
TRANSFORMER SPECIFICATION LANGUAGE:

A SYSTEM FOR GENERATING ANALYZERS AND ITS APPLICATIONS

by

Junghee Lim

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences Department)

at the

UNIVERSITY OF WISCONSIN–MADISON

2011

c© Copyright by Junghee Lim 2011

All Rights Reserved

i

To my mom and dad. . .

ii

ACKNOWLEDGMENTS

I am indebted to the many people who made this thesis possible. First and foremost, my deepest

gratitude goes to my advisor, Prof. Thomas Reps. This thesiswould not have been possible without

his guidance. His inspiration, motivation, immense knowledge, and enthusiasm in research have

motivated all his advisees, including me. I am especially grateful for his patience and his best

efforts to teach me how to be a good researcher, and his ungrudging advice and encouragement to

complete my graduate study.

I would also like to thank him for an unforgettable year in Europe when he was taking me

along during his sabbatical. The year I spent in Paris was themost interesting time in my life. I am

very grateful for his sincere care concerning the fact that Iwas spending that year separate from

my husband.

He has provided continuous help and encouragement in many respects other than research

as well. I will never forget the thoughtful flowers he gave me every year remembering my dad.

Whenever I was having a hard time in many respects, he was willing to listen to me, stand by me,

and give the strength to overcome the adversities. It was oneof the luckiest things in my life to

have him as my advisor. I could not have imagined having a better advisor and mentor for my

graduate study and research.

I would like to dedicate this thesis to my family. Without their constant support and uncon-

ditional love, I could not have completed my graduate study.My father never stopped spiritually

supporting me from thousands of miles away, even in the moment suffering from his health prob-

lem. I feel a heartfelt sadness that I couldn’t stay by him at the moment he passed away. He must

have been very proud of me. I am thankful for my mother stayinghealthy and helping me have

iii

peace in my mind. They have been a constant source of love and encouragement and supported

me spiritually throughout my life.

Most importantly, I am heartily thankful to my husband, Dr. Min-Sik Kim, for making me

laugh when I needed it and for making available his support ina number of ways. I would also

like to thank my sister and brother, and my parents and sisters and brother in law for their love and

support. My dissertation would have been meaningless without my family.

My sincere thanks also goes to my undergraduate advisor, Prof. Jaejin Lee, for introducing me

to research and helping come to graduate school. His thoughtful and valuable advices in various

respects were the foundation for my graduate research.

I would like to show my gratitude to Prof. Susan Horwitz, Prof. Somesh Jha, Prof. Ben Liblit,

and Prof. Karu Sankaralingam for serving on my final defense committee. Their encouragement,

and insightful comments and questions helped me improve this thesis.

I have received so much help from past colleagues in Prof. Reps’s research group. I thank Gogul

Balakrishnan, Akash Lal, Nick Kidd, Denis Gopan, and AlexeyLoginov for their constant advice

and feedback that helped in developing my research work. Furthermore, I would like to thank

present and former colleagues in PL group, Evan Driscoll, Aditya Thakur, Matt Elder, Tushar

Sharma, Prathmesh Prabhu, Tycho Andersen, Emma Turetsky, Bill Harris, Ben Farley, Anne Mul-

hern, Cindy Rubio Gonzalez, Piramanayagam Arumuga, and Tristan Ravitch for always finding

the time to attend my practice talks and give feedback. Also Iwould like to thank my present and

former co-workers and advisors in GrammaTech, Prof. Tim Teitelbaum, David Melski, Suan Hsi

Yong, Thomas Johnson, and Radu Gruian. Special thanks go to Prof. Shan Lu and Wei Zhang,

with whom I enjoyed collaborating. Lastly, I offer my regards and blessings to all other friends

who supported me in any respect during my graduate study.

My dissertation research was supported by NSF under grants CCF-0524051, CCF-0540955,

CCF-0810053, and CCF-0904371; ONR under grants N00014-01-1-0708, N00014-01-1-0796,

and N00014-09-1-0776; AFRL under contracts FA8750-06-C-0249 and FA8750-05-C-0179; a do-

nation by GrammaTech, Inc.; and a Symantec Research Labs Graduate Fellowship.

iv

Any opinions, findings, and conclusions or recommendationsexpressed in this document are

those of the author, and do not necessarily reflect the views of the agencies and institutions that

provided support for the work.

DISCARD THIS PAGE

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xvi

1 Introduction . 1

1.1 The Challenge of Software Defects 3
1.2 Program-Analysis Approaches 4
1.3 Machine-Code Analysis 7
1.4 Transformer Specification Language (TSL) . 8

1.4.1 Semantic Reinterpretation 11
1.4.2 Technical Contributions Incorporated in theTSL Compilation Process . . . 14

1.5 Overview of Applications of theTSL System . 15
1.5.1 Static-Analysis Components 15
1.5.2 Symbolic-Analysis Components 16
1.5.3 MCVETO: A Refinement-Based Model Checker for Machine Code 18
1.5.4 BCE: Analyzing Bot Executables . 18

1.6 Contributions and Organization of the Dissertation 20

2 Machine-Code Analysis. 21

2.1 Challenges in Machine-Code Analysis 25
2.1.1 CodeSurfer/x86 .27

2.2 File-Format Extractor (FFE/x86) . 28
2.2.1 Programming Styles .30
2.2.2 User-Supplied Information 32
2.2.3 First step . 33
2.2.4 Augmenting an HFSM with Information from Static Analyses 37
2.2.5 Filtering . 40
2.2.6 Validation against dynamic output 43

vi

Page

2.2.7 Experimental Results .. . 45
2.2.8 Related Work on Recovering Input/Output Information. 46
2.2.9 Discussion ofFFE/x86 . 47

2.3 ConSeq . 48
2.3.1 Program Slicing inConSeq . 52
2.3.2 Evaluation . 55
2.3.3 Discussion ofConSeq . 56

2.4 Motivation for a New System for Implementing Machine-Code Analyses 57

3 Transformer Specification Language . 61

3.1 Overview of theTSL System . 63
3.1.1 TSL from anISS’s Standpoint . 64
3.1.2 TSL from an Analysis Developer’s Standpoint72

3.2 Various Aspects of a Common Intermediate Representation 75
3.2.1 Two-LevelCIR . 75
3.2.2 Execution Over Abstract States 78
3.2.3 Paired Semantics .81

3.3 TSL-Generated Analysis Components 84
3.3.1 Creation of a TA Transformer Evaluator forVSA 85
3.3.2 Creation of a TC Transformer Generator forARA 85
3.3.3 Def-Use Analysis (DUA) . 87
3.3.4 Creation of a UB Transformer Generator forASI 87
3.3.5 Quantifier-Free Bit-Vector (QFBV) Semantics 88

3.4 Measures of Success .. . 90
3.5 Related Work .94

3.5.1 Semantic Reinterpretation 94
3.5.2 Instruction-Set-Description Languages 96
3.5.3 Systems for Generating Analyzers 98

4 Symbolic Analysis via Semantic Reinterpretation 100

4.1 Semantic Reinterpretation 104
4.2 A Logic and Two Programming Languages 108

4.2.1 L: A Quantifier-Free Bit-Vector Logic with Finite Functions 108
4.2.2 PL : A Simple Source-Level Language 111
4.2.3 MC: A Simple Machine-Code Language 113

4.3 Symbolic Analysis for PL via Reinterpretation 114
4.4 Symbolic Analysis for MC via Reinterpretation 126
4.5 Other Language Constructs 130

vii

Appendix
Page

4.6 Incorporating Non-Determinism 133
4.7 Implementation and Evaluation 138
4.8 Related Work .140
4.9 Conclusion .146

5 Case Studies. 149

5.1 MCVETO . 150
5.1.1 Background on Directed Proof Generation (DPG) 153
5.1.2 MCVETO . 155
5.1.3 Implementation .160
5.1.4 Experiments . 161
5.1.5 Related Work . 163
5.1.6 Conclusion . 164

5.2 BCE . 165
5.2.1 Botnet-Command Extractor (BCE) . 168
5.2.2 Background on Directed Test Generation and Overview of BCE 172
5.2.3 Program Exploration using Control-Dependence Information 174
5.2.4 Using Nondeterminism to Sidestep System Calls 183
5.2.5 Extracting Type Information 184
5.2.6 Implementation .188
5.2.7 Experiments . 188
5.2.8 Limitations . 191
5.2.9 Related Work . 192
5.2.10 Conclusion . 193

6 Conclusion . 194

LIST OF REFERENCES . 200

APPENDICES

Appendix A: User Guide forTSL . 213
Appendix B: Semantic-Reinterpretation for Symbolic-Analysis Primitives 241

DISCARD THIS PAGE

viii

LIST OF TABLES

Table Page

2.1 Transformation of boxes. 44

2.2 Part of the specification ofgzip’s format [14]. 45

3.1 Parts of the declarations of the basetypes, basetype-operators, and map-access/update
functions for three analyses. 73

3.2 Transformers generated by theTSL system. 73

4.1 Experimental results. Key: CE = time for concrete execution; SE = time for symbolic
execution; SMT = solver time;|ϕ| = avg. number of constraints found; Div. = diver-
gence rate; CD+SE = time for concrete + symbolic execution (when run in lock-step);
Dist. = avg. distance before a diverging test diverges.TF/TA denotes the ratio of the
times (CE+SE+SMT) for the faithful version and the approximate version. (All times
are in seconds.) .142

A.1 Reserved exported functions; a complete list of reserved export functions can be found in233

A.2 Parts of the declarations of the basetypes, basetype-operators, and map-access/update
functions for three analyses. 236

DISCARD THIS PAGE

ix

LIST OF FIGURES

Figure Page

1.1 The interaction between theTSL system and a client analyzer. The grey boxes repre-
sentTSL-generated analysis components. .. . 10

1.2 Code fragment that swaps twoints; . 11

1.3 Application of the abstract transformers created by thesign-analysis reinterpretation
to the initial abstract stateσ0 = {x 7→ neg, y 7→ pos}. 13

2.1 (a) An example that uses individual writes. (b) An example of a bulk write. 31

2.2 (a) An FSM, (b) A hierarchical FSM. 33

2.3 The HFSM for Fig. 2.1(a). The shaded boxes signify calls to FSMs. Dotted lines
indicate implicit connections between FSMs. 35

2.4 The disassembled code for Fig. 2.1(a). Transparent boxes indicate output operations,
and shaded boxes indicate calls to sub-FSMs. 35

2.5 (a) The HFSM forgzip. (b) a fragment of the call graph ofgzip. 36

2.6 Organization ofCoderSurfer/x86, and howFFE/x86 interacts with its components. . . 36

2.7 An example code fragment;put byte is a output function, and call sites that call it
are output operations. 37

2.8 How to obtain information fromVSA. 38

2.9 Code fragment used to illustrate the use ofASI information. 40

2.10 (a) The disassembled code fragment for Fig. 2.9, (b) Theoutcome ofASI. 41

2.11 An example of simplification. 42

2.12 The final result after simplification, conversion, and inline expansion. 43

x

Figure Page

2.13 An example of the transformation. ‘.’ means any character. 44

2.14 The final result forgzip. 45

2.15 The common three-phase error-propagation process formost concurrency bugs (ob-
tained from [191]). .. . 49

2.16 An overview of theConSeq architecture (obtained from [191]). 52

2.17 Static slicing (right) and the distance calculation (left; obtained from [191]). 53

2.18 Two snippets ofVSA andASI implementations in CodeSurfer/x86;EvalVSA/ Updat-
eVSAState andCollectMemAccesses are otherIA32-specific procedures forVSA and
ASI, respectively;ASI makes use of the information fromVSA. 58

2.19 The description of the PowerPC instructionlwbrx (obtained from the PowerPC
instruction-set manual [27]). 59

3.1 The interaction between theTSL system and a client analyzer. The grey boxes repre-
sentTSL-generated analysis components. .. . 64

3.2 A part of the Intel manual’s specification ofIA32’s add instruction. 65

3.3 Syntax of constants of primitive type. 66

3.4 (a) A part of theTSL specification ofIA32 concrete semantics, which corresponds to
the specification ofadd from the IA32 manual. Reserved types and function names
are underlined, (b) A part of theCIR generated from (a); TheCIR is simplified in this
presentation. .. 67

3.5 An example of the specification of anARM conditional-move instruction inTSL. . . . 69

3.6 A method to handle theSPARC register window inTSL. 70

3.7 How aTSL-generated analysis component (interpInstr♯) is invoked in a solver that
uses classical worklist-based value propagation. 74

3.8 A fragment of thePowerPC specification for interpretingBCx instructions (BC, BCA,
BCL, BCLA). 76

3.9 An example of factoring inTSL. 77

xi

Appendix
Figure Page

3.10 The translation of the conditional expression “let answer = a ? b : c”. 79

3.11 (a) A recursiveTSL function, (b) The translation of the recursive function from (a).
For simplicity, some mathematical notation is used, including⊔ (join),

`
(widening),

⊑ (approximation), and⊥ (bottom). 80

3.12 (a) A part of the template class for paired semantics; (b) an example ofC++ explicit
template specialization to create a reduced product. 82

3.13 A fragment ofupdateState. 83

3.14 An example for trace-splitting 89

3.15 Time (in seconds) and the total/maximum number of memory allocations for getting
TSL-generatedARA transformers and hand-coded transformers. 91

4.1 (a) Code fragment that swaps twoints; (b) code fragment that swaps twoints using
pointers; (c) possible before and after configurations for code fragment (b): the swap
is unsuccessful due to aliasing; (d) x86 machine code (in Intel syntax) corresponding
to (a). 105

4.2 Application of the abstract transformers created by thesign-analysis reinterpretation
to the initial abstract stateσ0 = {x 7→ neg, y 7→ pos}. 108

4.3 The factored semantics ofL. 110

4.4 The factored semantics of PL. 112

4.5 An extended semantics of PL to accommodate the outcome of“divide-by-zero” exe-
cution. 114

4.6 The factored semantics of MC. 115

4.7 Standard types of the PL meaning functions, and the reinterpreted types used to obtain
an implementation of symbolic evaluation. 117

4.8 Symbolic evaluation of Fig. 4.1(a) via semantic reinterpretation, starting with the
StructUpdateUid = (∅, {F ′

ρ ←֓ Fρ}). 117

4.9 Symbolic evaluation of Fig. 4.1(b) via semantic reinterpretation, starting with a
StructUpdatethat corresponds to the “Before” column of Fig. 4.1(c). 118

xii

Appendix
Figure Page

4.10 Simplifications performed byaccessandupdate. The operations≡, 6=, and
.
= de-

noteequality-as-terms, definite-disequality, andpossible-equality, respectively. (The
possible-equality tests, “k1

.
= k2”, are really “otherwise” cases of three-pronged com-

parisons.) .123

4.11 Example of symbolic composition. 125

4.12 (a) A simple source-code fragment written in PL; (b) theMC code for (a). 129

4.13 An algorithm to obtain a path-constraint formula that characterizes which initial states
must follow pathπ. 131

4.14 Conversion of a recursively defined instruction—portrayed in (a) as a “microcode
loop” over the actions denoted by the dashed circles and arrows—into (b), an explicit
loop in the control-flow graph whose body is an instruction defined without using
recursion. The three microcode operations in (b) correspond to the three operations in
the body of the microcode loop in (a). 131

4.15 In a symbolic evaluation of the trace fromStart to P , the three path constraints
obtained from the branch instructions atB0, B1, andB2 constrain the values of
FchoiceMap(0), FchoiceMap(1), andFchoiceMap(2), respectively. To create a new initial state
that causes a concrete execution of the program to follow thesame path, except to
branch the opposite way atB2 (to reachQ), we need the satisfying assignment re-
turned by the theorem prover to satisfy the constraints onFchoiceMap(0) andFchoiceMap(1)
and the negated constraint onFchoiceMap(2). 137

4.16 The number of (non-blank) lines of C++ that are generated from theTSL specifica-
tions of the x86 and PowerPC instruction sets (as of Apr. 2010). The number of
(non-blank) lines ofTSL are indicated in bold. 138

4.17 Directed-test-generation algorithm used for comparing the divergence rates of the
faithful and unfaithful symbolic-evaluation primitives.. 141

5.1 The general refinement step across frontier(n, I,m). The presence of a witness is
indicated by a “�” inside of a node. 154

5.2 The formula for Pre(I, ψ), where ψ is update32 8 LE 32(M,R(ebp) − 8) +
update32 8 LE 32(M,R(ebp) − 12) = 10, obtained by evaluatingψ on the sym-
bolic stateS ′ = [M 7→ update32 8 LE 32(M,R(eax), 5), R 7→ R]. For brevity, the
following notational shorthands are used in the formula:p = R(eax), x = R(ebp)−8,
y = R(ebp)− 12, ∗x = M(R(ebp)− 8), ∗y = M(R(ebp)− 12), etc. 158

xiii

Appendix
Figure Page

5.3 MCVETO experiments. The columns show whetherMCVETO returned a proof, coun-
terexample, or an AE violation (Outcome); the number of instructions (#Instrs); the
number of concrete executions (CE); the number of symbolic executions (SE), which
also equals the number of calls to theYICES solver; the number of refinements (Ref),
which also equals the number of Preα computations; and the total time (in seconds).
*SMC test case. **Exceeded twenty-minute time limit. 162

5.4 (a) (top left) A snippet of the EvilBot source code, (b) (bottom left) alternative source code,
(c) (right) the assembly code of (a).. 166

5.5 (a) A simple example program; (b) the command string constructed based on the information
obtained fromBCE; (c) a sequence of API calls obtained fromBCE; (d) another simple
example; (e) constant examples provided byBCE; (f) the symbolic expression obtained from
BCE for the argumentn; (g) the constraint obtained fromBCE. 169

5.6 An example for whitebox fuzz testing. 174

5.7 An example to show control dependences.. 177

5.8 Two trace trees; (a) A trace tree without CDI; (b) a trace treewith CDI; the circles represent
branch nodes; the solid arrows represent possible paths to explore; the half-shaded circles
represent nodes labeled as eitherNf orNt. 177

5.9 An example in which it is necessary to choose an alternative candidate as a new path; the
source code ofstrcmp is inlined in this example.. 178

5.10 (a) An example with independentif-statements (and thus an exponential number of paths).
(b) An example more typical of bot code (with a linear number of paths). 180

5.11 (a) A control-dependence graph; (b) a trace tree when sub-trees are pruned using control-
dependence graph (a); (c) another control-dependence graph; (d) the trace tree when sub-trees
are pruned using control-dependence graph (c).. 182

5.12 A simple example for pruning. 182

5.13 A simple example for modeling a system call. 183

5.14 (a) The prototypes ofgetaddrinfo, ADDRINFO, andsockaddr in; (b) an example code
fragment. 187

xiv

Appendix
Figure Page

5.15 BCE experiments. The columns, in order, are: the number of instructions (#Instrs);
the percentage of nodes marked as eitherNf orNt in the final trace tree; the number
of unique traces ending with at least one API call; the numberof commands for which
BCE provides symbolic expressions; the total number of iterations to identify the
traces; the average trace length; the average time taken forconcrete execution; the total
time taken for concrete execution; the average time taken for symbolic execution; the
total time taken for symbolic execution; the average time taken for path exploration;
the total time taken for path exploration; and the total timetaken in seconds. The
experiments were run on a Intel P41.79GHz machine with1.49GB RAM. 189

5.16 BCE experiments. The table reports results for four configurations ofBCE: (1) “w/
CDI” and “w/ Pruning”, (2) “w/o CDI” and “w/ Pruning”, (3) “w/CDI” and “w/o
Pruning”, and (4) “w/o CDI” and “w/o Pruning”. The numbers reported in each col-
umn are the number of unique traces ending with API call(s), the total number of
iterations, and the percentage of iterations that resultedin a trace ending with API
calls. The experiments were run on a Intel P41.79GHz machine with1.49GB RAM;
the symbol “+” after the number of iterations means thatBCE with the configuration
did not finish (i.e., program exploration could continue infinitely even if all possible
commands had been identified.) 189

A.1 Syntax of constants of primitive phyla. 216

A.2 BasetypeOperators 226

A.3 Library functions on the primitive phyla. In this table,i’s are integer parameters,s’s
areSTR parameters, andb’s areBOOL parameters;MEMMAP32 8 is a reinterpretable
map-type whose original type isMAP[INT32,INT8]; m’s areMAP-type parameters. . 227

A.4 A TSL specification of a simplifiedIA32 concrete semantics; reserved types and func-
tion names are underlined. 238

A.5 TheCIR generated from Fig. A.4. (The superscript # is used to abbreviate the actual
generated names used in theTSL implementation.) 238

A.6 Required operators that an abstract domain must providefor a TSL reinterpretation;
T: the abstract domain for a maptype;K T: the key type of the map-typeT; D T: the
datum type of the map-typeT; TVL::Bool: a three value logic (FALSE, ONE, and
MAYBE); . 239

A.7 A part of the template class for paired semantics. 239

xv

Appendix
Figure Page

A.8 An example ofC++ explicit template specialization to create a reduced product. 240

A.9 A fragment ofupdateState32. 240

xvi

ABSTRACT

As computers have become a pivotal component of daily lives,computer safety, reliability, and

security issues have become enormously important. A considerable amount of recent research in

program analysis and software engineering has been carriedout on techniques and tools for finding

software bugs and security vulnerabilities, and on checking computer-safety properties. Most of

this research has focused on analyzing source code. Recently, machine-code analysis has begun

to receive great attention both because source code is oftenunavailable and because there can be

mismatches in various ways between source code and the machine code generated from the source

code.

The tools and techniques for analyzing machine code are, in principle, language-independent.

However, their implementations are often tied to one specific instruction set. Retargeting them to

another instruction set can be an expensive and error-proneprocess. This dissertation describes

a system that I developed, calledTSL (for “TransformerSpecificationLanguage”) that provides

a systematic solution to the problem of creating retargetable tools for analyzing machine-code.

The TSL system is a meta-tool, or tool generator, that automatically creates different abstract

interpreters for machine-code instruction sets. The system addresses the problem of supporting

multiple instruction sets by providing aYACC-like mechanism for creating key components of

machine-code analyzers. TheTSL system takes a single, unified description of the concrete op-

erational semantics of an instruction set, which is specified in TSL, a strongly typed, first-order

xvii

functional language, and automatically creates implementations of different abstract interpreters

for the given instruction set.

TSL provides a fixed set of base-types and operators, as well as map-types with map-access and

(applicative) map-update operations. TheTSL compiler generates a common intermediate repre-

sentation that allows the meanings of the input-language constructs to be redefined by supplying

alternative interpretations of the base-types, map-types, and the operations on them (“semantic

reinterpretation”). Because all the abstract operations are defined at themeta-level, a semantic

reinterpretation is independent of any given instruction set defined inTSL. Therefore, each imple-

mentation of an analysis component’s driver serves as the unchanging driver for use in different

instantiations of the analysis component for different instruction sets. TheTSL language becomes

the specification language for retargeting that analysis component to different instruction sets.

As an application of theTSL system, we developed a novel way of applying semantic reinter-

pretation to automatically create symbolic-analysis primitives for symbolic evaluation, weakest-

liberal precondition, and symbolic composition. Furthermore, using theTSL system, as well as

the TSL-generated symbolic-analysis primitives, we developed a machine-code verification tool,

calledMCVETO, and a concolic-execution-based program-exploration tool, calledBCE.

• MCVETO addresses a large number of issues that arise when developing model-checking

tools for machine code, for which standard techniques used in source-code model-checking

tools would be unsound if applied to machine code.

• What distinguishes the work onBCE is that it makes use of control-dependence information

to make program exploration goal-directed toward a given set of targets.

1

Chapter 1

Introduction

As computers have become a pivotal component of daily lives,computer safety, reliability, and se-

curity issues have become enormously important. To addressthese issues, a considerable amount

of research has been carried out recently in the programming-language and software-engineering

communities on techniques for finding software bugs and security vulnerabilities, and on checking

computer-safety properties. This work has led to a large number of program-analysis techniques

and tools. Essentially all of the results described in the literature are, in principle, language-

independent; however, their implementations are often tied to one specific language. Retargeting

them to another language (as well as implementing a new analysis for the same language) can be

an expensive and error-prone process. For machine-code analyses, having a language-dependent

implementation is even worse than for source-code analysesbecause instruction sets usually con-

tain several hundred kinds of instructions, and a given instruction set often has special features not

found in other instruction sets.

This dissertation describes a system that I developed, called TSL (for “Transformer

SpecificationLanguage”), which helps in the creation of tools for analyzing machine code. The

TSL system is a meta-tool, or tool generator, that automatically creates different abstract inter-

preters for machine-code instruction sets. The system addresses the problem of supporting multiple

instruction sets by providing aYACC-like mechanism for creating key components of machine-

code analyzers. TheTSL system takes a single, unified description of the concrete operational

semantics of an instruction set, and automatically createsimplementations of different abstract

interpreters for the given instruction set.

2

An instruction set’s concrete semantics is specified inTSL’s input language, which is a strongly

typed, first-order functional language with a datatype-definition mechanism for defining recursive

datatype, plus deconstruction by means of pattern matching. Writing a TSL specification for an

instruction set is similar to writing an interpreter in first-order ML.

TSL provides a fixed set of base-types and operators, as well as map-types with map-access and

(applicative) map-update operations. From aTSL specification, theTSL compiler generates a com-

mon intermediate representation (CIR) that allows the meanings of the input-language constructs

to be redefined by supplying alternative interpretations ofthe base-types, map-types, and the oper-

ations on them (“semantic reinterpretation”). Because allthe abstract operations are defined at the

meta-level, semantic reinterpretation is independent of any given instruction set defined inTSL.

Therefore, each implementation of an analysis component’sdriver serves as the unchanging driver

for use in different instantiations of the analysis component to different instruction sets. TheTSL

language becomes the specification language for retargeting that analysis component for different

instruction sets. Thus, to createM × N analysis components, theTSL system only requiresM

specifications of the concrete semantics of an instruction set, andN analysis implementations, i.e.,

M +N inputs to obtainM ×N analysis-component implementations.

Applications. As one application of theTSL system, we developed a novel way of applying

semantic reinterpretation to automatically create symbolic-analysis primitives for symbolic eval-

uation, weakest-liberal precondition, and symbolic composition (see Chapter 4). Furthermore,

using theTSL system, as well as theTSL-generated symbolic-analysis primitives, we developed a

machine-code verification tool, calledMCVETO (§5.1), and a concolic-execution-based program-

exploration tool, calledBCE (§5.2).

• MCVETO addresses a large number of issues that arise when developing model-checking

tools for machine code, for which standard techniques used in source-code model-checking

tools would be unsound if applied to machine code. These include (i) the absence of pre-built

control-flow graphs and call graphs; (ii) the absence of metadata, such as information about

variables, types, and aliasing; (iii) the absence of a fixed association between addresses and

3

instructions (e.g.,instruction aliasingandself-modifying code); and (iv) extensive use of

arithmetic on addresses in machine code.

• What distinguishes the work onBCE is that it makes use of control-dependence information

to make program exploration goal-directed toward a given set of targets.

The remainder of this chapter is organized as follows:§1.1 discusses the challenge of software

defects. §1.2 discusses a few of the approaches in the program-analysis literature that address

the problem of software defects.§1.3 focuses on machine-code analysis and the challenges in

implementing machine-code analyses.§1.4 presents an overview of theTSL system.§1.5 provides

a short description of many of the applications to which I have appliedTSL. §1.6 presents the

organization of the dissertation and the contribution of each chapter.

1.1 The Challenge of Software Defects

Computers are pervasive in modern life, and are pivotal components in a wide range of con-

texts, such as (to name just a few) financial systems, power systems, manufacturing systems,

asset-management systems, health-care systems, and many critical systems (e.g., nuclear reac-

tors, weapons systems, and aircraft collision-avoidance systems). Computer-safety, reliability, and

security issues have become enormously important becausesoftware defectsandsecurity vulnera-

bilities in computer systems can have severe consequences.

Software defects (bugs) and violations of computer-safetyproperties can cause critical failures

(e.g., computer-system crashes) or other serious failuresin a computer system (e.g., malfunctions

due to mis-computations), which can result in severe damageboth in financial terms and even in

lives lost. We will mention just two cases of software bugs that had extreme consequences. For

instance, in 1996, some problems with a rocket-launch software system caused a rocket that was

set to deliver a payload of satellites into Earth orbit to veer off its path right after launch and self-

destruct. This accident caused a loss of more than $370 million [3]. In one deadly incident in 1994

in Scotland, a system error caused a Chinook helicopter to crash, and all 29 passengers were killed

[1].

4

Creating a correct and reliable computer system is becomingextremely difficult. As computer

systems become more and more complex, even experienced software developers are prone to in-

troducing bugs into their products; therefore, the potential for damage of the kind mentioned above

continues to be a serious problem.

A security vulnerability in a software component is a flaw that can possibly be exploited by

an adversary to create or install malware (such as viruses, worms, Trojans, bots, or back doors)

or spyware; for conducting illegitimate activities, such as damaging and disrupting victims’ com-

puters; stealing confidential information, including passwords, credit-card numbers, and personal

information; destroying important data; and even taking control of a compromised computer.

Annual worldwide economic damages from malicious software(malware) exceed $13 billion

according to a survey conducted by Computer Economics in 2007 (available in the 2007Malware

Report: The Economic Impact of Viruses, Spyware, Adware, Botnets, and Other Malicious Code

[2]). This amount includes only direct damages, such as lossof revenue due to loss or degraded

performance of systems, labor costs to analyze, repair and cleanse infected systems, and loss of

user productivity. Total damages would be substantially increased when indirect damages are

considered.

Anti-malware technology is fairly effective in defending against many types of malware threats.

However, traditional signature- and heuristic-based anti-malware technologies are often easily

evaded, and thus no longer enough because there has been a significant increase in the number

of zero-day attacks[22]. Zero-day attacks exploit security vulnerabilities that are unknown to oth-

ers (including the original software developer), and for which no security fix is available at hand.

Therefore, it becomes more important to detect and fix security vulnerabilities before software

products are deployed, or before an adversary can exploit them to attack computer systems.

1.2 Program-Analysis Approaches

Program-analysis technology provides a promising approach to addressing the problems of

finding bugs and security vulnerabilities, and for validating software systems. A considerable

amount of recent research in the programming-languages andsoftware-engineering communities

5

has led to techniques for (i) finding bugs, (ii) finding security vulnerabilities, and (iii) checking

computer-safety properties. In these tools, program analysis conservatively answers the question

“Can the program reach a bad state?”. Although one cannot make an absolute distinction among

those areas, which are closely related to each other, some ofthe related work in these areas can be

summarized as follows:

• Finding bugs/generating test cases.DART (Directed Automated Random Testing) is a tool

for automated testing [93]. To detect bugs that can cause program crashes and assertion

violations,DART uses a combination of concrete execution and symbolic execution to sys-

tematically explore a program’s state space. It uses symbolic execution to find inputs that

direct execution along alternative paths.

CBI (Cooperative Bug Isolation) is a feedback-directed approach to finding bugs [124]. In-

strumented applications are deployed to the general public, and then some statistical methods

are applied to mine returned data for information about rootcauses of failures.

There are several other analysis tools for bug-finding and test-generation [52, 104, 119].

• Finding security vulnerabilities.BOON [181] is a static-analysis technique for determining

whether a C program can index an array outside its bounds. CQual [88] is a type-based

analysis tool that provides a lightweight, practical mechanism for specifying and check-

ing properties of C programs. It uses type qualifiers to perform taint analysis, and detects

format-string vulnerabilities in C programs. Eau Claire [64] is a tool for finding common se-

curity problems like buffer overflows, file-access race conditions, and format-string bugs. It

uses a theorem prover to create a general specification-checking framework for C programs.

Livshits proposed a static-analysis technique for detecting security vulnerabilities that stem

from unchecked input in Java applications [130]. There are several other analysis tools for

finding security vulnerabilities [37, 122].

• Checking safety properties.Havelund et al. presented a system called Java PathFinder, a

model-checker for Java bytecode programs [100]. Ball et al.developed the Static Driver

Verifier (SDV), which analyzes device-driver source code todetermine whether there is a

path in the driver that violates a kernel API usage rule [47].MOPS uses model-checking

6

techniques to check certain kinds of security properties, represented as a finite-state automata

[63]. There are many other analysis tools in this space [57, 63, 76, 102, 186]. These tools are

based onstatic analysis, which is used to determine a conservative answer to the question

“Can the program reach a bad state?”

These tools all focus on analyzingsource codewritten in high-level languages, such as C, Java,

etc. However, the problem of analyzingmachine codeto find bugs and security vulnerabilities,

and to recover other information about their execution properties, has been receiving increased

attention for the following reasons:

• Computers do not execute source code. Instead, the actual code that a computer executes

is the machine code produced by a compiler (and an optimizer)from the source code. In

the process of compiling and optimizing source code, subtleflaws depending on low-level,

platform-specific details, such as memory layout, can be introduced. Consequently, there

can be various vulnerabilities that areinvisible in the original source code. Also, programs

may be modified to insert malicious code. Balakrishnan et al.referred to such a situation as

the WYSINWYX phenomenon (WhatYouSeeIsNot WhatYou eXecute) [38, 39, 41].

• Source code is often unavailable to analyze. For instance, Commercial-Off-The-Shelf

(COTS) applications are typically delivered as stripped machine code (i.e., neither source

code nor symbol-table/debugging information is provided). Also, malicious code such as

bots and backdoors are in binary form and no source code for them is available.

• A program can be written in more than one language, which complicates the lives of develop-

ers of source-level tools. Also, when a program contains inlined assembly code, source-code

analysis typically either ignores that part or does not pushthe analysis beyond it, which can

make the results of the analysis unsound.

• Analyses based on source code typically make unchecked assumptions, e.g., that the program

is ANSI-C compliant. This often means that an analysis does not account for behaviors that

are allowed by the compiler (e.g., arithmetic is performed on pointers that are subsequently

used for indirect function calls; pointers move off the endsof arrays and are subsequently

dereferenced; etc.).

7

In these situations, the availability of good source-levelanalysis tools is irrelevant; instead, one

needs tools capable of analyzing machine code.

1.3 Machine-Code Analysis

The aforementioned issues that arise when analyzing sourcecode disappear when analyzing

machine code. Furthermore, machine-code analysis has the advantage that it can provide more

accurate information than a source-level analysis can because, for many programming languages,

certain behaviors are left under-specified by the semantics. In such cases, a source-level analysis

must account for all possible behaviors, whereas an analysis of machine code generally only has

to deal with one possible behavior, namely, the one for the code sequence chosen by the compiler.

Chapter 2 discusses machine-code analysis in more detail.

There have been several specialized analyses of machine code developed to identify aliasing

relationships [80], data dependences [36, 70], targets of indirect calls [79], values of strings [68],

bounds on stack height [159], and values of parameters and return values [190].

In contrast to such specialized analyses, Balakrishnan andReps [38, 41] developed ways to

address all of these problems by means of an analysis that discovers an over-approximation of

the set of states that can be reached at each point in the executable—where astatemeansall

of the components of a state: values of registers, flags, and the contents of memory. Moreover,

their approach is able to be applied to stripped executables(i.e., neither source code nor symbol-

table/debugging information need be available).

Challenges in implementing machine-code analysis.Machine-code analysis presents many

new challenges. For instance, at the machine-code level, memory is one large byte-addressable

array, and an analyzer must handle computed—and possibly non-aligned—addresses. It is crucial

to track array accesses and updates accurately; however, the task is complicated by the fact that

arithmetic and dereferencing operations are both pervasive and inextricably intermingled. For

instance, if local variablex is at offset –12 from the activation record’s frame pointer (registerebp),

an access onx would be turned into an operand [ebp–12]. Evaluating the operand first involves

8

pointer arithmetic (“ebp–12”) and then dereferencing the computed address (“[·]”). On the other

hand, machine-code analysis also offers new opportunities, in particular, the opportunity to track

low-level, platform-specific details, such as memory-layout effects. Programmers are typically

unaware of such details; however, they are often the source of exploitable security vulnerabilities.

Many of the algorithms used in software model checkers that work on source code [47, 49, 102]

would be unsound if applied to machine code. For instance, before starting the verification pro-

cess proper,SLAM [47] andBLAST [102] perform flow-insensitive (and optionally field-sensitive)

points-to analysis. However, such analyses often make unsound assumptions, such as assuming

that the result of an arithmetic operation on a pointer always remains inside the pointer’s original

target. Such an approach assumes—without checking—that the program is ANSI C compliant,

and hence causes the model checker to ignore behaviors that are allowed by some compilers (e.g.,

arithmetic is performed on pointers that are subsequently used for indirect function calls; pointers

move off the ends of structs or arrays, and are subsequently dereferenced). A program can use

such features for good reasons—e.g., as a way for a C program to simulate subclassing [172]—but

they can also be a source of bugs and security vulnerabilities.

Although techniques developed in prior work on machine-code analysis are, in principle,

language-independent, they have typically only been instantiated for one instruction set (mostly the

Intel IA32 instruction set). This situation is actually typical of much work on source-code program

analysis, too: even though the techniques described in the literature are, in principle, language-

independent, their implementations are often tied to a specific language or intermediate represen-

tation. This state of affairs reduces the impact that good ideas developed in one context have in

other contexts. The situation is more serious for low-levelinstruction sets, because (i) instruction

sets usually contain several hundred instructions, and (ii) there are a variety of architecture-specific

features that are incompatible with other architectures.

1.4 Transformer Specification Language (TSL)

To address the issues mentioned above, my work has aimed to provide a systematic way of im-

plementing analyzers that work on machine code. As part of myresearch, I developed a language

9

for specifying the semantics of an instruction set, along with a run-time system to support dynamic

analysis, static analysis, and symbolic analysis of executables written in that instruction set. This

work advances the state of the art because it allows multipleanalysis components to be created

automatically from a single specification of the concrete operational semantics of the language to

be analyzed. The system, calledTSL (for “TransformerSpecificationLanguage”), has two classes

of users: (1) instruction-set-specification (ISS) developers and (2) analysis developers. The for-

mer are involved in specifying the semantics of different instruction sets; the latter are involved in

extending the analysis framework. In designingTSL, we were guided by the following principles:

• There should be a formal language for specifying the semantics of the language to be an-

alyzed. Moreover,ISS developers should specify only the abstract syntax and a concrete

operational semantics of the language to be analyzed—each analyzer should be generated

automatically from this specification.

• Concrete syntactic issues—including (i) decoding (machine code to abstract syntax), (ii)

encoding (abstract syntax to machine code), (iii) parsing assembly (assembly code to abstract

syntax), and (iv) assembly pretty-printing (abstract syntax to assembly code)—should be

handled separately from the abstract syntax and concrete semantics.1

• There should be a clean interface for analysis developers tospecify the abstract semantics

for each analysis. An abstract semantics consists of aninterpretation: an abstract domain

and a set of abstract operators (i.e., that performs abstract interpretations of the operations of

TSL).

• The abstract semantics for each analysis should be separated from the languages to be an-

alyzed so that one does not need to specify multiple versionsof an abstract semantics for

multiple languages.

Each of these objectives has been achieved in theTSL system: TheTSL system translates theTSL

specification of each instruction set to a common intermediate representation (CIR) that can be

used to create multiple analyzers. Each analyzer is specified at the level of the meta-language (i.e.,

1The translation of the concrete syntaxes to and from abstract syntax is handled by a generator tool, calledISAL
for Instruction Set Architecture Language, which is separate fromTSL. ISAL was developed by GrammaTech [13].

10

by reinterpreting the operations ofTSL), which—by extension toTSL expressions and functions—

provides the desired reinterpretation of the instructionsof an instruction set.

Client Analyzer

M Instruction-Set Specifications

TSL System

N Analysis Components

• • •

interpInstr1 interpInstr2 interpInstrN

• • •

Figure 1.1 The interaction between theTSL system and a client analyzer. The grey boxes
representTSL-generated analysis components.

TheTSL system provides two dimensions of parameterizability: different instruction sets and

different analyses. EachISS developer specifies an instruction-set semantics, and eachanalysis

developer defines an abstract domain for a desired analysis by giving an interpretation (i.e., the

implementations ofTSL basetypes, basetype-operators, and map-access/update functions). Given

the inputs from these two classes of users, theTSL system automatically generates an analysis

component. Thus, to createM ×N analysis components, theTSL system only requiresM speci-

fications of the concrete semantics of instruction sets, andN analysis implementations (Fig. 1.1),

i.e.,M +N inputs are used to obtainM ×N analysis-component implementations.

Many for the price of one! In Fig. 1.1, once one has theN analysis implementations that are the

core of some client analyzerA, one obtains a generator that can create different versionsA/M1,

A/M2, . . . at the cost of writing specifications of the concrete semantics of instruction setsM1,M2,

etc. Thus, each client analyzerA created using analysis components generated viaTSL acts as a

“YACC-like” tool for generating different versions ofA automatically.

11

s1: x= x⊕ y;

s2: y = x⊕ y;

s3: x= x⊕ y;

Figure 1.2 Code fragment that swaps twoints;

1.4.1 Semantic Reinterpretation

TheTSL system is based on factoring the concrete semantics of a language into two parts: (i)

a client specification, and (ii) a semanticcore. The interface to the core consists of certain base

types, function types, and operators (sometimes called asemantic algebra[166]), and the client

is expressed in terms of this interface. This organization permits the core to bereinterpretedto

produce an alternative semantics for thesubject language.2

Semantic Reinterpretation for Abstract Interpretation. The idea of exploiting such a factor-

ing comes from the field of abstract interpretation [73], where factoring-plus-reinterpretation has

been proposed as a convenient tool for formulating abstractinterpretations and proving them to be

sound [134, 144, 148]. In particular, soundness of theentireabstract semantics can be established

via purelylocal soundness arguments for each of the reinterpreted operators.

The following example shows the basic principles of semantic reinterpretation in the context of

abstract interpretation. We use a simple language of assignments, and define the concrete semantics

and an abstract sign-analysis semantics via semantic reinterpretation.

Example 1.1 [Adapted from [134].] Consider the following fragment of a denotational semantics,

which defines the meaning of assignment statements over variables that hold signed 32-bitint

2Semantic reinterpretation is a program-generation technique, and thus we follow the terminology of the partial-
evaluation literature [108], where the program on which thepartial evaluator operates is called thesubject program.

In logic and linguistics, the programming language would becalled the “object language”. In the compiler
literature, an object program is a machine-code program produced by a compiler, and so we avoid using the term
“object programs” for the programs thatTSL operates on.

12

values (where⊕ denotes exclusive-or):

I ∈ Id E ∈ Expr ::= I | E1 ⊕E2 | . . .

S ∈ Stmt::= I = E; σ ∈ State= Id→ Int32

E : Expr→ State→ Int32

EJIKσ = σI

EJE1 ⊕ E2Kσ = EJE1Kσ ⊕ EJE2Kσ

I : Stmt→ State→ State

IJI = E;Kσ = σ[I 7→ EJEKσ]

By “σ[I 7→ v],” we mean the function that acts likeσ except that argumentI is mapped tov.

The specification given above can be factored into client andcore specifications by introducing a

domainVal, as well as operatorsxor, lookup, andstore. The client specification is defined by

xor : Val→ Val→ Val

lookup: State→ Id→ Val

store: State→ Id→ Val→ State

E : Expr→ State→ Val

EJIKσ = lookupσ I

EJE1 ⊕ E2Kσ = EJE1Kσ xor EJE2Kσ

I : Stmt→ State→ State

IJI = E;Kσ = storeσ I EJEKσ

For the concrete (or “standard”) semantics, the semantic core is defined by

v ∈ Valstd = Int32

Statestd = Id→ Val

lookupstd = λσ.λI.σI

storestd = λσ.λI.λv.σ[I 7→ v]

xorstd = λv1.λv2.v1 ⊕ v2

Different abstract interpretations can be defined by using the same client semantics, but giving

different interpretations to the base types, function types, and operators of the core. For example,

13

σ0 := {x 7→ neg, y 7→ pos}

σ1 := IJs1 : x = x⊕ y;Kσ0 = storeabsσ0 x (neg xorabs pos) = {x 7→ neg, y 7→ pos}

σ2 := IJs2 : y = x⊕ y;Kσ1 = storeabsσ1 y (neg xorabs pos) = {x 7→ neg, y 7→ neg}

σ3 := IJs3 : x = x⊕ y;Kσ2 = storeabsσ2 x (neg xorabs neg) = {x 7→ ⊤, y 7→ neg}.

Figure 1.3 Application of the abstract transformers created by the sign-analysis reinterpretation
to the initial abstract stateσ0 = {x 7→ neg, y 7→ pos}.

for sign analysis, assuming thatInt32 values are represented in two’s-complement notation, the

semantic core is reinterpreted as follows:3

v ∈ Valabs = {neg, zero, pos}⊤

Stateabs = Id→ Valabs

lookupabs = λσ.λI.σI

storeabs = λσ.λI.λv.σ[I 7→ v]

xorabs = λv1.λv2.

v2

neg zero pos⊤

neg ⊤ neg neg ⊤

v1 zero neg zero pos⊤

pos neg pos ⊤ ⊤

⊤ ⊤ ⊤ ⊤ ⊤

For the code fragment shown in Fig. 1.2, which swaps twoints, sign-analysis reinterpretation

creates abstract transformers that, given the initial abstract stateσ0 = {x 7→ neg, y 7→ pos},

produce the abstract states shown in Fig. 1.3.2

Semantic Reinterpretation in TSL. The mapping of a client specification to the operations

of the semantic core that one defines in a semantic reinterpretation resembles a translation to a

3For the two’s-complement representation,pos xorabs neg= neg xorabs pos= negbecause, for all combinations
of values represented byposandneg, the high-order bit of the result is set, which means that theresult is always
negative. However,pos xorabs pos= neg xorabs neg= ⊤ because the concrete result could be either0 or positive, and
zero⊔ pos= ⊤.

14

common intermediate representation (CIR) data structure. Thus, another approach to obtaining

“systematic” reinterpretations that are similar to semantic reinterpretations—in that they apply to

multiple subject languages—is to translate subject-language programs to aCIR, and then create

various interpreters that implement different abstract interpretations of the node types of theCIR

data structure. Each interpreter can be applied to (the translation of) programs in any subject lan-

guageL for which one has defined anL-to-CIR translator. Compared with interpreting objects of

a CIR data type, the advantages of semantic reinterpretation (i.e., reinterpreting the constructs of

themeta-language) are

1. The presentation of our ideas is simpler because one does not have to introduce an additional

language of trees for representingCIR objects.

2. With semantic reinterpretation, there is no explicitCIR data structure to be interpreted. In

essence, semantic reinterpretation removes a level of interpretation, and hence generated

analyzers should run faster.

1.4.2 Technical Contributions Incorporated in theTSL Compilation Process

The specific technical contributions incorporated in the part of theTSL compiler that generates

theCIR can be summarized as follows:

• Two-Level Semantics: The notion of atwo-level intermediate language [149] has been

used to generate theCIR in a way that reduces the loss of precision that could otherwise

come about with certain reinterpretation. To address this issue, theTSL compiler performs

binding-time analysis [108] on theTSL specification to identify which values can always

be treated as concrete values, and which operations should therefore be performed in the

concrete domain (i.e., should not be reinterpreted).§3.2.1 discusses more details of the two-

level intermediate language along with binding-time analysis.

• Abstract Interpretation:From a specification, theTSL compiler generates aCIR that has the

ability (i) to execute over abstract states, (ii) possibly propagate abstract states to more than

one successor in a conditional expression, (iii) compare abstract states and terminate abstract

15

execution when a fixed point is reached, and (iv) apply widening operators, if necessary, to

ensure termination.§3.2.2 contains a detailed discussion of these issues.

• Paired Semantics:TheTSL system allows easy instantiations ofreduced productsby means

of paired semantics. TheCIR can be instantiated with apairedsemantic domain that couples

two interpretations. Communication between the values carried by the two interpretations

may take place in theTSL base-type operators.§3.2.3 discusses more details of paired

semantics.

1.5 Overview of Applications of theTSL System

The capabilities of theTSL system have been demonstrated by writing specifications for

both theIA32 andPowerPC instruction sets, and then automatically creating a variety of analy-

sis components from each of the specifications—including dynamic-analysis components, static-

analysis components and symbolic-analysis components from each of the specifications. The

TSL-generated static-analysis components have been used to develop a parameterized version of

CodeSurfer/x86. That is, usingTSL, one can create CodeSurfer/M by writing a specification of

the concrete semantics of instruction setM (§1.5.1). The dynamic-analysis and symbolic-analysis

components generated usingTSL have been used to develop the semantic primitives (§1.5.2) used

in (parameterized versions of) a model-checking tool for machine code (§1.5.3) and a concolic-

execution-based tool for analyzing bot executables (§1.5.4).

1.5.1 Static-Analysis Components

The TSL system has been applied to creating the analysis componentsemployed by

CodeSurfer/x86 [39], which is a static-analysis frameworkfor analyzing stripped x86 executables.

TheTSL-generated analysis components include value-set analysis [38, 41], affine-relation analy-

sis [38], def-use analysis (for memory, registers, and flags), and aggregate structure identification

[42].

• Value-Set Analysis(VSA). VSA is a combined numeric-analysis and pointer-analysis algo-

rithm that determines a safe approximation of the set of numeric values and addresses that

16

each register and memory location holds at each program point [41]. A memory regionis an

abstract quantity that represents all runtime activation records of a procedure. To represent a

set of numeric values and addresses,VSA usesvalue-sets, where a value-set associates each

memory-region with a map from abstract locations to stridedintervals. A strided interval

represents a set of numbers with a lower bound, an upper bound, and a stride [160].

• Affine-Relation Analysis (ARA). An affine relation is a linear-equality constraint between

integer-valued variables.ARA finds all affine relationships that hold in the program, for a

given set of variables. This analysis is used to find induction-variable relationships between

registers and memory locations; these help in increasing the precision ofVSA when inter-

preting conditional branches [38].

• Aggregate-Structure Identification (ASI). ASI is a unification-based, flow-insensitive al-

gorithm to identify the structure of aggregates in a program[42]. For each instruction, the

TSL-generated analysis component generates a set ofASI commands, each of which is ei-

ther a command tosplit a memory region or a command tounify some portions of memory

(and/or some registers). At analysis time, a client analyzer typically applies the generated

ASI-command generator to each of the instructions in the program, and then feeds the result-

ing set ofASI commands to anASI solver to refine the memory regions.

• Quantifier-Free Bit-Vector (QFBV) semantics.QFBV semantics provides a way to obtain

a symbolic representation—as a formula in first-order quantifier-free bit-vector logic—of an

instruction’s semantics.

• Def-Use Analysis(DUA). Def-Use analysis collects all thedefinitionsand usesof state

components (memory-locations, registers, and flags) for each instruction.

These analysis components have been put together to create asystem that essentially duplicates

CodeSurfer/x86.

1.5.2 Symbolic-Analysis Components

Symbolic analysis has been an effective technique for testing and verifying programs because

of the power that they provide in exploring a program’s statespace. TheTSL system has been

17

applied to creating implementations of the basic primitives used in certain kinds of verification

and testing tools that are based on symbolic program analysis. By “symbolic program analysis”,

we mean logic-based techniques to analyze state changes along individual program paths. This is

in contrast to the situation addressed by many abstract-interpretation/dataflow-analysis techniques,

which usually consider the problem of analyzing the effectsof a collectionof program paths—

e.g., to identify program invariants. The basic primitivesused in symbolic analysis are functions

that performforward symbolic evaluation, weakest precondition, andsymbolic compositionby

manipulating formulas.

The conventional approach to implementing systems that usesymbolic analysis is to write

each of the three symbolic-analysis functions by hand for the programming language of interest.

Our goal was to develop a method to create implementations ofsymbolic-analysis primitives eas-

ily, so that they can be made available for different subjectlanguages—particularly for different

machine-code instruction sets. Such instruction sets typically have (i) several hundred instruc-

tions, (ii) a variety of architecture-specific features that are incompatible with other architectures,

and (iii) the ability to perform address arithmetic and dereferencing of addresses, which means that

memory states can have complicated aliasing patterns. Consequently, our goal was togenerate

implementations of such primitives automatically from a specification of the subject language’s

concrete semantics.

Semantic reinterpretation for symbolic analysis. As a new application for semantic reinterpre-

tation, we created implementations of the basic primitivesused in symbolic program analysis. The

aforementioned techniques and tools in the literature apply symbolic analysis to programs writ-

ten in languages with pointers, aliasing, dereferencing, and address arithmetic. We demonstrate

that the reinterpretation technique provides a way to create symbolic-analysis primitives for such

languages.

With TSL each reinterpretation is defined at themeta-level, by reinterpreting the collection of

TSL base types, function types, and operators. When a reinterpretation is performed in this way, it

is independent of any given subject language. Consequently, with our implementation, all three of

18

the symbolic-analysis primitives can be generated automatically for everyinstruction set for which

one has aTSL specification.

1.5.3 MCVETO: A Refinement-Based Model Checker for Machine Code

We usedTSL to develop a model checker for machine code, calledMCVETO (Machine-Code

VErification TOol). MCVETO usesdirected proof generation[98] to find either an input that

causes a (bad) target state to be reached, or a proof that the bad state cannot be reached. (The third

possibility is thatMCVETO fails to terminate.) What distinguishes the work onMCVETO is that

it addresses a large number of issues that have been ignored in previous work on software model

checking, and would cause previous techniques to be unsoundif applied to machine code.

In our implementation, we restricted ourselves to use only language-independent techniques.

In particular, we used a technique for generating automatically some of the key primitives of

MCVETO’s analysis components from descriptions of an instructionset’s syntax and semantics

[125, 126]—i.e., (a) an emulator for running tests, (b) a primitive for performing symbolic ex-

ecution, and (c) a primitive for the pre-image operator. In addition, we developed language-

independent approaches to the issues discussed above. Consequently, our system acts as aYACC-

like tool for creating versions ofMCVETO for different instruction sets: given an instruction-set

description, a version ofMCVETO is generated automatically. We created two such instantiations

of MCVETO from descriptions of the Intel x86 and PowerPC instruction sets.

MCVETO is described in full detail in [174, 175].§5.1 describes my contributions toMCVETO.

1.5.4 BCE: Analyzing Bot Executables

An increasing number of computers have been compromised by attacks from across the world

to become part of malicious botnets [25]. Botnets seriouslyundermine computer security and

reliability by conducting illegitimate activities, such as performing large-scale distributed denial-

of-service attacks; identity theft; sending spam, trojans, and phishing emails; distributing pirated

media; and performing click fraud. Moreover, botnets can quickly grow by using worms to attack

19

vulnerable systems. During the time between an announcement of a vulnerability and a patch for

the vulnerability, the potential for bot infiltration is particularly high.

The Internet security research community has made significant efforts to identify botnets, to

collect data on their activities, and to develop techniquesfor detection, mitigation, and disruption.

Some bots try to avoid detection by using slow-spreading infection techniques. Some use multi-

ple levels of indirection to make it harder to understand thebotnet’s structure. There have been

several techniques to detect bots by monitoring network traffic to obtain temporal/spatial behavior

statistics. Network-based and behavior-based approacheshave several drawbacks: the approaches

are (i) costly (runtime overhead to monitor network traffic,space overhead for storing packet logs,

etc.), (ii) easily evaded, and (iii) not able to recover the structure of a botnet. Some detection

techniques rely on well-known bot communication signatures: a lot of bot code is reused, and thus

the commands and authentication mechanisms are widely known. However, attackers can easily

modify the command-and-control language used by their botsto raise the bar for detection and

control.

Using theTSL system, we have developed a tool calledBCE for extracting botnet-command

information from bot executables.BCE aims to provide useful information from analysis of bot

executables by automatically extracting proper inputs that trigger malicious behavior. Applications

of the information recovered include observing and analyzing malicious behaviors, as well as

identifying command sequences that can be used at either thenetwork or host level to mitigate

botnets.

A typical way to analyze the behavior of a bot is to run the executable and observe its actions.

To carry this out, however, one needs proper inputs that trigger malicious behaviors. Some widely

known commands are often used for this purpose. However, attackers can easily change their com-

mands to evade such an approach. It is a hard problem to obtainsuch inputs by manually stepping

through the executable.BCE automates the extraction of information about botnet commands, and

the arguments to commands, by driving the bot executable toward places where system calls are

invoked.

In §5.2, we presentBCE in detail.

20

1.6 Contributions and Organization of the Dissertation

The specific technical contributions of our work, along withthe organization of the dissertation,

are summarized as follows:

In Chapter 2, starting off the discussion on the advantages of machine-code analysis over

source-code analysis and the challenges of machine-code analysis, we introduce CodeSurfer/x86

followed by an overview of two applications to which I applied CodeSurfer/x86—FFE/x86 and

ConSeq. Lastly, we discuss the motivation for the main contribution of the dissertation, namely

theTSL system.

In Chapter 3, we present theTSL system in detail.TSL will be presented from two perspec-

tives: (i) how to write aTSL specification (from the point of view of instruction-set-specification

developers), and (ii) how to write domains for (re)interpreting theTSL base-types (from the point

of view of analysis developers). We also summarize the applications to whichTSL has been

used, including various static-analysis components that duplicate the hand-written ones used in

CodeSurfer/x86, and discuss the leverage that we obtained throughTSL.

In Chapter 4, we discuss the techniques that we developed to automatically create three

symbolic-analysis primitives, and describe how theTSL system was used for that purpose. In

particular, we show how semantic reinterpretation can be applied to create analysis functions that

compute formulas for forward symbolic evaluation, weakestprecondition, and symbolic composi-

tion.

