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ABSTRACT

As computers have become a pivotal component of daily lies)puter safety, reliability, and
security issues have become enormously important. A ceraide amount of recent research in
program analysis and software engineering has been cauiszh techniques and tools for finding
software bugs and security vulnerabilities, and on chegkiomputer-safety properties. Most of
this research has focused on analyzing source code. Rgcestthine-code analysis has begun
to receive great attention both because source code is oftavailable and because there can be
mismatches in various ways between source code and the meawbile generated from the source

code.

The tools and techniques for analyzing machine code areajngiple, language-independent.
However, their implementations are often tied to one speiBtruction set. Retargeting them to
another instruction set can be an expensive and error-pgrooeess. This dissertation describes
a system that | developed, call@&L (for “ TransformerSpecificationLanguage”) that provides
a systematic solution to the problem of creating retardet&dwls for analyzing machine-code.
The TSL system is a meta-tool, or tool generator, that automayicakates different abstract
interpreters for machine-code instruction sets. The sysiddresses the problem of supporting
multiple instruction sets by providing MACC-like mechanism for creating key components of
machine-code analyzers. TRSL system takes a single, unified description of the concrete op

erational semantics of an instruction set, which is spetifieTSL, a strongly typed, first-order
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functional language, and automatically creates impleatents of different abstract interpreters

for the given instruction set.

TSL provides a fixed set of base-types and operators, as wellgypas with map-access and
(applicative) map-update operations. Th&L compiler generates a common intermediate repre-
sentation that allows the meanings of the input-languagstoacts to be redefined by supplying
alternative interpretations of the base-types, map-typed the operations on them (“semantic
reinterpretation”). Because all the abstract operatioesdafined at theneta-level a semantic
reinterpretation is independent of any given instructiendefined inTSL. Therefore, each imple-
mentation of an analysis component’s driver serves as tbhbanging driver for use in different
instantiations of the analysis component for differentrinstion sets. Th@SL language becomes

the specification language for retargeting that analysispmnent to different instruction sets.

As an application of th@SL system, we developed a novel way of applying semantic neinte
pretation to automatically create symbolic-analysis ftiiras for symbolic evaluation, weakest-
liberal precondition, and symbolic composition. Furtherm using therSL system, as well as
the TSL-generated symbolic-analysis primitives, we developedaahime-code verification tool,
calledMCVETO, and a concolic-execution-based program-exploratioh tadled BCE.

e MCVETO addresses a large number of issues that arise when dewgloyidel-checking
tools for machine code, for which standard techniques ussdurce-code model-checking
tools would be unsound if applied to machine code.

e What distinguishes the work dCE is that it makes use of control-dependence information

to make program exploration goal-directed toward a givemb&argets.



Chapter 1

Introduction

As computers have become a pivotal component of daily lis@s\puter safety, reliability, and se-
curity issues have become enormously important. To addnese issues, a considerable amount
of research has been carried out recently in the programiaimguage and software-engineering
communities on techniques for finding software bugs andrégawlnerabilities, and on checking
computer-safety properties. This work has led to a largebmmof program-analysis techniques
and tools. Essentially all of the results described in therdture are, in principle, language-
independent; however, their implementations are oftehttieone specific language. Retargeting
them to another language (as well as implementing a new sisdlyr the same language) can be
an expensive and error-prone process. For machine-codgsasaghaving a language-dependent
implementation is even worse than for source-code analysesuse instruction sets usually con-
tain several hundred kinds of instructions, and a givermiesion set often has special features not

found in other instruction sets.

This dissertation describes a system that | developededdllSL (for “Transformer
SpecificationLanguage”), which helps in the creation of tools for analgamachine code. The
TSL system is a meta-tool, or tool generator, that automagicakates different abstract inter-
preters for machine-code instruction sets. The systeneadds the problem of supporting multiple
instruction sets by providing #ACC-like mechanism for creating key components of machine-
code analyzers. Th&SL system takes a single, unified description of the concreezational
semantics of an instruction set, and automatically creagdementations of different abstract

interpreters for the given instruction set.



An instruction set’s concrete semantics is specified3n’s input language, which is a strongly
typed, first-order functional language with a datatyperdtdin mechanism for defining recursive
datatype, plus deconstruction by means of pattern matchivigting a TSL specification for an
instruction set is similar to writing an interpreter in fustder ML.

TSL provides a fixed set of base-types and operators, as wellggypas with map-access and
(applicative) map-update operations. Froif&L specification, th&SL compiler generates a com-
mon intermediate representaticd@IR) that allows the meanings of the input-language constructs
to be redefined by supplying alternative interpretationthefbase-types, map-types, and the oper-
ations on them (“semantic reinterpretation”). Becauséhallabstract operations are defined at the
meta-level semantic reinterpretation is independent of any givetrueton set defined iTSL.
Therefore, each implementation of an analysis compondritsr serves as the unchanging driver
for use in different instantiations of the analysis compune different instruction sets. THESL
language becomes the specification language for retaggigtat analysis component for different
instruction sets. Thus, to crealé x N analysis components, tHesSL system only required/
specifications of the concrete semantics of an instructoresidV analysis implementations, i.e.,

M + N inputs to obtainV/ x N analysis-component implementations.

