analyses of programs that involved deletions of edges in a data structure’s graph.

Because the edge-deletion maintenance formulas produced by the tree-shaped reachability-

maintenance technique are much smaller than those that are produced by acyclic reachability main-

tenance, our expectation was that the use of tree-shaped reachability-maintenance formulas would

cause a much smaller slowdown. This expectation was confirmed: the geometric mean of the
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slowdowns when using the automatically generated formulas with tree-shaped reachability main-

tenance was approximately 8%, with a median of 7%. The maximum slowdown was 30%.10 A few

analyses were actually faster with the automatically generated formulas; these speedups are either

due to random variation or are accidental benefits of subformula orderings that are advantageous

for short-circuit evaluation.

These results are encouraging. At least for abstractions of several common data structures, they

suggest that the algorithm for generating relation-maintenance formulas from Sects. 3.2 and 3.3 is

capable of automatically generating formulas that (i) are as precise as the hand-crafted ones, and

(ii) have a tolerable effect on runtime performance.

The extended version of TVLA also uncovered several bugs in the hand-crafted formulas. A

maintenance formula of the form µp,st(v1, . . . , vk) = p(v1, . . . , vk) is called an identity relation-

maintenance formula. For each identity relation-maintenance formula in the hand-crafted speci-

fication, we checked that (after simplification) the corresponding generated relation-maintenance

formula was also an identity formula. Each inconsistency turned out to be an error in the hand-

crafted specification. We also found one instance of an incorrect non-identity hand-crafted main-

tenance formula. (The measurements reported in Fig. 3.23 are based on corrected hand-crafted

specifications.)

3.5 Related Work

A weakness of past incarnations of TVLA has been the need for the user to define relation-

maintenance formulas that specify how each statement affects each instrumentation relation. Re-

cent criticisms of TVLA based on this deficiency are no longer valid [3, 66], at least for analyses

that can be defined using formulas that define acyclic relations (and also for some classes of for-

mulas that define cyclic relations). With the algorithm presented in Sects. 3.2 and 3.3, the user’s

responsibility is merely to write the ψp formulas; appropriate relation-maintenance formulas are

created automatically.

10We expect that some simple optimizations, such as caching the results from evaluating subformulas, could reduce

the slowdown further.
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Graf and Saı̈di [32] showed that theorem provers can be used to generate best abstract trans-

formers [21] for abstract domains that are fixed, finite, Cartesian products of Boolean values.

(The use of such domains is known as predicate abstraction; predicate abstraction is also used

in SLAM [3] and other systems [23].) In contrast, the abstract transformers created using the algo-

rithm described in Sects. 3.2 and 3.3 are not best transformers; however, this algorithm uses only

very simple, linear-time, recursive tree-traversal procedures, whereas the theorem provers used in

predicate abstraction are not even guaranteed to terminate. Moreover, our setting makes available

much richer abstract domains than the ones offered by predicate abstraction, and experience to

date has been that very little precision is lost (using only good abstract transformers) once the right

instrumentation relations have been identified.

Paige studied how finite-differencing transformations of applicative set-former expressions

could be exploited to optimize loops in very-high-level languages, such as SETL [71]. Liu et

al. used related program-transformation methods in the setting of a functional programming lan-

guage to derive incremental algorithms for various problems from the specifications of exhaustive

algorithms [57, 58]. In their work, the goal is to maintain the value of a function F (x) as the input

x undergoes small changes. The methods described in Sects. 3.2 and 3.3 address a similar kind

of incremental-computation problem, except that the language in which the exhaustive and incre-

mental versions of the problem are expressed is first-order logic with reflexive transitive closure.

The finite-differencing operators defined in Sects. 3.2 and 3.3 are most closely related to a

number of previous papers on logic and databases: finite-difference operators for the propositional

case were studied by Akers [1] and Sharir [89]. Previous work on incrementally maintaining

materialized views in databases [33], “first-order incremental evaluation schemes (FOIES)” [24],

and “dynamic descriptive complexity” [73] has also addressed the problem of maintaining one

or more auxiliary relations after new tuples are inserted into or deleted from the base relations.

In databases, view maintenance is solely an optimization; the correct information can always be

obtained by reevaluating the formula. In the abstract-interpretation context, where abstraction has

been performed, this is no longer true: reevaluating a formula in the local (3-valued) state can lead

to a drastic loss of precision. Thus, one aspect that sets our work apart from previous work is the
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ϕ ∆st[ϕ]

1 0

0 0

p(w1, . . . , wk), p ∈ C (τp,st ⊕ p){w1, . . . , wk}

p(w1, . . . , wk), p ∈ I ∆st[ψp]{w1, . . . , wk}

ϕ1 ⊕ϕ2 ∆st[ϕ1] ⊕∆st[ϕ2]

ϕ1 ∧ϕ2 (∆st[ϕ1] ∧ϕ2) ⊕(ϕ1 ∧ ∆st[ϕ2]) ⊕(∆st[ϕ1] ∧ ∆st[ϕ2])

∀ v : ϕ1 (∀ v : ϕ1) ? (∃ v : ∆st[ϕ1]) : (∀ v : ϕ1 ⊕∆st[ϕ1])

Figure 3.24 An alternative finite-differencing scheme for first-order formulas

goal of developing a finite-differencing transformation suitable for use when abstraction has been

performed.

Not all finite-differencing transformations that are correct in 2-valued logic (i.e., satisfy Theo-

rem 3.5), are appropriate for use in 3-valued logic. For instance, Fig. 3.24 presents an alternative

finite-differencing scheme for first-order formulas. In this scheme, ∆st[ϕ] captures both the nega-

tive and positive changes to ϕ’s value. With Fig. 3.24, the maintenance formula for instrumentation

relation p is

µp,st
def
= p⊕∆st[ψp], (3.16)

where ⊕ denotes exclusive-or. However, in 3-valued logic, we have 1/2⊕V = 1/2, regardless of

whether V is 0, 1, or 1/2. Consequently, Eqn. (3.16) has the unfortunate property that if p(u) =

1/2, then µp,st evaluates to 1/2 on u, and p(u) becomes “pinned” to the indefinite value 1/2; it

will have the value 1/2 in all successor structures S ′, in all successors of S ′, and so on. With

Eqn. (3.16), p(u) can never reacquire a definite value.

In contrast, the maintenance formulas created using the finite-differencing scheme of Fig. 3.5

do not have this trouble because they have the form p ? ¬∆−
st[ψp] : ∆+

st[ψp]. The use of if-then-else

allows p(u) to reacquire a definite value after it has been set to 1/2: if p(u) is 1/2, µp,st evaluates to

a definite value on u if [[∆−
st[ψp(v)]]]

S
3 ([v 7→ u]) is 1 and [[∆+

st[ψp(v)]]]
S
3 ([v 7→ u]) is 0, or vice versa.



65

In Sect. 3.3.3.2, we compared our work with that of William Hesse, which is closest in spirit to

our techniques for maintaining reachability information in possibly-cyclic linked lists. Below, we

discuss a few approaches that bear resemblance to ours in that they attempt to translate or simulate

a data structure that cannot be handled by some core techniques into one that can.

The idea of using spanning-tree representations for specifying or reasoning about data struc-

tures that are “close to trees” is not new. Klarlund and Schwartzbach introduced graph types, which

can be used to specify some common non-tree-shaped data structures in terms of a spanning-tree

backbone and regular expressions that specify where non-backbone edges occur within the back-

bone [44]. Examples of data structures that can be specified by graph types are doubly-linked lists

and threaded trees. A panhandle list cannot be specified by a graph type because in a graph type

the location of each non-backbone edge has to be defined in terms of the backbone using a regular

expression, and a regular expression cannot be used to specify the existence of a backedge to some

node that occurs earlier in the list. In the PALE project [66], which incorporates work on graph

types, automated reasoning about programs that manipulate data structures specified as graph types

can be carried out using a decision procedure for monadic second-order logic. Unfortunately, the

decision procedure has non-elementary complexity. An advantage of our approach over that of

PALE is that we do not rely on the use of a decision procedure.

Immerman et al. presented structure simulation, a technique that broadens the applicability of

decision procedures to a larger class of data structures [39]. Under certain conditions, it allows data

structures that cannot be reasoned about using decidable logics to be translated into data structures

that can, with the translation expressed as a first-order-logic formula. Unlike graph types, structure

simulation is capable of specifying panhandle lists. However, this technique shares a limitation of

graph types because it relies on decision procedures for automated reasoning about programs.

In [60], Manevich et al. specified abstractions (in canonical-abstraction and predicate-

abstraction forms) for showing safety properties of programs that manipulate possibly-cyclic linked

lists. By maintaining reachability within list segments that are not interrupted by nodes that are

shared or pointed to by a variable, they are able to break the symmetry of a cycle. The definition

of several key instrumentation relations in that work makes use of transitive-closure formulas that
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cannot be handled precisely by finite differencing. As a result, a drawback of that work is the

need to define some relation-maintenance formulas by hand. Another drawback is the difficulty of

reasoning about reachability (in a list) from a program variable (see reachability relations rn,x of

Fig. 3.19). Because in [60] reachability in a list has to be expressed in terms of reachability over a

sequence of uninterrupted segments, a formula that expresses the reachability of node v from the

program variable x in a list has to enumerate all permutations of other program variables that may

act as interruptions on a path from x to v in the list.

A number of past approaches to the analysis of programs that manipulate linked lists relied

on first-order axiomatizations of reachability information. All of these approaches involved the

use of first-order-logic decision procedures. While our approach does not have this limitation, it

is instructive to compare our work with those approaches that included mechanisms for breaking

the symmetry on a cycle. Nelson defined a set of first-order axioms that describe the ternary

reachability relation rn(u, v, w), which has the meaning: w is reachable from u along n edges

without encountering v [70]. The use of this relation alone is not sufficient in our setting because

in the presence of abstraction we require unary distinctions (such as the relations prx and pr is

of Fig. 3.19) to break the symmetry. Additionally, the maintenance of ternary relations is more

expensive than the maintenance of binary relations. In [48], Lahiri and Qadeer specify a collection

of first-order axioms that are sufficient to verify properties of procedures that perform a single

change to a cyclic list, e.g., the removal of an element. They also verify properties of in-situ list

reversal, albeit under the assumption that the input list is acyclic. (In Sect. 5.4.1, we describe a case

study in which we use the techniques developed in Sect. 3.3.3.2 to verify properties of Reverse

when applied to any linked list, including cyclic and panhandle lists.) They break the symmetry

of cycles in a similar fashion to how it is done in [60]: the blocking cells of [48] are a subset

of the interruptions of [60]. The blocking cells include only the set of head variables—program

variables that act as heads of lists used in the program. This set has to be carefully maintained by

the user to (i) satisfy the system’s definition of acceptable (well-founded) lists, (ii) allow the system

to verify useful postconditions, and (iii) avoid falling prey to the difficulty—that arises in [60]—of

expressing reachability in the list. The current mechanism of [48] is insufficient for reasoning about
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panhandle lists because the set of blocking cells does not include shared nodes. This limitation can

be partially addressed by generalizing the set of blocking cells to mimic interruptions of [60] more

faithfully. However, this may make it more difficult to satisfy points (ii) and (iii) stated above. As

in our work, Lahiri and Qadeer rely on the insight that reachability information can be maintained

in first-order logic. They use a collection of manually-specified update formulas that define how

their relations are affected by the statements of the language and the (user-inserted) statements that

manage the set of head variables.
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Chapter 4

Inductive Logic Programming (ILP)

The present chapter discusses inductive logic programming (ILP), a known machine-learning

technique that provides a key ingredient for our abstraction-refinement method, which is discussed

in Chapter 5. The present chapter starts by defining the problem that is solved by ILP. Sect. 4.1

discusses an existing algorithm that implements the technique. Sect. 4.2 discusses a modification

of the algorithm that is more suitable for learning from 3-valued logical structures. Sect. 4.3

presents some extensions that we implemented while adapting the algorithm to be used as part

of our abstraction-refinement method. Finally, Sect. 4.4 presents an extension that allows the

algorithm to learn nullary formulas. While we do not currently employ the capability of learning

nullary formulas in our abstraction-refinement method, this capability is noteworthy because it

provides a new technique for predicate abstraction: ILP can be used to identify nullary relations

that distinguish a structure S from the other structures arising at a program point. The use of

the techniques and algorithms discussed in this chapter for abstraction refinement is described in

Sect. 5.2.6.

The goal of an ILP algorithm is the following: given

• an arity k > 1,

• a logical structure S,

• a set of positive example assignments of v1, . . . , vk to individuals of S, and

• a set of negative example assignments of v1, . . . , vk to individuals of S,
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find a logical formula ψ, with free variables v1, . . . , vk, such that (i) ψ is defined in terms of the

relations in the vocabulary of S, and (ii) ψ agrees with the classification of input examples, i.e.,

• ψ evaluates to 1 in S on all positive examples, and

• ψ evaluates to 0 in S on all negative examples.

(In this thesis, we describe what is called the example setting of ILP; it is the setting employed by

the large majority of ILP systems [69]. In this setting, some number of example assignments of the

logical formula to be learned have been labeled as positive or negative examples. The semantics

of ILP—sometimes referred to as the model-theory of ILP—that we assume in this thesis is what

is called the normal semantics. An alternative semantics of ILP, non-monotonic semantics, was

introduced by Helft [34] and Flach [27]. ILP systems based on non-monotonic semantics generally

learn more conservative properties than do systems based on normal semantics. The reader is

referred to the survey by Muggleton and De Raedt for more details on the theory and methods of

ILP [69].)

Standard ILP algorithms produce the answer in the form of a logic program (thus the name of

the technique). (Non-recursive) logic programs correspond to a subset of first-order logic.1 A logic

program can be thought of as a disjunction over the program rules, with each rule corresponding

to a conjunction of literals. Variables not appearing in the head of a rule are implicitly existentially

quantified.

Definition 4.1 (ILP) Given (1) a list of variables v1, . . . , vk, (2) a set of assignments E+ of the vi

to individuals (positive examples), (3) a set of assignments E− of the vi to individuals (negative

examples), and (4) a logical structure S, the goal of ILP is to find a formula ψE(v1, . . . , vk) such

that all e ∈ E+ are satisfied (or covered) by ψE in S and no e ∈ E− is satisfied by ψE in S. 2

Formula ψE defines an arity-k relation E.

1Some ILP algorithms are capable of producing recursive programs, which correspond to first-order

logic plus a least-fixpoint operator (which is more general than transitive closure).
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Example 4.2 Consider learning a unary formula (over variable v) that holds for linked-list el-

ements that are pointed to by the n fields of more than one element, i.e., the defining for-

mula of the sharing relation isn shown in Fig. 2.6. (The importance of the concept of sharing

in heap data structures was recognized in [13, 43].) We let E+ = {[v 7→ u3], [v 7→ u5]},

E− = {[v 7→ u1], [v 7→ u4]}, and S = the 2-valued logical structure of Fig. 4.1. The formula

ψE(v)
def
= ∃ v1, v2 : n(v1, v) ∧n(v2, v) ∧¬eq(v1, v2) meets the objective, as it covers all positive

and no negative example assignments. 2

4.1 An Implementation of ILP for Learning in 2-Valued Logical Structures

u2

u3 u5

u1
u4

Figure 4.1 A linked list with

shared elements

Fig. 4.2 presents the ILP algorithm used by systems such as

FOIL [75, 76], modified to construct the answer as a first-order-

logic formula in disjunctive normal form. Given the input de-

scribed in the previous paragraph, this algorithm learns the for-

mula ψE(v)
def
= ∃ v1, v2 : n(v1, v) ∧n(v2, v) ∧¬eq(v1, v2) (by

performing one iteration of the outer loop and three iterations of

the inner loop to successively choose literals n(v1, v), n(v2, v), and ¬eq(v1, v2)). It is a sequen-

tial covering algorithm parameterized by the function Gain, which characterizes the usefulness of

adding a particular literal (generally, in some heuristic fashion). The algorithm creates a new dis-

junct as long as there are positive examples that are not covered by existing disjuncts. The disjunct

is extended by conjoining a new literal until it covers no negative examples. Each literal uses a

relation symbol from the vocabulary of structure S; valid arguments to a literal are the variables

v1, . . . , vk, which are E’s formal parameters, as well as additional variables, as long as at least

one of the arguments is a variable already used in the current disjunct.2 In FOIL, a single literal

is chosen on each iteration of the inner loop (lines [6]–[13]) using a heuristic value based on the

information gain (see line [8]). FOIL uses information gain to find the literal that best distinguishes

between positive and negative examples. After the algorithm chooses a literal Best(vi1 , . . . , vim),

2The latter condition prevents unconstrained searches that cannot yield the simplest formula that agrees with the

classification of input examples.
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Input: Target-relation name E and the list of variables

EVars = (v1, . . . , vk) to be used as E’s formal parameters,

Logical structure S ∈ 2-STRUCT[R],

Set of assignments to EVars E+,

Set of assignments to EVars E−

[1] ψE := 0

[2] while (E+ 6= ∅) do

[3] NewDisjunct := 1

[4] NewE+ := E+

[5] NewE− := E−

[6] while (NewE− 6= ∅) do

[7] Cand := candidate literals using R

[8] Best(vi1 , . . . , vim
) := L(vi1 , . . . , vim

) ∈ Cand with max

Gain
(
L(vi1 , . . . , vim

),NewDisjunct ,NewE+,NewE−
)

[9] NewVars := {vi1 , . . . , vim
} \ variables(NewDisjunct)

[10] Extend NewE+ and NewE− with assignments

for NewVars that satisfy Best(vi1 , . . . , vim
)

[11] NewE− := subset of NewE− satisfying Best(vi1 , . . . , vim
)

[12] NewDisjunct := NewDisjunct ∧Best(vi1 , . . . , vim
)

[13] end

[14] E+ := subset of E+
not satisfying NewDisjunct

[15] ∃-quantify each v ∈ variables(NewDisjunct) \ {v1, . . . , vk}

[16] ψE := ψE ∨NewDisjunct

[17] end

Figure 4.2 Pseudo-code for FOIL
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the current sets of example assignments, NewE+ and NewE−, need to be extended with mappings

for each variable vj ∈ {vi1 , . . . , vim} that does not already occur in the current disjunct (line [10]).

The updated sets NewE+ and NewE− should consist of assignments that are still to be handled,

i.e., still to be covered in the case of NewE+ and still to be excluded in the case of NewE−. Each

assignment a ∈ NewE+ (or NewE−) is extended (potentially to multiple assignments) with map-

pings for new variables from each assignment b that satisfies Best(vi1 , . . . , vim) and agrees with

a in its mapping of variables that are common to a and b. Using relational-algebra terminology,

the updated assignment set NewE+ (NewE−) is the natural join of the previous value of NewE+

(NewE−) and the relation defined by the literal Best(vi1 , . . . , vim).

4.2 An Implementation of ILP for Learning in 3-Valued Logical Structures

In the ILP literature, the logical structure S that serves as input to the algorithm is gener-

ally a partial 2-valued structure: for a given relation r ∈ Rl and a complete assignment a for

r(v1, . . . , vl), the value [[r(v1, . . . , vl)]]
S
2 (a) may be 0, 1, or unspecified. The structure S can be

extended to a structure in 2-STRUCT[R] (in many ways) by filling in unspecified entries with 0 or

1 values. (In general, some of these structures represent inadmissible stores.)

Given a partial logical structure S, a formula ψE learned by the algorithm shown in Fig. 4.2 is

guaranteed to be satisfied by any assignment e+ ∈ E+ (i.e., to evaluate to 1 on e+) in a structure

SM ∈ 2-STRUCT[R] (defined below) and not to be satisfied by any assignment e− ∈ E− (i.e.,

to evaluate to 0 on e−) in SM [69]. SM is the logical structure that corresponds to a minimal

Herbrand model of the values of background relations in S, the classification of input examples,

and ψE . In other words, SM is an extension of S such that no 1 value in SM can be changed

to 0 while maintaining SM as an extension of S that satisfies ψE with the input classification of

examples.3 The guarantee with respect to other extensions S ′ ∈ 2-STRUCT[R] of S is weaker.

The formula ψE is guaranteed to be satisfied by any assignment e+ ∈ E+ in S ′ but it may or may

not be satisfied by an assignment e− ∈ E− in S ′.

3Because the algorithm shown in Fig. 4.2 may introduce negated literals, there may not be a unique such extension.
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The above statement is corroborated by the code on lines [10] and [11] of the algorithm. Be-

cause in code on those lines the algorithm continues to process only those negative examples (or

their extensions) that satisfy Best(vi1 , . . . , vim) in S, the algorithm makes a kind of closed-world

assumption: literal values not known to be true are assumed to be false.

For learning from a structure S# ∈ 3-STRUCT[R], it seems natural to define a partial logical

structure S that consists of the definite entries of S# but in which the entries corresponding to the

1/2 relation values of S# are unspecified. With S as input, the algorithm shown in Fig. 4.2 returns

a formula ψE that is guaranteed to be satisfied by any assignment e+ ∈ E+ (i.e., to evaluate to 1 on

e+) in all concrete structures S♮ ⊑ S#, and for each assignment e− ∈ E− not to be satisfied (i.e.,

to evaluate to 0 on e−) in some S♮ ⊑ S#. The values of ψE in S# are as follows: ψE is guaranteed

to be (definitely) satisfied by any assignment e+ ∈ E+ (i.e., to evaluate to 1 on e+) in S# and it is

guaranteed to be (possibly) not satisfied by any assignment e− ∈ E− (i.e., to evaluate to 0 or 1/2

on e−) in S#.

However, in our intended setting of program analysis (or, more generally, transition systems

that define the evolution of a logical structure), it is important that the learned formulas come with

guarantees for all S♮ ⊑ S#, namely, that ψE yield 0 on all negative examples in all S♮ ⊑ S# (and

in S# itself). To achieve this, we change the operations shown on lines [10] and [11] of Fig. 4.2 to

process all negative examples that potentially satisfy Best(vi1 , . . . , vim), rather than only those that

satisfy Best(vi1 , . . . , vim). The change ensures that the algorithm retains the (extended) negative-

example assignments that have not been (definitely) excluded (i.e., for which NewDisjunct does

not evaluate to 0). Fig. 4.3 shows the ILP algorithm of Fig. 4.2 with the above modifications ap-

pearing in bold. Henceforth, we assume that learning from 3-valued logical structures is performed

via the algorithm shown in Fig. 4.3. (The differences between the algorithms shown in Figs. 4.2

and 4.3 have no effect on learning from (non-partial) 2-valued logical structures.)
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Input: Target-relation name E and the list of variables

EVars = (v1, . . . , vk) to be used as E’s formal parameters,

Logical structure S ∈ 3-STRUCT[R],

Set of assignments to EVars E+,

Set of assignments to EVars E−

[1] ψE := 0

[2] while (E+ 6= ∅) do

[3] NewDisjunct := 1

[4] NewE+ := E+

[5] NewE− := E−

[6] while (NewE− 6= ∅) do

[7] Cand := candidate literals using R

[8] Best(vi1 , . . . , vim
) := L(vi1 , . . . , vim

) ∈ Cand with max

Gain
(
L(vi1 , . . . , vim

),NewDisjunct ,NewE+,NewE−
)

[9] NewVars := {vi1 , . . . , vim
} \ variables(NewDisjunct)

[10] Extend NewE+ with assignments for NewVars

that satisfy Best(vi1 , . . . , vim
)

[11] Extend NewE− with assignments for NewVars

that potentially satisfy Best(vi1 , . . . , vim
)

[12] NewE− := subset of NewE−potentially satisfying Best(vi1 , . . . , vim
)

[13] NewDisjunct := NewDisjunct ∧Best(vi1 , . . . , vim
)

[14] end

[15] E+ := subset of E+
not satisfying NewDisjunct

[16] ∃-quantify each v ∈ variables(NewDisjunct) \ {v1, . . . , vk}

[17] ψE := ψE ∨NewDisjunct

[18] end

Figure 4.3 Pseudo-code for FOIL modified to learn from 3-valued logical structures



75

4.3 Extensions of the Algorithm of Fig. 4.3 for Abstraction Refinement

The context in which we use ILP necessitates two modifications to the basic algorithm of

Fig. 4.3. First, we changed the algorithm to learn multiple formulas in one invocation. Our moti-

vation is not to find a single instrumentation relation that explains something about the input logical

structure, but rather to find all instrumentation relations that help the analysis establish the property

of interest. Whenever we find multiple literals whose quality metric (see line [8] of Fig. 4.3) lies

within a certain threshold of the highest-quality metric observed so far, we extend distinct copies

of the current disjunct using each of the literals, and then we extend distinct copies of the current

formula using the resulting disjuncts. This extension is similar to the concept of a beam search,

e.g., as implemented in the CN2 system [15]. However, while a beam search returns only the n

answers with the highest quality metric (for some fixed n), our extension puts no bound on the

number of answers. As mentioned above, this is in line with our motivation for finding all instru-

mentation relations that may help the analysis establish the property of interest. To cope with the

potentially large number of answers returned by the algorithm, our abstraction-refinement method

includes heuristics for pruning the set of answers returned by ILP.

As explained in Sect. 5.2.6.2, we sometimes invoke ILP with only positive or only negative

examples. The second change is needed to enable the algorithm of Fig. 4.3 to return meaningful

answers in the absence of negative or positive examples. By changing the inner loop (lines [6]–

[14] of Fig. 4.3) from a while loop to a do-while, we obtain non-trivial formulas in the absence

of negative examples. Similarly, by changing the outer loop (lines [2]–[18] of Fig. 4.3) from a

while loop to a do-while, we obtain non-trivial formulas in the absence of positive examples.

When the algorithm is invoked with the empty set of negative (or positive) examples, in place of

FOIL’s information-gain heuristic (see line [8] of Fig. 4.3) we use a simpler heuristic based on the

percentage of positive examples covered (or negative examples excluded) by the new disjunct.
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4.4 An Extension of the Algorithm of Fig. 4.3 for Learning Nullary Relations

The algorithm shown in Fig. 4.3 expects the arity of the target relation E (as well as the arities

of the example assignments in sets E+ and E−) to be greater than zero. The algorithm learns

relation(s) of the requested arity that satisfy the given classification of examples in the unique

input structure.

In program-analysis applications, e.g., when the abstraction is based on predicate-abstraction

domains, which use only nullary relations to express properties of memory configurations, it is

desirable to find nullary relations that distinguish between two memory configurations that can

arise at a given program point.

A conceptually simple change to the algorithm shown in Fig. 4.3 enables it to learn a nullary

relation that evaluates to 1 on one set of logical structures and to 0 on another set of logical struc-

tures. We lift all operations that expect a set of assignments of individuals to variables to apply

to a set of pairs of the form (Si, Ti), where Si is a logical structure and Ti is a set of assignments

of individuals to variables. (We also change the signature of the algorithm; we will state the new

signature shortly.) For instance, when finding the subset of the remaining negative examples that

satisfy Best(vi1 , . . . , vim) (see line [12] of Fig. 4.3), the computation

{t ∈ NewE−
∣∣ [[Best(vi1 , . . . , vim)]]S3 (t) = 1}

is replaced with

{
(Si, T )

∣∣ (Si, Ti) ∈ NewE− and T = {t ∈ Ti

∣∣ [[Best(vi1, . . . , vim)]]Si

3 (t) = 1}
}

The new signature of the algorithm consists of the target-relation name E, the list of vari-

ables (v1, . . . , vk) to be used as E’s formal parameters, a positive-example set of the form

{(S+
1 , T

+
1 ), . . . , (S+

p , T
+
p )}, and a negative-example set of the form {(S−

1 , T
−
1 ), . . . , (S−

n , T
−
n )}.

The S+
i and S−

i entries are structures, and the T+
i and T−

i entries are sets of arity-k assignments.

Now, when attempting to learn a logical relation that evaluates to 1 on a set of structures

{S+
1 , . . . , S

+
p } and to 0 on a set of structures {S−

1 , . . . , S
−
n }, we invoke the modified algorithm
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u2

u1

u

Figure 4.4 A logical structure S4.4 in

which u is shared

u2

u1

u

Figure 4.5 A logical structure S4.5 in

which no element is shared

with the following arguments: the target-relation name E, the empty variable list, the positive-

example set {(S+
1 , ∅), . . . , (S

+
p , ∅)}, and the negative-example set {(S−

1 , ∅), . . . , (S
−
n , ∅)}. For in-

stance, if we invoke the modified algorithm with arguments E() (with the empty variable list),

E+ = {(S4.4, ∅)}, and E− = {(S4.5, ∅)}, where S4.4 and S4.5 are as shown in Figs. 4.4 and 4.5, re-

spectively, the algorithm identifies the presence or the absence of sharing to be the key distinction

between the structures; it returns the formula

ψE()
def
= ∃ v1, v2, v3 : n(v1, v2) ∧n(v3, v2) ∧ ¬eq(v1, v3).

When attempting to learn a k-ary logical relation (for k > 0) that evaluates to 1 on the set

of positive-example assignments E+ and to 0 on the set of negative-example assignments E− in

structure S, we invoke the modified algorithm with the following arguments: the target-relation

name E, the variables list (v1, . . . , vk), the single-element positive-example set {(S,E+)}, and the

single-element negative-example set {(S,E−)}.

Given an input of the general form, i.e., the target-relation name E, the list of

variables (v1, . . . , vk) to be used as E’s formal parameters, the positive-example set

{(S+
1 , T

+
1 ), . . . , (S+

p , T
+
p )}, and the negative-example set {(S−

1 , T
−
1 ), . . . , (S−

n , T
−
n )}, the modified

algorithm learns a k-ary relation that evaluates to 1 in S+
i on all assignments in T+

i (for i ∈ [1..p])

and to 0 in S−
j on all assignments in T−

j (for j ∈ [1..n]).
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Chapter 5

Automatic Abstraction Refinement

The present chapter addresses an instance of the following fundamental challenge in applying

abstract interpretation:

Given a program and a query of interest, how does one create an abstraction that is

sufficiently precise to verify that the program satisfies the query?

The chapter presents an approach to creating abstractions automatically that, as in some previous

work, involves the successive refinement of the abstraction in use. Unlike previous work, the

work presented in this chapter is aimed at the analysis of programs that manipulate pointers and

heap-allocated data structures (i.e., shape analysis). However, while we demonstrate our approach

on shape-analysis problems, the approach is applicable in any program-analysis setting that uses

first-order logic.

Refinement is performed by introducing new instrumentation relations (defined via logical for-

mulas over core relations). Our abstraction-refinement method uses two refinement strategies. The

first strategy, subformula-based refinement, analyzes the sources of imprecision in the evaluation

of the query, and chooses how to define new instrumentation relations using subformulas of the

query. The second strategy, ILP-based refinement, employs inductive logic programming (ILP) to

learn new instrumentation relations that can stave off imprecision due to abstraction.

As will be explained in Sect. 5.2.6.2, ILP-based refinement invokes the ILP algorithm described

in Sect. 4.3 to learn formulas for three kinds of relations that can be used to refine abstractions in

our analysis framework, which uses abstractions that generalize predicate-abstraction domains. A

fourth use of ILP provides a new technique for predicate abstraction itself: ILP can be used to
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identify nullary relations that distinguish a positive-example structure S from the other structures

arising at a program point. Sect. 4.4 described a version of the ILP algorithm that provides this

capability.

The steps of ILP go beyond merely forming Boolean combinations of existing relations (as

in many refinement techniques based on predicate abstraction); ILP can create new relations by

introducing quantifiers during the learning process.

The chapter is organized as follows: Sect. 5.1 illustrates our goals on the problem of veri-

fying the partial correctness of a sorting routine. Sect. 5.2 presents our abstraction-refinement

method. (Sect. 5.2.2 describes subformula-based refinement. Sect. 5.2.6 discusses a shortcoming

of subformula-based refinement and describes ILP-based refinement, which uses ILP for learning

an abstraction.) Sects. 5.3 and 5.4 present experimental results. Sect. 5.5 discusses related work.

5.1 Example: Specifying and Verifying Sortedness

Given the static-analysis algorithm defined in Sect. 2.2, to demonstrate the partial correctness

of a procedure, the user must supply the following program-specific information:

• The procedure’s control-flow graph.

• A data-structure constructor (DSC): a code fragment that non-deterministically constructs

all valid inputs.

• A query; i.e., a formula that identifies the intended outputs.

The analysis algorithm is run on the DSC concatenated with the procedure’s control-flow graph;

the query is then evaluated on the structures that are generated at exit.