In Chapter 5, we present case studies, includingMCVETO, a model-checking tool for machine

code, which uses the symbolic-analysis primitives generated from theTSL system, andBCE, a

concolic-execution-based application, which extracts information about botnet commands from

bot executables.

We present our conclusions in Chapter 6.

21

Chapter 2

Machine-Code Analysis

Computers do not execute source code; they execute machine code generated from source

code by the combined efforts of the compiler, the optimizer,and the linker. The compiler and the

optimizer make certain choices when generating machine code, depending on the target platform;

therefore, there can be mismatches in various ways between what is actually executed on the

processor and what a programmer really intends in her sourcecode. Balakrishnan et al. refer

to such a phenomenon asWYSINWYX(“What You See Is Not What You eXecute”) ([41], [45] and

[40, §1]).

The following example (obtained from [38]) shows a securityvulnerability introduced due to

theWYSINWYXphenomenon:

memset(password, 0, len);

free(password);

The password in clear text is stored in a dynamically-allocated buffer. Because the password is

sensitive information, to minimize the lifetime of the password, the programmer tries to zero-out

the buffer by callingmemset before returning it to the heap by callingfree. However, thememset

call might be eliminated by a compiler that performs useless-code elimination, based on the rea-

soning that the program never uses the value written by the call on that function. Unfortunately, if

this happens, sensitive information would be exposed in theheap.

As the above example illustrates, various vulnerabilitiescan be introduced by the compiler

and the optimizer due to the idiosyncrasies inherited from amyriad of platform-specific features

and various artifacts of the compiler and optimizer. These include (i) memory-layout details (i.e.,

22

offsets of variables in the run-time stack activation records and padding between fields of a struct),

(ii) register usage, (iii) execution order, (iv) optimizations, and (v) artifacts of compiler bugs.

Many security exploits make use of such artifacts [105, 135], and thus the target program can be

executed by an attacker so that it operates differently (maliciously) from what is really intended by

the programmer.

Such security vulnerabilities can escape the notice of tools that work on intermediate repre-

sentations (IRs) that are built directly from the source code, whereas they are visible to analysis

tools that work on machine code. In addition, there are a number of reasons why analyses based

on source code do not provide the right level of detail for checking certain kinds of properties, and

machine-code analyses do. Moreover, many issues arise whenanalyzing source code disappear

when analyzing machine code: although Balakrishnan et al. have argued at length with examples

the benefits of analyzing machine code rather than source code in [41], [45] and [40,§1], we

summarize them in the following list:

• Source-level tools are only applicable when source code is available, which limits their

usefulness in security applications (e.g., to analyzing code downloaded from the web or

commercial off-the-shelf (COTS) applications, whose source code is usually unavailable).

In particular, source-level tools cannot be applied to analyzing viruses and worms. Most

applications are distributed as executables that have no symbol-table/debugging informa-

tion (“stripped executables”). Although symbol-table/debugging information can be used to

adapt source-level analysis techniques to work on machine code (when source code is un-

available), most analysis techniques are severely hampered when symbol-table/debugging

information is absent.

• Even if source code is available, as discussed earlier, a substantial amount of information is

hidden from analyses that start from source code, which can cause bugs, security vulnerabil-

ities, and malicious behavior to be invisible to such tools.Moreover, a source-code tool that

strives to have greater fidelity to the program that is actually executed would have to duplicate

all of the choices made by the compiler and optimizer; such anapproach would be extremely

complicated to carry out. As alternative approach would be to use a compiler infrastructure,

23

such asLLVM [26] or GCC [12], that supports multiple compilers/optimizers. Such an ap-

proach would allow a source-code analysis tool to analyze the effects caused by compiler

artifacts, but only for code created via the compiler infrastructure on which the analyzer is

based. To make an analyzercomprehensiveby mimicking multiple compilers/optimizers

would require following such an approach for each possible compiler infrastructure—some

of which are proprietary (e.g., the Microsoft Visual Studiocompilercl). In contrast, ana-

lyzing machine code directly provides a comprehensive solution: each run of the analyzer

would give an answer for the machine-code program to which itis applied, but such an an-

alyzer can be applied to machine-code programs produced byany compiler infrastructure,

not just a particular one.

• Programs are sometimes modified subsequent to compilation,e.g., to perform optimizations

or insert instrumentation code [182] or [112, 176]. Such modifications are not visible to

tools that analyze source code.

• Machine-code analysis has an advantage that behavioral models derived from machine code

can bemore accuratethan models derived from source code (particularly becausecom-

pilation, optimization, and link-time transformation canchange how the code behaves).

Also, certain choices that the compiler and optimizer make can eliminate some possible

behaviors—hence there is sometimes the opportunity to obtain more precise answers from

machine-code analysis than from source-code analysis.

• Analyses based on source code typically make (unchecked) assumptions, e.g., that the pro-

gram is ANSI-C compliant. This often means that an analysis does not account for be-

haviors that are allowed by the compiler (e.g., arithmetic is performed on pointers that are

subsequently used for indirect function calls; pointers move off the ends of arrays and are

subsequently dereferenced; etc.).

• Programs typically make extensive use of libraries, including dynamically-linked libraries

(DLLs), which may not be available in source-code form. Typically, analyses are performed

using code stubs that model the effects of library calls. Because these are created by hand,

they are error-prone, and thus the analysis can return incorrect results. Because library code

24

can be analyzed directly in machine-code analysis, it is notnecessary to rely on potentially-

unsound models of library functions.1

• The source code may have been written in more than one language. This complicates the life

of designers of tools that analyze source code because multiple languages must be supported,

each with its own quirks.

• Even if the source code is primarily written in one high-level language, it may contain in-

lined assembly code in selected places. Source-level toolstypically either skip over inlined

assembly code [36] or do not push the analysis beyond sites ofinlined assembly code [4].

Even if the source code was written in more than one language,a tool that analyzes executa-

bles only needs to support one language. Instructions inserted because of inlined assembly

directives in the source code are visible, and do not need to be treated any differently than

other instructions.

• An additional class of examples for which analysis of an executable can provide more ac-

curate information than a source-level analysis arises because, for many programming lan-

guages, certain behaviors are left unspecified by the semantics. In such cases, a source-level

analysis must account for all possible behaviors, whereas an analysis of an executable gen-

erally only has to deal with one possible behavior—namely, the one for the code sequence

chosen by the compiler. For instance, in C and C++ the order inwhich actual parameters

are evaluated is not specified: actuals may be evaluated left-to-right, right-to-left, or in some

other order; a compiler could even use different evaluationorders for different functions.

Different evaluation orders can give rise to different behaviors when actual parameters are

expressions that contain side effects. For a source-level analysis to be sound, at each call

site it must take the union of the descriptors that result from analyzing each permutation of

the actuals. In contrast, an analysis of an executable only needs to analyze the particular

sequence of instructions that lead up to the call.

1Machine-code analysis givesplatform-specificanswers. Models can be beneficial in obtaining answers that apply
to multiple platforms by providing an answer relevant to alllibrary versions that conform to the model.

25

2.1 Challenges in Machine-Code Analysis

Even though the advantages of analyzing executables are appreciated and well-understood,

because of the obstacles standing in the way of doing a good job of machine-code analysis, there

are a dearth of tools that work on executables directly. Compared with source-code analysis,

analysis of stripped executables presents many challengesand difficulties, including

• absence of information about variables:In stripped executables, no information is provided

about the program’s global and local variables.

• a semantics based on a flat memory model:With machine code, there is no notion of separate

“protected” storage areas for the local variables of different procedure invocations, nor any

notion of protected fields of an activation record. For instance, a procedure’s return address

is stored on the stack; an analyzer must prove that it is not corrupted, or discover what new

values it could have.

• absence of type information:In particular,int-valued and address-valued quantities are

indistinguishable at runtime.

• arithmetic on addresses is used extensively:Moreover, numeric and address-dereference op-

erations are inextricably intertwined, even during simpleoperations. For instance, consider

the load of a local variablev, located at offset-12 in the current activation record, into reg-

istereax: mov eax,[ebp-12].2 This instruction involves anumericoperation (ebp-12) to

calculate an address whose value is thendereferenced([ebp-12]) to fetch the value ofv,

after which the value is placed ineax.

2For readers who need a brief introduction to the 32-bit Intelx86 instruction set (also called IA32), it has six 32-bit
general-purpose registers (eax, ebx, ecx, edx, esi, andedi), plus two additional registers:ebp, the frame pointer,
andesp, the stack pointer. By convention, registereax is used to pass back the return value from a function call.
In Intel assembly syntax, the movement of data is from right to left (e.g.,mov eax,ecx sets the value ofeax to the
value ofecx). Arithmetic and logical instructions are primarily two-address instructions (e.g.,add eax,ecx performs
eax := eax + ecx). An operand in square brackets denotes a dereference (e.g., if v is a local variable stored at offset
-12 off the frame pointer,mov [ebp-12],ecx performsv := ecx). Branching is carried out according to the values
of condition codes (“flags”) set by an earlier instruction. For instance, to branch toL1 wheneax andebx are equal,
one performscmp eax,ebx, which setsZF (the zero flag) to 1 iffeax − ebx = 0. At a subsequent jump instruction
jz L1, control is transferred toL1 if ZF = 1; otherwise, control falls through.

26

• instruction aliasing:Programs written in instruction sets with varying-length instructions,

such as x86, can have “hidden” instructions starting at positions that are out-of-registration

with the instruction boundaries of a given reading of an instruction stream [128].

• self-modifying code:With self-modifying code there is no fixed association between an

address and the instruction at that address.

Standard approaches to source-code analysis assume that certain information is available—or at

least obtainable by separate analysis phases with limited interactions between phases, e.g.,

• a control-flow graph (CFG), or interprocedural CFG (ICFG)

• a call graph

• a set of variables, split into disjoint sets of local and global variables

• a set of non-overlapping procedures

• type information

• points-to information or alias information

The availability of such information permits the use of techniques that can greatly aid the analysis

task. For instance, when one can assume that (i) the program’s variables can be split into (a) global

variables and (b) local variables that are encapsulated in aconceptually protected environment,

and (ii) a procedure’s return address is never corrupted, analyzers often tabulate and reuse explicit

summaries that characterize a procedure’s behavior.

Source-code analysis tools often use separate phases of (i)points-to/alias analysis (analysis of

addresses) and (ii) analysis of arithmetic operations. Because numeric and address-dereference op-

erations are inextricably intertwined, as discussed above, only very imprecise information would

result if a machine-code analyzer used the same organization of analysis phases. Source-code-

analysis tools sometimes also use questionable techniques, such as interpreting operations in in-

teger arithmetic, rather than bit-vector arithmetic. Theyalso usually make assumptions about the

semantics that are not true at the machine-code level—for instance, they usually assume that the

area of memory beyond the top-of-stack is not part of the execution state at all (i.e., they adopt the

fiction that such memory does not exist).

27

2.1.1 CodeSurfer/x86

Because the problem of analyzing executables to recover information about their execution

properties has been receiving increased attention, several techniques for analyzing machine code

have been developed. However, much of this work has focused on specializedanalyses to identify

aliasing relationships [80], data dependences [36, 70], targets of indirect calls [79], values of strings

[68], bounds on stack height [159], and values of parametersand return values [190].

In contrast to such specialized analyses, Balakrishnan andReps [38, 41] developed ways to

address all of these problems by means of an analysis that discovers an over-approximation of

the set of states that can be reached at each point in the executable—where astatemeansall of

the states: values of registers, flags, and the contents of memory. Their techniques have been

incorporated intoCodeSurfer/x86[5].

They have primarily been concerned with the analysis of stripped executables (i.e., neither

source code nor symbol-table/debugging information is available), both because it is the most

challenging situation, and because it is what is needed in the common situation where one needs to

install a device driver or commercial off-the-shelf application delivered as stripped machine code.

If an individual or company wishes to vet such programs for bugs, security vulnerabilities, or ma-

licious code (e.g., back doors, time bombs, or logic bombs),analysis tools for stripped executables

are required.

Some of the main analyses incorporated into CodeSurfer/x86can be summarized as follows:

VSA VSA (Value-Set Analysis) provides useful information about memory accesses in an exe-

cutable.VSA is a combined numeric-analysis and pointer-analysis algorithm that determines

a safe approximation of the set of numeric values or addresses that each register and abstract

memory location (a-loc) holds at each program point. In particular, at each programpoint,

VSA provides information about the contents of registers that appear in an indirect memory

operand; this permits it to determine the addresses that arepotentially accessed, which, in

turn, permits it to determine the potential effects on the state of an instruction that contains

an indirect memory operand.

28

A key feature ofVSA is that it tracks integer-valued and address-valued quantities simul-

taneously. This is crucial for analyzing executables because numeric values and addresses

are indistinguishable at runtime.

ASI ASI (Aggregate Structure Identification) [42] is a unification-based, flow-insensitive algorithm

to identify the structure of aggregates in a program. Whenever a read or write to a part of a

memory object is encountered,ASI records how the memory object is to be subdivided into

smaller objects that are consistent with the memory access.

The remainder of this chapter presents two analyzers that I developed that made use of, and

extended, CodeSurfer/x86.§2.2 describesFFE/x86, which is a static-analysis tool for extracting an

over-approximation of a program’s output data format from an executable.§2.3 describesConSeq,

which is a consequence-oriented, backward-analysis framework for detecting concurrency bugs.

ConSeq uses backward slicing obtained from CodeSurfer/x86 to identify shared memory reads that

might impact each potential error site.§2.2 and§2.3 describe work that extended CodeSurfer/x86.

§2.4 discusses the drawbacks of that approach, and presents the research goals for the work on the

TSL system.

2.2 File-Format Extractor (FFE/x86)

Reverse engineering helps one gain insight into a program’sinternal workings. It is often

performed to retrieve the source code of a program (e.g., because the source code was lost), to

analyze a program that may be malicious (such as a virus), to fix a bug, to improve the performance

of a program, and so forth. This section describes a reverse-engineering tool that can help a human

understand what a program produces as its output.

The technique presented in this section promotes the reuse of components of a tool chain.

For example, when a software engineer wants to build a program that can process the files that

a COTS software product generates, he can use our tool to obtain information about the format

specification, which would be useful when creating a programthat can act as a substitute consumer

(or producer).

29

Not all reverse-engineering activities are legal. One of the legal uses of reverse engineering

is to obtain functional specifications needed for interoperability [29];3 hence, the activity that our

tool carries out would generally be considered a legitimateone.

The technique presented here might also be useful in malwaredetection. For instance, when

trying to identify live versions of the same malware, one would like to have a way to figure out the

format of its network traffic. Our technique can provide helpwith this problem.

Furthermore, our technique can provide a summary of a program’s behavior: it produces a

structure that consists of a reduced number of entities (compared with the call graph for instance),

which may make it easier to understand what the program is doing.

We first construct a hierarchical finite-state machine [16, 34, 35] (HFSM) that represents a

preliminary format structure, as explained in§2.2.3.1. However, an HFSM can be difficult to

understand, so to increase the understandability of the results, we experimented with the appli-

cation of several transformations (including simplification and regularization) to create an over-

approximation of the HFSM as an ordinary finite-state machine (FSM), which represents a further

over-approximation of the output data format. This can be used to present the final results either

as an FSM or as a regular expression.

The contributions of the work described in this section are:

• It provides a technique for extracting an over-approximation of a program’s output data

format, including

– a way to extract a preliminary structure for the output data format (§2.2.3)

– a way to elaborate the structure by annotating it with information about possible output

values and sizes (§2.2.4)

– a way to simplify the structure to provide greater understanding of the output data

format (§2.2.5)

This provides information that can lead to greater understanding of a program’s behavior.

3When a COTS (Commercial Off-The-Shelf) tool uses a proprietary file format, interoperability can be inhibited:
the tool can only be used in a tool chain with a consumer or producer of files that have that format.

30

• We report experimental results from applyingFFE/x86 on three applications. Our experi-

ments uncovered a possible bug inpng2ico (see [127] for details).

Although we have concentrated on the problem of extracting output file formats from executables,

the same approach could be applied to source code (where one could also take advantage of infor-

mation about the program’s variables and their declared types), as well as to extracting input file

formats.

The remainder of this section is organized as follows:§2.2.1 discusses the key observations

that inspired our work onFFE/x86 and the assumptions for our approach.§2.2.3 explains the

process of constructing a structure for the output data format, and also provides an overview of

the infrastructure on which our implementation is based.§2.2.4 discusses how to elaborate the

structure generated from the first step with static analyses. §2.2.5 presents a series of filtering

operations for making HFSMs more understandable.§2.2.6 describes how we validatedFFE/x86.

§2.2.7 presents experimental results.§2.2.8 describes related work.§2.2.9 describes possible future

directions.

2.2.1 Programming Styles

This section makes a few observations about programming styles used in typical application

programs to produce output data.

Programming styles relevant to writing output data can be categorized asindividual writesand

bulk writes. We present different approaches tailored to handle them inlater sections. (Some

programs use both styles; our tool is capable of handling such programs, as well.)

Individual writes. The first programming style is to write individual data itemsout separately

to a file or a network. Standard I/O functions, such asfputsand fputc in C programs, could be

used. In practice, however,wrapper functionstend to be frequently used. Fig. 2.1(a) shows an

example of this programming style using wrapper functions,such asput byte, put long, and

writes. Several fields of the output, including magic numbers, types, sizes, and a checksum, are

written out by calling wrapper functions. These functions provide an API to append output items

31

[1] void put byte(char c) { ...}

[2] void put long(long c) { ...}

[3] void write bytes(char* c, int n) { ...}

[4] void type () {

[5] ...

[6] switch(...) {

[7] case 0: put byte(’a’); break;

[8] case 1: put byte(’b’); break;

[9] }

[10]}

[11]void chksum () {

[12]

[13] put long(...);

[14]}

[15]void fill data() {

[16]

[17] while(c) {

[18] put byte(c);

[19] }

[20]}

[21]void main() {

[22] ...

[23] put long(magic1)

[24] put long(magic2)

[25] write bytes(filename, sizeof(filename));

[26] type ();

[27] put long(size);

[28] chksum ();

[29] return 0;

[30]}

[1] struct header {

[2] byte magic[2];

[3] char name[100];

[4] char type;

[5] long size;

[6] long chksum;

[7] }

[8] void write file() {

[9] struct header* h;

[10] h = (struct header*)malloc(...);

[11] h->magic[0] = ...;

[12] strcpy(h->name, ...);

[13] h->type = ...;

[14] h->size = ...;

[15] h->chksum = ...;

[16] fwrite(fp, sizeof(struct icmphdr), 1, h);

[17] write data();

[18] ...

[19]}

(a) (b)

Figure 2.1 (a) An example that uses individual writes. (b) Anexample of a bulk write.

to an internal buffer; once the whole buffer has been filled, the contents of the buffer are flushed.

Whereas the buffer is written out in bulk, the individual calls to the wrapper functions represent

the “individual writes” referred to in our name for this style. We refer to both the standard I/O

functions and user-defined wrapper functions asoutput functions.

32

An output operationis an operation relevant to generating an output data object. Specifically,

the term output operation is defined as a call site that calls an output function—either a standard

I/O library function or a wrapper function (see lines 7, 8, 13, 18, 23, 24, 25, and 27 in Fig. 2.1(a)).

Our experience so far is that many application programs are coded in this programming style.

For instance,gzip [15],4 compress95 [6], andpng2ico [20] follow such a programming style.

Bulk writes. The second programming style is to usestructs or classes to manipulate headers.

Fig. 2.1(b) shows an example of using a header structure to write output data. A headerstruct

object is created at line 10. Each field of thestruct is set to some value in lines 11–15. Finally,

at lines 16–17, the object is written out to the file in its entirety. In this programming style, calls

like the one tofwrite are the output operations.

In practice, we observed thattar [24] andcpio [8] use such aggregate structures as storage in

preparation for a bulk write. We suspect that this style would be used for more than just headers

by applications whose output files consist of a sequence of records.

2.2.2 User-Supplied Information

In our current implementation, the user must identify the output functions and supply some

additional information about them, in particular, information about each output-relevant parameter:

• whether it is a numeric value to be written out

• whether it is an address pointing to the memory containing the data to be written out

• whether it indicates how many bytes are written out

See§2.2.4.1 for more details. In the case of standard I/O functions, such information is already

known.
4Because thegzip source uses macros instead of functions, output operationsare not call sites in thegzip ex-

ecutable. This is not compatible with our approach of havingthe user identify the output operations by supplying
the names of output functions. To convertgzip into an example in which output operations are visible as procedure
calls—so that it could be used for proof of concept in our experimental study—we modified thegzip source code to
change all output macro definitions into explicit functions. Automatically identifying low-level code fragments that
represent output operations remains a challenging problemfor future work.

33

2.2.3 First step

In our approach, aHierarchical Finite State Machine (HFSM)is used to represent an output

data format. An HFSM is a structure in which nesting of finite automata within states is allowed

[34, 35]. An HFSM captures commonalities by organizing states in such a hierarchy. Note the

following two points about HFSMs:

• The languages of paths in recursive HFSMs are exactly the context-free languages.

• The languages of paths in non-recursive HFSMs are the regular languages.

(a)

call bar

foo

(b)

1

2

3

4

bar

10

9

5

6

7

8

baz

call bar

call baz

call baz

1 2 5 6 9 10 7 9 10 8

3 5’ 6’ 9’ 10’ 7’ 9’ 10’ 8’ 4

Figure 2.2 (a) An FSM, (b) A hierarchical FSM.

However, non-recursive hierarchical FSMs can be exponentially more succinct than conven-

tional FSMs due to sharing, as illustrated in Fig. 2.2.

2.2.3.1 Construction of an HFSM

We will use the code fragment shown in Fig. 2.1(a) to explain our approach. The code emulates

an archive utility. such as tar. It writes two magic numbers,followed by the file’s name, layout type,

size, and check-sum, using wrapper functions. Fig. 2.4 shows its disassembled code as generated

by IDAPro [18], a commercial disassembly toolkit.

Each procedure involved with at least one output operation gives rise to an FSM. The pro-

gram’s wrapper functions includeput byte (sub 401050 in the disassembled code),put long

(sub 401075), andwrites (sub 4010E4), and calls to these functions represent output operations.

FFE/x86 finds the output operations and constructs a hierarchical finite-state machine [16, 34, 35]

34

(HFSM) based on the control-flow graphs (CFGs) provided by the CodeSurfer/x86 framework

mentioned in the introduction of this chapter [5]. Our analyzer creates a reduced interprocedural

control-flow graph (i.e., the HFSM) that is the projection ofthe interprocedural control-flow graph

onto enter nodes, exit nodes, call nodes, and output operations.

Fig. 2.3 shows the outcome from runningFFE/x86. Each node in the HFSM is either an output

operation (such as4011B3) or a call site (such as4011D6) to a sub-FSM (such astype). A call-site

node, which represents a call to a sub-FSM, implicitly connects the two FSMs in the HFSM.

The HFSM generated by our tool forgzip is shown in Fig. 2.5(a). Our thesis is that HFSMs

(including elaborations and refinements of HFSMs, as explained in§2.2.4 and§2.2.5) provide a

basis for gaining an understanding of the program’s behavior. In this regard, it is instructive to

compare the HFSM with the program’s call graph, because a call graph is another structure that a

programmer may use to gain a high-level understanding of a program.

Fig. 2.5(b) shows a part of the call graph forgzip. Gzip is composed of 114 control-flow

graphs (CFGs), 11491 CFG nodes, and 625 call sites. Even though the HFSM produced by our

tool appears to be quite complicated, it is substantially less complicated than both the program’s

call graph and its interprocedural control-flow graph: the HFSM forgzip has 12 FSMs, 64 nodes,

and 36 call sites.

2.2.3.2 Existing Infrastructure

FFE/x86 uses intermediate representations (IRs) provided by the CodeSurfer/x86 framework

(Fig. 2.6), which provides an analyst with a powerful and flexible platform for investigating the

properties and behaviors of x86 executables [5]. As described in the introduction of this chapter,

CodeSurfer/x86 includes several static analyses, includingVSA andASI.

VSA is a combined numeric-analysis and pointer-analysis algorithm that determines an over-

approximation of the set of numeric values and addresses that each memory location holds at each

program point [41].ASI recovers information about variables and types, especially for aggregates,

including arrays and structs. The variables recovered byASI are used byVSA to obtain information

35

4011B3

call sub_401075

(put_long)

4011BE

call sub_401075

(put_long)

4011D1

call sub_4010E4

(write_bytes)

4011DB

call sub_401167

(fill_data)

4011E6

call sub_401075

(put_long)

4011D6

call sub_401120

(type)

4011EB

call sub_401154

(chksum)

40117A

call sub_401050

(put_byte)

401160

call sub_401075

(put_long)

401140

call sub_401075

(put_long)

40114D

call sub_401075

(put_long)

Figure 2.3 The HFSM for Fig. 2.1(a). The shaded boxes signifycalls to FSMs. Dotted lines
indicate implicit connections between FSMs.

401120 sub_401120 proc near; type
401120 push ebp
401121 mov ebp, esp
401123 sub esp, 0Ch
401126 mov eax, [ebp-4]
401129 mov [ebp-8], eax
40112C cmp [ebp-8], 0
401130 jz short loc_40113A
401132 cmp [ebp-8], 1
401136 jz short loc_401147
401138 jmp short loc_401152
40113A loc_40113A:
40113A mov eax, [ebp-4]
40113D mov [esp], eax
401140 call sub_401050
401145 jmp short loc_401152
401147 loc_401147:
401147 mov eax, [ebp-4]
40114A mov [esp], eax
40114D call sub_401050
401152 loc_401152:
401152 leave
401153 retn
401154 sub_401154 proc near; chksum
401154 push ebp
401155 mov ebp, esp
401157 sub esp, 8
40115A mov eax, [ebp-4]
40115D mov [esp], eax
401160 call sub_401075
401165 leave
401166 retn
401167 sub_401167 proc near; fill_data
401167 push ebp
401168 mov ebp, esp
40116A sub esp, 8
40116D loc_40116D:
40116D cmp [ebp-1], 0
401171 jz short loc_401181
401173 movsx eax, [ebp-1]
401177 mov [esp], eax
40117A call sub_401050
40117F jmp short loc_40116D
401181 loc_401181:
401181 leave
401182 retn

401183 sub_401183 proc near; main
401183 push ebp
401184 mov ebp, esp
401186 sub esp, 28h
401189 and esp, 0FFFFFFF0h
40118C mov eax, 0
401191 add eax, 0Fh
401194 add eax, 0Fh
401197 shr eax, 4
40119A shl eax, 4
40119D mov [ebp-14h], eax
4011A0 mov eax, [ebp-14h]
4011A3 call sub_401200
4011A8 call __main
4011AD mov eax, [ebp-10h]
4011B0 mov [esp], eax
4011B3 call sub_401075
4011B8 mov eax, [ebp-0Ch]
4011BB mov [esp], eax
4011BE call sub_401075
4011C3 mov [esp+4], 4
4011CB mov eax, [ebp-8]
4011CE mov [esp], eax
4011D1 call sub_4010E4
4011D6 call sub_401120
4011DB call sub_401167
4011E0 mov eax, [ebp-4]
4011E3 mov [esp], eax
4011E6 call sub_401075
4011EB call sub_401154
4011F0 mov eax, 0
4011F5 leave
4011F6 retn

Figure 2.4 The disassembled code for Fig. 2.1(a). Transparent boxes indicate output operations,
and shaded boxes indicate calls to sub-FSMs.

about the variables’ possible values. The values recoveredby VSA are used byASI to identify a re-

fined set of variables. Thus, CodeSurfer/x86 runsVSA andASI repeatedly, either until quiescence,

or until some user-supplied bound is reached.5

5If VSA andASI have not quiesced when the bound is reached, it is still safe to use the results from the final round
of VSA. In particular, each round ofVSA provides an over-approximation of the set of numeric valuesand addresses

36

4051b4_ENTRY

call 4056df

call 40510c

call 4054e6

call 4056df

call 4057f2

call 4056df

call 4054e6

call 4057a5

4051b4_ENTRY

40572b

404366_ENTRY

call 4051b4

call 4051b4

call 4051b4

call 404145

404145_ENTRY

call 4051b4

call 4051b4

403d20_ENTRY

403d62

403d6e

403d7a

403d90

403d9d

403df1

403dfd

403e1f

call 404366

403e43

403e50

40510c_ENTRY

call 4056df

call 4056df

call 4056df

call 404f0e

call 404f0e

call 4056df

40510c_ENTRY

call 4056df

403e50

403e50

403e50

4059c8_ENTRY

403e50

408281_ENTRY

408414

4057a5_ENTRY

4057d8 4057be

404f0e_ENTRY

call 4056df

call 4056df

call 4056df

call 4056df

call 4056df

call 4056df

call 4056df

call 4056df

404f0e_ENTRYcall 4056df

call 4056df

call 4056df

call 4056df

call 4056df

call 4056df

(a) (b)

Figure 2.5 (a) The HFSM forgzip. (b) a fragment of the call graph ofgzip.

Executable
disassemble

Executable

Build

CFGs

IDA Pro

VSA

ASI

Connector

CodeSurfer

Back-end

File

Format

Extractor

CodeSurfer/x86

Figure 2.6 Organization ofCoderSurfer/x86, and howFFE/x86 interacts with its components.

CodeSurfer/x86 uses an initial estimate of the program’s variables, the call graph, and control-

flow graphs (CFGs) for the program’s procedures provided by IDAPro. IDAPro itself does not

identify the targets of all indirect jumps and indirect calls, and therefore the call graph and control-

flow graphs that it constructs are not complete. In contrast,CodeSurfer/x86 uses the values that

VSA discovers to resolve indirect jumps and indirect calls, andthus is able to supply an over-

approximation to the call graph.

for each memory location, modulo the treatment of possible memory-safety violations—some of which may be due to
loss of precision duringVSA. See [41] for more details.

37

§2.2.4 discusses other ways in whichVSA andASI can be exploited for our purposes.

2.2.4 Augmenting an HFSM with Information from Static Analy ses

In this section, we explain how to exploit the static analyses mentioned in§2.2.3.2 for elabo-

rating HFSMs.

2.2.4.1 Value Set Analysis

The HFSM generated by the method described in§2.2.3.1 provides some information for un-

derstanding an output format. The HFSM can be made more precise by annotating it with addi-

tional information. In particular, we wish to label each node with information about:

• the size (in bytes) of the data that the node represents, and

• an over-approximation of the value written out.

void put byte(char c) {

outbuf[outcnt++] = (uch)(c);

if(outcnt==OUTBUFSIZE)

flush outbuf();

}

mov byte ptr[esp], 1Fh

call put byte

(a) (b)

Figure 2.7 An example code fragment;put byte is a output function, and call sites that call it
are output operations.

The values of interest are the actual parameters corresponding to the formal parameters of out-

put functions. For example, suppose thatput byte is one of the output functions (see Fig. 2.7(a)).

Suppose that at one of the call sites that callsput byte (i.e., at one of the output operations), the

actual parameter is always 1Fh (see Fig. 2.7(b)). This information can be obtained from the infor-

mation collected byVSA. Note that at the call onput byte, the relevant value is stored on the stack

in the byte pointed to byesp. The abstract memory configuration (AMC) thatVSA would have for

the call site would indicate this: for instance, Fig. 2.8(a)illustrates the values that the AMC would

contain in this example. In particular, our tool is able to obtain an over-approximation of the set

38

of values that the actual may hold by evaluating the operand expression[esp] in the AMC, which

amounts to looking up in the AMC the contents of the cell (or cells) thatesp may point to. (For

this example, the result would be a singleton set, namely,{1Fh}.)

BUF_PTR

SIZE

COUNT

FP

esp

(c)

esp

size:4

1000

.

.

.

1000
value1

value2

value3

value4

(b)

1Fhvalue size:1

(a)

SIZE x COUNT =
the number of bytes

to be written out
(size)4

.

.

. size:?

1001

1002

1003

1004

esp

Figure 2.8 How to obtain information fromVSA.

There are two kinds of parameters that can be passed into a output function: numeric values

and addresses.

Numeric values. The case where an actual parameter holds a numeric value has already been

explained above (see Fig. 2.8(a)). The corresponding size of the value can be obtained fromASI,

which infers the size from the usage pattern of the formal parameter in the called function. (In the

case where an output operation calls a standard I/O function, this information is available from the

signature of the function.) For example,put byte would have a 1-byte argument,put short a

2-byte argument, and so forth.

Addresses. If the type of a formal parameter is a pointer, the set of addresses in the memory

location corresponding to the actual parameter would be used to look up in the AMC the values in

the cells to which the actual parameter could point (see Fig.2.8(b)).

The case offwrite at lines 16–17 in Fig. 2.1(b) falls into this category. The address of the

heap-allocated memory location that contains the data is passed as the first argument.

39

size t fwrite(const void *BUF PTR, size t SIZE, size t COUNT, FILE *FP);

It is known that the product of the second and third parameters of fwrite is the number of bytes

that are written out (see Fig. 2.8(c)).

Value roles. The kind of abstract value recovered byVSA sometimes suggests what the value’s

role is, e.g.,

• Singleton - If VSA recovers a singleton value for an actual parameter of an output opera-

tion, the parameter may correspond to either a magic number or a reserved field.

• Set of numeric values - If the value thatVSA recovers is a non-singleton set of numeric

values, the parameter may correspond to an optional field.

• Top - If VSA givesTop, which means any value, for an actual parameter of an output opera-

tion, the parameter may correspond to variant data.

2.2.4.2 Aggregate Structure Identification

As mentioned in§2.2.1, programmers frequently use astruct or a class to collect data before

it is written out.

Fig. 2.9 shows a fragment fromping [19] in which a network packet is constructed. Instead

of writing individual data items one at a time using output operations, astruct object is used to

store output data while multiple fields are prepared, as shown in lines 7–11 of Fig. 2.9. Then the

aggregate object is written out (i.e., sent out) all together on lines 13–14.

ASI [155] is a unification-based, flow-insensitive algorithm toidentify the structure of aggre-

gates in a program. Whenever a read or write to a part of a memory object is encountered,ASI

records how the memory object should be subdivided into smaller objects that are consistent with

the memory access.

In this example, we assume that the user has indicated thatsendto, which is a GNU C library

function, is the only output function. The second argument of sendto is known to be a pointer to a

struct object with unknown substructure.ASI provides information about this substructure. The

instructions that correspond to the assignment statementsat lines 7–11 of Fig. 2.9 are shown in

40

[1] u char outpack[MAXPACKET];

[2] static void pinger(void) {

[3] register struct icmphdr *icp;

[4] register int cc;

[5] int i;

[6] icp = (struct icmphdr*)outpack;

[7] icp->icmp type = ICMP ECHO;

[8] icp->icmp code = 0;

[9] icp->icmp cksum = 0;

[10] icp->icmp seq = ntransmitted++;

[11] icp->icmp id = ident;

[12] ...

[13] i = sendto(s, (char*)outpack, cc, 0, &whereto,

[14] sizeof(struct sockaddr));

[15] ...

[16]}

Figure 2.9 Code fragment used to illustrate the use ofASI information.

Fig. 2.10(a) at lines 2, 4, 6, 9, and 13, respectively.VSA provides information about the extent of

memory accessed by each of these instructions.ASI uses that information to subdivide the portion

of memory accessed, thereby producing the structure shown in Fig. 2.10(b). This indicates that the

structure of the packet header may consist of two 1-byte fields, followed by three 2-byte fields.

ASI is also capable of recovering information about the structure of aggregates that are allocated

in the heap.

This example illustrates a case where each output function emits a completely-constructed

chunk of output data, and the HFSM represents the program’s output operations at a high level

of abstraction. In bulk writes as this example, structure information recovered byASI can help

identify the structure of output data format.

2.2.5 Filtering

Because an HFSM can be hard to understand, we experimented with applying a series of fil-

tering operations—including simplification, conversion of each FSM to a regular expression, and

41

[1] mov eax, dword ptr [ebp - 10h]

[2] mov byte ptr [eax], 8

[3] mov edx, dword ptr [ebp - 10h]

[4] mov byte ptr [edx + 1], 0

[5] mov eax, dword ptr [ebp - 10h]

[6] mov word ptr [eax + 2], 0

[7] mov eax, dword ptr [ntransmitted]

[8] mov edx, dword ptr [ebp - 10h]

[9] mov word ptr [edx + 6], ax

[10]inc dword ptr [ntransmitted]

[11]mov eax, dword ptr [ident]

[12]mov edx, dword ptr [ebp - 10h]

[13]mov word ptr [edx + 4], ax

Global:

struct {

...

byte 1 outpack.0;

byte 1 outpack.1;

byte 2 outpack.2;

byte 2 outpack.4;

byte 2 outpack.6;

...

}

(a) (b)

Figure 2.10 (a) The disassembled code fragment for Fig. 2.9,(b) The outcome ofASI.

inline expansion—to generate a simpler representation of the output format as a regular expression.

In our experiments, this has been done manually; however, the process would be relatively easy to

automate.

Simplification. Not all nodes in the HFSM are helpful in understanding an output format. An

unnecessarily complicated HFSM could prevent users from understanding key aspects of an output

format.

Most portions of the HFSM shown in Fig. 2.5(a) turn out to be eitherTop-value, Top-size,

or an unbounded loop that includes them.Top-value means that the node could have any value;

Top-size means that the node could be of any size.

In each of the following cases, a node (or a node set) would notprovide meaningful informa-

tion:

• A node ofTop-size andTop-value

• A node set in an unbounded loop, each of which has bothTop-size andTop-value

42

To be considered as ameaningful node, a node must be

• A node of non-Top-size

Algorithm 1 Simplification algorithm.
Require: HFSM

Ensure: Trimed HFSM

Set the status of all FSMs to bemeaningful

while There exists ameaningfulFSM that contains onlynon-meaningful nodesor calls tonon-

meaningful FSMsdo

SetM to be anon-meaningful FSM

TransformM into an FSM with a self-loop on a node labeled with (Top-size/Top-value)

end while

Alg. 1 describes an algorithm for simplifying HFSMs generated byFFE/x86. The idea behind

the algorithm is to consider the cases mentioned above: for an FSM that consists of only nodes with

Top-value andTop-size, or an unbounded loop that includes only such items, it may bebetter to

simplify it to (Top)∗ because the original FSM would not provide much meaningful information

about the output format.

size:
Top

value:
Top

size:
Top

value:
Top

call
A

size:
Top

value:
Top

size:
Top

value:
Top

size:
Top

value:
Top

call
B

size:
Top

value:
Top

Figure 2.11 An example of simplification.

Fig. 2.11 shows an example of simplification. The shaded FSM that contains twonon-

meaningful FSMs and threenon-meaningful nodes is simplified to an unbounded self-loop con-

sisting of a node (Top-size/Top-value).

Conversion to a regular expression. We can convert each FSM in an HFSM into a regular

expression using the Kleene construction.

43

Expansion. The final step is to apply inline expansion. Recursion was notencountered in any

of the applications that we used for our experiments (see§2.2.7), so inline expansion could be

applied without worrying about non-termination. If recursion had been encountered, we could

have summarized strongly connected components of the call graph.

Fig. 2.12 represents the final outcome from using these techniques on our example.

size:
4

value:
0x1F

size:
4

value:
0x8F

size:
Top

value:
Top

size:
4

value:
Top

size:
1

value:
‘a’

size:
1

value:
‘b’

size:
1

value:
Top

* size:
4

value:
Top

Figure 2.12 The final result after simplification, conversion, and inline expansion.

2.2.6 Validation against dynamic output

We validated our approach by testing whether the outcome from our algorithm (i.e., the regular

expression) matches output data produced during actual runs of the application.

We usedflex [11], a tool for generating scanners for compilers. Given aninput specification in

the form of a list of pattern-action pairs (where the patternis a regular expression),flexgenerates

a program that repeatedly finds the longest prefix of the (remaining) input that matches one of the

patterns. To create a tool for testing whether a regular expressionR generated by our algorithm

describes the output of an application, we gaveflexa 2-pattern specification—consisting ofR (with

an action to report success), plus a default pattern (with anaction to report failure).

As discussed earlier, each box (as shown in Fig. 2.12) in the regular expression generated by

our technique is labeled with two kinds of information: a value and a size. Value and size are

eitherTop, aSingleton, or a set of numeric values. Thus, to be able to feed it toflex, the regular

expression needs to be transformed to one in which the basic unit is a 1-byte character. Tab. 2.1

shows the transformation rules that are applied to boxes.6

6We use ‘.’ as a shorthand for “any character”. Inflex, it is necessary to use the pattern ‘.|\n’.

44

Table 2.1 Transformation of boxes.

size value conversion

Singleton n Singleton According to the value ofn, this is split into multiple boxes that contain a 1-byte value.

(E.g., the first box in Fig. 2.13(a) is transformed to the firstfour boxes in Fig. 2.13(b).)

Singleton n Top Top is transformed to ‘.’, which matches any character. Thus, this is transformed to a

sequence ofn boxes that contain ‘.’. (E.g., the fifth box in Fig. 2.13(a) istransformed

to the last two boxes in Fig. 2.13(b).)

Top Top This is transformed to a box that contains ‘.’ with a self-loop. (E.g., the third box in

Fig. 2.13 (a) is transformed to the box that has a loop in Fig. 2.13(b).)

size:
4

value:
0x1234

size:
Top

value:
Top

size:
1

value:
{2,4}

size:
2

value:
Top

size:
{1,2}
value:
Top

0x34 0x12 ●0 0 ●

2

4

● ●

●

(a)

(b)
●

Figure 2.13 An example of the transformation. ‘.’ means any character.

Tab. 2.1 describes only the cases when size and value have eitherSingleton orTop. (Note that

there is no case when size isTop and the value is non-Top because this is not a possible outcome of

VSA.) For the case when either size, value, or both have a set of numeric values, we split the box

into multiple boxes that have aSingleton value and aSingleton size. For example, the second

box in Fig. 2.13(a), which has two values (2 and 4), is transformed to the two boxes in Fig. 2.13(b)

that have the values 2 and 4, respectively. For the case wheresize is not aSingleton, the shaded

boxes in Fig. 2.13(b) show how it is converted.

Note that this process is only for validation, because the original values or sets of values are

more likely to be understandable to a human than the subdivided values.

45

2.2.7 Experimental Results

We evaluatedFFE/x86 on three applications:gzip, png2ico, andping. In this chapter, we

show the result ofgzip. All the experimental resuls are presented in the WCRE’06 paper on

FFE/x86 [127].

Gzip

Gzip is a GNU data-compression program. Fig. 2.14 represents theoutcome after filtering the

HFSM from Fig. 2.5(a).

size:
1

value:
0x1F

size:
1

value:
0x8B

size:
1

value:
0x08

size:
1

value:
Top

size:
Top

value:
Top

* size:
Top

value:
Top

*size:
4

value:
Top

size:
4

value:
Top

size:
4

value:
Top

size:
1

value:
Top

size:
1

value:
Top

Figure 2.14 The final result forgzip.

Table 2.2 Part of the specification ofgzip’s format [14].

OS ...XFLMTIMEFLGCMID2ID1

...

If FLG.FHCRC set

ISIZECRC32... compressed blocks …

ID1 and ID2 These are the fixed values: ID1=31 (0xlF), ID2=139 (0x8B)

CM This identifies compression method: CM=0-7 are reserved, CM=8 demotes the ”deflate” compression method.

FLG This is divided into individual bits: bit 0 FTEXT, bit 1 FHCRCand so forth.

MTIME This gives the most recent modification time of the original file being compressed.

XFL This is available for use by specific compression methods.

OS This identifies the type of file system on which compression took place: 0 - FAT filesystem, 1 - Amiga, and so forth.

CRC32 This contains a cyclic redundancy check value of the uncompressed data.

ISIZE This contains the size of the original input data modulo232 .

The format of.gz files generated bygzip is described in RFC 1952 (see Tab. 2.2). The

outcome shown in Fig. 2.14 correctly over-approximates thespecification. In other words, the

language of the outcome is a superset of the output language of gzip. The outcome has the two

magic numbers (ID1=0x1f andID2=0x8b) and a constant (CM=8) at the same positions shown in

46

Tab. 2.2. This is followed by a 4-byte element (corresponding to MTIME), two 1-byte elements

(corresponding toXFL andOS). At the end, it has two 4-byte elements, which correspond toCRC32

andISIZE.

We also applied the validation process described in§2.2.6 to this outcome. Theflex-generated

validator accepted each of five.gz files (chosen arbitrarily from the Internet).

2.2.8 Related Work on Recovering Input/Output Information

Most previous work on reverse engineering of file formats hasbeen dynamic and manual.

Eilam describes a strategy for deciphering file formats given a symbol table and a sample output

file [83]. This approach requires manually stepping throughdisassembled code and inspecting

memory contents in a debugger while the program produces thegiven file. Other approaches

ignore the program and rely on heuristic generalization from one or more sample output files.

For example, one reverse-engineering case study searched for zlib-compressed data, file names,

length bytes, and other typical structures [10]. All of these approaches require considerable manual

effort and one cannot guarantee that the chosen sample files are sufficiently general. In constrast,

the static approach described here over-approximates a fileformat without relying on sample files,

symbol tables, or extensive manual analysis. Human intervention is only needed to identify output

functions and to assign higher-level interpretations (e.g., “file name”) to selected fields identified

by the analysis.

There have been similar attempts to statically recover information about program data. Chris-

tensen et al. have presented a technique for discovering thepossible values of string expressions in

Java programs [67]. First, a context-free grammar is generated by constructing dependence graphs

from class files. The grammar is then widened into a regular language, which contains all possible

strings that could be dynamically generated.

The method of Christensen et al. has also been applied to low-level code; Christodorescu et al.

used the method in a string analysis for x86 executables [69]. This approach is similar to ours in the

sense that x86 executables are the targets of both tools, andthe recovered output data format in the

analysis is represented as a regular language that denotes asuperset of the actual output language.

47

Their approach, however, is different from ours in the sensethat the initial context-free structure

recovered by their tool comes from the structure of operations purely internal to each procedure,

rather than from the call-return structure of the program, as in our tool.

Our approach is also related to work on host-based intrusiondetection, in which models of

expected program behavior are also constructed. The model over-approximates the possible se-

quences of system calls, and, by comparing the actual sequence of system calls to those allowed

by the model, is used to detect when malicious input has hijacked the program. Pushdown-system

models have been employed for this purpose, either constructed from source code [179] or from

low-level code [91, 92] (in particular, SPARC executables). Our HFSMs are similar in that they

also yield context-free languages that are a projection of aportion of the program’s behavior. We

have gone beyond previous work by using the results from two dataflow analyses (namely,VSA

andASI) to elaborate our models with information about possible sets of values and value sizes.

2.2.9 Discussion ofFFE/x86

In the work onFFE/x86, we focus on output operations. However, the same approach can be

applied to other kinds of operations. For example, one couldtreatinput operations, which are asso-

ciated with examining or parsing an input file, using the sameapproach taken byFFE/x86 [81]. In

this case, one would want to consider only paths to exit points that represent successful runs of the

program (because these correspond to successful uses of well-formed input files). In addition, one

could apply our approach to network-communication operations that parse or construct packets.

It may be possible to use such a characterization of the inputlanguage as a way to generate

test inputs. Similarly, knowledge of the output language for componentc1 in a tool chain could be

used as a source of test inputs for the next componentc2 in the chain.

As mentioned earlier, we assume that output functions are identified by the user. To create a

more automatic tool for extracting data formats, it would bedesirable to find a way to automatically

identify output functions, especially wrapper functions.

Each loop in an HFSM is currently transformed to either(node-set)∗ or (node-set)+. How-

ever, there can be cases when the bound on the number of possible iterations of a loop can be

48

obtained fromVSA. In such cases, the information about a loop’s iteration bounds would provide

users with more precise information about the output format.

More details can be found in the paper aboutFFE/x86 [127].

2.3 ConSeq

CodeSurfer/x86 has also been used as a component of a consequence-oriented backward-

analysis framework, calledConSeq,7 to detectconcurrency bugs[191]. This section summarizes

ConSeq, and describes the component for static slicing (§2.3.1), which was my contribution to the

work.

Concurrency bugs are caused by non-deterministic interleavings between shared memory ac-

cesses. They exist widely (e.g., 20% of driver bugs examinedin a previous study [162] are con-

currency bugs) and are among the most difficult bugs to detectand diagnose because interleavings

are not only complicated to reason about, but they also dramatically increase the state space of

software. For large real-world applications, each input easily maps to billions of execution inter-

leavings, and a concurrency bug may only be exposed by one specific interleaving. How to analyze

this huge spaceselectivelyand expose hidden bugs is an open problem for static analysis, model

checking, and software testing.

The effects of a bug propagate through data and control dependences until they cause software

to crash, hang, produce incorrect output, etc. The lifecycle of a bug thus consists of three phases:

(1) triggering, (2) propagation, and (3) failure. Traditional techniques for detecting concurrency

bugs mostly focus on phase (1)—i.e., on finding certain structural patterns of interleavings that are

common triggers of concurrency bugs. These patterns include data races (conflicting accesses to a

shared variable) [66, 87, 147, 163, 189], simple atomicity violations (unserializable interleavings

of two small code regions) [132, 151, 177, 188], context-switch bounded interleavings [56, 121,

142, 143], etc. Although much progress has been made in this direction, those techniques have

7ConSeq was carried out in collaboration primarily with W. Zhang, S.Lu, and T. Reps, along with R. Olichan-
dran, J. Scherpelz, and G. Jin. My contribution to the work consisted of the development of the component for static
slicing.

49

Figure 2.15 The common three-phase error-propagation process for most concurrency bugs
(obtained from [191]).

fundamental limitations in that they can suffer from false negatives (i.e., many of common real-

world concurrency bugs cannot be covered by traditional patterns) and false positives (i.e., the

reported interleavings are not always truly harmful).

Consequence-Oriented Approach

To improve the accuracy and coverage of state-space search and bug detection,ConSeq is

based on a consequence-oriented approach—that is, it uses abackwards approach, (3)→(2)→(1).

ConSeq’s backwards approach provides advantages in bug-detection coverage and accuracy but is

challenging to carry out.ConSeq makes it feasible by exploiting the empirical observation that

phases (2) and (3) usually are short and occur within one thread. ConSeq uses potential software

failures to guide its search of the interleaving space. Our approach can be divided into the following

three stages:

Stage I. ConSeq first statically identifies potential failure sites in an executable (i.e., it first

considers a phase (3) issue). This approach is based on the observation that concurrency and

sequential bugs have drastically different causes but havemostlysimilar consequences.

After being triggeredby an incorrect execution order across multiple threads, a concurrency

bug usuallypropagatesin one thread through a short data/control-dependence chain, similar to

one for a sequential bug [97]. The erroneous internal state is propagated until an externally visible

failure occurs. At the end, concurrency and sequential bugsare almost indistinguishable: no matter

50

what the cause, a crash is often preceded by a thread touchingan invalid memory location or

violating an assertion; a hung thread is often caused by an infinite loop; incorrect outputs are

emitted by one thread, etc.

ConSeq statically identifiesfive types of potential error sites that cover almost all major types

of concurrency bug failures (Stage Iof ConSeq as shown in Fig. 2.15): (1) calls to assertions in the

software (for assertion crashes); (2) back-edges in loops (for infinite loop hangs); (3) calls to output

functions (for incorrect functionality failures), (4) calls to error-message functions in the software

(for various types of internal errors); and (5) reads on global variables where important invariants

likely hold according to Daikon [85], a tool for inferring program invariants (for miscellaneous

errors and failures).

Stage II. ConSeq then usesstatic program slicingfrom CodeSurfer/x86 to identify critical

shared-memory read instructions that are highly likely to affect potential failure sites through a

short chain of control and data dependences (phase (2)) (Stage II of ConSeq in Fig. 2.15).

ConSeq exploits two characteristics of concurrency bugs: first, the error-propagation distance

is usually short in terms of data/control-dependence edges[97] (more information, including val-

idation of the short-propagation heuristic can be found in [191]); second, the cause of a con-

currency bug usually involves a specific ordering of just a few (two or three) shared memory

accesses [56, 131].

§2.3.1 presents the details of Stage II.

Stage III. Finally, ConSeq monitors a single (correct) execution of a concurrent program, and

by using execution-trace analysis and perturbation-basedinterleaving testing, it identifies suspi-

cious interleavings that could cause an incorrect state to arise at a critical read and then lead to a

software failure (phase (1)) (Stage III of ConSeq in Fig. 2.15).

51

ConSeq Modules

As shown in Fig. 2.16,ConSeq uses a combination of static and dynamic analyses. It uses

the following modules to create an analyzer that works backwards along potential bug-propagation

chains.

Error-site identifier. This static-analysis component processes an executable and identifies in-

structions where certain errors might occur. For example, acall to assert fail is a potential

assertion-violation failure site. Although currentlyConSeq identifies potential error sites for five

types of errors, developers can adjust the bug-detection coverage and performance ofConSeq by

specifying specific types of error sites on which to focus.

Critical-read identifier. This component uses static slicing to find out which instructions that

read shared memory are likely to impact a potential error site. Note that static analysis is usually not

scalable for multi-threaded C/C++ programs. By leveragingthe short-propagation characteristic

of concurrency bugs and the staged design ofConSeq, this module is scalable to large C/C++

programs. (§2.3.1 presents more details of this module.)

Suspicious-interleaving finder. This dynamic-analysis module monitors one run of the concur-

rent program, which is usually a correct run, and analyzes what alternative interleavings could

cause a critical read to acquire a different and potentiallydangerous value. By leveraging the char-

acteristics of concurrency bugs’ root causes, this module is effective for large applications. Via

this module,ConSeq generates a bug report, which provides a list of critical reads that can po-

tentially read dangerous writes and lead to software failures. Critical reads, dangerous writes, and

the potential failure sites are represented by their respective program counters in the bug report.

Additionally, the stack contents are provided to facilitate programmers’ understanding of the bug

report. [191] presents more details.

Suspicious-interleaving tester. This module tries out the detected suspicious interleavings by

perturbing the program’s re-execution. It helps expose concurrency bugs and thereby improves

52

(Potential)

Error Site

identifier

read

printf

read

assert

Static Analysis Dynamic Analysis

Suspect Interleaving

Finder
(logging & trace-analysis)

Program

execute once

correctly

printf

assert

Suspect

interleavings

Bug

reportsProgram

execute w/

perturbation

Suspect Tester

Critical

Read

Identifier

feedback

Figure 2.16 An overview of theConSeq architecture (obtained from [191]).

programmers’ confidence in their program. Via this module,ConSeq prunes false positives from

the bug report, and extends the report of each true bug with how to perturb the execution and make

the bug manifest. See [191] for more details.

2.3.1 Program Slicing inConSeq

Program slicingis an operation that identifies semantically meaningful decompositions of pro-

grams, where the decompositions may consist of elements that are not textually contiguous [183].

A backward sliceof a program with respect to a set of program elementsS consists of all pro-

gram elements that might affect (either directly or transitively) the values of the variables used at

members ofS. Slicing is typically carried out usingprogram dependence graphs[103].

CodeSurfer/x86. ConSeq uses backward slicing to identify shared memory reads that might

impact each potential error site. To obtain the backward slice for each potential error site, it uses

CodeSurfer/x86 [39], which is a static-analysis frameworkfor analyzing the properties of x86

executables. Various analysis techniques are incorporated in CodeSurfer/x86, including ones to

recover asound approximationto an executable’s variables and dynamically allocated memory

objects [41]. CodeSurfer/x86 tracks the flow of values through these objects, which allows it to

provide information about control/data dependences transmitted via memory loads and stores.

The goal of the critical-read identification module is to identify critical-read instructions that

are likely to impact potential error sites through data/control dependences. It uses static slicing to

53

approximate (in reverse) the second propagation phase of a concurrency bug, as shown in Fig. 2.15.

The major design principle of this module is to only report instructions with short propagation

distances as critical reads. Computing the complete program slice, e.g., all the way back to an

input, is complicated and also unnecessary forConSeq. ConSeq leverages the short-propagation

characteristic of concurrency bugs to improve bug-detection efficiency and accuracy.

0x4f7f2 read runningUrl

0x4f81d call nsDebug::Assertion

if (InProgress) {

 isBusy=TRUE;

if (isBusy)

 if(!runningUrl)

 nsDebug::Assertion(...);

Distance = 4

Distance =3

Distance=2

Distance=1

Data
Dependence

Control
Dependence

Control
Dependence

Control
Dependence

0x4884e read InProgress

0x48857 write isBusy

0x4f795 read isBusy

0x48855 conditional jump

0x4f799 conditional jump

Figure 2.17 Static slicing (right) and the distance calculation (left; obtained from [191]).

In accordance with the short-propagation heuristic,ConSeq only reports read instructions

whose return values can affect the error sites through a short sequence of data/control depen-

dences. Our static-slicing tool provides the slice, together with the value of the shortest distance to

the starting point of the slice, for each instruction of the slice. An example is shown in Fig. 2.17.

ConSeq provides a tunable thresholdMaxDistancefor users to control the balance between false

negatives and false positives. By default,ConSeq uses 4 asMaxDistance. A detailed evaluation is

presented in [191].

Side-stepping scalability problems. To avoid the possible scalability problems that can occur

with CodeSurfer/x86 due to the size of the applications usedin evaluatingConSeq, we set the

starting point of each analysis in CodeSurfer/x86 to the entry point of the function to which a

given potential error site belongs, instead of the main entry point of the program. By doing so,

CodeSurfer/x86 only needs to analyze the functions of interest and their transitive calls rather

than the whole executable. Thus the static-analysis time grows roughly linearly in the number of

54

functions that contain error sites. This approach makesConSeq much more scalable, as illustrated

in the experimental section of [191].