Applications. As one application of th@SL system, we developed a novel way of applying
semantic reinterpretation to automatically create symckamhalysis primitives for symbolic eval-
uation, weakest-liberal precondition, and symbolic cosifan (see Chapter 4). Furthermore,
using theTSL system, as well as tHESL-generated symbolic-analysis primitives, we developed a
machine-code verification tool, call&@CVETO (§5.1), and a concolic-execution-based program-
exploration tool, calleBCE (§5.2).

e MCVETO addresses a large number of issues that arise when dewglomdel-checking
tools for machine code, for which standard techniques ussdurce-code model-checking
tools would be unsound if applied to machine code. Thesedsd(i) the absence of pre-built
control-flow graphs and call graphs; (ii) the absence of rdata, such as information about

variables, types, and aliasing; (iii) the absence of a fixsmbaiation between addresses and



instructions (e.g.jnstruction aliasingand self-modifying code and (iv) extensive use of
arithmetic on addresses in machine code.
e What distinguishes the work dCE is that it makes use of control-dependence information

to make program exploration goal-directed toward a givemb&argets.

The remainder of this chapter is organized as folloy:1 discusses the challenge of software
defects. §1.2 discusses a few of the approaches in the program-asaitesature that address
the problem of software defect$1.3 focuses on machine-code analysis and the challenges in
implementing machine-code analysgs.4 presents an overview of tA&L system 1.5 provides

a short description of many of the applications to which léappliedTSL. §1.6 presents the

organization of the dissertation and the contribution aheehapter.

1.1 The Challenge of Software Defects

Computers are pervasive in modern life, and are pivotal aompts in a wide range of con-
texts, such as (to name just a few) financial systems, powsterss, manufacturing systems,
asset-management systems, health-care systems, and niaay systems (e.g., nuclear reac-
tors, weapons systems, and aircraft collision-avoidagsgems). Computer-safety, reliability, and
security issues have become enormously important becaditseare defectandsecurity vulnera-
bilities in computer systems can have severe consequences.

Software defects (bugs) and violations of computer-sgietperties can cause critical failures
(e.g., computer-system crashes) or other serious failaraxomputer system (e.g., malfunctions
due to mis-computations), which can result in severe darbatfein financial terms and even in
lives lost. We will mention just two cases of software bugat thad extreme consequences. For
instance, in 1996, some problems with a rocket-launch soéwystem caused a rocket that was
set to deliver a payload of satellites into Earth orbit ton@éits path right after launch and self-
destruct. This accident caused a loss of more than $37@®m[Bi]. In one deadly incidentin 1994
in Scotland, a system error caused a Chinook helicopteatshciand all 29 passengers were killed

[1].



Creating a correct and reliable computer system is becomtrgmely difficult. As computer
systems become more and more complex, even experiencehsdfievelopers are prone to in-
troducing bugs into their products; therefore, the potdtitir damage of the kind mentioned above
continues to be a serious problem.

A security vulnerability in a software component is a flawttban possibly be exploited by
an adversary to create or install malware (such as viruseeng; Trojans, bots, or back doors)
or spyware; for conducting illegitimate activities, suchdamaging and disrupting victims’ com-
puters; stealing confidential information, including passls, credit-card numbers, and personal
information; destroying important data; and even takingtoa of a compromised computer.

Annual worldwide economic damages from malicious softwamalware) exceed $13 billion
according to a survey conducted by Computer Economics i@ 28ailable in the 200alware
Report: The Economic Impact of Viruses, Spyware, AdwarteBs, and Other Malicious Code
[2]). This amount includes only direct damages, such asdbssvenue due to loss or degraded
performance of systems, labor costs to analyze, repair Eahge infected systems, and loss of
user productivity. Total damages would be substantialbréased when indirect damages are
considered.

Anti-malware technology is fairly effective in defendingaanst many types of malware threats.
However, traditional signature- and heuristic-based-aratiware technologies are often easily
evaded, and thus no longer enough because there has beanfiaasig increase in the number
of zero-day attackf22]. Zero-day attacks exploit security vulnerabilitibst are unknown to oth-
ers (including the original software developer), and foliahihno security fix is available at hand.
Therefore, it becomes more important to detect and fix sgcutilnerabilities before software

products are deployed, or before an adversary can expkiit tio attack computer systems.

1.2 Program-Analysis Approaches

Program-analysis technology provides a promising apprdacaddressing the problems of
finding bugs and security vulnerabilities, and for validgtisoftware systems. A considerable

amount of recent research in the programming-languagesaihdare-engineering communities



has led to techniques for (i) finding bugs, (ii) finding setuxiulnerabilities, and (iii) checking
computer-safety properties. In these tools, program amabjonservatively answers the question
“Can the program reach a bad state?”. Although one cannoérmaalabsolute distinction among
those areas, which are closely related to each other, sothe oflated work in these areas can be
summarized as follows:

e Finding bugs/generating test casd3ART (Directed Automated Random Testing) is a tool
for automated testing [93]. To detect bugs that can causgrgmo crashes and assertion
violations,DART uses a combination of concrete execution and symbolic ¢xecto sys-
tematically explore a program’s state space. It uses syimbgécution to find inputs that
direct execution along alternative paths.