Consider the problem of establishing that the version of InsertSort shown in Fig. 5.1 is par-

tially correct. Fig. 5.2 shows the three structures that characterize the valid inputs to InsertSort

(they represent the set of stores in which program variable x points to an acyclic linked list). To ver-

ify that InsertSort produces a sorted permutation of the input list, after running the analysis of

InsertSort, we would check to see whether, for all of the structures that arise at the procedure’s
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[1] void InsertSort(List *x) {

[2] List *r, *pr, *rn, *l, *pl;

[3] r = x;

[4] pr = NULL;

[5] while (r != NULL) {

[6] l = x;

[7] rn = r->n;

[8] pl = NULL;

[9] while (l != r) {

[10] if (l->data > r->data) {

[11] pr->n = rn;

[12] r->n = l;

[13] if (pl == NULL) x = r;

[14] else pl->n = r;

[15] r = pr;

[16] break;

[17] }

[18] pl = l;

[19] l = l->n;

[20] }

[21] pr = r;

[22] r = rn;

[23] }

[24] }

Figure 5.1 A stable version of insertion sort
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exit node, the following formula evaluates to 1:

∀ v1 : rn,x(v1) ⇒(∀ v2 : n(v1, v2) ⇒ dle(v1, v2)). (5.1)

If the formula evaluates to 1, then the nodes reachable from x must be in non-decreasing order.1

Abstract interpretation collects 3-valued structure S2.8 shown in Fig. 2.8 at line [24]. Note that

Formula (5.1) evaluates to 1/2 on S2.8. While the first list element is guaranteed to be in correct

order with respect to the remaining elements—note the definite dle edge between the first node and

the summary node—there is no guarantee that all list nodes represented by the summary node are

in correct order. In particular, because S2.8 represents S2.7, shown in Fig. 2.7, the analysis admits

the possibility that the (correct) implementation of insertion sort of Fig. 5.1 can produce the store

shown in Fig. 2.2. Thus, the abstraction that we used was not fine-grained enough to establish the

partial correctness of InsertSort. In fact, the abstraction is not fine-grained enough to separate

the set of sorted lists from the set of lists not in sorted order.

In [53], Lev-Ami et al. used TVLA to establish the partial correctness of InsertSort. The

key step was the introduction of instrumentation relation inOrderdle,n(v), which holds for nodes

whose data-components are less than or equal to those of their n-successors; inOrderdle,n(v) was

defined by:

inOrderdle,n(v)
def
= ∀v1 : n(v, v1) ⇒ dle(v, v1). (5.2)

The sortedness property was then stated as follows (cf. Formula (5.1)):

∀v : rn,x(v) ⇒ inOrderdle,n(v). (5.3)

After the introduction of relation inOrderdle,n, the 3-valued structures that are collected by

abstract interpretation at the end of InsertSort describe all stores in which variable x points to

an acyclic, sorted linked list. In all of these structures, Formulas (5.3) and (2.1) evaluate to 1.

Consequently, InsertSort is guaranteed to work correctly on all valid inputs.

1A second property required of a correct sorting procedure (as well as of many other procedures that

manipulate linked lists) is that the output list must be a permutation of the input list. This can be established

by also checking Formula (2.1) from Chapter 2.
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empty list 1-element list lists with 2 or more elements

x

tn,dle

rn,x

dle
x

tn,dle n,tn,dle

nrn,x rn,x
tn

Figure 5.2 The structures that describe possible inputs to InsertSort

5.2 Iterative Abstraction Refinement

In [53], instrumentation relation inOrderdle,n was defined explicitly (by the TVLA user).

Heretofore, there have really been two burdens placed on the TVLA user:

(i) he must have insight into the behavior of the program, and

(ii) he must translate this insight into appropriate instrumentation relations (e.g., Formula (5.2)).

The goal of the present chapter is to automate the identification of appropriate instrumentation

relations, such as inOrderdle ,n. In the case of InsertSort, the goal is to obtain definite answers

when evaluating Formula (5.1) on the structures collected by abstract interpretation at line [24]

of Fig. 5.1. Fig. 5.3 gives pseudo-code for our method, the steps of which can be explained as

follows:

• (Line [1]; Sect. 5.2.4) Use a data-structure constructor to compute the abstract input struc-

tures that represent all valid inputs to the program.

• Perform an abstract interpretation to collect a set of structures at each program point, and

evaluate the query on the structures at exit. If a definite answer is obtained on all structures,

terminate. Otherwise, perform abstraction refinement.

• (Line [6]; Sects. 5.2.2 and 5.2.6) Identify formulas to be used to define new instrumentation

relations.
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Input: the program’s transition relation,

a data-structure constructor,

a query ϕ (a closed formula)

[1] Construct abstract input

[2] do

[3] Perform abstract interpretation

[4] Let S1, . . . , Sk be the set of

3-valued structures at exit

[5] if for all Si, [[ϕ]]Si

3 ([]) 6= 1/2 break

[6] Find formulas ψp1
, . . . , ψpk

for new

instrumentation relations p1, . . . , pk

[7] Refine the actions that define

the program’s transition relation

[8] Refine the abstract input

[9] while (true)

Figure 5.3 Pseudo-code for iterative abstraction refinement
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• (Line [7]; Sect. 5.2.3) Replace all occurrences of these formulas in the query and in the

definitions of other instrumentation relations with the use of the corresponding new instru-

mentation relation symbols, and apply finite differencing to generate relation-maintenance

formulas for the newly introduced instrumentation relations, as well as for those instrumen-

tation relations whose definitions have been changed.

• (Line [8]; Sect. 5.2.4) Obtain the most precise possible values for the newly introduced

instrumentation relations in abstract structures that define the valid inputs to the program.

This is achieved by “reconstructing” the valid inputs by performing abstract interpretation

of the data-structure constructor.

In the next five sections, we will use the example of verifying partial correctness of InsertSort

to illustrate the steps of iterative abstraction refinement.

5.2.1 Instrumentation-Relation Discovery

A first attempt at abstraction refinement could be the introduction of the query itself as a new

instrumentation relation. However, this usually does not lead to a definite answer to the query. For

instance, with InsertSort, introducing the query as a new instrumentation relation is ineffective

because no statement of the program has the effect of changing the value of such an instrumentation

relation from 1/2 to 1.

In contrast, as we saw in Sect. 5.1, the introduction of unary instrumentation relation

inOrderdle,n allows the sortedness query to be established. When inOrderdle ,n is present, there

are several statements of the program where abstract interpretation results in new definite entries

for inOrderdle,n. For instance, because of the comparison in line [10] of Fig. 5.1, the insertion in

lines [12]–[14] of the node pointed to by r (say u) before the node pointed to by l results in a new

definite entry inOrderdle,n(u).

An algorithm to generate new instrumentation relations should take into account the sources of

imprecision. Sect. 5.2.2 describes subformula-based refinement; in this method, query subformu-

las that are responsible for an indefinite answer are used to generate new instrumentation relations.



85

Sect. 5.2.6 discusses a shortcoming of subformula-based refinement and describes ILP-based re-

finement, which uses ILP for learning an abstraction.

5.2.2 Subformula-Based Refinement

The subformulas of the query that are responsible for the indefinite answer are good candidates

for defining new instrumentation relations. Fig. 5.4 presents function instrum, a recursive-descent

procedure to generate defining formulas for new instrumentation relations. The arguments to

the function are formula ϕ, logical structure S ∈ 3-STRUCT[R], and an assignment Z that is

defined on all free variables of ϕ. In the top-level invocation, ϕ is the (nullary) query, Z is empty,

and S is a structure collected at the exit node by the last run of abstract interpretation for which

[[ϕ]]S3 (Z) = 1/2.

A precondition of instrum is that [[ϕ]]S3 (Z) = 1/2. Starting with this assumption, instrum at-

tempts to find subformulas of ϕ that, if sharpened, would sharpen the value of the whole formula

(see Figs. 5.5 (a) and (b)). If such subformulas are found, they will be used to define new instru-

mentation relations. Below are explanations of a few cases:

instrum(1, . . .) This violates the precondition of instrum.

instrum(1/2, . . .) Nothing can be done in this case.

instrum(p ∈ C, . . .) If p is unary and is not in the set of abstraction relations, add it to the set of

abstraction relations.

instrum(p ∈ I, . . .) Examine ψp, the defining formula of p. Also, if p is unary and is not in the set

of abstraction relations, add it to the set of abstraction relations.

instrum(ϕ1 ∨ϕ2, . . .) If ϕ (i.e., ϕ1 ∨ϕ2) does not define an instrumentation relation, it will be

used as the definition of a new instrumentation relation. Also, examine ϕ1 and ϕ2 to find

subformulas that can cause ϕ to evaluate to 1/2.
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ϕ return value of instrum(ϕ, S, Z)

0, 1 ERROR

1/2 ∅

v1 = v2 ∅

p(v1, . . . , vk) (p ∈ C) ? ∅ : instrum(ψp, S, Z)

if (k = 1 ∧ p /∈ A) A := A∪ {p}

¬ϕ1 instrum(ϕ1, S, Z)

ϕ1 ∨ϕ2

ϕ1 ∧ϕ2

(ϕ ∈ {ψp| p ∈ I}) ? ∅ : {ϕ}

∪ ([[ϕ1]]
S
3 (Z) = 1/2) ? instrum(ϕ1, S, Z) : ∅

∪ ([[ϕ2]]
S
3 (Z) = 1/2) ? instrum(ϕ2, S, Z) : ∅

∃ v : ϕ1

∀ v : ϕ1

(ϕ ∈ {ψp| p ∈ I}) ? ∅ : {ϕ}

∪
⋃

u∈S

([[ϕ1]]
S
3 (Z[v 7→ u]) = 1/2

? instrum(ϕ1, S, Z[v 7→ u])

: ∅)

p∗(v1, . . . , vk)

(ϕ ∈ {ψq| q ∈ I}) ? ∅ : {ϕ}

∪
⋃

u′1, u
′
2 ∈ S,

u′1 6= u′2

([[p]]S3 (Z[v′1 7→ u′1, v
′
2 7→ u′2]) = 1/2)

? instrum(p, S, Z[v′1 7→ u′1, v
′
2 7→ u′2])

: ∅)

Figure 5.4 Function instrum, which looks for formulas to be used as definitions of new

instrumentation relations
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1/2

1/2

ϕ

1/2

1/2

ϕ

-

0

(a) (b)

Figure 5.5 (a) Recursive-descent function instrum finds the subformulas of ϕ that can cause the

1/2 answer. (b) Ex.: imprecision in an or-subformula.

instrum(∃ v : ϕ1, S, Z) If ϕ (i.e., ∃ v : ϕ1) does not define an instrumentation relation, it will be

used as the definition of a new instrumentation relation. Also, examine ϕ1 under different

bindings v 7→ u to find subformulas of ϕ1 that can cause ϕ to evaluate to 1/2.

Each formula ϕ returned by instrum is given a name (say q) and used as the definition of a new

instrumentation relation q(v1, . . . , vk), where v1, . . . , vk are the free variables of ϕ (in order of their

appearance in the formula). All new unary instrumentation relations are added as non-abstraction

relations. However, they may be added to the set of abstraction relations A on a subsequent itera-

tion of abstraction refinement (see the second line of entry p(v1, . . . , vk) in Fig. 5.4, which handles

core and instrumentation relations).

Example 5.1 Before the first abstract interpretation of InsertSort, the data-structure constructor

of Fig. 5.7 (see Sect. 5.2.4) constructs all valid inputs to the procedure, which are the three struc-

tures shown in Fig. 5.2. As we saw in Sect. 5.1, abstract interpretation collects 3-valued structure

S2.8 of Fig. 2.8 at the exit node of InsertSort.2 The sortedness query (Formula (5.1)) evaluates to

1/2 on S2.8, triggering a call to instrum with Formula (5.1), structure S2.8, and empty assignment

Z, as arguments.

Column 2 of Fig. 5.6 shows the instrumentation relations that are created as a result of the call

to instrum on the first iteration of abstraction refinement. Note that sorted3 is defined exactly as

2In our implementation, a given round of abstract interpretation is stopped as soon as imprecision is

detected.
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p ψp (after call to instrum) ψp (final version)

sorted1() ∀ v1 : rn,x(v1)⇒(∀ v2 : n(v1, v2)⇒ dle(v1, v2)) ∀ v1 : sorted2(v1)

sorted2(v1) rn,x(v1)⇒(∀ v2 : n(v1, v2)⇒ dle(v1, v2)) rn,x(v1)⇒ sorted3(v1)

sorted3(v1) ∀ v2 : n(v1, v2)⇒ dle(v1, v2) ∀ v2 : sorted4(v1, v2)

sorted4(v1, v2) n(v1, v2)⇒ dle(v1, v2) n(v1, v2)⇒ dle(v1, v2)

Figure 5.6 Instrumentation relations created by subformula-based refinement during the

verification of the partial correctness of InsertSort

inOrderdle,n, which was the key insight for the results of [53]. Note also that instrum returns no

subformulas of the definition of rn,x. This is because rn,x(v) evaluates to a definite value (1) for

both v 7→ u23 and v 7→ u1 (see Fig. 2.8). 2

5.2.3 Refinement of the Actions that Define the Program’s Transition Relation

The actions that define the program’s transition relation need to be modified to gain precision

improvements from storing and maintaining the new instrumentation relations. To this end, for

each new instrumentation relation p(v1, . . . , vk), the query and all other instrumentation relations’

defining formulas are scanned for occurrences of ψp. Every occurrence of ψp{w1/v1, . . . , wk/vk},

i.e., ψp with wi substituted for free variable vi, is replaced with p(w1, . . . , wk), thus enabling the

use of stored value p(w1, . . . , wk) in place of the evaluation of ψp.

To complete transition-relation refinement, finite differencing creates relation-maintenance for-

mulas for the new instrumentation relations, as well as for those instrumentation relations whose

definitions have been changed. This improves the precision with which relations’ stored values are

maintained during abstract interpretation.

Example 5.2 For InsertSort, the use of Formula (5.1) in the query is replaced with the use of

the stored value sorted1(). Then the definitions of all instrumentation relations are scanned for

occurrences of ψsorted1
, . . . , ψsorted4

(in that order). These occurrences are replaced with the names

of the four relations. In this case, only the new relations’ definitions are changed, yielding the

definitions given in Column 3 of Fig. 5.6. Transition-relation refinement is completed by invoking
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finite differencing to generate relation-maintenance formulas for the new instrumentation relations.

2

5.2.4 Refinement of the Abstract Input: Data-Structure Constructors

Before performing abstract interpretation of the refined transition system, we need to update

the abstract structures that characterize the acceptable inputs to the procedure with values for the

new instrumentation relations. To gain maximum benefit from maintaining p(v1, . . . , vk), abstract

interpretation needs to start with the most precise possible values for p in abstract input struc-

tures. While simply evaluating ψp on abstract input structures for all assignments to free variables

v1, . . . , vk results in safe values, these values are likely to be imprecise.

We illustrate the issue on the stability property. This property usually arises in the context

of sorting procedures, but actually applies to list-manipulating programs in general: the stabil-

ity query (Formula (5.5)) asserts that the relative order of elements with equal data-components

remains the same.3

∀ v1, v2 : (dle(v1, v2) ∧ dle(v2, v1) ∧ t0n(v1, v2)) ⇒ tn(v1, v2) (5.5)

The first run of abstract interpretation on InsertSort does not result in a definite answer to the

stability query. The first round of abstraction refinement then introduces the following subformula

of Formula (5.5) as a new instrumentation relation, stable2(v1, v2):

(dle(v1, v2) ∧ dle(v2, v1) ∧ t0n(v1, v2)) ⇒ tn(v1, v2) (5.6)

Consider the rightmost structure of Fig. 5.2,4 which includes one concrete and one summary indi-

vidual; call them uc and us, respectively. If we simply evaluate Formula (5.6) on the structure, we

3A related property, antistability, asserts that the order of elements with equal data-components is re-

versed:

∀ v1, v2 : (dle(v1, v2)∧ dle(v2, v1)∧ t0n(v1, v2))⇒ tn(v2, v1) (5.4)

Our test suite also includes program InsertSort AS, which is identical to InsertSort except that it uses

≥ instead of > in line [10] of Fig. 5.1 (i.e., when looking for the correct place to insert the current node).

This implementation of insertion sort is antistable.
4In that structure, all history relations, such as t0n, have the same values as their active counterparts, but

have been omitted from the figure for clarity.
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Abstraction

of possible

SLLs

⇓

Program

List *x = NULL;

while (?) {

int sz = sizeof(List);

List *t = malloc(sz);

t->n = x;

x = t;

}

Empty List

⇓

Nondeterministic

SLL

constructor

from (b)

Program

(a) (b) (c)

Figure 5.7 Illustration of input specifications for programs that manipulate singly-linked lists.

(a) Traditional input specification in TVLA. (b) A fragment of code that nondeterministically

constructs all possible singly-linked lists. (c) The use of loop (b) to specify the set of inputs.

obtain the definite value 1 for tuples (uc, uc), (uc, us), and (us, uc). However, the evaluation yields

value 1/2 for tuple (us, us) because dle(us, us), t
0
n(us, us), and tn(us, us) all equal 1/2.

Our methodology for obtaining values for abstract input structures is to perform an abstract

interpretation on a loop that constructs the family of all valid inputs to the program (we call such a

loop a Data-Structure Constructor, or DSC). This allows the values of instrumentation relations to

be maintained (as input structures are manufactured from the empty store) rather than computed; in

general, this results in more precise values for the instrumentation relations. Fig. 5.7 illustrates the

idea. The left-hand side shows the traditional TVLA approach, in which the program is analyzed

together with a specification of valid inputs. The loop in the middle nondeterministically constructs

an acyclic linked list pointed to by x: a list is constructed from tail to head (i.e., most deeply nested

node first); the loop exits after some number of nodes have been added at the front of the list. An

example of our methodology is depicted on the right-hand side. The program to be analyzed is now

composed of a DSC (here the nondeterministic loop constructing all singly-linked lists) together

with the original procedure. The input specification now consists of just the empty list.
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The abstract interpretation of the DSC is performed using an extended vocabulary that contains

the new instrumentation relation symbols. The 3-valued structures collected at the exit node of the

DSC become the abstract input to the original procedure, i.e., the abstract value at the procedure’s

entry point, for the subsequent abstract interpretation of the procedure.

Note that history relations (such as r0
n,x(v) from Chapter 2) are intended to record the state

of the store at the entry point to the procedure or, equivalently, at the exit from the DSC. To

make sure that these relations have appropriate values, they are maintained in tandem with their

active counterparts during abstract interpretation of the DSC. When abstract input refinement is

completed, values of history relations are frozen in preparation for the abstract interpretation that

is about to be performed on the procedure proper.

The stable2 instrumentation relation defined by Formula (5.6) exemplifies the benefits of the

DSC methodology. The maintenance of stable2, tn, t0n, and other instrumentation relations, starting

from the empty store, allows us to conclude that stable2 has value 1 for every tuple of every abstract

input structure to procedure InsertSort (and so the stability property holds initially).

Example 5.3 Fig. 5.7 shows the linked-list DSC used for specifying the inputs to InsertSort.

Abstract interpretation collects three 3-valued structures at the exit node of the DSC. Two of these

are the empty structure and the single element structure. The values of all four new instrumenta-

tion relations are definite in those structures, in particular sorted1() = 1. The third structure is

essentially the same as the rightmost structure of Fig. 5.2 but with values for the four new instru-

mentation relations. Because nothing is known about the data-values stored in list elements (and

hence about the dle relationships between different elements), sorted1() = 1/2 in this structure,

and unary relations sorted2(v) and sorted3(v) have value 1/2 for both individuals of the structure.

The three structures collected at the exit node of the DSC become the abstract input structures,

i.e., the abstract value at the entry point of InsertSort for the next run of abstract interpretation

on InsertSort. 2

A DSC is also used to automatically construct the abstract input structures before the first

run of abstract interpretation (line [1] in Fig. 5.3). This allows the user to specify the program’s
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inputs in the form of a program, which frees the user from having to know the details of the initial

abstraction in use.

5.2.5 Success of Refinement for InsertSort

In all of the structures collected at the exit node of InsertSort by the second run of abstract

interpretation, sorted1() = 1. The permutation property also holds on all of the structures. These

two facts establish the partial correctness of InsertSort. This process required one iteration of

abstraction refinement, used the basic version of the specification (the vocabulary consisted of the

relations of Figs. 2.3 and 2.6, together with the corresponding history relations), and needed no

user intervention.

5.2.6 ILP-Based Refinement

5.2.6.1 Shortcomings of Subformula-Based Refinement

Procedure InsertSort consists of two nested loops (see Fig. 5.1). The outer loop traverses

the list, setting pointer variable r to point to list nodes. For each iteration of the outer loop, the

inner loop finds the correct place to insert r’s target, by traversing the list from the start using

pointer variable l; r’s target is inserted before l’s target when l->data > r->data. Because

InsertSort satisfies the invariant that all list nodes that appear in the list before r’s target are

already in the correct order, the data-component of r’s target is less than the data-component of

all nodes ahead of which r’s target is moved. Thus, InsertSort preserves the original order of

elements with equal data-components, and InsertSort is a stable routine.

However, subformula-based refinement is not capable of establishing the stability of

InsertSort. By considering only subformulas of the query (in this case, Formula (5.5)) as can-

didate instrumentation relations, the strategy is unable to introduce instrumentation relations that

maintain information about the transitive successors with which a list node has the correct relative

order.5

5In contrast, subformula-based refinement is capable of establishing the antistability of InsertSort AS.

When looking for a place to insert r’s target, this routine stops when l->data >= r->data and inserts r’s

target before l’s target. The analysis need not establish anything about sortedness properties to observe that
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u1 u2
n,dle u3

n,dle u4
n,dle u5

n

x,pl r,rnl pr

dle u1 u2 u3 u4 u5

u1 1 1 1 1 1/2

u2 1/2 1 1 1 1/2

u3 0 0 1 1 1/2

u4 0 0 1/2 1 1/2

u5 1/2 1/2 1/2 1/2 1

tn u1 u2 u3 u4 u5

u1 1 1 1 1 1

u2 0 1 1 1 1

u3 0 0 1 1 1

u4 0 0 0 1 1

u5 0 0 0 0 1

Figure 5.8 Structure S5.8, which arises just before line [6] of Fig. 5.1. Unlabeled edges between

nodes represent the dle relation.

5.2.6.2 Learning Instrumentation Relations

Fig. 5.8 shows the structure S5.8, which arises during abstract interpretation just before line [6]

of Fig. 5.1, together with a tabular version of relations tn and dle. (We omit reachability relations

from the figure for clarity.) After the assignment l = x;, nodes u2 and u3 have identical vectors

of values for the unary abstraction relations. The subsequent application of canonical abstraction

produces structure S5.9, shown in Fig. 5.9. Bold entries of tables in Fig. 5.8 indicate definite values

that are transformed into 1/2 in S5.9. Structure S5.8 satisfies the sortedness invariant discussed

above: every node among u1, ..., u4 has the dle relationship with all nodes appearing later in the list,

except r’s target, u5. However, a piece of this information is lost in structure S5.9: dle(u23, u23) =

1/2, indicating that some nodes represented by summary node u23 might not be in sorted order

with respect to their successors. We will refer to such abstraction steps as information-loss points.

An abstract structure transformer may temporarily create a structure S1 that is not in the image

of canonical abstraction [84]. The subsequent application of canonical abstraction transforms S1

every list node is inserted before any other node with the same data-value. Once refinement introduces

the appropriate instrumentation relations based on subformulas of the antistability query, TVLA is able to

establish the antistability of InsertSort AS.



94

u1
n u4 u5

n

x,pl,l r,rnpr

u23
n

n,dle

dle u1 u23 u4 u5

u1 1 1 1 1/2

u23 1/2 1/2 1 1/2

u4 0 1/2 1 1/2

u5 1/2 1/2 1/2 1

tn u1 u23 u4 u5

u1 1 1 1 1

u23 0 1/2 1 1

u4 0 0 1 1

u5 0 0 0 1

Figure 5.9 Structure S5.9, corresponding to the transformation of S5.8 by the statement on line [6]

of Fig. 5.1. Unlabeled edges between nodes represent the dle relation.
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into structure S2 by grouping a set U1 of two or more individuals of S1 into a single summary

individual of S2. The loss of precision is due to one or both of the following circumstances:

• One of the individuals in U1 possesses a property that another individual does not possess;

thus, the property for the summary individual is 1/2.

• Individuals in U1 have a property in common, which cannot be recomputed precisely in S2.

In both cases, the solution lies in the introduction of new instrumentation relations. In the former

case, it is necessary to introduce a unary abstraction relation to keep the individuals of U1 that

possess the property from being grouped with those that do not. In the latter case, it is sufficient

to introduce a non-abstraction relation of appropriate arity that captures the common property of

individuals in U1. The version of the ILP algorithm described in Sect. 4.3 can be used to learn

formulas for the following three kinds of relations:6

Type I: Unary relation r1(v1) with E+ = {[v1 7→ u]} for one u ∈ U1, and E− =
{
[v1 7→ u′]

∣∣ u′ ∈ U1 \ {u}
}

.

Type II A: Unary relation r2(v1) with E− =
{
[v1 7→ u]

∣∣ u ∈ U1

}
.

Type II B: Unary relation r2(v1) with E+ =
{
[v1 7→ u]

∣∣ u ∈ U1

}
.

Type III A: Binary relation r3(v1, v2) with E− =
{
[v1 7→ u1, v2 7→ u2]

∣∣ u1, u2 ∈ U1

}
.

Type III B: Binary relation r3(v1, v2) with E+ =
{
[v1 7→ u1, v2 7→ u2]

∣∣ u1, u2 ∈ U1

}
.

Type I relations are intended to prevent the grouping of individuals with different properties,

while Types II and III (II A, II B, III A, and III B) are intended to capture the common properties

of individuals in U1. Type III relations can be generalized to ternary and higher-arity relations.

6These are what are needed for our analysis framework, which uses abstractions that generalize predicate-

abstraction domains. A fourth use of ILP provides a new technique for predicate abstraction itself: ILP can be used to

identify nullary relations that distinguish a positive-example structure S from the other structures arising at a program

point. Sect. 4.4 describes a version of the ILP algorithm that provides this capability. The steps of ILP go beyond

merely forming Boolean combinations of existing relations (as in many refinement techniques based on predicate

abstraction); ILP can create new relations by introducing quantifiers during the learning process.
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Relations of Types II A and II B both capture the common properties of individuals inU1. However,

a relation of one type may be better suited for use in analysis than a relation of the other type. We

will explain this shortly.

For the background logical structure that serves as input to ILP, we pass the structure S1 identi-

fied at an information-loss point. We restrict the algorithm to use the relations of the structure that

are used in the query and lose definite entries as a result of abstraction (e.g., tn and dle in the above

example). Definite entries (1 or 0) of those relations are then used to learn formulas that evaluate

to 1 for every positive example and to 0 for every negative example.

We now describe how the variant of ILP described in Sect. 4.3 is able to learn a useful binary

formula using structure S5.8 of Fig. 5.8. (This formula will be used to define a binary relation

r3(v1, v2) of Type III B.) The set of individuals of S5.8 that are grouped by the abstraction is

U = {u2, u3}, so the input set of positive examples is {[v1 7→ u2, v2 7→ u2], [v1 7→ u2, v2 7→ u3],

[v1 7→ u3, v2 7→ u2], [v1 7→ u3, v2 7→ u3]}. The set of relations that lose definite values due to

abstraction includes tn and dle. Literal dle(v1, v2) covers three of the four examples because it

holds for assignments [v1 7→ u2, v2 7→ u2], [v1 7→ u2, v2 7→ u3], and [v1 7→ u3, v2 7→ u3]. The

algorithm picks that literal and, because there are no negative examples, dle(v1, v2) becomes the

first disjunct. Literal ¬tn(v1, v2) covers the remaining positive example, [v1 7→ u3, v2 7→ u2], and

the algorithm returns the formula

ψr3
(v1, v2)

def
= dle(v1, v2) ∨ ¬tn(v1, v2), (5.7)

which can be re-written as tn(v1, v2) ⇒ dle(v1, v2).

Relation r3(v1, v2) allows the abstraction to maintain information about the transitive succes-

sors with which a list node has the correct relative order. In particular, although dle(u23, u23) is

1/2 in S5.9, r3(u23, u23) is 1, which allows establishing the fact that all list nodes appearing prior

to r’s target are in sorted order.

Other formulas, such as dle(v1, v2) ∨ tn(v2, v1), are also learned using ILP (cf. Fig. 5.11).

Not all of them are useful to the verification process, but introducing unnecessary instrumentation

relations cannot harm the analysis, aside from increasing its cost.
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Discussion

As explained in Sect. 5.2.3, the precision improvement from using a subformula of the query

to define a new instrumentation relation p is mainly due to the use of the stored values for p in

the query (or the definitions of other instrumentation relations) in place of p’s defining formula.

Picking the defining formulas of new instrumentation relations from among the subformulas of the

query ensures that such reuse is always possible.

The relations learned by ILP do not necessarily match any of the subformulas of the query. In

fact, assuming that subformula-based refinement fails to verify a property, other relations, such as

r3(v1, v2), are needed to capture properties that hold at earlier points of the program but are lost due

to abstraction. The precision improvement from introducing such an instrumentation relation p is

due mainly to the sharpening of the relations in terms of which p is defined, i.e., the relations that

occur in ψp. This sharpening is achieved through the application of the coerce operation to enforce

additional integrity constraints that are generated automatically based on the definition of p. For

instance, based on the definition of r3(v1, v2), the system generates the following two integrity

constraints:

∀ v1, v2 : r3(v1, v2) ∧¬dle(v1, v2)⇒ ¬tn(v1, v2) (5.8)

∀ v1, v2 : r3(v1, v2) ∧ tn(v1, v2).⇒ dle(v1, v2) (5.9)

Because a relation p of Type II or III has the same value for all tuples that consist of elements of

U1 (that value is 0 in the case of Type II A and Type III A relations and 1 in the case of Type II B

and Type III B relations), the abstraction step at an information-loss point does not cause a loss

of precision in the value of p. At a later point during the analysis, the precise values of p allow

the values of the relations that occur in p’s defining formula to be sharpened via the automatically

generated integrity constraints.

While the relations of Types II A and II B both capture the common properties of individuals

in U1, a relation of Type II A is generally better suited for generating integrity constraints. The

defining formulas of the relations of Types II A and II B have the forms of Eqns. (5.10) and (5.11),
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respectively:

ψr2A
(v1)

def
= (∃ v2, v3, . . . , vj : l1,1(·) ∧ l1,2(·) ∧ . . .∧ l1,k(·)) (5.10)

ψr2B
(v1)

def
= (∃ v2 : l2,1(·)) ∨(∃ v2 : l2,2(·)) ∨ . . .∨(∃ v2 : l2,l(·)), (5.11)

where the l1,i(·) and the l2,i(·) are logical literals. In our system, relation r2B(v1) does not re-

sult in the automatic generation of integrity constraints, unless l (the number of disjuncts) is 1 or

the defining formula contains no quantifiers. Relation r2A(v1), on the other hand, results in the

automatic generation of the following constraints (for each i ∈ [1..j]):

∀ v1, v2, . . . , vj : ¬r2A(v1) ∧ l1,1(·) ∧ . . .∧ l1,i−1(·) ∧ l1,i+1(·) ∧ . . .∧ l1,j(·)⇒ ¬l1,i(·). (5.12)

Thus, we can use ILP to learn relations of Type II A and II B, although generally only the Type

II A relations have an effect on the precision of the analysis.

The above conclusions also hold for the distinction between the relations of Types III A and

III B. However, when applied to examples of Type III B, ILP frequently learns defining formulas

that do not contain quantifiers, e.g., the relation r3(v1, v2) discussed above. Such relations result

in the generation of integrity constraints that can help improve the precision of the analysis, as we

demonstrated using the relation r3(v1, v2).

5.2.6.3 ILP and the Refinement Loop

ILP gives us a powerful mechanism for learning new abstractions. At present, we generally

employ subformula-based refinement first, because the cost of this strategy is reasonable (see

Sect. 5.3) and the strategy is often successful. In this mode of operation, if the call to instrum

on line [6] of Fig. 5.3 returns no formulas and adds no relations to the set of abstraction relations,

we turn to the ILP strategy. Sect. 5.3 also describes our experiments with an alternative mode of

operation, in which subformula-based refinement is turned off and only ILP-based refinement is

applied.