This approach is applicable inConSeq because—based on the observation that the error-

propagation distance is usually short—ConSeq only requires ashort backward slice that can be

covered in one procedure. The backward-slicing and other analysis operations in CodeSurfer/x86

are, however, still context-sensitive andinterprocedural[103]. Moreover, to obtain better preci-

sion from slices, each of the analyses used by CodeSurfer/x86 is also performed interprocedurally:

calls to a sub-procedure are analyzed with the (abstract) arguments that arise at the call-site; calls

are not treated as setting all the program elements to⊤.

Analysis Accuracy. To obtain static-analysis results that over-approximate what can occur in any

execution run, all the program elements (memory, registers, and flags) in the initial state with which

each analysis starts are initialized to⊤, which represents any value. Such an approximation makes

sure that no critical read will be missed byConSeq at runtime. Of course, some instructions could

be mistakenly included in the backward slice and be wrongly treated as critical reads. Fortunately,

our short-propagation-distance heuristic minimizes the negative impact of over-approximation. In

practice, we seldom observe any inaccuracy caused by this over-approximation.

Identifying Potential Infinite Loop. For non-deadlock bugs, infinite loops in one thread are the

main causes of hangs. Every back-edge in a loop is a potentialsite for this type of failure.ConSeq

identifies strongly connected components (SCCs) that are potential failure sites for infinite-loop

hangs by checking whether any shared-memory read is included in the backward slice of each

back-edge in an SCC. To identify nested loops, CodeSurfer/x86 implementsBourdoncle’s algo-

rithm [53], which recursively decomposes an SCC into sub-SCCs, etc.

More False-Positive Pruning via Symbolic Execution. The precision loss due to the properties

of static analysis can result in spurious backward slices, which can cause false positives inConSeq.

To prune slices that are likely to be spurious, we introduce aheuristic based onsymbolic execution,

55

which tracks symbolic expressions rather than actual values [62]. A symbolic execution is done

by replaying a concrete trace produced from PIN [133], but executing it symbolically. Each trace

must contain (i) a possibly false-positive critical readI and (ii) the control pointB (conditional

branch instructions) that controls execution of an error site. Two separate symbolic executions are

performed for pruning: onewith I (SE1), and the otherwithout I (SE2). Each of the program

elements is initialized to a symbol instead of a concrete value in the initial symbolic state with

which each symbolic execution starts. We obtain the branching constraintC1 from SE1, and the

second constraintC2 from SE2. If the following formula always holds, we can determine that I is

a false positive (i.e.,I does not impact the control toward the error site):

C1 ⇔ C2.

Due to the complexity of validity checking, we use the following formula as a heuristic:

S1 |= C2 ⇔ S2 |= C1

whereS1 andS2 are satisfying assignments obtained using theYICES SMT solver forC1 andC2,

respectively.8

2.3.2 Evaluation

The evaluation ofConSeq on large, real-world C/C++ applications shows thatConSeq detects

more bugs than traditional approaches and has a much lower false-positive rate [191].ConSeq was

evaluated on 11 real-world concurrency bugs in seven widelyused C/C++ open-source server and

client applications—Mozilla, MySQL, Cherokee, Transmission, Aget, etc.ConSeq was able to

detect 10 out of 11 tested concurrency bugs, which cover a wide range of root causes, from simple

races and single-variable atomicity-violations to order-violations, anti-atomicity violation bugs,

multi-variable synchronization problems, etc. For comparison, we evaluated a race detector and

an atomicity-violation detector and found that they could only detect 3 and 4 bugs, respectively.

8For the implementation of this particular part, we use symbol-analysis primitives (symbolic-execution primitive
and satisfaction relation) created byTSL [126, 125], which is the main subject of this thesis.TSL will be presented
in the following chapters.

56

ConSeq detected these bugs with high accuracy: it had about one-tenth the false-positive rate of

the race detector and the atomicity-violation detector.

ConSeq also found 2 new bugs in Aget, 2 new bugs in Click, and one output non-determinism

in Cherokee, for which bugs had not been previously reported. ConSeq found a known infinite-

loop bug in a version of MySQL for which the bug had not been previously reported. Experiments

in which we usedConSeq together with Daikon [85] show thatConSeq can detect complicated

concurrency bugs that previous tools cannot (e.g., a bug involving 11 threads and 21 shared vari-

ables). The performance ofConSeq is suitable for in-house testing.

More details of the experimental results are presented in the ASPLOS’11 paper aboutConSeq

[191].

2.3.3 Discussion ofConSeq

The work onConSeq provides a new perspective on concurrency-bug detection and testing,

which is to start from potential consequences and work backwards. It provides alternative inter-

pretations for some concurrency bugs with complicated causes that are difficult to detect using

traditional approaches, and sets up a nice connection with sequential bug-detection research, such

as Daikon [85].

ConSeq uses a three-stage bug-detection framework that leveragescharacteristics from all

three phases of the concurrency-bug propagation process. The design separates the complexity

of inter-thread interleaving analysis and intra-thread propagation analysis, and makes it easy to

leverage advanced static-analysis techniques, such as slicing and loop analysis. Each stage of the

framework can be easily extended. In particular, programmers can assistConSeq by putting more

consistency checks into their code, such as assertions and error messages.

Overall,ConSeq effectively exposes those non-determinisms among a small number of shared

memory accesses that can propagate a relatively short distance and cause a common error (such as

infinite loop, error message firing, assertion failure, etc.) and end up with a visible failure.

57

2.4 Motivation for a New System for Implementing Machine-Code Analyses

Although the analysis techniques incorporated into CodeSurfer/x86, in principle, are language-

independent, the original implementation was tied to the Intel IA32 instruction set. Moreover,

CodeSurfer/x86 incorporated at least eight separate analyses, each of which was an independently-

coded abstract interpretation of theIA32 instruction set’s concrete semantics. Fig. 2.18 shows

some simplified versions of the implementations ofVSA (on the left) andASI (on the right) in

CodeSurfer/x86. The implementation of the abstract transformer for each analysis usually has a

big switch statement where for each instruction ofIA32, an abstract transformer is implemented

in the analysis abstract domain according to the concrete semantics of the instruction. Theswitch

statement for each analysis in CodeSufer/x86 contains about 110 cases9 for frequently-usedIA32

instructions. If one wanted to develop, e.g., CodeSurfer/PowerPC, substantial work would be nec-

essary to port the original CodeSurfer/x86 implementationto support a new instruction set. In

particular, CodeSurfer/x86 consists of eight analyses, and an abstract transformer for each instruc-

tion of PowerPC would need to be implemented for each of the eight analyses’ abstract domains.

In general, if one can hasN subject languages and a desired tool that consists ofM analysis

components, one would have to createN ×M analysis-component implementations. (One of the

advantages of theTSL system is that to obtain the desiredN ×M analysis-component implemen-

tations, a human tool designer will only have to performN +M work.)

The situation described above is fairly typical of much workon program analysis: although the

techniques described in the literature are, in principle, language-independent, implementations are

often tied to a specific language or intermediate representation (IR). Retargeting them to another

language can be an expensive and error-prone process. Even for source-code analysis, this state of

affairs reduces the impact that good ideas developed in one context (e.g., Java program analysis)

have in other contexts (e.g.,C++ analysis).

For high-level languages, the situation has been addressedby developing common intermediate

languages, e.g.,GCC’s RTL, Microsoft’s MSIL, etc. (although the academic research community

9The remaining instructions out of about 600IA32 non-floating-point/non-MMX instructions are treated as caus-
ing the resultant state to beTop.

58

[1] VSA state t VsaTransformerForIA32(

[2] Instr i, VSA state t S)

[3] {

[4] VSA state t ans;

[5] switch(i.id) {

[6] case IA32 MOV: {

[7] VSA value t v = EvalVSA(i.child2, S);

[8] ans = UpdateVSAState(S, i.child1, v);

[9] break;

[10] }

[11] case IA32 ADD: {

[12] VSA value t v1 = EvalVSA(i.child1, S);

[13] VSA value t v2 = EvalVSA(i.child2, S);

[14] VSA value t v = VSAPlus(v1, v2);

[15] ans = UpdateVSAState(S, i.child1, v);

[16] break;

[17] }

[18] case IA32 SUB: {

[19] . . .

[20] break;

[21] }

[22] }

[23] return ans;

[24]}

[1] set of mini asi instr AsiTransformerForIA32(

[2] Instr i, VSA state t S)

[3] {

[4] set of mini asi instr ans;

[5] switch(i.id) {

[6] case IA32 MOV: {

[7] set of mini asi instr v1 =

[8] CollectMemAccesses(i.child1, S);

[9] set of mini asi instr v2 =

[10] CollectMemAccesses(i.child2, S);

[11] ans = v1.union(v2);

[12] break;

[13] }

[14] case IA32 ADD: {

[15] . . .

[16] break;

[17] }

[18] case IA32 SUB: {

[19] . . .

[20] break;

[21] }

[22] }

[23] return ans;

[24]}

Figure 2.18 Two snippets ofVSA andASI implementations in CodeSurfer/x86;EvalVSA/
UpdateVSAState andCollectMemAccesses are otherIA32-specific procedures forVSA andASI,

respectively;ASI makes use of the information fromVSA.

has not rallied around a similar common platform). The situation is more serious for low-level in-

struction sets, because (i) most instruction sets have evolved over time, so that each instruction-set

59

Figure 2.19 The description of the PowerPC instructionlwbrx (obtained from the PowerPC
instruction-set manual [27]).

family has a bewildering number of variants,10 which has led to instruction sets with several hun-

dred instructions, and (ii) there are a variety of architecture-specific features that are incompatible

with other architectures.

Fig. 2.19 shows an informal description of the operational semantics of an instruction in the

32-bit PowerPC instruction set. One can imagine how expensive and error prone it would be

to develop an analysis implementation because the developer needs to interpret the instruction’s

concrete semantics in the abstract domain used by the analysis.

10For a brief overview, see http://en.wikipedia.org/wiki/{X86,ARM architecture,PowerPC}. In particular, the arti-
cle about ARM lists 25 different architectural versions [Sept. 29, 2008].

60

Our motivation is to provide a systematic way of extending the analyses used in

CodeSurfer/x86—and others—to instruction sets other thanIA32. The motivation led us to de-

velop a meta-tool (or tool-generator), calledTSL (for “TransformerSpecificationLanguage”), to

help in the creation of tools for analyzing machine code.TSL consists of a language for describing

the semantics of an instruction set, along with a run-time system to support the static analysis of

executables written in that instruction set. The work advances the state of the art by creating a

system for automatically generating analysis components from a specification of the language to

be analyzed. In the remaining chapters, we introduceTSL and describe some of its capabilities.

61

Chapter 3

Transformer Specification Language

In Chapter 2, we discussed the importance and advantages of machine-code analysis and chal-

lenges in developing a system for analyzing machine-code. This chapter presents theTSL system

that we have developed to address the challenging issues discussed in§2.4. “TSL” stands for

“TransformerSpecificationLanguage”, and is used both for the name of the overall system and

for the name of the system’s meta-language.

Design Principles

In designingTSL, we were guided by the following principles:

• There should be a formal language for specifying the semantics of the language to be an-

alyzed. Moreover, an instruction-set-semantics developer should specify only the abstract

syntax and a concrete operational semantics of the languageto be analyzed—each analyzer

should be generated automatically from this specification.

• Concrete syntactic issues—including (i) decoding (machine code to abstract syntax), (ii)

encoding (abstract syntax to machine code), (iii) parsing assembly (assembly code to abstract

syntax), and (iv) assembly pretty-printing (abstract syntax to assembly code)—should be

handled separately from the abstract syntax and concrete semantics.1

1The translation of the concrete syntaxes to and from abstract syntax is handled by a generator tool that is separate
from TSL, and will not be discussed in this thesis. The relationship between the two systems is similar to that between
Flex and Bison. With Flex and Bison, a Flex-generated lexer passes tokens to a Bison-generated parser. In our case,
the TSL-defined abstract syntax serves as the formalism for communicating values—namely, instructions’ abstract
syntax trees—between the two tools.

62

• There should be a clean interface for analysis developers tospecify the abstract semantics

for each analysis. An abstract semantics consists of aninterpretation: an abstract domain

and a set of abstract operators (i.e., for the operations ofTSL).

• The abstract semantics for each analysis should be separated from the languages to be an-

alyzed so that one does not need to specify multiple versionsof an abstract semantics for

multiple languages.

Each of these objectives has been achieved in theTSL system: TheTSL system translates the

TSL specification of each instruction set to a common intermediate representation (CIR) that can

be used to create multiple analyzers (§3.1). Each analyzer is specified at the level of the meta-

language (i.e., by reinterpreting the operations ofTSL), which—by extension toTSL expressions

and functions—provides the desired reinterpretation of the instructions of an instruction set (§3.3).

Other notable aspects of our work include

• Support for Multiple Analysis Types. The system supports several analysis types:

– Classical worklist-based value-propagation analyses.

– Transformer-composition-based analyses [74, 169], whichare particularly useful for

context-sensitive interprocedural analysis, and for relational analyses.

– Unification-based analyses for flow-insensitive interprocedural analysis.

In addition, an emulator (for the concrete semantics) is also created.

• Implemented Analyses. These mechanisms have been instantiated for a number of specific

analyses that are useful for analyzing low-level code, including value-set analysis [38, 41]

(§3.3.1), affine-relation analysis [38,§7.2] (§3.3.2), def-use analysis (for memory, registers,

and flags) (§3.3.3), aggregate structure identification [42] (§3.3.4), and generation of sym-

bolic expressions for an instruction’s semantics (§3.3.5).

• Established Applicability. The capabilities of our approach have been demonstrated by writ-

ing specifications forIA32 andPowerPC. These are nearly complete specifications of the in-

teger subset of these languages, and include such features as (1) aliasing among 8-, 16-, and

32-bit registers, e.g.,al, ah, ax, andeax (for IA32), (2) endianness, (3) issues arising due

63

to bounded-word-size arithmetic (overflow/underflow, carry/borrow, shifting, rotation, etc.),

and (4) setting of condition codes (and their subsequent interpretation at jump instructions).

TheTSL-generated analysis components forIA32 andPowerPC have been put together to create a

system that essentially duplicates CodeSurfer/x86 [5] andcreates CodeSurfer/ppc32, respectively.

We have also experimented with sufficiently complex features of other low-level languages (e.g.,

register windows for SunSPARC and conditional execution of instructions forARM) to know that

they fit our specification and implementation models.

The remainder of this chapter is organized as follows:§3.1 presents the overview of theTSL

system both from the perspective of instruction-set specifiers (ISS) (§3.1.1) and that of analysis

developers (§3.1.2). The section also discusses quirky features of several instruction sets, and dis-

cusses how those features are handled inTSL. §3.2 discusses how theTSL compiler generates a

CIR from a TSL specification and how theCIR is used for creating analysis components. The

section also describes how theTSL system handles some important issues, such as recursion and

conditional branches in theCIR. §3.3 presents several analysis components that have been instan-

tiated for developing a system for analyzing low-level code. §3.4 discusses the measure of success

and the leverage that theTSL system provides.§3.5 discusses related work.

3.1 Overview of theTSL System

The key principle of theTSL system is the separation of the semantics of a subject language

from the analysis semantics in the development of an analysis component. As discussed in§1.4.1,

theTSL system is based on semantic reinterpretation, which was originally proposed as a conve-

nient methodologyfor formulating abstract interpretations [73, 110, 134, 144, 148] (see§1.4.1).

Semantic reinterpretation involves refactoring the specification of the concrete semantics of a lan-

guage into two parts: (i) aclient specification, and (ii) a semanticcore. The interface to the core

consists of certain basetypes, function types, and operators (sometimes called asemantic algebra

[140]). The client is expressed in terms of this interface. Such an organization permits the core to

bereinterpretedto produce an alternative semantics for the subject language.

64

The key insight behind theTSL system is that if a rich enoughmeta-languageis provided for

writing semantic specifications, one can avoid thead hocrefactoring step. The advantage of this

approach is that it allows theTSL system to act as a “YACC-like” tool for generating analysis

components from a semantic description of an instruction set.

Client Analyzer

M Instruction-Set Specifications

TSL System

N Analysis Components

• • •

interpInstr1 interpInstr2 interpInstrN

• • •

Figure 3.1 The interaction between theTSL system and a client analyzer. The grey boxes
representTSL-generated analysis components.

TheTSL system has two classes of users: (1) instruction-set specifiers (ISS) and (2) analysis

developers. The former use theTSL language to specify the concrete semantics of different instruc-

tion sets (the lower part of Fig. 3.1); the latter use semantic reinterpretation to create new analyses

(the upper part of Fig. 3.1).§3.1.1 and§3.1.2 present theTSL system from an instruction-set

specifier’s standpoint and an analysis developer’s standpoint, respectively.

3.1.1 TSL from an ISS’s Standpoint

Fig. 3.2 shows part of a specification of theIA32 instruction set taken from the Intel manual

[17]. The specification describes the syntax and the semantics of each instruction only in a semi-

formal way (i.e., a mixture of English and pseudo-code).

Our work is based on completely formal specifications that are written in a language that we de-

signed (TSL). TSL is a strongly typed, first-order functional language.TSL supports a fixed set of

base-types; a fixed set of arithmentic, bitwise, relational, and logical operators; the ability to define

65

General Purpose Registers: ADD r/m32,r32; Add r32 to r/m32

EAX,EBX,ECX,EDX,ESP,EBP,ESI,EDI,EIP ADD r/m16,r16; Add r16 to r/m16 . . .

Each of these registers also has 16- or 8-bit subset names.Operation: DEST← DEST + SRC;

Addressing Modes: [sreg:][offset][([base][,index][,scale])] Flags Affected: The OF,SF,ZF,AF,CF, and

EFLAGS register: ZF,SF,OF,CF,AF,PF, . . . PF flags are set according to the result.

Figure 3.2 A part of the Intel manual’s specification ofIA32’s add instruction.

recursive data-types, map-types, and user-defined functions; and a mechanism for deconstruction

by means of pattern matching.

Basetypes. Fig. A.1 shows the basetypes thatTSL provides. There are two categories of primitive

base-types:unparameterizedandparameterized. An unparameterized base-type is just a set of

terms. For example,BOOL is a type consisting of truth values,INT32 is a type consisting of

32-bit signed whole numbers, etc.MAP[α, β] is a predefined parameterized type, with parameters

α andβ. Each of the following is an instance of the parameterized typeMAP:

MAP[INT32,INT8]

MAP[INT32,BOOL]

MAP[INT32,MAP[INT8,BOOL]]

TSL supports arithmetic/logical operators (+, −, ∗, /, !, &&, ||, xor), bit-manipulation opera-

tors (∼, &, |, ˆ,≪,≫, right-rotate, left-rotate), relational operators (<,<=,>,>=, ==, !=), and

a conditional-expression operator (? :). TSL also provides access/update operators for map-types.

More details of theTSL syntax and semantics can be found in Appendix A.

Specifying an Instruction Set. Fig. 3.4(a) shows a snippet of theTSL specification that cor-

responds to Fig. 3.2.2 Much of what an instruction-set specifier writes in aTSL specification is

similar to writing an interpreter for an instruction set in first-orderML [99]. One specifies (i) the

abstract-syntax grammar of the instruction-set, (ii) a type for concrete states, and (iii) the concrete

semantics of each instruction.
2TheTSL specification is simplified to make the presentation simpler.

66

Type Terms Constants

BOOL false, true false, true

INT64 64-bit signed integers 0d64, 1d64, 2d64, ...

INT32 32-bit signed integers 0d32, 1d32, 2d32, ...

INT16 16-bit signed integers 0d16, 1d16, 2d16, ...

INT8 8-bit signed integers 0d8, 1d8, 2d8, ...

STR Sequences of characters.""

All characters except "ab...AB...01...!%..."

’\000’ permitted. "\n\r\b\t\f\’\"\\"

"\001\002\003..."

MAP[α,β] Maps no constants

Figure 3.3 Syntax of constants of primitive type.

Reserved, but User-Defined Types and Reserved Functions.Each specification must define

several reserved (but user-defined) types:instruction (lines 2–9 of Fig. 3.4(a));state—e.g., for

32-bit Intel x86 the typestateis a triple of maps (lines 10–12 of Fig. 3.4(a)); as well as thereserved

TSL functioninterpInstr (lines 17–30 of Fig. 3.4(a)). These reserved types and functions form part

of the API available toanalysis enginesthat use theTSL-generated transformers (CIR).

The definition of types and constructors on lines 2–9 of Fig. 3.4(a) is an abstract-syntax gram-

mar for IA32. Type reg consists of nullary constructors forIA32 registers, such asEAX() and

EBX(); flag consists of nullary constructors for theIA32 condition codes, such asZF() andSF().

Lines 4–6 define types and constructors to represent the various kinds of operands thatIA32 sup-

ports, i.e., various sizes of immediate, direct register, and indirect memory operands. The reserved

(but user-defined) typeinstruction consists of user-defined constructors for each instruction, such

asMOV andADD.

The typestate specifies the structure of the execution state. Thestate for IA32 is defined on

lines 10–12 of Fig. 3.4(a) to consist of three maps, i.e., a memory-map, a register-map, and a flag-

map. Theconcrete semanticsis specified by writing a function namedinterpInstr (see lines 17–30

67

[1] // User-defined abstract syntax

[2] reg: EAX() | EBX() | . . . ;

[3] flag: ZF() | SF() | . . . ;

[4] operand: Indirect(reg reg INT8 INT32)

[5] | DirectReg(reg)

[6] | Immediate(INT32) | ...;

[7] instruction

[8] : MOV(operand operand)

[9] | ADD(operand operand| . . . ;

[10] state: State(MAP[INT32,INT8] // memory-map

[11] MAP[reg32,INT32] // register-map

[12] MAP[flag,BOOL]); // flag-map

[13] // User-defined functions

[14] INT32 interpOp(state S, operand op) { . . . };

[15] state updateFlag(state S, . . .) { . . . };

[16] state updateState(state S, . . .) { . . . };

[17] state interpInstr(instruction I, state S) {

[18] with(I) (

[19] MOV(dstOp, srcOp):

[20] let srcVal = interpOp(S, srcOp);

[21] in (updateState(S, dstOp, srcVal)),

[22] ADD(dstOp, srcOp):

[23] let dstVal = interpOp(S, dstOp);

[24] srcVal = interpOp(S, srcOp);

[25] res = dstVal + srcVal;

[26] S2 = updateFlag(S, dstVal, srcVal, res);

[27] in (updateState(S2, dstOp, res)),

[28] . . .

[29]);

[30] };

[1] template <class BT > class CIR {

[2] class reg { . . . };

[3] class EAX : public reg { . . . }; . . .

[4] class flag { . . . };

[5] class ZF : public flag { . . . }; . . .

[6] class operand { . . . };

[7] class Indirect: public operand { . . . }; . . .

[8] class instruction { . . . };

[9] class MOV : public instruction { . . .

[10] operand op1; operand op2; . . .

[11] };

[12] class MOV : public instruction { . . . }; . . .

[13] class state { . . . };

[14] class State: public state { . . . };

[15] BT::INT32 interpOp(state S, operand op) { . . . };

[16] state updateFlag(state S, . . .) { . . . };

[17] state updateState(state S, . . .) { . . . };

[18] state interpInstr(instruction I, state S) {

[19] switch(I.id) {

[20] case ID MOV: . . .

[21] case ID ADD:

[22] operand dstOp = I.get child1();

[23] operand srcOp = I.get child2();

[24] BT::INT32 dstVal = interpOp(S, dstOp);

[25] BT::INT32 srcVal = interpOp(S, srcOp);

[26] BT::INT32 res = BT::Plus (dstVal, srcVal);

[27] state S2 = updateFlag(S, dstVal, srcVal, res);

[28] ans = updateState(S2, dstOp, res);

[29] break;

[30] . . . }

[31] }};

Figure 3.4 (a) A part of theTSL specification ofIA32 concrete semantics, which corresponds to
the specification ofadd from theIA32 manual. Reserved types and function names are

underlined, (b) A part of theCIR generated from (a); TheCIR is simplified in this presentation.

68

of Fig. 3.4(a)), which maps aninstruction and astate to astate. For instance, the semantics of

ADD is to evaluate the two operands in the inputstate S and create a returnstate in which the

target location holds the summation of the two values and theflags hold appropriate flag values.

3.1.1.1 Case Study of Instruction Sets

In this section, we discuss the quirky characteristics of some instruction sets, and various ways

these can be handled inTSL.

IA32. To provide compatibility with 16-bit and 8-bit versions of the instruction set,IA32 provides

overlapping register names, such asAX (the lower 16-bits ofEAX), AL (the lower 8-bits ofAX),

andAH (the upper 8-bits ofAX). There are two possible ways to specify this feature inTSL. One is

to keep three separate maps, for 32-bit registers, 16-bit registers, and 8-bit registers, respectively,

and specify that updates to any one of the maps affect the other two maps. Another is to keep one

32-bit map for registers, and obtain the value of a 16-bit or 8-bit register by masking the value of

the 32-bit register. (The former can yield more preciseVSA results.)

Another characteristic to note is thatIA32 keeps condition codes in a special register, called

EFLAGS.3 One way to specify this feature is to declare “reg32: Eflags();”, and make every flag

manipulation fetch the bit value from an appropriate bit position of the value associated withEflags

in the register-map. Another way is to have symbolic flags, asin our examples, and have every

manipulation ofEFLAGS affect the entries in a flag-map for the individual flags.

ARM. Almost all ARM instructions contain a condition field that allows an instruction to be

executed conditionally, depending on condition-code flags. This feature reduces branch overhead

and compensates for the lack of a branch predictor. However,it may worsen the precision of an

abstract analysis because in most instructions’ specifications, the abstract values from two arms of

aTSL conditional expression would be joined.

3Many other instruction sets, such asSPARC, PowerPC, andARM, also use a special register to store condition
codes.

69

[1] MOVEQ(destReg, srcOprnd):

[2] let cond = flagMap(EQ());

[3] src = interpOperand(curState, srcOprnd);

[4] a = regMap[destReg |−> src];

[5] b = regMap;

[6] answer = cond ? a : b;

[7] in (answer)

Figure 3.5 An example of the specification of anARM conditional-move instruction inTSL.

For example,MOVEQ is one ofARM’s conditional instructions; if the flagEQ is true when the

instruction starts executing, it executes normally; otherwise, the instruction does nothing. Fig. 3.5

shows the specification of the instruction inTSL. In many abstract semantics, the conditional

expression “cond ? a : b” will be interpreted as a join of the original register mapb and the

updated mapa, i.e., join(a,b). Consequently,destReg would receive the join of its original value

andsrc, even whencond is known to have a definite value (TRUE or FALSE) in VSA semantics.

The paired-semantics mechanism presented in§3.2.3 can help with improving the precision of

analyzers by avoiding joins. When theCIR is instantiated with a paired semantics ofVSA INTERP

and DUA INTERP, and theVSA value of cond is FALSE, the DUA INTERP value for answer

gets emptydef- anduse-sets because the true brancha is known to be unreachable according to

theVSA INTERP value ofcond(instead of non-empty sets fordefs anduses that contain all the

definitions and uses indestReg andsrcOprnd).

SPARC. SPARC uses register windows to reduce the overhead associated with saving registers

to the stack during a conventional function call. Each window has 8in, 8out, 8 local, and 8global

registers.Outs becomeins on a context switch, and the new context gets a new set ofout andlocal

registers. A specific platform will have some total number ofregisters, which are organized as a

circular buffer; when the buffer becames full, registers are spilled to the stack to free up a sufficient

number for the called procedure. Fig. 3.6 shows a way to accomodate this feature. The syntactic

70

[1] reg32 : Reg(INT8) | CWP() | . . .;

[2] reg32 : OutReg(INT8) | InReg(INT8) | . . .;

[3] state: State(. . . , MAP[var32,INT32], . . .);

[4] INT32 RegAccess(MAP[var32,INT32] regmap, reg32 r) {

[5] let cwp = regmap(CWP());

[6] key = with(r) (

[7] OutReg(i):

[8] Reg(8+i+(16+cwp*16)%(NWINDOWS*16),

[9] InReg(i): Reg(8+i+cwp*16),

[10] . . .);

[11] in (regmap(key))

[12]}

Figure 3.6 A method to handle theSPARC register window inTSL.

register (OutReg(n) or InReg(n), defined on line 2) in an instruction is used to obtain a semantic

register (Reg(m), defined on line 1, wherem represents the register’s global index), which is the

key used for accesses on and updates to the register map. The desired index of the semantic register

is computed from the index of the syntactic register, the value ofCWP (the current window pointer)

from the current state, and the platform-specific valueNWINDOWS (lines 8–9).

3.1.1.2 Common Intermediate Representation (CIR)

Fig. 3.4(b) shows part of the common intermediate representation (CIR) generated by theTSL

compiler from Fig. 3.4(a).4 The CIR generated for a givenTSL specification is a C++ template

that can be used to create multiple analysis components by instantiating the template with different

semantic reinterpretations. Each generatedCIR is specificto a given instruction-set specification,

butcommon(whence the nameCIR) across generated analyses.

4ThisCIR has been simplified for the presentation in the thesis.

71

Each generatedCIR is a template class that takes as input classBT (standing for base-type inter-

pretation), which is an abstract domain for an analysis (line 1 of Fig. 3.4(b)). The user-defined ab-

stract syntax (lines 2–9 of Fig. 3.4(a)) is translated to a set of C++ abstract-syntax classes (lines 2–

12 of Fig. 3.4(b)). The user-defined types, such asreg, operand, andinstruction, are translated

to abstractC++ classes, and the constructors, such asEAX(), Indirect(, , ,), andADD(,), are

subclasses of the appropriate parent abstractC++ classes.

Each user-defined function is translated to aCIR function (lines 15–31 of Fig. 3.4(b)). Each

TSL basetype and basetype-operator is prepended with the template parameter nameBT; BT is

supplied by an analysis developer for the analysis of interest. Thewith expression and the pattern

matching on lines 18–22 of Fig. 3.4(a) are translated intoswitch statements inC++ (lines 19–30

in Fig. 3.4(b)).

With-normalization. The TSL front-end performswith-normalization, which transforms all

multi-level with expressions to use only one-level patterns, and then compiles the one-level pat-

tern via the pattern-compilation algorithm developed by M.Pettersson [153, 178]. The algorithm

for compiling term pattern-matching for functional languages is inspired by finite automata theory.

The algorithm avoids duplicating code and introducing redundant or sub-optimal discrimination

tests by viewing patterns as regular expressions and optimizing the finite automaton that is built to

recognize them.

The function calls for obtaining the values of the two operands (lines 23–24 in Fig. 3.4(a))

correspond to theC++ code on lines 22–25 in Fig. 3.4(b). TheTSL basetype-operator+ on line 25

in Fig. 3.4(a) is translated into a call toBT::Plus, as shown on line 26 in Fig. 3.4(b). The function

calls for updating thestate (lines 26–27 in Fig. 3.4(a)) are translated intoC++ code (lines 27–28

in Fig. 3.4(b)).

§3.2 presents more details as to howCIR is generated and what kind of facilitiesCIR provides

for creating analysis components.

72

3.1.2 TSL from an Analysis Developer’s Standpoint

An analysis developer creates a new analysis component by (i) redefining (in C++) theTSL

basetypes (BOOL, INT32, INT8, etc.), and (ii) redefining (in C++) the primitive operations on

basetypes (+INT32, +INT8, etc.). These are used to instantiate theCIR template by passing a

class of basetypes as the template parameter. This implicitly defines an alternative interpretation

of each expression and function in an instruction-set’s concrete semantics (includinginterpInstr),

and thereby yields an alternative semantics for an instruction set from its concrete semantics.

Tab. 3.1 shows the implementations of primitives for three selected analyses: value-set analy-

sis (VSA, see§3.3.1), def-use analysis (DUA, see§3.3.3), and quantifier-free bit-vector semantics

(QFBV, see§3.3.5). Each interpretation defines an abstract domain. Forexample, line 3 of each

column defines the abstract-domain class forINT32: ValueSet32, UseSet, andQFBVTerm32. To

define an interpretation, one needs to define 42 basetype operators, most of which have four vari-

ants, for 8-, 16-, 32-, and 64-bit integers, as well as 12 mapaccess/updateoperations. Each abstract

domain is also required to contain a set of reserved functions, such asjoin, meet, andwiden, which

forms an additional part of the API available to analysis engines that useTSL-generated transform-

ers (see§3.3).

Usage ofTSL-Generated Analysis Components. Fig. 3.7 shows how theCIR is connected to

an analysis solver. The analysis solver in Fig. 3.7 uses classical worklist-based value propagation

in which theTSL-generated transformerinterpInstr is invoked with aninstruction and the current

state S. On each iteration of the main loop of the solver, changes (new S) are propagated to

successors/predecessors (depending on propagation direction). §3.3 summarizes three kinds of

analysis engines including worklist-based value propagation.

Generated Transformers. Consider the instruction “add ebx, eax”, which causes the sum of

the values of the 32-bit registersebx andeax to be assigned intoebx. When Fig. 3.4(b) is instan-

tiated with the three interpretations from Tab. 3.1, lines 17–30 of Fig. 3.4(a) implement the three

transformers that are presented (using mathematical notation) in Tab. 3.2.

73

Table 3.1 Parts of the declarations of the basetypes, basetype-operators, and map-access/update
functions for three analyses.

VSA DUA QFBV

[1] class VSA INTERP {

[2] // basetype

[3] typedef ValueSet32 INT32;

[4] . . .

[5] // basetype-operators

[6] INT32 Add(INT32 a, INT32 b) {

[7] return a.addValueSet(b);

[8] }

[9] . . .

[10] // map-basetypes

[11] typedef Dict<reg32,INT32>

[12] REGMAP32;

[13] . . .

[14] // map-access/update functions

[15] INT32 MapAccess(

[16] REGMAP32 m, reg32 k) {

[17] return m.Lookup(k);

[18] }

[19] REGMAP32

[20] MapUpdate(REGMAP32 m,

[21] reg32 k, INT32 v) {

[22] return m.Insert(k, v);

[23] }

[24] . . .

[25]};

[1] class DUA INTERP {

[2] // basetype

[3] typedef UseSet INT32;

[4] . . .

[5] // basetype-operators

[6] INT32 Add(INT32 a, INT32 b) {

[7] return a.Union(b);

[8] }

[9] . . .

[10] // map-basetypes

[11] typedef Dict<var32,INT32>

[12] REGMAP32;

[13] . . .

[14] // map-access/update functions

[15] INT32 MapAccess(

[16] REGMAP32 m, reg32 k) {

[17] return m.Lookup(k);

[18] }

[19] REGMAP32

[20] MapUpdate(REGMAP32 m,

[21] reg32 k, INT32 v) {

[22] return m.Insert(k,v);

[23] }

[24]. . .

[25]};

[1] class QFBV INTERP {

[2] // basetype

[3] typedef QFBVTerm32 INT32;

[4] . . .

[5] // basetype-operators

[6] INT32 Add(INT32 a, INT32 b) {

[7] return QFBVPlus32(a, b);

[8] }

[9] . . .

[10] // map-basetypes

[11] typedef QFBVArray

[12] REGMAP32;

[13] . . .

[14] // map-access/update functions

[15] INT32 MapAccess(

[16] REGMAP32 m, reg32 k) {

[17] return QFBVArrayAccess(m,k);

[18] }

[19] REGMAP32

[20] MapUpdate(REGMAP32 m,

[21] reg32 k, INT32 v) {

[22] return QFBVArrayUpdate(m,k,v);

[23] }

[24] . . .

[25]};

Table 3.2 Transformers generated by theTSL system.

Analysis Generated Transformers for “add ebx, eax”

1.VSA λS.S[ebx 7→ S(ebx)+vsaS(eax)] [ZF 7→ (S(ebx)+vsaS(eax) = 0)][more flag updates]

2.DUA [ebx 7→ {eax, ebx}, ZF 7→ {eax, ebx}, . . .]

3.QFBV (ebx′ = ebx+32eax) ∧ (ZF′⇔ (ebx+32eax = 0))∧ (SF′⇔ (ebx+32eax< 0))∧ . . .

74

TSL compiler

N Analysis Components

• • •

Analysis1 Analysis2

AnalysisN

state# interpInstr#(instruction I, state# S) {
with(I) (

ADD(dstOp, srcOp):
let dstVal = interpOp(S, dstOp);

srcVal = interpOp(S, srcOp);
res = dstVal +# srcVal;

while(worklist ≠ {}) {
select an edge nààà à m from worklist
. . .

new_S = interpInstr#(instr(n), S)
. . .

}

• • •

res = dstVal +# srcVal;
new_S = updateFlag(S, dstVal, srcVal, res);

in (
updateState(new_S, dstOp, res)

), …)
};

M Instruction-Set Specifications

Figure 3.7 How aTSL-generated analysis component (interpInstr♯) is invoked in a solver that
uses classical worklist-based value propagation.

75

3.2 Various Aspects of a Common Intermediate Representation

Given aTSL specification of an instruction set, theTSL system generates aCIR that consists

of two parts: one is a list ofC++ classes for the user-defined abstract-syntax grammar; the other

is a list ofC++ template functions for the user-defined functions, including the interface function

interpInstr. TheC++ functions are generated by linearizing theTSL specification, in evaluation

order, into a series ofC++ statements as described in§3.1.1.2.

However, there are some important issues that need to be properly handled for the resulting

code to be able to be used to create abstract interpreters foran instruction-set specification. In

particular, the code generated for each transformer must beable to: (i) execute over abstract states

(§3.2.2), (ii) possibly propagate abstract states to more than one successor in a conditional expres-

sion (§3.2.2.1), (iii) compare abstract states and terminate abstract execution when a fixed point is

reached (§3.2.2.2), and (iv) apply widening operators, if necessary,to ensure termination (§3.2.2.2).

In §3.2.1, we discuss an additional issue that arises inCIR generation, which is important

for avoiding loss of precision for some generated analyzers. §3.2.3 presents thepaired-semantics

facility that theTSL system provides.

3.2.1 Two-LevelCIR

The examples given in Fig. 3.4(b), Fig. 3.10, and Fig. 3.11(b), show slightly simplified

versions ofCIR code. TheTSL system actually generatesCIR code in which all the base-

types, basetype-operators, andaccess/updatefunctions are appended with one of two predefined

namespaces that define atwo-levelinterpretation [111, 149]:CONCINTERP for concrete interpre-

tation (i.e., interpretation in the concrete semantics), and ABSINTERP for abstract interpretation.

Either CONCINTERP or ABSINTERP would replace the occurrences ofBT in the exampleCIR

shown in Fig. 3.4(b), Fig. 3.10, and Fig. 3.11(b).

The reason for using a two-levelCIR is that the specification of an instruction set often contains

some manipulations of values that should always be treated as concrete values. For example, an

instruction-set specification developer could follow the approach taken in thePowerPC manual

76

[1] // User-defined abstract-syntax grammar

[2] instruction: . . .

[3] | BCx(BOOL BOOL INT32 BOOL BOOL)

[4] | . . . ;

[5] // User-defined functions

[6] state interpInstr(instruction I, state S) {

[7] . . .

[8] BCx(BO, BI, target, AA, LK):

[9] let . . .

[10] cia = RegValue32(S, CIA()); // current address

[11] new ia = (AA ? target // direct: BCA/BCLA

[12] : cia + target); // relative: BC/BCL

[13] lr = RegValue32(S, LR()); // linkage address

[14] new lr =

[15] (LK ? cia + 4 // change the link register: BCL/BCLA

[16] : lr); // do not change the link register: BC/BCA

[17] . . .

[18]}

Figure 3.8 A fragment of thePowerPC specification for interpretingBCx instructions (BC, BCA,
BCL, BCLA).

[27] and specify variants of the conditional branch instruction (BC, BCA, BCL, BCLA) of PowerPC

by interpreting some of the fields in the instruction (AA andLK) to determine which of the four

variants is being executed (Fig. 3.8).

Another reason that this issue arises is that most well-designed instruction sets have many reg-

ularities, and it is convenient to factor theTSL specification to take advantage of these regularities

when specifying the semantics. Such factoring leads to shorter specifications, but leads to the in-

troduction of auxiliary functions in which one of the parameters holds a constant value for agiven

instruction. Fig. 3.9 shows an example of factoring. TheIA32 instructionsadd andsub both have

two operands and can share the code for fetching the values ofthe two operands. Lines 4–5 are

77

[1] AddSubInstr(op, dstOp, srcOp): // ADD or SUB

[2] let dstVal = interpOp(S, dstOp);

[3] srcVal = interpOp(S, srcOp);

[4] ans = (op == ADD() ? dstVal + srcVal

[5] : dstVal - srcVal); // SUB()

[6] in (. . .),

[7] . . .

Figure 3.9 An example of factoring inTSL.

the instruction-specific operations; the equality expression “op == ADD()” on line 4 can be (and

should be) interpreted in concrete semantics.

In both cases, the precision of an abstract transformer can sometimes be improved—and is

never made worse—by interpreting subexpressions associated with the manipulation of concrete

values in concrete semantics. For instance, consider aTSL expressionlet v = (b ? 1 : 2) that

occurs in a context in whichb is definitely a concrete value;v will get a precise value—either 1 or

2—whenb is concretely interpreted. However, ifb is not expressible precisely in a given abstract

domain, the conditional expression “(b ? 1 : 2)” will be evaluated by joining the two branches, and

v will not hold a precise value. (It will hold the abstraction of {1, 2}.)

Binding-time analysis. To address the issue, we perform binding-time analysis [109] on theTSL

code, the outcome of which is that expressions associated with the manipulation of concrete values

in an instruction are annotated withC, and others withA. We then generate the two-levelCIR

by appendingCONCINTERP for C values, andABSINTERP for A values. The generatedCIR is

instantiated for an analysis transformer by definingABSINTERP. TheTSL translator supplies a

predefined concrete interpretation forCONCINTERP.

The instruction-set-specification developer annotates the top-level user-defined (but reserved)

functions, includinginterpInstr, with binding-time information.

EXPORT <A> interpInstr(<C>,<A>)

78

The first argument of typeinstruction of interpInstr is annotated with<C>, which indicates

that all the data extracted from theinstruction are treated asconcrete; the second argument of

typestate of interpInstr is annotated with<A>, which indicates that all the data extracted from

thestate are treated asabstract. The return type is also annotated as abstract. The binding-time

information<A> is propagated to the caller-sites ofinterpInstr.

More details of theTSL syntax for binding-time analysis can be found in Appendix A.

3.2.2 Execution Over Abstract States

There are (at least) four issues that arise: during the abstract interpretation of each transformer,

the abstract interpreter must be able to (i) execute over abstract states, (ii) execute both branches

of a conditional expression, (iii) compare abstract statesand terminate abstract execution when a

fixed point is reached, and (iv) apply widening operators, ifnecessary, to ensure termination. The

following subsections discuss how these issues are handledin the translation toCIR.

3.2.2.1 Conditional Expressions

Fig. 3.10 shows part of theCIR that corresponds to theTSL expression “let answer = a ? b

: c”. Bool3 is an abstract domain of Booleans (which consists of three values{FALSE, MAYBE,

TRUE}, whereMAYBE means “may beFALSE or may beTRUE”). The TSL conditional expres-

sion is translated into three if-statements (lines 3–7, lines 8–12, and lines 13–15 in Fig. 3.10). The

body of the first if-statement is executed when theBool3 value fora is possibly false (i.e., either

FALSE or MAYBE). Likewise, the body of the second if-statement is executedwhen theBool3

value fora is possibly true (i.e., eitherTRUE or MAYBE). The body of the third if-statement is

executed when theBool3 value fora is MAYBE. Note that in the body of the third if-statement,

answer is overwritten with thejoin of t1 andt2 (line 14).

TheBool3 value for the translation of aTSL BOOL-valued value is fetched bygetBool3Value,

which is one of theTSL interface functions that each interpretation is required to define for the

type BOOL. Each analysis developer decides how to handle conditionalbranches by defining

getBool3Value. It is always sound forgetBool3Value to be defined as the constant function that

79

[1] BT::BOOL t0 = . . . ; // translation of a

[2] BT::INT32 t1, t2, answer;

[3] if(Bool3::possibly false(t0.getBool3Value())) {

[4] . . .

[5] t1 = . . . ; // translation of b

[6] answer = t1;

[7] }

[8] if(Bool3::possibly true(t0.getBool3Value())) {

[9] . . .

[10] t2 = . . . ; // translation of c

[11] answer = t2;

[12] }

[13] if(t0.getBool3Value() == Bool3::MAYBE) {

[14] answer = t1.join(t2);

[15] }

Figure 3.10 The translation of the conditional expression “let answer = a ? b : c”.

always returnsMAYBE. For instance, this constant function is useful when Boolean values cannot

be expressed in an abstract domain, such asDUA for which the abstract domain forBOOL is a

set of uses. For an analysis whereBool3 is itself the abstract domain for typeBOOL, such as

VSA, getBool3Value returns theBool3 value from evaluating the translation ofa so that either an

appropriate branch or both branches can be abstractly executed.

3.2.2.2 Comparison, Termination, and Widening

Recursion is not often used inTSL specifications, but is needed for handling some instructions

that involve iteration, such as theIA32 string-manipulation instructions (STOS, LODS, MOVS, etc.,

with variousREP prefixes), and thePowerPC multiple-word load/store instructions (LMW, STMW,

etc). For these instructions, the amount of work performed is controlled either by the value of a

register, the value of one or more strings, etc. These instructions can be specified inTSL using

80

[1] state repMovsd(state S, INT32 count) {

[2] count == 0

[3] ? S

[4] : with(S) (

[5] State(mem, regs, flags):

[6] let direction = flags(DF());

[7] edi = regs(EDI());

[8] esi = regs(ESI());

[9] src = MemAccess 32 8 LE 32(mem, esi);

[10] newRegs = direction

[11] ? regs[EDI()|−>edi-4][ESI()|−>esi-4]

[12] : regs[EDI()|−>edi+4][ESI()|−>esi+4]

[13] newMem = MemUpdate 32 8 LE 32(

[14] memory, edi, src);

[15] newS = State(newMem, newRegs, flags);

[16] in (repMovsd(newS, count - 1))

[17])

[18]};

[1] state global S;

[2] BT::INT32 global count;

[3] state global retval;

[4] BT::state repMovsd(

[5] INTERP::state S, BT::INT32 count) {

[6] global S = ⊥;

[7] global count = ⊥;

[8] global retval = ⊥;

[9] return repMovsdAux(S, count);

[10]};

[11]INTERP::state repMovsdAux(

[12] INTERP::state S, BT::INT32 count) {

[13] // Widen and test for convergence

[14] state tmp S = global S
`

(global S ⊔ S);

[15] BT::INT32 tmp count =

[16] global count
`

(global count ⊔ count);

[17] if(tmp S ⊑ global S

[18] && tmp count ⊑ global count) {

[19] return global retval;

[20] }

[21] S = tmp S; global S = tmp S;

[22] count = tmp count; global count = tmp count;

[23]

[24] // translation of the body of repMovsd

[25] . . .

[26] state newS = . . . ;

[27] state t = repMovsdAux(newS, count - 1);

[28] global retval = global retval ⊔ t;

[29] return global retval;

[30]};

Figure 3.11 (a) A recursiveTSL function, (b) The translation of the recursive function from (a).
For simplicity, some mathematical notation is used, including⊔ (join),

`
(widening),⊑

(approximation), and⊥ (bottom).

81

recursion.5 For each recursive function specified by an instruction-setspecification developer, the

TSL system generates a function that appropriately compares abstract values and terminates the

recursion if abstract values are found to be equal (i.e., therecursion has reached a fixed point). The

function is also prepared to apply the widening operator that the analysis developer has specified

for the abstract domain in use.

For example, Fig. 3.11(a) shows the user-definedTSL function that handles“rep movsd”, which

copies the contents of one area of memory to a second area.6 The amount of memory to be copied

is passed into the function as the argumentcount. Fig. 3.11(b) shows its translation into theCIR. A

recursive function likerepMovsd (Fig. 3.11(a)) is automatically split by theTSL compiler into two

functions,repMovsd (line 4 of Fig. 3.11(b)) andrepMovsdAux (line 11 of Fig. 3.11(b)). TheTSL

system initializes appropriate global variablesglobal S andglobal count (lines 6–8) inrepMovsd,

and then callsrepMovsdAux (line 9). At the beginning ofrepMovsdAux, it generates statements

that widen each of the global variables with respect to the arguments, and test whether all of the

global variables have reached a fixpoint (lines 13–17). If so, repMovsdAux returnsglobal retval

(line 19). If not, the body ofrepMovsdAux is analyzed again (lines 24–27). Note that at the

translation of each normal return fromrepMovsdAux (e.g., line 28), the return value is joined into

global retval. TheTSL system requires each analysis developer to define the functions join and

widenfor the basetypes of the interpretation used in the analysis.

3.2.3 Paired Semantics

Our system allows easy instantiations ofreduced products [74] by means ofpaired semantics.

TheTSL system provides a template for paired semantics as shown in Fig. 3.12(a).

The CIR is instantiated with apaired semantic domain defined with two interpretations,

INTERP1 and INTERP2 (each of which may itself be a paired semantic domain), as shown on

line 1 of Fig. 3.12(b). The communication between interpretations may take place in basetype-

operators oraccess/updatefunctions; Fig. 3.12(b) is an example of the latter. The two components

5Currently,TSL supports only tail-recursion.
6repMovsd is called byinterpInstr, which passes in the value of registerecx, and setsecx to 0 afterrepMovsd

returns.

82

(a)

[1] template <typename INTERP1, typename INTERP2>

[2] class PairedSemantics {

[3] typedef PairedBaseType<INTERP1::INT32, INTERP2::INT32> INT32;

[4] . . .

[5] INT32 MemAccess 32 8 LE 32(MEMMAP32 8 mem, INT32 addr) {

[6] return INT32(INTERP1::MemAccess 32 8 LE 32(mem.GetFirst(), addr.GetFirst()),

[7] INTERP2::MemAccess 32 8 LE 32(mem.GetSecond(), addr.GetSecond()));

[8] }

[9] };

(b)

[1] typedef PairedSemantics<VSA INTERP, DUA INTERP> DUA;

[2] template<> DUA::INT32 DUA::MemAccess 32 8 LE 32(

[3] DUA::MEMMAP32 8 mem, DUA::INT32 addr) {

[4] DUA::INTERP1::MEMMAP32 8 memory1 = mem.GetFirst();

[5] DUA::INTERP2::MEMMAP32 8 memory2 = mem.GetSecond();

[6] DUA::INTERP1::INT32 addr1 = addr.GetFirst();

[7] DUA::INTERP2::INT32 addr2 = addr.GetSecond();

[8] DUA::INT32 answer = interact(mem1, mem2, addr1, addr2);

[9] return answer;

[10]}

Figure 3.12 (a) A part of the template class for paired semantics; (b) an example ofC++ explicit
template specialization to create a reduced product.

of the paired-semantics values are deconstructed on lines 4–7 of Fig. 3.12(b), and the individ-

ual INTERP1 and INTERP2 components fromboth inputs can be used (as illustrated by the call

to interact on line 8 of Fig. 3.12(b)) to create the paired-semantics return value,answer. Such

overridings of basetype-operators andaccess/updatefunctions are done byC++ explicit special-

ization of members of class templates (this is specified inC++ by “template<>”; see line 2 of

Fig. 3.12(b)).

We also found this method ofCIR instantiation to be useful to perform a form of reduced prod-

uct when analyses are split into multiple phases, as in a toollike CodeSurfer/x86. CodeSurfer/x86

carries out many analysis phases, and the application of itssequence of basic analysis phases is

itself iterated. On each round, CodeSurfer/x86 applies a sequence of analyses:VSA, DUA, and

several others.VSA is the primary workhorse, and it is often desirable for the information acquired

83

[1] with(op) (. . .

[2] Indirect32(base, index, scale, disp):

[3] let addr = base

[4] + index * SignExtend8To32(scale)

[5] + disp;

[6] m = MemUpdate 32 8 LE 32(

[7] mem,addr,v);

[8] . . .)

Figure 3.13 A fragment ofupdateState.

by VSA to influence the outcomes of other analysis phases by pairingtheVSA interpretation with

another interpretation.

We can use the paired-semantics mechanism to obtain desiredmulti-phase interactionsamong

our generated analyzers—typically, by pairing theVSA interpretation with another interpretation.

For instance, withDUA INTERP alone, the information required to obtain abstract memory lo-

cation(s) foraddr is lost because theDUA basetype-operators (used on+ and∗ on lines 4–5 of

Fig. 3.13) just return the union of the arguments’usesets. With the pairing ofVSA INTERP

with DUA INTERP (line 1 of Fig. 3.12(b)),DUA can use the abstract address computed foraddr2

(line 7 of Fig. 3.12(b)) byVSA INTERP, which usesVSA INTERP::Add andVSA INTERP::Mult;

the latter operators operate on a numeric abstract domain (rather than a set-based one).

Note that during the application of the paired semantics,VSA interpretation will be carried

out on theVSA component of paired intermediate values. In some sense, this is duplicated work;

however, a paired semantics is typically used only in a phaseof transformer generation where

the transformers are generated during a single pass over theinterprocedural CFG to generate a

transformer for each instruction. Thus, only a limited amount of VSA evaluation is performed

(equal to what would be performed to check that theVSA solution is a fixed point).

84

3.3 TSL-Generated Analysis Components

In this section, we present various analyses that are created by theTSL system. As illustrated in

Fig. 3.7, a version of the interface functioninterpInstr is created for each analysis. Each analysis

engine callsinterpInstr at appropriate moments to obtain a transformer for an instruction being

processed. Analysis engines can be categorized as follows:

• Worklist-Based Value Propagation (or Transformer Application) [TA]. These perform clas-

sical worklist-based value propagation in which generatedtransformers are applied, and

changes are propagated to successors/predecessors (depending on propagation direction).

Context sensitivity in such analyses is supported by means of the call-string approach [169].

VSA uses this kind of analysis engine (§3.3.1).

• Transformer Composition[TC]. These generally perform flow-sensitive, context-sensitive

interprocedural analysis.DUA (§3.3.3) uses this kind of analysis engine.

• Unification-Based Analyses[UB]. These perform flow-insensitive interprocedural analysis.

ASI (§3.3.4) uses this kind of analysis engine.

For each analysis, theCIR is instantiated with an interpretation by an analysis developer. This

mechanism provides wide flexibility in how one can couple thesystem to an external package. One

approach, used withVSA, is that the analysis engine (written inC++) calls interpInstr directly.

In this case, the instantiatedCIR serves as atransformer evaluator: interpInstr is prepared to

receive an instruction and an abstract state, and return an abstract state. Another approach, used

in DUA, is employed when interfacing to an analysis component thathas its own input language

for specifying abstract transformers. In this case, the instantiatedCIR serves as atransformer

generator: interpInstr is prepared to receive an instruction and a default abstractstate7 and return

a transformer specification in the analysis component’s input language.

The following subsections discuss how theCIR is instantiated for various analyses.

7In the case of transformer generation for a TC analyzer, the default state is the identity function.

85

3.3.1 Creation of a TA Transformer Evaluator for VSA

VSA is a combined numeric-analysis and pointer-analysis algorithm that determines an over-

approximation of the set of numeric values and addresses that each register and memory location

holds at each program point [41]. Amemory regionis an abstract quantity that represents all

runtime activation records of a procedure. To represent a set of numeric values and addresses,VSA

usesvalue-sets, where a value-set is a map from memory regions to strided intervals. A strided

interval consists of a lower boundlb, a strides, and an upper boundlb+ ks, and represents the set

of numbers{lb, lb+ s, lb+ 2s, ..., lb+ ks} [160].

The Interpretation of Basetypes and Basetype-Operators. The abstract domain for the integer

basetypes is a value-set. The abstract domain forBOOL is Bool3 ({FALSE, MAYBE, TRUE}),

whereMAYBE means “may beFALSE or may beTRUE”. The operators on these domains are

described in detail in [160].

The Interpretation of Map-Basetypes and Access/Update Functions. The abstract domain for

memory maps (MEMMAP32 8, MEMMAP64 8, etc.) is a dictionary that maps each abstract mem-

ory location (i.e., the abstraction ofINT32) to a value-set. The abstract domain for register maps

(REGMAP32, REGMAP64, etc.) is a dictionary that maps each variable (reg32, reg64, etc.) to

a value-set. The abstract domain for flag maps (FLAGMAP) is a dictionary that maps aflag to a

Bool3. Theaccess/updatefunctions access or update these dictionaries.

VSA uses this transformer evaluator to create an output abstract state, given an instruction and

an input abstract state. For example, row 1 of Tab. 3.2 shows the generatedVSA transformer for

the instruction “add ebx, eax”. The VSA evaluator returns a new abstract state in whichebx is

updated with the sum of the values ofebx andeax from the input abstract state and the flags are

updated appropriately.

3.3.2 Creation of a TC Transformer Generator for ARA

An affine relation is a linear-equality constraint between integer-valued variables.ARA finds

affine relations that hold in the program, for a given set of variables. This analysis is used to find

86

induction-variable relationships between registers and memory locations; these help in increasing

the precision ofVSA when interpreting conditional branches (§3.2.2.1) [38].

The principle that is used to create a TC transformer generator is as follows: by interpreting

theTSL expression that defines the semantics of an individual instruction using an abstract domain

in which values represent transformers, each call tointerpInstr will residuate a transformer for the

instruction. In the case ofARA, theCIR is instantiated so that for each instruction, the generated

transformer operates on an abstract domain whose values aresets of matrices that represent affine

transformations on registers and memory locations of the state [141].