CBI (Cooperative Bug Isolation) is a feedback-directed apghaa finding bugs [124]. In-
strumented applications are deployed to the general puiictthen some statistical methods
are applied to mine returned data for information about oaaises of failures.

There are several other analysis tools for bug-finding astdgeneration [52, 104, 119].

¢ Finding security vulnerabilitiesBOON [181] is a static-analysis technique for determining
whether a C program can index an array outside its bounds. aC[38] is a type-based
analysis tool that provides a lightweight, practical matbhm for specifying and check-
ing properties of C programs. It uses type qualifiers to perftaint analysis, and detects
format-string vulnerabilities in C programs. Eau Claird]& a tool for finding common se-
curity problems like buffer overflows, file-access race dbads, and format-string bugs. It
uses a theorem prover to create a general specificatiorkicigegtamework for C programs.
Livshits proposed a static-analysis technique for datgctecurity vulnerabilities that stem
from unchecked input in Java applications [130]. There axemal other analysis tools for
finding security vulnerabilities [37, 122].

e Checking safety propertiesdavelund et al. presented a system called Java PathFinder, a
model-checker for Java bytecode programs [100]. Ball eteVeloped the Static Driver
Verifier (SDV), which analyzes device-driver source codalé&bermine whether there is a

path in the driver that violates a kernel API usage rule [AVMOPS uses model-checking



techniques to check certain kinds of security propertegsgsented as a finite-state automata
[63]. There are many other analysis tools in this space [3,/76, 102, 186]. These tools are
based orstatic analysiswhich is used to determine a conservative answer to thetiques

“Can the program reach a bad state?”

These tools all focus on analyzisgurce codevritten in high-level languages, such as C, Java,
etc. However, the problem of analyzimgachine codéo find bugs and security vulnerabilities,
and to recover other information about their execution props, has been receiving increased
attention for the following reasons:

e Computers do not execute source code. Instead, the actdaltbat a computer executes
is the machine code produced by a compiler (and an optimieam) the source code. In
the process of compiling and optimizing source code, sulatves depending on low-level,
platform-specific details, such as memory layout, can b@duiced. Consequently, there
can be various vulnerabilities that areisiblein the original source code. Also, programs
may be modified to insert malicious code. Balakrishnan ee&trred to such a situation as
the WYSINWY X phenomenor/hatY ou Seel sNot WhatY ou eXecute) [38, 39, 41].

e Source code is often unavailable to analyze. For instancenrercial-Off-The-Shelf
(COTS) applications are typically delivered as strippecchmae code (i.e., neither source
code nor symbol-table/debugging information is provided)so, malicious code such as
bots and backdoors are in binary form and no source code éon ik available.

e A program can be written in more than one language, which ¢icatps the lives of develop-
ers of source-level tools. Also, when a program contairnieéal assembly code, source-code
analysis typically either ignores that part or does not phstanalysis beyond it, which can
make the results of the analysis unsound.

e Analyses based on source code typically make uncheckeohasisms, e.g., that the program
is ANSI-C compliant. This often means that an analysis de¢socount for behaviors that
are allowed by the compiler (e.g., arithmetic is performedoointers that are subsequently
used for indirect function calls; pointers move off the enfisrrays and are subsequently

dereferenced; etc.).



In these situations, the availability of good source-lemahlysis tools is irrelevant; instead, one

needs tools capable of analyzing machine code.

1.3 Machine-Code Analysis

The aforementioned issues that arise when analyzing s@ode disappear when analyzing
machine code. Furthermore, machine-code analysis hadtfamiage that it can provide more
accurate information than a source-level analysis canusegdor many programming languages,
certain behaviors are left under-specified by the semaniicsuch cases, a source-level analysis
must account for all possible behaviors, whereas an asabfsnachine code generally only has
to deal with one possible behavior, namely, the one for thiee @@quence chosen by the compiler.
Chapter 2 discusses machine-code analysis in more detail.

There have been several specialized analyses of machiredes@loped to identify aliasing
relationships [80], data dependences [36, 70], targetsdifeact calls [79], values of strings [68],
bounds on stack height [159], and values of parameters amchnrealues [190].

In contrast to such specialized analyses, BalakrishnanRaps [38, 41] developed ways to
address all of these problems by means of an analysis thadvdiss an over-approximation of
the set of states that can be reached at each point in thetakéew-where astate meansall
of the components of a state: values of registers, flags, lmddntents of memory. Moreover,
their approach is able to be applied to stripped executdbtesneither source code nor symbol-

table/debugging information need be available).