During each iteration of subformula-based refinement, we save logical structures at

information-loss points. Upon the failure of subformula-based refinement, we invoke the ILP
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algorithm, as described in Sect. 5.2.6. To lower the cost of the analysis, we prune the returned set

of formulas. For each learned formula ϕ, we use a conservative test to check whether the introduc-

tion of a new instrumentation relation p defined by ϕ can sharpen tuples of relations that occur in

ϕ. (We call formulas that pass the test effective.) This test uses the results of the previous round of

analysis to simulate the introduction of p. We then use effective formulas learned by ILP to define

new instrumentation relations, and use these relations to refine the abstraction by performing the

steps of lines [7] and [8] of Fig. 5.3, as done for subformula-based refinement. Our implementation

can learn relations of all the types described in Sect. 5.2.6: unary, binary, as well as nullary. At

present, the number of instrumentation relations used by an analysis in TVLA has a significant

impact on the cost of the analysis. In the experiments reported below and in Sect. 5.3, we touch on

the implications of learning some but not all types of relations described in Sect. 5.2.6.

Example 5.4 When invoking ILP to learn binary formulas only (i.e., of Type III) during the verifi-

cation of the stability of InsertSort, thirteen effective binary formulas are learned using the ILP

algorithm, among them Formula (5.7). Upon completion of the refinement steps, the subsequent

run of the analysis successfully verifies the stability of InsertSort. 2

5.3 Experimental Evaluation

To evaluate the method presented in this chapter, we extended TVLA to perform iterative ab-

straction refinement, and applied it to three queries and five programs (see Fig. 5.10). Besides

InsertSort, the test programs included sorting procedures BubbleSort and InsertSort AS,

list-merging procedure Merge, and in-situ list-reversal procedure Reverse.

The DSC that we used in our tests is a procedure to generate unsorted lists of arbitrary length,

in the case of all programs but Merge. For Merge, the DSC is a procedure to generate pairs of

unsorted lists.

First, we describe the results of applying iterative abstraction refinement that invokes ILP to

learn binary formulas only (i.e., of Type III). Fig. 5.10 shows that the method was able to generate

the right instrumentation relations for TVLA to establish all properties that we expect to hold.
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sorted stable antistable

Test Program # instrum rels # instrum rels # instrum rels

total/SF/ILP total/SF/ILP total/SF/ILP

BubbleSort 31/4/0 32/5/0 32/5/0

InsertSort 39/4/0 53/5/13 40/5/0

InsertSort AS 39/4/0 40/5/0 40/5/0

Merge 27/4/0 28/5/0 28/5/0

Reverse 23/4/0 24/5/0 24/5/0

Figure 5.11 The numbers of instrumentation relations used during the last iteration of abstraction

refinement. The three numbers in each cell give the total number of relations, the number of

relations introduced by subformula-based refinement, and the number of (effective) relations

learned by ILP, respectively

Namely, TVLA succeeds in demonstrating that all three sorting routines produce sorted lists, that

BubbleSort, InsertSort, and Merge are stable routines, and that InsertSort AS and Reverse

are antistable routines.

Test Program sorted stable antistable

BubbleSort 1 1 1/2

InsertSort 1 1 1/2

InsertSort AS 1 1/2 1

Merge 1/2 1 1/2

Reverse 1/2 1/2 1

Figure 5.10 Results from applying

iterative abstraction refinement to the

verification of properties of programs

that manipulate linked lists. Columns

2, 3, and 4 correspond to the queries

stated in Formulas (5.1), (5.5),

and (5.4), respectively

Indefinite answers are indicated by 1/2 entries. It is

important to understand that all of the occurrences of 1/2

in Fig. 5.10 are the most precise correct answers. For in-

stance, the result of applying Reverse to an unsorted list

is usually an unsorted list; however, in the case that the

input list happens to be in non-increasing order, Reverse

produces a sorted list. Consequently, the most precise an-

swer to the query is 1/2, not 0.

Fig. 5.11 shows the numbers of instrumentation rela-

tions used during the last iteration of abstraction refine-

ment. The number of relations defined by subformulas

of the query is small relative to the total number of in-

strumentation relations. The only verification test during

which ILP learns effective relations is the verification of the stability of InsertSort.
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Test Program sorted stable antistable

BubbleSort 97 101 66

InsertSort 36 139 6.4

InsertSort AS 36 6 37

Merge 13 25 16

Reverse 4.5 4.5 3.8

Figure 5.12 Total execution times for applying iterative abstraction refinement (in seconds)

Fig. 5.12 gives execution times that were collected on a 3GHz PC with 3.7GB of RAM running

CentOS 4 Linux. The longest-running analysis, which verifies that InsertSort is stable, takes 2.3

minutes. Eleven of the analyses take under a minute. The rest take under 2 minutes. The total time

for the 15 tests is less than 10 minutes. The maximum amount of memory used by TVLA to

perform the analyses varied from just under 2 megabytes to 85 megabytes.7

Sortedness of BubbleSort and InsertSort are the only queries in our set to which TVLA

has been applied before this work [53]. For these queries, the performance of iterative abstraction

refinement is very close to the performance of the analysis when the user carefully chooses the

right instrumentation relations.

Because ILP was necessary for the verification of only one of the eight properties that we

expect to hold (namely, the stability of InsertSort), we devised two other sets of experiments:

• We tested the resiliency of ILP by varying the types of relations that ILP was allowed to learn

during the verification of the stability of InsertSort. (See the discussion of Fig. 5.13.)

• We forced ILP to be invoked during the verification of the other seven properties that we

expect to hold, by turning off subformula-based refinement. (See the discussion of Fig. 5.14.)

These are discussed below.

7TVLA is written in Java. Here we report the maximum of total memory minus free memory, as returned

by Runtime.
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Results From Varying the Types of Relations Learned

Fig. 5.13 shows the results of varying the types of relations that are learned by ILP during

abstraction refinement when verifying the stability of InsertSort. In short, when ILP is invoked

to learn relations of (a) only Type II, (b) only Type III, or (c) all types together, the resulting

abstractions are sufficiently precise to establish the stability of InsertSort.

We were somewhat surprised that our system was capable of establishing the stability of

InsertSort when allowed to learn only Type II relations. Moreover, when learning only re-

lations of Type II, the total analysis time, as well as the analysis time for the last round of the

analysis, is 14 seconds faster than when learning relations of Type III. (The total analysis time

when learning only relations of Type II is just over 2 minutes.) The key relation that captures the

same information as the relation r3(v1, v2) is the relation r2(v1) (of Type II B) that is defined by

ψr2
(v1)

def
= ∃ v2 : tn(v2, v1) ∧ ¬dle(v2, v1). (5.13)

This relation has the meaning “v1 has a transitive predecessor that is out of order”. The introduction

of r2(v1) as an instrumentation relation results in the automatic generation of the following two

integrity constraints:

∀ v1, v2 : ¬r2(v1) ∧¬dle(v1, v2)⇒ ¬tn(v1, v2) (5.14)

∀ v1, v2 : ¬r2(v1) ∧ tn(v1, v2)⇒ dle(v1, v2). (5.15)

Constraints (5.14) and (5.15) achieve the same effect as Constraints (5.8) and (5.9).

Incidentally, the value of r2(v1) for every individual in every structure collected at the exit node

of InsertSort is 0. Thus, the analysis also establishes that InsertSort does, in fact, produce a

sorted list. Although, the query was the stability query, in this case the application of ILP learned

a relation that allowed the analysis to establish something stronger, namely, that every output list

is also sorted.

When learning only the relations of Type I, the ILP algorithm does not learn properties com-

mon to all nodes that are summarized together. As a result, it does not learn the relations r2(v1),

r3(v1, v2), or any other relation that is capable of “encoding” the sortedness invariant. When learn-

ing only the relations of Type I, the analysis is unable to establish the stability of InsertSort.



103

Test Program Answer # of ILP Execution time (sec.)

instrum rels total ILP last iter

Type III 1 13 139 1.4 62

Type II 1 4 125 3.7 48

Type I 1/2 23 157 11.8 73

All Types 1 40 318 17.5 224

Figure 5.13 The results of using ILP to learn relations of different types during the verification of

the stability of InsertSort. The third column gives the number of instrumentation relations

introduced by ILP. The last three columns give the execution times: the total execution time, the

execution time of ILP, and the execution time of the last round of the analysis (the DSC and

InsertSort)

Intuitively, relations of Types II and III allow universal properties that hold for all individuals to

be captured. (In the case of relations of Type II A or Type III A, the relations capture properties

whose negations hold for all individuals.) Such relations appear to be more likely than relations

of Type I to capture actual properties of programs, as opposed to coincidental properties that arise

during an exploration of the program’s reachable configurations.

The costs of the invocation of ILP (and the effectiveness tests) are between 1.4 and 17.5 sec-

onds. These costs were incurred at 124 information-loss points. We consider these costs to be low

given that our implementation of the ILP algorithm is unoptimized and we take no advantage of

the fact that an ILP computation at one information-loss point often produces the same results as

ILP computations at other information-loss points.

Fig. 5.13 shows that the use of a higher number of relations in the analysis comes at a cost.

While the learning of relations of all types increases the chance of obtaining a definite answer, the

resulting analysis suffers from a slowdown of nearly three times, when compared to the analysis

that uses ILP to learn only the relations of Type II. This slowdown is concentrated in the last

iteration of the analysis: the slowdown on the last iteration is more than fourfold. Thus, we believe

that for better performance, the learning of relations of Type I should only be performed if the

learning of relations of Types II and III does not lead to a definite answer to the query.
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Results From Turning Off Subformula-Based Refinement

In an attempt to understand better the power of our ILP-based refinement approach, we per-

formed an experiment in which we disabled the use of subformula-based refinement. At first, we

were not able to verify automatically any of the eight properties that we expect to hold. (See the 1

entries of Fig. 5.10.) Subformula-based refinement appears to stave off imprecision sufficiently to

help ILP learn useful formulas. In an effort to learn useful relations in the absence of subformula-

based refinement, we made two changes to the basic refinement mechanism. First, we ensured that

each round of analysis proceeds to completion instead of being terminated as soon as imprecision

is detected. (This results in more information-loss points at which ILP can be applied.) Second,

we turned off the effectiveness test for pruning the set of formulas returned by ILP. Both of these

changes are intended to allow ILP to learn more formulas.

When attempting to verify that the sorting procedures do, in fact, produce sorted lists, ILP

learns the Type II A relation r21(v1) that is defined by

ψr21
(v1)

def
= ∃ v2 : n(v1, v2) ∧¬dle(v1, v2). (5.16)

Note that the definition of r21(v1) has the same meaning as the negation of the definition of

inOrderdle,n(v1). The steps of line [7] of Fig. 5.3 result in the replacement of the formula ∀ v2 :

n(v1, v2) ⇒ dle(v1, v2) in the sortedness query with the use of the stored value ¬r21(v1). The

modified query evaluates to 1 in all structures collected at the exit nodes of the three sorting proce-

dures, thus establishing the sortedness property fully automatically. The total analysis times were

3.5 minutes for InsertSort and InsertSort AS, and 7.5 minutes for BubbleSort.

When attempting to verify that Merge is stable, ILP learns the Type II A relation r22(v1) that is

defined by

ψr22
(v1)

def
= ∃ v2 : t0

n(v2, v1) ∧¬tn(v2, v1). (5.17)

The definition of r22(v1) has the meaning “v1 had a transitive predecessor (in the input list) that

is no longer a transitive predecessor”. The introduction of the relation r22(v1) does not result in a

definite answer to the stability query because ψr22
is not a subformula of the query. As a result,

the stored values of r22(v1) cannot be used in the evaluation of the query. However, the absence of
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individuals with values 1 or 1/2 for the relation r22(v1) in the structures collected at the exit node

of Merge implies that the procedure is stable. This establishes that Merge is stable, although not

as mechanically as for the sortedness property—it required a manual examination of the results

(and for us to recognize that stability follows from all individuals having the value 0 for r22 in the

structures collected at the exit node). The total analysis time was 4.5 minutes.

When attempting to verify that Reverse is antistable, ILP learns the Type II A relation r23(v1)

that is defined by

ψr23
(v1)

def
= ∃ v2 : t0

n(v1, v2) ∧¬tn(v2, v1). (5.18)

The definition of r23(v1) has the meaning “v1 had a transitive successor (in the input list) that is not

a transitive predecessor currently”. As in the case of Merge, the introduction of the learned relation

allows the analysis to establish the property (here, the antistability of Reverse) in an indirect way.

The total analysis time was 18 seconds.

When attempting to verify that BubbleSort and InsertSort are stable, ILP learns the Type

II A relation r24(v1) that is defined by

ψr24
(v1)

def
= ∃ v2 : t0

n(v2, v1) ∧ dle(v2, v1) ∧¬tn(v2, v1). (5.19)

The definition of r24(v1) has the meaning “v1 had a transitive predecessor (in the input list) that is

no longer a transitive predecessor even though it has a value that is less than or equal to that of v1”.

The absence of individuals with values 1 or 1/2 for the relation r24(v1) in the structures collected

at the exit nodes of the procedures would imply that the procedures are stable. Unfortunately, the

relation r24(v1) has some 1/2 values in a structure collected at the exit nodes of BubbleSort and

InsertSort. Thus, the present mechanism is unable to establish the stability of those routines

without the use of subformula-based refinement. However, the introduction of the relation r24(v1)

can be qualified as a partial success.

Finally, when attempting to verify the antistability of InsertSort AS, ILP does not learn one

single formula that captures the property (although, a combination of two formulas does). In the

absence of subformula-based refinement, the structures arising at information-loss points do not
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have sufficient precision to enable the learning of a formula such as

∃ v2 : t0
n(v1, v2) ∧ dle(v1, v2) ∧ dle(v2, v1) ∧¬tn(v2, v1),

which has the meaning “v1 had a transitive successor (in the input list) that is not a transitive pre-

decessor currently even though it has a value that is equal to that of v1”. The reason for ILP’s

inability to learn such a formula is that without the introduction of a new instrumentation relation

that is defined by the equality subformula dle(v1, v2) ∧ dle(v2, v1), the analysis will never have

sufficient precision in the equality formula to enable it to become part of an ILP-learned relation.

Thus, subformula-based refinement is sometimes needed to improve the precision of the evalua-

tion of simple combinations of formulas that are relevant to the query (such as the combination

of dle(v1, v2) and dle(v2, v1) that makes up the equality formula) to provide ILP with enough

precision to learn relations based on such combinations.

Test Program sorted stable antistable

BubbleSort 1 1/2

InsertSort 1 1/2

InsertSort AS 1 1/2

Merge 1∗

Reverse 1∗

Figure 5.14 Results from applying

iterative abstraction refinement with

subformula-based refinement disabled

to the verification of properties of

programs that manipulate linked lists.

Empty cells indicate answers that are

expected to be 1/2

Fig. 5.14 summarizes the above experiment. Non-

empty cells correspond to properties that we expect to

hold. The entries for the stability of Merge and the an-

tistability of Reverse are labeled 1∗ to distinguish these

answers from the 1 answers that were obtained fully au-

tomatically in the case of the sortedness properties of the

three sorting procedures. For the three remaining cases,

we used 1/2 to indicate that no definite conclusion about

the property can be drawn based on the given analysis,

although in the case of the stability of BubbleSort and

InsertSort, we claim a partial success for the reasons

given above.

5.4 Additional Experiments: Beyond Acyclic Lists

We performed four additional experiments to test the applicability of our method to other

queries and data structures. In the first experiment, subformula-based refinement successfully
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verified that the in-situ list-reversal procedure Reverse indeed produces a list that is the reversal

of the input list, assuming that the input list is acyclic. The query that expresses this property

is ∀ v1, v2 : n(v1, v2) ⇔n0(v2, v1). This experiment took only 3.5 seconds and used less than 2

megabytes of memory. We will consider the application of Reverse to arbitrary lists in Sect. 5.4.1.

The second and third experiments involved two programs that manipulate binary-search trees.

InsertBST inserts a new node into a binary-search tree, and DeleteBST deletes a node from

a binary-search tree. For both programs, subformula-based refinement successfully verified the

query that the nodes of the tree pointed to by variable t remain in sorted order at the end of the

programs:

∀ v1 : rt(v1) ⇒(∀v2 : (left(v1, v2) ⇒ dle(v2, v1))

∧ (right(v1, v2) ⇒ dle(v1, v2))).
(5.20)

The initial specifications for the analyses included only three standard instrumentation rela-

tions, similar to those listed in Fig. 2.6. Relation rt(v1) from Formula (5.20), for example, dis-

tinguishes nodes in the (sub)tree pointed to by t. Sect. 6.1 discusses the relations employed in

analyses of programs that use type Tree in more detail. The DSC used for the analyses non-

deterministically constructs a binary-search tree by allocating one new node at a time and inserting

it into the tree in the appropriate position according to its data-value. The InsertBST experiment

took 9 seconds and used less than 3 megabytes of memory, while the DeleteBST experiment took

approximately 3.3 minutes and used 63 megabytes of memory.

5.4.1 Properties of Reverse When Applied to Possibly-Cyclic Linked Lists

In the fourth experiment, subformula-based refinement successfully verified the expected prop-

erties of the transformations performed by Reverse on possibly-cyclic linked lists. Additionally,

we used a simple progress monitor to establish the termination of the procedure on any input. We

describe this experiment in detail in the remainder of this section.

Fig. 5.15 shows the list-reversal algorithm that we analyze. The algorithm performs the reversal

in place using three pointer variables, x, y, and t. The n field of list nodes is reversed on lines [7]

and [8]. During the execution of the statements on those lines, x points to the next node to be
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Figure 5.16 Logical structure S5.16 that represents a store that arises prior to line [7] of Reverse

when the algorithm is applied to an acyclic list

processed, y points to the node whose n field is reversed, and t points to the predecessor of that

node.

[1] void reverse(List *x)

[2] { List *y = NULL;

[3] while (x != NULL) {

[4] t = y;

[5] y = x;

[6] x = x->n;

[7] y->n = NULL;

[8] y->n = t;

[9] }

[10] x = y;

[11] }

Figure 5.15 In-situ list

reversal algorithm

First, let us consider how Reverse processes an acyclic list

La with head u1, pointed to by x. Fig. 5.16 shows a logical

structure S5.16 that represents a store that arises before line [7]

during the application of Reverse to La. At this point the n

edges of nodes u1, . . . , u3 have been reversed, while the remain-

ing edges retain their original orientation. The statements on

lines [7] and [8] replace the n edge from u4 to u5 with an n edge

from u4 to u3. The traversal continues until, on the last loop it-

eration, t is set to point to u7’s predecessor in the input list, y

is set to point to u7, and x is set to NULL. The subsequent exe-

cution of lines [7] and [8] reverses the remaining n edge. The

head of the reversed list is u7, pointed to by y. As in the input

list, no node lies on a cycle. The last statement of the proce-

dure (the assignment on line [10]) restores x as the head pointer.

The transformation described above can be stated formally using

history relations as follows:

samern,x() ∧ samecn() ∧ ∀ v1, v2 : n(v1, v2) ⇔n0(v2, v1). (5.21)

Let us consider how Reverse processes a list Lc that consists of a single cycle without a

panhandle, such as the acyclic list La discussed above, but with an additional n edge from u7 to

u1. The behavior of Reverse on list Lc is nearly identical to its behavior on list La. The outgoing
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n edges are reversed one at a time until, on the last iteration, t is set to point to u7, y is set to point

to u1, and x is set to NULL. The subsequent execution of lines [7] and [8] reverses the remaining

n edge from u7 to u1. The head of the reversed list remains u1, pointed to by y. Every list node

still lies on a cycle. The last statement of the procedure (the assignment on line [10]) restores x

as the head pointer. The transformation of lists such as Lc also obeys the property specified in

Formula (5.21).

Now, we discuss how Reverse processes a panhandle list Lp. Initially, the procedure advances

the three pointer variables, x, y, and t, down the panhandle, reversing the n edges out of y. After the

panhandle is processed, the algorithm proceeds with the processing of the cycle. Fig. 5.17(a) shows

a logical structure that represents a store that arises prior to line [7] while Reverse processes nodes

that lie on the cycle. Until Reverse completes the processing of the cycle, the steps are identical to

the steps taken during the processing of lists La and Lc. Note that the orientation of the n edges in

the panhandle is reversed when the loop body is executed with x pointing to u5 (while reversing the

backedge at the end of processing the cycle). As a result, the algorithm proceeds along the reversed

n edges down the panhandle, reestablishing the original orientation of those edges. Fig. 5.17(b)

shows a logical structure that represents a store that arises prior to line [7] while Reverse processes

panhandle nodes for the second time. Instead of reversing every n edge in the list, as it does for

lists La and Lc,
8 the algorithm reverses the direction of every n edge on the cycle but reestablishes

the original direction of the n edges in the panhandle. The cyclicity property of all nodes remains

as it was on input. The head of the output list remains u1, pointed to by y. The last statement

of the procedure (the assignment on line [10]) restores x as the head pointer. The transformation

described above can be stated formally using history relations as follows:

samern,x() ∧ samecn() ∧

∀ v1, v2 : (c0
n(v1) ∧ c0

n(v2)) ∧ (n(v1, v2) ⇔n0(v2, v1))

∨ ¬(c0
n(v1) ∧ c0

n(v2)) ∧ (n(v1, v2) ⇔n0(v1, v2)).

(5.22)

8Reversing every n edge of a panhandle list is not possible because it requires the shared node (u5 in Fig. 5.17) to

have two outgoing n edges.
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Figure 5.17 Logical structures that represents stores that arise prior to line [7] of Reverse when

the algorithm is applied to a panhandle list. (a) Logical structure that represents a store that arises

while Reverse processes nodes that lie on the cycle, i.e., after processing nodes that lie in the

panhandle once. (b) Logical structure that represents a store that arises while Reverse processes

nodes that lie on the panhandle for the second time, i.e., after processing nodes that lie on the

cycle.

Note that while the behavior of Reverse on lists consisting of a cycle without a panhandle can be

described by Formula (5.21), as we mentioned above, it can also be described by Formula (5.22).

(The case described by formula ¬(c0
n(v1) ∧ c0

n(v2)) never arises.)

5.4.1.1 A DSC for Possibly-Cyclic Linked Lists

We use the methodology of Sect. 5.2.4 to construct the 3-valued structures that represent all

valid inputs to the procedure (before each round of analysis for Reverse). Fig. 5.18(a) shows the

DSC that constructs all acyclic lists; it is identical to the DSC shown in Fig. 5.7. The slight modi-

fication shown on the right nondeterministically constructs a (cyclic or acyclic) linked list pointed

to by x. This is achieved by setting y to point to the last list node on line [7], nondeterministically

setting h to point to some list node (or NULL) on line [9], and setting y->n to point to h on line [15]

if y is non-NULL (possibly completing a cycle). If h is NULL, the DSC constructs an acyclic list. If

h points to the head of the list, the DSC constructs a list consisting of a cycle with no panhandle.

If h is neither NULL nor points to the head of the list, the DSC constructs a panhandle list.
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Abstract interpretation of the DSC of Fig. 5.18(b) constructs an abstract representation of all

linked lists pointed to by x. When testing the application of a procedure to acyclic lists, we select

only those structures collected at the exit of the DSC that satisfy the following formula:

(∃ v : rn,x(v)) ∧(∀v : rn,x(v) ⇒¬cn(v)) (5.23)

We will refer to input abstractions satisfying Formula (5.23) as type Acyclic. When testing the

application of a procedure to cyclic lists without a panhandle, we select only those structures

collected at the exit of the DSC that satisfy the following formula:

(∃ v : rn,x(v)) ∧(∀v : rn,x(v) ⇒ cn(v)) (5.24)

We will refer to input abstractions satisfying Formula (5.24) as type Cyclic. When testing the

application of a procedure to panhandle lists, we select only those structures collected at the exit

of the DSC that satisfy the following formula:

(∃ v1 : rn,x(v1) ∧¬cn(v1)) ∧(∃ v2 : rn,x(v2) ∧ cn(v2)) (5.25)

We will refer to input abstractions satisfying Formula (5.25) as type Panhandle. Note that Formu-

las (5.23)–(5.25) ensure that each of the input types admits only non-empty lists. Note also that the

three types represent disjoint collections of data structures. Additionally, the cross product of the

set of lists represented by type Acyclic and the set of lists represented by type Cyclic is in a one-to-

one correspondence with the set of lists represented by type Panhandle: the acyclic-list component

corresponds to the panhandle of a panhandle list and the cyclic-list component corresponds to its

cycle. We will make use of these facts in Sect. 5.4.1.4.

5.4.1.2 Abstraction-Refinement Steps

After an abstraction of the appropriate valid input is constructed by analyzing the DSC, the

abstract interpretation collects all structures that arise at all program points of Reverse. To check if

Reverse satisfies the expected properties, we check if all structures collected at the exit of Reverse

satisfy the appropriate query (Formula (5.21) when testing the application of the procedure to lists
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[1] List *x = NULL;

[3] int sz = sizeof(List);

[4] while (?) {

[5] List *t = malloc(sz);

[10] t->n = x;

[11] x = t;

[12] }

List *x, *y, *h; [1]

x = y = h = NULL; [2]

int sz = sizeof(List); [3]

while (?) { [4]

List *t = malloc(sz); [5]// save the last node [6]if (y == NULL) y = t; [7]// save a node (or NULL) [8]if (?) h = t; [9]

t->n = x; [10]

x = t; [11]

} [12]// if y and h are non-NULL, [13]// this will 
reate a 
y
le [14]if (y != NULL) y->n = h; [15]

(a) (b)

Figure 5.18 (a) The Data-Structure Constructor for acyclic linked lists. This DSC is identical to

the one shown in Fig. 5.7. (b) The Data-Structure Constructor for possibly-cyclic linked lists

(including acyclic and panhandle lists). The differences between the two versions appear in bold.
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p ψp (after call to instrum) ψp (final version)

rev1()
samern,x

()∧ samecn
()∧

∀ v1, v2 : n(v1, v2)⇔n0(v2, v1)
samern,x

()∧ samecn
()∧ rev2()

rev2() ∀ v1, v2 : n(v1, v2)⇔n0(v2, v1) ∀ v1 : rev3(v1)

rev3(v1) ∀ v2 : n(v1, v2)⇔n0(v2, v1) ∀ v2 : rev4(v1, v2)

rev4(v1, v2) n(v1, v2)⇔ n0(v2, v1) rev5(v1, v2)∧ rev6(v2, v1)

rev5(v1, v2) n(v1, v2)⇒ n0(v2, v1) n(v1, v2)⇒n0(v2, v1)

rev6(v2, v1) n0(v2, v1)⇒n(v1, v2) n0(v2, v1)⇒ n(v1, v2)

Figure 5.19 Instrumentation relations created by subformula-based refinement when the

application of Reverse is checked against the query expressed in Formula (5.21) on an input

abstraction of either type Acyclic or Cyclic.

represented by type Acyclic and Formula (5.22) when testing the application of the procedure to

lists represented by type Panhandle; we can check either query when testing the application of the

procedure to lists represented by type Cyclic).

Both queries (Formulas (5.21) and (5.22)) contain formula n(v1, v2) ⇔n0(v2, v1) as a subfor-

mula. Because this formula evaluates to 1/2 under any assignment that maps v1 and v2 to the same

summary individual with a 1/2-valued self-loop for the relation n, it should come as no surprise

that the first run of abstract interpretation returns an indefinite answer, whether we are checking

Formula (5.21) or Formula (5.22).

Column 2 of Fig. 5.19 shows the instrumentation relations that are created as a result of the call

to instrum after Formula (5.21) evaluated to 1/2 on a structure collected at the exit of Reverse,

given an input abstraction of either type Acyclic or Cyclic. During transition-relation refinement

of Reverse, the use of Formula (5.21) in the query is replaced with the use of the stored value

rev 1() and occurrences of the defining formulas for rev1, . . . , rev6 are replaced with the use of

the corresponding relation symbols. Column 3 of Fig. 5.19 shows the final version of the defining

formulas for the new relations.
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Column 2 of Fig. 5.20 shows the instrumentation relations that are created as a result of

the call to instrum after Formula (5.22) evaluated to 1/2 on a structure collected at the exit of

Reverse, given an input abstraction of either type Panhandle or Cyclic. Note that subformu-

las of acycSame(v1, v2), i.e., ¬(c0
n(v1) ∧ c0

n(v2)) ∧(n(v1, v2) ⇔n0(v1, v2)) were not introduced.

This is because refinement was triggered by imprecise evaluation on a structure that had a single

concrete individual in the panhandle. However, relation rev3 is capable of maintaining the key

property of nodes in the panhandle with enough precision, so that another refinement iteration is

not required. During transition-relation refinement of Reverse, the use of Formula (5.22) in the

query is replaced with the use of the stored value rev1() and occurrences of the defining formulas

for rev1, . . . , rev8 are replaced with the use of the corresponding relation symbols. Column 3 of

Fig. 5.20 shows the final version of the defining formulas for the new relations.

After the introduction of the new instrumentation relations (Fig. 5.19 or 5.20, depending on

the query being verified), the abstract interpretation of the DSC is performed using an extended

vocabulary that contains the new instrumentation-relation symbols. The subsequent abstract inter-

pretation of Reverse succeeds: in all of the structures collected at the exit, rev1() = 1.

5.4.1.3 Establishing that Reverse Terminates

We can establish that Reverse terminates using a few unary core relations and a simple

progress monitor. We introduce a collection of unary core state relations, state0(v), state1(v),

and state2(v).
9 Every time the reversal of the n pointer of the list node pointed to by y is com-

pleted (after line [8] of Fig. 5.15), the node’s state is changed to the next state. (The state relations

carry no semantics with respect to the pointer values of nodes; they simply record the “visit counts”

for each node.) For each state relation s, we create a copy of s, which is used to save the values

of relation s at the start of the currently-processed loop iteration (after line [3] of Fig. 5.15). We

give the new relations the superscript lh to indicate that they hold the loop-head values. The first

abstract operation of each iteration of the loop takes a snapshot of the current states of nodes:

state lh
i (v)← statei(v), for each i ∈ [0..2] and each assignment of v to an individual in the abstract

9The state relations are not added to the set of abstraction relations, A.
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p ψp (after call to instrum) ψp (final version)

rev1()
samern,x

()∧ samecn
()∧

∀ v1, v2 : cycRev(v1, v2)∨ acycSame(v1, v2)
samern,x

()∧ samecn
()∧ rev2()

rev2() ∀ v1, v2 : cycRev(v1, v2)∨ acycSame(v1, v2) ∀ v1 : rev3(v1)

rev3(v1) ∀ v2 : cycRev(v1, v2)∨ acycSame(v1, v2) ∀ v2 : rev4(v1, v2)

rev4(v1, v2) cycRev(v1, v2)∨ acycSame(v1, v2) rev5(v1, v2)∨ acycSame(v1, v2)

rev5(v1, v2) cycRev(v1, v2) (c0
n(v1)∧ c0

n(v2))∧ rev6(v2, v1)

rev6(v1, v2) n(v1, v2)⇔n0(v2, v1) rev7(v1, v2)∧ rev8(v2, v1)

rev7(v1, v2) n(v1, v2)⇒n0(v2, v1) n(v1, v2)⇒ n0(v2, v1)

rev8(v2, v1) n0(v2, v1)⇒n(v1, v2) n0(v2, v1)⇒n(v1, v2)

Figure 5.20 Instrumentation relations created by subformula-based refinement when the

application of Reverse is checked against the query expressed in Formula (5.22) on an input

abstraction of either type Panhandle or Cyclic. For compactness, we refer to formula

(c0
n(v1) ∧ c0

n(v2)) ∧(n(v1, v2) ⇔n0(v2, v1)) as cycRev(v1, v2) and to formula

¬(c0
n(v1) ∧ c0

n(v2)) ∧(n(v1, v2) ⇔n0(v1, v2)) as acycSame(v1, v2).
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structure being processed. Additionally, it asserts that x does not point to a list node in state 2 at

the head of the loop (at that point, x points to the node whose n edge is about to be reversed). The

last operation of every loop iteration performs a progress test by asserting the following formula:

∃ v :
(
state lh

0 (v) ∧ state1(v) ∨ state lh
1 (v) ∧ state2(v)

)

∧
∀ v1 6= v :

∧
i∈[0..2]

(
state lh

i (v1) ⇔ state i(v1)
)

The assertion ensures that one node’s state makes forward progress (the first line of the asser-

tion) and that no other node changes state (the second line of the assertion). Together with the

assertion that x does not point to a list node in state 2 at the start of the loop, the above progress

monitor establishes that each list node is visited at most twice, thus establishing that the algorithm

terminates.

5.4.1.4 Performance

The tables shown in Fig. 5.21 give execution times that were collected on a 3GHz Linux PC.