Interpretation of Basetypes and Basetype-Operators. The abstract domain for the integer base-

types is a set of linear expressions in which variables are either a register or an abstract memory

location—the actual representation of the domain is a set ofcolumns that consist of an integer con-

stant and an integer coefficient for each variable. This column represents an affine expression over

the values that the variables hold at the beginning of the instruction. The basetype operations are

defined so that only a set of linear expressions can be generated; any operation that leads to a non-

linear expression, such asTimes(eax, ebx), returnsTOP, which means that no affine relationship

is known to hold.

Interpretation of Map-Basetypes and Access/Update Functions. The abstract domain of the maps

for ARA is a set of matrices of size(N + 1) × (N + 1), whereN is the number of variables.

This abstraction, which is able to find all affine relationships in an affine program, was defined

by Müller-Olm and Seidl [141]. Eachaccessfunction extracts a set of columns associated with

the variable it takes as an argument, from the set of matricesfor its map argument. Eachupdate

function creates a new set of matrices that reflects the affinetransformation associated with the

update to the variable in question.

For each instruction, theARA transformer relates linear-equality relationships that hold before

the instruction to those that hold after execution of the instruction.

87

3.3.3 Def-Use Analysis (DUA)

Def-Useanalysis finds the relationships betweendefinitions(defs) andusesof state components

(registers, flags, and memory-locations) for each instruction.

The Interpretation of Basetypes and Basetype-Operators. The abstract domain for the basetypes

is a set ofuses(i.e., abstractions of the map-keys in states, such as registers, flags, and abstract

memory locations), and the operators on this domain performa set union of their arguments’ sets.

The Interpretation of Map-Basetypes and Access/Update Functions. The abstract domains of the

maps forDUA are dictionaries that map eachdef to a set ofuses. Eachaccessfunction returns the

set ofusesassociated with the key parameter. Eachupdatefunctionupdate(D, k, S), whereD is

a dictionary,k is one of the state components, andS is a set ofuses, returns an updated dictionary

D[k 7→ (D(k) ∪ S)] (orD[k 7→ S] if a strong update is sound).

TheDUA results (e.g., row 2 of Tab. 3.2) are used to create transformers for several additional

analyses, such asGMOD analysis [72], which is an analysis to find modified variablesfor each

function f (including variables modified by functions transitively called from f) and live-flag

analysis, which is used in our version ofVSA to perform trace-splitting/collapsing (see§3.3.5).

3.3.4 Creation of a UB Transformer Generator forASI

ASI is a unification-based, flow-insensitive algorithm to identify the structure of aggregates in

a program [42]. For each instruction, the transformer generator generates a set ofASI commands,

each of which is either a command tosplit a memory region or a command tounifysome portions

of memory (and/or some registers). At analysis time, a client analyzer typically applies the trans-

former generator to each of the instructions in the program,and then feeds the resulting set ofASI

commands to anASI solver to refine the memory regions.

The Interpretation of Basetypes and Basetype-Operators. The abstract domain for the basetypes

is a set ofdatarefs, where adataref is an access on specific bytes of a register or memory. The

arithmetic, logical, and bit-vector operations tagdatarefs asnon-unifiable datarefs, which means

that they will only be used to generatesplits.

88

The Interpretation of Map-Basetypes and Access/Update Functions. The abstract domain of the

maps forASI is a set ofsplits andunifications. Theaccessfunctions generate a set ofdatarefs

associated with a memory location or register. Theupdatefunctions create a set ofunifications or

splits according to thedatarefs of the data argument.

For example, for the instruction “mov [ebx],eax”, when ebx holds the abstract address

AR foo−12, whereAR foo is the memory region for the activation records of procedurefoo, the

ASI transformer generator emits oneASI unificationcommand “AR foo[-12:-9] :=: eax[0:3]”.

3.3.5 Quantifier-Free Bit-Vector (QFBV) Semantics

QFBV semantics provides a way to obtain a symbolic representation—as a formula in first-

order quantifier-free bit-vector logic—of an instruction’s semantics.

The Interpretation of Basetypes and Basetype-Operators. The abstract domain for the integer

basetypes is a set of terms, and each operator constructs a term that represents the operation. The

abstract domain forBOOL is a formula, and each BOOL-valued operator constructs a formula that

represents the operation.

The Interpretation of Map-Basetypes and Access/Update Functions. The abstract domain for the

state components is a dictionary that maps a storage component to a term (or a formula in the case

of FLAGMAP). Theaccess/updatefunctions retrieve from and update the dictionaries, respectively.

QFBV semantics is useful for a variety of purposes. One use is as auxiliary information in an

abstract interpreter, such as theVSA analysis engine, to provide more precise abstract interpretation

of branches in low-level code. The issue is that many instruction sets provide separate instructions

for (i) setting flags (based on some condition that is tested)and (ii) branching according to the

values held by flags.

To address this problem, we use atrace-splitting/collapsingscheme [136]. TheVSA analysis

engine partitions the state at each flag-setting instruction based on live-flag information (which is

obtained from an analysis that uses theDUA transformers); a semantic reduction [74] is performed

on the splitVSA states with respect to a formula obtained from the transformer generated by the

89

•
•
•

(A) cmp eax, 10

(B) js …

(C)succ 1 (D)succ 2

T F

(E) jz …
•
•
•

Figure 3.14 An example for trace-splitting

QFBV semantics. The set ofVSA states that result are propagated to appropriate successors at the

branch instruction that uses the flags.

The cmp instruction (A) in Fig. 3.14, which is a flag-setting instruction, hassf andzf as

live flags because those flags are used at the branch instructionsjs (B) andjz (E): js and jz jump

according tosf andzf, respectively. After interpretation of (A), the stateS is split into four states,

S1, S2, S3, andS4, which are reduced with respect to the formulasϕ1: (eax − 10< 0) associated

with sf, andϕ2: (eax − 10 == 0) associated withzf.

S1 := S[sf7→T] [zf 7→ T] [eax 7→ reduce(S(eax), ϕ1 ∧ ϕ2)]

S2 := S[sf7→T] [zf 7→ F] [eax 7→ reduce(S(eax), ϕ1 ∧ ¬ϕ2)]

S3 := S[sf7→F] [zf 7→ T] [eax 7→ reduce(S(eax), ¬ϕ1 ∧ ϕ2)]

S4 := S[sf7→F] [zf 7→ F] [eax 7→ reduce(S(eax), ¬ϕ1 ∧ ¬ϕ2)]

Becauseϕ1 ∧ ϕ2 is not satisfiable,S1 becomes⊥. StateS2 is propagated to the true branch of

js (i.e., just before (C)), andS3 andS4 to the false branch (i.e., just before (D)). Because no flags

are live just before (C), the splitting mechanism maintainsjust a single state, and thus all states

propagated to (C)—here there is just one—are collapsed to a single abstract state. Becausezf is

still live until (E), the statesS3 andS4 are maintained as separate abstract states at (D).

90

3.4 Measures of Success

As an example of the kind of leverage thatTSL provides, the most recent incarnation of

CodeSurfer/x86—a revised version whose analysis components are implemented viaTSL—uses

eight separate reinterpretations generated from theTSL specification of theIA32 instruction set. We

estimate that the task of writing transformers (for the eight analysis phases used in CodeSurfer/x86)

consumed about 20 man-months; in contrast, we have investeda total of about 1 man-month to

write the C++ code for the set ofTSL interpretations that are used to generate the replacement

components. To this, one should add 10–20 man-days to write theTSL specification forIA32: the

current specification forIA32 consists of 2,834 (non-comment, non-blank) lines ofTSL.

Because each analysis is defined at the meta-level (i.e., by providing an interpretation for the

collection ofTSL primitives), abstract transformers for a given analysis can be created automati-

cally for eachinstruction set that is specified inTSL. For instance, from thePowerPC specification

(1,370 non-comment, non-blank lines, which took approximately 4 days to write), we were imme-

diately able to generatePowerPC-specific versions ofall of the analysis components that had been

developed for theIA32 instruction set.

It takes approximately 8 seconds (on an Intel Pentium 4 with a3.00GHz CPU and 2GB of

memory, running Centos 4) for theTSL (cross-)compiler to compile theIA32 specification to C++,

followed by approximately 20 minutes wall-clock time (on anIntel Pentium 4 with a 1.73GHz

CPU and 1.5GB of memory, running Windows XP) to compile the generated C++.

It is natural to ask how theTSL-generated analyses perform compared to their hand-coded

counterparts. Due to the nature of the transformers used in one of the analyses that we imple-

mented (affine-relation analysis (ARA) [141]), it was possible to write an algorithm to compare the

TSL-generatedARA transformers with the hand-codedARA transformers that were incorporated in

CodeSurfer/x86. On a corpus of 542 instruction instances that covered various opcodes, address-

ing modes, and operand sizes, we found that theTSL-generated transformers were equivalent in

324 cases andmore precisethan the hand-coded transformers in the remaining 218 cases(40%).

For 87 cases, this was because in rethinking how theARA abstraction could be encoded usingTSL

91

hand-codedARA transformers TSL-generatedARA transformers

time (sec) 0.032 0.281

total # of memory allocs 4,735 31,234

max # of memory allocs 20 682

Figure 3.15 Time (in seconds) and the total/maximum number of memory allocations for getting
TSL-generatedARA transformers and hand-coded transformers.

mechanisms, we discovered an easy way to extend [141] to retain some information for 8-, 16-, and

64-bit operations. (In principle, these could have been incorporated into the hand-coded version,

too.)

The other 131 cases of improvement can be ascribed to “fatigue factor” on the part of the

human programmer: the hand-coded versions adopted a pessimistic view and just treated certain

instructions as always assigning an unknown value to the registers that they affected, regardless

of the values of the arguments. Because theTSL-generated transformers are based on theARA

interpretation’s definitions of theTSL basetype-operators, theTSL-generated transformers were

more thorough: a basetype-operator’s definition in an interpretation is used inall places that the

operator arises in the specification of the instruction set’s concrete semantics.

We measured time and memory consumption to answer the question “how costly is it to use

theTSL-generated analyses”. Fig. 3.15 compares the time (in seconds) and memory consumption

(in number of memory allocations for matrices, which are used in the representation of abstract el-

ements in the abstract domain forARA) taken for obtaining 542TSL-generatedARA transformers

with the time and memory for obtaining the correspondingARA transformers by the hand-coded

method that was used in the original CodeSurfer/x86. TheTSL-based method takes about 8 times

longer than the hand-coded approach and causes about 7 timesmore memory allocations. InTSL,

all the abstract operations (matrix manipulations) are performed at the meta-level essentially in a

side-effect-free functional environment. Therefore, there can be many unnecessary memory alloca-

tions and object copies at the meta-operator boundaries. However, there is a room for improvement

by optimization. Also,TSL still takes less than a second for obtaining 542ARA transformers. In

92

the light of the performance measurement ofARA, which is the most memory-intensive analy-

sis we have created using theTSL system,TSL-generated analysis does not cause a significant

performance degradation.

We also carried out a study using an algorithm for obtaining “best transformer”. For a given

instruction I, theTSL QFBV reinterpretation was used to obtain a formulaϕI that expresses the

semantics of I. The formulaϕI was then used to obtain (a close approximation to) the bestARA

transformer that over-approximatesϕI , using the techniques described in [116, 161]. About 8.5%

of theARA transformers generated via the best-transformer algorithm were more precise than the

ARA transformers generated via theTSL-based method. However, there is a trade-off between

precision and speed: the best-transformer method is about 600 times slower (as of May 3, 2011)

than theTSL-based method.

Leverage

TheTSL system provides two dimensions of parameterizability: different instruction sets and

different analyses. Each instruction-set specification developer writes an instruction-set seman-

tics, and each analysis developer defines an abstract domainfor a desired analysis by giving an

interpretation (i.e., the implementations ofTSL basetypes, basetype-operators, andaccess/update

functions). Given the inputs from these two classes of users, theTSL system automatically gener-

ates an analysis component. Note that the work that an analysis developer performs isTSL-specific

but independentof each language to be analyzed; from the interpretation that defines an analysis,

the abstract transformers for that analysis can be generated automatically foreveryinstruction set

for which one has aTSL specification. Thus, to createM ×N analysis components, theTSL sys-

tem only requiresM specifications of the concrete semantics of instruction sets, andN analysis

implementations (Fig. 3.1), i.e.,M +N inputs to obtainM ×N analysis-component implementa-

tions.

The TSL system provides considerable leverage for implementing analysis tools and experi-

menting with new ones. New analyses are easily implemented because a clean interface is provided

for defining an interpretation.

93

TSL as a Tool Generator. A tool generator (or tool-component generator) such asYACC [107]

takes a declarative description of some desired behavior and automatically generates an implemen-

tation of a component that behaves in the desired way. Often the generated component consists of

generated tables and code, plus some unchangingdriver code that is used in each generated tool

component. The advantage of a tool generator is that it creates correct-by-construction implemen-

tations.

For machine-code analysis, the desired components each consist of a suitable abstract inter-

pretation of the instruction set, together with some kind ofanalysis driver (a solver for finding the

fixed-point of a set of dataflow equations, a symbolic evaluator for performing symbolic execu-

tion, etc.).TSL is a system that takes a description of the concrete semantics of an instruction set,

a description of an abstract interpretation, and creates animplementation of an abstract interpreter

for the given instruction set.

TSL : concrete semantics× abstract domain→ abstract semantics.

In that sense,TSL is a tool generator that, for a fixed instruction-set semantics, automatically

creates different abstract interpreters for the instruction set.

The reinterpretation mechanism allowsTSL to be used to implementtool-component genera-

torsandtool generators. Each implementation of an analysis component’s driver (e.g., fixed-point-

finding solver, symbolic executor) serves as the unchangingdriver for use in different instantiations

of the analysis component for different instruction sets. TheTSL language becomes the specifica-

tion language for retargeting that analysis component for different instruction sets:

analyzer generator = abstract-semantics generator + analysis driver.

For tools like CodeSurfer/x86, which incorporates multiple analysis components, we thereby ob-

tainYACC-like tool generators for such tools:

concrete semantics of L→ Tool/L.

Consistency. In addition to leverage and thoroughness, for a system like CodeSurfer/x86—

which uses multiple analysis phases—automating the process of creating abstract transformers

94

ensuressemantic consistency; that is, because analysis implementations are generated from asin-

gle specification of the instruction set’s concrete semantics,this guarantees that aconsistentview

of the concrete semantics is adopted by all of the analyses used in the system.

3.5 Related Work

In this section, we discuss work from various domains that relates toTSL. §3.5.1 compares the

way we use the technique of reinterpretingTSL’s base-types and meta-operators to the concept of

refactoringas in the original work on semantic reinterpretation [110, 134, 144, 148].§3.5.2 dis-

cusses some instruction-set-description languages developed for various purposes.§3.5.3 presents

various existing systems for creating analyzers and transformers.

3.5.1 Semantic Reinterpretation

As discussed in§3.1,semantic reinterpretationinvolves refactoring the specification of a lan-

guage’s concrete semantics into a suitable form by introducing appropriatecombinatorsthat are

subsequently redefined to create the different subject-language interpretations.

Semantic Reinterpretation Versus Standard Abstract Interpretation. Semantic reinterpreta-

tion [110, 134, 144, 148] is a form of abstract interpretation [73], but differs from the way abstract

interpretation is normally applied: in standard abstract interpretation, one reinterprets the con-

structs of eachsubject language; in contrast, with semantic reinterpretation one reinterprets the

constructs of themeta-language. Standard abstract interpretation helps in creating semantically

soundtools; semantic reinterpretation helps in creating semantically soundtool generators. In

particular, if you haveN subject languages andM analyses, with semantic reinterpretation you

obtainN ×M analyzers by writing justN + M specifications: concrete semantics forN subject

languages andM reinterpretations. With the standard approach, one must writeN ×M abstract

semantics.

95

As originally proposed, semantic reinterpretation permits arbitrary refactoring of a semantic

specification so that the desired outcome can be achieved viareinterpretation of any combina-

tors introduced. In contrast, inTSL—although it is possible to introduce combinators and refac-

tor them—the primary mechanism is to reinterpret the base-types and meta-operators of theTSL

meta-language. This approach is particularly convenient for a system to generatemultipleanalysis

components from a single specification of a language’s concrete semantics.

Semantic Reinterpretation Versus Translation to a Common Intermediate Representation.

The mapping of subject-language constructs to meta-language operations that one defines as part

of the semantic-reinterpretation approach resembles a translation to a common intermediate repre-

sentation (CIR) data structure. Thus, another approach to obtaining “systematic” reinterpretations

that are similar to semantic reinterpretations—in that they apply to multiple subject languages—

would be to translate subject-language programs to aCIR, and then create various interpreters

that implement different abstract interpretations of the node types of theCIR data structure. Each

interpreter would then be applied to (the translation of) programs in any subject languageL for

which one has defined anL-to-CIR translator. Compared with interpreting objects of aCIR data

type, the advantages of semantic reinterpretation (i.e., reinterpreting the constructs of themeta-

language) are

1. The presentation of our ideas is simpler because one does not have to introduce an additional

language of trees for representingCIR objects.

2. With semantic reinterpretation, there is no explicitCIR data structure to be interpreted. In

essence, semantic reinterpretation removes a level of interpretation, and hence generated

analyzers should run faster.

Micro-semantics and Macro-semantics

Pleban and Lee proposed the MESS system, a prototype implementation of a compiler genera-

tor, which is based on a semantic-definition style, calledhigh-level semantics[154]. The high-level

semantics was designed to overcome fundamental problems that have precluded the generation of

96

realistic compilers from traditional denotational specifications. They introduced a separation of

the semantic definition of a programming language into two distinct specifications, calledmacro-

semanticsandmicro-semantics. The macro-semantics of a language is defined by a collectionof

semantic functions that map syntactic phrases, compositionally, to terms of a semantic algebra.

The micro-semantics specifies the meaning of a semantic algebra.

3.5.2 Instruction-Set-Description Languages

There have been many specification languages for instruction sets and many purposes to which

they have been applied. Some were designed for hardware simulation, such as cycle simulation

and pipeline simulation [152, 137]. Others have been used togenerate an emulator for compiler-

optimization testing [113, 77]. TDL [113] is a hardware-description language that supports the

retargeting of back-end phases, such as analyses and optimizations relevant to instruction schedul-

ing, register assignment, and functional-unit binding. The New Jersey machine-code toolkit [158]

addresses concrete syntactic issues (instruction decoding, instruction encoding, etc.). While some

of the existinglanguageswould have been satisfactory for our purposes, theirruntime components

were not satisfactory, which necessitated creating our ownimplementation.

In our work, we needed a mechanism to create abstract interpreters of instruction-set spec-

ifications. There are (at least) four issues that arise: during the abstract interpretation of each

transformer, the abstract interpreter must be able to

• execute over abstract states,

• execute both branches of a conditional expression,

• compare abstract states and terminate abstract execution when a fixed point is reached, and

• apply widening operators, if necessary, to ensure termination.

As far as we know,TSL is the first system with an instruction-set-specification language and sup-

port for such mechanisms.

Although this chapter only discusses the application ofTSL to low-level instruction sets, we

believe that only small extensions would be needed to be ableto applyTSL to source-code lan-

guages (i.e., to create language-independent analyzers for source-levelIRs), as well as bytecode.

97

The main obstacle is that the concrete semantics of a source-code language generally uses an exe-

cution state based on a stack of variable-to-value (or variable-to-location, location-to-value) maps.

For a low-level language, the state incorporates an address-based memory model, for which the

TSL language provides appropriate primitives.

Functional languages as instruction-set-description language. Harcourt et al. usedML to

specify the semantics of instruction sets [99].LISAS [71] is an instruction-set-description lan-

guage that was subsequently developed based on their experience usingML. Those two approaches

particularly influenced the design of theTSL language.

λ-RTL. TSL shares some of the same goals asλ-RTL [157] (i.e., the ability to specify the seman-

tics of an instruction set and to support multiple clients that make use of a single specification). The

two languages were both influenced byML, but different choices were made about what aspects of

ML to retain:λ-RTL is higher-order, but without datatype constructors and recursion;TSL is first-

order, but supports both datatype constructors and recursion. As discussed in§3.2.2.2, recursion is

not often used in specifications, but is needed for handling some loop-iteration instructions, such as

the IA32 string-manipulation instructions and thePowerPC multiple-word load/store instructions.

The choices made in the design and implementation ofTSL were driven by the goal of being able

to define multiple abstract interpretations of an instruction-sets semantics.

Insruction-Set Processor Specifications (ISPS).Siewiorek et al. [170] proposed an operational

hardware specification language, the ISP (Instruction-SetProcessor) notation, for describing the

instructions in a processor and how they are implemented, aiming to automate the generation of

software, the evaluation of computer architectures, and the certification of implementations.

They divide a computer system into several levels includingtheprogram level, which the ISP

notation is designed to properly describe. Their design of the ISP notation is based on two princi-

ples: (i) the effect of each instruction can be expressed entirely in terms of the information held in

the current memory (state); the components of the program level are a set of memories and a set

of operations. The ISP notation is designed for specifying that a given operation of a processor is

98

performed on a specific data structure that the set of memories hold, and (ii) all the data operations

can be characterized as working on variousdata-types; each data-type requires distinct operations

to process the values of a data-type. A processor can be completely described at the ISP level by

giving its instruction setand itsinterpreter in terms of itsoperations, data-types, andmemories.

TSL relies on the same principles.

3.5.3 Systems for Generating Analyzers

Some systems for representing and analyzing programs are (mainly) targeted for a single lan-

guage. For instance, SOOT [23] is a powerful and flexible analysis/optimization framework that

supports analysis and transformation of Java bytecode. Onemethod to support the retargeting of

analyses to different languages is to create a package that supports a family of program analyses

that different front ends can use to create analysis components. Examples include BDDBDDB

[184], Banshee [117], the Parma Polyhedra Library [21], WPDS++ [115], and WALi [114]. The

writer of each client front end needs to encode the semanticsof his language by creating appro-

priate transformers for each statement and condition in thelanguage’s IR, using the package’s API

(or input language).

WALA [30] supports a common intermediate form (Common Abstract Syntax Tree), from

which multiple additional IRs (e.g., CFGs and SSA-form) canbe generated, and multiple analyses

can be performed that use these IRs. Thus, this is similar to the package approach, but supports a

multiplicity of analyses.

In contrast to the package approach,TSL provides a domain-specific language for specifying

the semantics of instruction sets. With this approach, the ISS developer concentrates on specifying

the concrete operational semantics of his language, usingTSL, and a multiplicity of analyzers

are then created automatically. Analysis developers can incorporate different analysis packages

into theTSL framework by implementing appropriate abstract operations that over-approximate

the semantics of a fixed set ofTSL operations (that have a well-defined semantics). (Any of the

aforementioned packages could be used for creatingTSL-based analyses; currently, WALi is used

for all of the TC-style analyzers that have been developed for use withTSL so far.)

99

There are two analysis systems, TVLA [28] and the optimizer flow-function inference system

developed by Rice et al. [164], in which sound analysis transformers are generated automatically

from a concrete operational semantics, plus a specificationof an abstraction (either via the abstrac-

tion function (TVLA) or the concretization function (Rice et al.)). In our system, we rely on the

analysis developer to supply sound abstract operations. While this places an additional burden on

developers, once an analysis is developed it can be used witheach instruction set specified inTSL.

Moreover,

• The analyses that we support are much more efficient than those that can be created with

TVLA and apply to our intended domain of application (low-level code).

• Some of the analyses that we use, such as ARA [141], appear to be beyond the power of the

heuristics-based transformer-generation methods developed by Rice et al.

100

Chapter 4

Symbolic Analysis via Semantic Reinterpretation

The use of symbolic-reasoning primitives forforward symbolic evaluation, weakest liberal

precondition(WLP), andsymbolic compositionhas experienced a resurgence in program-analysis

tools because of the power that they provide when exploring aprogram’s state space.

Model-checking tools, such asSLAM [46] and BLAST [102], as well as hybrid con-

crete/symbolic program-exploration tools, such asDART [94], CUTE [167], YOGI [98], SAGE

[95], BITSCOPE [54], andDASH [49] use forward symbolic evaluation,WLP , or both. An im-

portant subroutine in these tools is to determine the following: given a pathπ in the program, isπ

feasible (i.e., executable)?

Given pathπ, symbolic evaluation is used to construct a path formulaψ for π such thatπ is

feasible if and only ifψ is satisfiable. Moreover, a model ofψ can be used to create an input for

the program that causes execution to follow pathπ.

Symbolic evaluation is used to create path formulas. To determine whether a pathπ is ex-

ecutable, an SMT solver is used to determine whetherπ’s path formula is satisfiable, and if so,

to generate an input that drives the program downπ. Some of the aforementioned tools also use

WLP to identify new predicates that split part of a program’s state space [46, 49]. Proof-carrying

code systems [145] useWLP to create verification conditions.

Bug-finding tools, such asARCHER [187] andSATURN [186], as well as commercial bug-

finding products, such as Coverity’sPREVENT [7] and GrammaTech’sCODESONAR [4], use

symbolic composition. Formulas are used to summarize a portion of the behavior of a procedure.

Suppose that procedureP callsQ at call-sitec, and thatr is the site inP to which control returns

after the call atc. Whenc is encountered during the exploration ofP , such tools perform the

101

symbolic composition of the formula that expresses the behavior along the path[entryP , . . . , c]

explored inP with the formula that captures the behavior ofQ to obtain a formula that expresses

the behavior along the path[entryP , . . . , r].

Motivation. The standard approach to implementing each of the symbolic-analysis primitives for

a programming language of interest (which we call the subject language) is to create hand-written

translation procedures—one per symbolic-analysis primitive—that convert subject-language com-

mands into appropriate formulas. Such an approach can be extremely tedious. It is also error prone:

a system can contain subtle inconsistency bugs if the different translation procedures adopt differ-

ent “views” of the semantics.

One manifestation of an inconsistency bug would be that if one performs symbolic evaluation

of a pathπ starting from a state that satisfiesψ = WLP(π, ϕ), the resulting symbolic state does

not entailϕ. Such bugs undermine the soundness of an analysis tool.

The consistency problem is compounded by the issue of aliasing: most subject languages per-

mit memory states to have complicated aliasing patterns, but usually it is not obvious that aliasing

is treated consistently across implementations of symbolic evaluation,WLP , and symbolic com-

position.

Such bugs are easy to introduce because each translation procedure must encode the subject

language’s semantics; however, the encodings for symbolicevaluation,WLP , and symbolic com-

position have different flavors.

Our own interest is in analyzing machine code, such as x86 andPowerPC. Unfortunately, as

discussed in§2.4, machine-code instruction sets have hundreds of instructions, as well as other

complicating factors, such as the use of separate instructions to set flags (based on the condition

that is tested) and to branch according to the flag values, theability to perform address arith-

metic and dereference computed addresses (hence memory states can have complicated aliasing

patterns), non-aligned memory accesses, etc. To appreciate the need for tool support for creat-

ing symbolic-analysis primitives for real machine-code languages, consult the Intel instruction-set

reference manual ([31,§3.2] and [32,§4.1]), and imagine writing three separate encodings of

102

each instruction’s semantics to implement symbolic evaluation,WLP , and symbolic composition.

Some tools (e.g., [54, 95]) need an instruction-set emulator, in which case a fourth encoding of the

semantics is also required.

Our approach. To address these issues, this chapter presents a way to automatically obtain

mutually-consistent, correct-by-construction implementations of symbolic primitives, bygener-

ating them from a specification of the subject language’s concretesemantics.

The semantics of the basic symbolic-reasoning primitives are easy to state; for instance, if

τ(σ, σ′) is a 2-state formula that represents the semantics of an instruction, thenWLP(τ, ϕ) can

be expressed as∀σ′.(τ(σ, σ′) ⇒ ϕ(σ′)). However, this formula uses quantification over states—

i.e., second-order quantification—whereas SMT solvers, such as Yices [82] and Z3 [78], support

only quantifier-free first-orderlogic. Hence, such a formula cannot be used directly.

For a simple language that has onlyint-valued variables, it is easy to recast matters in first-

order logic. For instance, theWLP of postconditionϕ with respect to an assignment statement

var = rhs; can be obtained by substitutingrhs for all (free) occurrences ofvar in ϕ: ϕ[var← rhs].

For real-world programming languages, however, the situation is more complicated. For instance,

for languages with pointers, Morris’s rule of substitution[138] requires taking into account all pos-

sible aliasing combinations. In general, tool builders need to create implementations of symbolic

primitives for full languages, and hence must be prepared toaccommodate whatever features the

language supports.

We present a method to obtain quantifier-free, first-order-logic formulas for (a) symbolic eval-

uation of a single command, (b)WLP with respect to a single command, and (c) symbolic com-

position for a class of formulas that express state transformations. The generated implementations

are guaranteed to be mutually consistent, and also to be consistent with an instruction-set emulator

(for concrete execution) that is generated from the same specification of the subject language’s

concrete semantics.

Primitives (a) and (b) immediately extend to compound operations over a given program path

for use in forward and backwards symbolic evaluation, respectively; see§4.5. (The design of client

103

algorithms that use such primitives to perform state-spaceexploration is an orthogonal issue that

is outside the scope of this chapter.)

Achievements and Contributions. We used the approach described in the paper to create a

“YACC-like” tool for generating mutually-consistent, correct-by-construction implementations of

symbolic-analysis primitives for instruction sets (§4.7). The input is a specification of an instruc-

tion set’s concrete semantics; the output is a triple of C++ functions that implement the three

symbolic-analysis primitives—(1) translation of an instruction into a formula, (2)WLP with re-

spect to an instruction, and (3) symbolic composition. The tool has been used to generate such

primitives for x86 and PowerPC. To accomplish this, we leveragedTSL, as the implementation

platform for defining the necessary reinterpretations.

The contributions of the work described in this chapter lie in the insights that went into defining

the specific reinterpretations that we use to obtain mutually-consistent, correct-by-construction im-

plementations of the symbolic-analysis primitives, and the discovery thatWLP could be obtained

by using two different reinterpretations working in tandem. The chapter’s other contributions are

summarized as follows:

• We present a new application for semantic reinterpretation(§4.1), namely, to create imple-

mentations of the basic primitives for symbolic reasoning (§4.3 and 4.4). In particular, two

key insights allowed us to obtain the primitives forWLP and symbolic composition:

– The first insight was that we could apply semantic reinterpretation in a new context,

namely, to the interpretation function of alogic (§4.3).

– The second insight was to define a particular form of state-transformation formula—

called a structure-update expression (see§4.2.1)—to be a first-class notion in the logic,

which allows such formulas (i) to serve as a replacement domain in various reinterpre-

tations, and (ii) to be reinterpreted themselves (§4.3).

• We show how reinterpretation can automatically create aWLP primitive that implements

Morris’s rule of substitution for a language with pointers [138] (§4.3).

104

• We conducted an experiment that used the generated symbolic-evaluation primitive on real

x86 code. The experiment showed that using an exact symbolic-evaluation primitive, as

opposed to one that approximates the real semantics, is slower by a factor of 1.07 but is

dramatically more accurate (§4.7).

Moreover, we demonstrate that this approach to creating symbolic-analysis primitives can handle

languages with pointers and address arithmetic (§4.3 and 4.4). For expository purposes, simplified

languages are used throughout. Our discussion of machine code (§4.2.3 and 4.4) is based on a

greatly simplified fragment of the x86 instruction set; however, our implementation (§4.7) works

on code from real x86 programs compiled from C++ source code,including C++ STL, using Visual

Studio.

Organization. The remainder of this chapter is organized as follows:§4.2 defines the logic that

we use, as well a simple source-code language (PL) and an idealized machine-code language (MC).

§4.3 discusses how to use reinterpretation to obtain the three symbolic-analysis primitives for PL.

§4.4 addresses reinterpretation for MC.§4.5 explains how other language constructs beyond those

found in PL and MC can be handled.§4.6 describes how non-determinism can be incorporated

into our approach.§4.7 describes how we used theTSL system for the implementation, and also

presents the experiment carried out with the implementation. §4.8 discusses related work.§4.9

presents some conclusions. Correctness proofs can be foundin Appendix B.

4.1 Semantic Reinterpretation

This section presents the basic principles of semantic reinterpretation in the context of abstract

interpretation. We use a simple language of assignments, and define the concrete semantics and an

abstract sign-analysis semantics via semantic reinterpretation.

Example 4.1 [Adapted from [134].] Consider the following fragment of a denotational semantics,

which defines the meaning of assignment statements over variables that hold signed 32-bitint

105

(a)

s1: x= x⊕ y;

s2: y = x⊕ y;

s3: x= x⊕ y;

(b)

t1: ∗px= ∗px⊕ ∗py;

t2: ∗py = ∗px⊕ ∗py;

t3: ∗px= ∗px⊕ ∗py;

Before After

px:

py:

0:

&py

&py

v

px:

py:

0:

&py

v

v

[1] mov eax, [ebp−10]

[2] xor eax, [ebp−14]

[3] mov [ebp−10], eax

[4] mov eax, [ebp−10]

[5] xor eax, [ebp−14]

[6] mov [ebp−14], eax

[7] mov eax, [ebp−10]

[8] xor eax, [ebp−14]

[9] mov [ebp−10], eax

(c) (d)

Figure 4.1 (a) Code fragment that swaps twoints; (b) code fragment that swaps twoints using
pointers; (c) possible before and after configurations for code fragment (b): the swap is

unsuccessful due to aliasing; (d) x86 machine code (in Intelsyntax) corresponding to (a).

values (where⊕ denotes exclusive-or):

I ∈ Id E ∈ Expr ::= I | E1 ⊕E2 | . . .

S ∈ Stmt::= I = E; σ ∈ State= Id→ Int32

E : Expr→ State→ Int32

EJIKσ = σI

EJE1 ⊕ E2Kσ = EJE1Kσ ⊕ EJE2Kσ

I : Stmt→ State→ State

IJI = E;Kσ = σ[I 7→ EJEKσ]

We use the notation “σ[I 7→ v],” to mean theStatethat acts likeσ except that argumentI is mapped

to v. The functionI can be understood as aninterpreterfor the language:(IJsKσ) is the state that

results from executing statements on the stateσ. A sequence of statements can be executed by

repeatedly callingI. For instance, consider the program shown in Fig. 4.1(a), which swaps two

ints. Execution of this code, starting from the stateσ0 = {x 7→ −1, y 7→ 2} can be achieved as

follows:

106

σ0 := {x 7→ −1, y 7→ 2}

σ1 := IJs1 : x = x⊕ y;Kσ0 = {x 7→ −3, y 7→ 2}

σ2 := IJs2 : y = x⊕ y;Kσ1 = {x 7→ −3, y 7→ −1}

σ3 := IJs3 : x = x⊕ y;Kσ2 = {x 7→ 2, y 7→ −1}

The languages derivable fromExpr andStatedefine the subject language. The semantics is

defined using ameta-language. In this example, the meta-language has one base type (Int32). It

supports defining map types (State= Id → Int32) and user-defined functions (E andI). It also

supports operations on base-type values (e.g., “⊕ ”), map-access operations (σI), map-update

operations (σ[I 7→ EJEKσ]), and invocation of user-defined functions (EJEKσ).

To highlight better the role of the meta-language, we introduce names for certain aspects of

the meta-language. For instance, the one base type, whose standard interpretation isInt32, will be

calledVal. We also introduce names for the following operators:

• “ xor ”, whose standard interpretation is “⊕ ”.

• lookup, for map-access operations.

• store, for map-update operations.

The specification given earlier is thus rewritten as follows:

xor : Val→ Val→ Val

lookup: State→ Id→ Val

store: State→ Id→ Val→ State

E : Expr→ State→ Val

EJIKσ = lookupσ I

EJE1 ⊕ E2Kσ = EJE1Kσ xor EJE2Kσ

I : Stmt→ State→ State

IJI = E;Kσ = storeσ I EJEKσ

107

For the concrete (or “standard”) semantics, the meta-language types and operators are defined as

follows:

v ∈ Valstd = Int32

Statestd = Id→ Val

lookupstd = λσ.λI.σI

storestd = λσ.λI.λv.σ[I 7→ v]

xorstd = λv1.λv2.v1 ⊕ v2

Different abstract interpretations of the same language can be defined by using the same semantic

specification, but by giving different interpretations of the base types, function types, and operators

of the meta-language. For example, for sign analysis, assuming thatInt32 values are represented

in two’s complement, the meta-language is reinterpreted asfollows:1

v ∈ Valabs = {neg, zero, pos,⊤}

Stateabs = Id→ Valabs

lookupabs = λσ.λI.σI

storeabs = λσ.λI.λv.σ[I 7→ v]

xorabs = λv1.λv2.

v2

neg zero pos ⊤

neg ⊤ neg neg ⊤

v1 zero neg zero pos ⊤

pos neg pos ⊤ ⊤

⊤ ⊤ ⊤ ⊤ ⊤

Essentially, this redefines (or abstracts) the set of valuesValstd to Valabs and redefines the operators

(like xor) to operate on the abstract values.

For the code fragment shown in Fig. 4.1(a), sign-analysis reinterpretation creates abstract trans-

formers that, given the initial abstract stateσ0 = {x 7→ neg, y 7→ pos}, produce the abstract states

shown in Fig. 4.2.2

1For the two’s-complement representation,pos xorabs neg= neg xorabs pos= negbecause, for all combinations
of values represented byposandneg, the high-order bit of the result is set, which means that theresult is always
negative. However,pos xorabs pos= neg xorabs neg= ⊤ because the concrete result could be either0 or positive, and
zero⊔ pos= ⊤.

108

σ0 := {x 7→ neg, y 7→ pos}

σ1 := IJs1 : x = x⊕ y;Kσ0 = storeabsσ0 x (neg xorabs pos) = {x 7→ neg, y 7→ pos}

σ2 := IJs2 : y = x⊕ y;Kσ1 = storeabsσ1 y (neg xorabs pos) = {x 7→ neg, y 7→ neg}

σ3 := IJs3 : x = x⊕ y;Kσ2 = storeabsσ2 x (neg xorabs neg) = {x 7→ ⊤, y 7→ neg}.

Figure 4.2 Application of the abstract transformers created by the sign-analysis reinterpretation
to the initial abstract stateσ0 = {x 7→ neg, y 7→ pos}.

4.2 A Logic and Two Programming Languages

This section defines quantifier-free first-order bit-vectorlogic, L, a simple source-code lan-

guage, PL, which only hasint-valued variables and pointer variables, and a simple machine-code

languageMC.

4.2.1 L: A Quantifier-Free Bit-Vector Logic with Finite Functions

The logicL is quantifier-free first-order bit-vector logic over a vocabulary of constant symbols

(I ∈ Id) and function symbols (F ∈ FuncId). Strictly speaking, we work with various instantia-

tions ofL, denoted byL[PL] andL[MC], in which the vocabularies of function symbols are chosen

to describe aspects of the values used by, and computations performed by, the programming lan-

guages PL and MC, respectively.

We distinguish the syntactic symbols ofL from their counterparts in PL (§4.1 and 4.2.2) by

using boxes aroundL’s symbols.

c ∈ CInt32 = {0, 1, . . .}

op2L ∈ BinOpL = { + , - , ⊕ , . . .}

ropL ∈ RelOpL = { = , 6= , < , > , . . .}

bopL ∈ BoolOpL = { && , || , . . .}

109

The rest of the syntax ofL[·] is defined as follows:

I ∈ Id, T ∈ Term, ϕ ∈ Formula,

F ∈ FuncId,FE ∈ FuncExpr, U ∈ StructUpdate

T ::= c | I | T1 op2L T2 | ite(ϕ, T1, T2) | FE(T)

ϕ ::= T | F | T1 ropL T2 | ¬ ϕ1 | ϕ1 bopL ϕ2

FE ::= F | FE1[T1 7→ T2]

U ::= ({Ii ←֓ Ti}, {Fj ←֓ FEj})

A Term of the form ite(ϕ, T1, T2) represents an if-then-else expression. Names of the form

F ∈ FuncId, possibly with subscripts and/or primes, are function symbols. A FuncExprof

the form FE1[T1 7→ T2] denotes afunction-update expression. A StructUpdateof the form

({Ii ←֓ Ti}, {Fj ←֓ FEj}) is called astructure-update expression. It specifies a structure-

transformation operation that yields a structure in which the identifierIi is updated to the value

of term Ti, and the function identifierFj is updated to the value of function-expressionFEj.

The subscriptsi and j implicitly range over certain index sets, which will be omitted to re-

duce clutter. To emphasize thatIi and Fj refer to next-state quantities, we sometimes write

structure-update expressions with primes:({I ′i ←֓ Ti}, {F
′
j ←֓ FEj}). {I ′i ←֓ Ti} specifies

the updates to the interpretations of the constant symbols and {F ′
j ←֓ FEj} specifies the updates

to the interpretations of the function symbols (see below).Thus, a structure-update expression

({I ′i ←֓ Ti}, {F
′
j ←֓ FEj}) can be thought of as a kind of restricted2-vocabulary (i.e.,2-state)

formula
∧

i(I
′
i = Ti) ∧

∧
j(F

′
j = FEj). We defineUid to be

({I ′ ←֓ I | I ∈ Id}, {F ′ ←֓ F | F ∈ FuncId}).

Semantics ofL. The semantics ofL[·] is defined in terms of alogical structure, which gives

meaning to theId andFuncIdsymbols of the logic’s vocabulary:

ι ∈ LogicalStruct= (Id→ Val)× (FuncId→ (Val→ Val)).

(ι↑1) assigns meanings to constant symbols, and(ι↑2) assigns meanings to function symbols.

(“(p↑1)” and “(p↑2)” denote the1st and2nd components, respectively, of a pairp.)

110

const : CInt32→ Val

condL : BVal→ Val→ Val→ Val

lookupId : LogicalStruct→ Id→ Val

binopL : BinOpL → (Val× Val→ Val)

relopL : RelOpL → (Val× Val→ BVal)

boolopL : BoolOpL → (BVal× BVal→ BVal)

lookupFuncId: LogicalStruct→ FuncId→ (Val→ Val)

access: (Val→ Val)× Val)→ Val

update : ((Val→ Val)× Val× Val)→ (Val→ Val)

T : Term→ LogicalStruct→ Val

T JcKι = const(c)

T JIKι = lookupIdι I

T JT1 op2L T2Kι = T JT1KιbinopL(op2L) T JT2Kι
T Jite(ϕ, T1, T2)Kι = condL(FJϕKι, T JT1Kι, T JT2Kι)

T JFE(T1)Kι = access(FEJFEKι, T JT1Kι)

F : Formula→ LogicalStruct→ BVal

FJ T Kι = T

FJ F Kι = F

FJT1 ropL T2Kι = T JT1Kι relopL(ropL) T JT2Kι
FJ ¬ ϕ1Kι = ¬FJϕ1Kι

FJϕ1 bopL ϕ2Kι = FJϕ1KιboolopL(bopL)FJϕ2Kι

FE : FuncExpr→ LogicalStruct→ (Val→ Val)

FEJF Kι = lookupFuncIdι F

FEJFE1[T1 7→ T2]Kι = update(FEJFE1Kι, T JT1Kι, T JT2Kι)

U : StructUpdate→ LogicalStruct→ LogicalStruct

UJ({Ii ←֓ Ti}, {Fj ←֓ FEj})Kι = ((ι↑1)[Ii 7→ T JTiKι], (ι↑2)[Fj 7→ FEJFEjKι])

Figure 4.3 The factored semantics ofL.

The factored semantics ofL is presented in Fig. 4.3. Motivated by the needs of later sections,

we retain the convention from§4.1 of working with the domainVal rather thanInt32. Similarly,

we also useBVal rather thanBool. The standard interpretations ofbinopL, relopL, andboolopL

are as one would expect, e.g.,v1 binopL(⊕) v2 = v1 xorv2, etc. The standard interpretations

for lookupIdstd and lookupFuncIdstd select from the first and second components, respectively, of

111

a LogicalStruct: lookupIdstdι I = (ι↑1)(I) and lookupFuncIdstdι F = (ι↑2)(F). The standard

interpretations foraccessandupdateselect from, and store to, a map, respectively.

Let U = ({Ii ←֓ Ti}, {Fj ←֓ FEj}). BecauseUJUKι retains fromι the value of each constant

I and functionF for which an update is not defined explicitly inU (i.e., I ∈ (Id − {Ii}) and

F ∈ (FuncId− {Fj})), as a notational convenience we sometimes treatU as if it contains an

identity update for each such symbol; that is, we say that(U↑1)I = I for I ∈ (Id − {Ii}), and

(U↑2)F = F for F ∈ (FuncId− {Fj}).

4.2.2 PL : A Simple Source-Level Language

PL is the language from§4.1, extended with some additional kinds ofint-valued expressions,

an address-generation expression, a dereferencing expression, and an indirect-assignment state-

ment. Note that arithmetic operations can also occur insidea dereference expression; i.e., PL

allows arithmetic to be performed on addresses (including bitwise operations on addresses: see

Ex. 4.2).

c ∈ CInt32, I ∈ Id, E ∈ Expr,BE∈ BoolExpr, S ∈ Stmt

c ::= 0 | 1 | ...

E ::= c | I | &I | ∗E | E1 op2E2 | BE ? E1 : E2

BE ::= T | F | E1 ropE2 | ¬BE1 | BE1 bop BE2

S ::= I = E; | ∗I = E; | S1 S2

Semantics of PL. The factored semantics of PL is presented in Fig. 4.4. The semantic domain

Locstands forlocations(or memory addresses). We identifyLocwith the setVal of values. A state

σ ∈ Stateis a pair(η, ρ), where, in the standard semantics,environmentη ∈ Env = Id → Loc

maps identifiers to their associated locations andstoreρ ∈ Store= Loc→ Val maps each location

to the value that it holds.

112

v ∈ Val

l ∈ Loc = Val

η ∈ Env= Id→ Loc

ρ ∈ Store= Loc→ Val

σ ∈ State= Store× Env

const : CInt32→ Val

cond : BVal→ Val→ Val→ Val

lookupState: State→ Id→ Val

lookupEnv: State→ Id→ Loc

lookupStore: State→ Loc→ Val

updateStore: State→ Loc→ Val→ State

E : Expr→ State→ Val

EJcKσ = const(c)

EJIKσ = lookupStateσ I

EJ&IKσ = lookupEnvσ I

EJ∗EKσ = lookupStoreσ (EJEKσ)

EJE1 op2E2Kσ = EJE1Kσ binop(op2) EJE2Kσ
EJBE? E1 : E2Kσ = cond(BJBEKσ, EJE1Kσ, EJE2Kσ)

B : BoolExpr→ State→ BVal

BJTKσ = T

BJFKσ = F

BJE1 ropE2Kσ = EJE1Kσ relop(rop) EJE2Kσ
BJ¬BE1Kσ = ¬BJBE1Kσ

BJBE1 bop BE2Kσ = BJBE1Kσ boolop(bop) BJBE2Kσ

I : Stmt→ State→ State

IJI = E;Kσ = updateStoreσ (lookupEnvσ I) (EJEKσ)

IJ∗I = E;Kσ = updateStoreσ (EJIKσ) (EJEKσ)

IJS1 S2Kσ = IJS2K(IJS1Kσ)

Figure 4.4 The factored semantics of PL.

The standard interpretations of the operators used in the PLsemantics are

BValstd = BVal

Valstd = Int32

Locstd = Int32

η ∈ Envstd = Id→ Locstd

ρ ∈ Storestd = Locstd→ Valstd

113

condstd = λb.λv1.λv2. (b ? v1 : v2)

lookupStatestd = λ(η, ρ).λI.ρ(η(I))

lookupEnvstd = λ(η, ρ).λI.η(I)

lookupStorestd = λ(η, ρ).λl.ρ(l)

updateStorestd = λ(η, ρ).λl.λv.(η, ρ[l 7→ v])

Handling Computations that “Go Wrong”. In accounts of axiomatic semantics [146] and re-

lational semantics [171], one generally considers four outcomes of an execution: an execution

terminates(in some final state),goes wrong, blocks, or diverges. Because we are only providing

the semantics of individual statements/instructions, to simplify matters, we consider only semantic

specifications that are terminating. This eliminates outcomes that block or diverge.

We sidestep the need for an explicit outcome for “goes wrong”by introducing an additional

BValvariable in the state,isRunning, which is set to false to model computations that “go wrong”.

In the extended semantics, a stateσ ∈ Stateis a triple(η, ρ, isRunning). Fig. 4.5 shows a sketch

of how to add the semantics of the outcome for “divide-by-zero”. For the moment, we consider

only deterministic specifications.§4.6 discusses how we handle non-determinism.

4.2.3 MC: A Simple Machine-Code Language

MC is based on the x86 instruction set, but greatly simplifiedto have just four registers, one

flag, and four instructions.

r ∈ register, do ∈ dst operand,

so ∈ src operand, i ∈ instruction

r ::= eax | ebx | ebp | eip

flagName::= zf

do ::= Indirect(r,Val) | DirectReg(r)

so ::= do ∪ Immediate(Val)

instruction::= mov(do, so) | cmp(do, so)

| XOR(do, so) | jz(do)

114

Loc = Val

Env = Id→ Loc

Store= Loc→ Val

State= Store× Env× BVal

const : CInt32→ Val

lookupState: State→ Id→ Val

getIsRunning: (Val,BVal)→ BVal

lookupIsRunning: State→ BVal

updateIsRunning: State→ BVal→ State

getIsRunning= λ(v, b).b

lookupIsRunning= λ(η, ρ, b).b

updateIsRunning= λ(η, ρ, b).λb′.(η, ρ, b′)

E : Expr→ State→ (Val,BVal)

EJcKσ = (const(c), T)

EJIKσ = (lookupStateσ I, T)

EJE1/E2Kσ = (EJE2Kσ = 0)

? (1, F)

: (EJE1Kσ/EJE2Kσ, T)

I : Stmt→ State→ State

IJI = E;Kσ = (lookupIsRunningσ) = T

? (getIsRunningEJEKσ) = T

? updateStoreσ (lookupEnvσ I) (EJEKσ)

: updateIsRunningσ F

: σ

Figure 4.5 An extended semantics of PL to accommodate the outcome of “divide-by-zero”
execution.

Semantics of MC. The factored semantics of MC is presented in Fig. 4.6. It is similar to the

semantics of PL, although MC exhibits two features not part of PL: there is an explicit program

counter (eip), and MC includes the typical feature of machine-code languages that a branch is split

across two instructions (cmp . . . jz). An MC stateσ ∈ Stateis a triple(mem, reg, flag), where

memis a mapVal→ Val, reg is a mapregister→ Val, andflag is a mapflagName→ BVal. We

assume that each instruction is 4 bytes long; hence, the execution of amov, cmp, orXORincrements

the program-counter registereip by 4. cmp sets the value ofzf according to the difference of the

values of the two operands;jz updateseip depending on the value of flagzf.

4.3 Symbolic Analysis for PL via Reinterpretation

A PL state(η, ρ) can be modeled inL[PL] by using a function symbolFρ for storeρ, and

a constant symbolcx ∈ Id for each PL identifierx. (To reduce clutter, we will usex for such

constants instead ofcx.) Givenι ∈ LogicalStruct, the constant symbols and their interpretations in

ι correspond to environmentη, and the interpretation ofFρ in ι corresponds to storeρ.

115

const: CInt32→ Val

lookupreg : State→ register→ Val

storereg : State→ register→ Val→ State

lookupflag : State→ flagName→ BVal

storeflag : State→ flagName→ BVal→ State

cond : BVal→ Val→ Val→ Val

lookupmem : State→ Val→ Val

storemem : State→ Val→ Val→ State

increip : State→ State

increip = λσ.storereg(σ, eip,RJeipKσ binop(+) 4)

R : reg→ State→ Val

RJrKσ = lookupreg(σ, r)

K : flagName→ State→ BVal

KJzfKσ = lookupflag(σ, zf)

O : src operand→ State→ Val

OJIndirect(r, c)Kσ = lookupmem(σ,RJrKσ binop(+) const(c))

OJDirectReg(r)Kσ = RJrKσ
OJImmediate(c)Kσ = const(c)

I : instruction→ State→ State

IJmov(Indirect(r, c), so)Kσ = increip(storemem(σ,RJrKσ binop(+) const(c),OJsoKσ))

IJmov(DirectReg(r), so)Kσ = increip(storereg(σ, r,OJsoKσ))

IJcmp(do, so)Kσ = increip(storeflag(σ, zf,OJdoKσ binop(−)OJsoKσ relop(=) 0))

IJXOR(do:Indirect(r, c), so)Kσ = increip(storemem(σ,RJrKσ binop(+) const(c),OJdoKσ binop(⊕)OJsoKσ))

IJXOR(do:DirectReg(r), so)Kσ = increip(storereg(σ, r,OJdoKσ binop(⊕)OJsoKσ))

IJjz(do)Kσ = storereg(σ, eip, cond(KJzfKσ,OJdoKσ,RJeipKσ binop(+) 4))

Figure 4.6 The factored semantics of MC.

Symbolic Evaluation. A primitive for forward symbolic-evaluation must solve thefollowing

problem:Given the semantic definition of a programming language, together with a specific state-

ments, create a logical formula that captures the semantics ofs. The following table illustrates

how the semantics of PL statements can be expressed asL[PL] structure-update expressions:

PL L[PL]

x = 17; (∅, {F ′
ρ ←֓ Fρ[x 7→ 17]})

x = y; (∅, {F ′
ρ ←֓ Fρ[x 7→ Fρ(y)]})

x = ∗q; (∅, {F ′
ρ ←֓ Fρ[x 7→ Fρ(Fρ(q))]})

To create such expressions automatically using semantic reinterpretation, we use formulas of the

logic L[PL] as a reinterpretation domain for the meta-language primitives used to define PL. The

116

base types and the state type of the meta-language are reinterpreted as follows (our convention is

to mark each reinterpreted base type, function type, and operator with an overbar):Val = Term,

BVal = Formula, andState= StructUpdate. The operators used in PL’s meaning functionsE , B,

andI are reinterpreted over these domains as follows:

• The arithmetic, bitwise, relational, and logical operators are interpreted as syntactic con-

structors ofL[PL] Terms andFormulas, e.g.,

binop(⊕) = λT1.λT2.T1 ⊕ T2.

Straightforward simplifications are also performed; e.g.,0 ⊕ a simplifies toa, etc. Other

simplifications that we perform are similar to ones used by others, such as the preprocessing

steps used in decision procedures (e.g., the ite-lifting and read-over-write transformations

for operations on functions [89]).

• condresiduates anite(·, ·, ·) Termwhen the result cannot be simplified to a single branch.

The other operations used in the PL semantics are reinterpreted as follows:

lookupState : StructUpdate→ Id→ Term

lookupState= λU.λI.((U↑2)Fρ)((U↑1)I)

lookupEnv : StructUpdate→ Id→ Term

lookupEnv= λU.λI.(U↑1)I

lookupStore : StructUpdate→ Term→ Term

lookupStore= λU.λT.((U↑2)Fρ)(T)

updateStore: StructUpdate→ Term→ Term

→ StructUpdate

updateStore= λU.λT1.λT2.((U↑1), (U↑2)[Fρ 7→ ((U↑2)Fρ)[T1 7→ T2]])

By extension, this produces functionsE , B, andI with the types shown in Fig. 4.7.

In particular, given aStructUpdateU , function I translates a statements of PL to the

StructUpdateIJsKU in logic L[PL]. To perform symbolic evaluation along a pathπ, one starts

with theStructUpdateUid = (∅, {F ′
ρ ←֓ Fρ}) and repeatedly calls functionI with the next state-

ment inπ and the currentStructUpdate.

117

Standard Reinterpreted

E : Expr→ State→ Val E : Expr→ StructUpdate→ Term

B: BoolExpr→ State→ BVal B: BoolExpr→ StructUpdate→ Formula

I: Stmt→ State→ State I: Stmt→ StructUpdate→ StructUpdate

Figure 4.7 Standard types of the PL meaning functions, and the reinterpreted types used to obtain
an implementation of symbolic evaluation.

IJx = x⊕ y;KUid = (∅, {F ′
ρ ←֓ Fρ[x 7→ (EJxKUid ⊕ EJyKUid)]})

= (∅, {F ′
ρ ←֓ Fρ[x 7→ (Fρ(x) ⊕ Fρ(y))]}) = U1

IJy = x⊕ y;KU1 = (∅, {F ′
ρ ←֓ Fρ[x 7→ (Fρ(x) ⊕ Fρ(y))][y 7→ (EJxKU1 ⊕ EJyKU1)]})

= (∅, {F ′
ρ ←֓ Fρ[x 7→ (Fρ(x) ⊕ Fρ(y))][y 7→ ((Fρ(x) ⊕ Fρ(y)) ⊕ Fρ(y))]})

= (∅, {F ′
ρ ←֓ Fρ[x 7→ (Fρ(x) ⊕ Fρ(y))][y 7→ Fρ(x)]}) = U2

IJx = x⊕ y;KU2 = (∅, {F ′
ρ ←֓ Fρ[x 7→ (EJxKU2 ⊕ EJyKU2)][y 7→ Fρ(x)]})

= (∅, {F ′
ρ ←֓ Fρ[x 7→ ((Fρ(x) ⊕ Fρ(y)) ⊕ Fρ(x))][y 7→ Fρ(x)]})

= (∅, {F ′
ρ ←֓ Fρ[x 7→ Fρ(y)][y 7→ Fρ(x)]}) = Uswap

Figure 4.8 Symbolic evaluation of Fig. 4.1(a) via semantic reinterpretation, starting with the
StructUpdateUid = (∅, {F ′

ρ ←֓ Fρ}).