Challenges in implementing machine-code analysis.Machine-code analysis presents many
new challenges. For instance, at the machine-code levehameis one large byte-addressable
array, and an analyzer must handle computed—and possibhalgned—addresses. It is crucial
to track array accesses and updates accurately; howeeediagk is complicated by the fact that
arithmetic and dereferencing operations are both pergasnd inextricably intermingled. For
instance, if local variable is at offset 42 from the activation record’s frame pointer (regiséep),

an access or would be turned into an operandbp—12]. Evaluating the operand first involves



pointer arithmetic (¢bp—12") and then dereferencing the computed addres$’[On the other
hand, machine-code analysis also offers new opportunitiggarticular, the opportunity to track
low-level, platform-specific details, such as memory-latyeffects. Programmers are typically
unaware of such details; however, they are often the sodregpboitable security vulnerabilities.

Many of the algorithms used in software model checkers tloakwn source code [47, 49, 102]
would be unsound if applied to machine code. For instanderdetarting the verification pro-
cess propeiSLAM [47] andBLAST [102] perform flow-insensitive (and optionally field-setnss)
points-to analysis. However, such analyses often makewnsassumptions, such as assuming
that the result of an arithmetic operation on a pointer abu@mains inside the pointer’s original
target. Such an approach assumes—without checking—thagtrtsgram is ANSI C compliant,
and hence causes the model checker to ignore behaviorg¢hat@aved by some compilers (e.g.,
arithmetic is performed on pointers that are subsequestig dor indirect function calls; pointers
move off the ends of structs or arrays, and are subsequeetgfatenced). A program can use
such features for good reasons—e.g., as a way for a C prograimtilate subclassing [172]—but
they can also be a source of bugs and security vulnerabilitie

Although techniques developed in prior work on machineecatalysis are, in principle,
language-independent, they have typically only beenimistizzd for one instruction set (mostly the
Intel IA32 instruction set). This situation is actually typical of nmwork on source-code program
analysis, too: even though the techniques described intdrature are, in principle, language-
independent, their implementations are often tied to aiBpéanguage or intermediate represen-
tation. This state of affairs reduces the impact that goedsddeveloped in one context have in
other contexts. The situation is more serious for low-lemstruction sets, because (i) instruction
sets usually contain several hundred instructions, apthére are a variety of architecture-specific

features that are incompatible with other architectures.

1.4 Transformer Specification Language TsL)

To address the issues mentioned above, my work has aimedvidlea systematic way of im-

plementing analyzers that work on machine code. As part ofgagarch, | developed a language



for specifying the semantics of an instruction set, alondp\&irun-time system to support dynamic
analysis, static analysis, and symbolic analysis of exdxes written in that instruction set. This
work advances the state of the art because it allows muléipddysis components to be created
automatically from a single specification of the concreterapional semantics of the language to
be analyzed. The system, call€gL (for “ TransformeiSpecificationLanguage”), has two classes
of users: (1) instruction-set-specificatids$) developers and (2) analysis developers. The for-
mer are involved in specifying the semantics of differerstinction sets; the latter are involved in
extending the analysis framework. In designirsl, we were guided by the following principles:

e There should be a formal language for specifying the semsufi the language to be an-
alyzed. Moreover|SS developers should specify only the abstract syntax and aretsn
operational semantics of the language to be analyzed—ewhzar should be generated
automatically from this specification.

e Concrete syntactic issues—including (i) decoding (magehinde to abstract syntax), (ii)
encoding (abstract syntax to machine code), (iii) parsgsgmbly (assembly code to abstract
syntax), and (iv) assembly pretty-printing (abstract aynio assembly code)—should be
handled separately from the abstract syntax and concretargies:

e There should be a clean interface for analysis developespdoify the abstract semantics
for each analysis. An abstract semantics consists oft@npretation an abstract domain
and a set of abstract operators (i.e., that performs absttacpretations of the operations of
TSL).

e The abstract semantics for each analysis should be segdrabe the languages to be an-
alyzed so that one does not need to specify multiple versabasm abstract semantics for

multiple languages.

Each of these objectives has been achieved i 8iesystem: Th SL system translates tHesL
specification of each instruction set to a common interntedi@presentationGIR) that can be

used to create multiple analyzers. Each analyzer is spe@ifithe level of the meta-language (i.e.,

1The translation of the concrete syntaxes to and from alistyatax is handled by a generator tool, callSAL
for Instruction Set Architecture Language, which is sefaflom TSL. ISAL was developed by GrammaTech [13].



10

by reinterpreting the operations ©5L), which—by extension td SL expressions and functions—

provides the desired reinterpretation of the instructiohan instruction set.

Client Analyzer

N Analysis Components

interplnstr, interpinstr, interplnstry

M Instruction-Set Specifications

Figure 1.1 The interaction between th6L system and a client analyzer. The grey boxes
represenff SL-generated analysis components.