The rows indicate the type of data structures assumed as input, and the columns indicate the query

to be verified. In each case, one round of abstraction refinement was required to obtain the definite

answer 1 to the query. In other words, two rounds of analysis were performed for both the DSC and

Reverse: the first analysis round of the DSC and Reverse used the initial abstraction (the core

relations of Fig. 2.3, core relation rocn, the instrumentation relations of Fig. 3.19, and the history

relations of Sect. 2.2.2), while the second round used the final abstraction, which additionally

included the relations of Fig. 5.19 or 5.20, depending on the query. For a given abstraction, the cost

of the DSC analysis is nearly identical for all input types because the general DSC of Fig. 5.18(b)

constructs an abstraction of all input types, from which structures that represent the chosen input

type are selected at the end using Formula (5.23), (5.24), or (5.25). To gain a better understanding

of the cost of verifying Reverse proper, the tables also include the execution times for the last

analysis round (using the final abstraction) of Reverse, excluding the analysis time for the DSC.

The tables of Fig. 5.21 show that the use of tree-shaped-sfen maintenance techniques (see

Sect. 3.3.2) in place of acyclic-sfen maintenance techniques (see Sect. 3.3.1) for maintaining the

relation sfpn results in a reduction of the total analysis time by a factor in the range of 2.8-4.8.
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The highest-cost analyses are those that include type Panhandle as input. Using tree-shaped-

sfen maintenance, the last iteration of the analysis of Reverse with the input abstraction of type

Panhandle/Cyclic takes approximately 2.5 minutes (the total execution time is approximately 4.5

minutes). The last iteration of the analysis of Reverse when the input abstraction is of any other

type takes under 13 seconds. The majority of the total analysis cost in those cases is due to the use

of the general DSC, which could be specialized to produce input abstractions of type Acyclic or

Cyclic more efficiently (e.g., using the DSC shown in Fig. 5.18(a)).

The two tables of Fig. 5.21 share many qualitative characteristics. Below we draw some con-

clusions from Fig. 5.21(b), but all of the conclusions can be drawn from Fig. 5.21(a) equally well.

As expected, the cost of the last run of the analysis of Reverse when the input abstraction is of

type Acyclic/Cyclic is close to the sum of the cost when the input abstraction is of type Acyclic

and the cost when the input abstraction is of type Cyclic. Similarly, the cost of the last run of the

analysis of Reverse when the input abstraction is of type Panhandle/Cyclic is close to the sum of

the cost when the input abstraction is of type Panhandle and the cost when the input abstraction is

of type Cyclic. Curiously, the total cost of the analysis when the input abstraction is of type Pan-

handle is slightly higher than the total cost when the input abstraction is of type Panhandle/Cyclic.

The reason is that a structure of type Cyclic triggers the refinement process at an earlier point. The

resulting shorter execution of the first run of the analysis of Reverse explains the counterintu-

itive relation of total execution times. The cost of the analysis when the input abstraction is of type

Cyclic (both total cost and the cost of the last iteration of the analysis of Reverse) is similar for the

two queries. The panhandle query (Formula (5.22)) results in the introduction of a more complex

abstraction (cf. Figs. 5.20 and 5.19), so the costs in column 3 of Fig. 5.21(a) are slightly higher.

The cost of verifying that Reverse terminates is negligible (when compared to the cost of

verifying the query) because the progress monitor does not increase the size of the reachable state

space.

The three analyses represented by the right column of Fig. 5.21(a), i.e., analyses using the pan-

handle query (Formula (5.22)) and acyclic-sfen maintenance, used a maximum of approximately
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Query

Input Type acyclic panhandle

total/last total/last

Acyclic 161.2/11.8

Cyclic 208.1/28.2 232.9/34.6

Acyclic/Cyclic 219.7/38.6

Panhandle 1320.3/782.3

Panhandle/Cyclic 1249.3/810.3

Query

Input Type acyclic panhandle

total/last total/last

Acyclic 57.1/4.6

Cyclic 65.6/8.4 71.5/9.0

Acyclic/Cyclic 69.1/12.5

Panhandle 277.1/147.8

Panhandle/Cyclic 268.1/154.9

(a) (b)

Figure 5.21 Execution times in seconds using (a) acyclic-sfen maintenance for maintaining the

relation sfpn; (b) tree-shaped-sfen maintenance for maintaining the relation sfpn. In row labels,

input types “Acyclic/Cyclic” and “Panhandle/Cyclic” denote an abstraction that represents lists of

either type. The label of column 2 (query “acyclic”) denotes the query of Formula (5.21). The

label of column 3 (query “panhandle”) denotes the query of Formula (5.22). Empty cells indicate

inappropriate input/query combinations. The first number in each column represents the total

execution time for all iterations of the analysis (on both the DSC and Reverse). The second

number represents the execution time for only the last iteration of the analysis of Reverse (and

not the DSC).
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170 MB of memory, as reported by the Java Runtime. All other analyses required significantly less

memory.

Query

Input Type acyclic panhandle

Acyclic 103

Cyclic 162 162

Acyclic/Cyclic 265

Panhandle 921

Panhandle/Cyclic 1083

Figure 5.22 The number of distinct

3-valued structures collected during the

last iteration of the analysis of Reverse

(and not the DSC). Rows and columns

have the same meaning as in Fig. 5.21.

As a sanity check, we studied the number of

distinct 3-valued structures collected at all points of

Reverse during the last run of the analysis. As we

expected, that information is identical when the anal-

ysis relies on acyclic-sfen maintenance and when it

relies on tree-shaped-sfen maintenance, thus provid-

ing a cross-validation of the implementation of the two

methods. The structure counts are shown in Fig. 5.22.

The figure shows that when the input abstraction is

of type Cyclic, the same number of structures is col-

lected with either query. Also, the number of struc-

tures collected when the input abstraction is of type

Acyclic/Cyclic is the sum of the number when the input

abstraction is of type Acyclic and the number when the input abstraction is of type Cyclic. Simi-

larly, the number of structures collected when the input abstraction is of type Panhandle/Cyclic is

the sum of the number when the input abstraction is of type Panhandle and the number when the

input abstraction is of type Cyclic.

Additionally, we used the data collected in our experiments to answer an instance of the fol-

lowing general question: “Can we predict how much work needs to be done for analysis X when

we know how much work is done for related analyses Y and Z?” Given the correspondence of

lists represented by type Panhandle with combinations of lists represented by type Acyclic and lists

represented by type Cyclic, we made a prediction about the number of structures collected during

the analysis of Reverse when the input abstraction is of type Panhandle (using the panhandle

query) based on the number of structures collected during the analyses of Reverse when the input

abstraction is of types Acyclic and Cyclic (using the acyclic query). Let an, cn, and pn, represent

the numbers of structures collected at CFG node n during the analysis of Reverse when the input
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abstraction is of type Acyclic, Cyclic, and Panhandle, respectively. For a CFG node n that lies

outside the loop of Reverse, we expect that pn = an ∗ cn. For a CFG node n that lies inside the

loop, we expect that

pn = centry ∗ an + aexit ∗ cn + cexit ∗ an, (5.26)

where centry is the number of structures at the entry node of Reverse when the input abstrac-

tion is of type Cyclic, aexit is the number of structures collected at the exit of Reverse when the

input abstraction is of type Acyclic, and cexit is the number of structures collected at the exit of

Reverse when the input abstraction is of type Cyclic. The intuition behind the first summand

of Formula (5.26) is that every acyclic structure collected at n (when the input abstraction is of

type Acyclic) can be extended to centry panhandle structures at n. These structures represent the

states in which the panhandle is being reversed before the cycle is entered. The intuition behind

the second summand of Formula (5.26) is that every cyclic structure collected at n (when the in-

put abstraction is of type Cyclic) can be extended to aexit panhandle structures. These structures

represent the states in which the cycle is being reversed after the panhandle has been reversed.

Finally, the intuition behind the third summand of Formula (5.26) is that every acyclic structure

collected at n can be extended to cexit panhandle structures. These structures represent the states

in which the panhandle is being un-reversed after the cycle has been reversed. The summation of

predicted values for pn over the nodes n of Reverse gives 858 structures. This prediction is a little

short of the actual number (921). This relatively small discrepancy is probably due to the fact that

our prediction for a run using the panhandle query (which leads to the abstraction of Fig. 5.20) is

based on numbers for the right-hand side quantities of Formula (5.26) gathered from runs that use

a slightly different abstraction, namely, Fig. 5.19. The more complex abstraction introduced when

verifying the panhandle query apparently creates a few additional intermediate structures.

Note that the sum of the numbers of structures collected during the analyses when the input

abstraction is of types Acyclic and Cyclic is much lower than the number of structures collected

during the analysis when the input abstraction is of type Panhandle. The sum of the execution

times of the analyses when the input abstraction is of types Acyclic and Cyclic is also much lower

than the execution time of the analysis when the input abstraction is of type Panhandle. A possible
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extension of this work is to infer properties of Reverse when applied to input abstraction of type

Panhandle from properties of Reverse when applied to input abstractions of types Acyclic and

Cyclic. To make this possible, we need to find a way to infer properties of heap configurations

from properties of components of those configurations. The concept of local heaps introduced by

Rinetzky et al. is relevant in this line of research [82].

5.5 Related Work

The work reported in this chapter is similar in spirit to counterexample-guided abstraction

refinement [4, 16, 22, 28, 36, 47, 49, 72]. A key difference between this work and prior work in

the model-checking community is the abstract domain: prior work has used abstract domains that

are fixed, finite, Cartesian products of Boolean values (i.e., predicate-abstraction domains), and

hence the only relations introduced are nullary relations. (The use of such domains is known as

predicate abstraction.) Our work applies to a richer class of abstractions—3-valued structures—

that generalize predicate-abstraction domains. The abstraction-refinement algorithm described in

this chapter can introduce unary, binary, ternary, etc. relations, in addition to nullary relations.

While we demonstrated our approach using shape-analysis queries, this approach is applicable in

any setting in which first-order logic is used to describe program states.

A second distinguishing feature of our work is that the method is driven not by counterexam-

ple traces, but instead by imprecise results of evaluating a query (in the case of subformula-based

refinement) and by loss of information during abstraction steps (in the case of ILP-based refine-

ment). There do not currently exist theorem provers for first-order logic extended with transitive

closure capable of identifying infeasible error traces [38]; hence we needed to develop techniques

different from those used in SLAM, BLAST, etc. SLAM identifies the shortest prefix of a spuri-

ous counterexample trace that cannot be extended to a feasible path; in general, however, the first

information-loss point occurs before the end of the prefix. Information-loss-guided refinement can

identify the earliest points at which information is lost due to abstraction, as well as what new

instrumentation relations need to be added to the abstraction at those points. A potential advantage

of counterexample-guided refinement over information-loss-guided refinement is that the former is
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goal-driven. Information-loss-guided refinement can discover many relationships that do not help

in establishing the query. To alleviate this problem, we restricted the ILP algorithm to only use

relations that occur in the query.

Abstraction-refinement techniques from the abstract-interpretation community are capable of

refining domains that are not based on predicate abstraction. In [41], for example, a polyhedra-

based domain is dynamically refined. Our work is based on a different abstract domain, and led us

to develop some new approaches to abstraction refinement, based on machine learning.

In the abstract-interpretation community, a strong (albeit often unattainable) form of abstraction

refinement has been identified in which the goal is to make abstract interpretation complete (a.k.a.

“optimal”) [29]. In our case, the goal is to extend the abstraction just enough to be able to answer

the query, rather than to make the abstraction optimal.

In [78], weakest preconditions are used to generate nullary instrumentation relations, which

are then generalized manually. The technique presented there produces precise results if it termi-

nates, but is not guaranteed to terminate for all cases. In contrast, our method is guaranteed to

terminate, and automatically generates interesting non-nullary relations, such as the unary relation

inOrderdle,n(v), which is crucial for showing sortedness, and the binary relation r3(v1, v2), defined

by Formula (5.7), which allows the analysis to establish the stability of InsertSort.

The concept of a data-structure constructor, which non-deterministically constructs all valid

inputs to the program, can be thought of as a mechanism for closing open programs, and hence is

related to such work as [17] and [91].

Other work that relates machine-learning techniques and program analysis includes [2,55,80].

The Strauss tool [2] uses a machine-learning approach to discovering specifications of API proto-

cols. The underlying premise is that even programs with bugs contain hints that can reveal correct

protocols. The Cooperative Bug Isolation project [55] instruments programs and collects infor-

mation about their executions. Statistical and machine-learning techniques are used to find bugs

by mining the information about crashing and non-crashing runs. The technique for finding the

most-precise abstract value for a set of concrete stores (expressed as a logical formula) succes-

sively approximates the result from below [80]; this technique is related to algorithm Find-S from
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machine learning [65, §2.4]—they both search a space of hypotheses to find the most specific

hypothesis that satisfies the positive examples (the input concrete stores).

Our work represents a new connection between program analysis and machine learning: it

shows how ILP can be used as part of an abstraction-refinement loop to learn an appropriate ab-

straction.
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Chapter 6

Total Correctness of the Deutsch-Schorr-Waite Tree-Traversal

Algorithm

The present chapter discusses the automated verification of the total correctness (partial cor-

rectness and termination) of the Deutsch-Schorr-Waite (DSW) tree-traversal algorithm. Past ap-

proaches have involved hand-written proofs of complicated invariants to verify the partial correct-

ness of the algorithm. Even with some automation, these efforts were usually laborious: a proof

performed in 2002 with the help of the Jape proof editor took 152 pages [8]. The key advantage

of our abstract-interpretation approach over proof-theoretic approaches is that a relatively small

number of concepts are involved in defining an abstraction of the structures that can arise on any

execution, and verification is then carried out automatically by symbolic exploration of all memory

configurations that can arise.

The chapter is organized as follows: Sect. 6.1 presents the relations that we use to encode

memory configurations that include binary trees. Sect. 6.2 shows how one can take advantage of

the fact that the only kind of data structure that a program manipulates is a binary tree. Sect. 6.3

discusses the DSW algorithm in detail. Sect. 6.4 presents an extension of the abstraction defined

in Sect. 6.1 that we employ for establishing the partial correctness of DSW. Sect. 6.5 explains the

technique that we use for showing the termination of the algorithm. Sect. 6.6 presents experimental

results. Sect. 6.7 makes observations in regards to some of the choices made in this work and

discusses some future directions. Sect. 6.8 discusses related work.
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typedef struct node {

struct node *left;

int data;

struct node *right;

} *Tree;

Relation Intended Meaning

x(v) Does pointer variable x point to heap cell v?

left(v1, v2) Does the left field of v1 point to v2?

(Is v2 the left child of v1?)

right(v1, v2) Does the right field of v1 point to v2?

(Is v2 the right child of v1?)

(a) (b)

Figure 6.2 (a) Declaration of a binary-tree datatype in C. (b) Core relations used for representing

the stores manipulated by programs that use type Tree.

6.1 Binary-Tree Abstractions

root

8

4

62

8

5

Figure 6.1 A possible

store for a binary tree

Fig. 6.2 gives the definition of a C binary-tree datatype, and

lists the core relations that would be used to represent the stores

manipulated by programs that use type Tree, such as the store in

Fig. 6.1. Unary relations represent pointer variables, and binary re-

lations left and right represent the left and right fields of a Tree

node. Fig. 6.4(a) shows 2-valued structure S6.4, which represents the

store of Fig. 6.1 using the relations of Fig. 6.2.

Fig. 6.3 lists some instrumentation relations that are important for

the analysis of programs that use type Tree. Instrumentation relations

that involve reachability properties, such as relation rx(v), often play a crucial role in the definitions

of abstractions. These relations have the effect of keeping disjoint subtrees summarized separately.

Fig. 6.4(b) shows 2-valued structure S6.4, which represents the store of Fig. 6.1 using the core

relations of Fig. 6.2, as well as the instrumentation relations of Fig. 6.3.

If all unary relations are abstraction relations (A = R1), the canonical abstraction of 2-

valued logical structure S6.4 is S6.5, shown in Fig. 6.5, with all tree nodes not pointed to by root

represented by the summary individual at the bottom. In S6.4, nodes in the left subtree of root’s

target are indistinguishable from those in its right subtree according to A (consisting of relations
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p Intended Meaning Defining Formula

down(v1, v2) Do the left or right fields of v1 point to v2? left(v1, v2)∨ right(v1, v2)

(Is v2 a child of v1?)

tdown (v1, v2) Is v2 reachable from v1 down∗(v1, v2)

along left and right fields?

rx(v) Is v reachable from pointer variable x ∃ v1 : x(v1)∧ tdown (v1, v)

along left and right fields?

Figure 6.3 Defining formulas of instrumentation relations commonly employed in analyses of

programs that use type Tree. There is a separate reachability relation rx for every program

variable x. (Recall that down∗(v1, v2) is a shorthand for (RTC v′1, v
′
2 : down(v′1, v

′
2))(v1, v2).)

root

left

left

le
ft

right

right

rroot

rroot

rroot

rroot

rroot

rroot

root

left,

down

left,

down

le
ft,

do
w

n

right,down

right,down

(a) (b)

Figure 6.4 A logical structure S6.4 that represents the store shown in Fig. 6.1 in graphical form:

(a) S6.4 with relations of Fig. 6.2. (b) S6.4 with relations of Figs. 6.2 and 6.3 (relations of Fig. 6.2

appear in grey). Unlabeled (curved) arcs between nodes represent the tdown relation. Self-loops of

the tdown relation (corresponding to the reflexive tuples) have been omitted to reduce clutter.
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x(v) and rx(v) for each program variable x). S6.5 represents all trees with two or more elements,

with the root node pointed to by program variable root.

6.2 Analyzing Programs that Manipulate (Only) Trees

rroot

rroot

root

le
ft

t d
ow

n

right

dow
n

left, right,
down, tdown

tdown

Figure 6.5 A 3-valued

structure S6.5 that is the

canonical abstraction of

structure S6.4. In

addition to S6.4, S6.5

represents any tree of

size 2 or more that is

pointed to by program

variable root.

When analyzing a program in which each data structure at every

point is a tree (a property that we will call treeness), it is possible to

take advantage of this fact to reduce the (abstract) state space that is

explored. This is achieved by having the analysis perform a semantic

reduction after each step to filter out non-trees that may have crept into

the representation. When the analysis relies on the program to maintain

treeness, to guarantee that the results are sound, the analysis must check

that treeness is preserved at every step. We address the latter obliga-

tion first. The techniques described below are applicable whenever one

wishes to analyze programs in which all input, output, and intermediate

data structures are trees. We call such analyses tree-specific shape anal-

yses; our DSW analysis is an example of a particular tree-specific shape

analysis. (Other work in which tree-specific shape analyses have been

developed includes [35, 51, 52].)

6.2.1 Checking that Treeness is Maintained.

The analyzer checks that treeness is maintained by asserting certain

logical formulas that capture the conditions under which the execution

of a program statement could result in a violation of treeness. Before the computation of a transfer

function, the logical formulas of corresponding assertions are evaluated. If a formula possibly fails

to hold, i.e., does not evaluate to 1, then an error report is issued and the analysis is terminated.

For purposes of this thesis, a binary tree is a structure containing no cycles and no nodes with

multiple incoming left or right pointers. (Our definition disallows the sharing of subtrees, and

thus is more restrictive than the traditional definition that merely requires there to be at most one
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path between any pair of nodes. This is not an inherent limitation of TVLA; if the sharing of

subtrees is to be permitted, the restriction on sharing can be relaxed—see footnote 2.)

Given a data structure that satisfies the data-structure invariants for a binary tree, only one type

of statement has the potential to transform the data structure into one that violates some of those

properties, namely, a statement of the form x->sel = y (where sel can be left or right), which

creates a new sel-connection in the data structure. Two logical formulas capture the conditions

that guarantee that the application of the transformer for a statement of the form x->sel = y

maintains treeness. The first formula captures the precondition for down to remain acyclic:

∀ v1, v2 : x(v1) ∧ y(v2)⇒ ¬tdown(v2, v1) (6.1)

The second formula captures the precondition for the statement to avoid introducing sharing:1

∀ v1, v2 : y(v2)⇒ ¬down(v1, v2)
2 (6.2)

6.2.2 Semantic Reduction for Trees.

After each application of an abstract transformer, we perform a semantic reduction to filter

out non-trees that may have crept into the abstract structures computed by the transformer. The

reduction is implemented as an application of coerce to enforce integrity constraints that express

data-structure invariants.

For instance, relation down is given the attributes “acyclic” and “invfunction”. The “acyclic”

attribute of down results in the automatic generation of the following integrity constraint:

∀ v1, v2 : tdown (v1, v2) ∧ tdown(v2, v1) ⇒ v1 = v2 (6.3)

1As explained in Sect. 6.3, we ensure that x->sel is NULL prior an assignment of the form x->sel = y,

so the assignment indeed creates a new sel-connection.
2If we relaxed the restriction on the sharing of subtrees, then, in place of Formula (6.2),

we would employ a slightly more complex formula that precludes the possibility of creating two

paths between a pair of tree nodes v1 and v4 (one path that existed prior to the statement,

and the other that was created due to the introduction of the new sel edge from x to y):

∀ v1, v2, v3, v4 : tdown (v1, v4)∧ tdown (v1, v2)∧x(v2)∧ y(v3)⇒ ¬tdown (v3, v4)
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The “invfunction” attribute of down results in the automatic generation of the following integrity

constraint:

∀ v1, v2 : (∃ v : down(v1, v) ∧ down(v2, v)) ⇒ v1 = v2 (6.4)

Operation coerce is applied at certain steps of the algorithm, e.g., after the application of an abstract

transformer, to enforce Constraints (6.3) and (6.4), along with a few others, to help prevent the

analysis from admitting non-trees, and thereby possibly losing precision.

6.3 Deutsch-Schorr-Waite Tree-Traversal Algorithm

The original Deutsch-Schorr-Waite algorithm reverses the direction of left and right point-

ers, as it traverses the tree [87]. It attaches two bits, mark and tag, to each node. The mark bit

serves to prevent multiple visits to nodes on a cycle or in shared subtrees. The tag bit records

whether, during the traversal of reversed pointers, a node was reached from its left or right child.

In [56], Lindstrom gave a variant that eliminated the need for both bits, provided the input data

structure contains no cycles. His insight was that one could treat the visit step at an internal node as

a kind of pointer-rotation operation, and that completion of the tree-traversal could be established

by having the algorithm watch for a distinguished value that serves as a kind of sentinel. In this

chapter, we actually consider the Lindstrom variant, but continue to refer to it as Deutsch-Schorr-

Waite (DSW). Another connection between our analysis (of the Lindstrom variant) and the original

version of DSW is discussed briefly in Sect. 6.7.

Fig. 6.6 shows two versions of the Deutsch-Schorr-Waite algorithm. The left-hand column

shows a version adapted from [56], also known as Lindstrom scanning. The right-hand column

shows a slightly modified version of the algorithm that we used in our work. There are two differ-

ences between the two versions.

First, the constant -1 on lines [5] and [13] has been replaced with SENTINEL, where SENTINEL

is assumed to be a reference to a distinguished node that is not part of the input tree. In TVLA,

pointer values can either equal NULL (corresponding to the situation in which the pointer does not

point to any heap object) or point to a heap object that was allocated by malloc. In this sense,
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[1] void traverse(Tree *root) {

[2] Tree *prev, *cur, *next;

[3] if (root == NULL)

[4] return;

[5] prev = -1;
[6] cur = root;

[7] while (1) {

// Save the left subtree

[8] next = cur->left;

// Rotate pointers

[9] 
ur->left = 
ur->right;
[10] 
ur->right = prev;

// Move forward

[11] prev = cur;

[12] cur = next;

[13] if (cur == -1)
// Traversal completed

[14] break;

[15] if (cur == NULL) {

// Swap prev and cur

[16] cur = prev;

[17] prev = NULL;

[18] }

[19] }

[20] }

void traverse(Tree *root) { [1]

Tree *prev, *cur, [2]

*next, *tmp; [3]

if (root == NULL) [4]

return; [5]

prev = SENTINEL; [6]

cur = root; [7]

while (1) { [8]

// Save the left subtree

next = cur->left; [9]

// Rotate pointerstmp = 
ur->right; [10]// Maintain treeness
ur->right = NULL; [11]
ur->right = prev; [12]
ur->left = NULL; [13]
ur->left = tmp; [14]

// Move forward

prev = cur; [15]

cur = next; [16]

if (cur == SENTINEL) [17]

// Traversal completed

break; [18]

if (cur == NULL) { [19]

// Swap prev and cur

cur = prev; [20]

prev = NULL; [21]

} [22]

} [23]

} [24]

(a) (b)

Figure 6.6 (a) Original version of the Deutsch-Schorr-Waite algorithm (adapted from [56]).

(b) Modified version of the Deutsch-Schorr-Waite algorithm that was analyzed using TVLA. (The

differences appear in bold.)
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TVLA follows the semantics of Java, in which new non-NULL pointer values can be generated only

via memory-allocation operations.

Second, a purely local transformation (involving the introduction of one temporary variable

tmp) has been applied to lines [9]–[10]:

[9] cur->left = cur->right;

[10] cur->right = prev;
=⇒

[10] tmp = cur->right;

// Maintain treeness

[11] cur->right = NULL;

[12] cur->right = prev;

[13] cur->left = NULL;

[14] cur->left = tmp;

This really involved three transformations:

1. Assignment statements of the form x->sel1 = y->sel2 have been normalized to statement

sequences tmp = y->sel2; x->sel1 = tmp (see lines [10] and [14] of Fig. 6.6(b)).

2. Assignment statements of the form x->sel = y have been normalized to statement se-

quences x->sel = NULL; x->sel = y (see lines [11]–[12] and [13]–[14] of Fig. 6.6(b)).

This ensures that statements of the form x->sel = y can never destroy existing sel-paths in

the data structure, thus simplifying the task of maintaining information about the reachability

of tree nodes from program variables.

3. Assignments cur->right = NULL and cur->right = prev have been moved to lines [11]

and [12] (before assignments to cur->left). This change prevents the right child of cur’s

target from temporarily having two incoming edges after the assignment to cur->left on

line [14].3 The resulting algorithm maintains the invariant that the nodes of the input tree

always make up one or two data structures that satisfy the binary-tree properties: after the

assignment on line [14] of Fig. 6.6(b), the nodes of the input tree make up two trees, one

3Only the assignment cur->right = NULL needs to be moved to achieve the desired effect. We moved

both assignments for clarity.
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rooted at next’s target, and the other rooted at cur’s target; the original root is a descendant

of cur’s target.

Transformations 1 and 2 above are simple normalizations that one could expect to find in a trans-

lation of programs written in a high-level language into a lower-level intermediate representation.

Transformation 3 prevents the temporary sharing of cur’s right subtree (it would otherwise briefly

become cur’s left and cur’s right subtree). We could relax our restriction on sharing and analyze

the version of the algorithm that does not include transformation 3 (Sect. 6.7 discusses how we

would approach this task), but we chose to verify total correctness and preservation of treeness

for the slightly modified version of the DSW algorithm shown in Fig. 6.6(b). Because of transfor-

mation 3, the techniques of Sect. 6.2 apply in the analysis of this version; we now describe this

version in detail.

For each tree node n, the body of the whīle loop is executed three times with cur pointing to

n. Each time that n is considered, its left and right pointers are rotated in a counter-clockwise

fashion on lines [10]–[14] of Fig. 6.6(b) (cf. lines [9] and [10] of Fig. 6.6(a)). After the third such

execution, the original values for the left and right pointers are re-established, as we explain

below.

Before the first execution of lines [10]–[14] of Fig. 6.6(b) with cur pointing to n, no nodes in

the subtrees rooted at l or r (n’s left and right subtrees in the original tree) have been visited, and

no left or right pointers of nodes in the subtrees rooted at l or r have been modified. In this

situation, we say that n is in state 0. Fig. 6.7(a) illustrates this situation.

A pointer to node l , the left child of n prior to the rotation of n’s left and right pointers, is

saved in next on line [9]. After the rotation, the traversal continues by moving into the (sub)tree

rooted at next, i.e., l (see lines [15] and [16]). When cur becomes null, the values of cur and

prev are swapped on lines [20] and [21]. This causes the traversal to backtrack to the most recently

visited node that had a right subtree in the original tree.

When the traversal backtracks to n, the algorithm reaches lines [10]–[14] of Fig. 6.6(b) for the

second time with cur pointing to n. At this point, all nodes in l ’s subtree and no nodes in r ’s

subtree have been visited. The left and right pointers of nodes in l ’s subtree have been rotated



133

three times and restored to their original values. No left or right pointers of nodes in r ’s subtree

have been modified. In this situation we say that n is in state 1. Fig. 6.7(b) illustrates this situation.

0

0 0
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next tmp
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n
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3 0
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(a) (b)
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3 3

cur

tmp prev

next
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(c) (d)

Figure 6.7 States of the subtree of n with

cur pointing to n: (a) after the first

execution of statement on line [10] of

Fig. 6.6(b), n is in state 0; (b) after the

second execution of statement on

line [10] of Fig. 6.6(b), n is in state 1;

(c) after the third execution of statement

on line [10] of Fig. 6.6(b), n is in state 2;

(d) after the third execution of statement

on line [14] of Fig. 6.6(b), n is in state 3.

Grey edges represent the original values

of the left and right fields.

A pointer to node r , the left child of n prior to

the second rotation of n’s pointers, is saved in next.

After the rotation, the traversal continues by moving

into the (sub)tree rooted at r (see lines [15] and [16]).

Once again, the algorithm backtracks when cur is

null. When the traversal backtracks to n, the algo-

rithm reaches lines [10]–[14] of Fig. 6.6(b) for the

third (and final) time with cur pointing to n. At this

point, all nodes in l ’s and r ’s subtrees have been vis-

ited. The left and right pointers of nodes in both

subtrees have been rotated three times and restored to

their original values. In this situation we say that n is

in state 2. Fig. 6.7(c) illustrates this situation.

After the subsequent execution of lines [10]–[14]

of Fig. 6.6(b) with cur pointing to n, n’s left and

right pointers are restored to their original values.

At this point, all nodes in the subtree rooted at n have

been visited, and all left and right pointers in the

subtree have been rotated three times and restored to

their original values. In this situation we say that n is

in state 3. Fig. 6.7(d) illustrates this situation.

The algorithm traverses the tree in order, visiting

each node n three times: (1) while following the orig-

inal left pointers from n’s parent through n into l ’s

subtree, (2) while backtracking from l ’s subtree to n
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and then traversing r ’s subtree, and (3) while backtracking from r ’s subtree through n to n’s parent

in the original tree.

1
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1
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?

cur

3

0

3

0

0

?

Figure 6.8 States of tree

nodes that are outside of the

subtree pointed to by cur.

(Grey edges represent the

original values of the left

and right fields.)

Fig. 6.8 depicts the states of the tree nodes that are not in the

subtree pointed to by cur. All ancestors (in the original tree) of

cur’s target are in state 1 or 2, indicating that the left (1) or right

(2), subtree is currently being traversed. If cur’s target lies in the

left subtree of an ancestor, then that ancestor must be in state 1, oth-

erwise it must be in state 2. The triangular shapes at left represent

all nodes that occur earlier than cur’s target in an in-order traver-

sal of the tree. For each of these nodes there exists an ancestor of

cur’s target, such that the node is in the left subtree of the ancestor,

and cur’s target is in the right subtree of the ancestor. All nodes

in that category are in state 3; they have been visited three times,

and their left and right pointers have been reset to their original

values. The triangular shapes at right represent all nodes that occur

later than cur’s target in an in-order traversal of the tree. For each

of these nodes there exists an ancestor of cur’s target, such that the

node is in the right subtree of the ancestor, and cur’s target is in the

left subtree of the ancestor. All nodes in that category are in state 0; they have not been visited,

and their left and right pointers still have their original values.

6.4 A Shape Abstraction for Verifying DSW

Consider the problem of establishing that the version of the Deutsch-Schorr-Waite algorithm

shown in Fig. 6.6(b) is partially correct. This is an assertion that compares the state of a store at

the end of the procedure with its state at the start.

Partial correctness of DSW means (i) the tree produced at exit must be identical to the input

tree, and (ii) every node must be visited. We will come back to property (ii) when we discuss the
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total correctness of DSW in Sect. 6.5. Property (i) can be specified as follows:

∀v1, v2 : left(v1, v2) ⇔ left0(v1, v2) (6.5)

∀v1, v2 : right(v1, v2) ⇔ right0(v1, v2), (6.6)

where left0 and right0 denote the initial values of relations left and right , respectively. Addi-

tionally, a correct traversal routine must neither lose nodes of the input tree, nor gain new ones.