Example 4.2 The steps of symbolic evaluation of Fig. 4.1(a) via semanticreinterpretation, starting

with Uid, are shown in Fig. 4.8. The resultingStructUpdate, Uswap, can be considered to be the 2-

vocabulary formula

F ′
ρ = Fρ[x 7→ Fρ(y)][y 7→ Fρ(x)],

which expresses a state change in which the values of programvariablesx andy are swapped.

Algebraic simplification plays an important role. For example, wheny is updated inU1 by

[y 7→ ((Fρ(x) ⊕ Fρ(y)) ⊕ Fρ(y))]

(see Fig. 4.8), the update is simplified to[y 7→ Fρ(x)]. 2

118

U1 = (∅, {F ′
ρ ←֓ Fρ[0 7→ v][px 7→ py][py 7→ py]})

IJ∗px = ∗px⊕ ∗py;KU1 = (∅, {F ′
ρ ←֓ Fρ[0 7→ v][px 7→ py][py 7→ (EJ∗pxKU1 ⊕ EJ∗pyKU1)]})

= (∅, {F ′
ρ ←֓ Fρ[0 7→ v][px 7→ py][py 7→ (py ⊕ py)]})

= (∅, {F ′
ρ ←֓ Fρ[0 7→ v][px 7→ py][py 7→ 0]}) = U2

IJ∗py = ∗px⊕ ∗py;KU2 = (∅, {F ′
ρ ←֓ Fρ[0 7→ (EJ∗pxKU2 ⊕ EJ∗pyKU2)][px 7→ py][py 7→ 0]})

= (∅, {F ′
ρ ←֓ Fρ[0 7→ (0 ⊕ v)][px 7→ py][py 7→ 0]})

= (∅, {F ′
ρ ←֓ Fρ[0 7→ v][px 7→ py][py 7→ 0]}) = U3

IJ∗px = ∗px⊕ ∗py;KU3 = (∅, {F ′
ρ ←֓ Fρ[0 7→ v][px 7→ py][py 7→ (EJ∗pxKU3 ⊕ EJ∗pyKU3)]})

= (∅, {F ′
ρ ←֓ Fρ[0 7→ v][px 7→ py][py 7→ (0 ⊕ v)]})

= (∅, {F ′
ρ ←֓ Fρ[0 7→ v][px 7→ py][py 7→ v]}) = U4

Figure 4.9 Symbolic evaluation of Fig. 4.1(b) via semantic reinterpretation, starting with a
StructUpdatethat corresponds to the “Before” column of Fig. 4.1(c).

Example 4.3 To illustrate symbolic evaluation for an example that involves pointers and pointer-

dereferencing operations, Fig. 4.9 shows the steps of symbolic evaluation of Fig. 4.1(b) via se-

mantic reinterpretation, starting with aStructUpdatethat corresponds to the “Before” column of

Fig. 4.1(c). The program from Fig. 4.1(b) works correctly when there is no aliasing; however, it

does not always work correctly when started from the kind of state shown in the “Before” col-

umn of Fig. 4.1(c). TheStructUpdateU4 obtained via our symbolic-evaluation primitive can be

considered to be the 2-vocabulary formula

F ′
ρ = Fρ[0 7→ v][px 7→ py][py 7→ v],

which expresses a state change that does not usually performa successful swap. The example

shows that the symbolic-evaluation method can faithfully track non-trivial situations that involve

pointer aliasing.2

The correctness of our method for performing symbolic evaluation is captured by the following

theorem:

119

Theorem 4.4 For all s ∈ Stmt, U ∈ StructUpdate, andι ∈ LogicalStruct, the meaning ofIJsKU
in ι (i.e., UJIJsKUKι) is equivalent to runningI on s with an input state obtained fromUJUKι.
That is,

UJIJsKUKι = IJsK(UJUKι).

Proof: See App. B.1. 2

WLP. WLP(s, ϕ) characterizes the set of statesσ such that the execution ofs starting inσ

either fails to terminate or results in a stateσ′ such thatϕ(σ′) holds. For a language that only

hasint-valued variables, theWLP of a postcondition (specified by formulaϕ) with respect to an

assignment statementvar = rhs; can be expressed as the formula obtained by substitutingrhs for

all (free) occurrences ofvar in ϕ: ϕ[var← rhs].

For a language with pointer variables, such as PL, syntacticsubstitution is not adequate for

findingWLP formulas. For instance, suppose that we are interested in finding a formula for the

WLP of postconditionx = 5 with respect to∗p = e;. It is not correct merely to perform the

substitution(x = 5)[∗p ← e]. That substitution yieldsx = 5, whereas theWLP depends on the

execution context in which∗p = e; is evaluated:

• If p points tox, then theWLP formula should bee = 5.

• If p does not point tox, then theWLP formula should bex = 5.

The desired formula can be expressed informally as

((p = &x) ? e : x) = 5.

For a program fragment that involves multiple pointer variables, theWLP formula may have

to take into account all possible aliasing combinations. This is the essence of Morris’s rule of

substitution [138]. One of the most important features of our approach is its ability to create

correct implementations of Morris’s rule of substitution automatically—and basically for free.

120

Example 4.5 In L[PL], such a formula would be expressed as shown in the lower row below.

Informal WLP(∗p = e, x = 5) = ((p = &x) ? e : x) = 5

L[PL] WLP(∗p = e, Fρ(x) = 5) = ite(Fρ(p) = x, Fρ(e), Fρ(x)) = 5

In Ex. 4.7, we will show how the latter formula is created via semantic reinterpretation.2

To create primitives forWLP and symbolic composition via semantic reinterpretation, we

again useL[PL] as a reinterpretation domain; however, there is a trick: in contrast with what

is done to generate symbolic-evaluation primitives, we usethe StructUpdatetype of L[PL]

to reinterpret the meaning functionsU , FE , F , and T of L[PL] itself! By this means,

the “alternative meaning” of aTerm/Formula/FuncExpr/StructUpdateis a (usually different)

Term/Formula/FuncExpr/StructUpdatein which some substitution and/or simplification has taken

place. The general scheme is outlined in the following table:

Meaning Type Replacement Function

Functions Reinterpreted Type Created

I, E ,B State StructUpdate Symbolic

evaluation

F ,T LogicalStruct StructUpdate WLP

U ,FE ,F ,T LogicalStruct StructUpdate Symbolic

composition

In §4.2.1, we defined the semantics ofL[·] in a form that would make it amenable to semantic

reinterpretation. However, one small point needs adjustment: in §4.2.1, the type signatures of

LogicalStruct, lookupFuncId, access, update, andFE include occurrences ofVal→ Val. This was

done to make the types more intuitive; however, for reinterpretation to work, an additional level of

factoring is necessary. In particular, the occurrences ofVal → Val need to be replaced byFVal.

The standard semantics ofFVal is Val→ Val; however, for creating symbolic-analysis primitives,

FVal is reinterpreted asFuncExpr.

The reinterpretation used forU ,FE , F , andT is similar to what was used for symbolic evalu-

ation of PL programs:

121

• Val = Term, BVal = Formula, FVal = FuncExpr, andLogicalStruct= StructUpdate.

• The arithmetic, bitwise, relational, and logical operators are interpreted as syntacticTerm

andFormulaconstructors ofL, e.g.,

binopL(⊕) = λT1.λT2.T1 ⊕ T2,

although straightforward simplifications are also performed.

• condL residuates anite(·, ·, ·) Termwhen the result cannot be simplified to a single branch.

• lookupIdandlookupFuncIdare resolved immediately, rather than residuated:

– lookupId({Ii ←֓ Ti}, {Fj ←֓ FEj}) Ik = Tk

– lookupFuncId({Ii ←֓ Ti}, {Fj ←֓ FEj}) Fk = FEk.

• accessandupdateare discussed below.

By extension, this produces reinterpreted meaning functionsU ,FE , F , andT .

Somewhat surprisingly, we do not need to introduce an explicit operation of substitution for

our logic becausea substitution operation is produced as a by-product of reinterpretation. In

particular, in the standard semantics forL, the return types of meaning functionT and helper

function lookupIdare bothVal. However, in the reinterpreted semantics, aVal is a Term—i.e.,

somethingsymbolic—which is used in subsequent computations. Thus, whenι ∈ LogicalStructis

reinterpreted asU ∈ StructUpdate, the reinterpretation of formulaϕ viaFJϕKU substitutesTerms

found inU into ϕ: FJϕKU callsT JT KU , which may calllookupIdU I; the latter would return a

Termfetched fromU , which would be a subterm of the answer returned byT JT KU , which in turn

would be a subterm of the answer returned byFJϕKU .

To create a formula forWLP via semantic reinterpretation, we make use of bothF , the rein-

terpreted logic semantics, andI, the reinterpreted programming-language semantics. TheWLP

formula forϕ with respect to statements is obtained by performing the following computation:

WLP(s, ϕ) = FJϕK(IJsKUid). (4.1)

122

Example 4.6 In Ex. 4.2 and Fig. 4.8, we derived the followingStructUpdate, which expresses in

L[PL] the semantics of the swap-code fragmentswapfrom Fig. 4.1(a):

Uswap = IJswapKUid

= (∅, {F ′
ρ ←֓ Fρ[x 7→ Fρ(y)][y 7→ Fρ(x)]}).

Using the method given in Eqn. (4.1), we obtain the followingFormula of L[PL] for

WLP(swap, Fρ(x) = 2):

WLP(swap, Fρ(x) = 2)

= FJFρ(x) = 2KUswap

= (T JFρ(x)KUswap) = (T J2KUswap)

= (access(FEJFρKUswap, T JxKUswap)) = (const(2))

=


access


lookupFuncIdUswapFρ,

lookupIdUswapx




 = 2

= (access(Fρ[x 7→ Fρ(y)][y 7→ Fρ(x)], x)) = 2

= Fρ(y) = 2

(To understand the last step, see the discussion ofaccessbelow.)2

To understand how pointers are handled during theWLP operation, the key reinterpretations

to concentrate on inL[PL] are the ones for the operations of the meta-language that manipulate

FVals (i.e., arguments of typeVal→ Val)—in particular,accessandupdate. We wantaccessand

updateto enjoy the following semantic properties:

T Jaccess(FE0, T0)Kι = (FEJFE0Kι)(T JT0Kι)
FEJupdate(FE0, T0, T1)Kι = (FEJFE0Kι)[T JT0Kι 7→ T JT1Kι]

Note that these properties require evaluating the results of accessandupdatewith respect to an

arbitrary ι ∈ LogicalStruct. As mentioned earlier, it is desirable for reinterpreted base-type

operations to perform simplifications whenever possible, when they constructTerms, Formulas,

FuncExprs, andStructUpdates. However, because the value ofι is unknown,accessandupdate

operate in an uncertain environment.

123

access(F, k1) = F (k1)

access(FE[k2 7→ d2]), k1) =





d2 if (k1 ≡ k2)

access(FE, k1) if (k1 6= k2)

ite(k1 = k2, d2, access(FE, k1)) if (k1
.
= k2)

update(F, k1, d1) = F [k1 7→ d1]

update(FE[k2 7→ d2], k1, d1) =





FE[k1 7→ d1] if (k1 ≡ k2)

update(FE, k1, d1)[k2 7→ d2] if (k1 6= k2)

FE[k2 7→ d2][k1 7→ d1] if (k1
.
= k2)

Figure 4.10 Simplifications performed byaccessandupdate. The operations≡, 6=, and
.
= denote

equality-as-terms, definite-disequality, andpossible-equality, respectively. (The possible-equality
tests, “k1

.
= k2”, are really “otherwise” cases of three-pronged comparisons.)

To use semantic reinterpretation to create aWLP primitive that implements Morris’s rule,

simplifications are performed byaccessandupdateaccording to the definitions given in Fig. 4.10.

The possible-equality case foraccessFig. 4.10 introducesite terms. As illustrated in Ex. 4.7, it is

theseite terms that cause the reinterpreted operations to account for possible aliasing combinations,

and thus are the reason that the semantic-reinterpretationmethod automatically carries out the

actions of Morris’s rule of substitution [138].

Example 4.7 We now demonstrate how semantic reinterpretation producestheL[PL] formula for

WLP(∗p = e, x = 5) claimed in Ex. 4.5.

U := IJ∗p = eKUId

= updateStore(UId, EJpKUId, EJeKUId)

= updateStore(UId, lookupState(UId, p), lookupState(UId, e)

= updateStore(UId, Fρ(p), Fρ(e))

= ((UId↑1), {Fρ ←֓ Fρ[Fρ(p) 7→ Fρ(e)]})

124

WLP(∗p = e, Fρ(x) = 5)

= FJFρ(x) = 5KU
= (T JFρ(x)KU) = (T J5KU)

= (access(FEJFρKU,T JxKU)) = 5

= (access(lookupFuncId(U,Fρ), lookupId(U, x))) = 5

= (access(Fρ[Fρ(p) 7→ Fρ(e)], x)) = 5

= ite(Fρ(p) = x, Fρ(e),access(Fρ, x)) = 5

= ite(Fρ(p) = x, Fρ(e), Fρ(x)) = 5

Note how the case foraccessthat involves a possible-equality comparison causes anite term to

arise that tests “Fρ(p) = x”. The test determines whether the value ofp is the address ofx, which

is the only aliasing condition that matters for this example. 2

AlthoughWLP is sometimes confused with the formula-manipulation operations used to ob-

tain a formula that expresses it, or with the formulaψ that results,WLP is really a semantic

notion—the set of statesdescribedby ψ. For example, for any statements: var = rhs; in a lan-

guage that only hasint-valued variables, and postcondition formulaϕ, the formulaϕ[var← rhs]

obtained by substitution is not the only formula that expressesWLP(s, ϕ). In fact, there are an

infinity of acceptable formulas. A formulaψ is acceptable ifψ holds in the pre-state structureι

exactly whenϕ holds in the post-state structureIJsKι.

Definition 4.8 (AcceptableWLP Formula) ψ is anacceptableformula forWLP(s, ϕ) iff, for

all ι ∈ LogicalStruct,

FJψKι = FJϕK(IJsKσ),

whereσ is theStatethat corresponds toLogicalStructι (i.e.,σ = ((ι↑1), (ι↑2)Fρ); see Appendix

B).

The correctness of theWLP primitive defined in Eqn. (4.1) is captured by the following theo-

rem:

Theorem 4.9 For anyStmts andFormulaϕ, ψ := FJϕK(IJsKUid) is an acceptableWLP formula

for ϕ with respect tos.

125

UJU3KU1,2 = UJ(∅, {F ′
ρ ←֓ Fρ[x 7→ Fρ(x) ⊕ Fρ(y)][y 7→ Fρ(y)]})KU1,2

= (∅, (U1,2↑2)[Fρ 7→ FEJFρ[x 7→ Fρ(x) ⊕ Fρ(y)][y 7→ Fρ(y)]KU1,2])

= (∅, {F ′
ρ ←֓ FEJFρ[x 7→ Fρ(x) ⊕ Fρ(y)][y 7→ Fρ(y)]KU1,2})

= (∅, {F ′
ρ ←֓ update




FEJFρ[x 7→ Fρ(x) ⊕ Fρ(y)]KU1,2,

T JyKU1,2,

T JFρ(y)KU1,2


})

= (∅, {F ′
ρ ←֓ (FEJFρ[x 7→ Fρ(x) ⊕ Fρ(y)]KU1,2)[y 7→ Fρ(x)]})

= (∅, {F ′
ρ ←֓ update




FEJFρKU1,2,

T JxKU1,2,

T JFρ(x) ⊕ Fρ(y)KU1,2


 [y 7→ Fρ(x)]})

= (∅, {F ′
ρ ←֓ (Fρ[x 7→ T JFρ(x) ⊕ Fρ(y)KU1,2][y 7→ Fρ(x)])[y 7→ Fρ(x)]})

= (∅, {F ′
ρ ←֓ Fρ[x 7→ ((Fρ(x) ⊕ Fρ(y)) ⊕ Fρ(x))][y 7→ Fρ(x)]})

= (∅, {F ′
ρ ←֓ Fρ[x 7→ Fρ(y)][y 7→ Fρ(x)]})

= Uswap

Figure 4.11 Example of symbolic composition.

Proof: See App. B.2. 2

Symbolic Composition. The goal of symbolic composition is to have a method that, given two

symbolic representations of state changes, computes a symbolic representation of their composed

state change. In our approach, each state change is represented in logicL[PL] by aStructUpdate,

and the method computes a newStructUpdatethat represents their composition. To accomplish

this,L[PL] is used as a reinterpretation domain, exactly as forWLP . Moreover,U turns out to be

exactly the symbolic-composition function that we seek. In particular,U works as follows:

UJ({Ii ←֓ Ti}, {Fj ←֓ FEj})KU = ((U↑1)[Ii 7→ T JTiKU], (U↑2)[Fj 7→ FEJFEjKU])

Example 4.10 At the syntactic level, we can demonstrate the ability ofU (plus simple algebraic

simplification) to perform symbolic composition by showingthat for the swap-code fragment from

126

Fig. 4.1(a)

IJs1; s2; s3KUid = UJIJs3KUidK(IJs1; s2KUid).

First, consider the left-hand side. As shown in Fig. 4.8,IJs1; s2; s3KUid = (∅, F ′
ρ ←֓ Fρ[x 7→

Fρ(y)][y 7→ Fρ(x)]) = Uswap. Now consider the right-hand side. LetU1,2 andU3 be defined as

follows:
U1,2 = IJs1; s2KUid

= (∅, {F ′
ρ ←֓ Fρ[x 7→ Fρ(x) ⊕ Fρ(y)][y 7→ Fρ(x)]})

U3 = IJs3KUid

= (∅, {F ′
ρ ←֓ Fρ[x 7→ Fρ(x) ⊕ Fρ(y)][y 7→ Fρ(y)]}).

As shown in Fig. 4.11,

UJU3KU1,2 = (∅, {F ′
ρ ←֓ Fρ[x 7→ Fρ(y)][y 7→ Fρ(x)]}).

Therefore,UJU3KU1,2 = Uswap. 2

The semantic correctness of the symbolic-composition primitiveU is captured by the following

theorem, which shows that the meaning ofUJU2KU1 is the composition of the meanings ofU2 and

U1:

Theorem 4.11 For allU1, U2 ∈ StructUpdate,

UJUJU2KU1K = UJU2K ◦ UJU1K.

Proof: See App. B.3. 2

4.4 Symbolic Analysis for MC via Reinterpretation

To obtain the three symbolic-analysis primitives for MC, weuse a reinterpretation of MC’s

semantics that is essentially identical to the reinterpretation for PL, modulo the fact that the seman-

tics of PL is written in terms of the combinatorslookupEnv, lookupStore, andupdateStore, whereas

the semantics of MC is written in terms oflookupreg, storereg, lookupflag, storeflag, lookupmem, and

storemem.

127

Symbolic Evaluation. The base types are redefined asBVal = Formula, Val = Term, State=

StructUpdate, where the vocabulary forLogicalStructs is

({zf, eax, ebx, ebp, eip}, {Fmem}).

Lookup and store operations for MC, such aslookupmem andstoremem, are handled the same way

that lookupStoreandupdateStoreare handled for PL.

lookupmem : StructUpdate→ Term→ Term

lookupmem= λU.λT.((U↑2)Fmem)(T)

storemem : StructUpdate→ Term→ Term→ StructUpdate

storemem= λU.λT1.λT2.

((U↑1), (U↑2)[Fmem 7→ ((U↑2)Fmem)[T1 7→ T2]])

lookupreg : StructUpdate→ register→ Term

lookupreg = λU.λr.(U↑1)(r)

storereg : StructUpdate→ register→ Term

→ StructUpdate

storereg = λU.λr.λT.((U↑1)[r 7→ T], (U↑2))

Because we placedzf in the set of constant symbols (which denoteInt32 values), we use the

following definitions oflookupflag andstoreflag, where instoreflag theInt32values1 and0 encodeT

128

andF, respectively.2

lookupflag : StructUpdate→ flagName→ Formula

lookupflag = λU.λf.((U↑1)(f) = 1)

storeflag : StructUpdate→ flagName→ Formula

→ StructUpdate

storeflag = λU.λf.λϕ.((U↑1)[f 7→ ite(ϕ, 1, 0)], (U↑2))

Example 4.12 Fig. 4.1(d) shows the MC code that corresponds to the swap code in Fig. 4.1(a):

lines 1–3, lines 4–6, and lines 7–9 correspond to lines 1, 2, and 3 of Fig. 4.1(a), respectively.

For the MC code in Fig. 4.1(d),IMCJswapKUid, which denotes the symbolic evaluation ofswap,

produces theStructUpdate



{eax′ ←֓ Fmem(ebp - 14)},


F ′

mem←֓ Fmem[ebp - 10 7→ Fmem(ebp - 14)]

[ebp - 14 7→ Fmem(ebp - 10)]








Fig. 4.1(d) illustrates why it is essential to be able to handle address arithmetic: an access on

a source-level variable is compiled into machine code that dereferences an address in the stack

frame computed from the frame pointer (ebp) and an offset. This example shows thatIMC is able

to handle address arithmetic correctly.2

WLP. To create a formula for theWLP of ϕ with respect to instructioni via semantic rein-

terpretation, we use the reinterpreted MC semanticsIMC, together with the reinterpretedL[MC]

meaning functionFMC, whereFMC is created via the same approach used in§4.3 to reinterpret

L[PL].WLP(i, ϕ) is obtained by performingFMCJϕK(IMCJiKUid).

2To simplify the exposition,L is intentionally a limited logic over values of typeInt32. To definelookupflag and
storeflag, it would be more convenient to use a logic with Boolean-valued constant symbolsBj ∈ BoolId, in which
case aStructUpdatewould be a triple of the form

({Ii ←֓ Ti}, {Bj ←֓ ϕj}, {Fk ←֓ FEk}),

andlookupflag andstoreflag could be defined as follows:

lookupflag = λU.λf.(U↑2)(f)

storeflag = λU.λf.λϕ.((U↑1), (U↑2)[f 7→ ϕ], (U↑3))

129

[1] void foo(int e, int x, int* p) {

[2] ...

[3] *p = e;

[4] if(x == 5)

[5] goto ERROR;

[6] }

[1] mov eax, p;

[2] mov ebx, e;

[3] mov [eax], ebx;

[4] cmp x, 5;

[5] jz ERROR;

[6] ...

[7] ERROR: ...

(a) (b)

Figure 4.12 (a) A simple source-code fragment written in PL;(b) the MC code for (a).

Example 4.13 Fig. 4.12(a) shows a source-code fragment; Fig. 4.12(b) shows the corresponding

MC code. (To simplify the MC code, source-level variable names are used.) In Fig. 4.12(a), the

largest set of states just before line[3] that cause the branch toERROR to be taken at line[4] is

described byWLP(∗p = e, x = 5). In Fig. 4.12(b), an expression that characterizes whether

the branch toERROR is taken isWLP(s[1]-[5], (eip = c[7])), wheres[1]-[5] denotes instructions

[1]–[5] of Fig. 4.12(b), andc[7] is the address ofERROR. Using semantic reinterpretation,

FMCJ(eip = c[7])K(IMCJs[1]-[5]KUid)

produces the formula

(ite((Fmem(p) = x), Fmem(e), Fmem(x)) - 5) = 0,

which, transliterated to informal source-level notation,is (((p = &x) ? e : x)− 5) = 0.

Even though the (source-level) branch is split across two instructions in Fig. 4.12(b),WLP

can be used to recover the branch condition. First,

WLP(cmp x,5; jz ERROR, (eip = c[7]))

returns the formula

ite(((Fmem(x) - 5) = 0), c[7], c[6]) = c[7],

130

as shown by the following derivation:

IMCJcmp x,5KUid = ({zf′ ←֓ ite((Fmem(x) - 5) = 0, 1, 0)}, ∅)

=U1

IMCJjz ERRORKU1 =






zf′ ←֓ ite((Fmem(x) - 5) = 0, 1, 0)

eip′ ←֓ ite




((Fmem(x) - 5) = 0),

c[7],

c[6]








, ∅




=U2

FMCJeip = c[7]KU2 = ite




((Fmem(x) - 5) = 0),

c[7],

c[6]


 = c[7]

Second, becausec[7] 6= c[6], the formula in the last line simplifies to(Fmem(x) - 5) = 0; i.e., in

source-level terms,(x− 5) = 0. 2

Symbolic Composition. For MC, symbolic composition can be performed usingUMC.

4.5 Other Language Constructs

Branching. Ex. 4.13 illustrated aWLP computation across a machine-code branch instruction.

We now illustrate forward symbolic evaluation across a branch.

Example 4.14 Suppose that an if-statement is represented by

IfStmt(BE, Int32, Int32),

where BE is the condition and the twoInt32s are the addresses of the true-branch and false-

branch, respectively. Its factored semantics would specify how the value of the program counter

PC changes:

IJIfStmt(BE, cT , cF)Kσ = updateStoreσ PCcond(BJBEKσ, const(cT), const(cF)).

131

FormulaObtainPathConstraintFormula(Pathπ) {

Formulaϕ = T ; // Initial path-constraint formula

StructUpdateU = Uid; // Initial symbolic state-transformer

let [PC1 : i1,PC2 : i2, . . . ,PCn : in,PCn+1 : skip] = π in

for (k = 1; k ≤ n; k++) {

U = IJikKU ; // Symbolically executeik

ϕ = ϕ && FJPC = PCk+1KU ; // Conjoin the branch condition forik

}

return ϕ;

}

Figure 4.13 An algorithm to obtain a path-constraint formula that characterizes which initial
states must follow pathπ.

(a) (b)

Figure 4.14 Conversion of a recursively defined instruction—portrayed in (a) as a “microcode
loop” over the actions denoted by the dashed circles and arrows—into (b), an explicit loop in the

control-flow graph whose body is an instruction defined without using recursion. The three
microcode operations in (b) correspond to the three operations in the body of the microcode loop

in (a).

In the reinterpretation for symbolic evaluation, theStructUpdate U obtained by

IJIfStmt(BE, cT , cF)KUid would be({PC′ ←֓ ite(ϕBE, cT , cF)}, ∅), whereϕBE is theFormulaob-

tained forBE under the reinterpreted semantics. To obtain the branch condition for a specific

branch, say the true-branch, we evaluateFJPC = cT KU . The result is(ite(ϕBE, cT , cF) = cT),

which (assuming thatcT 6= cF) simplifies toϕBE. (A similar formula simplification was performed

in Ex. 4.13 on the result of theWLP formula.)

132

2

Loops. One kind of intended client of our approach to creating symbolic-analysis primitives is

hybrid concrete/symbolic state-space exploration [94, 167, 95, 54]. Such tools use a combination

of concrete and symbolic evaluation to generate inputs thatincrease coverage. In such tools, a

program-level loop is executed concretely a specific numberof times as some pathπ is followed.

The symbolic-evaluation primitive for a single instruction is applied to each instruction ofπ to

obtain symbolic states at each point ofπ. A path-constraint formulathat characterizes which

initial states must followπ can be obtained by collecting the branch formulaϕBE obtained at each

branch condition by the technique described above; the algorithm is shown in Fig. 4.13.

X86 String Instructions. X86 string instructions can involve actions that perform ana priori

unbounded amount of work (e.g., the amount performed is determined by the value held in register

ecx at the start of the instruction). This can be reduced to the loop case discussed above by giving

a semantics in which the instruction itself is one of its two successors. In essence, the “microcode

loop” is converted into an explicit loop (see Fig. 4.14).

Procedures. A call statement’s semantics (i.e., how the state is changedby the call action) would

be specified with some collection of operations. Again, the reinterpretation of the state transformer

is induced by the reinterpretation of each operation:

• For a call statement in a high-level language, there would bean operation that creates a

new activation record. The reinterpretation of this would generate a fresh logical constant to

represent the location of the new activation record.

• For a call instruction in a machine-code language, registeroperations would change the

stack pointer and frame pointer, and memory operations would initialize fields of the new

activation record. These are reinterpreted in exactly the same way that register and memory

operations are reinterpreted for other constructs.

Dynamic Allocation. Two approaches are possible:

133

• The allocation package is implemented as a library. One can apply our techniques to the

machine code from the library.

• If a formula is desired that is based on a high-level semantics, a call statement that calls

malloc or new can be reinterpreted using the kind of approach used in othersystems (a fresh

logical constant denoting a new location can be generated).

4.6 Incorporating Non-Determinism

Many formalisms for symbolic analysis of programs support the use of non-determinism,

which is useful for writing “harness code” (code that modelsthe possible client environments from

which the code being analyzed might be called), as well as formodeling the possible inputs to a

program. A common approach is to provide a primitive that returns an arbitrary value of a given

type. Examples include theSdvMakeChoice primitive of SLAM [46] and thehavoc(x) primitive

of BoogiePL [48]. In this section, we discuss adding such a primitive,CALL randInt32, to MC.

CALL randInt32is an instruction that assigns an arbitrary value to register eax.3 We refer to MC

extended withCALL randInt32as NDMC.

This section describes how implementations of the basic primitives used in symbolic program

analysis are obtained for NDMC. (Essentially the same method can be applied to a version of PL

extended with its own primitive for generating an arbitraryInt32value.)

Because our approach to creating implementations of the primitives used in symbolic pro-

gram analysis is based on semantic reinterpretation, our goal is to give a concrete semantics for

CALL randInt32whose reinterpretation produces the desired effect. At an intuitive level, we would

like to treat each invocation ofCALL randInt32as reading the next input value, and have the se-

mantics of the program arrange to record all of the input values. To carry out something equivalent

to this, we assume that the meta-language in which semantic specifications are written supports a

primitive for creating arandom map, which is a map initialized with arbitrary values.4 Rather than

recording input values, we will materialize—in a random mapthat is part of the input state—the

3In the x86 instruction set, registereax is used to pass back the return value from a function call.
4A random map is easy to model in logicL using a function that is unconstrained.

134

sequence of non-deterministic values thateax will receive on successive calls toCALL randInt32.

The state will also contain an index-variable, which indicates the index of the next choice. Thus,

all non-determinism in the concrete semantics is pushed onto the initialization of the random map

in the initial state; all transitions thereafter are deterministic.

TheCALL randInt32instruction and its semantics are defined as an extension of the MC lan-

guage presented in§4.2.3:

instruction:= . . . | CALL randInt32

An NDMC state is defined in terms of

choiceMap∈ Val→ Val

choiceIndex∈ Val

and an NDMC stateσ ∈ Stateis now a quintuple

(mem, reg, flag, choiceMap, choiceIndex),

wherechoiceMapis a random map.

lookupchoiceMap : State→ Val

lookupchoiceMap=

λ(mem, reg, flag, choiceMap, choiceIndex).choiceMap(choiceIndex)

incrchoiceIndex : State→ State

incrchoiceIndex=

λ(mem, reg, flag, choiceMap, choiceIndex)

.(mem, reg, flag, choiceMap, choiceIndex+ 1)

The concrete semantics ofCALL randInt32is defined as follows:

IJCALL randInt32Kσ

= increip


storereg




incrchoiceIndex(σ),

eax,

lookupchoiceMap(σ)







135

Reinterpretation in Logic. As before, State is reinterpreted as aStructUpdate: State =

StructUpdate, where the vocabulary forLogicalStructs is

{choiceIndex, zf, eax, ebx, ebp, eip},

{FchoiceMap, Fmem}


 ,

andUid is 
{choiceIndex′ ←֓ choiceIndex, zf′ ←֓ zf, . . .},

{F ′
choiceMap←֓ FchoiceMap, F

′
mem←֓ Fmem}


 .

WLP in the Presence of Non-Determinism. In previous sections, we have referred to the

backwards-reasoning primitive generated by our method asWLP , which is correct for the sit-

uation considered in§4.3 and 4.4, namely languages whose primitive statements/instructions are

total and deterministic.

In the terminology of relational semantics [171], one considers two backwards-reasoning prim-

itives,pre andp̃re, defined as follows (whereR is a binary relation onQ, andϕ defines a subset

of Q):

pre[R](ϕ) = ∃q′. (R(q, q′) ∧ ϕ(q′))

p̃re[R](ϕ) = ∀q′. (R(q, q′)⇒ ϕ(q′))

pre specifies the set of all predecessors inR of states that satisfyϕ. p̃re specifies the largest set of

states such that for each stateq all successors ofq (possibly the empty set) satisfyϕ.

The backwards-reasoning primitive considered in§4.3 and 4.4 could be referred to as either

pre or p̃re, because the two operators are identical for total, deterministic transitions. For a non-

deterministic transition system, however,pre andp̃re are different. For instance, execution of the

havoc(x) primitive of BoogiePL [48] assigns an arbitrary value tox. Forhavoc(x), pre andp̃re

are defined as follows:
preJhavoc(x)K(ϕ) = ∃x. ϕ

p̃reJhavoc(x)K(ϕ) = ∀x. ϕ

The following example shows that the backwards-reasoning primitive created by our technique

behaves similarly topre.

136

Example 4.15 Consider what the backwards-reasoning primitive creates foreax = 5 with respect

to CALL randInt32:

IJCALL randInt32KUid

=








choiceIndex′ ←֓ (Uid↑1)(choiceIndex) + 1,

eax′ ←֓ ((Uid↑2)(FchoiceMap))((Uid↑1)(choiceIndex))



 ,

(Uid↑2)




=








choiceIndex′ ←֓ choiceIndex+ 1,

eax′ ←֓ FchoiceMap(choiceIndex)



 ,

(Uid↑2)




=U1

WLP(CALL randInt32, eax = 5)

= FJeax = 5KU1

= FchoiceMap(choiceIndex) = 5

2

FchoiceMapcan be thought of as an array of logical variables. In the quantifier-free logic we work

with, formulas are implicitly existentially quantified. Letting v denoteFchoiceMap(choiceIndex), the

formulaFchoiceMap(choiceIndex) = 5 can be thought of as the quantifier-free version of the formula

∃v.v = 5, which corresponds topreJhavoc(v)K(v = 5).

Thus, in earlier sections it would have been more precise to have referred to the backwards-

reasoning primitive aspre, rather thanWLP—although the termWLP was also correct because

earlier sections dealt only with languages whose primitivestatements/instructions are total and

deterministic.

Guaranteed Replay in the Presence of Non-Determinism.The application of directed test

generation [54, 94, 95, 167] requires path constraints thatenable the test-generation system to

create new test inputs that are guaranteed to follow a particular path through the program.5 In

particular, during forward symbolic evaluation, we want path-constraint generation (Fig. 4.13) to

5See§4.7 and 4.8 for more detailed discussion of systems for directed test generation.

137

call randInt32
cmp eax, 5
jz …

call randInt32
cmp eax, 11
jz …

call randInt32
cmp eax, 17
jz …

P Q

B
0

B
1

B
2

Start

Figure 4.15 In a symbolic evaluation of the trace fromStartto P , the three path constraints
obtained from the branch instructions atB0, B1, andB2 constrain the values ofFchoiceMap(0),
FchoiceMap(1), andFchoiceMap(2), respectively. To create a new initial state that causes a concrete
execution of the program to follow the same path, except to branch the opposite way atB2 (to

reachQ), we need the satisfying assignment returned by the theoremprover to satisfy the
constraints onFchoiceMap(0) andFchoiceMap(1) and the negated constraint onFchoiceMap(2).

produce a formula such that when a theorem prover is able to provide an assignment that satisfies

the formula, the satisfying assignment serves as an initialstate that will cause concrete execution

of the program to follow a specific path. The paths of interestare ones that replay at least part of a

previous execution trace.

The situation is illustrated in Fig. 4.15. During directed test generation, suppose that a concrete

execution traceT follows the path fromStart to P . Associated withT are three path constraints

obtained from the branch instructions atB0, B1, andB2. The three constraints constrain the

values ofFchoiceMap(0), FchoiceMap(1), andFchoiceMap(2), respectively. To increase branch coverage, a

directed-test-generation tool would like to obtain an initial state that drives the program along the

same path, except when it reachesB2, when the program should proceed toQ.

With the scheme presented in this section, the theorem prover is able to create such an initial

state by providing initial values for the first three entriesof FchoiceMap (which models the random

mapchoiceMap).

Repeatability comes from the fact that we have kept the concrete semantics deterministic by,

in essence, recording all non-deterministically chosen values in a kind of shadow input stream.

As a result, repeatability is automatically obtained for both symbolic evaluation as well asWLP .

In each case, for a given path we obtain an assignment for the input that forces execution along

138

TSL Specifications Generated C++ Templates

IJ·K FJ·K ∪ T J·K ∪ FEJ·K ∪ UJ·K IJ·K FJ·K ∪ T J·K ∪ FEJ·K ∪ UJ·K

x86 3,524 1,510 23,109 15,632

PowerPC 1,546 (already written) 12,153 15,632

Figure 4.16 The number of (non-blank) lines of C++ that are generated from theTSL
specifications of the x86 and PowerPC instruction sets (as ofApr. 2010). The number of

(non-blank) lines ofTSL are indicated in bold.

that path: in symbolic evaluation, one works forwards and collects path constraints; inWLP , one

works backwards starting fromT; the solver is constrained to return an assignment that, at each

branch instruction, causes a concrete execution to branch in the direction that stays on the path.

4.7 Implementation and Evaluation

We usedTSL to (1) define the syntax ofL[·] as a user-defined datatype; (2) create a reinterpre-

tation based onL[·] formulas; (3) define the semantics ofL[·] by writing functions that correspond

to T ,F , etc.; and (4) apply reinterpretation (2) to the meaning functions ofL[·] itself. (We already

had in handTSL specifications of x86 and PowerPC.)

When semantic reinterpretation is performed in the manner supported byTSL, it is independent

of any given subject language. Consequently, now that we have carried out steps (1)–(4), all three

symbolic-analysis primitives can be generated automatically for a new instruction setISmerely by

writing a TSL specification ofIS, and then applying theTSL compiler. In essence,TSL acts as a

“YACC-like” tool for generating symbolic-analysis primitives from a semantic description of an

instruction set.

To illustrate the leverage gained by using the approach presented in this chapter, the table

shown in Fig. 4.16 lists the number of (non-blank) lines of C++ that are generated from theTSL

specifications of the x86 and PowerPC instruction sets. The number of (non-blank) lines ofTSL

are indicated in bold.

139

In addition to the components for concrete and symbolic evaluation, one also obtains an imple-

mentation ofWLP—via the method described in§4.3—by calling the C++ implementations of

FJ·K andIJ·K: WLP(s, ϕ) = FJϕK(IJsKUid). By Thm. 4.9 of Appendix B,WLP is guaranteed

to be consistent with the components for concrete and symbolic evaluation (modulo bugs in the

implementation ofTSL).

Evaluation. Some tools that use symbolic reasoning employ formula transformations that are not

faithful to the actual semantics. For instance, theSAGE system for directed test generation [95]

uses an approximate x86 symbolic evaluation in which concrete values are used when non-linear

operators or symbolic pointer dereferences are encountered. As a result, its symbolic evaluation

of a path can produce an “unfaithful” path-constraint formula ϕ; that is, an actual execution path

may not match the program path predicted by the path-constraint formula ϕ. This situation is

called adivergence[95]. Because the intended use ofSAGE is to generate inputs that increase

coverage, it can be acceptable for the tool to have a substantial divergence rate (due to the use of

unfaithful symbolic techniques) if the cost of performing symbolic operations is lowered in most

circumstances.

In contrast with directed test generation, to model check machine code [120, 174]6 an imple-

mentation of a faithful symbolic technique is required. A faithful symbolic technique could raise

the cost of performing symbolic operations because faithful path-constraint formulas could be a

great deal more complex than unfaithful ones. Thus, our experiment was designed to answer the

question

“What is the cost of using exact symbolic-evaluation primitives instead of unfaithful

ones?”

It would have been an error-prone task to implement a faithful symbolic-evaluation primitive for

x86 machine code manually. UsingTSL, however, we were able to generate a faithful symbolic-

evaluation primitive from an existing, well-testedTSL specification of the semantics of x86 in-

structions. We also generated an unfaithful symbolic-evaluation primitive that adoptsSAGE’s

6The model-checking tool for machine code is described in§5.1

140

approximate approach. We used these to create two directed-test-generation tools that perform

state-space exploration—one that uses the faithful primitive, and one that uses the unfaithful prim-

itive.

Although the presentation in earlier sections was couched in terms of simplified core languages,

the implemented tools work with real x86 programs. Our experiment used seven C++ programs,

each exercising a single algorithm from the C++ STL, compiled under Visual Studio 2005.

To compare the two tools’ divergence rates and running times, we used the algorithm shown

in Fig. 4.17. All execution runs were performed on a single core of a quad-core 3.0GHz Pentium

Xeon processor running Windows XP, configured so that a user process has 4 GB of memory.

Tab. 4.1 shows the divergence rates and running times that wemeasured.

Tab. 4.1 reports the number of tests executed, the average length of the trace obtained from

the tests, and the average number of branches in the traces. For the faithful version, we report the

average time taken for concrete execution (CE) and symbolicevaluation (SE). In the approximate

(“unfaithful”) version, concrete execution and symbolic evaluation were done in lock step and their

total time is reported in (CE+SE). (All times are in seconds.) For each version, we also report the

average time taken by the SMT solver (Yices [82]), the average number of constraints found (|ϕ|),

and the divergence rate. For the approximate version, we also show the average distance (as a

percentage of the total length of the trace) before a diverging test diverged.TF/TA denotes the

ratio of the times (CE+SE+SMT) for the faithful version and the approximate version.

On average, the unfaithful primitive had a57% divergence rate (computed as the arithmetic

mean of the seven measured divergence rates), whereas no divergences were reported for the faith-

ful primitive. The faithful primitive had9.27 times more constraints inϕ than the unfaithful prim-

itive (computed as the geometric mean of the ratios of the twoversions for the seven programs),

and was about1.07 times slower than the unfaithful version (geometric mean).

4.8 Related Work

Symbolic analysis is used in many recent systems for testingand verification:

141

σ := a random initial input state
Perform concrete execution, starting with input stateσ, and obtain the traceT
numTracesConsidered :=0; divergencesfaithful := 0; divergencesunfaithful := 0
Worklist := {〈σ, T 〉}; AlreadyConsideredTraces :=∅
while Worklist 6= ∅ and numTracesConsidered< thresholddo

Select and remove a pair〈σ, T 〉 from Worklist
Perform two symbolic evaluations ofT using the faithful and unfaithful symbolic primitives,
respectively, generating branch predicates for each branch instruction inT
LetB1, B2, . . . , Bk be the branch instructions, in order, inT
for i := k downto 1 do

For each of the two symbolic evaluations, conjoin all the branch predicates inT prior toBi

with the negation of the branch predicate forBi in T , creating path formulasϕfaithful and
ϕunfaithful , respectively
TB+ := the prefix ofT up to and includingBi, plus the intended successor ofBi

if TB+ ∈ AlreadyConsideredTracesthen
Break /* Exit thefor loop; all prefixes ofTB+ are in AlreadyConsideredTraces, too */

else
InsertTB+ into AlreadyConsideredTraces

end if
if ϕfaithful is unsatisfiablethen

Continue /* Go to the next iteration of thefor loop */
end if
σ′

faithful := a satisfying assignment forϕfaithful

Perform concrete execution, starting with input stateσ′
faithful , and obtain the traceT ′

numTracesConsidered := numTracesConsidered+ 1
if T ′ does not matchTB+ then

Increment divergencesfaithful by 1
end if
if ϕunfaithful is unsatisfiablethen

Increment divergencesunfaithful by 1
else
σ′

unfaithful := a satisfying assignment forϕunfaithful

Perform concrete execution, starting with input stateσ′
faithful , and obtain the traceT ′′

if T ′′ does not matchTB+ then
Increment divergencesunfaithful by 1

end if
end if
Insert〈σ′

faithful , T
′〉 into Worklist

end for
end while

Figure 4.17 Directed-test-generation algorithm used for comparing the divergence rates of the
faithful and unfaithful symbolic-evaluation primitives.

142

Name #Tests |Trace| #Branches Faithful Approximate Slowdown

(STL) (#Instrs) CE SE SMT |ϕ| Div. CE+SE SMT |ϕ| Div. Dist. (TF/TA)

copy 12 1462 19 0.3 3.44 0.017 6 0% 3.58 0.013 1 50% 93% 1.05

equal 202 1604 64 0.33 5.56 0.48 54 0% 5.75 0.46 24 60% 73% 1.11

find 344 1240 174 0.15 5.34 0.2 144 0% 5.31 0.17 85 50% 82% 1.07

partition 19 1293 43 0.24 5.26 0.79 43 0% 5.43 0.26 1 73% 87% 1.16

randomshuffle 94 2448 71 0.48 7.56 0.028 37 0% 7.88 0.014 1 48% 99% 1.03

search 274 1422 107 0.33 6.3 0.17 59 0% 6.37 0.13 31 55% 89% 1.07

transform 200 3749 95 0.82 18.56 0.05 85 0% 19.36 0.012 1 64% 99% 1.00

Table 4.1 Experimental results. Key: CE = time for concrete execution; SE = time for symbolic
execution; SMT = solver time;|ϕ| = avg. number of constraints found; Div. = divergence rate;

CD+SE = time for concrete + symbolic execution (when run in lock-step); Dist. = avg. distance
before a diverging test diverges.TF/TA denotes the ratio of the times (CE+SE+SMT) for the

faithful version and the approximate version. (All times are in seconds.)

• Hybrid concrete/symbolic tools for directed test generation [54, 94, 95, 167] use a combina-

tion of concrete and symbolic evaluation to generate inputsthat increase coverage. They use

concrete evaluation to identify an executable pathπ. They use symbolic evaluation to obtain

a path formula forπ, then change the formula to be one for a pathπ′ that follows the same

sequence of branches asπ, except that at the final branch nodeπ′ branches in the direction

opposite to the one taken byπ, and call an SMT solver to determine if there is an input that

drives the program downπ′.

• WLP can be used to create new predicates that split part of a program’s abstract state space

[46, 49].

• Symbolic composition is useful when a tool has access to a formula that summarizes a called

procedure’s behavior [186]; re-exploration of the procedure is avoided by symbolically com-

posing a path formula with the procedure-summary formula.

However, compared with the way such symbolic-analysis primitives are implemented in existing

program-analysis tools, our work has one definite advantage: it creates the key concrete-execution

and symbolic-analysis components in a way that ensures by construction that they aremutually

consistent.

143

We use adeclarative approach: one provides a specification of the subject language’sstandard

semantics; then, as described in§4.3 and 4.4, mutually-consistent implementations of symbolic

evaluation,WLP , and symbolic composition are obtained from the subject language’s standard

semantics by (i) reinterpreting meta-language constructsin terms of logic, and (ii) reinterpreting a

logic’s meaning functions. The advantage of this approach is that one obtains implementations of

(a) concrete execution, (b) symbolic evaluation, (c)WLP , and (d) symbolic composition from a

singlespecification, which removes the possibility of different analysis components having differ-

ent “views” of the semantics.

It appears to be the case that in most tools, the concrete-execution and symbolic-analysis prim-

itives are not implemented in a way that guarantees such a consistency property. For instance, in

the source code for B2 [106] (the next-generationBLAST), one finds symbolic evaluation (post)

andWLP implemented with different pieces of code, and hence mutualconsistency is not guar-

anteed.WLP is implemented via substitution, with special-case code for handling pointers. Any

modification of the B2 intermediate representation would require changing bothpost andWLP ,

and possibly rethinking the substitution method.

Recently, directed-test-generation tools have been created for x86 executables—e.g.,SAGE

[95] andBITSCOPE [54].

• BITSCOPE is a framework that takes an x86 executable and provides information about exe-

cution paths that can be used for additional, more specific analyses, such as finding out what

inputs cause erroneous behavior. To perform symbolic evaluation, they first translate each

x86 instruction into an intermediate representation that is designed to model the semantics

of the original x86 instruction, including all implicit side effects (such as flags that are set),

register addressing modes, and other issues. Symbolic evaluation is performed on the IR

with a symbolic transformer for each IR statement.

• SAGE is awhite-box fuzz-testing toolfor x86 Windows applications [95]. The system uses

offline, trace-basedconstraint generation: concrete execution and symbolic evaluation are

performed over a separately recorded, replayable execution trace in which the outcome of

each nondeterministic event encountered during the recorded run has been captured. To

144

generate path constraints,SAGE maintains a concrete state and a symbolic state—a pair of

stores that associate each memory location and register to abyte-sized value and asymbolic

tag, which is an expression that represents either an input value or a function of some input

values. A symbolic tag is propagated on the trace during the process of symbolic evalua-

tion by using a symbolic transformer written specifically for each instruction. The concrete

store is sometimes used toconcretizesymbolic values that are overly complex. InSAGE,

symbolic pointer dereferences are intentionally ignored to reduce complexity.SAGE could

be improved to increase coverage by using more precise path constraints created from the

symbolic-evaluation primitive produced by our technique.§4.7 shows that the faithful con-

straints created by our technique dramatically reduce the number of divergences with only a

modest (7%) increase in running time.

BITSCOPE uses the approach of translating each instruction to a common intermediate repre-

sentation (CIR) (see§4.1), which provides a level of assurance that the concrete-execution and

symbolic-evaluation components are mutually consistent.SAGE uses independently created com-

ponents for capturing execution traces and for path-constraint generation. It also uses approximate

techniques during the symbolic-evaluation part of constraint generation; hence, the treatment of

program semantics inSAGE is definitely inconsistent, which causes divergences. (WLP and

symbolic composition do not play a role in eitherSAGE or BITSCOPE.)

Relationship to Partial Evaluation, Binding-Time Analysis, and 2-Level Semantics. In gen-

eral, the semantic definition of an imperative programming language is a meaning functionI with

typeI : Stmt× State→ State. The objective of a primitive for symbolic evaluation can bestated

as follows:

Given the semantic definition of a programming language,I : Stmt× State→ State,

together with a specific programming-language statement (or instruction)s ∈ Stmt,

create a logical formula that captures the semantics ofs.

Given such a goal for the primitive to be created, it is not surprising that partial-evaluation tech-

niques come into play in the tool that generates implementations of such primitives. In essence, we

145

wish to partially evaluateI with respect toStmts so that the residual object captures the semantics

of s, while at the same time the result is translated toL. Semantic reinterpretation permits us to do

this: letUs be theStructUpdateIJsKUid. ThenUs is the partial evaluation ofI with respect tos,

translated to logic.

In our implementation, theTSL system is supplied with aTSL program for the meaning func-

tion I (i.e., interpInstr). AlthoughTSL is not a partial-evaluation systemper se, for reasons dis-

cussed in§3.2.1, theTSL compiler performs binding-time analysis [108], and annotates the code

for interpInstr to create an intermediate representation in a two-level language [149]. In our case,

Level 1 corresponds to parameterI of interpInstr, and Level 2 corresponds to parameterstate.

To generate implementations of symbolic-analysis primitives via semantic reinterpretation, we use

two different reinterpretations for the two levels:

• Concrete semantics (C) for Level 1.

• Something close to the Herbrand interpretation (H) for Level 2: operators ofL are used as

syntactic constructors, but algebraic simplifications areperformed whenever possible.

Let interpInstr-CH denote interpInstr-2level reinterpreted in this fashion. When

interpInstr-CH is executed, it creates a residual expression as output. Because concrete seman-

tics is used for level 1, all parts ofinterpInstr that are not relevant to the form ofI are eliminated.

Overall, theTSL compiler and the two interpretations create something thatis very similar

to a generating extension [108]interpInstr-gen for interpInstr. If p is a two-input program, a

generating extensionp-gen is any program with the property that for every input paira andb,

Jp-genK(a) = pa, whereJpaK(b) = JpK(a, b).

Thus,I-gen is a program such that for every statements andStateσ,

JI-genK(s) = Is, whereJIsK(σ) = JIK(s, σ).

Generating extensioninterpInstr-gen would be a program with the following property:

JinterpInstr-genK(I) = interpInstrI,where

JinterpInstrIK(S) = JinterpInstrK(I, S).

146

interpInstr-CH has similar properties:

JinterpInstr-CHK(I, Uid) = UI,where

UJUIK(S) = JinterpInstrK(I, S).

Consequently,interpInstr-gen and interpInstr-CH are not the same, although the difference be-

tween is quite small.interpInstr-CH still requirestwo inputs to be supplied (but we could use the

trivial valueUid for the second input).

When partial-evaluation machinery is included in the discussion, the explanation is complicated

by the number of language levels involved. Consequently, inthis chapter we chose to base the

discussion on the simpler principle of semantic reinterpretation, which has benefits and drawbacks:

• The benefit is that the explanation is simpler, and could alsobe useful for direct hand imple-

mentation when a meta-system such asTSL is not available.

• The drawback is that in some of the sections it may appear thatmany steps perform rather

trivial transliteration of expressions from programming language PLi into expressions of the

corresponding logicL[PLi]. In part, this is an artifact of trying to present the method in an

easy-to-digest manner; in part, it mimics the behavior of a generating extension: copying

(or transliterating) the appropriate residual expressionis one of the principles of “writing a

generating extension by hand” [51, 123].

4.9 Conclusion

This chapter presents a way to obtain automatically mutually-consistent, correct-by-

construction implementations of symbolic primitives—in particular, quantifier-free, first-order-

logic formulas for (a) symbolic evaluation of a single command, (b)WLP with respect to a single

command, and (c) symbolic composition for a class of formulas that express state transforma-

tions. The approach presented in the chapter involvesgeneratingimplementations of each of the

primitives from a single specification of the subject language’s concrete semantics. The generated

implementations are guaranteed to be mutually consistent (modulo bugs in the implementation of

147

the program-generation implementation), and also to be consistent with an instruction-set emula-

tor (for concrete execution) that is generated from the samespecification of the subject language’s

concrete semantics.

In this work, the method used to generate such implementations is semantic reinterpretation,

a technique originally introduced by Mycroft and Jones [110, 144] as a method for formulating

abstract interpretations. In this work, we are not doing abstract interpretationper se(i.e., to over-

approximate the concrete semantics [73]), but we take two-fold advantage of their methodology:

we use two separate semantic reinterpretations—(i) reinterpretation of aprogramming language’s

meaning function(s), and (ii) reinterpretation of alogic’s meaning function(s). The two kinds of

reinterpretations define the key primitivesI,F , andU from which the desired implementations of

symbolic evaluation,WLP , and symbolic composition are obtained.

As far as we are aware, the application of semantic reinterpretation to a logic is a new idea. A

related innovation on which our results rest was to define a particular form of state-transformation

formula (structure-update expressions) as a first-class notion in the logic. By this device, such

formulas could (i) serve as a replacement domain in the reinterpretations of both the program-

ming language’s meaning functions and the logic’s meaning functions, and (ii) be reinterpreted

themselves.

We applied our technique to both the x86 and PowerPC instruction sets, using theTSL system

as our implementation platform.§4.7 discusses the substantial leverage that we obtained using

TSL’s facilities for semantic reinterpretation: from 6,580 lines ofTSL, 101,788 lines of C++ were

produced that implementI, I,F , T , FE, andU for x86 and PowerPC. Moreover, for each instruc-

tion set all six primitives are guaranteed to be mutually consistent (modulo bugs in the implemen-

tation ofTSL and in the implementations of the primitives for the two kinds of reinterpretations).

As proposed by Mycroft and Jones [110, 144], in a semantic reinterpretation one refactors the

specification of a language’s concrete semantics into a suitable form by introducing appropriate

combinators that are subsequently redefined. While this style of semantic reinterpretation is sup-

ported by theTSL system, ordinarily one never has to be concerned with refactoring a specification.

Instead, each reinterpretation is performed at the meta-level; that is, each reinterpretation involves

148

redefining the approximately 40 primitives of theTSL meta-language.7 In ourTSL-based semantic

reinterpretations of specifications of the concrete semantics of x86 and PowerPC, we did not have

to refactor the specification to introduce any special combinators.

Finally, we conducted an experiment that used the generatedprimitives on x86 code, compiled

under Visual Studio 2005 from C++ STL source code, to gain insight on the question “What is

the cost of using exact symbolic-evaluation primitives instead of unfaithful ones in a system for

directed test generation?” The experiment showed that using exact symbolic-analysis primitives,

as opposed to ones that approximate the real semantics, is slower by a factor of 1.07, but is dra-

matically more accurate.

7Each of the numeric primitives comes in four bit-widths: 8-bit, 16-bit, 32-bit, and 64-bit. All four must be reinter-
preted; however, generally the reinterpretation of a givenfamily of four such numeric primitives can be parameterized
on bit-width, so we only count each family as a single primitive.

149

Chapter 5

Case Studies

This chapter discusses two applications that use theTSL-generated analysis components. Both

applications use logic-based search procedures to establish properties of machine-code programs.

Compared to work by others on logic-based search proceduresfor machine code, what distin-

guishes the work described in this chapter is that both applications aregoal-directed. That is, they

both have a target property or program point of interest, andthis target is used to focus the search.

More discussion of related work is found in§5.1.5 and§5.2.9.

§5.1 presents the algorithms used inMCVETO (Machine-Code VErification TOol), a tool

to check whether a stripped machine-code program satisfies asafety property. The verification

problem thatMCVETO addresses is challenging because it cannot assume that it has access to

(i) certain structures commonly relied on by source-code verification tools, such as control-flow

graphs and call-graphs, and (ii) meta-data, such as information about variables, types, and aliasing.

It cannot even rely on out-of-scope local variables and return addresses being protected from the

program’s actions. What distinguishesMCVETO from other work on software model checking

is that it shows how verification of machine code can be performed, while avoiding conventional

techniques that would be unsound if applied at the machine-code level.

Botnets are a major threat to the security of computer systems and the Internet. An increasing

number of individual Internet sites have been compromised by attacks from across the world to be-

come part of various kinds of malicious botnets.§5.2 presents a tool, calledBCE, for automatically

extracting botnet-command information from bot executables.BCE helps analyzing the behavior

of bots by providing proper input commands that trigger malicious behaviors.