The TSL system provides two dimensions of parameterizabilityfedént instruction sets and
different analyses. Eadi$S developer specifies an instruction-set semantics, and aaallysis
developer defines an abstract domain for a desired analygigvimg an interpretation (i.e., the
implementations of SL basetypes, basetype-operators, and map-access/updetieris). Given
the inputs from these two classes of users, T8& system automatically generates an analysis
component. Thus, to creald x N analysis components, ti&L system only required/ speci-
fications of the concrete semantics of instruction sets,/rahalysis implementations (Fig. 1.1),

i.e., M + N inputs are used to obtail¥ x N analysis-component implementations.

Many for the price of one! In Fig. 1.1, once one has thié analysis implementations that are the
core of some client analyzef, one obtains a generator that can create different versigig,,
A/M,, ...atthe cost of writing specifications of the concrete @etics of instruction set&/;, M,,
etc. Thus, each client analyzdrcreated using analysis components generated Siaacts as a

“YACC-like” tool for generating different versions of automatically.
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S1:x=x DY,
52:Y =T DY;
S3: =2 DY,

Figure 1.2 Code fragment that swaps tivas;

1.4.1 Semantic Reinterpretation

TheTSL system is based on factoring the concrete semantics of adgegnto two parts: (i)
a client specification, and (ii) a semantiore The interface to the core consists of certain base
types, function types, and operators (sometimes callegnaantic algebrgl66]), and the client
is expressed in terms of this interface. This organizatienmits the core to besinterpretedto

produce an alternative semantics for subject languagé

Semantic Reinterpretation for Abstract Interpretation. The idea of exploiting such a factor-
ing comes from the field of abstract interpretation [73], vehfactoring-plus-reinterpretation has
been proposed as a convenient tool for formulating absimgatpretations and proving them to be
sound [134, 144, 148]. In particular, soundness ofehtire abstract semantics can be established
via purelylocal soundness arguments for each of the reinterpreted opgrator

The following example shows the basic principles of sentaeinterpretation in the context of
abstract interpretation. We use a simple language of as&gts, and define the concrete semantics

and an abstract sign-analysis semantics via semantierpretation.

Example 1.1 [Adapted from [134].] Consider the following fragment of artbtational semantics,

which defines the meaning of assignment statements ovexb¥esi that hold signed 32-hiht

2Semantic reinterpretation is a program-generation teghsiand thus we follow the terminology of the partial-
evaluation literature [108], where the program on whichphetial evaluator operates is called suject program
In logic and linguistics, the programming language wouldchéled the “object language”. In the compiler
literature, an object program is a machine-code prograndywed by a compiler, and so we avoid using the term
“object programs” for the programs th&EL operates on.
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values (whereb denotes exclusive-or):

I eld EEEXpr:::]|E1®E2|...
S eStmt:=1=F, o € State= Id — Int32

& : Expr — State— Int32

Ell]o =0l

E[EL @ Ex]o = E[Er]o & E[Es]o
7 : Stmt— State— State

I[I = Ei]o = o[l — E[E]o]

By “o[l — v],” we mean the function that acts like except that argument is mapped tov.
The specification given above can be factored into clientcmd specifications by introducing a

domainVal, as well as operatorsor, lookup andstore The client specification is defined by

xor : Val — Val — Val
lookup: State— Id — Val

store: State— Id — Val — State

& : Expr — State— Val

E[I]o = lookupo I

E[E, & Ex])o = E[E]o xor E[ Ey]o
7 : Stmt — State — State

I[I = E;]o = storec I E[E]o

For the concrete (or “standard”) semantics, the semanti isadefined by

lookupy= A\o.Al.cl

v € Valgg = Int32
storey = Aa. A\ \v.o[l — v]

Statgy = Id — Val
XOlstg = AV1.AV5.V D v

Different abstract interpretations can be defined by usihgsame client semantics, but giving

different interpretations to the base types, function $y@ad operators of the core. For example,
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09 := {x > negy — pos
o1:=1I[s1: x =x D y;]|oo = StoOreps oo « (N€Y XOkps POS) = {z — negy — pos}
o9 :=TI[s2:y =@ y;]o; = Storaps oy y (N€g XOkps POS = {z — negy — neg}

o3 :=TI[s3:x =z @ y;]|oy = Storeps o2 x (N€Y X0kpsNEY = {z — T,y — neg.

Figure 1.3 Application of the abstract transformers crédug the sign-analysis reinterpretation
to the initial abstract stai®, = {x — neg y — pos}.

for sign analysis, assuming thkit32 values are represented in two’s-complement notation, the

semantic core is reinterpreted as follows:

v € Valyps = {neg zerapos
Statgps = Id — Valyps
lookup,s = Ao Al.ol
storeps = Ao Al \v.o[l — 0]

V2

neg zero pos T

ne T ne neg T
XOlaps = AU;.AUsg. g 9 g
vy | Zerojl neg zero pos T
pos |neg pos T T

T T T T T

For the code fragment shown in Fig. 1.2, which swaps iwes, sign-analysis reinterpretation
creates abstract transformers that, given the initialrabsstater, = {r — negy — pos},

produce the abstract states shown in Fig. L13.