However, this property is implied by properties (6.5) and (6.6).

The challenge is that the abstraction has to track the “unintended” use of pointers for stack

simulation with sufficient precision to verify that at the end of the algorithm their correct usage has

been reestablished. Canonical abstraction with just the properties listed in Figs. 6.2 and 6.3 is an

insufficiently precise abstraction to demonstrate that the tree’s edges are restored.

The key relations for establishing properties (6.5) and (6.6) at the end of the program are those

that capture the relationships of pointers that arise between tree nodes during the traversal. The

following set of unary relations capture properties of nodes in state 0 (before any changes to the

nodes’ left and right pointers) or state 3 (after the nodes’ left and right pointer values have

been restored):

eq l,l0(v1)
def
= ∀v2 : left(v1, v2) ⇔ left0(v1, v2) (6.7)

eqr,r0(v1)
def
= ∀v2 : right(v1, v2) ⇔ right0(v1, v2) (6.8)

Unary relations eq l,l0(v1) and eqr,r0(v1) distinguish individuals that represent tree nodes whose

left, respectively right, pointers have their initial values. We can now use ∀v : eq l,l0(v) in place

of Formula (6.5) and ∀v : eqr,r0(v) in place of Formula (6.6) when asserting the partial correctness

of DSW.

The following set of unary relations capture properties of nodes in state 1, after one visit to

those nodes, i.e., one rotation of the left and right pointers:

eq l,r0(v1)
def
= ∀v2 : left(v1, v2) ⇔ right0(v1, v2) (6.9)

rer,l0(v1)
def
= ∀v2 : right(v1, v2) ⇔ left0(v2, v1) (6.10)

rer,r0(v1)
def
= ∀v2 : right(v1, v2) ⇔ right0(v2, v1) (6.11)
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Unary relation eq l,r0(v1) distinguishes individuals that represent tree nodes whose left field points

to their right (in the input tree) subtree. Unary relations rer,l0(v1) and rer,r0(v1) (re is a mnemonic

for reverse) distinguish individuals that represent tree nodes n whose right fields point to their

parents in the input tree (assuming that n is the left child in the case of rer,l0(v1) and right child,

otherwise).

The following set of unary relations capture properties of nodes in state 2, after two visits to

those nodes, i.e., two rotations of the left and right pointers:

eqr,l0(v1)
def
= ∀v2 : right(v1, v2) ⇔ left0(v1, v2) (6.12)

re l,l0(v1)
def
= ∀v2 : left(v1, v2) ⇔ left0(v2, v1) (6.13)

re l,r0(v1)
def
= ∀v2 : left(v1, v2) ⇔ right0(v2, v1) (6.14)

Unary relation eqr,l0(v1) distinguishes individuals that represent tree nodes whose right field

points to their left (in the input tree) subtree. Unary relations re l,l0(v1) and re l,r0(v1) distinguish

individuals that represent tree nodes n whose left fields point to their parents in the input tree

(assuming that n is the left child in the case of re l,l0(v1) and right child, otherwise).

Let us give the intuition behind the use of the relations defined by Formulas (6.7)–(6.14) for

the partial-correctness verification of DSW, which involves establishing that all left and right

pointers have their initial values at the end of DSW.

These relations maintain the relationship between the current and the original values of left

and right pointers. Prior to the first rotation of pointers for node n, n has entries 1 for the state-

0 relations (Formulas (6.7) and (6.8)), which say that there has been no change from n’s starting

pointer values. These entries allow the analysis to conclude that after the current iteration’s rotation

of n’s pointers, n should have entry 1 for state-1 relations, Formula (6.9) and Formulas (6.10)

or (6.11). Similarly, the 1 entries for the state-1 relations for node n help establish the 1 entries for

its state-2 relations (Formula (6.12) and Formulas (6.13) or (6.14)) after the second rotation of n’s

pointers. Finally, the 1 entries for the state-2 relations for node n help establish the 1 entries for its

state-3 relations Formulas (6.7) and (6.8) after the third rotation of n’s pointers.
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In our initial attempt to establish the partial correctness of DSW, we added all relations of

Formulas (6.7)–(6.14) to the set of abstraction relations, A. This attempt failed (we terminated

the analysis after several days of computation) because of the vast abstract state space that needed

to be explored. To pare down the abstract state space, we observed that not all node distinctions

introduced by the relations of Formulas (6.7)–(6.14) were necessary. For instance, note that any

leaf node in state 0 or state 3 satisfies (among other relations) Formula (6.9), which defines eql,r0—

nominally a state-1 relation—because it has no outgoing left or right pointers, while an internal

tree node in state 0 or state 3 does not satisfy it. As a result, eql,r0 prevents canonical abstraction

from summarizing a leaf node in state 0 or 3 with an internal node in one of those states. The

resulting abstraction has a larger-than-necessary state space because we only need to ensure that

tree nodes in state 1 have their left field pointing to their original right subtree, i.e., have the

property defined by the relation eql,r0 .

To remove such unnecessary distinctions, we introduce the concept of a state-dependent ab-

straction. The first component of such an abstraction is a collection of unary core state relations,

state0(v), state1(v), state2(v), and state3(v).
4 Every time the rotation of left and right point-

ers of the tree node pointed to by cur is completed (after line [14] of Fig. 6.6(b)), the node’s state is

changed to the next state. (The state relations carry no semantics with respect to the pointer values

of nodes; they simply record the “visit counts” for each node.) As the second component of the

abstraction, we introduce state-relation-guarded versions of the relations of Formulas (6.7)–(6.14):

s0 eq l,l0(v1)
def
= state0(v1) ∧ eq l,l0(v1) (6.15)

s0 eqr,r0(v1)
def
= state0(v1) ∧ eqr,r0(v1) (6.16)

s1 eq l,r0(v1)
def
= state1(v1) ∧ eq l,r0(v1) (6.17)

s1 rer,l0(v1)
def
= state1(v1) ∧ rer,l0(v1) (6.18)

s1 rer,r0(v1)
def
= state1(v1) ∧ rer,r0(v1) (6.19)

s2 eqr,l0(v1)
def
= state2(v1) ∧ eqr,l0(v1) (6.20)

s2 re l,l0(v1)
def
= state2(v1) ∧ re l,l0(v1) (6.21)

4The state relations are not added to the set of abstraction relations, A.
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s2 re l,r0(v1)
def
= state2(v1) ∧ re l,r0(v1) (6.22)

s3 eq l,l0(v1)
def
= state3(v1) ∧ eq l,l0(v1) (6.23)

s3 eqr,r0(v1)
def
= state3(v1) ∧ eqr,r0(v1) (6.24)

We replace the relations of Formulas (6.7)–(6.14) in the set of abstraction relations, A, with For-

mulas (6.15)–(6.24). The resulting abstraction allows the grouping of nodes that have different

values for the relation eql,r0 , for example, as long as these nodes are not in state 1.

6.5 Establishing that DSW Terminates

We established that DSW terminates using the unary state relations of Sect. 6.4 via a simple

progress monitor, which we describe below.

For each state relation s, we create a copy of s, which is used to save the values of relation

s at the start of the currently-processed loop iteration (after line [8] of Fig. 6.6(b)). We give

the new relations the superscript lh to indicate that they hold the loop-head values. The first

abstract operation of each iteration of the loop takes a snapshot of the current states of nodes:

state lh
i (v)← statei(v), for each i ∈ [0..3] and each assignment of v to an individual in the abstract

structure being processed. Additionally, it asserts that cur does not point to a tree node in state 3

at the head of the loop.

The last operation of every loop iteration performs a progress test by asserting the following

formula:

∃ v :
(
state lh

0 (v) ∧ state1(v) ∨ state lh
1 (v) ∧ state2(v) ∨ state lh

2 (v) ∧ state3(v)
)

∧
∀ v1 6= v :

∧
i∈[0..3]

(
state lh

i (v1) ⇔ statei(v1)
)

The assertion ensures that one node’s state makes forward progress (the first line of the assertion)

and that no other node changes state (the second line of the assertion).

Together with the assertion that cur does not point to a tree node in state 3 at the start of the

loop, the above progress monitor establishes that each tree node is visited at most three times,

thus establishing that the algorithm terminates. As we show in the next section, in each structure

collected by the analysis of DSW at the exit point every non-sentinel node is in state 3. Hence,
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the analysis also establishes that every tree node is visited exactly three times, thus establishing

property (ii) of partial correctness.

6.6 Experimental Evaluation

We applied TVLA to the DSW algorithm shown in Fig. 6.6(b) and analyzed it using the ab-

straction defined in Sect. 6.4. As input for the algorithm, we supplied the 3-valued structure S6.9

shown in Fig. 6.9, which is essentially the structure S6.5 from Fig. 6.5 refined with values for rela-

tions introduced in Sect. 6.4. Additionally, S6.9 contains a special sentinel node that is not part of

the input tree; it is referenced by program variable SENTINEL. In Fig. 6.9, as well as Fig. 6.10, his-

tory relations (e.g., left0 and right0) have been omitted to reduce clutter. Their values are identical

to the values of their active counterparts. We have also omitted the values for state-1 and state-

2 relations eql,r0 , rer,l0 , rer,r0 , eqr,l0 , rel,l0 , and rel,r0 . They have value 1/2 for the non-sentinel

nodes of both figures and value 1 for the sentinel nodes. Because we are performing tree-specific

shape analysis, both figures only represent concrete structures that satisfy the treeness integrity

constraints (see Sect. 6.2).

Fig. 6.10 shows the unique structure S6.10 collected by the analysis at the exit node. The definite

1 values for relations eql,l0 and eqr,r0 (defined by Formulas (6.7) and (6.8)) for each individual of

S6.10 establish that the outgoing left and right pointers of every tree node are restored, thus

establishing partial correctness property (i), i.e., that the tree produced at exit is identical to the

input tree. The absence of violations of the progress monitor defined in Sect. 6.5 establishes that

DSW terminates. The fact that every non-sentinel node is in state 3 establishes that every tree node

is visited (partial correctness property (ii)).

The analysis took just under nine hours on a 3GHz Linux PC and used 150 MB of mem-

ory. While the authors have a number of ideas for performance optimizations for the research

system, the main goal was to demonstrate the feasibility of automatic symbolic exploration of

heap-manipulating programs with vast (abstract) state spaces.

The cost of verifying that DSW terminates is negligible (when compared to the cost that DSW

is partially correct) because the progress monitor does not increase the size of the reachable state
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space. The number of distinct abstract structures that were collected at all program points exceeded

80,000. The number of structures at some program points exceeded 11,000. This number is not

surprising, if we consider that some of these structures contained 15 individuals. (At intermediate

steps, the analysis explored abstracts structures with up to 21 individuals!) However, 80,000 is well

below the limit imposed by the number of distinct 3-valued structures, 2220

, which represents the

number of subsets of individuals with every possible vector of unary abstraction-relation values.

(There are 20 unary abstraction relations: pointer relations x(v) and reachability relations rx(v)

for each of the five pointer-valued program variables, as well as ten relations of Formulas (6.15)–

(6.24).) Fig. 6.11 shows a sample abstract structure S6.11 that arises before line [11] of Fig. 6.6(b).

In S6.11, as in all other structures that arise at that point, the state relations and state-relation-

guarded relations defined by Formulas (6.15)–(6.24), have precise values for all individuals.

In summary, our experiment showed that, using the abstraction defined in Sect. 6.4, an auto-

matic analysis can maintain enough precision to identify sufficient invariants to demonstrate both

partial correctness and termination of DSW.

6.7 Discussion and Future Work

The analysis carried out by TVLA performs fully-automatic state-space exploration. However,

one has to bring to bear some expertise in specifying TVLA analyses. The concept of tree-specific

shape analysis (see Sect. 6.2) is of general utility. It can be reused for any analysis in which all

input, output, and intermediate data structures are trees. The instrumentation relations defined by

Formulas (6.9)–(6.14), which capture pointer relationships of tree nodes, and core state relations

state0(v), . . . , state3(v), which are used to control the precision of the abstraction, are specific to

the problem of verifying the total correctness of DSW.

A key difference between our approach and theorem-prover-based approaches is that we do not

need to specify loop invariants. Instead, we need to specify a collection of node distinctions (or

node relationships), such as the relations eq l,r0(v1) and rer,l0(v1) of Formulas (6.9)–(6.14); these

allow the node distinctions specified to be observable by the analysis. Given the appropriate node

distinctions, abstract interpretation automatically infers the invariants satisfied by the program.
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Figure 6.11 A 3-valued structure S6.11 that arises prior to the first rotation of pointers of the node

n pointed to by cur (before line [11] of Fig. 6.6(b)). History relations have been omitted from the

figure. Initially, node n was the right child of the node pointed to by prev. The latter node is now

the root of a tree with leaf SENTINEL (the original root is the parent of SENTINEL). No nodes in

n’s subtree have been visited; that subtree has not been modified from its initial state.
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In Chapter 5, we showed how a machine-learning technique can be used to identify key instru-

mentation relations automatically. In the future, we would like to see if it can be used to identify

the key relations for verifying DSW, namely the relations of Formulas (6.9)–(6.14).

Although the instrumentation relations introduced in Sect. 6.4 are tailored for establishing the

correctness of DSW, the concept of state-dependent abstractions is likely to be of general utility.

In fact, simpler versions of state-dependent abstractions have arisen in past work. For example,

the unary relation inOrder was used to establish the partial correctness of sorting [53]. The state-

dependent abstractions defined in this chapter are prepared to deal with more than just two states

(initial and final, as is the case for the relation inOrder), and use the value of the state as a guard

to reduce the number of distinct properties recorded for individuals, thereby reducing the size of

the (abstract) state space that is explored.

There is an interesting analogy between the explicit state-tracking that the original DSW al-

gorithm performs via the mark and tag bits, and the state relations of our abstraction. (In some

sense, the state relations introduced for purposes of analysis impose a DSW-like view of the world

to track the actions of the Lindstrom variant of the algorithm.)

While we chose to apply a transformation that ensures that the algorithm maintains treeness

(transformation 3 of Sect. 6.3), it is possible to verify the unmodified algorithm (Fig. 6.6(a)) by

introducing the following instrumentation relation:

isLocallyShared(v)
def
= ∃ v1 : left(v1, v) ∧ right(v1, v)

Relation isLocallyShared (which has value 0 for all nodes in the input 3-valued structure, indicat-

ing that the input is a valid binary tree) allows us to relax the restriction on sharing by tracking

where sharing occurs rather than requiring its absence. To be applicable to the version of the al-

gorithm that does not include transformation 3, the tree-specific shape analysis of Sect. 6.2 can be

generalized to handle the limited class of DAGs that arise in lines [9]–[10] of Fig. 6.6(a) as follows:

1. The precondition for the absence of sharing (Formula (6.2)) would be removed.

2. The integrity constraints that forbid structures that contain sharing would be modified to

include an isLocallyShared guard to permit the kind of local sharing that arises in Fig. 6.6(a).
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E.g., Constraint (6.4) becomes:

∀ v1, v2 : (∃ v : ¬isLocallyShared(v) ∧ down(v1, v) ∧ down(v2, v)) ⇒ v1 = v2.

The DSW algorithm shown in Fig. 6.6(b) (as well as the algorithm shown in Fig. 6.6(a)) does

not work correctly when applied to a data structure that contains a cycle: the traversal terminates

prematurely and not all of the edges are properly restored. However, the algorithm works correctly

when applied to a DAG: a node n with k paths from the root to n is visited 3k times, rather

than 3 times. (Note, however, that k can be exponential in the size of the graph.) Given a bound

on k, we may be able to verify the correctness of DSW for DAGs, if we relax the restriction on

sharing and introduce 3k state relations and the corresponding state-relation-guarded relations.

However, unless k is very small it is not likely that the reachable state space can be explored with

our computing resources. In the general case, in which the input is a DAG with no bound on k,

the partial-correctness result can be obtained by having the state relations of nodes wrap around:

a visit to a node in state 3 results in changing the node’s state to 1. While this change would be

sufficient to establish that the outgoing left and right pointers of every DAG node are restored

and that every node is visited, the analysis would no longer be able to establish termination using

the simple progress monitor of Sect. 6.5.

In practice, one would rarely be interested in using such an algorithm to traverse a DAG because

of the potentially exponential cost. In most applications, one is likely to want to process each node

once (e.g., in depth-first order) and visit each node a constant number of times. This can be

achieved by equipping the nodes with two bits to record the visit count (a number from 0 to 3). All

nodes reachable from a node with visit count 3 must have been visited three times. If cur is set to

point to a node with visit count 3, the direction of the traversal can be reversed by swapping the

values of cur and prev, thus terminating the exploration of the node’s subgraph. By relaxing the

restriction on sharing, it should be possible to verify the total correctness of the modified algorithm.

When DSW is used to traverse a DAG, the algorithm may temporarily create a cycle in the

data structure. (This happens when the input DAG contains forward edges, for example.) In this

case, the techniques of Sect. 6.2, as well as the techniques of Sect. 3.3.2, which we use for the
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maintenance of the relation tdown , do not apply. We believe that the general approach taken in

Sect. 3.3.3 for the maintenance of reachability in possibly-cyclic deterministic graphs can be used

to address this limitation.

6.8 Related Work5

The general form of the Deutsch-Schorr-Waite algorithm works correctly for arbitrary

graphs [87]. (Unlike the algorithm we used in our work, which was taken from [56], the general

form is not constant-space because it uses mark and tag bits.) We divide the discussion of related

work according to the kind of data structures to which the analyzed algorithm can be applied.

6.8.1 DSW on Arbitrary Graphs.

The first formal proofs of the partial correctness of DSW were performed manually by Mor-

ris [67] and Topor [92]. In [90], Suzuki automated some steps of the partial-correctness verifi-

cation of the algorithm by introducing decision procedures that could handle heap-manipulating

programs. More recently, Bornat used the Jape proof editor [10] to construct a partial-correctness

proof of DSW [9]. The resulting proof used 152 pages [8].

Our automated approach provides the obvious benefit of disposing with the need to provide

manual proofs, which require significant investments of time and expertise. However, even in the

presence of a powerful theorem prover, proof-based approaches rely on the user to provide loop

invariants that are sufficient to establish the property being verified. For instance, the properties of

nodes and their subtrees that are described in Sect. 6.3 (see Figs. 6.7 and 6.8 and the corresponding

text) would have to be specified as loop invariants. As discussed in Sect. 6.7, our obligation is

simpler: we have to specify instrumentation relations that act as ingredients for a loop invariant;

the analysis automatically synthesizes a loop invariant—in the form of a collection of 3-valued

structures that overapproximate the set of concrete structures that actually arise—by means of

state-space exploration.

5The discussion of [67, 90, 92] relies on what is reported in [62, 99].
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Yang [98] and Mehta and Nipkow [62] gave manually-constructed, but machine-checkable,

proofs of the partial correctness of DSW. The two approaches share the goal of making formal

reasoning about heap-manipulating programs more natural. The former approach uses the logic

of Bunched Implications [40] (a precursor formalism to Separation Logic [81]), which permits the

user to reason with Hoare triples in the presence of complicated aliasing relationships. The latter

approach uses Isabelle/HOL to construct formal proofs that are human-readable. These approaches

improve the usability of proof-based techniques. However, they still lack the automation of our

approach.

6.8.2 DSW on Trees and DAGs.

Yelowitz and Duncan were the first to present a termination argument for the Deutsch-Schorr-

Waite algorithm [99]. They analyzed Knuth’s version of the algorithm [46], which uses tag bits

but does not work correctly for graphs that contain a cycle. It does, however, work for DAGs, as

does the version we used, taken from [56]. The termination argument involved the use of program

invariants to prove bounds on the number of executions of statements in the loop. In Sect. 6.5,

we showed how to use the state relations defined in Sect. 6.4 in a simple progress monitor for

the algorithm’s loop to establish that DSW terminates (on trees). As was the case for partial

correctness, our task is reduced to establishing appropriate distinctions between nodes. Given the

state relations, the complete state-space exploration shows no violation of the progress monitor

and establishes a bound (namely, three) on the number of visits to each tree node; consequently,

the algorithm must terminate.

Several previous papers reported on automatic verification of weaker properties of the Deutsch-

Schorr-Waite algorithm, namely that the algorithm has no unsafe pointer operations or memory

leaks, and that the data structure produced at the end is, in fact, a binary tree [51, 59, 79]. The

authors first established these properties in [79]. ( [59] contains a typo stating that that work estab-

lishes partial correctness; however, [59] reused the TVLA specification from [79], and establishes

the same properties as [79].) Finally, [51] extended the framework of [84] with grammars, which

provide convenient syntactic sugar for expressing shape properties of data structures. That work
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relied on the use of grammars, instead of instrumentation relations, to express tree properties and

the absence of memory leaks.
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Chapter 7

Semantic Minimization of 3-Valued Propositional Formulas

While studying the question of precision in analyses based on 3-valued logic, we encountered

a non-standard logic-minimization problem that arises in 3-valued propositional logic. The present

chapter provides a formalization of the “semantic-minimization” problem and several methods for

creating a “semantically minimal” formula.

Our interest in this problem is motivated by the possibility of obtaining better answers in ap-

plications that use 3-valued logic. An answer of 0 or 1 provides precise (definite) information;

an answer of 1/2 provides imprecise (indefinite) information. By replacing a formula ϕ with a

semantically-minimal equivalent ψ, we may improve the precision of the answers obtained.

The chapter is organized as follows: Sect. 7.1 introduces some terminology and notation.

Sect. 7.2 defines the problem of semantic minimization for 3-valued propositional logic. Sect. 7.3

presents a couple of different methods for performing semantic minimization. Sect. 7.4 defines

a semantic-minimization algorithm that, for efficiency, uses Binary Decision Diagrams in certain

stages. Sect. 7.5 discusses related work. Several proofs appear in App. B.

7.1 Terminology and Notation

In this section, we define a standard 2-valued propositional logic, together with a related 3-

valued propositional logic with a semantics due to Kleene [45].
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7.1.1 2-Valued Propositional Logic

We write propositional formulas over a set of propositional variables V using the propositional

constants 0 and 1, the unary connective ¬, and the binary connectives ∧ and ∨. We also make use

of conditional expressions, for which we adopt a C-like syntax: ϕ1 ? ϕ2 : ϕ3.1

For brevity, we will sometimes use juxtaposition in place of ∧, and use an overbar to denote

negation; e.g., (¬x ∧ y ∧ z) ∨ (x ∧ ¬y ∧ ¬z) may also be written as xyz ∨ xy z.

Propositional variables and negations of propositional variables will be referred to collectively

as literals.

The (2-valued truth-functional) semantics for propositional logic is defined in the standard way:

Definition 7.1.1 An assignment a is a (finite) function in V → {0, 1}. Given a formula ϕ over the

propositional variables x1, . . . , xn and an assignment a that is defined on (at least) x1, . . . , xn, the

2-valued truth-functional meaning of ϕ with respect to a, denoted by [[ϕ]](a), is the truth value

in {0, 1} defined inductively as follows:

[[0]](a) = 0 [[xi]](a) = a(xi)

[[1]](a) = 1 [[¬ϕ]](a) = 1− [[ϕ]](a)

[[ϕ1 ∧ ϕ2]](a) = min([[ϕ1]](a), [[ϕ2]](a))

[[ϕ1 ∨ ϕ2]](a) = max([[ϕ1]](a), [[ϕ2]](a))

[[ϕ1 ? ϕ2 : ϕ3]](a) = [[(ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ϕ3)]](a)

We say that a satisfies ϕ, denoted by a |= ϕ, iff [[ϕ]](a) = 1. 2

Later on, it will be useful to be able to indicate that various semantically equivalent formulas are

syntactically related in certain ways. We use ≡ to denote syntactic equality between formulas, up

to rearrangements of conjuncts and disjuncts; we use≡DM to denote≡, extended with applications

1For now, one can think of ϕ1 ?ϕ2 : ϕ3 as a shorthand for (ϕ1 ∧ϕ2)∨ (¬ϕ1 ∧ϕ3) (see Defn. 7.1.1). Later on, for

technical reasons, we will consider it to be a shorthand for (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ϕ3) ∨ (ϕ2 ∧ ϕ3) (see Defn. 7.1.3 and

Ex. 7.4.9).
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of De Morgan’s laws and introductions/cancellations of double negations. For instance,

¬((x ∧ ¬y) ∨ (¬x ∧ z)) ≡ ¬((z ∧ ¬x) ∨ (¬y ∧ x))

¬((x ∧ ¬y) ∨ (¬x ∧ z)) 6≡ (¬z ∨ x) ∧ (y ∧ ¬x)

¬((x ∧ ¬y) ∨ (¬x ∧ z)) ≡DM (¬z ∨ x) ∧ (y ∧ ¬x)

¬((x ∧ ¬y) ∨ (¬x ∧ z)) 6≡DM (¬z ∧ y) ∨ (¬z ∧ ¬x) ∨ (x ∧ y) ∨ (x ∧ ¬x)

All four of the formulas used above have the same 2-valued truth-functional

meaning. We reserve “=” for semantic equality (e.g., [[¬((x ∧ ¬y) ∨ (¬x ∧ z))]] =

[[(¬z ∧ y) ∨ (¬z ∧ ¬x) ∨ (x ∧ y) ∨ (x ∧ ¬x)]]).

7.1.2 3-Valued Propositional Logic

Moving now to 3-valued logic, the language of formulas that we work with is identical to

that defined in Sect. 7.1.1, except that there is one additional propositional constant, 1/2. At the

semantic level, a third truth value—1/2—is introduced to denote uncertainty. We say that the

values 0 and 1 are definite values and that 1/2 is an indefinite value, and define a partial order

⊑ on truth values to reflect their degree of definiteness (or information content): l1 ⊑ l2 denotes

that l1 is at least as definite as l2:

Definition 7.1.2 [Information Order]. For l1, l2 ∈ {0, 1/2, 1}, we define the information order

on truth values as follows: l1 ⊑ l2 iff l1 = l2 or l2 = 1/2. We use l1 < l2 when l1 ⊑ l2 and l1 6= l2.

The symbol ⊔ denotes the least-upper-bound operation with respect to ⊑:

⊔ 0 1/2 1

0 0 1/2 1/2

1/2 1/2 1/2 1/2

1 1/2 1/2 1

2
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We now generalize Defn. 7.1.1 to define the meaning of a formula with respect to a 3-valued

assignment A. (Our convention will be to use lower-case letters for 2-valued assignments, and

upper-case letters for 3-valued assignments.)

Definition 7.1.3 A 3-valued assignment A is a (finite) function in V → {0, 1, 1/2}. Given a

formula ϕ over the propositional variables x1, . . . , xn and an assignment A that is defined on

(at least) x1, . . . , xn, the 3-valued truth-functional meaning of ϕ with respect to A, denoted

by [[ϕ]](A), yields a truth value in {0, 1, 1/2}. The meaning of ϕ is defined inductively as in

Defn. 7.1.1, with the following changes:

[[1/2]](A) = 1/2

[[ϕ1 ? ϕ2 : ϕ3]](A) = [[(ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ϕ3) ∨ (ϕ2 ∧ ϕ3)]](A)

We say that A potentially satisfies ϕ, denoted by A |= ϕ, iff [[ϕ]](A) ⊒ 1 (i.e., [[ϕ]](A) = 1/2 or

[[ϕ]](A) = 1). 2

The 3-valued truth tables for the propositional operators are shown in Fig. 7.1.

In 2-valued logic, (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ϕ3) and (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ϕ3) ∨ (ϕ2 ∧ ϕ3) yield

equivalent definitions of the 2-valued truth-functional meaning of ϕ1 ? ϕ2 : ϕ3. In 3-valued logic,

however, (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ϕ3) ∨ (ϕ2 ∧ ϕ3) yields a more precise semantics. In the truth table

for “v1 ? v2 : v3”, the sub-table for “v1 = 1/2” (which can be obtained by evaluating (1/2 ∧ v2) ∨

(¬1/2∧ v3)∨ (v2∧ v3)) is identical to the truth table for “v2⊔ v3” (cf. Defn. 7.1.2). Consequently,

1/2 ?v2 : v3 yields a definite value when v2 and v3 are either both 0 or both 1. In particular, for the

assignment [v2 7→ 1, v3 7→ 1], (1/2 ∧ v2) ∨ (¬1/2 ∧ v3) yields the indefinite value 1/2, whereas

(1/2 ∧ v2) ∨ (¬1/2 ∧ v3) ∨ (v2 ∧ v3) yields 1. (We will look at this from another vantage point

later, in Ex. 7.4.9.) We will use ⊔ as a binary connective for constructing formulas: ϕ1 ⊔ ϕ2 is a

shorthand for 1/2 ? ϕ1 : ϕ2.

It should be noted that throughout the remainder of the chapter, the symbol |= means the

potential-satisfaction relation of Defn. 7.1.3, even when we are talking about a 2-valued assign-

ment. For instance, [p 7→ 1] |= p ∧ 1/2 because [[p ∧ 1/2]]([p 7→ 1]) = 1/2.
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¬

0 1

1/2 1/2

1 0

∧ 0 1/2 1

0 0 0 0

1/2 0 1/2 1/2

1 0 1/2 1

∨ 0 1/2 1

0 0 1/2 1

1/2 1/2 1/2 1

1 1 1 1

v1 ? v2 : v3 v3

v2 0 1/2 1

0 0 1/2 1

v1 = 0 1/2 0 1/2 1

1 0 1/2 1

0 0 1/2 1/2

v1 = 1/2 1/2 1/2 1/2 1/2

1 1/2 1/2 1

0 0 0 0

v1 = 1 1/2 1/2 1/2 1/2

1 1 1 1

Figure 7.1 The 3-valued truth tables for the propositional operators

1/2

0










1
J

J
J

J

1

1/2

0

(a) Information order (b) Logical order

Figure 7.2 The semi-bilattice of 3-valued propositional logic
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As shown in Fig. 7.2, the values 0, 1, and 1/2 form a mathematical structure known as a semi-

bilattice (see [30]). A semi-bilattice has two orderings: the information order and the logical

order:

• The information order is the one defined in Defn. 7.1.2, which captures “(un)certainty”.

• The logical order is the one used in Fig. 7.1: that is, ∧ and ∨ are meet and join in the logical

order (e.g., 1 ∧ 1/2 = 1/2, 1 ∨ 1/2 = 1, 1/2 ∧ 0 = 0, 1/2 ∨ 0 = 1/2, etc.).

A value that is “far enough up” in the logical order indicates “potential truth”, and is called a

designated value. We take 1/2 and 1 as the designated values; thus, an assignment A potentially

satisfies a formula when the formula’s truth-functional meaning with respect to A is one of the

designated values.

The information ordering on values is extended pointwise to an information ordering on as-

signments (also denoted by ⊑); e.g., [p 7→ 1, q 7→ 0] ⊑ [p 7→ 1, q 7→ 1/2], [p 7→ 1, q 7→ 0] ⊑ [p 7→

1/2, q 7→ 0], [p 7→ 1, q 7→ 0] ⊑ [p 7→ 1/2, q 7→ 1/2], etc. When A does not contain any bindings

of a propositional variable to the value 1/2, we say that A is definite (and usually write it with a

lower-case a).

Kleene’s 3-valued semantics is monotonic in the information order (cf. Fig. 7.1 and Defn. 7.1.3):

Lemma 7.1.4 Let ϕ be a formula, and let A and A′ be two assignments such that A ⊑ A′. Then

[[ϕ]](A) ⊑ [[ϕ]](A′). 2

Kleene’s semantics retains a number of properties that are familiar from 2-valued logic, including

De Morgan’s laws and the ability to introduce/cancel double negations. For this reason, ≡ and

≡DM relate formulas that are semantically equivalent in 3-valued logic.

Lemma 7.1.4 provides a way to relate the 2-valued and 3-valued truth-functional meanings of

formulas: the value obtained by evaluating any formula ϕ with respect to a 3-valued assignment

A is always safe (i.e., greater than or equal to in the information order) compared to the value

obtained by evaluating ϕ with respect to any 2-valued assignment a ⊑ A. In particular,

• If [[ϕ]](A) yields a definite value, then [[ϕ]](a) must yield the same definite value.
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• If [[ϕ]](A) yields 1/2, then [[ϕ]](a) can be either 0 or 1.