150

Both applications make use ofTSL-generated analysis components, including concrete execu-

tion as well as the symbolic-analysis primitives presentedin Chapter 4.MCVETO also uses several

TSL-generated static-analysis components, includingARA (§3.3.2) andASI (§3.3.4).

5.1 MCVETO

As discussed in Chapter 2, machine-code analysis presents many new challenges. For instance,

at the machine-code level, memory is one large byte-addressable array, and an analyzer must han-

dle computed—and possibly non-aligned—addresses. It is crucial to track array accesses and

updates accurately; however, the task is complicated by thefact that arithmetic and dereferencing

operations are both pervasive and inextricably intermingled. For instance, if local variablex is at

offset –12 from the activation record’s frame pointer (registerebp), an access onx would be turned

into an operand [ebp–12]. Evaluating the operand first involves pointer arithmetic(“ebp–12”) and

then dereferencing the computed address (“[·]”). On the other hand, machine-code analysis also

offers new opportunities, in particular, the opportunity to track low-level, platform-specific details,

such as memory-layout effects. Programmers are typically unaware of such details; however, they

are often the source of exploitable security vulnerabilities.

The algorithms used in software model checkers that work on source code [47, 49, 102] would

be be unsound if applied to machine code. For instance, before starting the verification process

proper,SLAM [47] andBLAST [102] perform flow-insensitive (and possibly field-sensitive) points-

to analysis. However, such analyses often make unsound assumptions, such as assuming that the

result of an arithmetic operation on a pointer always remains inside the pointer’s original target.

Such an approach assumes—without checking—that the program is ANSI C compliant, and hence

causes the model checker to ignore behaviors that are allowed by some compilers (e.g., arithmetic

is performed on pointers that are subsequently used for indirect function calls; pointers move off

the ends of structs or arrays, and are subsequently dereferenced). A program can use such features

for good reasons—e.g., as a way for a C program to simulate subclassing [172]—but they can also

be a source of bugs and security vulnerabilities.

151

In this work, we developed a model checker for machine code, called MCVETO (Machine-

CodeVErification TOol).1 MCVETO usesdirected proof generation(DPG) [98] to find either an

input that causes a (bad) target state to be reached, or a proof that the bad state cannot be reached.

(The third possibility is thatMCVETO fails to terminate.)

What distinguishes the work onMCVETO is that it addresses a large number of issues that have

been ignored in previous work on software model checking, and would cause previous techniques

to be unsound if applied to machine code. The contributions of our work can be summarized as

follows:

1. We show how to verify safety properties of machine code while avoiding a host of assump-

tions that are unsound in general, and that would be inappropriate in the machine-code con-

text, such as reliance on symbol-table, debugging, or type information, and preprocessing

steps for (a) building a precomputed, fixed, interprocedural control-flow graph (ICFG), or

(b) performing points-to/alias analysis.

2. MCVETO builds its (sound) abstraction of the program’s state spaceon-the-fly, performing

disassembly one instruction at a time during state-space exploration, without static knowl-

edge of the split between code vs. data. (It does not have to beprepared to disassemble

collectionsof nested branches, loops, procedures, or the whole programall at once, which is

what can confuse conventional disassemblers [128].)

The initial abstraction has only two abstract states, defined by the predicates “PC= target”

and “PC 6= target” (where “PC” denotes the program counter). The abstractionis gradually

refined as more of the program is exercised (§5.1.2). MCVETO can analyze programs with

instruction aliasing2 because it builds its abstraction of the program’s state space entirely on-

the-fly. Moreover,MCVETO is capable of verifying (or detecting flaws in) self-modifying

code (SMC). With SMC there is no fixed association between an address and the instruction

1MCVETO was carried out in collaboration primarily with A. Thakur, A. Lal, and T. Reps, along with A. Burton,
D. Driscoll, M. Elder, and T. Andersen. My contribution to the work consisted of theTSL-generated anaysis com-
ponents for concrete execution and symbolic execution, discussed in Chapter 4, along with the development of the
techniques described in§5.1.2.1 and§5.1.2.2.

2Programs written in instruction sets with varying-length instructions, such as x86, can have “hidden” instructions
starting at positions that are out of registration with the instruction boundaries of a given reading of an instruction
stream [128].

152

at that address, but this is handled automatically byMCVETO’s mechanisms for abstraction

refinement. To the best of our knowledge,MCVETO is the first model checker to handle

SMC.

3. MCVETO introducestrace generalization, a new technique for eliminatingfamiliesof infea-

sible traces. Compared to prior techniques that also have this ability [50, 101], our technique

involvesno calls on an SMT solver, andavoids the potentially expensive step of automaton

complementation.

4. MCVETO introduces a new approach to performing DPG (Directed ProofGeneration) on

multi-procedure programs. Godefroid et al. [96] presenteda declarative framework that cod-

ifies the mechanisms used for DPG inSYNERGY [98], DASH [49], andSMASH [96] (which

are all instances of the framework). In their framework,interprocedural DPG is performed

by invoking intraprocedural DPG as a subroutine. In contrast,MCVETO’s algorithm lies

outside of that framework: the interprocedural component of MCVETO uses (and refines) an

infinite graph, which is finitely represented and queried bysymbolic operations.

5. We developed a language-independent algorithm to identify the aliasing condition relevant

to a property in a given state (§5.1.2.1). Unlike previous techniques [49], it applies when

static names for variables/objects are unavailable.

6. We developed several techniques to enhance the methods used during DPG to elaborate the

abstraction in use. Although these techniques are speculative, soundness is retainedat all

times.

Items 1 and 2 address execution details that are typically ignored (unsoundly) by source-code

analyzers. Item 2 is specific to machine-code analysis. 3, 4,5, and 6 are applicable to both source-

code and machine-code analysis.MCVETO is not restricted to an impoverished language. In

particular, it handles pointers and bit-vector arithmetic.

We implementedMCVETO in a language-independent way by using theTSL system to im-

plement the analysis components needed byMCVETO—i.e., (a) an emulator for running tests,

(b) a primitive for performing symbolic execution, and (c) aprimitive for the pre-image operator

(Pre). In addition, we developed language-independent approaches to the issues discussed above

153

(e.g., item 5). As discussed in Chapter 3, theTSL system acts as a “YACC-like” tool for creating

versions ofMCVETO for different instruction sets: given an instruction-set description, a version

of MCVETO is generated automatically. We created two such instantiations of MCVETO from

descriptions of the Intel x86 and PowerPC instruction sets.

The remainder of this section is organized as follows:§5.1.1 contains a brief review of DPG.

§5.1.2 explains the methods used to achieve the contributions of MCVETO. §5.1.3 describes how

different instances ofMCVETO are generated automatically by using theTSL system. §5.1.4

presents experimental results.§5.1.5 discusses related work.§5.1.6 concludes.

5.1.1 Background on Directed Proof Generation (DPG)

Given a programP and a particular control locationtargetin P , DPG returns either an input for

which execution leads totargetor a proof thattarget is unreachable (or DPG does not terminate).

Two approximations ofP ’s state space are maintained:

• A setT of concrete traces, obtained by runningP with specific inputs.T underapproximates

P ’s state space.

• A graphG, called theabstract graph, obtained fromP via abstraction (and abstraction

refinement).G overapproximatesP ’s state space.

Nodes inG are labeled with formulas; edges are labeled with program statements or program

conditions. One node is thestart node(where execution begins); another node is thetarget node

(the goal to reach). Information to relate the under- and overapproximations is also maintained: a

concrete stateσ in a trace inT is called awitnessfor a noden in G if σ satisfies the formula that

labelsn.

If G has no path fromstart to target, then DPG has proved thattarget is unreachable, andG

serves as the proof. Otherwise, DPG locates afrontier: a triple(n, I,m), where(n,m) is an edge

on a path fromstart to targetsuch thatn has a witnessw butm does not, andI is the instruction

on (n,m). DPG either performs concrete execution (attempting to reach target) or refinesG by

splitting nodes and removing certain edges (which may provethat target is unreachable). Which

action to perform is determined using the basic step fromdirected test generation[94], which uses

154

n’ : � ∧ ¬�

k

n : �

m : �

k

n’’ : � ∧ �

I

⟹

I

m : �

♦♦♦♦ ♦♦♦♦

♦♦♦♦ ♦♦♦♦

Figure 5.1 The general refinement step across frontier(n, I,m). The presence of a witness is
indicated by a “�” inside of a node.

symbolic execution to try to find an input that allows execution to cross frontier(n, I,m). Sym-

bolic execution is performed over symbolic states, which have two components: apath constraint,

which represents a constraint on the input state, and asymbolic map, which represents the current

state in terms of input-state quantities. DPG performs symbolic execution along the path taken

during the concrete execution that produced witnessw for n; it then symbolically executesI, and

conjoins to the path constraint the formula obtained by evaluatingm’s predicateψ with respect to

the symbolic map. It calls an SMT solver to determine if the path constraint obtained in this way

is satisfiable. If so, the result is a satisfying assignment that is used to add a new execution trace to

T . If not, DPG refinesG by splitting noden into n′ andn′′, as shown in Fig. 5.1.

Refinement changesG to represent somenon-connectivityinformation: in particular,n′ is not

connected tom in the refined graph (see Fig. 5.1). Letψ be the formula that labelsm, c be the

concrete witness ofn, andSn be the symbolic state obtained from the symbolic execution up to

n. DPG chooses a formulaρ, called therefinement predicate, and splits noden into n′ andn′′

to distinguish the cases whenn is reached with a concrete state that satisfiesρ (n′′) and when it

is reached with a state that satisfies¬ρ (n′). The predicateρ is chosen such that (i) no state that

satisfies¬ρ can lead to a state that satisfiesψ after the execution ofI, and (ii) the symbolic state

Sn satisfies¬ρ. Condition (i) ensures that the edge fromn′ tom can be removed. Condition (ii)

prohibits extending the current path alongI (forcing the DPG search to explore different paths). It

also ensures thatc is a witness forn′ and not forn′′ (becausec satisfiesSn)—and thus the frontier

during the next iteration must be different.

155

5.1.2 MCVETO

In this section, we focus on explaining the language-independent algorithm that we developed

to identify the aliasing condition relevant to a property ina given state (§5.1.2.1), and the mecha-

nisms to discover candidate invariants from a trace, which are then incorporated into the abstract

graph (§5.1.2.2). The details of contributions 1, 2, 3, and 4 listed in the introduction to§5.1 can be

found in the full paper ([174, 175]).

5.1.2.1 A Language-Independent Approach to Aliasing Relevant to a Property

This section describes howMCVETO identifies—in a language-independent way suitable for

use with machine code—the aliasing condition relevant to a property in a given state (contribution

5 from the introduction to§5.1). Chapter 4 showed how to generate a pre-image primitivePre for

machine code; however, repeated application of Pre causes refinement predicates to explode. We

now present a language-independent algorithm for obtaining an aliasing conditionα that is suitable

for use in machine-code analysis. Fromα, one immediately obtains Preα. There are two challenges

to defining an appropriate notion of aliasing condition for use with machine code: (i)int-valued

and address-valued quantities are indistinguishable at runtime, and (ii) arithmetic on addresses is

used extensively.

Suppose that the frontier is(n, I,m), ψ is the formula onm, andSn is the symbolic state

obtained via symbolic execution of a concrete trace that reachesn. For source code, Beckman

et al. [49] identify aliasing conditionα by looking at the relationship, inSn, between the ad-

dresses written to byI and the ones used inψ. However, their algorithm for computingα is

language-dependent: their algorithm has the semantics of C implicitly encoded in its search for

“the addresses written to byI”. In contrast, as explained below, we developed an alternative,

language-independentapproach, both to identifyingα and computing Preα.

For the moment, to simplify the discussion, suppose that a concrete machine-code state is

represented using two mapsM : INT → INT andR : REG → INT. Map M represents

memory, and mapR represents the values of machine registers. (A more realistic definition of

memory is considered later in this section.) We use the standard theory of arrays to describe

156

(functional) updates and accesses on maps, e.g.,update(m, k, d) denotes the mapm with index

k updated with the valued, andaccess(m, k) is the value stored at indexk in m. (We use the

notationm(r) as a shorthand foraccess(m, r).) We also use the standard axiom from the the-

ory of arrays:(update(m, k1, d))(k2) = ite(k1 = k2, d,m(k2)), whereite is an if-then-elseterm.

Suppose thatI is “mov [eax],5” (which corresponds to*eax = 5 in source-code notation) and

thatψ is (M(R(ebp) − 8) + M(R(ebp) − 12) = 10).3 First, we symbolically executeI start-

ing from the identity symbolic stateSid = [M 7→ M,R 7→ R] to obtain the symbolic state

S ′ = [M 7→ update(M,R(eax), 5), R 7→ R]. Next, we evaluateψ underS ′—i.e., perform the

substitutionψ[M ← S ′(M), R← S ′(R)]. For instance, the termM(R(ebp)− 8), which denotes

the contents of memory at addressR(ebp)−8, evaluates to(update(M,R(eax), 5))(R(ebp)−8).

From the axiom for arrays, this simplifies toite(R(eax) = R(ebp)− 8, 5,M(R(ebp)− 8)). Thus,

the evaluation ofψ underS ′ yields

 ite(R(eax) = R(ebp)− 8, 5,M(R(ebp)− 8))

+ ite(R(eax) = R(ebp)− 12, 5,M(R(ebp)− 12))


 = 10 (5.1)

This formula equals Pre(I, ψ) as discussed in [125] and Chapter 4.

The process described above illustrates a general property: for any instructionI and formula

ψ, Pre(I, ψ) = ψ[M ← S ′(M), R ← S ′(R)], whereS ′ = SEJIKSid and SEJ·K denotes symbolic

execution [125].

The next steps are to identifyα and to create a simplified formulaψ′ that weakens Pre(I, ψ).

These are carried out simultaneously during a traversal of Pre(I, ψ) that makes use of the symbolic

stateSn at noden. We illustrate this on the example discussed above for a casein whichSn(R) =

[eax 7→ R(ebp) − 8] (i.e., continuing the scenario from footnote 3,eax holds &x). Because

the ite-terms in Eqn. (5.1) were generated from array accesses,ite-conditions represent possible

constituents of aliasing conditions. We initializeα to trueand traverse Eqn. (5.1). For each subterm

t of the formite(ϕ, t1, t2) whereϕ definitely holds in symbolic stateSn, t is simplified tot1 andϕ

is conjoined toα. If ϕ can never hold inSn, t is simplified tot2 and¬ϕ is conjoined toα. If ϕ can

sometimes hold and sometimes fail to hold inSn, t andα are left unchanged.
3In x86,ebp is the frame pointer, so if program variablex is at offset –8 andy is at offset –12, ψ corresponds to

x + y = 10.

157

In our example,R(eax) equalsR(ebp)− 8 in symbolic stateSn; hence, applying the process

described above to Eqn. (5.1) yields

ψ′ = (5 +M(R(ebp)− 12) = 10)

α = (R(eax) = R(ebp)− 8) ∧ (R(eax) 6= R(ebp)− 12)
(5.2)

The formulaα⇒ ψ′ is the desired refinement predicate Preα(I, ψ).

In practice, we found it beneficial to use an alternative approach, which is to perform the same

process of evaluating conditions ofite terms in Pre(I, ψ), but to use one of the concrete witness

statesWn of frontier noden in place of symbolic stateSn. The latter method is less expensive (it

uses formula-evaluation steps in place of SMT solver calls), but generates an aliasing condition

specific toWn rather than one that covers all concrete states described bySn.

Both approaches arelanguage-independentbecause they isolate where the instruction-set se-

mantics comes into play in Pre(I, ψ) to the computation ofS ′ = SEJIKSid; all remaining steps

involve only purely logical primitives.4 Although our algorithm computes Pre(I, ψ) explicitly, that

step alone does not cause an explosion in formula size; explosion is due torepeatedapplication of

Pre. In our approach, the formula obtained via Pre(I, ψ) is immediately simplified to create first

ψ′, and thenα⇒ ψ′.

Byte-Addressable Memory.We assumed above that the memory map has typeINT→ INT. When

memory is byte-addressable, the actual memory-map type isINT32→ INT8. This complicates

matters because accessing (updating) a32-bit quantity in memory translates into four contiguous

8-bit accesses (updates). For instance, a32-bit little-endian access can be expressed as follows:

access32 8 LE 32(m,a) = let v4 = 224 ∗ Int8To32ZE(m(a+ 3))

v3 = 216 ∗ Int8To32ZE(m(a+ 2))

v2 = 28 ∗ Int8To32ZE(m(a+ 1))

v1 = Int8To32ZE(m(a))

in (v4 | v3 | v2 | v1)

(5.3)

4A system for DPG needs the symbolic-execution primitive SEJIK anyway for other steps of state-space explo-
ration. Because an implementation of SEJIK can be generated from a description of the semantics of an instruction set
([125] and Chapter 4), an implementation of Preα(I, ψ) can be generated as well.

158

0

B

B

B

B

B

@

224 ∗ Int8To32ZE(ite(x + 3 = p + 3, 0, ite(x + 3 = p + 2, 0, ite(x + 3 = p + 1, 0, ite(x + 3 = p, 5, ∗(x + 3))))))

| 216 ∗ Int8To32ZE(ite(x + 2 = p + 3, 0, ite(x + 2 = p + 2, 0, ite(x + 2 = p + 1, 0, ite(x + 2 = p, 5, ∗(x + 2))))))

| 28 ∗ Int8To32ZE(ite(x + 1 = p + 3, 0, ite(x + 1 = p + 2, 0, ite(x + 1 = p + 1, 0, ite(x + 1 = p, 5, ∗(x + 1))))))

| Int8To32ZE(ite(x = p + 3, 0, ite(x = p + 2, 0, ite(x = p + 1, 0, ite(x = p, 5, ∗x)))))

1

C

C

C

C

C

A

+

0

B

B

B

B

B

@

224 ∗ Int8To32ZE(ite(y + 3 = p + 3, 0, ite(y + 3 = p + 2, 0, ite(y + 3 = p + 1, 0, ite(y + 3 = p, 5, ∗(y + 3))))))

| 216 ∗ Int8To32ZE(ite(y + 2 = p + 3, 0, ite(y + 2 = p + 2, 0, ite(y + 2 = p + 1, 0, ite(y + 2 = p, 5, ∗(y + 2))))))

| 28 ∗ Int8To32ZE(ite(y + 1 = p + 3, 0, ite(y + 1 = p + 2, 0, ite(y + 1 = p + 1, 0, ite(y + 1 = p,5, ∗(y + 1))))))

| Int8To32ZE(ite(y = p + 3, 0, ite(y = p + 2, 0, ite(y = p + 1, 0, ite(y = p, 5, ∗y)))))

1

C

C

C

C

C

A

= 10

Figure 5.2 The formula for Pre(I, ψ), whereψ is
update32 8 LE 32(M,R(ebp)− 8) + update32 8 LE 32(M,R(ebp)− 12) = 10, obtained by
evaluatingψ on the symbolic stateS ′ = [M 7→ update32 8 LE 32(M,R(eax), 5), R 7→ R]. For

brevity, the following notational shorthands are used in the formula:p = R(eax),
x = R(ebp)− 8, y = R(ebp)− 12, ∗x = M(R(ebp)− 8), ∗y = M(R(ebp)− 12), etc.

whereInt8To32ZEconverts anINT8 to an INT32 by padding the high-order bits with zeros, and

“ |” denotes bitwise-or.

Let update32 8 LE 32 denote the similar operation for updating a map of typeINT32→ INT8

under the little-endian storage convention. Note that when1 ≤ |k1 −INT32 k2| ≤ 3, we no longer

have the property

access32 8 LE 32(update32 8 LE 32(M, k1, d), k2) = access32 8 LE 32(M, k2).

and hence it is invalid to simplify formulas by the rule

access32 8 LE 32(update32 8 LE 32(M, k1, d), k2)

⇒ ite(k1 = k2, d, access32 8 LE 32(M, k2)).

However, the four single-byte accesses onm in Eqn. (5.3) (m(a),m(a+1),m(a+2), andm(a+3))

areaccessoperations for which it is valid to apply the standard axiom of arrays (i.e.,(m[k1 7→

d])(k2) = ite(k1 = k2, d,m(k2))).

Returning to the example discussed above, in whichR(eax) equalsR(ebp) − 8 in symbolic

stateSn, we perform the same steps as before. First, the symbolic execution ofI = mov [eax],5

starting from the identity symbolic stateSid = [M 7→M,R 7→ R] results in the symbolic state

S ′ = [M 7→ update32 8 LE 32(M,R(eax), 5), R 7→ R].

159

The formulaψ is now written as follows:

access32 8 LE 32(M,R(ebp)− 8) + access32 8 LE 32(M,R(ebp)− 12) = 10.

To obtain Pre(I, ψ), we evaluateψ underS ′, which yields the formula shown in Fig. 5.2.

The formula shown in Fig. 5.2 is the analog of Eqn. (5.1).

The step that uses symbolic stateSn to identify α and create a simplified formulaψ′ that

weakens Pre(I, ψ) is now applied to the formula shown in Fig. 5.2 and produces

ψ′ def
= 5 +




224 ∗ Int8To32ZE(∗(y + 3))

| 216 ∗ Int8To32ZE(∗(y + 2))

| 28 ∗ Int8To32ZE(∗(y + 1))

| Int8To32ZE(∗y)




= 10.

Theα that is the analog of Eqn. (5.2) is the conjunction of the disequalities collected from the

formula shown in Fig. 5.2:

α
def
= x+ 3 6= p+ 3 ∧ . . . x+ 3 6= p ∧ . . . x 6= p+ 3 ∧ . . . x 6= p

∧ y + 3 6= p+ 3 ∧ . . . y + 3 6= p ∧ . . . y 6= p+ 3 ∧ . . . y 6= p.

As before, the formulaα⇒ ψ′ is the desired refinement predicate Preα(I, ψ).

5.1.2.2 Speculative Trace Refinement

Motivated by the observation that DPG is able to avoid exhaustive loop unrolling if it discovers

the right loop invariant, we developed mechanisms to discover candidate invariants from a trace,5

which are then incorporated into the abstract graph. Although they are onlycandidateinvariants,

they are introduced into the abstract graph in the hope that they are invariants for the full program.

The basic idea is to apply dataflow analysis to a graph obtained from the traceGπ. The recovery of

invariants fromGπ is similar in spirit to the computation of invariants from traces in Daikon [84],

but inMCVETO they are computedex post factoby dataflow analysis on the trace. While any kind

of dataflow analysis could be used in this fashion,MCVETO currently uses two analyses:

5The trace isfoldedby grouping together all nodes with the same effective address, and augmenting it in a way
that overapproximates the portion of the program not explored by the trace (see [174, 175] for more details).

160

• Affine-relation analysis (§3.3.2 and [141]) is used to obtain linear equalities over registers

and a set of memory locations,V . V is computed by running aggregate structure identifica-

tion [156] onGπ to obtain a set of inferred memory variablesM , then selectingV ⊆ M as

the most frequently accessed locations inπ.

• An analysis based on strided-interval arithmetic (§3.3.4 and [160]) is used to discover range

and congruence constraints on the values of individual registers and memory locations.

The candidate invariants are used to create predicates for the nodes ofGπ. Because an analysis

may not account for the full effects of indirect memory references on the inferred variables, to

incorporate a discovered candidate invariantϕ for noden into Gπ safely, we splitn on ϕ and

¬ϕ. Again we have two overapproximations:Gπ, from the trace, augmented with the candidate

invariants, and the original abstract graphG. To incorporate the candidate invariants intoG, we

performG := G ∩ Gπ; the∩ operation labels a product state〈q1, q2〉 with the conjunction of the

predicates on statesq1 of G andq2 of Gπ.

5.1.3 Implementation

The MCVETO implementation incorporates all of the techniques described in §5.1.2. The

implementation uses only language-independent techniques; consequently,MCVETO can be easily

retargeted to different languages. The main components ofMCVETO are language-independent in

two different dimensions:

1. TheMCVETO DPG driver is structured so that one only needs to provide implementations of

primitives for performing concrete and symbolic executionof a language’s constructs, plus a

handful of other primitives (e.g., Preα). Consequently, this component can be used for both

source-level languages and machine-code languages.

2. For machine-code languages, we used two tools thatgeneratethe required implementations

of the primitives for concrete and symbolic execution from descriptions of the syntax and

concrete operational semantics of an instruction set. The abstract syntax and concrete seman-

tics are specified usingTSL. Translation of binary-encoded instructions to abstract syntax

161

trees is specified using a tool calledISAL (InstructionSetArchitectureLanguage).6 The rela-

tionship betweenISAL andTSL is similar to the relationship between Flex and Bison—i.e.,a

Flex-generated lexer passes tokens to a Bison-generated parser. In our case, theTSL-defined

abstract syntax serves as the formalism for communicating values—namely, instructions’

abstract syntax trees—between the two tools.

In addition, we developed language-independent solutionsto each of the issues inMCVETO, such

as identifying the aliasing condition relevant to a specificproperty in a given state (§5.1.2.1). Con-

sequently, our implementation acts as a “YACC-like” tool for creating versions ofMCVETO for

different languages: given a description of languageL, a version ofMCVETO for L is generated

automatically. We created two specific instantiations ofMCVETO from descriptions of the Intel

x86 and PowerPC instruction sets. To perform symbolic queries on the conceptually-infinite ab-

stract graph (see [174, 175] for details), the implementation uses OpenFst [33] (for transducers)

and WALi [114] (for WPDSs).

5.1.4 Experiments

Our experiments (see Fig. 5.15) were run on a single core of a single-processor quad-core

3.0 GHz Xeon computer running Windows XP, configured so that auser process has 4 GB of

memory. They were designed to test various aspects of a DPG algorithm and to handle various

intricacies that arise in machine code (some of which are notvisible in source code). We compiled

the programs with Visual Studio 8.0, and ranMCVETO on the resulting object files (without using

symbol-table information).7

The examplesex5, ex6, andex8 are from the NECLA Static Analysis Benchmarks.8 The

examplesbarber, berkeley, cars, efm are multi-procedure versions of the larger examples on

whichSYNERGY [98] was tested. (SYNERGY was tested using single-procedure versions only.9)

6ISAL also handles other kinds of concrete syntactic issues, including (a)encoding(abstract syntax trees to binary-
encoded instructions), (b)parsing assembly(assembly code to abstract syntax trees), and (c)assembly pretty-printing
(abstract syntax trees to assembly code).

7The examples are available atwww.cs.wisc.edu/wpis/examples/McVeto.
8www.nec-labs.com/research/system/systems SAV-website/benchmarks.php
9www.cse.iitb.ac.in/∼bhargav/synergy

162

Program MCVETO performance (x86)
Name Outcome #Instrs time

blast2/blast2 timeout 326 **
fib/fib–REACH-0 timeout 287 **
fib/fib–REACH-1 counterex. 287 0.07
slam1/slam1 proof 290 61.85
smc1/smc1–REACH-0* proof 21 959
smc1/smc1–REACH-1* counterex. 21 0.016
ex5/ex counterex. 270 0.18
doubleloopdep/count–COUNT-5 counterex. 252 1.09
doubleloopdep/count–COUNT-6 counterex. 252 1.08
doubleloopdep/count–COUNT-7 counterex. 252 1.21
doubleloopdep/count–COUNT-8 counterex. 252 1.51
doubleloopdep/count–COUNT-9 counterex. 252 2.82
inter.synergy/barber timeout 454 2.02
inter.synergy/berkeley counterex. 305 **
inter.synergy/cars proof 378 5.13
inter.synergy/efm timeout 403 **
share/share–CASE-0 proof 262 93.95
stress/diamonds–SHORT proof 257 0.27
cert/underflow counterex. 323 0.52
instraliasing/instraliasing–REACH-0 proof 46 15.0
instraliasing/instraliasing–REACH-1counterex. 46 5.86
longjmp/jmp AE viol. 74 0.015
overview0/overview proof 49 54.9
small staticbench/ex5 proof 251 0.13
small staticbench/ex6 proof 259 1.93
small staticbench/ex8 proof 297 4.6
verisec-gxine/simpbad counterex. 1067 0.094
verisec-gxine/simpok proof 1068 **
clobberret addr/clobber–CASE-4 AE viol. 43 2.13
clobberret addr/clobber–CASE-8 AE viol. 35 0.625
clobberret addr/clobber–CASE-9 proof 35 1.44

Figure 5.3 MCVETO experiments. The columns show whetherMCVETO returned a proof,
counterexample, or an AE violation (Outcome); the number ofinstructions (#Instrs); the number

of concrete executions (CE); the number of symbolic executions (SE), which also equals the
number of calls to theYICES solver; the number of refinements (Ref), which also equals the
number of Preα computations; and the total time (in seconds). *SMC test case. **Exceeded

twenty-minute time limit.

Instraliasing illustrates the ability to handle instruction aliasing. (The instruction count for this

example was obtained via static disassembly, and hence is only approximate.)Smc1 illustrates the

ability of MCVETO to handle self-modifying code.Underflow is taken from a DHS tutorial on

security vulnerabilities. It illustrates astrncpy vulnerability.

163

The examples are small, but challenging. They demonstrateMCVETO’s ability to reason au-

tomatically about low-level details of machine code using asequence of sound abstractions. The

question of whether the cost of soundness is inherent, or whether there is some way that the well-

behavedness of (most) code could be exploited to make the analysis scale better is left for future

research.

5.1.5 Related Work

Machine-Code Analyzers Targeted at Finding Vulnerabilities. A substantial amount of work

exists on techniques to detect security vulnerabilities byanalyzing source code for a variety of

languages [129, 180, 185]. Less work exists on vulnerability detection for machine code. Kruegel

et al. [118] developed a system for automating mimicry attacks; it uses symbolic execution of

machine code to discover attacks that can give up and regain execution control by modifying the

contents of the data, heap, or stack so that the application is forced to return control to injected

attack code at some point after the execution of a system call. Cova et al. [75] used that platform

to detect security vulnerabilities in x86 executables via symbolic execution.

Prior work exists on directedtestgeneration for machine code [55, 95]. Directed test generation

combines concrete execution and symbolic execution to find inputs that increase test coverage. An

SMT solver is used to obtain inputs that force previously unexplored branch directions to be taken.

In contrast,MCVETO implements directedproof generation for machine code. Unlike directed-

test-generation tools,MCVETO is goal-directed, and works by trying to refute the claim “nopath

exists that connects program entry to a given goal state”.

Machine-Code Model Checkers.SYNERGY applies to an x86 executable for a “single-procedure

C program with only [int-valued] variables” [98] (i.e., no pointers). It uses debugging information

to obtain information about variables and types, and uses Vulcan [173] to obtain a CFG. It uses

integer arithmetic—not bit-vector arithmetic—in its solver. Quoting A. Nori, “[[98] handles] the

complexities of binaries via its front-end Vulcan andnot via its property-checking engine” [150].

In contrast,MCVETO addresses the challenges of checking properties of stripped executables ar-

ticulated in Chapter 2.

164

AIR (“Assembly Iterative Refinement”) [61] is a model checker for PowerPC.AIR decompiles

an assembly program to C, and then checks if the resulting C program satisfies the desired property

by applyingCOPPER [60], a predicate-abstraction-based model checker for C source code. They

state that the choice ofCOPPER is not essential, and that any other C model checker, such as

SLAM [47] or BLAST [102] would be satisfactory. However, the C programs that result from their

translation step use pointer arithmetic and pointer dereferencing, whereas many C model checkers,

includingSLAM andBLAST, make unsound assumptions about pointer arithmetic.

[MC]SQUARE [165] is a model checker for microcontroller assembly code.It uses explicit-

state model-checking techniques (combined with a degree ofabstraction) to check CTL properties.

Our group developed two prior machine-code model checkers,CodeSurfer/x86 [44] and

DDA/x86 [43]. Neither system uses either underapproximation or symbolic execution. For over-

approximation, both use numeric static analysis and a different form of abstraction refinement than

the one used inMCVETO.

Self-Modifying Code. The work onMCVETO addresses a problem that has been almost entirely

ignored by the PL research community. There is a paper on SMC by Gerth [90], and a recent paper

by Cai et al. [59]. However, both of the papers concern proof systems for reasoning about SMC.

In contrast,MCVETO can verify (or detect flaws in) SMC automatically.

As far as we know,MCVETO is the first model checker to address verifying (or detectingflaws

in) SMC.

5.1.6 Conclusion

MCVETO resolves many issues that have been unsoundly ignored in previous work on soft-

ware model checking.MCVETO addresses the challenge of establishing properties of the machine

code that actually executes, and thus provides one approachto checking the effects of compilation

and optimization on correctness. The contributions of the work described in§5.1.2 lie in the in-

sights that went into defining the innovations in dynamic andsymbolic analysis used inMCVETO:

(i) sound disassembly and sound construction of an overapproximation (even in the presence of

instruction aliasing and self-modifying code) (see [174] for the details), (ii) a new method to

165

eliminate families of infeasible traces (see [174] for the details), (iii) a method to speculatively,

but soundly, elaborate the abstraction in use (§5.1.2.2), (iv) new symbolic methods to query the

(conceptually infinite) abstract graph (see [174] for the details), and (v) a language-independent

approach to Preα (§5.1.2.1). Not only are our techniques language-independent, the implementa-

tion is parameterized by specifications of an instruction set’s semantics. By this means,MCVETO

has been instantiated for both x86 and PowerPC.

5.2 BCE

As discussed in§1.5.4, an increasing number of individual Internet sites have been compro-

mised by attacks from across the world to become part of various kinds of malicious botnets. The

Internet security research community has made significant efforts to identify botnets, to collect

data on their activities, and to develop techniques for detection, mitigation, and disruption.

We have developed a tool calledBCE (Botnet-Command Extractor) for extracting botnet-

command information from bot executables.BCE aims to provide useful information from anal-

ysis of bot executables by automatically extracting properinputs that trigger malicious behavior.

Applications of the information recovered include observing and analyzing malicious behaviors,

as well as identifying and mitigating botnets.

A typical way to analyze the behavior of a bot is to run the executable and observe its actions.

To carry this out, however, one needs proper inputs to trigger malicious behaviors. Some widely-

known commands are often used for this purpose. However, attackers can easily change their

commands to evade such dynamic analysis. Also, it is a hard problem to obtain such inputs by

manually stepping through the executable.BCE automates the extraction of information about

botnet commands and the arguments to commands.

The work described in the section makes the following contributions:

1. BCE automatically extracts botnet-command information from bot executables, without

source code or symbol-table/debugging information. The extracted information includes

(a) constant command strings that trigger API-level behaviors, (b) relationships, including

type relationships, between the input command string and the actual parameters of an API

166

[1] ...

[2] else if(strcmp(cmd,‘‘:!p’’)==0) {

[3] // (1)

[4] }

[5] else if(strcmp(cmd,‘‘:!p2’’)==0) {

[6] // (2)

[7] }

[8] else if(strcmp(cmd,‘‘:!ppp’’)==0) {

[9] // (3)

[10]}

[1] ...

[2] else if(*cmd++ == ‘:’

[3] && *cmd++ == ‘!’

[4] && *cmd++ == ‘p’) {

[5] if(*cmd == 0)

[6] // (1)

[7] else if(*cmd == ‘2’)

[8] // (2)

[9] else if(*cmd++ == ‘p’

[10] && *cmd++ == ‘p’)

[11] // (3)

[12]}

[1] procedure foo

[2] . push offset aP1; ‘‘:!p’’

[3] . lea eax, [ebp+arg 0]

[4] . push eax

[5] . call strcmp

[6] . add esp, 0Ch

[7] . or eax, eax

[8] . jnz short loc 402210

[9] // (1)

[10]. push offset aP1; ‘‘:!p2’’

[11]. lea eax, [ebp+arg 0]

[12]. push eax

[13]. call strcmp

[14]. add esp, 0Ch

[15]. or eax, eax

[16]. jnz short loc 402210

[17]. ... // (2)

[18]. push offset aP1; ‘‘:!ppp’’

[19]. lea eax, [ebp+arg 0]

[20]. push eax

[21]. call strcmp

[22]. add esp, 0Ch

[23]. or eax, eax

[24]. jnz short loc 402210

[25]. ... // (3)

Figure 5.4 (a) (top left) A snippet of the EvilBot source code, (b) (bottom left) alternative source code,
(c) (right) the assembly code of (a).

call, and (c) constraints on the actual parameters of an API call. The information obtained

via BCE can be used to build up proper input commands that trigger API-level behaviors.

2. BCE is able to provide a specification of the API-level behaviorsof a bot program without

running the bot. Along with the input-command strings extracted from a bot program,BCE

also provides a sequence of API calls controlled by each command, which can help the user

understand the API-level behavior.

167

3. BCE is not based on signatures. Some recent approaches to findingout botnet commands

are based on pattern-matching techniques. Many bot programs use standard string-library

functions to process the input command string, as shown in Fig. 5.4(a). The assembly code

of Fig. 5.4(a) obtained using the IDAPro disassembler is shown in Fig. 5.4(c). One can

find a pattern in the assembly code: there are twopush instructions, one of which is for a

constant string that IDApro readily identifies, followed bya call tostrcmp. However, such a

technique is ad hoc and can be easily evaded, e.g., by changing the code in Fig. 5.4(a) to use

byte-by-byte comparison instead of using standard libraryfunctions, as shown in Fig. 5.4(b).

4. BCE uses directed test generation [94], enhanced with a new search technique that uses

control-dependence information [86] to direct the search.Our experiments show that the

method provides higher coverage of the parts of the program relevant to identifying bot

commands, as well as lower overall execution time than the standard program exploration

that does not use control-dependence information.

5. We performed experiments with four real bot programs. Ourpreliminary results show that

BCE is able to effectively extract bot-command information.

Organization. The remainder of the section is organized as follows:§5.2.1 discusses what kind of

informationBCE extracts, and how one can make use of the information to trigger potentially ma-

licious behaviors from a bot.§5.2.2 presents background on directed test generation [94]. §5.2.3

presents the enhanced techniques for exploring program paths that we developed for use inBCE.

§5.2.4 describes the use of nondeterminism inBCE, which is used for writing “harness” code

to model possible client environments, possible inputs, and possible return values from library

functions or system calls.§5.2.5 discusses additional information thatBCE recovers, which com-

bines the recovered information about constraints on inputs with type information for the target

API calls.§5.2.6 describes how a language-independentBCE implementation was created.§5.2.7

presents experimental results.§5.2.8 discusses the limitations ofBCE. §5.2.9 discusses related

work. §5.2.10 concludes.

168

5.2.1 Botnet-Command Extractor (BCE)

In this section, we first discuss what informationBCE relies on to extract botnet commands.

We then summarize the kind of information thatBCE provides, and how one can make use of such

information to generate proper input commands.

5.2.1.1 WhatBCE Relies On

1. API prototypes:BCE relies on information about function prototypes of API functions (system

calls). For example, the prototype ofShellExecuteis as follows:

HINSTANCE ShellExecute(

HWND hwnd,

LPCTSTR lpOperation,

LPCTSTR lpFile,

LPCTSTR lpParameters,

LPCTSTR lpDirectory,

INT nShowCmd

);

lpDirectory: [in] A pointer to a null-terminated

string that specifies the default (working)

directory for the action.

The function prototypes are used to construct reasonable input commands given the com-

mand specification extracted byBCE.

2. Control-Dependence Graph:BCE makes use of the control-dependence graph for a bot binary

to optimize its state-space-exploration algorithm. We discuss the use of control dependences

in more detail in§5.2.3.

169

(a) [1] cmd ← char* for command string

[2] token[] ← tokenization of cmd

[3]

[4] if (strcmp(token[0], ‘‘hello’’) == 0) {

[5] if (strcmp(token[1], ‘‘,’’) == 0) {

[6] if (strcmp(token[2], ‘‘world’’) == 0) {

[7] WinExec(‘‘login.exe’’);

[8] ShellExecute(..., token[3], ...);

[9] }

[10] }

[11]}

(b)
� � � � � � � � � � ��� �� �� �� �� �� �� �� �� �� �� �� �� ��

	
��
��� 	
��
��� 	
��
���

(c)
������� ������������

The fifth argument is from the
fourth token of the command,

and its type is LPCTSTR.

The argument is a
constant “login.exe”

(d) [1] void foo(char* cmd) {

[2] int n = atoi(cmd);

[3] if (n > 0) {

[4] if (n < 25) {

[5] ApiCall(n);

[6] }

[7] }

[8] }

� !"#$!%&'(

) *+$,-./ 0 123 & �.

4 *+$,-�/ 0 123

(e)

555

(f)

 !"#$!%&'(6 .

77 !"#$!%&'(8 9:

(g)

;; <;; =.;;

>;; =.;;

Figure 5.5 (a) A simple example program; (b) the command string constructed based on the information
obtained fromBCE; (c) a sequence of API calls obtained fromBCE; (d) another simple example;

(e) constant examples provided byBCE; (f) the symbolic expression obtained fromBCE for the argument
n; (g) the constraint obtained fromBCE.

170

5.2.1.2 WhatBCE Recovers and How to Use the Recovered Information

1. Constant command strings that control a bot.For example, there are three nested if-statements

in the code shown in Fig. 5.5(a). Two API calls are invoked when the three branch condi-

tions are satisfied. Suppose thatcmd has been tokenized into three null-terminated strings.

Fig. 5.5(b) is the command string constructed based on the information extracted byBCE.

This information is obtained from conditional branches where a portion of the command

string is compared against some constants, as the three strings (“hello”, “,”, and “world”) in

the example.

2. A sequence of API calls controlled by each command.Along with each command,BCE pro-

vides a sequence of API calls that are controlled by the command. For example, the code

executed when the command string shown in Fig. 5.5(b) is issued subsequently invokes

WinExecandShellExecute. This information can be directly used to get an idea of the API-

level behavior of a bot without actually executing it.

3. Information about the actual arguments of each API call.In addition to a sequence of API

calls, BCE provides information about the arguments to each API call, such as constant

values for an argument, symbolic expressions, and constraints on the symbolic expressions,

as shown in Fig. 5.5(e), (f), and (g), respectively.

• Constant arguments:In many cases, API calls take constant arguments that one

can statically extract from binaries. For example, the firstargument ofWinExecin

Fig. 5.5(a) is a constant string “login.exe”. In addition tothe sequence of API calls,

information about argument values enables one to get a better idea of the API-level

behavior of a bot without running it.

• Symbolic expressions in the input-state vocabulary:BCE also provides a symbolic

expression for each actual parameter of an API call, along with its type information,

as long as the argument is related to some part of the input command. For example,

ShellExecutein Fig. 5.5(a) takes the fourth token of the input command as its fifth

argument.BCE automatically extracts a symbolic expression that has one symbolic

171

term,token[3], along with its type LPCTSTR. The type information is obtained from

the prototype of the API call. The type information is used tocome up with a proper

input string. Given the information that the fourth token issupposed to be a null-

terminated string that specifies a working directory name, one can build up a complete

command string as follows:

"hello , world C:\temp"

Fig. 5.5(f) shows another example of a symbolic expression that BCE provides.

Fig. 5.5(f) is the symbolic expression obtained forn in Fig. 5.5(d). In Fig. 5.5(d), the

input command string is a numeral, which is converted into a number by callingatoi;

the number is then passed into an API call as an argument. The symbolic expression

is in the input vocabularyin that the symbols (cmd[0] andcmd[1]) that appear in

it represent individual byte values of the input command string. We discuss how the

symbolic expression is generated in§5.2.2.

• Constraints on symbolic expressions:BCE also provides constraints on the symbolic

expressions extracted for each actual parameter of an API call, if any. For example,

BCE extracts the constraint shown in Fig. 5.5(g) for the actual parametern to the API

call in Fig. 5.5(d).

This constraint is obtained from the two conditional branches that guard the API call.

BCE finds out the conditional branches on which the API call transitively depends. It

only collects branches whose predicates constrain the given symbolic expression.

The obtained constraints also play an important role for building up proper input

commands.BCE provides some concrete examples forn, as shown in Fig. 5.5(e): the

numeral strings “17” and “3” satisfy the two branch predicates (n > 0 andn < 25).

Therefore, these input strings cause the API call to be invoked, and thus can be directly

used to run the bot program. However, there are cases when theautomatically generated

concrete examples fail to trigger observable behavior of a bot. For example, suppose

the API in Fig. 5.5(d) is some API that takes an IP address and sets up a connection

to the server (e.g.,httpserver of SpyBot). Because concrete examples are randomly

172

selected to satisfy the constraints collected during symbolic execution, it is not likely

thatBCE finds out a reasonable IP address unless there are conditional branches where

it can extract proper constraints on the command. Therefore, in some cases, the user is

responsible for making use of the extracted constraints to construct reasonable inputs.

§5.2.5 discusses other kinds of information about the bot’s commands thatBCE provides—in par-

ticular, information that combines the recovered symbolicinformation about inputs with type in-

formation for the target API calls.

5.2.2 Background on Directed Test Generation and Overview of BCE

This section provides background ondirected test generation[94], which collects path con-

straints and uses them to explore new paths systematically.In applying directed test generation in

BCE to the problem of extracting bot commands, we developed new techniques to explore pro-

gram paths, which differ from conventional directed-test-generation techniques. We discuss our

enhanced search algorithms in§5.2.3.

One example of a directed test-generation tool isSAGE [95], which is a whitebox fuzz-testing

tool, an advance on fuzz testing based on random mutations.SAGE records an actual run of a pro-

gram under test, starting with a well-formed input, then symbolically evaluates the recorded trace

and generates constraints that capture how the program usesits inputs. The generated constraints

are then systematically modified and solved with a constraint solver to produce new inputs that

cause the program to follow different control-flow paths. The process is repeated with a coverage-

maximizing heuristic designed to find defects as fast as possible. Fig. 5.6 shows a simple example

taken from [95]. There are 5 values leading to the error out of28∗4 possible values for 4 bytes.

Therefore, the probability of hitting the error with randomtesting is about1/232. In contrast,

whitebox dynamic test generation can find the error in at most24 = 16 iterations (4 valid path

constraints are collected during the exploration process).

173

Algorithm 2 SingleBCE Iteration
Require: A concrete stateS.

Require: A trace treeT

1: Concretely execute the program with the concrete stateS.

2: LetCT be the concrete trace obtained from the concrete execution.

3: Symbolically execute the traceCT .

4: Let T ′ be the trace tree augmented by the symbolic execution.

5: if at least one API call is encountered in the concrete tracethen

6: Based on the symbolic state obtained in the symbolic execution, collect information about

the command tokens that appear in the arguments to each API call.

7: end if

8: repeat

9: Choose a new pathπ in the trace treeT .

10: Letϕ be the path-constraint formula obtained by conjoining the branch constraints alongπ.

11: until ϕ is satisfiable

12: LetM be the model obtained by calling the constraint solver withϕ.

13: Create the new concrete stateS ′ updated with the assignments from the modelM .

Alg. 2 shows the basic search step of theBCE algorithm. The outline of the algorithm is similar

to typical directed-test-generation techniques, which can be roughly summarized as repeatedly

applying the following three steps:10

BCE maintains a trace tree that is expanded during the process ofsymbolic execution. Each

node in a trace tree represents a different execution instance of a branch instruction in the program.

Each node can have two children, one of which represents the first branch node encountered along

the path through the true successor, the other of which is thefirst branch node along the path

through the false successor. The path from the root node to a leaf node represents the branch

10The first step (concrete execution) and the second step (symbolic execution) can be done simultaneously, which
is sometimes calledconcolic execution[167]. In concolic execution, concrete values from the concrete execution state
are sometimes used to simplify the symbolic states created during symbolic execution.

174

void top(char input[4]) {

int cnt = 0;

if (input[0] == ‘b’) cnt++;

if (input[1] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if (input[3] == ‘!’) cnt++;

if (cnt >= 4) abort();

}

Figure 5.6 An example for whitebox fuzz testing

instructions of a concrete trace. Each edge holds a branch constraint obtained from symbolic

execution. Each time a branch is symbolically executed (to follow the direction taken by a previous

concrete execution), the trace tree is extended appropriately.

5.2.3 Program Exploration using Control-Dependence Information

This section presents the enhanced techniques for exploring program paths that we developed

for use inBCE. MineSweeper [55] and the work of Moser et al. [139] have shown the potential

for carrying out better exploration in malware. Other tools, such asSAGE, have addressed the

problem of path explosion by introducing heuristics to improve coverage [95].SAGE uses so-

calledgenerational searchdesigned to partially explore the state spaces of large applications with

the aim of finding bugs faster. As in most of other directed-test-generation tools,SAGE aims to

improve test coverage. Unlike bug-finding tools or tools that aim to improve coverage, inBCE we

are interested ingoal-directed techniquesaimed at extracting bot commands.

The characteristics of how the bot code parses the transmitted commands and takes actions

depending on the parsed commands can be used to come up with better exploration strategies that

avoid possible explosion and obtain more complete specifications about the command structure.

We incorporated the following path-exploration strategies intoBCE:

175

• Choose as a candidate for the new path the branches that have apossibility of leading to API

calls.11

• Prune the search performed byBCE so that each path includes a limited number of API calls

if a candidate branch for extending the path is independent of the branches involved with the

API calls already found in the path.

The exploration strategies are based on the fact that our goal is to identify as many feasible input

commands as possible that lead to API calls of interest.

To identify branches that have a possibility of encountering API calls, we usecontrol-

dependence information. §5.2.3.1 discusses control-dependence information. In§5.2.3.2 and

§5.2.3.3, we present how control-dependence information isused inBCE.

5.2.3.1 Control Dependence

The control dependencerelation is one of the fundamental relationships among statements

or instructions used in compilers and optimizers. For instance, control-dependence information is

used in compilers to determine whether it is safe to reorder or parallelize statements [86]. A control

dependence holds when the decision made at a branchX controls whether another statement or

instructionY is executed.

Control dependence is defined in terms of the post-domination relation.

Definition 5.1 NodeZ post-dominatesnodeX iff Z 6= X and all paths fromX to the end of the

procedure includeZ. (Note that by this definition a node does not post-dominate itself.)

Definition 5.2 NodeY is directly control dependent on nodeX iff

1. there exists a pathπ: X →+ Y such thatY post-dominates every node inπ different from

X, and

2. X is not post-dominated byY .

We useC to denote the direct-control-dependence relation.

11BCE is parameterized to take a list of interesting API entry points of interest.

176

Control dependences can be broken down more finely into dependences on the true branch or

false branch of a branch-nodeX, as follows:

Definition 5.3 NodeY is directly control-dependent on edgeX →W iff

1. there exists a pathπ: W →∗ Y such thatY post-dominates every node inπ different from

X, and

2. X is not post-dominated byY .

We say that the relationCt(X, Y) holds whenX is a branch node andY is directly control depen-

dent onX ’s true branch.Cf is defined similarly.

Each branch node is associated with two sets of CFG nodes: oneconsists of the transitive

control-dependence successors for its true branch (denoted by CtC∗); the other consists of the

transitive control-dependence successors for its false branch (denoted byCfC∗).

CtC∗ : True control successors

CfC∗ : False control successors

For example, in Fig. 5.7, the statements(s1) and(s2) are transitively control dependent on

the true branch ofb1; statement(s3) is transitively control dependent on the false branch ofb1.

Statement(s4) is not transitively control dependent on any branch in this example. (Henceforth,

we will abbreviate “transitive control dependence” by “control dependence”.)

In the next section, we discuss a novel usage of control-dependence information inBCE.

5.2.3.2 Choosing Interesting Branches using Control-Dependence Informa-
tion

BCE uses control-dependence information (CDI) to annotate thetrace tree. If there is at least

one API call inCtC∗ (or CfC∗) of a branch node, the node is marked asNt (orNf). Any branch

that has a call to a function that contains at least oneNt orNf in CtC∗ (CfC∗) is also marked as

Nt (orNf). BCE only chooses one of the nodes marked withNt orNf as a candidate for the new

path. Fig. 5.8 compares an exploration strategy that uses control-dependence information (CDI)

to one that does not. The solid lines in the figures indicate the paths that have previously been

177

[1] if (a > 0) { // (b1)

[2] b = 1; // (s1)

[3] if (a < 25) { // (b2)

[4] c = 2; // (s2)

[5] }

[6] }

[7] else {

[8] d = 3; // (s3)

[9] }

[10]e = 4; // (s4)

Figure 5.7 An example to show control dependences.

(a) (b)

Figure 5.8 Two trace trees; (a) A trace tree without CDI; (b) a trace treewith CDI; the circles represent
branch nodes; the solid arrows represent possible paths to explore; the half-shaded circles represent nodes

labeled as eitherNf orNt.

explored. One chooses as the next candidate one of the nodes (on the solid lines in Fig. 5.8) that

has a solid edge to only one child. Such choices are marked with solid grey arrows. There are fewer

candidates to explore in Fig. 5.8(b) than in Fig. 5.8(a). Thedegree of the improvement by using

CDI depends on the percentage of nodes marked withNt or Nf . We discuss how the approach

works out with real bot programs in§5.2.7.

178

[1] char* p1; // input;

[2] char p2[] = "bot.execute";

[3] int v;

[4] char c1;

[5] do {

[6] c1 = *p1++;

[7] c2 = *p2++;

[8] v = (unsigned)c1 - (unsigned)c2;

[9] if(v ! = 0)

[10] break;

[11] } while(c1 ! = ’\0’);

[12]

[13] if(v == 0)

[14] APICall

Figure 5.9 An example in which it is necessary to choose an alternative candidate as a new path; the
source code ofstrcmp is inlined in this example.

Algorithm 3 ChooseNewPath
Require: A trace treeT

Ensure: Formulaϕ

1: Let Frontier be the branch node inT that is either marked asNf and does not have a false

child in T , or marked asNt and does not have a true child inT , and has the shortest path from

the root node.

2: Let ϕ be the formula conjoined with all the formulas associated with the branches on the path

from Frontier back to the root node.

3: Returnϕ

Algorithms. Alg. 3 and Alg. 4 describe the path-exploration algorithm ofBCE. In Alg. 3, BCE

chooses a noden in the trace tree marked asNf or Nt whose corresponding branch is not in the

trace tree.BCE then conjoins all the formulas of the branches on the path from n back to the root

node. Alg. 4 takes that formula and calls a constraint solverto obtain a model. If the formula for

179

Algorithm 4 GenerateNewConcreteState
Require: A trace treeT

Ensure: A concrete state CS′

1: ϕ = ChooseNewPath(T)

2: Call the constraint solver with the formulaϕ

3: if ϕ is feasiblethen

4: LetM be the model from the constraint solver

5: Let CS be a random concrete state

6: Let CS′ be CS updated with all the assignments inM

7: Return CS′

8: else

9: Let T ′ beT augmented with a dummy node at the previously selected node

10: GenerateNewConcreteState(T ′)

11: end if

the path thatBCE chose to explore is feasible, it generates a new concrete state that gets used in

the next round of exploration. Otherwise, it augments the trace tree so that the previously explored

path is never selected again, and calls itself recursively.

Fig. 5.10(a) is an example in which the number of possible execution paths is exponential

in the number of branches: each of the 5if-statements is independent of each other. For this

code fragment,BCE takes 8 iterations when it uses CDI,12 of Alg. 2 to identify 2 different paths

(one toward the API call inside the secondif-statement, and the other toward the fifth statement)

whereas without CDI it exhibits exponential behavior.

Indirect control-dependence. In some cases, it is possible that a candidate node marked asNt

or Nf has a branch predicate, the negation of which causes the pathconstraint to be infeasible,

that does not help program exploration. For example, in Fig.5.9,p1 points to the input character

array, andp2 points to the constant string"bot.execute". The branch on line 13 is marked asNt

12The body ofstrcmp includes some branches to compare an individual character of the first argument with one
constant character from the second argument. To get to the two API call sites,BCE needs several trials for each.

180

[1] if(strcmp(c[0], "aaa")==0) {

[2] n = atoi(c[5]);

[3] }

[4] if(strcmp(c[1], "bbb")==0) {

[5] APICall1(...);

[6] }

[7] if(strcmp(c[2], "ccc")==0) {

[8] n = atoi(c[5]);

[9] }

[10] if(strcmp(c[3], "ddd")==0) {

[11] n = atoi(c[5]);

[12] }

[13] if(strcmp(c[4], "eee")==0) {

[14] APICall2(...);

[15] }

[1] if(strcmp(c[0], "aaa")==0) {

[2] n = atoi(c[5]);

[3] }

[4] else if(strcmp(c[1], "bbb")==0) {

[5] APICall1(...);

[6] }

[7] else if(strcmp(c[2], "ccc")==0) {

[8] n = atoi(c[5]);

[9] }

[10] else if(strcmp(c[3], "ddd")==0) {

[11] n = atoi(c[5]);

[12] }

[13] else if(strcmp(c[4], "eee")==0) {

[14] APICall2(...);

[15] }

(a) (b)

Figure 5.10(a) An example with independentif-statements (and thus an exponential number of paths).
(b) An example more typical of bot code (with a linear number of paths).

because its true branch contains an API call. Suppose that inthe initial concrete state, the first input

byte pointed to byp1 is something different from’b’, and thus the loop in lines 5–11 terminates

at line 9 after one iteration with the conditionv != 0, and the false branch of line 13 is executed.

In the subsequent symbolic execution in which the characterarray pointed to byp1 is treated as a

list of symbols, the path constraint toward the true branch at line 13 is

(Sc1 − Cb 6= 0) ∧ (Sc1 − Cb = 0),

whereSc1 is a symbol that represents the first input byte, andCb is a constant symbol. This formula

is infeasible. In such cases, as a heuristic,BCE chooses branches prior to the candidate node on

the trace as an alternative candidate. In this example, the false branch at line 9 is chosen as a new

path so that from the path constraint

Sc1 − Cb = 0,

181

the constraint solver can provide a new test input in which the first input byte equals′b′.