Semantic Reinterpretation in TSL. The mapping of a client specification to the operations

of the semantic core that one defines in a semantic reintatfme resembles a translation to a

3For the two’s-complement representatipos Xokps Neg = neg X0kys POS = negbecause, for all combinations
of values represented lposand neg the high-order bit of the result is set, which means thatréseilt is always
negative. Howevepos Xogps POS= Neg Xokps Neg= T because the concrete result could be either positive, and
zerol pos=T.
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common intermediate representatid@IR) data structure. Thus, another approach to obtaining
“systematic” reinterpretations that are similar to sentarginterpretations—in that they apply to
multiple subject languages—is to translate subject-lagguyprograms to €IR, and then create
various interpreters that implement different abstrattnpretations of the node types of tG¢R
data structure. Each interpreter can be applied to (thelxtan of) programs in any subject lan-
guagelL for which one has defined airto-CIR translator. Compared with interpreting objects of
a CIR data type, the advantages of semantic reinterpretatien fginterpreting the constructs of
themeta-languagkgare
1. The presentation of our ideas is simpler because one @vésve to introduce an additional
language of trees for representiG¢R objects.
2. With semantic reinterpretation, there is no expl€iR data structure to be interpreted. In
essence, semantic reinterpretation removes a level afprattion, and hence generated

analyzers should run faster.

1.4.2 Technical Contributions Incorporated in the TsL Compilation Process

The specific technical contributions incorporated in the pethe TSL compiler that generates

the CIR can be summarized as follows:

e Two-Level Semantics: The notion of atwo-levelintermediate language [149] has been
used to generate th@IR in a way that reduces the loss of precision that could othssrwi
come about with certain reinterpretation. To address #sse, thel' SL compiler performs
binding-time analysis [108] on th&SL specification to identify which values can always
be treated as concrete values, and which operations shoelefére be performed in the
concrete domain (i.e., should not be reinterpretéd)2.1 discusses more details of the two-
level intermediate language along with binding-time agely

e Abstract Interpretation: From a specification, thESL compiler generates@IR that has the
ability (i) to execute over abstract states, (ii) possiblyggagate abstract states to more than

one successor in a conditional expression, (iii) compasé&ratt states and terminate abstract
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execution when a fixed point is reached, and (iv) apply widgmperators, if necessary, to
ensure terminatior3.2.2 contains a detailed discussion of these issues.

e Paired SemanticsTheTSL system allows easy instantiationsgefluced productby means
of paired semanticsTheCIR can be instantiated withgairedsemantic domain that couples
two interpretations. Communication between the valuesexhby the two interpretations
may take place in th@SL base-type operators§3.2.3 discusses more details of paired

semantics.

1.5 Overview of Applications of theTsL System

The capabilities of thef'SL system have been demonstrated by writing specifications for
both thelA32 and PowerPC instruction sets, and then automatically creating a waiétanaly-
sis components from each of the specifications—includingadyic-analysis components, static-
analysis components and symbolic-analysis components &ach of the specifications. The
TSL-generated static-analysis components have been useddimpe parameterized version of
CodeSurfer/x86. That is, usingSL, one can create CodeSurfef/by writing a specification of
the concrete semantics of instruction 8€4§1.5.1). The dynamic-analysis and symbolic-analysis
components generated usihgL have been used to develop the semantic primitiyg$H(2) used
in (parameterized versions of) a model-checking tool fochimae code §1.5.3) and a concolic-

execution-based tool for analyzing bot executalbiésy(4).

1.5.1 Static-Analysis Components

The TSL system has been applied to creating the analysis compomengdoyed by
CodeSurfer/x86 [39], which is a static-analysis framewiorkanalyzing stripped x86 executables.
TheTSL-generated analysis components include value-set aagB&i41], affine-relation analy-
sis [38], def-use analysis (for memory, registers, and Jlaasd aggregate structure identification
[42].

e Value-Set Analysis(VSA). VSA is a combined numeric-analysis and pointer-analysis algo-

rithm that determines a safe approximation of the set of mimvalues and addresses that
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each register and memory location holds at each progran gdih A memory regions an
abstract quantity that represents all runtime activatemords of a procedure. To represent a
set of numeric values and addres3£3A usesvalue-ses$, where a value-set associates each
memory-region with a map from abstract locations to stridedrvals. A strided interval
represents a set of numbers with a lower bound, an upper bauadd stride [160].

o Affine-Relation Analysis (ARA). An affine relation is a linear-equality constraint betwee
integer-valued variablesARA finds all affine relationships that hold in the program, for a
given set of variables. This analysis is used to find indwuetiariable relationships between
registers and memory locations; these help in increasiagthcision oflVSA when inter-
preting conditional branches [38].

e Aggregate-Structure Identification (ASI). ASI is a unification-based, flow-insensitive al-
gorithm to identify the structure of aggregates in a progfd@]. For each instruction, the
TSL-generated analysis component generates a s&slofommands, each of which is ei-
ther a command teplit a memory region or a command tmify some portions of memory
(and/or some registers). At analysis time, a client analyyacally applies the generated
ASI-command generator to each of the instructions in the progamd then feeds the result-
ing set ofASI commands to aASI solver to refine the memory regions.

e Quantifier-Free Bit-Vector (QFBV) semantics QFBV semantics provides a way to obtain
a symbolic representation—as a formula in first-order qifianfree bit-vector logic—of an
instruction’s semantics.

e Def-Use Analysis(DUA). Def-Use analysis collects all thaefinitionsand usesof state

components (memory-locations, registers, and flags) fon e@sstruction.