We say that a 3-valued assignmentA represents all 2-valued assignments a ⊑ A. Another out-

look on the way 2-valued and 3-valued assignments are related stems from the following corollary

(which follows immediately from Lemma 7.1.4):

Corollary 7.1.5 Suppose that A represents a. If a |= ϕ, then A |= ϕ. 2

Thus, if we think of a propositional formula ϕ of 2-valued logic as a device for accepting a set S

of 2-valued assignments, then when ϕ is considered as a formula of 3-valued logic, the potential-

satisfaction relation corresponds to an implicit condition for accepting/rejecting an entire set of 2-

valued assignments—those that are represented by a 3-valued assignment. Moreover, acceptance

via the potential-satisfaction relation is safe with respect to the actual set of 2-valued assignments

accepted by ϕ:

{a ∈ def. assignments | a |= ϕ} ⊆ {a rep. by A | A |= ϕ}

This point of view is useful when 3-valued assignments are used as the space of abstract values in

an abstract interpretation (e.g., see Chou’s account of Symbolic Trajectory Evaluation in abstract-

interpretation terms [14]). We will also adopt this viewpoint in Sect. 7.2.2 in order to justify our

definition of the semantic-minimization problem.

7.2 The Semantic Minimization Problem

In Chapter 1, we observed that although the formula 1 is equivalent to p ∨ ¬p in 2-valued

logic, in 3-valued logic, 1 is better than p ∨ ¬p. This raises the question, “For any given ϕ, is

there always a best formula?”, which, in turn, raises the question, “What properties must a ‘best’

formula possess?”

7.2.1 Definition of the Minimization Problem

The concept of a “best formula” is formalized using the concept of a formula’s “supervalua-

tional meaning” [94]:
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Definition 7.2.1 Given a formula ϕ and assignment A, the 3-valued supervaluational meaning

of ϕ with respect to A, denoted by 〈〈ϕ〉〉(A), is the truth value in {0, 1, 1/2} defined by

〈〈ϕ〉〉(A) =
⊔

a rep. by A

[[ϕ]](a).

2

Definition 7.2.2 Given a propositional formula ϕ, we say that the formula ψ is a semantically

minimal variant of ϕ iff, for all 3-valued assignments A, [[ψ]](A) = 〈〈ϕ〉〉(A). The semantic-

minimization problem for propositional logic is as follows:

Given a propositional formula ϕ, find a formula ψ that is a semantically minimal

variant of ϕ.

2

For instance, 1 is a semantically minimal variant of p ∨ ¬p; in particular,

〈〈ϕ〉〉([p 7→ 1/2]) =
⊔

a∈{[p 7→0],[p 7→1]}

[[ϕ]](a)

= 1 ⊔ 1

= [[1]]([p 7→ 1/2]).

Similarly, 0 is a semantically minimal variant of p ∧ ¬p.

7.2.2 Justification of the Problem Definition

It is worthwhile to spend a few moments to consider why Defn. 7.2.2 is the appropriate defini-

tion of the semantic-minimization problem. Let us contrast Defn. 7.2.2 with a possible alternative

definition:

Strawman Definition 7.2.3 Given a propositional formula ϕ, we say that ψ is a semantically

minimal variant of ϕ iff for all 3-valued assignments A, [[ψ]](A) ⊑ [[ϕ]](A). 2
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The motivation behind this definition is that, by using ψ in place of ϕ, (i) we could sometimes

obtain answers that are strictly more definite, and (ii) we could never obtain answers that are

strictly less definite. The question we must ask, however, is whether we would obtain acceptable

answers with Strawman Defn. 7.2.3.

Note that with Defn. 7.2.2, neither 0 nor 1 is a semantically minimal variant of 1/2. In contrast,

with Strawman Defn. 7.2.3, the formulas 0 and 1 would both be semantically minimal variants

of 1/2. The latter situation would get us into trouble because their meanings, [[0]] = λa.0 and

[[1]] = λa.1, are in conflict; that is, with Strawman Defn. 7.2.3, the admissible ψ’s are not all

semantically equivalent in 2-valued logic. In contrast, with Defn. 7.2.2, the admissible ψ’s are

all semantically equivalent in 2-valued logic; by definition, they all have the meaning 〈〈ϕ〉〉—the

supervaluational meaning of ϕ.

An even better way to see that Strawman Defn. 7.2.3 is unsatisfactory is by considering how

the two concepts of “semantically minimal variant” relate to the view of a formula as a device for

accepting a set of assignments (cf. the discussion following Cor. 7.1.5).

Desideratum 7.2.4 [Better Acceptance Device I]. When we view a formula as a device for ac-

cepting a set of assignments, we would like for ψ to correspond to a better acceptance device than

ϕ. That is, when applied to an assignment A, either 2-valued or 3-valued, ψ may yield a more

precise acceptance condition than ϕ: in circumstances in which ϕ waffles (i.e., [[ϕ]](A) = 1/2), ψ

can either

• waffle itself (i.e., [[ψ]](A) = 1/2)

• accept A (i.e., [[ψ]](A) = 1)

• reject A (i.e., [[ψ]](A) = 0)

However, ψ must always be safe with respect to the 2-valued assignments that ϕ accepts:

{a ∈ def. assignments | a |= ϕ} ⊆ {a rep. by A | A |= ψ}. (7.1)

Similarly, ¬ψ must always be safe with respect to the 2-valued assignments that ¬ϕ accepts:

{a ∈ def. assignments | a |= ¬ϕ} ⊆ {a rep. by A | A |= ¬ψ}. (7.2)
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2

For instance, suppose that ϕ is the formula 1/2. Under Strawman Defn. 7.2.3, the formula 0

is an admissible ψ; however, Eqn. (7.1) does not hold:

{a ∈ def. assignments | a |= 1/2} = {a ∈ def. assignments}

6⊆ ∅

= {a rep. by A | A |= 0}.

Similarly, under Strawman Defn. 7.2.3, the formula 1 is also an admissible ψ; however, Eqn. (7.2)

does not hold:

{a ∈ def. assignments | a |= ¬1/2} = {a ∈ def. assignments}

6⊆ ∅

= {a rep. by A | A |= ¬1}.

Under Defn. 7.2.2, 1/2 is an admissible ψ, but 0 and 1 are not; clearly, with ϕ = ψ = 1/2,

Eqns. (7.1) and (7.2) both hold.

The notion of a “better acceptance device” can also be expressed in a different way, which

nicely parallels the statement of Cor. 7.1.5, but with ψ in the consequent:2

Desideratum 7.2.5 [Better Acceptance Device II]. Let ψ be a semantically minimal variant of

ϕ. Then, for every 3-valued assignment A and 2-valued assignment a such that A represents a,

both of the following must hold:

1. If a |= ϕ, then A |= ψ.

2. If a |= ¬ϕ, then A |= ¬ψ.

2

In contrast to the unsatisfactory results obtained with Strawman Defn. 7.2.3, we have the fol-

lowing:

2The two properties in Desideratum 7.2.5 are parallel to (i) the property stated in Cor. 7.1.5, and (ii) the property

stated in Cor. 7.1.5 with ϕ replaced by ¬ϕ.
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Lemma 7.2.6 If “semantically minimal variant” means the concept defined in Defn. 7.2.2, then

Desideratum 7.2.5 holds.

Proof: The desired properties can be restated as follows:

1. If [[ϕ]](a) ⊒ 1, then [[ψ]](A) ⊒ 1.

2. If [[¬ϕ]](a) ⊒ 1, then [[¬ψ]](A) ⊒ 1.

These are proved, respectively, as follows:

1. [[ψ]](A) = 〈〈ϕ〉〉(A)

=
⊔

a rep. by A

[[ϕ]](a)

⊒ 1

2. [[¬ψ]](A) = 1− [[ψ]](A)

= 1− 〈〈ϕ〉〉(A)

= 1−
⊔

a rep. by A

[[ϕ]](a)

=
⊔

a rep. by A

(1− [[ϕ]](a))

=
⊔

a rep. by A

[[¬ϕ]](a)

⊒ 1

2

Henceforth, the term “semantically minimal variant” means the concept defined in Defn. 7.2.2.

Strawman Defn. 7.2.3 was motivated by the desire to obtain more precise answers by using ψ

in place of ϕ. In fact, with Defn. 7.2.2, we do have such a property:

Lemma 7.2.7 If ψ is a semantically minimal variant of ϕ, then for all 3-valued assignments A,

[[ψ]](A) ⊑ [[ϕ]](A).
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Proof: For every semantically minimal variant ψ, we have, by the monotonicity of [[ϕ]] (i.e.,

Lemma 7.1.4),

[[ψ]](A) = 〈〈ϕ〉〉(A)

=
⊔

a rep. by A

[[ϕ]](a)

⊑ [[ϕ]](A).

2

That the term “semantically minimal variant” is appropriate can be seen from:

Lemma 7.2.8 If ψ is a semantically minimal variant of ϕ, and ϕ′ is any formula that agrees with

ϕ on all 2-valued assignments, then for all 3-valued assignments A, [[ψ]](A) ⊑ [[ϕ′]](A).

Proof: For every semantically minimal variant ψ, we have, by the monotonicity of [[ϕ′]] (i.e.,

Lemma 7.1.4),

[[ψ]](A) = 〈〈ϕ〉〉(A)

=
⊔

a rep. by A

[[ϕ]](a)

=
⊔

a rep. by A

[[ϕ′]](a)

⊑ [[ϕ′]](A).

2

7.3 An Algorithm for Semantic Minimization

We now return to the question “For any given ϕ, is there always a best formula?”, and answer

it in the affirmative. (More precisely, for each formula ϕ, there is an equivalence class of best

formulas, which may or may not contain ϕ itself.) Our solution relies on a result, due to Blamey [5–

7], that relates Boolean functions and 3-valued propositional formulas. The result can be stated in

a couple of different forms; these yield different methods for creating a best formula. (In Sect. 7.4,
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we will focus on a special case of Blamey’s result; the latter variant will allow us to define a more

efficient minimization algorithm.)

7.3.1 Realization of Monotonic Boolean Functions Via Formulas

In this section, we review a theorem, due to Blamey, that relates monotonic Boolean functions

and 3-valued propositional formulas. We say that a formula ϕ realizes a function f iff [[ϕ]] = f .

Blamey’s theorem states that, for every 3-valued function f : {0, 1, 1/2}n → {0, 1, 1/2} that

is monotonic in the information order, there is a formula—built from 0, 1, ¬, ∧, ∨, ⊔, and the

propositional variables x1, . . ., xn—that realizes f .3 Blamey’s proof of the result provides an

explicit method for constructing a formula that realizes a given f .

Definition 7.3.1 [5–7]. Let f(x1, . . . , xn) be any monotonic function in {0, 1, 1/2}n→{0, 1, 1/2};

let A be a 3-valued assignment that is defined on (at least) x1, . . . , xn. We define One(f, A, i) and

3In a slight abuse of notation, we will refer to a Boolean function f as being a member of {0, 1, 1/2}n →
{0, 1, 1/2}, but will make use of applications such as f(A), where A is a 3-valued assignment in V → {0, 1, 1/2}.
No confusion should result if one thinks of f as a function over the formal parameters x1, . . . , xn, and assignment A
as supplying values for x1, . . . , xn. Under this convention, statements such as [[ϕ]] = f are sensible, even though [[ϕ]]
is really of type (V → {0, 1, 1/2})→ {0, 1, 1/2}.
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Zero(f, A, i), for 1 ≤ i ≤ n, as well as One[f ], Zero[f ], and Formula[f ], as follows:

One(f, A, i)
def
=






xi if f(A) = 1 and A(xi) = 1

¬xi if f(A) = 1 and A(xi) = 0

1 if f(A) = 1 and A(xi) = 1/2

0 if f(A) ⊒ 0

(7.3)

Zero(f, A, i)
def
=





¬xi if f(A) = 0 and A(xi) = 1

xi if f(A) = 0 and A(xi) = 0

0 if f(A) = 0 and A(xi) = 1/2

1 if f(A) ⊒ 1

(7.4)

One[f ]
def
=

∨

A∈{0,1,1/2}n

∧

1≤i≤n

One(f, A, i) (7.5)

Zero[f ]
def
=

∧

A∈{0,1,1/2}n

∨

1≤i≤n

Zero(f, A, i) (7.6)

Formula[f ]
def
= One[f ] ⊔ Zero[f ] (7.7)

2

Theorem 7.3.2 [Realization Theorem]. [5–7]. For any monotonic function f(x1, . . . , xn) :

{0, 1, 1/2}n → {0, 1, 1/2}, Formula[f ] realizes f , i.e., [[Formula[f ]]] = f .

Proof: See [5]. 2

Example 7.3.3 Consider the formula ϕ
def
= xy ∨ x z ∨ yz. Its truth-functional semantics, [[ϕ]], is

shown in the following truth table:
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z

y 0 1/2 1

0 1 1/2 0

x = 0 1/2 1 1/2 1/2

1 1 1/2 1

0 1/2 1/2 1/2

x = 1/2 1/2 1/2 1/2 1/2

1 1/2 1/2 1

0 1 1 1

x = 1 1/2 1/2 1/2 1/2

1 0 1/2 1

Of the twenty-seven disjuncts of One[[[ϕ]]], all but nine are 000: x y z, x1z, xyz, xyz, 1yz, xy z,

xy1, xyz, xyz. Of the twenty-seven conjuncts of Zero[[[ϕ]]], all but two are 1 ∨ 1 ∨ 1: x ∨ y ∨ z

and x ∨ y ∨ z. The formula that would be created by Eqn. (7.7) is

Formula[[[ϕ]]] ≡


 x y z ∨ x1z ∨ xyz ∨ xyz ∨ 1yz

∨ xy z ∨ xy1 ∨ xyz ∨ xyz




⊔ (x ∨ y ∨ z)(x ∨ y ∨ z).

(7.8)

The reader can verify that Eqn. (7.8) realizes the truth table. 2

Defn. 7.3.1 is somewhat subtle: for instance, an assignmentA on which f evaluates to 1/2 con-

tributes the conjunction
∧

1≤i≤n

One(f, A, i) = 00 . . . 0 to formula One[f ]; however, even though

[[00 . . .0]](A) will necessarily be 0, the overall value of [[One[f ]]](A) is not necessarily 0—due

to the contributions from other terms that capture how f behaves on other assignments, i.e.,

[[
∧

1≤i≤n

One(f, A′, i)]](A). Despite such effects, Blamey has shown that the Realization Theorem

holds [5].
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By applying De Morgan’s laws, we can derive several variants of Eqn. (7.7). We have

Zero(f, A, i) ≡DM ¬One(¬f, A, i)

One(f, A, i) ≡DM ¬Zero(¬f, A, i),

which lead to the following variant forms of Eqn. (7.7):

Formula[f ]
def
= One[f ] ⊔ ¬One[¬f ] (7.9)

Formula[f ]
def
= ¬Zero[¬f ] ⊔ Zero[f ] (7.10)

Formula[f ]
def
= ¬Zero[¬f ] ⊔ ¬One[¬f ]. (7.11)

With Eqn. (7.7), the formula constructed has the form “sum-of-products⊔ product-of-sums”; with

Eqn. (7.9), it has the form “sum-of-products ⊔ ¬sum-of-products”; etc. For instance, using

Eqn. (7.9) in place of Eqn. (7.7), Eqn. (7.8) becomes

Formula[[[ϕ]]] ≡



 x y z ∨ x1z ∨ xyz ∨ xyz ∨ 1yz

∨ xy z ∨ xy1 ∨ xyz ∨ xyz



 ⊔ ¬(x yz ∨ xyz). (7.12)

7.3.2 Creating a Semantically Minimal Variant

Defn. 7.2.1 and Eqns. (7.7), (7.9), (7.10), or (7.11) give us the tools needed to construct a

semantically minimal variant of a formula ϕ:

Theorem 7.3.4 [Minimization Theorem]. Let ψ be Formula[〈〈ϕ〉〉]. Then ψ is a semantically

minimal variant of ϕ.

Proof: It follows immediately from Defn. 7.2.1 that 〈〈ϕ〉〉, the supervaluational semantics of ϕ, is

a monotonic function in {0, 1, 1/2}n → {0, 1, 1/2}. Thus, 〈〈ϕ〉〉 meets the conditions of Theo-

rem 7.3.2:

[[ψ]] = [[Formula[〈〈ϕ〉〉]]]

= 〈〈ϕ〉〉 (by Theorem 7.3.2),

and hence ψ is a semantically minimal variant of ϕ. 2
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Example 7.3.5 Consider again the formula ϕ
def
= xy ∨ x z ∨ yz. The following table shows the

three 3-valued assignments A for which 〈〈ϕ〉〉(A) < [[ϕ]](A):

A 〈〈ϕ〉〉(A) [[ϕ]](A)

[ x 7→ 1/2, y 7→ 0, z 7→ 0 ] 1 1/2

[ x 7→ 0, y 7→ 1, z 7→ 1/2 ] 1 1/2

[ x 7→ 1, y 7→ 1/2, z 7→ 1 ] 1 1/2

Thus, the supervaluational semantics, 〈〈ϕ〉〉, is as follows:

z

y 0 1/2 1

0 1 1/2 0

x = 0 1/2 1 1/2 1/2

1 1 1 1

0 1 1/2 1/2

x = 1/2 1/2 1/2 1/2 1/2

1 1/2 1/2 1

0 1 1 1

x = 1 1/2 1/2 1/2 1

1 0 1/2 1

The formula that would be created by the semantic-minimization algorithm (using Eqn. (7.9)) is

Formula[〈〈ϕ〉〉] ≡




x y z ∨ x1z ∨ xyz ∨ xy1

∨ xyz ∨ 1y z ∨ 1yz ∨ xy z

∨ xy1 ∨ xyz ∨ x1z ∨ xyz


 ⊔ ¬(x yz ∨ xyz). (7.13)

Comparing with Eqn. (7.12), note the three additional disjuncts in the first part of Eqn. (7.13):

1y z, xy1, and x1z. These correspond to the three entries that have value 1/2 in the truth table for

[[ϕ]], but have value 1 in the truth table for 〈〈ϕ〉〉. 2
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7.3.3 An Improved Construction for Formula[f]

Blamey’s thesis contains an improved construction for Formula[f ], which often results in a

formula that has fewer, and less complicated, constituents.

Definition 7.3.6 [5]. Let f(x1, . . . , xn) be any monotonic function in {0, 1, 1/2}n→ {0, 1, 1/2};

let A be a 3-valued assignment that is defined on (at least) x1, . . . , xn. Formula[f ] is as defined in

Eqns. (7.7), (7.9), (7.10), or (7.11), but with One[f ] and Zero[f ] redefined as follows:

One[f ]
def
=

∨

A : f(A) = 1 and

∀A′
= A.f(A′) = 1/2

∧

1 ≤ i ≤ n and

A(xi) < 1/2

One(f, A, i) (7.14)

Zero[f ]
def
=

∧

A : f(A) = 0 and

∀A′
= A.f(A′) = 1/2

∨

1 ≤ i ≤ n and

A(xi) < 1/2

Zero(f, A, i) (7.15)

An empty disjunction has the value 0; an empty conjunction has the value 1. 2

The differences between Eqns. (7.5) and (7.6) and Eqns. (7.14) and (7.15) are that, in the latter,

• The outer connectives are indexed by “A : f(A) = 1 and ∀A′
= A.f(A′) = 1/2” and

“A : f(A) = 0 and ∀A′
= A.f(A′) = 1/2”, respectively, which leads to fewer terms being

generated.

• The indices of the inner connectives only range over values of i for which A(xi) is a definite

value, and hence One(f, A, i) and Zero(f, A, i) generate only literals, leaving out unneces-

sary occurrences of 1 and 0.

Example 7.3.7 Consider again the formula ϕ
def
= xy ∨ x z ∨ yz that was discussed in Exs. 7.3.3

and 7.3.5. Suppose that Formula[f ] is defined as in Eqn. (7.9), but that One[f ] and Zero[f ] are

defined as in Defn. 7.3.6. The formula that would be created via Formula[[[ϕ]]] is

Formula[[[ϕ]]] ≡ xy ∨ x z ∨ yz ⊔ ¬(x yz ∨ xyz)
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(cf. Eqn. (7.12)). The semantically minimal variant of ϕ that would be created via Formula[〈〈ϕ〉〉]

is

Formula[〈〈ϕ〉〉] ≡ y z ∨ yz ∨ x z ∨ xy ∨ xz ∨ xy ⊔ ¬(x yz ∨ xyz) (7.16)

(cf. Eqn. (7.13)). 2

Theorem 7.3.8 [5]. Let f be a monotonic function in {0, 1, 1/2}n→ {0, 1, 1/2}. Let Formula[f ]

be the formula One[f ] ⊔ Zero[f ], where One[f ] and Zero[f ] are defined as in Eqns. (7.14)

and (7.15), respectively. Then Formula[f ] realizes f (i.e., [[Formula[f ]]] = f ).

Proof: See [5]. 2

Henceforth, One[·] and Zero[·] mean the operations defined in Defn. 7.3.6 (Eqns. (7.14)

and (7.15), respectively).

7.4 A BDD-Based Minimization Algorithm

This section presents an improved algorithm for semantic minimization. The worst-case run-

ning time of the algorithm is exponential in the size of ϕ; however, all operations can be imple-

mented using BDDs.

The issues that we face in using the material that has been presented in Sects. 7.3.2 and 7.3.3

are

1. How do we efficiently represent the function 〈〈ϕ〉〉 : {0, 1, 1/2}n→ {0, 1, 1/2}?

2. To use Eqns. (7.14) and (7.15), how do we efficiently implement the indexing operations

needed in the outermost connectives:

A : f(A) = 1 and ∀A′
= A.f(A′) = 1/2 (7.17)

A : f(A) = 0 and ∀A′
= A.f(A′) = 1/2. (7.18)

Our approach to issue 1 is to use BDDs [12]. Our approach to issue 2 is based on the following

observation:
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Observation 7.4.1 The Realization Theorem provides a way to construct a 3-valued propositional

formula that realizes any given monotonic Boolean function. However, the realization problem

that arises in the semantic-minimization problem does not require this general a method: In the

semantic-minimization problem, the monotonic Boolean functions that arise are always ones that

are in the range of 〈〈·〉〉; that is, we are only concerned with realization problems of the form

Formula[〈〈ϕ〉〉]. 2

Focusing on this special case of the realization problem allows us to sidestep issue 2 by imple-

menting One[·] and Zero[·] differently from the way they are stated in Eqns. (7.14) and (7.15). The

approach described takes advantage of the BDD-based representation used to address issue 1.

7.4.1 Representing the Supervaluational Semantics

Given ϕ, our goal is to find a semantically minimal variant ψ. The truth-valuational semantics

of ψ must be equal to the supervaluational semantics of ϕ:

[[ψ]](A) = 〈〈ϕ〉〉(A) =
⊔

a rep. by A

[[ϕ]](a).

Thus, in order to capture 〈〈ϕ〉〉, we need only concern ourselves with the truth-functional semantics

of ϕ on definite assignments—i.e., just a portion of the truth-functional semantics of ϕ. In other

words, rather than considering [[ϕ]] and 〈〈ϕ〉〉 as functions in {0, 1, 1/2}n → {0, 1, 1/2}, we need

only consider them as functions in {0, 1}n → {0, 1, 1/2}. (Functions of the latter type are called

Boolean functions with don’t cares or incompletely specified Boolean functions.)

An incompletely specified Boolean function f can be represented via a pair of total Boolean

functions (i.e., functions in {0, 1}n → {0, 1}), denoted by (⌊f⌋, ⌈f⌉), where ⌊f⌋ conflates 0 and
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1/2, and ⌈f⌉ conflates 1 and 1/2:4

⌊f⌋(a) =





1 if f(a) = 1

0 if f(a) ⊒ 0
⌈f⌉(a) =





1 if f(a) ⊒ 1

0 if f(a) = 0

⌊f⌋ and ⌈f⌉ can each be represented using ordinary BDDs [12], as proposed by Minato et al. [64].

To capture 〈〈ϕ〉〉 (as a function from {0, 1}n → {0, 1, 1/2}), it will be represented as the pair

(⌊〈〈ϕ〉〉⌋, ⌈〈〈ϕ〉〉⌉), where ⌊〈〈ϕ〉〉⌋ and ⌈〈〈ϕ〉〉⌉ are both functions in {0, 1}n → {0, 1}. Given the

formula ϕ (over the propositional variables x1, . . . , xn), this can be accomplished by traversing ϕ,

applying the following translation rules bottom-up:

0 −→ (λa.0, λa.0)

1 −→ (λa.1, λa.1)

1/2 −→ (λa.0, λa.1)

xi −→ (λa.a(xi), λa.a(xi))

¬(⌊f⌋, ⌈f⌉) −→ (¬⌈f⌉,¬⌊f⌋)

(⌊f1⌋, ⌈f1⌉) ∧ (⌊f2⌋, ⌈f2⌉) −→ (⌊f1⌋ ∧ ⌊f2⌋, ⌈f1⌉ ∧ ⌈f2⌉)

(⌊f1⌋, ⌈f1⌉) ∨ (⌊f2⌋, ⌈f2⌉) −→ (⌊f1⌋ ∨ ⌊f2⌋, ⌈f1⌉ ∨ ⌈f2⌉)

(⌊f1⌋, ⌈f1⌉) ⊔ (⌊f2⌋, ⌈f2⌉) −→ (⌊f1⌋ ∧ ⌊f2⌋, ⌈f1⌉ ∨ ⌈f2⌉)

(⌊f1⌋, ⌈f1⌉) ? (⌊f2⌋, ⌈f2⌉) : (⌊f3⌋, ⌈f3⌉) −→
 (⌊f1⌋ ? ⌊f2⌋ : ⌊f3⌋) ∧ (⌈f1⌉ ? ⌊f2⌋ : ⌊f3⌋),

(⌈f1⌉ ? ⌈f2⌉ : ⌈f3⌉) ∧ (⌊f1⌋ ? ⌈f2⌉ : ⌈f3⌉)




(7.19)

All of the operations on total Boolean functions that are required on the right-hand sides of the

above rules are ones from the standard repertoire of BDD operations: the creation of BDDs for

λa.0, λa.1, and λa.a(xi) (for 1 ≤ i ≤ n), and the application of the following Boolean operations

to existing BDDs: ¬, ∧, ∨, and (· ? · : ·) (also known as ITE [11]).

4Thus, there are three types of Boolean functions that play a role in this chapter:

(3-valued) Boolean functions: {0, 1, 1/2}n→ {0, 1, 1/2}
incompletely specified Boolean functions: {0, 1}n → {0, 1, 1/2}

total Boolean functions: {0, 1}n → {0, 1}

We do not introduce any special notation to distinguish among functions of the three types (although terms of the

form ⌊·⌋ and ⌈·⌉ always denote total Boolean functions). In particular, occurrences of [[ϕ]] and 〈〈ϕ〉〉 sometimes denote

incompletely specified Boolean functions (which may be total Boolean functions), but sometimes denote 3-valued

Boolean functions. However, it should always be clear from context which use is intended.
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7.4.2 Realization for Semantic Minimization

Definition 7.4.2 (Cf. [18,74].) A superscripted propositional variable xb, where b ∈ {0, 1}, stands

for a literal:

xb def
=





x if b = 1

¬x if b = 0

Let f be a total Boolean function over the propositional variables x1, . . . , xn. A conjunction of

literals in which each propositional variable appears at most once—either negated or unnegated—

i.e.,
∧

i∈S⊆{1,...,n}

xbi

i (7.20)

is an implicant of f if, for every 2-valued assignment a such that a(xi) = bi for all i ∈ S, we have

f(a) = 1.

Each conjunction of literals of the form shown in (7.20) can be thought of as the set of literals

{xbi

i | i ∈ S}. An implicant is a prime implicant if none of its proper subsets is an implicant (i.e.,

corresponds to a conjunction of literals that is an implicant). 2

Example 7.4.3 xy, xz, and xyz are all implicants of xz ∨ yz. x, y, and z are not implicants of

xz ∨ yz; hence, xy and xz are prime implicants. 2

Our concern is with realization problems of the form Formula[f ], where f = 〈〈ϕ〉〉. We now

show that for this case, realization can be can be implemented as follows:

Formula[f ] ≡ Primes[⌊f⌋] ⊔ ¬Primes[¬⌈f⌉],

where Primes[g] is the operation that, given a total Boolean function g, creates the disjunction of

g’s prime implicants:

Primes[g]
def
=

∨

π a prime implicant of g

π.
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Lemma 7.4.4 Let A be a 3-valued assignment such that (i) 〈〈ϕ〉〉(A) = 1, and (ii) for all A′
= A,

〈〈ϕ〉〉(A′) = 1/2. Then the formula

π
def
=

∧

1 ≤ i ≤ n and

A(xi) < 1/2

One(〈〈ϕ〉〉, A, i)

is a prime implicant of ⌊〈〈ϕ〉〉⌋.

Proof: See App. B. 2

Lemma 7.4.5 Let π by a prime implicant of ⌊〈〈ϕ〉〉⌋. Then there is a 3-valued assignment A such

that

(i) 〈〈ϕ〉〉(A) = 1

(ii) For all A′
= A, 〈〈ϕ〉〉(A′) = 1/2

(iii) π ≡
∧

1 ≤ i ≤ n and

A(xi) < 1/2

One(〈〈ϕ〉〉, A, i)

Proof: See App. B. 2

These results yield the following procedure for semantic minimization:

Theorem 7.4.6 Let ψ be Primes[⌊〈〈ϕ〉〉⌋] ⊔ ¬Primes[¬⌈〈〈ϕ〉〉⌉]. Then ψ is a semantically minimal

variant of ϕ.

Proof: From Defn. 7.3.6 (i.e., Eqn. (7.14)), and Lemmas 7.4.4 and 7.4.5, it follows

that One[〈〈ϕ〉〉] ≡ Primes[⌊〈〈ϕ〉〉⌋]. ¬〈〈ϕ〉〉 is represented by both (⌊¬〈〈ϕ〉〉⌋, ⌈¬〈〈ϕ〉〉⌉) and

¬(⌊〈〈ϕ〉〉⌋, ⌈〈〈ϕ〉〉⌉); by translation method (7.19), the latter equals (¬⌈〈〈ϕ〉〉⌉,¬⌊〈〈ϕ〉〉⌋). This im-

plies that ⌊¬〈〈ϕ〉〉⌋ = ¬⌈〈〈ϕ〉〉⌉, and hence

Zero[〈〈ϕ〉〉] ≡DM¬One[¬〈〈ϕ〉〉]

≡ ¬Primes[⌊¬〈〈ϕ〉〉⌋]

≡ ¬Primes[¬⌈〈〈ϕ〉〉⌉].

The claim now follows from Theorems 7.3.8 and 7.3.4. 2
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[1] formula MinimizeFormula(formula ϕ) {

[2] Transform ϕ to (⌊〈〈ϕ〉〉⌋, ⌈〈〈ϕ〉〉⌉) using

translation method (7.19)

[3] return Primes[⌊〈〈ϕ〉〉⌋] ⊔ ¬Primes[¬⌈〈〈ϕ〉〉⌉]

[4] }

Figure 7.3 A minimization algorithm

Theorem 7.4.6 provides the justification for the function MinimizeFormula, shown in Fig. 7.3;

given a propositional formula ϕ as input, MinimizeFormula creates and returns a semantically

minimal variant of ϕ. MinimizeFormula uses the auxiliary procedure Primes[f ], which creates

a sum-of-prime-implicants formula for a given formula f . Any of several known methods for

efficiently generating prime implicants can be used for this step [18, 19, 85]. (These methods all

start from the BDD representation of f ; thus, when line [2] is implemented with BDDs, exactly

the right kind of input structure is at hand.)

Let us return again to the formula ϕ
def
= xy ∨ x z ∨ yz (cf. Exs. 7.3.3, 7.3.5, and 7.3.7). Min-

imizeFormula would create the formula that we saw in Eqn. (7.16) of Ex. 7.3.7—although Mini-

mizeFormula would arrive at the answer by a different, and more efficient, method:

Formula[〈〈ϕ〉〉] ≡ y z ∨ yz ∨ x z ∨ xy ∨ xz ∨ xy ⊔ ¬(x yz ∨ xyz). (7.16)

A drawback of MinimizeFormula is the need to generate all prime implicants. One might try to

substitute other sum-of-products expressions that can be used to represent a given function (in 2-

valued logic), such as an irredundant prime cover [20, 63]. This approach is not tenable, however;

for instance, for the formula ϕ
def
= xy ∨ x z ∨ yz, if we substitute the irredundant-prime-cover

algorithm from [20] for the two calls on Primes[·] in line [3] of MinimizeFormula, we would get

the following formula:

y z ∨ yz ∨ x z ∨ xz ⊔ ¬(x yz ∨ xyz). (7.21)
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However, formula (7.21) is not a semantically minimal variant of ϕ: for the assignment [x 7→

0, y 7→ 1, z 7→ 1/2], Eqn. (7.16) evaluates to 1, whereas formula (7.21) evaluates to 1/2. Moreover,

formula (7.21) is actually worse than ϕ itself (and Eqn. (7.16)) for the assignment [x 7→ 1, y 7→

0, z 7→ 1/2]: ϕ and Eqn. (7.16) evaluate to 1, whereas formula (7.21) evaluates to 1/2.