When a situation occurs like the one described for line 13, a command-line flag controls how

many prior branches to try.

5.2.3.3 Pruning the Trace Tree using Control-Dependence Information

CDI helps to direct program exploration toward API call sites. However, even when some

candidate branches are excluded by CDI, there is still the possibility of combinatorial explosion.

For example, in Fig. 5.10(a), there are 24 paths in total thatinvoke the API call(s): there are 8

paths that invoke each call (and not the other) and an additional 8 that invoke both. When the

branches controlled by different commands are independentof each other, it means that multiple

commands can be combined to produce different sequences of API calls. In other words, if there

aren independentif-statements involved with API calls, the total number of possible paths that

invoke at least one API call is2n.

To avoid such combinatorial explosion, we limit the exploration performed byBCE so that

each path includes a limited number of API calls if a candidate branch for extending the path is

independent of the branches involved with the API calls already found in the path. In particular, the

path exploration inBCE only findsn paths when there aren independentif-statements involved

with API calls. The information obtained in this way is stilluseful to a user, although it shifts the

burden onto the user to identify the API-level behaviors of abot by trying various combinations of

then extracted commands. For the example in Fig. 5.10(a),BCE only extracts

“bbb” for the second token of cmd

“eee” for the fifth token of cmd

and the user can try running the bot with the three kinds of inputs—“bbb”, “eee”, and “bbb” +

“eee”—to observe possibly different behaviors.

The heuristic for avoiding combinatorial explosion is performed by pruning the trace tree dy-

namically. The following code illustrates what is involvedin dynamically pruning the trace tree.

182

?@AB

A@

?B

AC
DE

F
F
F

GGGG

F
F
FHI

IJ

KL: API call
encountered!

MN

MO

PQ

PR

SQ

PTSR

UUUU
VW

VW

XYZ[V\ X]Z[V^

_`

_a

bc: API call
encountered!

(a) (b) (c) (d)

Figure 5.11(a) A control-dependence graph; (b) a trace tree when sub-trees are pruned using
control-dependence graph (a); (c) another control-dependence graph; (d) the trace tree when sub-trees are

pruned using control-dependence graph (c).

Fig. 5.11(a) is the control-dependence graph of the code, and Fig. 5.11(b) is the corresponding

trace tree.

[1] if (strcmp(token[0], ‘‘hello’’) == 0) {

[2] APICall1(...)

[3] if (atoi(token[1]) > 0)

[4] ...

[5] ...

[6] }

Figure 5.12 A simple example for pruning.

An API call is invoked immediately in the true branch of line 1in Fig. 5.12. In this case,BCE

considers pruning the sub-tree ST of the trace tree startingfrom line 3. The control-dependence

information is used to determine whether the sub-tree ST is to be excluded from further exploration.

ST can be excluded if it does not include any node marked asNt orNf that is control dependent on

line 3 (see Fig. 5.11(b)). If there is at least one other API call in line 4, as shown in Fig. 5.11(c) and

(d), the true branch remains as a candidate to explore because the secondif-statement is control

dependent on the first one.

183

In practice, many bot programs are written as shown in Fig. 5.10(b), where eachif-statement

is dependent on other ones. However, even if when they are rewritten in the form of Fig. 5.10(a),

the pruning technique is effective in practice.

5.2.4 Using Nondeterminism to Sidestep System Calls

Many formalisms for symbolic analysis of programs support the use of nondeterminism, which

is useful for writing “harness code” (code that models the possible client environments from which

the code being analyzed might be called), as well as for modeling the possible inputs to a pro-

gram. A common approach is to provide a primitive that returns an arbitrary value of a given

type. Examples include theSdvMakeChoice primitive of SLAM [46] and thehavoc(x) primitive

of BoogiePL [48].

In some cases, a value returned from a system call or a Windows-API call is used in a branch

condition, as shown in Fig. 5.13. IfGetCurrentDirectoryreturns a value greater than0, APICall1

is invoked; otherwise,APICall2 is invoked.

[1] for (i = 0; i < 3; i+ +) {

[2] int n = GetCurrentDirectory(...);

[3] if (n > 0) {

[4] APICall1(...)

[5] }

[6] else {

[7] APICall2(...)

[8] }

[9] }

Figure 5.13 A simple example for modeling a system call.

In the current version ofBCE, concrete execution and symbolic execution do not go into system

calls and Windows API functions. Instead,BCE keeps a sequence of random numbers (RandSeq)

for concrete execution, and a sequence of symbols (RandSeq) for symbolic execution. During

184

concrete execution and symbolic execution, the successivevalues inRandSeqandRandSeq, re-

spectively, are used as the successive return values from API call sites. In the above example, there

are three calls toGetCurrentDirectoryin a trace because the loop is executed three times. Each of

the three return values comes from successive elements ofRandSeqandRandSeq. In this way, we

model the state of the operating system. Network inputs are modeled similarly.

5.2.5 Extracting Type Information

§5.2.1 briefly discussed how one can use the information extracted fromBCE to understand a

bot program and construct proper input commands. This section discusses some additional infor-

mation thatBCE provides to help users understand the recovered information about the botnet’s

commands, based on combining the recovered symbolic information about inputs with type infor-

mation for the target API calls.

Some extracted constant command strings can be directly used to trigger interesting API-level

behaviors of a bot program in cases where there are no additional arguments to a command. How-

ever, some of the information extracted about a command is inthe form ofsymbolic expressions.

A symbolic expression captures the semantics of all the instructions on a specific path from the

starting point to the API call site. In some cases, the extracted symbolic expression simply repre-

sents a sub-string of the command, whereas there are other cases when the command is converted

to another form. A typical action is to convert part of the input string, using the standard library

functionatoi, into a number that is passed to the API call. In other words, the input string holds

numerals, whereas the API call receives a number.

OnceBCE extracts a symbolic expression for an argument to an API call, it is the user’s respon-

sibility to choose a proper input with which to run the bot based on the symbolic expression. To

help in this step,BCE extracts type information for each symbolic expression using the algorithms

shown in Alg. 5 and Alg. 6.

Alg. 5 and Alg. 6 are pseudo-code for collecting type information for each extracted symbolic

expression. Our approach uses information about the function prototypes of API calls, as well as

a database of OS and network-related types. For example, Fig. 5.14(a) shows the prototype of

185

Algorithm 5 ExtractTypeInformation
Require: A function prototypeT

Require: A symbolic stateS

Require: The current stack addresssp

Ensure: Updated database

1: LetN be the number of arguments of function typeT

2: for i = 0 toN − 1 do

3: Let Ti be the type of theith argument of function typeT

4: addri = sp + i ∗ paramsize

5: CollectTypeInformation(Ti, addri)

6: end for

getaddrinfo and thestruct typesADDRINFO andsockaddr in. ADDRINFO is the type of the

third and fourth arguments ofgetaddrinfo, andsockaddr in is the type of one of the fields of

ADDRINFO.

For each API call site,BCE collects type information by callingExtractTypeInformation

(Alg. 5). Along with such information,ExtractTypeInformationtakes the symbolic state at the

API call site, and the symbolic expression that represents the current stack pointer. For example,

Fig. 5.14(b) is an example that includes a call to the system call getaddrinfo. The first token

of the command is converted to a numeric value throughatoi to be used assin zero for the

sockaddr in object, and the second token is used asai canonname for the ADDRINFO object.

BCE calls CollectTypeInformationwith the actual arguments—ADDRINFO* and the current stack

pointer—for the third argument ofgetaddrinfo.

For each argument to the API call, it calculates the address of the corresponding stack location,

and passes it toCollectTypeInformation(Alg. 6), along with the argument type from the function

prototype and the symbolic state.CollectTypeInformationis a recursive function that tries to asso-

ciate each type with the corresponding symbolic expressionon the stack. Depending on the type,

the actions are slightly different:

186

Algorithm 6 CollectTypeInformation
Require: A typeT

Require: An addressaddr

Require: A symbolic stateS

Ensure: Updated database

1: if T is a pointer typeT ′∗ then

2: Let symexprbe the symbolic expression obtained by looking upaddr in S.

3: Insert the mapping (symexpr, T ′∗) into the database

4: Let addr′ be the symbolic expression at addresssymexpr in S

5: if addr′ is a scalarthen

6: CollectTypeInformation(T ′, addr′)

7: end if

8: else ifT is a basetypethen

9: Let symexprbe the symbolic expression obtained by looking upaddr in S.

10: Insert the mapping (symexpr, T) into the database

11: else ifT is a structure typethen

12: for all Ti a field type ofT do

13: CollectTypeInformation(Ti, addr + offseti)

14: end for

15: end if

• In the case of a pointer typeT∗, BCE first adds the mapping (sym expr, T∗) to the database,

and looks up the corresponding value in the symbolic state, and recursively callsCollect-

TypeInformation, passing the value along with the typeT of the object referred to. For

example,CollectTypeInformation(ADDRINFO*, sp) recursively calls

CollectTypeInformation(ADDRINFO, S(sp)13)

• In the case of a basetypeT , BCE looks up the corresponding value (sym expr) in the sym-

bolic state, and it adds the mapping (sym expr, T). For example, the first token of the

13S(sp) denotes a lookup ofsp in symbolic stateS.

187

[1] int getaddrinfo (

[2] char* nodename;

[3] char* servname;

[4] ADDRINFO* hints;

[5] ADDRINFO* res;

[6] };

[7] struct {

[8]

[9] char* ai canonname;

[10] sockaddr in* ai addr;

[11]

[12]} ADDRINFO;

[13]struct {

[14]

[15] unsigned long sin zero;

[16]} sockaddr in;

[1] sockaddr in* s = ...; // malloc

[2] s->sin zero = atoi(cmd token[0]);

[3] ADDRINFO* a = ...; // malloc

[4] a->ai canonname = ...; // malloc

[5] strcpy(a->ai canonname, cmd token[1]);

[6] a->ai addr = s;

[7] getaddrinfo(..., ..., a, ...);

(a) (b)

Figure 5.14(a) The prototypes ofgetaddrinfo, ADDRINFO, andsockaddr in; (b) an example code
fragment.

command is used for the fieldsin zero of sockaddr in in Fig. 5.14, which is of base-type

unsigned long. In this case,BCE collects the information that the associated symbolic

expression is of typeunsigned long.

• In the case of a structure type, such asstruct or class, BCE iterates over the structure’s

fields, callingCollectTypeInformationwith each type and the address of the correspond-

ing field. For example,CollectTypeInformation(ADDRINFO, S(sp)) recursively callsCollect-

TypeInformation(char*, S(sp) + offset1), CollectTypeInformation(sockaddr in*, S(sp) +

offset2), and so forth, where offseti is the corresponding offset for each field.

188

5.2.6 Implementation

TheBCE implementation has been structured so that it can be retargeted to different languages

easily. The core components of the system are language-independent in two different dimensions:

1. TheBCE driver implements Alg. 2. It is structured so that one only needs to provide an

implementation of concrete execution and symbolic execution of a language. Consequently,

this component of the system can be used for source-level languages or for machine-code

languages.

2. For machine-code languages, we used theTSL-generated primitives for concrete exe-

cution and symbolic execution. TheTSL-generated symbolic-analysis primitives enable

to obtain accurate path constraints. Consequently, unlikeSAGE or other tools that use

approximation—e.g., all non-linear operations (such as multiplication, division, and bitwise

arithmetic) as well as symbolic dereferences of pointers, are concretized either for efficiency

or due to technical difficulty—BCE guarantees nodivergencesas discussed in§4.7.

Control-Dependence Information. The control-dependence information used for the systematic

path-exploration ofBCE is collected from the control-dependence graph for a bot program. BCE

uses CodeSurfer/x86 [44] to obtain the control-dependencegraph for a bot program.

API Call Prototypes. BCE uses IDApro [18] and its Fast Library Identification and Recognition

Technology (FLIRT) [9] to identify calls to library functions. It then uses a database of func-

tion prototypes and OS and network-related types to extracttype information from the recovered

symbolic information, as described in§5.2.5.

Library Functions. In BCE, each library-function call is replaced with a simplified model on

which concrete and symbolic execution are performed as withother user functions.

5.2.7 Experiments

We performed experiments on four bot programs. The bots are from different families, and

they have different sets of commands. Fig. 5.15 summarizes the experimental results. The table

189

Bot Program Results Time

Name # Instrs. % Nf/Nt # Traces # SymExprs # Iterations Trace Leng Avg.CE Total.CE Avg.SE Total.SE Avg.PE Total.PE Total

dBot 32168 19% 18 7 89 1893 2.6 231.4 4.8 427.3 0.9 831.3 1489.9

AgoBot 54641 36% 17 8 123 4167 7.9 979.1 12.5 1538.7 16.8 2067.6 4585.4

SpyBot 8360 40% 31 10 279 1290 3.9 1074.2 7.2 2003.2 8.5 2374.3 5451.7

EvilBot 2917 29% 17 4 133 2476 2.5 333.8 4.4 589.2 2.5 328.5 1251.5

Figure 5.15BCE experiments. The columns, in order, are: the number of instructions (#Instrs);
the percentage of nodes marked as eitherNf orNt in the final trace tree; the number of unique

traces ending with at least one API call; the number of commands for whichBCE provides
symbolic expressions; the total number of iterations to identify the traces; the average trace

length; the average time taken for concrete execution; the total time taken for concrete execution;
the average time taken for symbolic execution; the total time taken for symbolic execution; the
average time taken for path exploration; the total time taken for path exploration; and the total
time taken in seconds. The experiments were run on a Intel P41.79GHz machine with1.49GB

RAM.

Bot Program Configuration

Name w/ CDI & w/ Pruning w/o CDI & w/ Pruning w/ CDI & w/o Pruning w/o CDI & w/o Pruning

dBot 18/89 (20%) 18/101+ (<18%) 18/99+ (<18%) 11/142+ (<8%)

AgoBot 17/123 (14%) 17/172+ (<10%) 17/158+ (<11%) 13/167+ (<8%)

SpyBot 31/279 (11%) 28/281+ (<10%) 27/420+ (<6%) 25/528+ (<5%)

EvilBot 17/133 (13%) 14/206+ (<7%) 17/163+ (<10%) 11/308+ (<4%)

Figure 5.16BCE experiments. The table reports results for four configurations ofBCE: (1) “w/
CDI” and “w/ Pruning”, (2) “w/o CDI” and “w/ Pruning”, (3) “w/CDI” and “w/o Pruning”, and

(4) “w/o CDI” and “w/o Pruning”. The numbers reported in eachcolumn are the number of
unique traces ending with API call(s), the total number of iterations, and the percentage of

iterations that resulted in a trace ending with API calls. The experiments were run on a Intel P4
1.79GHz machine with1.49GB RAM; the symbol “+” after the number of iterations means that

BCE with the configuration did not finish (i.e., program exploration could continue infinitely even
if all possible commands had been identified.)

first shows the size of each program in terms of the number of instructions, and the percentage of

the branches marked asNf orNt for each program.

The four columns listed under “Results” shows the number of traces ending with at least one

API call, the total number of iterations performed byBCE,14 and the number of the command

14An iterationmeans one run of the basic search step of theBCE algorithm (Alg. 2); on each iteration, a new path
is found that leads to a new concrete state.

190

strings that expect one or more arguments.BCE provides a symbolic expression for such argu-

ments, as discussed in§5.2.5.

For dBot and AgoBot, we had source code and we were able to compare the extracted com-

mands with the commands that one can obtain from the source code. In case of AgoBot, there

are two commands—“bot.quit” and “bot.die”—that were not identified as bot commands byBCE,

but are actually commands. This is because they are not involved with any Windows API call.

Those commands modify some values to change the state of the bot. Even thoughBCE was able

to identify those strings,BCE did not mark them as commands becauseBCE requires some API

call to be controlled by an input string for the string to be classified as a command. Each complete

command string, such as “bot.die\0”, is extracted through multipleBCE iterations as follows:

“bot.d”

“bot.di”

“bot.die”

“bot.die\0”

If there is no indication that the extracted string is a command (i.e., it controls no API calls), such

as “bot.die”, there needs to be some manual interpretation of BCE’s results, such as whether one

should consider an array of bytes in the input that ends with adelimiter (e.g.,\0 in case ofstrcmp)

to be a command.

We also performed an experiment to determine how well the twostate-space-exploration strate-

gies that we introduced in§5.2.3.2 and 5.2.3.3 perform: one strategy chooses a path that has the

possibility of encountering API calls (denoted as “w/ CDI”); the other stops further exploration

along the current path once the trace encounters an API call (denoted as “w/ Pruning”).

The results are shown in Fig. 5.16. We compared the number of traces ending with API calls

and the total number of iterations under the configuration “w/ CDI” and “w/ Pruning” with three

other configurations—(i) “w/o CDI” and “w/ Pruning”, (ii) “w/ CDI” and “w/o Pruning”, and (iii)

“w/o CDI” and “w/o Pruning”. BCE performs best using the configuration “w/ CDI” and “w/

Pruning”.

191

One other way in which the four configurations differed is in their ability to report whether all

commands had been found. Only the configuration “w/ CDI” and “w/ Pruning” is able to do this;

i.e., it exhausted its (pruned) search space and hence couldreport that there was nothing more to be

found. With the other configurations,BCE did not finish even if it had identified all the commands.

As explained in§5.2.3.3, the user must bear in mind that the commands identified are really

command fragments, and various combinations of the commandfragments must be tried.

5.2.8 Limitations

BCE currently has the following limitations:

1. Plain (unpacked) binaries.BCE only handles unpacked binaries. In principle, directed test gen-

eration is applicable even for packed binaries by invoking adecoder on the fly during con-

crete execution. However, the current implementation ofBCE needs a preprocessing step

to obtain control-dependence information, which our implementation obtains from a pre-

built control-flow graph. One would need some heuristics other than control-dependence

information as an alternative for avoiding combinatorial explosion.

2. Manual identification of the right starting point.BCE starts its exploration from some

command-processing function other than main. This allows relatively short traces for both

concrete execution and symbolic execution, resulting in better overall performance ofBCE.

Typically, there is some initialization code between the beginning of the main function

and the command-processing function that is not relevant toextracting input commands.

However, this can be problematic if the initialization codeaffects concrete execution in

significant ways. Finding a way to startBCE from the very beginning of a program with

low cost is left for future work.

3. Approximation.BCE currently approximates some library function calls by using some simpli-

fied models. For example, dBot usessnprintf as follows to generate a string in a specific

format for the purpose of sending a log to the bot-master.

snprintf(buf, sizeof(buf), ‘‘%s %s\r\n’’, ..., a[x+1]);

wherea[x+1] is one of the command tokens.

192

A portion of the command is copied intobuf in snprintf. Thebuf is then passed as a

parameter to an API call.

If concrete execution and symbolic execution go inside ofsnprintf, BCE can obtain a

symbolic expression forbuf that contains symbols from the input command. Instead of

doing that, to simplifyBCE’s handling of calls tosnprintf, we modelsnprintf as a copy

operator so that the input command symbola[x+1] is copied into the bufferbuf ignoring

the format string.

4. Obfuscation on branch conditions.BCE relies on branch conditions to explore a program.

Therefore, if the branch conditions are obfuscated by encryption, it preventsBCE from

exploring program paths correctly. For example, fragment (a) below is a normal branch

condition that checks a byte value against a constant. As proposed by Sharif et al. [168], the

code can be obfuscated as shown in fragment (b). Because it isdifficult to invert the hash

function, it is infeasible to findc givenHc.

[1] if (X == c) {

[2] B

[3] }

[1] if (Hash(X) == Hc) {

[2] run Decrypt(BE, c)

[3] }

[4] // where Hc = Hash(c), BE = Encrypt(B, c)

(a) (b)

5.2.9 Related Work

Machine-Code Analyzers Targeted at Finding Vulnerabilities.§5.1.5 discussed some work on

techniques to detect security vulnerabilities by analyzing source code (for a variety of languages).

MineSweeper [55], the work of Moser et al. [139], andSAGE have been discussed in§5.2.3.

Dynamic Techniques. J. Caballero et al. proposed techniques that can be used to extract the

format of the protocol messages sent from a bot-master by analyzing bot binaries [58]. They intro-

duced a technique calledbuffer deconstructionthat builds the message field tree of a sent message

by analyzing how the output buffer is constructed. Furthermore, they used type-inference-based

techniques to find out the type information of each field of theextracted structure by monitoring

193

how the received (or sent) data is used at places where the types are known, such as system calls.

Their technique focuses on extracting message formats given proper inputs that trigger malicious

actions, whereasBCE aims to extract such proper inputs.

Cho et al. proposed a technique for inferring protocol statemachines and applied it to the anal-

ysis of botnet Command and Control (C&C) protocols [65]. Theinferred protocol state machines

can be used for formal analysis for botnet defense, including finding the weakest links in a pro-

tocol, uncovering protocol design flaws, inferring the existence of unobservable communication

back-channels among botnet servers, etc.

5.2.10 Conclusion

We developed a tool calledBCE that automatically extracts botnet-command information from

bot executables, without using source code or symbol-table/debugging information. The informa-

tion obtained usingBCE can be used to build up proper input commands that trigger API-level

behaviors.BCE furnishes other kinds of information about a bot’s commands, in particular, in-

formation that combines the recovered symbolic information about inputs with type information

for the target API calls.BCE also provides a sequence of API calls controlled by each command,

which helps users to understand the bot’s API-level behaviors.

BCE performs directed test generation on executables and incorporates a new search technique

based on control-dependence information. Our experimentsshowed that the new search strategies

developed forBCE yielded both substantially higher coverage of the parts of the program relevant

to identifying bot commands, as well as lowered run-time.

194

Chapter 6

Conclusion

As discussed in Chapter 2, the problem of analyzing executables to recover information about

their execution properties has been receiving increased attention, in part because of the WYSIN-

WYX phenomenon. The WYSINWYX phenomenon is due to several drawbacks of source-code

analysis and can be addressed only by machine-code level analysis. The approach of working with

machine-code exposes the actual instructions that will be executed, and thus works on an artifact

that reveals the actual behavior that arises during programexecution.

Although establishing execution properties at the machine-code level is a daunting task due

to the challenges of machine-code analysis, as discussed inChapter 2, several research efforts

have been made to develop tools and techniques for machine-code analysis. One major effort is

CodeSurfer/x86, of which I was partly involved in the development. In Chapter 2, we presented

the two applications that I developed—FFE/x86 andConSeq—that made use of CodeSurfer/x86.

Unfortunately, although the techniques incorporated intoCodeSurfer/x86 are, in principle,

language-independent, they were instantiated only for a single instruction set (Intel x86). As al-

ready mentioned in Chapter 1, this situation is common in work on program analysis: although the

techniques described in the literature are language-independent, analysis implementations are of-

ten tied to particular language-specific compiler infrastructure. Unlike the situation in source-code

analysis, which can be addressed by developing common intermediate languages, machine-code

analysis suffers from the fact that instruction sets typically have hundreds of instructions and a

variety of architecture-specific features that are incompatible with other architectures. With future

computing platforms based on multicore architectures and transactional memory, future runtime

195

environments using just-in-time compiling, future systems providing cloud computing and auto-

nomic computing, plus cell phones, PDAs, wearable computers, and autonomous vehicles all en-

tering the fray, both (i) security and reliability problems, and (ii) the variety of computing platforms

to analyze will only increase.

To address these concerns, we developed improved techniques for analyzing machine code—in

particular, a language calledTSL (for “TransformerSpecificationLanguage”) for describing the

semantics of an instruction set, along with a runtime systemto support the creation of a multiplicity

of static-analysis, dynamic-analysis, and symbolic-analysis components.

In addition to the two applications to CodeSurfer/x86 presented in Chapter 2, the main contri-

butions that this dissertation made can be summarized as follows:

• In Chapter 3, we presented theTSL system in detail. In theTSL system, analysis components

are generated from formal specifications of the abstract syntax and the concrete semantics

of an instruction set.TSL was presented from two perspectives: (i) how to write aTSL

specification from the point of view of instruction-set-specification developers, and (ii) how

to write TSL reinterpretations from the point of view of analysis developers.

In §3.2, we presented various techniques incorporated to implement theTSL compiler,

which translates a specification to a common intermediate representation (CIR). The tech-

nical contributions that we made in the design and development of theTSL system can be

summarized as follows:

– Two-level semantics (along with binding-time analysis):A two-level CIR allows

the precision of an abstract transformer to sometimes be improved—and never made

worse—by interpreting subexpressions associated with themanipulation of concrete

values in concrete semantics, which the specification of an instruction set often con-

tains. This is done by separating the subexpressions associated with the manipula-

tion of abstractvalues in abstract semantics from other manipulations thatcan always

be treated asconcrete values. To this end, we made use of the existing technique of

binding-time analysis [109].

196

– Paired-semantics: The TSL system allows easy instantiations ofreduced products

[74] by means ofpaired semantics. One can use the paired-semantics mechanism to

obtain desiredmulti-phase interactionsamongTSL-generated analyzers. By creating

a duplicated, but improved CodeSurfer/x86, we demonstrated that this method ofCIR

instantiation is useful for performing a form of reduced product when analyses are split

into multiple phases, as in a tool like CodeSurfer/x86.

– With-normalization and pattern compilation: TSL provides a mechanism for de-

construction by means of pattern matching. TheTSL front-end performswith-

normalization, which transforms all multi-levelwith expressions to use only one-level

patterns; an efficient pattern matcher is then generated viathe pattern-compilation al-

gorithm developed by Pettersson [153, 178].

– Execution over abstract states:An appropriate translation of conditional expressions

and recursion functions allows to create abstract interpreters for an instruction-set spec-

ification: in particular, the code generated for each transformer is able to: (i) execute

over abstract states (§3.2.2), (ii) possibly propagate abstract states to more than one suc-

cessor in a conditional expression (§3.2.2.1), (iii) compare abstract states and terminate

abstract execution when a fixed point is reached (§3.2.2.2), and (iv) apply widening

operators, if necessary, to ensure termination (§3.2.2.2).

In chapter 3, we summarized the applications that theTSL system has been applied to,

including the various static-analysis components generated from theTSL specification of

the IA32 instruction set to develop a new incarnation of CodeSurfer/x86—a revised version

whose analysis components are implemented viaTSL. The analogous components for the

PowerPC32 instruction set were generated from aTSL specification ofPowerPC32.

We also discussed the leverage that theTSL system provides in§3.4. We showed that

theTSL system provides considerable leverage for implementing analysis tools and experi-

menting with new ones. New analyses are easily implemented because a clean interface is

provided for defining an interpretation.

197

The reinterpretation mechanism allowsTSL to be used to implementtool-component gen-

eratorsandtool generators. Each implementation of an analysis component’s driver (e.g.,

fixed-point-finding solver, symbolic executor) serves as the unchanging driver for use in

different instantiations of the analysis component for different instruction sets. TheTSL

language becomes the specification language for retargeting that analysis component for dif-

ferent instruction sets.

Furthermore, for a system like CodeSurfer/x86—which uses multiple analysis phases—

automating the process of creating abstract transformers ensuressemantic consistency; that

is, because analysis implementations are generated from asinglespecification of the instruc-

tion set’s concrete semantics, this guarantees that aconsistentview of the concrete semantics

is adopted by all of the analysis implementations used in thesystem.

• In Chapter 4, we presented a novel way to obtain semantic reinterpretation automatically,

via mutually-consistent, correct-by-construction implementations of symbolic primitives—

in particular, quantifier-free, first-order-logic formulas for

– (a) symbolic evaluation of a single command,

– (b)WLP with respect to a single command, and

– (c) symbolic composition for a class of formulas that express state transformations,

for everyinstruction set for which one has aTSL specification. We also demonstrated that

semantic reinterpretation could create such primitives for languages with pointers, aliasing,

dereferencing, and address arithmetic.

As far as we are aware, the application of semantic reinterpretation to a logic is a new

idea. A related innovation on which our results rest was to define a particular form of state-

transformation formula (structure-update expressions) as a first-class notion in the logic. By

this device, such formulas could (i) serve as a replacement domain in the reinterpretations of

both the programming language’s meaning functions and the logic’s meaning functions, and

(ii) be reinterpreted themselves.

198

• In Chapter 5, we presented two applications—MCVETO andBCE—developed usingTSL-

generated analysis components, which use logic-based search procedures to establish prop-

erties of machine-code programs. Compared to work by otherson logic-based search pro-

cedures for machine code, what distinguishes the work onMCVETO andBCE is that both

applications aregoal-directed. That is, they both have a target property or program point of

interest, and this target is used to focus the search.

– MCVETO. MCVETO is a tool to check whether a stripped machine-code program sat-

isfies a safety property. The chapter described how verification of machine code in

MCVETO is performed, and discussed howMCVETO avoids using conventional tech-

niques on software model checking that would be unsound if applied at the machine-

code level.

MCVETO is capable of verifying (or detecting flaws in) self-modifying code (SMC).

With SMC there is no fixed association between an address and the instruction at that

address, but this is handled automatically byMCVETO’s mechanisms for abstraction

refinement. To the best of our knowledge,MCVETO is the first model checker to handle

SMC.

In Chapter 5, we also presented a language-independent algorithm to identify the

aliasing condition relevant to a property in a given state. Unlike previous techniques, it

applies when static names for variables/objects are unavailable.

We also developed several techniques to enhance the methodsused during directed

proof generation to elaborate the abstraction in use: the techniques enable exhaustive

loop unrolling to be avoided by discovering the right loop invariant. The method in

which we exploit program invariants allowssoundness to be retainedat all times even

though the techniques we use for obtaining invariants are speculative.

– BCE. BCE is a tool for automatically extracting botnet-command information from

bot executables, without using source code or symbol-table/debugging information.

The information obtained usingBCE can be used to build up proper input com-

mands that trigger API-level behaviors. What distinguishes BCE from other existing

199

symbolic-execution-based test-generation tools is thatBCE is goal-directed, using a

new search technique that I developed based on control-dependence information.

200

LIST OF REFERENCES

[1] 1994 Scotland RAF Chinook crash.
“http://en.wikipedia.org/wiki/1994ScotlandRAF Chinookcrash”.

[2] 2007 Malware Report.
“http://www.computereconomics.com/page.cfm?name=Malware%20Report”.

[3] Ariane 5 Flight 501.
“http://en.wikipedia.org/wiki/Ariane5 Flight 501”.

[4] CodeSonar, GrammaTech, Inc.
“http://www.grammatech.com/products/codesonar”.

[5] CodeSurfer, GrammaTech, Inc.
“http://www.grammatech.com/products/codesurfer”.

[6] compress95, spec benchmark.
“http://www.itee.uq.edu.au/∼emmerik/specbench.html”.

[7] Coverity Prevent.
“http://www.coverity.com/products/preventanalysisengine.html”.

[8] cpio, GNU project.
“http://www.gnu.org/software/cpio/cpio.html”.

[9] Fast Library Identification and Recognition Technology, DataRescue sa/nv, Liège, Belgium.
“http://www.datarescue.com/idabase/flirt.htm”.

[10] File Format Reversing - EverQuest II VPK.
“http://www.openrce.org/articles/fullvew/16”.

[11] flex.
“http://www.gnu.org/software/flex/”.

[12] GCC, the GNU Compiler Collection.
“http://gcc.gnu.org”.

201

[13] GrammaTech, Inc.
“http://www.grammatech.com”.

[14] GZIP file format specification version 4.3.
“http://www.gzip.org/zlib/rfc-gzip.html”.

[15] gzip, gnu project.
“http://www.gzip.org/”.

[16] Hierarchical State Machine.
“http://www.eventhelix.com/RealtimeMantra/HierarchicalStateMachine.htm”.

[17] IA-32 Intel Architecture Software Developer’s Manual.
“http://developer.intel.com/design/pentiumii/manuals/243191.htm”.

[18] IDAPro disassembler.
“http://www.datarescue.com/idabase/”.

[19] ping.
“http://packages.debian.org/stable/net/netkit-ping”.

[20] png2ico.
“http://www.winterdrache.de/freeware/png2ico/”.

[21] PPL: The Parma Polyhedra Library.
“http://www.cs.unipr.it/ppl/”.

[22] SANS sees upsurge in zero-day Web-based attacks.
“http://www.computerworld.com/s/article/9005117/SANS seesupsurgein zero day Web
basedattacks”.

[23] Soot: A Java optimization framework.
“http://www.sable.mcgill.ca/soot/”.

[24] tar, GNU project.
“http://www.gnu.org/software/tar/tar.html”.

[25] The botnet world is booming.
“http://www.networkworld.com/news/2009/070909-botnets-increasing.html”.

[26] The LLVM Compiler Infrastructure.
“http://www.llvm.org”.

[27] The PowerPC User Instruction Set Architecture.
“http://doi.ieeecs.org/10.1109/MM.1994.363069”.

202

[28] TVLA System.
“http://www.cs.tau.ac.il/∼tvla/”.

[29] US Code: Title 17, Sect. 1201(f).
“http://www.law.cornell.edu/uscode/html/uscode17/usc sec17 00001201—-000-.html#f”.

[30] WALA.
“http://wala.sourceforge.net/wiki/index.php/”.

[31] Intel 64 and ia-32 architectures software developer’smanual, volume 2a: Instruction set
reference, a-m. “http://download.intel.com/design/processor/manuals/253666.pdf”.

[32] Intel 64 and ia-32 architectures software developer’smanual, volume 2b: Instruction set
reference, n-z. “http://download.intel.com/design/processor/manuals/253667.pdf”.

[33] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri. OpenFst: A general and
efficient weighted finite-state transducer library. InProc. 9th Int. Conf. on Implementation
and Application of Automata, 2007.

[34] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, and M. Yannakakis. Analysis of
recursive state machines.TOPLAS, 27(4), 2005.

[35] R. Alur and M. Yannakakis. Model checking of hierarchical state machines. InFoundations
of Softw. Eng., volume 23, 6 ofSoftw. Eng. Notes, pages 175–188, New York, November 3–5
1998. ACM Press.

[36] W. Amme, P. Braun, E. Zehendner, and F. Thomasset. Data dependence analysis of assem-
bly code.IJPP, 2000.

[37] K. Ashcraft and D. Engler. Using programmer-written compiler extensions to catch security
holes. InIn IEEE Symposium on Security and Privacy, pages 143–159, 2002.

[38] G. Balakrishnan.WYSINWYX: What You See Is Not What You eXecute. PhD thesis, C.S.
Dept., Univ. of Wisconsin, Madison, WI, August 2007. Tech. Rep. 1603.

[39] G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum.Codesurfer/x86 – A platform for
analyzing x86 executables. InComp. Construct., 2005.

[40] G. Balakrishnan and T. Reps. WYSINWYX: What You See Is Not What You eXecute.
Trans. on Prog. Lang. and Syst.(To appear.).

[41] G. Balakrishnan and T. Reps. Analyzing memory accessesin x86 executables. InComp.
Construct., pages 5–23, 2004.

[42] G. Balakrishnan and T. Reps. DIVINE: DIscovering Variables IN Executables. InVerif.,
Model Checking, and Abs. Interp., 2007.

203

[43] G. Balakrishnan and T. Reps. Analyzing stripped device-driver executables. InTools and
Algs. for the Construct. and Anal. of Syst., 2008.

[44] G. Balakrishnan, T. Reps, N. Kidd, A. Lal, J. Lim, D. Melski, R. Gruian, S. Yong, C.-
H. Chen, and T. Teitelbaum. Model checking x86 executables with CodeSurfer/x86 and
WPDS++. InCAV, 2005.

[45] G. Balakrishnan, T. Reps, D. Melski, and T. Teitelbaum.WYSINWYX: What You See Is
Not What You eXecute. InVSTTE, 2007.

[46] T. Ball, R. Majumdar, T. Millstein, and S.K. Rajamani. Automatic predicate abstraction of
C programs. InProg. Lang. Design and Impl., New York, NY, 2001. ACM Press.

[47] T. Ball and S.K. Rajamani. The SLAM toolkit. InCAV, 2001.

[48] M. Barnett, B.-Y.E. Chang, R. DeLine, B. Jacobs, and K.R.M. Leino. Boogie: A modular
reusable verifier for object-oriented programs. InFormal Methods for Components and
Objects, 2005.

[49] N.E. Beckman, A.V. Nori, S.K. Rajamani, and R.J. Simmons. Proofs from tests. InInt.
Symp. on Softw. Testing and Analysis, 2008.

[50] D. Beyer, T.A. Henzinger, R. Majumdar, and A. Rybalchenko. Path invariants. InProg.
Lang. Design and Impl., 2007.

[51] L. Birkedal and M. Welinder. Hand-writing program generator generators. InProg. Lang.
Impl. and Logic Prog., 1994.

[52] M. Bishop and M. Dilger. Checking for race conditions infile accesses, 1996.

[53] F. Bourdoncle. Efficient chaotic iteration strategieswith widenings. InInt. Conf. on Formal
Methods in Prog. and their Appl., LNCS. Springer-Verlag, 1993.

[54] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, P. Poosankam, D. Song, and H. Yin. Au-
tomatically identifying trigger-based behavior in malware. InBotnet Analysis and Defense.
Springer, 2008.

[55] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, P. Poosankam, D. Song, and H. Yin. Au-
tomatically identifying trigger-based behavior in malware. In Botnet Detection. Springer,
2008.

[56] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Nagarakatte. A
randomized scheduler with probabilistic guarantees of finding bugs. InASPLOS, 2010.

[57] W.R. Bush, J.D. Pincus, and D.J. Sielaff. A static analyzer for finding dynamic program-
ming errors.Software: Practice and Experience, 30:775–802, 2000.

204

[58] J. Caballero, P. Poosankam, C. Kreibich, and D. Song. Bidirectional protocol reverse en-
gineering: Message format extraction and field semantics inference. Tech. rep. 2009-57,
EECS, UC-Berkeley, 2009.

[59] H. Cai, Z. Shao, and A. Vaynberg. Certified self-modifying code. InProg. Lang. Design
and Impl., 2007.

[60] S. Chaki, E. Clarke, A. Groce, J. Ouaknine, O. Strichman, and K. Yorav. Efficient verifica-
tion of sequential and concurrent C programs.FMSD, 25(2–3), 2004.

[61] S. Chaki and J. Ivers. Software model checking without source code. InProc. of the First
NASA Formal Methods Symposium, 2009.

[62] T.E. Cheatham, Jr., G.H. Holloway, and J.A. Townley. Symbolic evaluation and the analysis
of programs.Trans. on Softw. Eng., 5(4):402–417, 1979.

[63] H. Chen and D. Wagner. MOPS: An infrastructure for examining security properties of
software. InConf. on Comp. and Commun. Sec., pages 235–244, November 2002.

[64] B. Chess. Improving computer security using extended static checking. InProceedings of
the 2002 IEEE Symposium on Security and Privacy, pages 160–, Washington, DC, USA,
2002. IEEE Computer Society.

[65] C.Y. Cho, D. Babi ć, E.C. Shin, and D. Song. Inference and analysis of formal models
of botnet command and control protocols. InProceedings of the 17th ACM conference on
Computer and communications security, CCS ’10, pages 426–439, New York, NY, USA,
2010. ACM.

[66] Jong-Deok Choi et al. Efficient and precise datarace detection for multithreaded object-
oriented programs. InPLDI, 2002.

[67] A. S. Christensen, A. Møller, and M. Schwartzbach. Precise analysis of string expressions.
In 10th International Static Analysis Symposium, 2003.

[68] M. Christodorescu, W.-H. Goh, and N. Kidd. String analysis for x86 binaries. InProg.
Analysis for Softw. Tools and Eng., 2005.

[69] M. Christodorescu, N. Kidd, and W. Goh. String analysisfor x86 binaries. InWorkshop on
Program Analysis for Software Tools and Engineering, 2005.

[70] C. Cifuentes and A. Fraboulet. Intraprocedural staticslicing of binary executables. In
ICSM, pages 188–195, 1997.

[71] T. A. Cook, P. D. Franzon, E. A. Harcourt, and T. K. Miller. System-level specification of
instruction sets. InDAC, 1993.

205

[72] K.D. Cooper and K. Kennedy. Interprocedural side-effect analysis in linear time. InProg.
Lang. Design and Impl., pages 57–66, 1988.

[73] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction of approximation of fixed points. In POPL, 1977.

[74] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. InPOPL,
1979.

[75] M. Cova, V. Felmetsger, G. Banks, and G. Vigna. Static detection of vulnerabilities in x86
executables. InACSAC, 2006.

[76] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification in polynomial
time. InProg. Lang. Design and Impl., pages 57–68, New York, NY, 2002. ACM Press.

[77] J. W. Davidson and C. W. Fraser. Code selection through object code optimization. In
TPLS, 1984.

[78] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. InInt. Conf. on Tools and Algs.
for the Construction and Analysis of Systems, 2008.

[79] B. De Sutter, B. De Bus, K. De Bosschere, P. Keyngnaert, and B. Demoen. On the static
analysis of indirect control transfers in binaries. InPar. and Dist. Proc. Tech. and Appl.,
2000.

[80] S.K. Debray, R. Muth, and M. Weippert. Alias analysis ofexecutable code. InPOPL, pages
12–24, 1998.

[81] E. Driscoll, A. Burton, and T. Reps. Checking compatibility of a producer and a consumer.
TR 1674, UW-Madison, June 2010.

[82] B. Dutertre and L. de Moura. Yices: An SMT solver, 2006. “http://yices.csl.sri.com/”.

[83] E. Eilam.Reverse Engineering. Wiley Publishing, Inc., 2005.

[84] M.D. Ernst, J.H. Perkins, P.J. Guo, S. McCamant, C. Pacheco, M.S. Tschantz, and C. Xiao.
The Daikon system for dynamic detection of likely invariants. SCP, 69(1–3), 2007.

[85] Michael Ernst, Adam Czeisler, William G. Griswold, andDavid Notkin. Quickly detecting
relevant program invariants. InICSE, 2000.

[86] J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and its use in
optimization.Trans. on Prog. Lang. and Syst., 3(9):319–349, 1987.

[87] Cormac Flanagan and Stephen N. Freund. FastTrack: efficient and precise dynamic race
detection. InPLDI, 2009.

206

[88] J. S. Foster, R. Johnson, J. Kodumal, and A. Aiken. Flow-sensitive type qualifiers. InPLDI,
pages 1–12. ACM Press, 2002.

[89] V. Ganesh and D.L. Dill. A decision procesure for bit-vectors and arrays. InInt. Conf. on
Computer Aided Verif., 2007.

[90] R. Gerth. Formal verification of self modifying code. InY. Liu and X. Li, editors,Proc. Int.
Conf. for Young Computer Scientists, pages 305–311, Beijing, China, 1991. Int. Acad. Pub.

[91] J. T. Giffin, S. Jha, and B. P. Miller. Detecting manipulated remote call streams. InUSENIX
Security Symposium, 2002.

[92] J. T. Giffin, S. Jha, and B. P. Miller. Efficient context-sensitive intrusion detection. InProc.
of the Network and Distributed System Security Symposium, 2004.

[93] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated random testing. InIn
Programming Language Design and Implementation (PLDI), 2005.

[94] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing. InProg.
Lang. Design and Impl., 2005.

[95] P. Godefroid, M.Y. Levin, and D. Molnar. Automated whitebox fuzz testing. InNetwork
and Dist. Syst. Security, 2008.

[96] P. Godefroid, A.V. Nori, S.K. Rajamani, and S.D. Tetali. Compositional may-must program
analysis: Unleashing the power of alternation. InPOPL, 2010.

[97] Weining Gu, Zbigniew Kalbarczyk, Ravishankar K. Iyer,and Zhen-Yu Yang. Characteriza-
tion of Linux kernel behavior under errors. InDSN, 2003.

[98] B.S. Gulavani, T.A. Henzinger, Y. Kannan, A.V. Nori, and S.K. Rajamani. SYNERGY: A
new algorithm for property checking. InFound. of Softw. Eng., 2006.

[99] E. Harcourt, J. Mauney, and T. Cook. Functional specification and simulation of instruction
set architectures. InPLC, 1994.

[100] K. Havelund and T. Pressburger. Model checking Java programs using Java PathFinder.
Softw. Tools for Tech. Transfer, 2(4), 2000.

[101] M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants. InPOPL, 2010.

[102] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. InPOPL, pages
58–70, 2002.

[103] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs.
TOPLAS, 12(1):26–60, January 1990.

207

[104] D. Hovemeyer and W. Pugh. Finding bugs is easy. InOOPSLA, 2004.

[105] M. Howard, D. LeBlanc, and J. Viega.19 Deadly Sins of Software Security. McGraw-
Hill/Osborne, 2005.

[106] R. Jhala and R. Majumdar. B2: Software model checking for C, 2009.
“http://www.cs.ucla.edu/∼rupak/b2/”.

[107] S.C. Johnson. YACC: Yet another compiler-compiler. Technical Report Comp. Sci. Tech.
Rep. 32, Bell Laboratories, 1975.

[108] N.D. Jones, C.K. Gomard, and P. Sestoft.Partial Evaluation and Automatic Program Gen-
eration. Prentice-Hall International, 1993.

[109] N.D. Jones, C.K. Gomard, and P. Sestoft.Partial Evaluation and Automatic Program Gen-
eration. Prentice-Hall International, 1993.

[110] N.D. Jones and A. Mycroft. Data flow analysis of applicative programs using minimal
function graphs. InPOPL, pages 296–306, 1986.

[111] N.D. Jones and F. Nielson. Abstract interpretation: Asemantics-based tool for program
analysis. In S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum, editors,Handbook of Logic
in Computer Science, volume 4, pages 527–636. Oxford Univ. Press, 1995.

[112] P. A. Karger and R. R. Schell. Multics security evaluation: Vulnerability analysis. Technical
report, Hanscom AFB, 1974.

[113] D. Kästner. TDL: a hardware description language forretargetable postpass optimizations
and analyses. InGPCE, 2003.

[114] N. Kidd, A. Lal, and T. Reps. WALi: The Weighted Automaton Library, 2007.
“http://www.cs.wisc.edu/wpis/wpds/download.php”.

[115] N. Kidd, T. Reps, D. Melski, and A. Lal. WPDS++: A C++ library for Weighted Pushdown
Systems, 2004. “http://www.cs.wisc.edu/wpis/wpds++”.

[116] A. King and H. Søndergaard. Automatic abstraction forcongruences. InVMCAI, 2010.

[117] J. Kodumal and A. Aiken. Banshee: A scalable constraint-based analysis toolkit. InStatic
Analysis Symp., 2005.

[118] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Automating mimicry attacks
using static binary analysis. InUSENIX Sec. Symp., 2005.

[119] A. Lal, J. Lim, M. Polishchuk, and B. Liblit. Path optimization in programs and its ap-
plication to debugging. In15th European Symposium on Programming, pages 246–263.
Springer, 2006.

208

[120] A. Lal, J. Lim, and T. Reps. McDash: Refinement-based property verification for machine
code. TR-1649, Comp. Sci. Dept., Univ. of Wisconsin, Madison, WI, June 2009.

[121] Akash Lal and Thomas Reps. Reducing concurrent analysis under a context bound to se-
quential analysis.Form. Methods Syst. Des., 2009.

[122] D. Larochelle and D. Evans. Statically detecting likely buffer overflow vulnerabilities. In
Proceedings of the 10th conference on USENIX Security Symposium - Volume 10, SSYM’01,
pages 14–14, Berkeley, CA, USA, 2001. USENIX Association.

[123] P. Lee and M. Leone. Optimizing ML with run-time code generation. InProg. Lang. Design
and Impl., 1996.

[124] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via remote program
sampling. InIn Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, pages 141–154. ACM Press, 2003.

[125] J. Lim, A. Lal, and T. Reps. Symbolic analysis via semantic reinterpretation. InSpin
Workshop, 2009.

[126] J. Lim and T. Reps. A system for generating static analyzers for machine instructions. In
Comp. Construct., 2008.

[127] J. Lim, T. Reps, and B. Liblit. Extracting output formats from executables. InWorking
Conf. on Rev. Eng., 2006.

[128] C. Linn and S.K. Debray. Obfuscation of executable code to improve resistance to static
disassembly. InCCS, 2003.

[129] B. Livshits and M. Lam. Finding security vulnerabilities in Java applications with static
analysis. InUSENIX Sec. Symp., 2005.

[130] V. B. Livshits and M. S. Lam. Finding security vulnerabilities in java applications with
static analysis. InProceedings of the 14th conference on USENIX Security Symposium -
Volume 14, pages 18–18, Berkeley, CA, USA, 2005. USENIX Association.

[131] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes – a
comprehensive study of real world concurrency bug characteristics. InASPLOS, 2008.

[132] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. AVIO: detecting atomicity viola-
tions via access interleaving invariants. InASPLOS, 2006.

[133] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:building customized pro-
gram analysis tools with dynamic instrumentation. InPLDI, 2005.

209

[134] K. Malmkjær.Abstract Interpretation of Partial-Evaluation Algorithms. PhD thesis, Dept.
of Comp. and Inf. Sci., Kansas State Univ., Manhattan, Kansas, 1993.

[135] R. Martin, S. Christey, and J. Jarzombek. The case for common flaw enumeration.
“http://cwe.mitre.org/documents/casefor cwes.pdf”.

[136] L. Mauborgne and X. Rival. Trace partitioning in abstract interpretation based static ana-
lyzers. InESOP, 2005.

[137] P. Mishra, A. Shrivastava, and N. Dutt. Architecture description language: driven software
toolkit generation for architectural exploration of programmable SOCs.TODAES, 2006.

[138] J.M. Morris. A general axiom of assignment. In M. Broy and G. Schmidt, editors,Theor.
Found. of Program. Methodology, Proc. of the 1981 Marktoberdorf Summer School, vol-
ume 91 ofNATO Adv. Study Insts. Ser. C, Math. and Phys. Sci., pages 25–34. Reidel, 1982.

[139] A. Moser, C. Kruegel, and E. Kirda. Exploring multipleexecution paths for malware anal-
ysis. InIEEE Symposium on Security and Privacy, 2007.

[140] P.D. Mosses. A semantic algebra for binding constructs. In Int. Colloq. on Formalization of
Programming Concepts, 1981.

[141] M. Müller-Olm and H. Seidl. Analysis of modular arithmetic. InEuropean Symp. on Pro-
gramming, 2005.

[142] Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for systematic testing of
multithreaded programs. InPLDI, 2007.

[143] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Grard Basler, Piramanayagam A Nainar,
and Iulian Neamtiu. Finding and reproducing heisenbugs in concurrent programs. InOSDI,
2008.

[144] A. Mycroft and N.D. Jones. A relational framework for abstract interpretation. InPrograms
as Data Objects, 1985.

[145] G.C. Necula and P. Lee. Safe kernel extensions withoutrun-time checking. InOp. Syst.
Design and Impl., 1996.

[146] G. Nelson. A generalization of Dijkstra’s calculus.Trans. on Prog. Lang. and Syst., 11(4),
1989.

[147] Robert H. B. Netzer and Barton P. Miller. Improving theaccuracy of data race detection. In
PPoPP, 1991.

[148] F. Nielson. Two-level semantics and abstract interpretation.Theor. Comp. Sci., 69:117–242,
1989.

210

[149] F. Nielson and H.R. Nielson.Two-Level Functional Languages. Cambridge Univ. Press,
1992.

[150] A. Nori. Personal communication, January 2009.

[151] Soyeon Park, Shan Lu, and Yuanyuan Zhou. Ctrigger: Exposing atomicity violation bugs
from their finding places. InASPLOS, 2009.

[152] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr. LISA machine description language for
cycle-accurate models of programmable DSP architectures.In DAC, 1999.

[153] M. Pettersson. A term pattern-match compiler inspired by finite automata theory. InCC,
1992.

[154] U. Pleban and P. Lee. High-level semantics. InWorkshop on Mathematical Foundations of
Programming Language Semantics, 1987.

[155] G. Ramalingam, J. Field, and F. Tip. Aggregate structure identification and its application
to program analysis. InProc. of Programming Language, page 119.

[156] G. Ramalingam, J. Field, and F. Tip. Aggregate structure identification and its application
to program analysis. InPOPL, 1999.

[157] N. Ramsey and J.W. Davidson. Specifying instructions’ semantics usingλ-RTL. Unpub-
lished manuscript, 1999.

[158] N. Ramsey and M. F. Ferandez. New jersey machine-code toolkit arch. spec. technical
report. Technical report, 1994.

[159] J. Regehr, A. Reid, and K. Webb. Eliminating stack overflow by abstract interpretation. In
ACM Trans. on Embedded Comp. Systs., pages 751–778, 2005.

[160] T. Reps, G. Balakrishnan, and J. Lim. Intermediate-representation recovery from low-level
code. InPart. Eval. and Semantics-Based Prog. Manip., 2006.

[161] T. Reps, M. Sagiv, and G. Yorsh. Symbolic implementation of the best transformer. In
Verif., Model Checking, and Abs. Interp., pages 252–266, 2004.

[162] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, and Gernot Heiser. Dingo: taming device drivers.
In EuroSys, 2009.

[163] Stefan Savage, Michael Burrows, Greg Nelson, PatrickSobalvarro, and Thomas Anderson.
Eraser: A dynamic data race detector for multithreaded programs.ACM TOCS, 1997.

[164] E.R. Scherpelz, S. Lerner, and C. Chambers. Automaticinference of optimizer flow func-
tions from semantics meanings. InPLDI, 2007.

211

[165] B. Schlich.Model Checking of Software for Microcontrollers. PhD thesis, RWTH Aachen
University, Germany, 2008.

[166] D.A. Schmidt.Denotational Semantics. Allyn and Bacon, Inc., Boston, MA, 1986.

[167] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C. InFound.
of Softw. Eng., 2005.

[168] M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Impeding malware analysis using conditional
code obfuscation. InNetwork and Dist. Syst. Security. 2008.

[169] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. InProgram
Flow Analysis: Theory and Applications. Prentice-Hall, 1981.

[170] D. Siewiorek, G. Bell, and A. Newell.Computer Structures: Principles and Examples.
Springer-Verlag, 1982.

[171] J. Sifakis. A unified approach for studying the properties of transition systems.Theor.
Comp. Sci., 18:227–258, 1982.

[172] M. Siff, S. Chandra, T. Ball, K. Kunchithapadam, and T.Reps. Coping with type casts in C.
In Found. of Softw. Eng., pages 180–198, 1999.

[173] A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binary transformation in a distributed envi-
ronment. MSR-TR-2001-50, Microsoft Research, April 2001.

[174] A. Thakur, J. Lim, A. Lal, A. Burton, E. Driscoll, M. Elder, T. Andersen, and T. Reps.
Directed proof generation for machine code. InCAV, 2010.

[175] A. Thakur, J. Lim, A. Lal, A. Burton, E. Driscoll, M. Elder, T. Andersen, and T. Reps.
Directed proof generation for machine code. TR 1669, UW-Madison, April 2010.

[176] K. Thompson.Reflections on trusting trust. Commun. ACM, 1984.

[177] Mandana Vaziri, Frank Tip, and Julian Dolby. Associating synchronization constraints with
data in an object-oriented language. InPOPL, 2006.

[178] P. Wadler. Efficient compilation of pattern-matching. The Impl. of Func. Prog. Lang., 1987.

[179] D. Wagner and D. Dean. Intrusion detection via static analysis. In2001 IEEE Symposium
on Security and Privacy, 2001.

[180] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step towards automated detection of
buffer overrun vulnerabilities. InNetwork and Dist. Syst. Security, February 2000.

[181] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first step towards automated de-
tection of buffer overrun vulnerabilities. InIn Network and Distributed System Security
Symposium, pages 3–17, 2000.

212

[182] D. W. Wall. Systems for late code modification. Code Generation - Concepts, Tools, Tech-
niques. Springer-Verlag, 1992.

[183] M. Weiser. Program slicing. InIEEE Transactions on Software Engineering, 1984.

[184] J. Whaley, D. Avots, M. Carbin, and M.S. Lam. Using Datalog with Binary Decision Dia-
grams for program analysis. InAsian Symp. on Prog. Lang. and Systems, 2005.

[185] Y. Xie and A. Aiken. Static detection of security vulnerabilities in scripting languages. In
USENIX Sec. Symp., 2006.

[186] Y. Xie and A. Aiken. Saturn: A scalable framework for error detection using Boolean
satisfiability.Trans. on Prog. Lang. and Syst., 29(3), 2007.

[187] Y. Xie, A. Chou, and D.R. Engler. ARCHER: Using symbolic, path-sensitive analysis to
detect memory access errors. InFound. of Softw. Eng., pages 327–336, 2003.

[188] Min Xu, Rastislav Bodı́k, and Mark D. Hill. A serializability violation detector for shared-
memory server programs. InPLDI, 2005.

[189] Yuan Yu, Thomas Rodeheffer, and Wei Chen. Racetrack: Efficient detection of data race
conditions via adaptive tracking. InSOSP, 2005.

[190] J. Zhang, R. Zhao, and J. Pang. Parameter and return-value analysis of binary executables.
In Comp. Softw. and Applications Conf., 2007.

[191] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz, G. Jin,S. Lu, and T. Reps. Conseq: De-
tecting concurrency bugs through sequential errors. InASPLOS, 2011.

213

Appendix A: User Guide for TSL

Appendix A describes theTransformer Specification Language(TSL). It also contains infor-

mation about how to write aTSL specification of the programming language of interest (which we

call thesubjectlanguage). TheTSL system is applicable to both source languages and low-level

machine code. Machine-code languages are used in the examples and descriptions in this manual.