These analysis components have been put together to cregistean that essentially duplicates
CodeSurfer/x86.

1.5.2 Symbolic-Analysis Components

Symbolic analysis has been an effective technique fomgstnd verifying programs because

of the power that they provide in exploring a program’s stgace. Th& SL system has been
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applied to creating implementations of the basic primgiused in certain kinds of verification
and testing tools that are based on symbolic program assalsi “symbolic program analysis”,
we mean logic-based techniques to analyze state changesiattividual program paths. This is
in contrast to the situation addressed by many abstraetgratation/dataflow-analysis techniques,
which usually consider the problem of analyzing the effaxfta collectionof program paths—
e.g., to identify program invariants. The basic primitivessed in symbolic analysis are functions
that performforward symbolic evaluatignweakest preconditignand symbolic compositioty

manipulating formulas.

The conventional approach to implementing systems thatsys#olic analysis is to write
each of the three symbolic-analysis functions by hand fergfogramming language of interest.
Our goal was to develop a method to create implementatioagrabolic-analysis primitives eas-
ily, so that they can be made available for different subl@sguages—particularly for different
machine-code instruction sets. Such instruction set#yi have (i) several hundred instruc-
tions, (ii) a variety of architecture-specific featuresttage incompatible with other architectures,
and (iii) the ability to perform address arithmetic and derencing of addresses, which means that
memory states can have complicated aliasing patterns. eQaestly, our goal was tgenerate
implementations of such primitives automatically from &afication of the subject language’s

concrete semantics.

Semantic reinterpretation for symbolic analysis. As a new application for semantic reinterpre-
tation, we created implementations of the basic primitivesd in symbolic program analysis. The
aforementioned techniques and tools in the literatureyappibolic analysis to programs writ-
ten in languages with pointers, aliasing, dereferencing, @ldress arithmetic. We demonstrate
that the reinterpretation technique provides a way to eregimbolic-analysis primitives for such
languages.

With TSL each reinterpretation is defined at tineta-level by reinterpreting the collection of
TSL base types, function types, and operators. When a reietetpon is performed in this way, it

is independent of any given subject language. Consequenthyour implementation, all three of
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the symbolic-analysis primitives can be generated auticaibt for everyinstruction set for which

one has & SL specification.

1.5.3 McVET0o: A Refinement-Based Model Checker for Machine Code

We usedl'SL to develop a model checker for machine code, call&@l/ETO (Machine€Code
VErification TOol). MCVETO usesdirected proof generatiof©8] to find either an input that
causes a (bad) target state to be reached, or a proof thaadh&tdte cannot be reached. (The third
possibility is thatMCVETO fails to terminate.) What distinguishes the work ICVETO is that
it addresses a large number of issues that have been igmopgeMious work on software model
checking, and would cause previous techniques to be unsbapdlied to machine code.

In our implementation, we restricted ourselves to use cahgliage-independent techniques.
In particular, we used a technique for generating autorayicome of the key primitives of
MCVETO’s analysis components from descriptions of an instructiet's syntax and semantics
[125, 126]—i.e., (a) an emulator for running tests, (b) antive for performing symbolic ex-
ecution, and (c) a primitive for the pre-image operator. tidition, we developed language-
independent approaches to the issues discussed abovedDently, our system acts a¥ACC-
like tool for creating versions dICVETO for different instruction sets: given an instruction-set
description, a version dfiICVETO is generated automatically. We created two such instaornist
of MCVETO from descriptions of the Intel x86 and PowerPC instructiets s

MCVETO is described in full detail in [174, 175§5.1 describes my contributionskCVETO.

1.5.4 BcE: Analyzing Bot Executables

An increasing number of computers have been compromisettégka from across the world
to become part of malicious botnets [25]. Botnets seriousigiermine computer security and
reliability by conducting illegitimate activities, sucls performing large-scale distributed denial-
of-service attacks; identity theft; sending spam, trojaml phishing emails; distributing pirated

media; and performing click fraud. Moreover, botnets caitkjy grow by using worms to attack
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vulnerable systems. During the time between an announdesharnvulnerability and a patch for
the vulnerability, the potential for bot infiltration is gexularly high.