7.4.3 Other Semantically Minimal Formulas

In this section, we derive some other forms, different from the one that was the subject of The-

orem 7.4.6, in which one can express a semantically minimal formula. The proof of the following

theorem can be found in App. B:

Theorem 7.4.7 If f is a total Boolean function, then [[Primes[f ]]] = [[¬Primes[¬f ]]]. 2

In the proof of Theorem 7.4.6, we showed

One[〈〈ϕ〉〉] ≡ Primes[⌊〈〈ϕ〉〉⌋]

Zero[〈〈ϕ〉〉] ≡DM¬Primes[¬⌈〈〈ϕ〉〉⌉].

These imply

[[One[〈〈ϕ〉〉]]] = [[Primes[⌊〈〈ϕ〉〉⌋]]] (7.22)

[[Zero[〈〈ϕ〉〉]]] = [[¬Primes[¬⌈〈〈ϕ〉〉⌉]]]. (7.23)

Applying Theorem 7.4.7 results in two new relationships:

[[One[〈〈ϕ〉〉]]] = [[¬Primes[¬⌊〈〈ϕ〉〉⌋]]] (7.24)

[[Zero[〈〈ϕ〉〉]]] = [[Primes[⌈〈〈ϕ〉〉⌉]]]. (7.25)

Consequently, we can “mix and match” Eqns. (7.22), (7.23), (7.24), and (7.25) to create expres-

sions that yield semantically minimal formulas different from the one given in Theorem 7.4.6. That

is, the function MinimizeFormula of Fig. 7.3 creates a semantically minimal variant of ϕ with any

of the following four expressions used in line [3]:
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Zero

sum-of-products ¬sum-of-products

One sum-of-products
Primes[⌊〈〈ϕ〉〉⌋]

⊔ Primes[⌈〈〈ϕ〉〉⌉]

Primes[⌊〈〈ϕ〉〉⌋]

⊔ ¬Primes[¬⌈〈〈ϕ〉〉⌉]

¬sum-of-products
¬Primes[¬⌊〈〈ϕ〉〉⌋]

⊔ Primes[⌈〈〈ϕ〉〉⌉]

¬Primes[¬⌊〈〈ϕ〉〉⌋]

⊔ ¬Primes[¬⌈〈〈ϕ〉〉⌉]

A term in ¬sum-of-products form can be put in product-of-sums form (with no blow-up in size)

by applying De Morgan’s laws. Thus, we may create a semantically minimal formula with any

combination of sum-of-products and product-of-sums terms that we desire.

Our final result provides a condition under which we may generate a semantically minimal

variant that does not contain an occurrence of ⊔:

Corollary 7.4.8 Suppose that ϕ is a formula such that 〈〈ϕ〉〉 is a total Boolean function. Let ψ1
def
=

Primes[〈〈ϕ〉〉] and ψ2
def
= ¬Primes[¬〈〈ϕ〉〉]. Then ψ1 and ψ2 are both semantically minimal variants

of ϕ.

Proof: When 〈〈ϕ〉〉 is a total Boolean function, ⌊〈〈ϕ〉〉⌋ = ⌈〈〈ϕ〉〉⌉ = 〈〈ϕ〉〉. The result follows from

Eqns. (7.22), (7.23), (7.24), and (7.25)—and the elimination of duplicate terms in the diagonal

entries of the table given above. 2

In particular, any formula that does not contain an explicit occurrence of 1/2 or ⊔ has a se-

mantically minimal variant that does not contain an occurrence of ⊔.

Example 7.4.9 Consider the formula ϕ
def
= xy ∨ xz. In 2-valued logic, ϕ can be treated as a

syntactic shorthand for x ? y : z. In Sect. 7.1.2, we discussed why ϕ is not a suitable syntactic

shorthand for (the extension of) x ? y : z to 3-valued logic, and why xy ∨ xz ∨ yz is a suitable

shorthand.

We can now derive this by means of our results on semantic minimization: xy ∨ xz does

not contain an explicit occurrence of 1/2 or ⊔, and thus 〈〈xy ∨ xz〉〉 is a total Boolean function.

Because Primes[〈〈xy ∨ xz〉〉] = xy ∨ xz ∨ yz, xy ∨ xz ∨ yz is a semantically minimal variant of

xy ∨ xz. 2
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7.5 Related Work

There is a substantial body of work that addresses methods for syntactic minimization of

propositional formula. Previous work has addressed finding minimal-size sum-of-products formu-

las [74], as well as minimal-size formulas for other forms [86]. In contrast, this chapter concerns

semantic minimization (in 3-valued propositional logic). Because the minimization criterion is a

semantic one, rather than a syntactic one, the formula ψ that results is not necessarily smaller than

ϕ.

The realization problem, and the two versions of the Realization Theorem that we have used,

are due to Blamey [5–7]. However, Blamey’s work did not address the semantic-minimization

problem that we defined in Sect. 7.2. In Sect. 7.4, we focused on a special case of the realization

problem, which allowed us to define a semantic-minimization algorithm (MinimizeFormula) that

is more efficient than what one would have using the general realization constructions given by

Blamey.

Our motivation for investigating the semantic-minimization problem for propositional logic

was as a heuristic for creating “better” formulas in 3-valued first-order logic (with a transitive-

closure operator), when applying the finite-differencing transformations to defining formulas of

instrumentation relations. By replacing a formula ϕ with a formula ψ, we may improve the

precision of the answers that the system obtains. We have implemented MinimizeFormula, and

have used it as a subroutine in a heuristic method for minimizing first-order formulas; the method

works on a formula bottom-up, applying MinimizeFormula to the body of each non-propositional

operator (i.e., each quantifier or transitive-closure operator).
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Chapter 8

Conclusions and Future Work

This thesis addressed the following fundamental challenges in applying abstract interpretation,

namely, given a program, the concrete semantics for a language, and a query of interest,

1. How does one create an abstraction that is sufficiently precise to verify that the program

satisfies the query?

and

2. How does one create the associated abstract transformers?

Challenge 2 arises in program-analysis problems in which the semantics of statements is ex-

pressed using logical formulas that describe changes to core-relation values. When instrumentation

relations have been introduced to refine an abstraction, the challenge is to reflect the changes in

core-relation values in the values of the instrumentation relations. The algorithm presented in

Chapter 3 provides a way to create formulas that maintain correct values for the instrumenta-

tion relations, and thereby provides a way to generate—completely automatically—the part of the

transformers of an abstract semantics that deals with instrumentation relations. This research was

motivated by work on static analysis based on 3-valued logic; however, any analysis method that

relies on logic—2-valued or 3-valued—to express a program’s semantics may be able to benefit

from these techniques.

Chapter 5 addressed Challenge 1 by presenting an approach to creating abstractions automat-

ically for use in program analysis. As in some previous work, the approach involves the suc-

cessive refinement of the abstraction in use. Unlike previous work, the work presented in that
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chapter is aimed at programs that manipulate pointers and heap-allocated data structures. How-

ever, while we demonstrated our approach on shape-analysis problems, the approach is applicable

in any program-analysis setting that uses first-order logic. Refinement is performed by introducing

new instrumentation relations (defined via logical formulas over core relations). Our abstraction-

refinement method uses two refinement strategies. The first strategy, subformula-based refinement,

analyzes the sources of imprecision in the evaluation of the query, and chooses how to define new

instrumentation relations using subformulas of the query. The second strategy, ILP-based refine-

ment, employs inductive logic programming to learn new instrumentation relations that can stave

off imprecision due to abstraction. The steps of ILP go beyond merely forming Boolean combina-

tions of existing relations (as in many refinement techniques based on predicate abstraction); ILP

can create new relations by introducing quantifiers during the learning process.

Chapter 6 discussed the automated verification of the total correctness (partial correctness and

termination) of the Deutsch-Schorr-Waite tree-traversal algorithm. Past approaches have involved

hand-written proofs of complicated invariants to verify the partial correctness of the algorithm.

Even with some automation, these efforts were usually laborious: a proof performed in 2002

with the help of the Jape proof editor took 152 pages [8]. The key advantage of our abstract-

interpretation approach over proof-theoretic approaches is that a relatively small number of con-

cepts are involved in defining an abstraction of the structures that can arise on any execution, and

verification is then carried out automatically by symbolic exploration of all memory configurations

that can arise.

While studying the question of precision in analyses based on 3-valued logic, we encountered

a non-standard logic-minimization problem that arises in 3-valued propositional logic. Chapter 7

presented a formalization of the “semantic-minimization” problem, showed that a semantically-

minimal formula always exists, and gave several methods for creating semantically-minimal for-

mulas.
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Discussion

The methodology followed in this work makes use of a powerful logic for expressing the

semantics of programs and the query of interest. This logic (first-order logic extended with a

transitive-closure operator) allows the user to express properties and transformations of heap-

allocated data structures with ease. However, this convenience comes at a cost. The logic, as well

as most fragments that are expressive enough for stating interesting properties of heap-allocated

data structures, is undecidable. While semi-decision procedures for the logic exist, the perfor-

mance of the theorem provers that implement them makes their use prohibitively expensive for

many verification tasks, at least at the present time.

In our work, we chose not to rely on theorem provers. The key operation in our analysis is

formula evaluation, rather than a deductive step. This presented the following non-standard issue:

a pair of formulas that are really equivalent are not seen as equivalent by the analysis. Below we

give some instances where this issue arises and state what novel techniques we were led to develop

while addressing that instance of the issue.

The formula p∨¬p is equivalent to the formula 1, yet the latter evaluates to a more precise

value under the assignment [p 7→ 1/2]. This observation led us to formalize the problem of seman-

tic minimization and to define algorithms for computing semantically-minimal formulas.

The formula p(·) is “equivalent” to the formula ψp, i.e., the defining formula of p, yet p(·)

will frequently evaluate to a more precise value than ψp. This observation led us to work on finite

differencing, which provides a mechanism to update the values of instrumentation relations while

maximizing the reuse of stored values of instrumentation relations. Additionally, it led us to work

on an abstraction-refinement method that introduces new instrumentation relations to serve as new

sources of stored values.

Our abstraction-refinement method is intended to remove the obligation of identifying loop

invariants and translating them into appropriate abstraction definitions. In the absence of a decision

procedure that can help in identifying loop invariants, we had to design techniques to “extract”

information from the logical structures that arise during abstract interpretation. We decided to
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forego deductive techniques in favor of viewing logical structures as unstructured collections of

values and learning relationships that are present in those collections.

Future Work

The use of heap-allocated data structures offers a programmer great flexibility, and, as a result,

such data structures are ubiquitous in today’s software. However, code that manipulates heap-

allocated storage can harbor errors, as well as unnecessary slowdowns and potential resource bot-

tlenecks. We plan to continue to do research and develop better tools for program understanding,

debugging, and reverse engineering that apply to the analysis of programs that manipulate heap-

allocated data structures.

The expressive power of our research system makes it suitable in settings besides shape anal-

ysis. In future work, we would like to address other important issues in the quality of software,

such as concurrency and information flow. TVLA’s power of automatic exploration may also be

suitable for solving challenging problems that arise in Computer Architecture, e.g., the verification

of cache-coherence protocols.

In an effort to design a more scalable analysis, we are intrigued by the possibility of defining

parsimonious abstractions [36]. Introduced in the software-model-checking community, parsimo-

nious abstractions allow the precision of the abstraction to vary from one program point to another.

The application of inductive learning at different points in the program offers interesting possibili-

ties in this regard.

Inductive learning may have interesting applications in software model checking, where the

standard abstraction mechanism is predicate abstraction, which groups states based on their values

for a set of nullary logical formulas. Our extension of the FOIL algorithm to permit learning

nullary formulas that differentiate one set of structures from another makes it possible to refine an

abstraction in the predicate-abstraction framework by inventing relations that capture properties of

heap-allocated storage.

In a broader context, we plan to continue to mine connections between program analysis and

machine learning exposed in this thesis. We believe that program code itself, and not comments,
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annotations, or specifications, is the best descriptor of the behavior of the program. We will further

explore how machine-learning techniques can be employed to extract interesting information in

static, as well as dynamic, analyses.

In the domain of program understanding, an interesting application of our techniques is to

apply inductive learning for inferring loop invariants automatically. This application also suggests

an obvious way to integrate our approach with proof-based approaches to verification. The need

for manually defined loop invariants prevents widespread use of proof-based systems. The use of

inductive learning for inferring loop invariants automatically can address this limitation.

Another possible application of inductive learning in the domain of program understanding is

to summarize the effect of several statements (or even entire procedures) via inductive learning.

(This application can also benefit program analysis by creating summary transformers.) In this

application, the system can invoke a learning algorithm to learn a formula (during static analysis or

from data gathered during dynamic analysis), and then use static analysis to verify that the formula

is indeed an invariant of the program. We saw instances of this in the experiments presented in

Chapter 5, where learning resulted in relations r2, r21, and r23 defined by Formulas (5.13), (5.16),

and (5.18), respectively, which capture interesting properties of sorting procedures and procedure

Reverse.

An interesting challenge is to describe the essence of a bug fix by using the states of the fixed

and the buggy version of a program as sources of positive and negative examples, respectively. This

application can help in understanding and documenting the change, as well as in regression-test

generation.

Suppose the analyzed software system consists of a client and a server, and the client does not

respect the server’s API. If a client that respects the API is available but the specification for the

API is not available, learning (or specification mining) can be used to infer the API based on the

states of the two clients. Additionally, whether or not the API is available, the answers produced

by the learning algorithm can be used to suggest possible fixes to bring the incorrect client in line

with the correct one.
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If the API is available but a correct client is not, it may be possible to search for a fix to the

buggy client by performing small perturbations to the program (e.g., interchange certain system

calls). When a collection of perturbations results in learning a specification that agrees with the

server’s API, a fix is obtained. The success of Delta Debugging gives hope that such an approach

is feasible [101, 102].

Learning can serve to “bridge the gap” between testing and verification. The application of

learning to the results of testing (or data collected during a dynamic analysis) can inform ver-

ification by helping construct an abstraction based on the states observed in testing (or during

dynamic analysis). Many algorithms that manipulate linked data structures are “storeless”: the

invariants of such an algorithm (and thus an abstraction that is sufficient to verify the algorithm’s

correctness) can be stated via properties of nodes in different regions of the data structure that

the algorithm manipulates.1 (InsertSort and Deutsch-Schorr-Waite are examples of storeless

algorithms.) Learning can be applied to learn properties that hold for the nodes of a given region.

On the other hand, the search performed by a learning algorithm on abstract states computed

during verification may be able to find the key differentiators between good and bad states, thus

helping to construct test cases that can drive the code to the good and the bad states.

We anticipate that learning will occupy a prominent place in our future research. In large

software systems of today, it is important to automate many tasks currently left to the user. For

instance, while most research today focuses on verifying that a software system conforms to an

existing formal specification, it is often unrealistic to expect that formal specifications of software

systems (or even specifications of APIs) are available. Learning may hold the key to many future

endeavors in program understanding, verification, testing, and reverse engineering by providing

techniques to infer specifications, verification conditions, abstractions, and even test cases.

1The regions can be defined in terms of reachability relations.
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Appendix A: Correctness of the Finite-Differencing Scheme of

Sect. 3.2

The proofs in this section are by induction, using a size measure for formulas based on the

process of putting ϕ in core normal form. Because of the assumption of no circular depen-

dences among the definitions of instrumentation relations, ϕ can always be put in core normal

form by repeated substitution until only core relations remain. The size measure is basically the

size of ϕ when put in core normal form, except that each occurrence of an instrumentation rela-

tion p(w1, . . . , wk), p ∈ I, encountered during the process is counted as being 1 larger than the

size measure of ψp{w1, . . . , wk}, the defining formula for relation p with w1, . . . , wk substituted

for ψp’s formal parameters. The proofs, therefore, look like standard structural-induction proofs,

except that in the case for p(w1, . . . , wk), p ∈ I, we are permitted to assume that the induction

hypothesis holds for ψp{w1, . . . , wk}.

Recall from Sect. 3.2 that our results are couched in terms of 2-valued logic, but by the Em-

bedding Theorem (Theorem 2.6, [84, Theorem 4.9]), the relation-maintenance formulas that we

define provide sound results when interpreted in 3-valued logic.

We only consider first-order formulas because the correctness of the extension of the Finite-

Differencing Scheme for Reachability and Transitive Closure of has been argued in Sect. 3.3.

Lemma A.1 (Lemma 3.4) For every formula ϕ, ϕ1, ϕ2 and statement st, the following properties

hold:1

(i) ∆+
st[ϕ]

meta

⇐⇒ Fst[ϕ] ∧¬ϕ

(ii) ∆−
st[ϕ]

meta

⇐⇒ ϕ∧¬Fst[ϕ]

(iii) (a) Fst[¬ϕ1]
meta

⇐⇒ ¬Fst[ϕ1]

(b) Fst[ϕ1 ∨ϕ2]
meta

⇐⇒ Fst[ϕ1] ∨ Fst[ϕ2]

(c) Fst[ϕ1 ∧ϕ2]
meta

⇐⇒ Fst[ϕ1] ∧ Fst[ϕ2]

1To simplify the presentation, we use lhs
meta

⇐⇒rhs and lhs
meta
=⇒rhs as shorthands for [[lhs]]S

2
(Z) = [[rhs]]S

2
(Z) and

[[lhs]]S
2
(Z) ≤ [[rhs]]S

2
(Z), respectively, for any S ∈ 2-STRUCT and assignment Z that is complete for lhs and rhs .
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(d) Fst[∃ v : ϕ1]
meta

⇐⇒ ∃ v : Fst[ϕ1]

(e) Fst[∀ v : ϕ1]
meta

⇐⇒ ∀ v : Fst[ϕ1]

Proof Atomic For the cases ϕ ≡ l, where l ∈ {0, 1}, and ϕ ≡ (v1 = v2), ∆+
st[ϕ] = ∆−

st[ϕ] = 0,

and (i) and (ii) follow immediately.

For ϕ ≡ p(w1, . . . , wk), p ∈ C, and τp,st is of the form p ? ¬δ−p,st : δ+
p,st

(i) ∆+
st[p(w1, . . . , wk)]

meta

⇐⇒ (δ+
p,st ∧ ¬p){w1, . . . , wk}

meta

⇐⇒




p(w1, . . . , wk)

? ¬(δ−p,st ∧ p){w1, . . . , wk}

: (δ+
p,st ∧ ¬p){w1, . . . , wk}


∧ ¬p(w1, . . . , wk)

meta

⇐⇒ (Fst[p] ∧ ¬p){w1, . . . , wk}

(by the definitions of Fst[·], ∆+
st[·], and ∆−

st[·])

(ii) ∆−
st[p(w1, . . . , wk)]

meta

⇐⇒ (δ−p,st ∧ p){w1, . . . , wk}

meta

⇐⇒ p{w1, . . . , wk}∧




p(w1, . . . , wk)

? (δ−p,st ∧ p){w1, . . . , wk}

: ¬(δ+
p,st ∧ ¬p){w1, . . . , wk}




meta

⇐⇒ p{w1, . . . , wk}∧ ¬




p(w1, . . . , wk)

? ¬(δ−p,st ∧ p){w1, . . . , wk}

: (δ+
p,st ∧ ¬p){w1, . . . , wk}




meta

⇐⇒ (p∧ ¬Fst[p]){w1, . . . , wk}

(by the definitions of Fst[·], ∆+
st[·], and ∆−

st[·])
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For ϕ ≡ p(w1, . . . , wk), p ∈ C, and τp,st is of the form p∨ δp,st or δp,st ∨ p

(i) ∆+
st[p(w1, . . . , wk)]

meta

⇐⇒ (δp,st ∧ ¬p){w1, . . . , wk}

meta

⇐⇒
(p(w1, . . . , wk) ? ¬0 : (δp,st ∧ ¬p){w1, . . . , wk})

∧ ¬p(w1, . . . , wk)

meta

⇐⇒ (Fst[p] ∧ ¬p){w1, . . . , wk}

(by the definitions of Fst[·], ∆+
st[·], and ∆−

st[·])

(ii) ∆−
st[p(w1, . . . , wk)]

meta

⇐⇒ 0

meta

⇐⇒ p{w1, . . . , wk}∧¬p{w1, . . . , wk}∧(¬δp,st ∨ p){w1, . . . , wk}

meta

⇐⇒
p{w1, . . . , wk}

∧ ¬(p{w1, . . . , wk}∨(δp,st ∧ ¬p){w1, . . . , wk})

meta

⇐⇒
p{w1, . . . , wk}

∧ ¬(p(w1, . . . , wk) ? ¬0 : (δp,st ∧ ¬p){w1, . . . , wk})

meta

⇐⇒ (p∧¬Fst[p]){w1, . . . , wk}

(by the definitions of Fst[·], ∆+
st[·], and ∆−

st[·])

For ϕ ≡ p(w1, . . . , wk), p ∈ C, and τp,st is of the form p∧ δp,st or δp,st ∧ p

(i) ∆+
st[p(w1, . . . , wk)]

meta

⇐⇒ 0

meta

⇐⇒ p{w1, . . . , wk}∧(δp,st ∨ ¬p){w1, . . . , wk}∧ ¬p{w1, . . . , wk}

meta

⇐⇒
(p(w1, . . . , wk) ? (δp,st ∨ ¬p){w1, . . . , wk} : 0)

∧ ¬p{w1, . . . , wk}

meta

⇐⇒
(p(w1, . . . , wk) ? ¬(¬δp,st ∧ p){w1, . . . , wk} : 0)

∧ ¬p{w1, . . . , wk}

meta

⇐⇒ (Fst[p] ∧ ¬p){w1, . . . , wk}

(by the definitions of Fst[·], ∆+
st[·], and ∆−

st[·])
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(ii) ∆−
st[p(w1, . . . , wk)]

meta

⇐⇒ (¬δp,st ∧ p){w1, . . . , wk}

meta

⇐⇒
p{w1, . . . , wk}

∧ (p(w1, . . . , wk) ? (¬δp,st ∧ p){w1, . . . , wk} : 1)

meta

⇐⇒
p{w1, . . . , wk}

∧ ¬(p(w1, . . . , wk) ? ¬(¬δp,st ∧ p){w1, . . . , wk} : 0)

meta

⇐⇒ (p∧ ¬Fst[p]){w1, . . . , wk}

(by the definitions of Fst[·], ∆+
st[·], and ∆−

st[·])

For ϕ ≡ p(w1, . . . , wk), p ∈ C, but τp,st is not of the above forms

(i) ∆+
st[p(w1, . . . , wk)]

meta

⇐⇒ (τp,st ∧ ¬p){w1, . . . , wk}

meta

⇐⇒




p(w1, . . . , wk)

? ¬(p∧ τp,st){w1, . . . , wk}

: (τp,st ∧ ¬p){w1, . . . , wk}


 ∧ ¬p(w1, . . . , wk)

meta

⇐⇒ (Fst[p] ∧¬p){w1, . . . , wk}

(by the definitions of Fst[·], ∆+
st[·], and ∆−

st[·])

(ii) ∆−
st[p(w1, . . . , wk)]

meta

⇐⇒ (p∧¬τp,st){w1, . . . , wk}

meta

⇐⇒ p{w1, . . . , wk}∧




p(w1, . . . , wk)

? (p∧ ¬τp,st){w1, . . . , wk}

: ¬(τp,st ∧ ¬p){w1, . . . , wk}




meta

⇐⇒ p{w1, . . . , wk}∧ ¬




p(w1, . . . , wk)

? ¬(p∧¬τp,st){w1, . . . , wk}

: (τp,st ∧ ¬p){w1, . . . , wk}




meta

⇐⇒ (p∧¬Fst[p]){w1, . . . , wk}

(by the definitions of Fst[·], ∆+
st[·], and ∆−

st[·])
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For p(w1, . . . , wk), p ∈ I,

(i) ∆+
st[p(w1, . . . , wk)]

meta

⇐⇒ ∆+
st[ψp{w1, . . . , wk}]

meta

⇐⇒ Fst[ψp{w1, . . . , wk}] ∧ ¬ψp{w1, . . . , wk}

(by inductive hypothesis (i) for ψp)

meta

⇐⇒ (Fst[p] ∧ ¬p){w1, . . . , wk}

(ψp is the defining formula for p)

(ii) ∆−
st[p(w1, . . . , wk)]

meta

⇐⇒ ∆−
st[ψp{w1, . . . , wk}]

meta

⇐⇒ ψp{w1, . . . , wk}∧¬Fst[ψp{w1, . . . , wk}]

(by inductive hypothesis (ii) for ψp)

meta

⇐⇒ (p∧¬Fst[p]){w1, . . . , wk}

(ψp is the defining formula for p)

Not ϕ ≡ ¬ϕ1.

(i) ∆+
st[¬ϕ1]

meta

⇐⇒ ∆−
st[ϕ1]

meta

⇐⇒ ϕ1 ∧ ¬Fst[ϕ1] (by inductive hypothesis (ii) for ϕ1)

meta

⇐⇒ Fst[¬ϕ1] ∧¬(¬ϕ1) (by inductive hypothesis (iii) for ϕ1)

(ii) ∆−
st[¬ϕ1]

meta

⇐⇒ ∆+
st[ϕ1]

meta

⇐⇒ Fst[ϕ1] ∧ ¬ϕ1 (by inductive hypothesis (i) for ϕ1)

meta

⇐⇒ (¬ϕ1) ∧¬¬Fst[ϕ1]

meta

⇐⇒ (¬ϕ1) ∧¬Fst[¬ϕ1] (by inductive hypothesis (iii) for ϕ1)
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(iii) Fst[¬ϕ1]
meta

⇐⇒ (¬ϕ1) ? ¬∆−
st[¬ϕ1] : ∆+

st[¬ϕ1]

meta

⇐⇒ ϕ1 ? ∆+
st[¬ϕ1] : ¬∆−

st[¬ϕ1]

meta

⇐⇒ ϕ1 ? ∆−
st[ϕ1] : ¬∆+

st[ϕ1] (by the definitions of ∆+
st[·] and ∆−

st[·])

meta

⇐⇒ ¬(ϕ1 ? ¬∆−
st[ϕ1] : ∆+

st[ϕ1])

meta

⇐⇒ ¬Fst[ϕ1]

Or ϕ ≡ ϕ1 ∨ϕ2.

(i) ∆+
st[ϕ1 ∨ϕ2]

meta

⇐⇒ (∆+
st[ϕ1] ∧¬ϕ2) ∨(¬ϕ1 ∧ ∆+

st[ϕ2])

meta

⇐⇒ (Fst[ϕ1] ∧ ¬ϕ1 ∧ ¬ϕ2) ∨(¬ϕ1 ∧ Fst[ϕ2] ∧¬ϕ2)

(by inductive hypothesis (i) for ϕ1 and ϕ2)

meta

⇐⇒ (Fst[ϕ1] ∨ Fst[ϕ2]) ∧(¬ϕ1 ∧ ¬ϕ2)

meta

⇐⇒ (Fst[ϕ1 ∨ϕ2]) ∧ ¬(ϕ1 ∨ϕ2)

(by part (iii) for ϕ1 ∨ϕ2, proved independently below)

(ii) ∆−
st[ϕ1 ∨ϕ2]

meta

⇐⇒ (∆−
st[ϕ1] ∧ ¬Fst[ϕ2]) ∨(¬Fst[ϕ1] ∧∆−

st[ϕ2])

meta

⇐⇒ (ϕ1 ∧ ¬Fst[ϕ1] ∧ ¬Fst[ϕ2]) ∨(¬Fst[ϕ1] ∧ ¬Fst[ϕ2] ∧ϕ2)

(by inductive hypothesis (ii) for ϕ1 and ϕ2)

meta

⇐⇒ (ϕ1 ∨ϕ2) ∧(¬Fst[ϕ1] ∧ ¬Fst[ϕ2])

meta

⇐⇒ (ϕ1 ∨ϕ2) ∧ ¬(Fst[ϕ1] ∨ Fst[ϕ2])

meta

⇐⇒ (ϕ1 ∨ϕ2) ∧ ¬Fst[ϕ1 ∨ϕ2]

(by part (iii) for ϕ1 ∨ϕ2, proved independently below)
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(iii) Fst[ϕ1 ∨ϕ2]
meta

⇐⇒ (ϕ1 ∨ϕ2) ? ¬∆−
st[ϕ1 ∨ϕ2] : ∆+

st[ϕ1 ∨ϕ2]

meta

⇐⇒ (ϕ1 ∨ϕ2)

? ¬
[
(∆−

st[ϕ1] ∧¬Fst[ϕ2]) ∨(¬Fst[ϕ1] ∧ ∆−
st[ϕ2])

]

: (∆+
st[ϕ1] ∧ ¬ϕ2) ∨(¬ϕ1 ∧ ∆+

st[ϕ2])

(by the definitions of ∆+
st[·] and ∆−

st[·])

meta

⇐⇒



 (ϕ1 ∨ϕ2)

∧ ¬
[
(∆−

st[ϕ1] ∧ ¬Fst[ϕ2]) ∨(¬Fst[ϕ1] ∧∆−
st[ϕ2])

]





∨


 ¬(ϕ1 ∨ϕ2)

∧
[
(∆+

st[ϕ1] ∧ ¬ϕ2) ∨(¬ϕ1 ∧ ∆+
st[ϕ2])

]




meta

⇐⇒


 (ϕ1 ∨ϕ2)

∧ ¬
[
(∆−

st[ϕ1] ∧ ¬Fst[ϕ2]) ∨(¬Fst[ϕ1] ∧∆−
st[ϕ2])

]




∨ (¬ϕ1 ∧ ∆+
st[ϕ1] ∧ ¬ϕ2) ∨(¬ϕ1 ∧ ∆+

st[ϕ2] ∧ ¬ϕ2)

meta

⇐⇒








(ϕ1 ∨ϕ2)

∧ (¬∆−
st[ϕ1] ∨ Fst[ϕ2])

∧ (Fst[ϕ1] ∨¬∆−
st[ϕ2])




∨ (¬ϕ1 ∧ ∆+
st[ϕ1] ∧ ¬ϕ2) ∨(¬ϕ1 ∧ ∆+

st[ϕ2] ∧ ¬ϕ2)

meta

⇐⇒






ϕ1 ∧ ¬∆−
st[ϕ1] ∧ Fst[ϕ1]

∨ ϕ1 ∧ ¬∆−
st[ϕ1] ∧¬∆−

st[ϕ2]

∨ ϕ1 ∧ Fst[ϕ2] ∧ Fst[ϕ1]

∨ ϕ1 ∧ Fst[ϕ2] ∧¬∆−
st[ϕ2]

∨ ϕ2 ∧ ¬∆−
st[ϕ1] ∧ Fst[ϕ1]

∨ ϕ2 ∧ ¬∆−
st[ϕ1] ∧¬∆−

st[ϕ2]

∨ ϕ2 ∧ Fst[ϕ2] ∧ Fst[ϕ1]

∨ ϕ2 ∧ Fst[ϕ2] ∧¬∆−
st[ϕ2]

∨ ¬ϕ1 ∧ ∆+
st[ϕ1] ∧¬ϕ2

∨ ¬ϕ1 ∧ ∆+
st[ϕ2] ∧¬ϕ2

(A.1)
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We consider the direction Fst[ϕ1 ∨ϕ2]
meta

=⇒ Fst[ϕ1] ∨ Fst[ϕ2] first. We consider the ten cases

that correspond to the cases that (at least) one of the ten disjuncts of Formula (A.1) holds.

Each case that concerns a disjunct that contains Fst[ϕ1] or Fst[ϕ2] as a conjunct trivially

implies that Fst[ϕ1] ∨ Fst[ϕ2] holds. We consider the remaining four cases.