TSL is a strongly typed, first-order functional language with a datatype-definition mechanism

for defining recursive datatypes, plus deconstruction by means of pattern matching. Much of

what aTSL user writes an instruction-set specification is similar to writing an interpreter for an

instruction set in first-orderML. The user specifies (i) the abstract syntax of an instructionset, by

defining the constructors for a (reserved, but user-defined)type instruction, (ii) an execution-state

type, by defining typestate.

Lexical Matters. An identifier is a sequence of letters, digits, or underscore characters,begin-

ning with a letter or an underscore. Upper- and lower-case letters are considered distinct characters.

The following identifiers are reserved and may not be used forother purposes.

true, false, with, default, let, in, phylum, MAP, COMMON,

EXPORT, UNIQUEREP, NOWIDEN, DECLARATIONS,

FUNCTIONLIST, EXPORT FUNCTIONLIST

Blanks, tabs, and newlines in the specification file are ignored except that they serve to delimit

tokens. Comments, delimited by // and a newline, may appear after any token.

TSL Specification. EachTSL specification consists of a list ofdeclarations, which are split into

two parts: a definition of an abstract syntax, given as a set ofgrammar rules, and a list of functions.

A specification is structured as follows:

214

NAME: instruction set name

DECLARATIONS {

production declarations

}

FUNCTIONLIST {

function declarations

}

EXPORT FUNCTIONLIST {

exported function declarations

}

DECLARATIONS, FUNCTIONLIST, and EXPORT FUNCTIONLIST blocks can ap-

pear in any order. Each part can be repeated in a specification. DECLARATIONS

contains definitions of user-defined types (production declarations). FUNCTIONLIST and

EXPORT FUNCTIONLIST contain user-defined functions (function declarations) and an

exported-function list (exported function declarations), respectively.§A.1, §A.2, and§A.4 de-

scribe how to write production, function, and exported-function declarations, respectively.

A.1 Type Definitions (DECLARATIONS)

A.1.1 Phyla, Operators, and Terms

The core of a specification for a given language is the definition of the language’s abstract

syntax, given as a set of grammar rules. The grammar rules areessentially productions of a regular-

tree grammar.

The derivation trees derived from nonterminal symbols are known astermsand the set of

terms derived from a given nonterminal symbol constitute aphylum. The grammar should be

viewed as a type-definition mechanism in which the nonterminal symbols are type names and

each nonterminal symbol, taken as a type name, denotes a set of values known as a phylum.

We often refer to nonterminal symbols as phyla, although more precisely they are the names of

phyla. Each production derives terms that can be thought of as n-ary records. The alternatives

215

of a given nonterminal give rise to different record variants. Terms are used both (i) as abstract

representations of instructions, operands, and other syntactic constructs and (ii) as computational

values. Each production has a name, known as anoperator, that can be used in computational

expressions (in different contexts) both as a record constructor and as a selector that discriminates

between variants.

The conceptsphylum, operator, andtermare defined mutually recursively. Aphylumis a set

of terms. Aterm is the result of applying ak-ary operator tok terms of the appropriate phyla. A

k-ary operator is a constructor-function mappingk terms to a term. Operators are typed.

Productions, nonterminal symbols, and operator names are defined simultaneously inphylum

declarations.

Example A.1(a).Let us consider a phylum of binary trees,TREE. Associated withTREE are

two operators:Leaf (of arity 0), andNode (of arity 2, with parameter phylaTREE andTREE).

TREE can be defined inductively as follows:

1) The termLeaf() is in TREE;

2) If t1 andt2 are terms inTREE, then the termNode(t1, t2) is in TREE;

3) No other terms are inTREE.

PhylumTREE is the infinite collection of terms

{

Leaf(),

Node(Leaf(), Leaf()),

Node(Node(Leaf(), Leaf()), Leaf()),

Node(Leaf(), Node(Leaf(), Leaf())),

· · ·

}

216

A.1.2 Basetypes

Fig. A.1 shows the basetypes thatTSL provides. There are two categories of primitive base-types:

unparameterizedandparameterized. An unparameterized base-type is just a set of terms. For

example,BOOL is a phylum consisting of truth values,INT32 is a phylum consisting of 32-bit

signed whole numbers, etc.MAP[α, β] is a predefined parameterized phylum, with parametersα

andβ. Each of the following is an instance of the parameterized phylum MAP:

MAP[INT32,INT8]

MAP[INT32,BOOL]

MAP[INT32,MAP[INT8,BOOL]]

TSL provides special syntax for denoting the terms of primitivephyla, often referred to ascon-

stants. For example, the truth values of phylumBOOL are denoted bytrue andfalse, the integers

in phylum INT8 are denoted by0d8, 1d8, 2d8, etc. The syntax of these primitive constants is

summarized in Fig. A.1.

Phylum Terms Constants

BOOL false, true false, true

INT64 64-bit signed integers 0d64, 1d64, 2d64, ...

INT32 32-bit signed integers 0d32, 1d32, 2d32, ...

INT16 16-bit signed integers 0d16, 1d16, 2d16, ...

INT8 8-bit signed integers 0d8, 1d8, 2d8, ...

STR Sequences of characters.""

All characters except "ab...AB...01...!%..."

’\000’ permitted. "\n\r\b\t\f\’\"\\"

"\001\002\003..."

MAP[α,β] Maps no constants

Figure A.1 Syntax of constants of primitive phyla.

217

Some primitive values do not have corresponding constant denotations. For example, there is

noTSL constant corresponding to negative one, since–1 is an expression — the negation function

applied to positive one.

§A.3 presents the operators of theTSL base-types.

A.1.3 Syntax

A production declarationdefines a new operator and includes all terms constructible by that

operator in a given phylum. The form of a production declaration is

phylum-name: operator-name(phylum1 <identifier1 > · · · phylumk <identifierk >) ;

The phylum named byphylum-nameis referred to as theleft-hand-side phylum. phylum1, ...,

phylumk are theparametersof the operatoroperator-name. A production declares that all terms

constructed by applyingk-ary operatoroperator-nameto argument terms of phylaphylum1, ...,

phylumk are members of the left-hand-side phylum. An operator may not be associated with more

than one phylum. Each parameter is associated with a name. The parameter namesidentifier1 ...

identifierk need to be distinctive in an operator.

Example A.1(b).The following code snippet shows an example of a definition ofAST syntax

rules:

DECLARATIONS {

reg32: EAX() | EBX();

operand: DirectReg32(reg32<Reg>)

| Immediate32(INT32<Val>)

;

instruction: ADD(operand<Op1> operand<Op2>)

| ...

;

state: State(MAP[INT32,INT8]<Memory> MAP[reg32,INT32]<Registers>)

}

218

A.1.4 Reserved, but User-Defined Types

Each instruction-set specification must include definitions of the following types:

reg64, reg32, reg16, reg8, cc, instruction, and state

Exported phyla are treated as interfaces between aTSL specification of a subject language and a

client analysis for the language.

Each reserved type is annotated withEXPORT and either<E> or<R> (binding-directive).

There are two kinds of phyla:concretephyla andabstractphyla. If a phylum is only used as a

concrete type, such asreg32 andinstruction, the phylum is annotated with<E>. If a phylum

is to be used in a reinterpreted semantics, such asstate, the phylum is annotated with<R>. The

TSL system generates a common intermediate representation in which phyla annotated with<E>

are converted to concrete types, and the ones annotated with<R> support both concrete types and

reinterpreted versions of those types.

Example A.1(c).Becausereg32, instruction, andstate are reserved, the code in Example

2.2.1 (b) is amended as follows:

DECLARATIONS {

EXPORT reg32<E>: EAX() | EBX();

operand: DirectReg32(reg32<Reg>)

| Immediate32(INT32<Val>)

;

EXPORT instruction<E>

: ADD(operand<Op1> operand<Op2>)

| ...

;

EXPORT state<E>: State(MAP[INT32,INT8]<Memory> MAP[reg32,INT32]<Registers>);

}

219

A.1.5 Redefinable Phylum Definitions

TSL allows one to associate base-types (especially parameterized base-types, such asMAP)

with other names. Each phylum defined as reinterpretable canbe reinterpreted in a client applica-

tion. The form of a reinterpretable-type declaration is

phylum phylum identifier;

phylum MAP[phylum1 <binding-directive>, phylum2] identifier;

Binding-directive(<E> | <R>) controls the reinterpretation property of the key type of the

map.binding-directive<E> is used in the examples in this chapter.1

In addition to the unparameterized base-types, such asBOOL and INT32, such user-defined

reinterpretable types, such asMEMMAP32 8 andREGMAP32, are reinterpreted with new types pro-

vided by an analysis developer to create an analysis component.

Example A.1(d).The following code is a part of file-system definition.FILESTREAM is defined

asMAP[INT64<E>,INT8]; the key type ofFDATA is renamed asinode; andFDATA is defined as

MAP[inode<E>,FILESTREAM].

DECLARATIONS {

phylum MAP[INT64<E>,INT8] FILESTREAM;

phylum INT8 inode;

phylum MAP[inode<E>,FILESTREAM] FDATA;

}

Example A.1(e). The code in Example 2.1 (c) can be rewritten by replac-

ing MAP[INT32,INT8] and MAP[reg32,INT32] with the redefined namesMEMMAP32 8 and

REGMAP32, respectively.

1Ordinarily, the key types of maps are<E>. <R> is used in a few circumstances, but certain conditions must
hold for such a reinterpretation to work correctly. TheTSL system does not check whether such a reinterpretation
obeys the necessary conditions.

220

DECLARATIONS {

EXPORT reg32<E>: EAX() | EBX();

operand: DirectReg32(reg32<Reg>)

| Immediate32(INT32<Val>)

;

EXPORT instruction<E>

: ADD(operand<Op1> operand<Op2>)

| ...

;

phylum MAP[INT32<E>,INT8] MEMMAP32 8;

phylum MAP[reg32<E>,INT32] REGMAP32;

EXPORT state<E>: State(MEMMAP32 8<Memory> REGMAP32<Registers>);

}

A.1.6 Phylum Directives

TSL provides two optional directives–COMMON andUNIQUEREP–for phylum declarations.

• COMMON directive. A phylum can be shared among various languages byannotating the

phylum declarations with the directiveCOMMON. For example, the phylum definitions for

modeling context-switches are language-independent.

COMMON phylum MAP[reg32<E>,INT32] SAVEREGS;

COMMON phylum MAP[cc<E>,BOOL] SAVEFLAGS;

COMMON context : Context(SAVEREGS<SaveRegs> SAVEFLAGS<SaveFlags>);

• UNIQUEREP directive. A phylum prefixed withUNIQUEREP is translated into a

type that only allows a single instance to be constructed of any given term. For ex-

ample, if QFBVFormula is annotated withUNIQUEREP, there is only one instance for

each term ofQFBVFormula, such asQFBV TRUE() andQFBV LT(QFBVSymbol32("Sym1"),

QFBVScalar32(0)).

221

COMMON UNIQUEREP QFBVFormula

: QFBV TRUE() | QFBV FALSE()

| QFBV LT(QFBVTerm32<t1> QFBVTerm32<t2>)

| QFBV AND(QFBVFormula<f1> QFBVFormula<f2>)

| QFBV OR(QFBVFormula<f1> QFBVFormula<f2>)

| ...

;

UNIQUEREP cannot precedeCOMMON.

A.2 Function Definitions (FUNCTIONLIST)

The form of afunction declarationis

[directives] phylum0 function-name(

phylum1 parameter-name1,

phylum2 parameter-name2,

...,

phylumk parameter-namek

) { expression} ;

It declaresfunction-nameto be ak-ary function with result phylumphylum0, and has, for each

i, 1 ≤ i ≤ k, a parameter namedparameter-namei of type phylumi. The body of the function,

expression, is an expression overparameter-name1, . . . , parameter-namek that must evaluate to a

term in the result phylumphylum0.

Function declarations are global — they cannot be defined inside one another, nor can they be

defined within the scope of productions. Functions are not first-class objects, i.e., they cannot be

the value of a parameter or an expression. Functions can be recursive.

222

A.2.1 Function Directives

This section contains information about function directives, which direct how a function is

translated into the common-intermediate representation.Function directives direct the way the

TSL system translates a function.TSL supports the following directives for function definitions:

COMMON, NOWIDEN, andCACHED

• COMMON. A function can be shared among various languages by annotating the function

declaration with the directiveCOMMON. The directiveCOMMON causes the function to be

generated in a common namespace. This directive can be only used for functions that are

language/instruction-set-indedepndent. E.g.,

COMMON INT32 isSignedOverflowForAddition(INT32 a, INT32 b) {

....

};

• CACHED. The directiveCACHED causesTSL to implement function-caching for the function.

E.g.,

CACHED BOOL Eval Formula(Formula f, state S) {

// expression

};

For example, the return values of the functionEval Formula for each actual argument pair

<f, S> are cached so that they can be retrieved the next time the function is called with the

same pair of actuals, instead of evaluating the whole function again.

• NOWIDEN. When a tail-recursive function has a reinterpretable argument type or reinter-

pretable return type, the default way of translating the reinterpretable version of the function

in theCIR is to create a function template that will invoke a widening operation to ensure

termination [126]. The directiveNOWIDEN causes theTSL compiler to translate the function

to a recursiveC++ function that does not perform widening. This directive canbe used in

the cases when termination is guaranteed even without widening. E.g.,

223

CACHED NOWIDEN BOOL Eval Formula(Formula f, state S) {

Formula f1 = f.Arg1();

Formula f2 = f.Arg2();

return Eval Formula(f1, S) && Eval Formula(f2, S),

}

A.3 Expressions

Expressionsoccur in function declarations.§A.3.1 discusses variables in expressions.§A.3.2

and§A.3.3 discuss applications of functions and operators, andbasetype operators, respectively.

§A.3.4 presents conditional and binding expressions.

A.3.1 Variables

A variable is a name bound to avalue. The different lexical contexts of expressions give rise

to the distinct sorts of variables itemized below.

Parameters of functions. Each parameter of a function is a variable that denotes the value of the

corresponding argument passed to the function. The type of such a variable is the one specified for

the parameter in the function declaration.

Pattern variables. Patterns inwith-expressions, (described in§A.3.4), contain pattern variables.

Pattern matching binds each pattern variable to some term. Each pattern variablep has a scope

within whichp is a variable that denotes the term to which it has been bound.The type of a pattern

variablep is determined by the context in which it first occurs in a pattern. This context is either

the i-th argument of some operatorg, in which case the type ofp is the phylum specified for the

i-th parameter ofg, or it is an entire pattern, in which case the type ofp is the type of the expression

against whichp is being matched.

Let -bound variables. Binding lists oflet-in-expressions, as described in§A.3.4, create variables

whose scope is the expression that follows thein keyword.

224

A.3.2 Application of functions and operators.

The application of ak-ary function or operator tok arguments of the appropriate phyla is an

expression.

Function applications. A function application has the form

function-name(expression1, . . . , expressionk)

Assume thatfunction-namehas been declared by

phylum0 function-name(

phylum1 parameter-name1,

. . . ,

phylumk parameter-namek

) { expression} ;

and further assume that argumentsexpression1,. . ., expressionk have valuesv1, . . ., vk, respectively.

Then the value of the function application is the value ofexpressionevaluated in an environment

in which parameters parameter-name1, . . ., parameter-namek are bound tov1, . . ., vk, respectively.

The types ofexpression1,. . ., expressionk must bephylum1, . . ., phylumk, respectively. The type

of the application isphylum0. If function-nameis nullary, an empty pair of parentheses is still

required to indicate function application.

Operator applications. An operator application has the form

operator-name(expression1, expression2, . . ., expressionk)

Assume the operator has been declared by

phylum-name

: operator-name(phylum1 <name1> phylum2<name2> · · · phylumk<namek>);

225

and further assume that argumentsexpression1, . . ., expressionk have valuesv1, . . ., vk respec-

tively. Then the value of the operator application is the term operator-name(v1, . . ., vk). The

types ofexpression1, . . ., expressionk must bephylum1, . . . phylumk, respectively. The type of the

application isphylum-name.

A.3.3 Operations on primitive phyla.

A collection of operations on primitive values is built intoTSL. Operations for which special

syntax is provided are summarized in Fig. A.2. Library functions on basetypes are summarized in

Fig. A.3. The two arguments of a binary expression must be expressions of the same type.

A.3.4 Conditional and binding expressions.

Conditional and binding expressions permit the value of an expression to depend on the value

of a constituent subexpression. Three forms are allowed:with-expression, conditional-expression,

andlet-expression.

With-expressions. A with-expressionis a multi-branch conditional expression that permits dis-

crimination based on the structure of the value of a given expression. The syntax of a with-

expression is

with (identifier) (

pattern1 : expression1,

pattern2 : expression2,

· · ·

patternn : expressionn

)

The value ofidentifieris called thematched value. The value of the with-expression is the value of

theexpressioni corresponding to the firstpatterni thatmatchesthe matched value. Eachpatterni

may containpattern variables, which, if the match succeeds, are bound to constituents of the

226

Result Syntax Operation

BOOL b1 && b2 logical conjunction ofb1 andb2
b1 || b1 logical disjunction ofb1 andb2
b1

∧∧ b1 exclusive logical disjunction ofb1 andb2
! b logical negation ofb
random(BOOL) random boolean value
e1 < e2 e1 less thane2
e1 <= e2 e1 less than or equal toe2
e1 > e2 e1 greater thane2
e1 >= e2 e1 greater than or equal toe2
e1 <u e2 e1 less than (unsigned)e2
e1 <=u e2 e1 less than or equal to (unsigned)e2
e1 >u e2 e1 greater than (unsigned)e2
e1 >=u e2 e1 greater than or equal to (unsigned)e2
e1 == e2 e1 equal toe2
e1 != e2 e1 not equal toe2

INT64 i1 * i1 product ofi1 andi2
INT32 i1 / i2 quotient ofi1 andi2
INT16 i1 + i2 sum ofi1 andi2
INT8 i1 – i2 difference ofi1 andi2

i1 % i2 i1 modi2
i1 & i2 bitwise-and ofi1 andi2
i1

∧i2 bitwise-exclusive-or ofi1 andi2
i1 | i2 bitwise-inclusive-or ofi1 andi2
– i negation ofi
∼ i bitwise-complement ofi
random(α) random integer value

MAP[α,β] [OPAQUETYPE: α 7→ e] empty map fromα with default valuee
m[e1|– >e2] mapm updated so that the image ofe1 is e2
random(OPAQUETYPE) random map

Figure A.2 Operations on the primitive phyla. (In this table, b’s areBOOL parameters,i’s are
integer parameters,m’s areMAP parameters,e’s are parameters of arbitrary type,α andβ are
phyla, andOPAQUETYPEis a reinterpretable map-type defined in aphylum statement (see

§A.1.5).)

matched value. The value ofexpressioni is then computed in terms of those bindings. The types of

all expressioni must be the same phylump; the type of the entire with-expression is that phylump.

227

Result Function(parameters) Operation

INT32 Int8To32ZE(INT8 i) zero-extension ofi to 32-bit value
Int16To32ZE(INT16 i) zero-extension ofi to 32-bit value
Int8To32SE(INT8 i) sign-extension ofi to 32-bit value
Int16To32SE(INT16 i) sign-extension ofi to 32-bit value
Int64To32(INT64 i) truncation ofi to 32-bit value
BoolToInt32(BOOL b) if b is true, return 1, otherwise 0
unsignedDiv32(INT32 i1, INT32 i2) unsigned division ofi1 by i2

BOOL getBit32(INT32 i1, INT32 i2) get the bit value at the indexi2 in
the 32-bit valuei1

signedOverflowAdd32(INT32 i1, INT32 i2) return true if an overflow occurs in
a signed addition

signedOverflowSub32(INT32 i1, INT32 i2) return true if an overflow occurs in
a signed subtraction

unsignedOverflowAdd32(INT32 i1, INT32 i2) return true if an overflow occurs in
an unsigned addition

unsignedOverflowSub32(INT32 i1, INT32 i2) return true if an overflow occurs in
an unsigned subtraction

STR ConcatSTR(STR s1, STR s2) concatenation ofs1 ands2

SubSTR(STR s, INT32 i1, INT32 i2) sub-string ofs from indexi1 to i2
INT32toSTR(INT32 i) convert 32-bit integer value to a

string

MEMMAP32 8 MemAccess 32 8 LE 32(
MEMMAP32 8 m, INT32 i)

32-bit little-endian memory ac-
cess addressed byi

MemUpdate 32 8 LE 32(
MEMMAP32 8 m, INT32 i1, INT32 i2)

32-bit little-endian memory up-
date

MemAccess 32 8 BE 32(
MEMMAP32 8 m, INT32 i)

32-bit big-endian memory access
addressed byi

MemUpdate 32 8 BE 32(
MEMMAP32 8 m, INT32 i1, INT32 i2)

32-bit big-endian memory up-
date

Figure A.3 Library functions on the primitive phyla. In thistable,i’s are integer parameters,s’s
areSTR parameters, andb’s areBOOL parameters;MEMMAP32 8 is a reinterpretable map-type

whose original type isMAP[INT32,INT8]; m’s areMAP-type parameters.

The patterns of a given with-expression must be exhaustive,i.e., it must be possible for the

compiler to determine statically that for every evaluationof the given with-expression, one of the

patterns will match. This will always be the case if one of thepatterns is* or default.

228

Patternsare defined inductively, as follows:

1) Constants of primitive phyla (TSL base-types) are patterns.

2) Pattern variables are patterns. A pattern variable is an identifier.

3) Both the symbol* and the keyworddefault are patterns.

4) A k-ary operatoroperator-nameapplied tok patterns is a pattern:

operator-name(pattern1, . . . ,patternk)

The same pattern variable may occur multiple times in a pattern. The leftmost occurrence of a

given pattern variable is itsbinding occurrenceand all subsequent occurrences in the same pattern

arebound occurrences. The type of a pattern variablep is determined by the context of its binding

occurrence. This context is either thei-th argument of some operatorg, in which case the type ofp

is the phylum specified for thei-th parameter ofg, or it is an entire pattern, in which case the type

of p is the type of the expression against whichp is being matched.

Let p be a pattern andt be a term. Thenp is said tomatcht under the following circumstances:

1) Whenp is a constant of a primitive phylum andt is the same constant.

2) Whenp is the binding occurrence of a pattern variablepv, in which casepv is bound tot.

3) Whenp is a bound occurrence of a pattern variablepv that has been bound to some termt′

andt==t′.

4) Whenp is either* or default.

5) Whenp is op(p1, . . . ,pk) andt is op(t1, . . . ,tk) andpi matchesti for all i, 1 ≤ i ≤ k.

The lexical scope of a pattern variable bound in somepatterni begins at its binding occur-

rence and extends through the correspondingexpressioni. The scope of pattern variables is block-

structured, i.e., a given pattern variable may be redeclared in an inner scope.

Example A.3.4(a).Consider the following definitions of phylaENV andBINDING:

ENV

: NullEnv()

| EnvConcat(BINDING ENV)

;

BINDING: Binding(INT32 INT8);

229

A valueenv of phylumENV is analyzed by the with-expression that is the body of function

lookup:

BINDING lookup(INT32 id, ENV env) {

with (env) (

NullEnv(): Binding(7d32, 0d8),

EnvConcat(b, e):

with (b) (

Binding(s, *): id==s ? b : lookup(id, e)

)

)

};

The two operatorsNullEnv andEnvConcat exhaust all possible alternatives forENV, so no de-

fault pattern is necessary. If the value ofenv is NullEnv(), then the patternNullEnv() matches

it and the value of thewith-expression isBinding(7d32, 0d8). Otherwise, the value ofenv is

necessarily a pair and the patternEnvConcat(b, e) matches with pattern variablesb ande bound

to the first and second components, respectively. In this case, the value of thewith-expression is

the value of the innerwith-expression, wherein pattern variablesb ande have typesBINDING and

ENV, respectively.

The same effect can be obtained by combining the two nestedwith-expressions into one:

BINDING lookup(INT32 id, ENV env) {

with (env) (

NullEnv(): Binding(7d32, 0d8),

EnvConcat(Binding(s, v), e):

id==s ? Binding(s, v) : lookup(id, e)

)

};

230

Conditional-expressions. A more traditional form of conditional expression is available inTSL,

based not on pattern matching but on the value of a Boolean expression. Aconditional-expression

has the form

expression1 ? expression2 : expression3

Whenexpression1 is an identifieri, it is exactly equivalent to the expression

with (i) (true : expression2, false : expression3)

Let-expressions. Let-expressions are useful for binding values to names. The simplest form of

let-expression is:

let id = expression1 in (expression2)

When several values are to be matched, a more general form is available:

let id1 = expression1; id2 = expression2; . . . idi = expressioni in (

expression0

)

An occurrence of a variable cannot be rebound in subsequent bindings. The last binding in a

let-expression is effective inexpression0. The type of thelet-expression is the type ofexpression0.

A semicolon before the keywordin is optional.

The value of the general form oflet-expression is determined as follows:

Each identifier is bound to the value of the correspondingexpression. The value of thelet-

expression is the value ofexpression0 as computed in an environment containing bindings

for all variables. Theexpressionsof a binding are all evaluated in the environment with

includes all variables bound in all previous patterns up to,or the initial environment in case

of the first binding.

231

A.4 Export Function Definitions (EXPORT FUNCTIONLIST)

A function can be exported to the interface available to client analyses by using a declaration

of the following form:

EXPORT <cir-directive> function-name(<cir-directive>, ..., <cir-directive>);

TheTSL compiler only translates functions derivable from the exported functions.

Eachcir-directive is either<E> or <R>. The return type and parameter types of an exported

function are annotated with either<E> or <R> in a EXPORT FUNCTIONLIST block. <E>

directs theTSL system to translate the type as non-reinterpretable, whereas<R> causes the type

to be translated as reinterpretable.

Example A.4(a).The concrete semantics of each instruction is specified by defining the func-

tion interpInstr, which takes an instruction and a state, and returns an updated state that captures

the semantics of the instruction.

FUNCTIONLIST {

state interpInstr(instruction I, state S) {

...

};

}

Example A.4(b).interpInstr in Example 2.4(a) can be translated into two versions ofCIRs by

including the followingexport-function declarationsas follows:

EXPORT FUNCTIONLIST {

EXPORT <E> interpInstr(<E>, <E>);

EXPORT <R> interpInstr(<E>, <R>);

...

}

The first export declaration, in which all the types are declared as<E>, generates a component

that can be used for creating an emulator for the subject language. With the second declaration,

232

in which thestate types for both the input and the output are<R>, the interpInstr is to be

reinterpreted in an alternative semantics:

state# interpInstr(instruction I, state# S) {

...

};

A.4.1 Reserved, but User-Defined Functions (Exported Functions)

Tab. A.1 shows a list ofTSL reserved exported functions.2 The set of exported functions spec-

ifies the interface between a specification and an analysis client to create an analysis component.

A specification must contain anEXPORT FUNCTIONLIST block with an export-function dec-

laration for each of the functions in Tab. A.1.

This section described how to write a concrete semantics of asubject language inTSL from

the point of view of instruction-set-specification (ISS) developers. TheTSL compiler automati-

cally generates from aTSL specification acommon intermediate representation(CIR) that can be

instantiated to create multiple analysis components. Thischapter presents how theTSL system

generates theCIR (§A.5), as well as how theCIR is instantiated to create an analysis component

(§A.6) from the point of view of analysis developers.

A.5 Common Intermediate Representation

The TSL system automatically generates aCIR from a TSL specification of the concrete op-

erational semantics of an instruction set. Each generatedCIR is specificto a given instruction-set

specification, butcommon(whence the nameCIR) across generated analyses.CIR is a template

class that takes as input a classBT, an abstract domain for an analysis, as shown in Fig. A.5.3

This section describes how theIR thatTSL uses internally to represent aTSL specification (hence-

forth calledTSL-IR) is translated into the outputCIR. A specification inTSL is simply linearized,

2The list can vary depending on the client analysis system: the table shows a list of reserved, but user-defined
functions for machine-code instruction sets.

3CIR is in C++ in reality.

233

Function Name Discription

state interpInstr(instruction I, state S) specifies the concrete operational semantics of in-

struction I

INT32 GetPC32() returns the program counter (PC)

INT32 GetSP32() returns the stack pointer (SP)

INT32 AccessPC(state S) returns the value of PC in state S

state UpdatePC(state S, INT32 v) updates the value of PC with v in state S

INT32 AccessSP(state S) returns the value of SP in state S

state UpdateSP(state S, INT32 v) updates the value of SP in state S

INT32 GetEA32(instruction I) returns the PC value of instruction I

INT32 GetInstrSize(instruction I) returns the size of instruction I

INT32 TopOfState32(state S) returns value at the address pointed to by SP

state Pop32(state S) adjusts SP to pop the top value

state Push32(state S, INT32 v) pushes the value v to SP

Table A.1 Reserved exported functions; a complete list of reserved export functions can be found
in

TSL/instructionsets/common/exports.tsl

in evaluation order, into a series ofC++ statements, in which the names of basetypes, basetype-

operators, andaccess/updatefunctions are prepended withBT ::. The user-defined abstract syntax

(lines 3–16 of Fig. A.4) is translated to a set ofC++ abstract-domain classes (lines 2–17 of Fig. A.5)

that contain appropriate abstract operators. The user-defined types, such asreg32, operand32, and

instruction, are translated to abstractC++ classes, and the constructors, such aseax, Indirect32,

andadd32 32, are subclasses of the parent abstractC++ class. Each user-defined function is trans-

lated to aCIR member function.

EachTSL basetype and basetype-operator is prepended with the template parameter nameBT;

BT is supplied for each analysis by an analysis developer. TheTSL basetype-operator+ on line 42

in Fig. A.4 is translated into a static function call onBT::Plus, as shown on line 42 in Fig. A.5.

234

Thewith expression and the pattern matching on lines 35–45 of Fig. A.4 are translated toswitch

statements inC++4 (lines 35–45 in Fig. A.5).

A.5.1 Translation to Two-Level Common Intermediate Representation

This section describes a mechanism for improving a certain level of precision of analyzers by

separating concrete and abstract semantics (à la Nielson and Nielson [149]).

The concrete semantics of an instruction set often containssome manipulations of values that

should always be treated as concrete values (for every abstract interpretation of the instruction).

For example, theISS developer could follow the approach taken in thePowerPC manual [27]

and specify variants of the conditional branch instruction(BC, BCA, BCL, BCLA) of PowerPC by

interpreting one of the fields in the instruction to determine which of the four variants is being

executed. In this case, the precision of an abstract transformer could be harmed by interpreting

such subexpressions in the abstract semantics. For instance, in aTSL expressionv = (b ? 1 : 2),

whereb is definitely a concrete value,v can get a precise value—either 1 or 2—whenb is concretely

interpreted. However, ifb is not expressible precisely in a given abstract domain, theconditional

expression “(b ? 1 : 2)” will be evaluated by joining the two branches andv will not hold a precise

value.

To address this issue, we perform a kind of binding-time analysis on theTSL-IR, in which the

expressions associated with the manipulation of concrete values in an instruction are annotated

with C, and others withA. Then, we generate atwo-levelCIR by appendingCONC SEM for C

values, andABS SEM for A values. The generatedCIR is instantiated for an analysis transformer

by definingABS SEM. We provide a predefined concrete semantics forCONC SEM.

A.6 CIR Instantiation

This section describes how an analysis developer instantiates theCIR to create an analysis

component.

4TheTSL front end performswith-normalization, which transforms all (multi-level)with expressions to use only
one-level patterns, using the pattern-compilation algorithm from [153, 178].

235

The generatedCIR is instantiated for an analysis by defining (inC++) an interpretation: a

representation class for eachTSL basetype, and implementations of eachTSL basetype-operator.

Tab. A.2 shows the implementations of primitives for three selected analyses: value-set analy-

sis (VSA [41]), quantifier-free bit-vector semantics (QFBV), and def-use analysis (DUA). Each

interpretation defines an abstract domain. For example, line 3 of each column defines the abstract-

domain class forINT32: ValueSet32, QFBVTerm32, andUseSet. Each abstract domain is also

required to contain a set of reserved functions, such asjoin, meet, andwiden, which forms an

additional part of the API available to analysis engines that useTSL-generated transformers.

A.6.1 Required Operators of Abstract Domains for aTSL Reinterpretation

Fig. A.6 shows the required operators that an abstract domain must provide for aTSL reinter-

pretation. An abstract domain for a map-basetype must providemapAccess andmapUpdate.

A.6.2 Paired-Semantics

Our system allows easy instantiations ofreduced products [74] by means ofpaired semantics.

TheTSL system provides a template for paired semantics as shown in Fig. A.7.

The CIR is instantiated with apaired semantic domain defined with two interpretations,

INTERP1 andINTERP2 (each of which may itself be a paired semantic domain), as shown on line 1

of Fig. A.8. The communication between interpretations maytake place in basetype-operators or

access/updatefunctions; Fig. A.8 is an example of the latter. The two components of the paired-

semantics values are deconstructed on lines 3–6 of Fig. A.8,and the individualINTERP1 and

INTERP2 components fromboth inputs can be used (as illustrated by the call tointeracton line 7

of Fig. A.8) to create the paired-semantics return value,answer. Such overridings of basetype-

operators andaccess/updatefunctions are done byC++ explicit specialization of members of class

templates (this is specified inC++ by “template<>”; see line 2 of Fig. A.8).

This method ofCIR instantiation is also useful to perform a form of reduced product when

analyses are split into multiple phases, as in a tool like CodeSurfer/x86. CodeSurfer/x86 carries

out many analysis phases, and the application of its sequence of basic analysis phases is itself

236

Table A.2 Parts of the declarations of the basetypes, basetype-operators, and map-access/update
functions for three analyses.

VSA QFBV DUA

[1] class VSA INTERP {

[2] // basetypes

[3] typedef ValueSet32 INT32;

[4] ...

[5] // basetype operators

[6] INT32 Add(INT32 a, INT32 b)

[7] {

[8] return a.addValueSet(b);

[9] }

[10] ...

[11] // map-basetypes

[12] typedef Dict<reg32,INT32>

[13] REGMAP32;

[14] ...

[15] // map-basetype operators

[16] INT32 Access(

[17] REGMAP32 m, reg32 k) {

[18] return m.Lookup(k);

[19] }

[20] REGMAP32

[21] Update(REGMAP32 m,

[22] reg32 k, INT32 v) {

[23] return m.Insert(k, v);

[24] }

[25] ...

[26]};

[1] class QFBV INTERP {

[2] // basetype

[3] typedef QFBVTerm32 INT32;

[4] ...

[5] // basetype operators

[6] INT32 Add(INT32 a, INT32 b)

[7] {

[8] return QFBVPlus32(a, b);

[9] }

[10] ...

[11] // map-basetypes

[12] typedef Dict<var32,INT32>

[13] VAR32MAP;

[14] ...

[15] // map-basetype operators

[16] INT32 Access(

[17] REGMAP32 m, reg32 k) {

[18] return m.Lookup(k);

[19] }

[20] REGMAP32

[21] Update(REGMAP32 m,

[22] reg32 k, INT32 v) {

[23] return m.Insert(k, v);

[24] }

[25] ...

[26]};

[1] class DUA INTERP {

[2] // basetype

[3] typedef UseSet INT32;

[4] ...

[5] // basetype operators

[6] INT32 Add(INT32 a, INT32 b)

[7] {

[8] return a.Union(b);

[9] }

[10] ...

[11] // map-basetypes

[12] typedef KillUseSet VAR32MAP;

[13] ...

[14] // map-basetype operators

[15] INT32 Access(

[16] REGMAP32 m, reg32 k) {

[17] return UseSet(k);

[18] }

[19] REGMAP32

[20] Update(REGMAP32 m,

[21] reg32 k, INT32 v) {

[22] REGMAP32 a2 =

[23] m.Insert2Kill(k);

[24] return a2.Insert2Use(v);

[25] }

[26]};

iterated. On each round, CodeSurfer/x86 applies a sequenceof analyses:VSA, DUA, and several

others. VSA is the primary workhorse, and it is often desirable for the information acquired by

VSA to influence the outcomes of other analysis phases.

237

We can use the paired-semantics mechanism to obtain desiredmulti-phase interactionsamong

our generated analyzers—typically, by pairing theVSA interpretation with another interpretation.

For instance, withDUA INTERP alone, the information required to get abstract memory location(s)

for addr is lost because theDUA basetype-operators (+ and∗ on line 3 of Fig. A.9) just return

the union of the arguments’usesets (e.g., see lines 6–9 of the third column of Tab. A.2. With

the pairing ofVSA INTERP with DUA INTERP (line 1 of Fig. A.8), DUA can use the abstract

address computed foraddr2 by VSA INTERP (line 6 of Fig. A.8), which usesVSA INTERP::Add

andVSA INTERP::Mult; the latter operators operate on a numeric abstract domain (rather than a

set-based one).

238

[1]

[2] // User-defined abstract syntax

[3] reg32: EAX() | EBX();
[4] flag: ZF() | SF();
[5] operand32

[6] :Indirect32(reg32 INT32)

[7] | DirectReg32(reg32)
[8] | Immediate32(INT32)
[9] ;

[10] instruction

[11] :ADD32 32(operand32 operand32)

[12] | MOV32 32(operand32 operand32)

[13] ;

[14] state:State(MAP[INT32,INT8] // memory

[15] MAP[reg32,INT32] // registers

[16] MAP[flag,BOOL]); // flags

[17]

[18] // User-defined functions

[19] INT32 interpOp32(state S, operand32 I) {
[20] with(S) (

[21] State(mem,regs,flags):

[22] with(srcOp) (

[23] DirectReg32(r): regs(r),

[24] Indirect32(base, disp):

[25] let b = regs(base);

[26] addr = b + disp;

[27] (mem(addr))

[28] Immediate32(i): i

[29])

[30])

[31] };
[32] state updateFlag32(state S, ...) {...}
[33] state updateState32(state S, ...) {...}
[34] state interpInstr(instruction I, state S) {

[35] with(I) (

[36] MOV32 32(dstOp, srcOp):

[37] let srcVal = interpOp32(S, srcOp);

[38] in (updateState32(S, dstOp, srcVal)),

[39] ADD32 32(dstOp, srcOp):

[40] let dstV = interpOp32(S, dstOp);

[41] srcV = interpOp32(S, srcOp);

[42] res = dstV + srcV;

[43] S2 = updateFlag(S, dstV, srcV, res);

[44] in (updateState32(S2, dstOp, res))

[45])

[46] }
[47]

Figure A.4 ATSL specification of a
simplifiedIA32 concrete semantics; reserved

types and function names are underlined.

[1] template <class BT> class CIR {
[2] class reg32 {...};
[3] class EAX: public reg32 {...};
[4] ...

[5] class operand32 {...};
[6] class Indirect32: public operand32 {...};
[7] ...

[8] class instruction {...};
[9] class ADD32 32: public instruction {
[10] enum TSL ID id;

[11] operand32 op1;

[12] operand32 op2;

[13] ...

[14] };
[15] ...

[16] class state# {...};
[17] class State#: public state# {...};
[18] // User-defined functions

[19] BT::INT32 interpOp32#(state# S, operand32 I) {
[20] with(S) (

[21] State#(mem,regs,flags):

[22] with(srcOp) (

[23] DirectReg32(r): BT::Access(regs,r),

[24] Indirect32(base, disp):

[25] let b = BT::Access(regs,base);

[26] addr = BT::Plus(b, disp);

[27] (BT::Access(mem,addr))

[28] Immediate32(i): i

[29])

[30])

[31] };
[32] state# updateFlag32#(state# S, ...) {...}
[33] state# updateState32#(state# S, ...) {...}
[34] state# interpInstr#(instruction I, state# S) {

[35] with(I) (

[36] MOV32 32(dstOp, srcOp):

[37] let srcVal = interpOp32#(S, srcOp);

[38] in (updateState32#(S, dstOp, srcVal)),

[39] ADD32 32(dstOp, srcOp):

[40] let dstV = interpOp32#(S, dstOp);

[41] srcV = interpOp32#(S, srcOp);

[42] res = BT::Plus(dstV, srcV);

[43] S2 = updateFlag#(S, dstV, srcV, res);

[44] in (updateState32#(S2, dstOp, res))

[45])

[46] }
[47]};

Figure A.5 TheCIR generated from Fig. A.4.
(The superscript # is used to abbreviate the actual

generated names used in theTSL implementation.)

239

Basetypes Map-basetypes

constructors that handles concrete basetypes constructors that handles concrete map-basetypes

bool approximates(const T & a) bool approximates(const T & a)

T join(const T & a, const T & b) T join(const T & a, const T & b)

T widen(const T & a, const T & b) T widen(const T & a, const T & b)

T meet(const T & a, const T & b) T meet(const T & a, const T & b)

bool isBottom() bool isBottom()

void setToBottom() void setToBottom()

static T BTM() static T BTM()

bool isTop() bool isTop()

void setToTop() void setToTop()

static T TOP() static T TOP()

bool operator == bool operator ==

bool operator > TVL::Bool isEqual(const T & a)

TVL::Bool isEqual(const T & a) std::ostream & print(std::ostream & o)

std::ostream & print(std::ostream & o) T mapUpdate(const T & m, const K T & key)

D T mapAccess(const T & m)

Figure A.6 Required operators that an abstract domain must provide for aTSL reinterpretation;
T: the abstract domain for a maptype;K T: the key type of the map-typeT; D T: the datum type

of the map-typeT; TVL::Bool: a three value logic (FALSE, ONE, and MAYBE);

[1] template <typename INTERP1, typename INTERP2>

[2] class PairedSemantics {

[3] typedef PairedBaseType<INTERP1::INT32, INTERP2::INT32> INT32;

[4] ...

[5] INT32 MemAccess 32 8 LE 32(MEMMAP32 8 LE mem, INT32 addr) {

[6] return INT32(INTERP1::MemAccess 32 8 LE 32(mem.GetFirst(), addr.GetFirst()),

[7] INTERP2::MemAccess 32 8 LE 32(mem.GetSecond(), addr.GetSecond()));

[8] }

[9] };

Figure A.7 A part of the template class for paired semantics.

240

[1] typedef PairedSemantics<VSA INTERP, DUA INTERP> DUA;

[2] template<> DUA::INT32 DUA::MemAccess 32 8 LE 32(DUA::MEMMAP32 8 LE mem, DUA::INT32 addr) {

[3] DUA::INTERP1::MEMMAP32 8 LE memory1 = mem.GetFirst();

[4] DUA::INTERP2::MEMMAP32 8 LE memory2 = mem.GetSecond();

[5] DUA::INTERP1::INT32 addr1 = addr.GetFirst();

[6] DUA::INTERP2::INT32 addr2 = addr.GetSecond();

[7] DUA::INT32 answer = interact(mem1, mem2, addr1, addr2);

[8] return answer;

[9] }

Figure A.8 An example ofC++ explicit template specialization to create a reduced product.

[1] with(op) (...

[2] Indirect32(base, index, scale, disp):

[3] let addr = base + index * SignExtend8To32(scale) + disp;

[4] m = MemUpdate 32 8 LE 32(mem,addr,v);

[5] ...)

Figure A.9 A fragment ofupdateState32.

241

Appendix B: Semantic-Reinterpretation for Symbolic-Analysis
Primitives

In this appendix, we give correctness proofs for our generated primitives for symbolic evalua-

tion,WLP , and symbolic composition. These apply to the language PL (§4.2.2) and reinterpreta-

tions given in§4.3; the proofs for MC differ only slightly.

As a notational convenience, we do not distinguish between aStateand aLogicalStruct. A

LogicalStructι corresponds to theState: ((ι↑1), (ι↑2)Fρ). Because, for PL, logical structures only

contain the single functionFρ, there is a one-to-one correspondence with states. Hence, whenever

necessary (e.g. in the applications ofEJ.K, BJ.K, andIJ.K), we assume that that aLogicalStructι is

coerced to((ι↑1), (ι↑2)Fρ).

B.1 Correctness of the Symbolic-Evaluation Primitive

Lemma B.1 (Relationship ofE to E and B to B)

(1) T JEJEKUKι = EJEK(UJUKι)
(2) FJBJBEKUKι = BJBEK(UJUKι)

Proof: The two lemmas are simultaneously proved using structural induction onE andBE, as

shown below. LetU be({Ii ←֓ Ti}, {Fj ←֓ FEj}).

Note that the standard interpretations ofbinop, relop, andboolopcoincide with those ofbinopL,

relopL, andboolopL. Thus, reasoning steps of the formbinopL(op2L) ; binop(op2) are short-

hands for reasoning about each case, such asbinopL(+) ; binop(+), etc.

(1) (i)

T JEJcKUKι= T Jconst(c)Kι
= T JcKι
= const(c)

= EJcK(UJUKι)

242

(ii)

lhs : T JEJIKUKι
= T JlookupStateU IKι
= T J((U↑2)Fρ)((U↑1)I)Kι

rhs : EJIK(UJUKι)

= EJIK


(ι↑1)[Ii 7→ T J(U↑1)IiKι],

(ι↑2)[Fj 7→ FEJ(U↑2)FjKι)




= lookupState


(ι↑1)[Ii 7→ T J(U↑1)IiKι],

(ι↑2)[Fj 7→ FEJ(U↑2)FjKι)I




= ((ι↑2)[Fj 7→ FEJ(U↑2)FjKι) (T J(U↑1)IKι)
= (FEJ(U↑2)FρKι) (T J(U↑1)IKι)
= access(FEJ(U↑2)FρKι, T J(U↑1)IKι)
= T J((U↑2)Fρ)((U↑1)I)Kι

(iii)

lhs : T JEJ&IKUKι = T JlookupEnvU IKι = T J(U↑1)IKι
rhs : EJ&IK(UJUKι)

= EJ&IK


(ι↑1)[Ii 7→ T J(U↑1)IiKι],

(ι↑2)[Fj 7→ FEJ(U↑2)FjKι)




= lookupEnv


(ι↑1)[Ii 7→ T J(U↑1)IiKι],

(ι↑2)[Fj 7→ FEJ(U↑2)FjKι)I




= T J(U↑1)IKι

243

(iv)

lhs :

= T JEJ∗EKUKι
= T JlookupStoreU (EJEKU)Kι
= T J((U↑2)Fρ)(EJEKU)Kι

rhs : EJ∗EK(UJUKι)

= EJ∗EK


(ι↑1)[Ii 7→ T J(U↑1)IiKι],

(ι↑2)[Fj 7→ FEJ(U↑2)FjKι)




= lookupStore


(ι↑1)[Ii 7→ T J(U↑1)IiKι],

(ι↑2)[Fj 7→ FEJ(U↑2)FjKι)(EJEK(UJUKι))




= (FEJ(U↑2)FρKι) (EJEK(UJUKι))
= (FEJ(U↑2)FρKι) (T JEJEKUKι) // by ind. via(1)

= access(FEJ(U↑2)FρKι, T JEJEKUKι)
= T J((U↑2)Fρ)(EJEKU)Kι

(v) T JEJE1op2E2KUKι
= T JEJE1KU op2L EJE2KUKι
= T JEJE1KUKι binopL(op2L) T JEJE2KUKι
= EJE1K(UJUKι) binop(op2) EJE2K(UJUKι)

// by ind. via(1)

= EJE1 op2E2K(UJUKι)

(vi) T JEJBE? E1 : E2KUKι
= T Jite(BJBEKU, EJE1KU, EJE2KU)Kι
= condL(FJBJBEKUKι, T JEJE1KUKι, T JEJE2KUKι)
= FJBJBEKUKι ? T JEJE1KUKι : T JEJE2KUKι
= BJBEK(UJUKι) ? EJE1K(UJUKι) : EJE2K(UJUKι)

// by ind. via(1) and(2)

= EJBE? E1 : E2K(UJUKι)

(2) (i) FJBJTKUKι = FJTKι = T = BJTK(UJUKι)

244

(ii) FJBJFKUKι = FJFKι = F = BJFK(UJUKι)

(iii) FJBJE1 ropE2KUKι
= FJEJE1KU ropL EJE2KUKι
= T JEJE1KUKι relopL(ropL) T JEJE2KUKι
= EJE1K(UJUKι) relop(rop) EJE2K(UJUKι)

// by ind. via(1)

= BJE1 ropE2K(UJUKι)

(iv) FJBJ¬BE1KUKι
= FJ ¬ BJBE1KUKι
= ¬FJBJBE1KUKι
= ¬BJBE1K(UJUKι) // by ind. via(2)

= BJ¬BE1K(UJUKι)

(v) FJBJBE1 bop BE2KUKι
= FJBJBE1KU bopL BJBE2KUKι
= FJBJBE1KUKι boolopL(bopL) FJBJBE2KUKι
= BJBE1K(UJUKι) boolop(bop) BJBE2K(UJUKι)

// by ind. via(2)

= BJBE1 bop BE2K(UJUKι)

2

Theorem 4.4For all s ∈ Stmt,U ∈ StructUpdate, andι ∈ LogicalStruct, the meaning ofIJsKU in

ι (i.e.,UJIJsKUKι) is equivalent to runningI on s with an input state obtained fromUJUKι. That

is,

UJIJsKUKι = IJsK(UJUKι).

2

245

Proof:
(i) UJIJI = E;KUKι

= UJupdateStoreU (lookupEnvU I) (EJEKU)Kι
= UJupdateStoreU ((U↑1)I) (EJEKU)Kι

= U

u
v

(U↑1),

(U↑2)[Fρ 7→ ((U↑2)Fρ)[(U↑1)I 7→ EJEKU]])




}
~ ι

=


(UJUKι↑1),

(UJUKι↑2)[T J(UJUKι)IK 7→ T JEJEK(UJUKι)]K




=


(UJUKι↑1),

(UJUKι↑2)[(UJUKι↑1)I 7→ EJEK(UJUKι)]




// by Lem. B.1(1)

= updateStore (UJUKι)
(lookupEnv(UJUKι) I)
(EJEK(UJUKι))

= IJI = E;K(UJUKι)

(ii) UJIJ∗I = E;KUKι
= UJupdateStoreU (EJIKU) (EJEKU)Kι

= U

u
v

(U↑1),

(U↑2)[Fρ 7→ ((U↑2)Fρ)[EJIKU 7→ EJEKU]]




}
~ ι

=


(UJUKι↑1),

(UJUKι↑2)[T JEJIK(UJUKι)K 7→ T JEJEK(UJUKι)]K




=


(UJUKι↑1),

(UJUKι↑2)[EJIK(UJUKι) 7→ EJEK(UJUKι)]




// by Lem. B.1(1)

= updateStore(UJUKι) (EJIK(UJUKι)) (EJEK(UJUKι))
= IJ∗I = E;K(UJUKι)

246

(iii) (UJIJS1S2KUKι)
= (UJIJS2K(IJS1KU)Kι)
= IJS2K(UJIJS1KUKι) // by induction

= IJS2K(IJS1K(UJUKι)) // by induction

= IJS1S2K(UJUKι)

2

B.2 Correctness ofWLP

Lemma B.2 (Relationship ofT to T , F to F , FE to FE)

(1) T JT JT KUKι= T JT K(UJUKι)
(2) FJFJϕKUKι= FJϕK(UJUKι)

(3) FEJFEJFEKUKι= FEJFEK(UJUKι)

Proof: The three lemmas are simultaneously proved using structural induction onT , ϕ, andFE,

as shown below. LetU be({Ii ←֓ Ti}, {Fj ←֓ FEj}). (Thus,Ti = (U↑1)Ii andFEj = (U↑2)Fj.)

Let f be(ι↑2)[Fj 7→ FEJFEjKι].

(1) (i) T JT JcKUKι = T JcKι = const(c) = T JcK(UJUKι)

(ii)

lhs = T JT JIKUKι = T JlookupIdU IKι = T J(U↑1)IKι
rhs = T JIK(UJUKι) = T JIK((ι↑1)[Ii 7→ T JTiKι], f)

= lookupId((ι↑1)[Ii 7→ T JTiKι], f) I

= T J(U↑1)IKι

(iii) T JT JT1 op2L T2KUKι
= T JT JT1KU op2L T JT2KUKι
= T JT JT1KUKι binopL(op2L) T JT JT2KUKι
= T JT1K(UJUKι) binopL(op2L) T JT2K(UJUKι)

// by ind. via(1)

= T JT1 op2L T2K(UJUKι)

247

(iv) T JT Jite(ϕ, T1, T2)KUKι
= T Jite(FJϕKU, T JT1KU, T JT2KU)Kι
= condL(FJFJϕKUKι, T JT JT1KUKι, T JT JT2KUKι)
= FJFJϕKUKι ? T JT JT1KUKι : T JT JT2KUKι
= FJϕK(UJUKι) ? T JT1K(UJUKι) : T JT2K(UJUKι)

// by ind. via(1) and(2)

= FJϕ ? T1 : T2K(UJUKι)

(v) T JT JFE(T)KUKι
= T JFEJFEKU(T JT KU)Kι
= (FEJFEJFEKUKι)(T JT JT KUKι)
= (FEJFEK(UJUKι))(T JT K(UJUKι))

// by ind. via(3)

= T JFE(T)K(UJUKι)

(2) (i) FJFJ T KUKι = FJ T Kι = T = FJ T K(UJUKι)
(ii) FJFJ F KUKι = FJ F Kι = F = FJ F K(UJUKι)

(iii) FJFJT1 ropL T2KUKι
= FJT JT1KU relopL(ropL) T JT2KUKι
= T JT JT1KUKι relopL(ropL) T JT JT2KUKι
= T JT1K(UJUKι) relopL(ropL) T JT2K(UJUKι)

// by ind. via(1)

= FJT1 ropL T2K(UJUKι)

(iv) FJFJ ¬ ϕ1KUKι
= FJ ¬ FJϕ1KUKι
= ¬FJFJϕ1KUKι
= ¬FJϕ1K(UJUKι) // by ind. via(2)

= FJ ¬ ϕ1K(UJUKι)

248

(v) FJFJϕ1 bopL ϕ2KUKι
= FJFJϕ1KU boolopL(bopL) FJϕ2KUKι
= FJFJϕ1KUKι boolopL(bopL) FJFJϕ2KUKι
= FJϕ1K(UJUKι) boolopL(bopL) FJϕ2K(UJUKι)

// by ind. via(2)

= FJϕ1 bopL ϕ2K(UJUKι)

(3) (i)

lhs= FEJFEJF KUKι
= FEJlookupIdU F Kι
= FEJ(U↑2)F Kι

rhs= FEJF K(UJUKι)
= FEJF K((ι↑1)[Ii 7→ T JTiKι], f)

= lookupFuncId((ι↑1)[Ii 7→ T JTiKι], f) F

= FEJ(U↑2)F Kι

(ii) FEJFEJFE0[T1 7→ T2]KUKι
= FEJ(FEJFE0KU)[T JT1KU 7→ T JT2KU]Kι
= FEJ(FEJFE0KU)Kι[T JT JT1KUKι 7→ T JT JT2KUKι]
= FEJFE0K(UJUKι)[T JT1K(UJUKι) 7→ T JT2K(UJUKι)]

// by ind. via(1)

= FEJFE0[T1 7→ T2]K(UJUKι)

2

Theorem 4.9For any Stmts and Formulaϕ, ψ := FJϕK(IJsKUid) is an acceptableWLP formula

for ϕ with respect tos. 2

Proof: For all ι ∈ LogicalStruct,

FJψKι= FJFJϕK(IJsKUid)Kι
= FJϕK(UJIJsKUidKι) // by Lem. B.2

= FJϕK(IJsK(UJUidKι)) // by Thm. 4.4

= FJϕK(IJsKι)

249

and therefore, by Defn. 4.8,FJϕK(IJsKUid) is an acceptableWLP formula forϕ with respect to

s. 2

B.3 Correctness of the Symbolic-Composition Primitive

We now show that the meaning ofUJU2KU1 is the composition of the meanings ofU2 andU1.

Theorem 4.11For all U1, U2 ∈ StructUpdate,

UJUJU2KU1K = UJU2K ◦ UJU1K.

2 Proof: Let U2 = ({Ii ←֓ Ti}, {Fj ←֓ FEj}); let Ik andFm range overId andFuncId, respec-

tively; and letι ∈ LogicalStructbe an arbitrary logical structure.

UJUJU2KU1Kι

= U

u
v

(U1↑1)[Ii 7→ T JTiKU1],

(U1↑2)[Fj 7→ FEJFEjKU1]




}
~ ι

= U

u
v

{Ik 7→ ((U1↑1)[Ii 7→ T JTiKU1])Ik},

{Fm 7→ ((U1↑2)[Fj 7→ FEJFEjKU1])Fm}




}
~ ι

=


(ι↑1)[Ik 7→ T J((U1↑1)[Ii 7→ T JTiKU1])IkKι],

(ι↑2)[Fm 7→ FEJ((U1↑2)[Fj 7→ FEJFEjKU1])FmKι]




=

(
(ι↑1)[Ik(6=i) 7→ T J(U1↑1)IkKι][Ii 7→ T JT JTiKU1Kι],
(ι↑2)[Fm(6=j) 7→ FEJ(U1↑2)FmKι][Fj 7→ FEJFEJFEjKU1]Kι

)

=

(
(ι↑1)[Ik(6=i) 7→ T J(U1↑1)IkKι][Ii 7→ T JTiK(UJU1Kι)],
(ι↑2)[Fm(6=j) 7→ FEJ(U1↑2)FmKι][Fj 7→ FEJFEjK(UJU1Kι)]

)

// by Lem. B.2

=


((UJU1Kι)↑1)[Ii 7→ T JTiK(UJU1Kι)],

((UJU1Kι)↑2)[Fj 7→ FEJFEjK(UJU1Kι)]




= UJU2K(UJU1Kι)

2