ϕ1 ∧ ¬∆−
st[ϕ1] ∧ ¬∆−

st[ϕ2]
meta

=⇒ ϕ1 ∧ ¬∆−
st[ϕ1]

meta

=⇒ ϕ1 ∧ ¬∆−
st[ϕ1] ∨¬ϕ1 ∧ ∆+

st[ϕ1]

meta

⇐⇒ Fst[ϕ1] (by the definition of Fst[·])

ϕ2 ∧ ¬∆−
st[ϕ1] ∧ ¬∆−

st[ϕ2]
meta

=⇒ ϕ2 ∧ ¬∆−
st[ϕ2]

meta

=⇒ ϕ2 ∧ ¬∆−
st[ϕ2] ∨¬ϕ2 ∧ ∆+

st[ϕ2]

meta

⇐⇒ Fst[ϕ2] (by the definition of Fst[·])

¬ϕ1 ∧ ∆+
st[ϕ1] ∧ ¬ϕ2

meta

=⇒ ¬ϕ1 ∧ ∆+
st[ϕ1]

meta

=⇒ ϕ1 ∧ ¬∆−
st[ϕ1] ∨ ¬ϕ1 ∧ ∆+

st[ϕ1]

meta

⇐⇒ Fst[ϕ1] (by the definition of Fst[·])

¬ϕ1 ∧ ∆+
st[ϕ2] ∧ ¬ϕ2

meta

=⇒ ¬ϕ2 ∧ ∆+
st[ϕ2]

meta

=⇒ ϕ2 ∧ ¬∆−
st[ϕ2] ∨ ¬ϕ2 ∧ ∆+

st[ϕ2]

meta

⇐⇒ Fst[ϕ2] (by the definition of Fst[·])

We consider the direction Fst[ϕ1] ∨ Fst[ϕ2]
meta

=⇒ Fst[ϕ1 ∨ϕ2] next. Without loss of general-

ity, assume that Fst[ϕ1] holds. We consider two cases: ϕ1 ∧ ¬∆−
st[ϕ1] holds; ¬ϕ1 ∧ ∆+

st[ϕ1]

holds. We show that both cases imply that a disjunct of Formula (A.1) holds. If a disjunct

of Formula (A.1) holds, then Fst[ϕ1 ∨ϕ2] must hold because the latter holds if and only if

Formula (A.1) holds. First, assume that ϕ1 ∧ ¬∆−
st[ϕ1] holds.

ϕ1 ∧ ¬∆−
st[ϕ1]

meta

⇐⇒ ϕ1 ∧ ¬∆−
st[ϕ1] ∧ Fst[ϕ1] (by inductive hypothesis (ii) for ϕ1)

meta

=⇒ Fst[ϕ1 ∨ϕ2] (the RHS above is a disjunct of Formula (A.1))
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Now, assume that ¬ϕ1 ∧ ∆+
st[ϕ1] holds. We consider two subcases: ϕ2 holds; ¬ϕ2 holds.

Assume that ϕ2 holds.

ϕ2 ∧ ¬ϕ1 ∧ ∆+
st[ϕ1]

meta

⇐⇒ ϕ2 ∧ ¬∆−
st[ϕ1] ∧ ¬ϕ1 ∧ ∆+

st[ϕ1]

(¬ϕ1
meta

=⇒ ¬∆−
st[ϕ1] by inductive hypothesis (ii))

meta

=⇒ ϕ2 ∧ ¬∆−
st[ϕ1] ∧ Fst[ϕ1] (by the definition of Fst[·])

meta

=⇒ Fst[ϕ1 ∨ϕ2] (the RHS above is a disjunct of Formula (A.1))

If ¬ϕ2 holds (the second subcase), the result is immediate; it implies that the following

disjunct of Formula (A.1) holds: ¬ϕ1 ∧ ∆+
st[ϕ1] ∧ ¬ϕ2.

And ϕ ≡ ϕ1 ∧ϕ2. The entries for ∆+
st[ϕ1 ∧ϕ2] and ∆−

st[ϕ1 ∧ϕ2] can be derived from those for

∆+
st[ϕ1 ∨ϕ2], ∆−

st[ϕ1 ∨ϕ2], ∆+
st[¬ϕ1], and ∆−

st[¬ϕ1].

∆+
st[ϕ1 ∧ϕ2]

meta

⇐⇒ ∆+
st[¬(¬ϕ1 ∨ ¬ϕ2)]

meta

⇐⇒ ∆−
st[¬ϕ1 ∨ ¬ϕ2] (by the definition of ∆+

st[·])

meta

⇐⇒ (∆−
st[¬ϕ1] ∧ ¬Fst[¬ϕ2]) ∨(¬Fst[¬ϕ1] ∧∆−

st[¬ϕ2])

(by the definition of ∆−
st[·])

meta

⇐⇒ (∆+
st[ϕ1] ∧ Fst[ϕ2]) ∨(Fst[ϕ1] ∧∆+

st[ϕ2])

(by the definition of ∆−
st[·] and inductive hypothesis (iii))

∆−
st[ϕ1 ∧ϕ2]

meta

⇐⇒ ∆−
st[¬(¬ϕ1 ∨ ¬ϕ2)]

meta

⇐⇒ ∆+
st[¬ϕ1 ∨ ¬ϕ2] (by the definition of ∆−

st[·])

meta

⇐⇒ (∆+
st[¬ϕ1] ∧ ¬(¬ϕ2)) ∨(¬(¬ϕ1) ∧∆+

st[¬ϕ2])

(by the definition of ∆+
st[·])

meta

⇐⇒ (∆−
st[ϕ1] ∧ϕ2) ∨(ϕ1 ∧ ∆−

st[ϕ2]) (by the definition of ∆+
st[·])
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Exists ϕ ≡ ∃ v1 : ϕ1.

(i) ∆+
st[∃ v1 : ϕ1]

meta

⇐⇒ (∃ v1 : ∆+
st[ϕ1]) ∧¬(∃ v1 : ϕ1) (by the definition of ∆+

st[·])

meta

⇐⇒ (∃ v1 : ∆+
st[ϕ1]) ∧¬(∃ v1 : ϕ1) ∧ ¬(∃ v1 : ϕ1)

meta

⇐⇒




(∃ v1 : ϕ1)

? ¬
[
(∃ v1 : ∆−

st[ϕ1]) ∧¬(∃ v1 : Fst[ϕ1])
]

: (∃ v1 : ∆+
st[ϕ1]) ∧ ¬(∃ v1 : ϕ1)


 ∧ ¬(∃ v1 : ϕ1)

meta

⇐⇒
[
(∃ v1 : ϕ1) ? ¬∆−

st[(∃ v1 : ϕ1)] : ∆+
st[(∃ v1 : ϕ1)]

]
∧ ¬(∃ v1 : ϕ1)

(by the definitions of ∆−
st[·] and ∆+

st[·])

meta

⇐⇒ Fst[∃ v1 : ϕ1] ∧ ¬(∃ v1 : ϕ1) (by the definition of Fst[·])

(ii) ∆−
st[∃ v1 : ϕ1]

meta

⇐⇒ (∃ v1 : ∆−
st[ϕ1]) ∧ ¬(∃ v1 : Fst[ϕ1]) (by the definition of ∆−

st[·])

meta

⇐⇒ (∃ v1 : ϕ1) ∧(∃ v1 : ∆−
st[ϕ1]) ∧¬(∃ v1 : Fst[ϕ1])

((∃ v1 : ∆−
st[ϕ1])

meta

=⇒ (∃ v1 : ϕ1) by inductive hypothesis (ii))

meta

⇐⇒ (∃ v1 : ϕ1) ∧




(∃ v1 : ϕ1)

? (∃ v1 : ∆−
st[ϕ1]) ∧ ¬(∃ v1 : Fst[ϕ1])

: ¬
[
(∃ v1 : ∆+

st[ϕ1]) ∧ ¬(∃ v1 : ϕ1)
]




meta

⇐⇒ (∃ v1 : ϕ1) ∧¬




(∃ v1 : ϕ1)

? ¬
[
(∃ v1 : ∆−

st[ϕ1]) ∧ ¬(∃ v1 : Fst[ϕ1])
]

: (∃ v1 : ∆+
st[ϕ1]) ∧ ¬(∃ v1 : ϕ1)




meta

⇐⇒ (∃ v1 : ϕ1) ∧¬
[
(∃ v1 : ϕ1) ? ¬∆−

st[(∃ v1 : ϕ1)] : ∆+
st[(∃ v1 : ϕ1)]

]

(by the definitions of ∆−
st[·] and ∆+

st[·])

meta

⇐⇒ (∃ v1 : ϕ1) ∧¬Fst[∃ v1 : ϕ1] (by the definition of Fst[·])
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(iii) We consider the direction Fst[∃ v1 : ϕ1]
meta

=⇒ ∃ v1 : Fst[ϕ1] first.

Fst[∃ v1 : ϕ1]
meta

⇐⇒ (∃ v1 : ϕ1) ? ¬∆−
st[(∃ v1 : ϕ1)] : ∆+

st[(∃ v1 : ϕ1)]

meta

⇐⇒






(∃ v1 : ϕ1)

? ¬
[
(∃ v1 : ∆−

st[ϕ1]) ∧ ¬(∃ v1 : Fst[ϕ1])
]

: (∃ v1 : ∆+
st[ϕ1]) ∧¬(∃ v1 : ϕ1)

(by the definitions of ∆−
st[·] and ∆+

st[·])

meta

⇐⇒





(∃ v1 : ϕ1) ∧¬(∃ v1 : ∆−
st[ϕ1])

∨ (∃ v1 : ϕ1) ∧(∃ v1 : Fst[ϕ1])

∨ ¬(∃ v1 : ϕ1) ∧(∃ v1 : ∆+
st[ϕ1])

(A.2)

We consider the three cases that correspond to the cases that (at least) one of the three

disjuncts of Formula (A.2) holds. The case that concerns the middle disjunct, which contains

(∃ v1 : Fst[ϕ1]) as a conjunct, is immediate. We consider the remaining two cases. First,

assume that (∃ v1 : ϕ1) ∧¬(∃ v1 : ∆−
st[ϕ1]) holds.

(∃ v1 : ϕ1) ∧¬(∃ v1 : ∆−
st[ϕ1])

meta

=⇒ ∃ v1 : (ϕ1 ∧ ¬∆−
st[ϕ1])

meta

=⇒ ∃ v1 : (ϕ1 ? ¬∆−
st[ϕ1] : ∆+

st[ϕ1])

meta

⇐⇒ ∃ v1 : Fst[ϕ1] (by the definition of Fst[·])

Now, assume that ¬(∃ v1 : ϕ1) ∧(∃ v1 : ∆+
st[ϕ1]) holds.

¬(∃ v1 : ϕ1) ∧(∃ v1 : ∆+
st[ϕ1])

meta

=⇒ ∃ v1 : (¬ϕ1 ∧ ∆+
st[ϕ1])

meta

=⇒ ∃ v1 : (ϕ1 ? ¬∆−
st[ϕ1] : ∆+

st[ϕ1])

meta

⇐⇒ ∃ v1 : Fst[ϕ1] (by the definition of Fst[·])

We consider the direction ∃ v1 : Fst[ϕ1]
meta

=⇒ Fst[∃ v1 : ϕ1] next.

∃ v1 : Fst[ϕ1]
meta

⇐⇒ ∃ v1 : (ϕ1 ? ¬∆−
st[ϕ1] : ∆+

st[ϕ1]) (by the definition of Fst[·])

meta

⇐⇒ ∃ v1 : (ϕ1 ∧¬∆−
st[ϕ1] ∨ ¬ϕ1 ∧ ∆+

st[ϕ1])

meta

⇐⇒ (∃ v1 : ϕ1 ∧¬∆−
st[ϕ1]) ∨(∃ v1 : ¬ϕ1 ∧ ∆+

st[ϕ1]) (A.3)
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We consider the two cases that correspond to the cases that (at least) one of the two disjuncts

of Formula (A.3) holds. First, assume that (∃ v1 : ϕ1 ∧ ¬∆−
st[ϕ1]) holds.

∃ v1 : ϕ1 ∧ ¬∆−
st[ϕ1]

meta

⇐⇒ (∃ v1 : ϕ1) ∧(∃ v1 : ϕ1 ∧ ¬∆−
st[ϕ1])

meta

=⇒ (∃ v1 : ϕ1) ∧(∃ v1 : ϕ1 ? ¬∆−
st[ϕ1] : ∆+

st[ϕ1])

meta

⇐⇒ (∃ v1 : ϕ1) ∧(∃ v1 : Fst[ϕ1]) (by the definition of Fst[·])

meta

=⇒ (∃ v1 : ϕ1) ∧
[
¬(∃ v1 : ∆−

st[ϕ1]) ∨(∃ v1 : Fst[ϕ1])
]

meta

=⇒ (∃ v1 : ϕ1)

? ¬
[
(∃ v1 : ∆−

st[ϕ1]) ∧¬(∃ v1 : Fst[ϕ1])
]

: (∃ v1 : ∆+
st[ϕ1]) ∧ ¬(∃ v1 : ϕ1)

meta

⇐⇒ (∃ v1 : ϕ1) ? ¬∆−
st[(∃ v1 : ϕ1)] : ∆+

st[(∃ v1 : ϕ1)]

(by the definitions of ∆−
st[·] and ∆+

st[·])

meta

⇐⇒ Fst[∃ v1 : ϕ1] (by the definition of Fst[·])

Now, assume that (∃ v1 : ¬ϕ1 ∧ ∆+
st[ϕ1]) holds. We consider two subcases: (∃ v1 : ϕ1)

holds; ¬(∃ v1 : ϕ1) holds. Assume that (∃ v1 : ϕ1) holds.

(∃ v1 : ϕ1) ∧(∃ v1 : ¬ϕ1 ∧ ∆+
st[ϕ1])

meta

=⇒ (∃ v1 : ϕ1) ∧(∃ v1 : ϕ1 ? ¬∆−
st[ϕ1] : ∆+

st[ϕ1])

meta

⇐⇒ (∃ v1 : ϕ1) ∧(∃ v1 : Fst[ϕ1])

(by the definition of Fst[·])

meta

=⇒ (∃ v1 : ϕ1) ∧
[
¬(∃ v1 : ∆−

st[ϕ1]) ∨(∃ v1 : Fst[ϕ1])
]

meta

=⇒ (∃ v1 : ϕ1)

? ¬
[
(∃ v1 : ∆−

st[ϕ1]) ∧ ¬(∃ v1 : Fst[ϕ1])
]

: (∃ v1 : ∆+
st[ϕ1]) ∧ ¬(∃ v1 : ϕ1)

meta

⇐⇒ (∃ v1 : ϕ1) ? ¬∆−
st[(∃ v1 : ϕ1)] : ∆+

st[(∃ v1 : ϕ1)]

(by the definitions of ∆−
st[·] and ∆+

st[·])

meta

⇐⇒ Fst[∃ v1 : ϕ1] (by the definition of Fst[·])



200

Assume that ¬(∃ v1 : ϕ1) holds (the second subcase).

¬(∃ v1 : ϕ1) ∧(∃ v1 : ¬ϕ1 ∧ ∆+
st[ϕ1])

meta

=⇒ ¬(∃ v1 : ϕ1) ∧(∃ v1 : ∆+
st[ϕ1])

meta

⇐⇒ ¬(∃ v1 : ϕ1) ∧(∃ v1 : ∆+
st[ϕ1]) ∧¬(∃ v1 : ϕ1)

meta

=⇒ (∃ v1 : ϕ1)

? ¬
[
(∃ v1 : ∆−

st[ϕ1]) ∧¬(∃ v1 : Fst[ϕ1])
]

: (∃ v1 : ∆+
st[ϕ1]) ∧ ¬(∃ v1 : ϕ1)

meta

⇐⇒ (∃ v1 : ϕ1) ? ¬∆−
st[(∃ v1 : ϕ1)] : ∆+

st[(∃ v1 : ϕ1)]

(by the definitions of ∆−
st[·] and ∆+

st[·])

meta

⇐⇒ Fst[∃ v1 : ϕ1] (by the definition of Fst[·])

Forall ϕ ≡ ∀ v1 : ϕ1. The entries for ∆+
st[∀ v1 : ϕ1] and ∆−

st[∀ v1 : ϕ1] can be derived from those

for ∆+
st[∃ v1 : ϕ1], ∆−

st[∃ v1 : ϕ1], ∆+
st[¬ϕ1], and ∆−

st[¬ϕ1].

∆+
st[∀ v1 : ϕ1]

meta

⇐⇒ ∆+
st[¬(∃ v1 : ¬ϕ1)]

meta

⇐⇒ ∆−
st[∃ v1 : ¬ϕ1] (by the definition of ∆+

st[·])

meta

⇐⇒ (∃ v1 : ∆−
st[¬ϕ1]) ∧ ¬(∃ v1 : Fst[¬ϕ1]) (by the definition of ∆−

st[·])

meta

⇐⇒ (∃ v1 : ∆+
st[ϕ1]) ∧¬(∃ v1 : ¬Fst[ϕ1])

(by the definition of ∆−
st[·] and inductive hypothesis (iii))

meta

⇐⇒ (∃ v1 : ∆+
st[ϕ1]) ∧(∀ v1 : Fst[ϕ1])

∆−
st[∀ v1 : ϕ1]

meta

⇐⇒ ∆−
st[¬(∃ v1 : ¬ϕ1)]

meta

⇐⇒ ∆+
st[∃ v1 : ¬ϕ1] (by the definition of ∆−

st[·])

meta

⇐⇒ (∃ v1 : ∆+
st[¬ϕ1]) ∧¬(∃ v1 : ¬ϕ1) (by the definition of ∆+

st[·])

meta

⇐⇒ (∃ v1 : ∆−
st[ϕ1]) ∧(∀ v1 : ϕ1) (by the definition of ∆+

st[·])

2
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Theorem A.2 (Theorem 3.5) Let S be a structure in 2-STRUCT, and let S ′
proto be the proto-

structure for statement st obtained from S. Let S ′ be the structure obtained by using S ′
proto as

the first approximation to S ′ and then filling in instrumentation relations in a topological ordering

of the dependences among them: for each arity-k relation p ∈ I, ιS
′

(p) is obtained by evaluating

[[ψp(v1, ... , vk)]]
S′

2 ([v1 7→ u′1, ... , vk 7→ u′k]) for all tuples (u′1, ... , u
′
k) ∈ (US′

)k. Then for every

formula ϕ(v1, ... , vk) and complete assignment Z for ϕ(v1, ... , vk),

[[Fst[ϕ(v1, ... , vk)]]]
S
2 (Z) = [[ϕ(v1, ... , vk)]]

S′

2 (Z)

Proof The proof is by induction on the size of ϕ. Let Z be [v1 7→ u1, ... , vk 7→ uk]. By

Lemma 3.4(iii) and the induction hypothesis, we need only consider the cases for atomic formulas.

1. For ϕ ≡ l, where l ∈ {0, 1},

[[Fst[l]]]
S
2 (Z) = [[l ? ¬∆−

st[l] : ∆+
st[l]]]

S
2 (Z)

= [[l ? ¬0 : 0]]S2 (Z)

= [[l]]S2 (Z)

= l

= [[l]]S
′

2 (Z)

2. For ϕ ≡ (vi1 =vi2),

[[Fst[vi1 =vi2 ]]]
S
2 (Z) = [[vi1 =vi2 ? ¬∆−

st[vi1 =vi2 ] : ∆+
st[vi1 =vi2 ]]]

S
2 (Z)

= [[vi1 =vi2 ? ¬0 : 0]]S2 (Z)

= [[vi1 =vi2]]
S
2 (Z)

= Z(vi1) = Z(vi2)

= [[vi1 =vi2]]
S′

2 (Z)
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3. For ϕ ≡ p(vi1 , ... , vik), p ∈ C, and τp,st is of the form p ? ¬δ−p,st : δ+
p,st

[[Fst[p(vi1 , ... , vik)]]]
S
2 (Z) = [[p(vi1 , ... , vik) ? ¬∆−

st[p(vi1 , ... , vik)] : ∆+
st[p(vi1 , ... , vik)]]]

S
2 (Z)

=







p(vi1 , ... , vik)

? ¬(δ−p,st ∧ p){vi1 , ... , vik}

: (δ+
p,st ∧ ¬p){vi1 , ... , vik}







S

2

(Z)

= [[(p ? ¬δ−p,st : δ+
p,st){vi1 , ... , vik}]]

S
2 (Z)

= [[τp,st(vi1 , ... , vik)]]
S
2 (Z)

= [[p(vi1 , ... , vik)]]
S′

2 (Z)

4. For ϕ ≡ p(w1, ... , wk), p ∈ C, and τp,st is of the form p∨ δp,st or δp,st ∨ p

[[Fst[p(vi1 , ... , vik)]]]
S
2 (Z) = [[p(vi1 , ... , vik) ? ¬∆−

st[p(vi1 , ... , vik)] : ∆+
st[p(vi1 , ... , vik)]]]

S
2 (Z)

= [[p(vi1 , ... , vik) ? ¬0 : (δp,st ∧ ¬p){vi1 , ... , vik}]]
S
2 (Z)

= [[(p∨ ¬p∧ δp,st){vi1 , ... , vik}]]
S
2 (Z)

= [[(p∨ δp,st){vi1 , ... , vik}]]
S
2 (Z)

= [[τp,st(vi1 , ... , vik)]]
S
2 (Z)

= [[p(vi1 , ... , vik)]]
S′

2 (Z)

5. For ϕ ≡ p(w1, ... , wk), p ∈ C, and τp,st is of the form p∧ δp,st or δp,st ∧ p

[[Fst[p(vi1 , ... , vik)]]]
S
2 (Z) = [[p(vi1 , ... , vik) ? ¬∆−

st[p(vi1 , ... , vik)] : ∆+
st[p(vi1 , ... , vik)]]]

S
2 (Z)

= [[p(vi1 , ... , vik) ? ¬(¬δp,st ∧ p){vi1, ... , vik} : 0]]S2 (Z)

= [[(p∧ ¬(¬δp,st ∧ p)){vi1 , ... , vik}]]
S
2 (Z)

= [[(p∧(δp,st ∨ ¬p)){vi1 , ... , vik}]]
S
2 (Z)

= [[(p∧ δp,st){vi1 , ... , vik}]]
S
2 (Z)

= [[τp,st(vi1 , ... , vik)]]
S
2 (Z)

= [[p(vi1 , ... , vik)]]
S′

2 (Z)
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6. For ϕ ≡ p(vi1 , ... , vik), p ∈ C, but τp,st is not of the above forms

[[Fst[p(vi1 , ... , vik)]]]
S
2 (Z) = [[p(vi1 , ... , vik) ? ¬∆−

st[p(vi1 , ... , vik)] : ∆+
st[p(vi1 , ... , vik)]]]

S
2 (Z)

=







p(vi1 , ... , vik)

? ¬(p∧ ¬τp,st){vi1, ... , vik}

: (τp,st ∧ ¬p){vi1 , ... , vik}







S

2

(Z)

= [[((p∧ ¬p) ∨(p∧ τp,st) ∨(τp,st ∧ ¬p)){vi1 , ... , vik}]]
S
2 (Z)

= [[τp,st(vi1 , ... , vik)]]
S
2 (Z)

= [[p(vi1 , ... , vik)]]
S′

2 (Z)

7. For ϕ ≡ p(vi1 , ... , vik), p ∈ I,

[[Fst[p(vi1 , ... , vik)]]]
S
2 (Z) = [[p(vi1 , ... , vik) ? ¬∆−

st[p(vi1 , ... , vik)] : ∆+
st[p(vi1 , ... , vik)]]]

S
2 (Z)

=







p(vi1 , ... , vik)

?¬∆−
st[ψp]{vi1 , ... , vik} : ∆+

st[ψp]{vi1 , ... , vik}








S

2

(Z)

=




ψp{vi1 , ... , vik}

?¬∆−
st[ψp]{vi1 , ... , vik} : ∆+

st[ψp]{vi1 , ... , vik}






S

2

(Z)

= [[Fst[ψp]{vi1 , ... , vik}]]
S
2 (Z)

= [[ψp{vi1 , ... , vik}]]
S′

2 (Z)

= [[p(vi1 , ... , vik)]]
S′

2 (Z)

2
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Appendix B: Proofs of Propositions from Chapter 7

Lemma 7.4.4 Let A be a 3-valued assignment such that (i) 〈〈ϕ〉〉(A) = 1, and (ii) for all A′
= A,

〈〈ϕ〉〉(A′) = 1/2. Then the formula

π
def
=

∧

1 ≤ i ≤ n and

A(xi) < 1/2

One(〈〈ϕ〉〉, A, i)

is a prime implicant of ⌊〈〈ϕ〉〉⌋.

Proof: By Defn. 7.3.1 (Eqn. (7.3)), and the presence of the guard “A(xi) < 1/2” in the index of

the conjunction, π is a conjunction of literals of the form shown in (7.20), namely the conjunction

π ≡
∧

A(xi)<1/2

x
A(xi)
i . (B.1)

By assumption (i), 〈〈ϕ〉〉(A) = 1. Defn. 7.2.1 implies that 〈〈ϕ〉〉 is a monotonic function in

{0, 1, 1/2}n → {0, 1, 1/2}. Thus, for all a rep. by A, 〈〈ϕ〉〉(a) ⊑ 〈〈ϕ〉〉(A) = 1, which, by the defi-

nition of ⌊·⌋, implies that ⌊〈〈ϕ〉〉⌋(a) = 1. Because a(xi) = A(xi) for all xi for whichA(xi) < 1/2,

π is an implicant of ⌊〈〈ϕ〉〉⌋.

To see that π is a prime implicant of ⌊〈〈ϕ〉〉⌋, consider the right-hand side of Eqn. (B.1) to be

the set of literals

Sπ = {x
A(xi)
i | A(xi) < 1/2}.

For any S that is a strict subset of Sπ, we would have the set of literals

S = {x
A′(xi)
i | A′(xi) < 1/2}

corresponding to an assignment A′, where A′
= A. However, by assumption (ii), 〈〈ϕ〉〉(A′) = 1/2,

which means, by Defn. 7.2.1, that

{〈〈ϕ〉〉(a) | a rep. by A′} = {0, 1}.

Therefore, there is a 2-valued assignment a0 such that a0(xi) = A′(xi) for all xi for whichA′(xi) <

1/2, and 〈〈ϕ〉〉(a0) = 0, and hence ⌊〈〈ϕ〉〉⌋(a0) = 0. This means that S, or more precisely,

∧

A′(xi)<1/2

x
A′(xi)
i
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is not an implicant of ⌊〈〈ϕ〉〉⌋.

Consequently, π is a prime implicant of ⌊〈〈ϕ〉〉⌋. 2

Lemma 7.4.5 Let π by a prime implicant of ⌊〈〈ϕ〉〉⌋. Then there is a 3-valued assignment A such

that

(i) 〈〈ϕ〉〉(A) = 1

(ii) For all A′
= A, 〈〈ϕ〉〉(A′) = 1/2

(iii) π ≡
∧

1 ≤ i ≤ n and

A(xi) < 1/2

One(〈〈ϕ〉〉, A, i)

Proof: Let π be the product

π
def
=

∧

i∈S⊆{1,... ,n}

xbi

i ,

and let AS be the assignment

AS =


xi 7→





bi if i ∈ S

1/2 otherwise




(i) Because π is a prime implicant of ⌊〈〈ϕ〉〉⌋, for all a represented by AS , ⌊〈〈ϕ〉〉⌋(a) = 1. There-

fore,

〈〈ϕ〉〉(a) = 1 (by the definition of ⌊·⌋)

[[ϕ]](a) = 1 (by Defn. 7.2.1)

〈〈ϕ〉〉(AS) = 1 (by Defn. 7.2.1)

(ii) If AS = [xi 7→ 1/2 | 1 ≤ i ≤ n] (and hence π is the formula 1), then property (ii) holds

vacuously. Thus, we may assume that AS binds at least one xi to a definite value.

Let A′ be an assignment such that A′
= AS . A′ and AS agree on some (possibly empty)

set {xi | i ∈ S ′}, for some S ′ ⊂ S. Let S ′
π be {xbi

i | A
′(xi) = bi, i ∈ S ′}. By our

assumptions, S ′
π is not an implicant of ⌊〈〈ϕ〉〉⌋. Thus, there is a 2-valued assignment a0 such
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that a0(xi) = A′(xi) for all i ∈ S ′, and ⌊〈〈ϕ〉〉⌋(a0) = 0; consequently, by the definition of

⌊·⌋, 〈〈ϕ〉〉(a0) ⊒ 0.

Pick any a1 represented by AS . Because π is a prime implicant of ⌊〈〈ϕ〉〉⌋, we have

⌊〈〈ϕ〉〉⌋(a1) = 1 (by Defn. 7.4.2)

〈〈ϕ〉〉(a1) = 1 (by the definition of ⌊·⌋)

[[ϕ]](a1) = 1 (by Defn. 7.2.1)

Because A′
= AS , a1 is also represented by A′. Thus,

〈〈ϕ〉〉(A′) =
⊔

a rep. by A′

[[ϕ]](a)

⊒ [[ϕ]](a0) ⊔ [[ϕ]](a1)

⊒ 0 ⊔ 1

= 1/2

(iii) π can be rewritten as
∧

1 ≤ i ≤ n and

AS(xi) < 1/2

x
AS(xi)
i . (B.2)

Because we showed in (i) that 〈〈ϕ〉〉(AS) = 1, formula (B.2) can, in turn, be expressed as

∧

1 ≤ i ≤ n and

AS(xi) < 1/2

One(〈〈ϕ〉〉, AS, i).

2

Lemma B.0.1 If f is a total Boolean function, then [[Primes[f ]]] = 〈〈Primes[f ]〉〉.

Proof: Let A be a 3-valued assignment. By Defn. 7.2.1 and the monotonicity of [[·]] (Lemma 7.1.4),

if [[Primes[f ]]](A) yields a definite value d, then 〈〈Primes[f ]〉〉(A) must also yield d.
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Thus, we must only consider the case in which

[[Primes[f ]]](A) = 1/2. (B.3)

To show that 〈〈Primes[f ]〉〉(A) = 1/2, we need to show that there exist definite assignments (i)

a1 rep. by A, such that [[Primes[f ]]](a1) = 1, and (ii) a0 rep. by A, such that [[Primes[f ]]](a0) = 0.

(i) Pick any disjunct of Primes[f ] that evaluates to 1/2 under assignment A, say πS
def
=

∧

i∈S⊆{1,... ,n}

xbi

i . Consider the variables xj such that j ∈ S and A(xj) = 1/2. Create a1

from A by replacing each binding xj 7→ 1/2 with xj 7→ bj . Because [[πS]](a1) = 1, we have

[[Primes[f ]]](a1) = 1.

(ii) Suppose for the sake of argument that,

for all a rep. by A, [[Primes[f ]]](a) = 1. (B.4)

By Defn. 7.4.2, this implies that for all a represented by A, f(a) = 1, which means that the

formula

πA
def
=

∧

A(xi)<1/2

x
A(xi)
i

is an implicant of f . Consequently, Primes[f ] contains a disjunct π such that π (considered

as a set of literals) is a subset of πA (considered as a set of literals). Therefore, [[π]](A) = 1,

which means that [[Primes[f ]]](A) = 1. However, this contradicts assumption (B.3), and

hence our subsequent assumption, assumption (B.4), must be incorrect.

Because f is a total Boolean function, there cannot be any definite assignment a such that

[[Primes[f ]]](a) = 1/2. Thus, the fact that assumption (B.4) is incorrect implies that there

must exist an a0 rep. by A such that [[Primes[f ]]](a0) = 0.

2

Lemma B.0.2 If f is a total Boolean function, then for all definite assignments a,

[[Primes[f ]]](a) = [[¬Primes[¬f ]]](a).
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Proof:

[[Primes[f ]]](a) = f(a) (follows from Defn. 7.4.2)

= 1− (1− f(a))

= 1− f(a)

= 1− f(a)

= 1− [[Primes[¬f ]]](a) (follows from Defn. 7.4.2)

= [[¬Primes[¬f ]]](a)

2

Theorem 7.4.7 If f is a total Boolean function, then [[Primes[f ]]] = [[¬Primes[¬f ]]].

Proof: Let A be a 3-valued assignment.

[[Primes[f ]]](A) = 〈〈Primes[f ]〉〉(A) (by Lemma B.0.1)

=
⊔

a rep. by A

[[Primes[f ]]](a) (by Defn. 7.2.1)

=
⊔

a rep. by A

[[¬Primes[¬f ]]](a) (by Lemma B.0.2)

=
⊔

a rep. by A

(1− [[Primes[¬f ]]](a))

= 1−
⊔

a rep. by A

[[Primes[¬f ]]](a)

= 1− 〈〈Primes[¬f ]〉〉(A) (by Defn. 7.2.1)

= 1− [[Primes[¬f ]]](A) (by Lemma B.0.1)

= [[¬Primes[¬f ]]](A)

2