The Internet security research community has made signtifigforts to identify botnets, to
collect data on their activities, and to develop technidoesletection, mitigation, and disruption.
Some bots try to avoid detection by using slow-spreadingctidn techniques. Some use multi-
ple levels of indirection to make it harder to understandlibtnet’s structure. There have been
several techniques to detect bots by monitoring netwofkidr obtain temporal/spatial behavior
statistics. Network-based and behavior-based approdawesseveral drawbacks: the approaches
are (i) costly (runtime overhead to monitor network trafipace overhead for storing packet logs,
etc.), (ii) easily evaded, and (iii) not able to recover tihricture of a botnet. Some detection
techniques rely on well-known bot communication signatueelot of bot code is reused, and thus
the commands and authentication mechanisms are widelyrknblewever, attackers can easily
modify the command-and-control language used by their tmotaise the bar for detection and
control.

Using theTSL system, we have developed a tool calBdE for extracting botnet-command
information from bot executable®BCE aims to provide useful information from analysis of bot
executables by automatically extracting proper inputsttigger malicious behavior. Applications
of the information recovered include observing and analyainalicious behaviors, as well as
identifying command sequences that can be used at eitheretiaeork or host level to mitigate
botnets.

A typical way to analyze the behavior of a bot is to run the exalole and observe its actions.
To carry this out, however, one needs proper inputs thagergnalicious behaviors. Some widely
known commands are often used for this purpose. Howevaclkats can easily change their com-
mands to evade such an approach. Itis a hard problem to cghteiminputs by manually stepping
through the executabl&CE automates the extraction of information about botnet condsgand
the arguments to commands, by driving the bot executablartbplaces where system calls are
invoked.

In §5.2, we presenBCE in detalil.



20

1.6 Contributions and Organization of the Dissertation

The specific technical contributions of our work, along wvitie organization of the dissertation,
are summarized as follows:

In Chapter 2, starting off the discussion on the advantagesachine-code analysis over
source-code analysis and the challenges of machine-cadgsas) we introduce CodeSurfer/x86
followed by an overview of two applications to which | appli€odeSurfer/x86-+FE/x86 and
ConSeq. Lastly, we discuss the motivation for the main contribntaf the dissertation, namely
the TSL system.

In Chapter 3, we present thesL system in detail. TSL will be presented from two perspec-
tives: (i) how to write aTSL specification (from the point of view of instruction-setegjfication
developers), and (ii) how to write domains for (re)intetprg the TSL base-types (from the point
of view of analysis developers). We also summarize the aegptins to whichTSL has been
used, including various static-analysis components thatichte the hand-written ones used in
CodeSurfer/x86, and discuss the leverage that we obtamedghTSL.

In Chapter 4, we discuss the techniques that we developedttomatically create three
symbolic-analysis primitives, and describe how &L system was used for that purpose. In
particular, we show how semantic reinterpretation can lptieqgh to create analysis functions that
compute formulas for forward symbolic evaluation, weak@stondition, and symbolic composi-
tion.

In Chapter 5, we present case studies, includfiy/’ETO, a model-checking tool for machine
code, which uses the symbolic-analysis primitives geedr&iom theTSL system, andBCE, a
concolic-execution-based application, which extracterimation about botnet commands from
bot executables.

We present our conclusions in Chapter 6.
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Chapter 2

Machine-Code Analysis

Computers do not execute source code; they execute maohileegenerated from source
code by the combined efforts of the compiler, the optimiaed the linker. The compiler and the
optimizer make certain choices when generating machine,abepending on the target platform;
therefore, there can be mismatches in various ways betwéen i actually executed on the
processor and what a programmer really intends in her sozwde. Balakrishnan et al. refer
to such a phenomenon Y SINWY X“What You See Is Not What You eXecute”) ([41], [45] and
[40, §1]).

The following example (obtained from [38]) shows a secuvitynerability introduced due to
theWYSINWY>phenomenon:

memset (password, 0, len);

free(password) ;

The password in clear text is stored in a dynamically-aledduffer. Because the password is
sensitive information, to minimize the lifetime of the passd, the programmer tries to zero-out
the buffer by callingnemset before returning it to the heap by callifgee. However, thenemset
call might be eliminated by a compiler that performs usel@ss$e elimination, based on the rea-
soning that the program never uses the value written by themrahat function. Unfortunately, if
this happens, sensitive information would be exposed iméap.

As the above example illustrates, various vulnerabilitaa be introduced by the compiler
and the optimizer due to the idiosyncrasies inherited fromyaiad of platform-specific features

and various artifacts of the compiler and optimizer. Themtuide (i) memory-layout details (i.e.,
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offsets of variables in the run-time stack activation relsoaind padding between fields of a struct),
(ii) register usage, (iii) execution order, (iv) optimikats, and (v) artifacts of compiler bugs.
Many security exploits make use of such artifacts [105, 186% thus the target program can be
executed by an attacker so that it operates differentlyi(moaisly) from what is really intended by
the programmer.

Such security vulnerabilities can escape the notice ofttwht work on intermediate repre-
sentations (IRs) that are built directly from the sourcee;oshereas they are visible to analysis
tools that work on machine code. In addition, there are a rrmabreasons why analyses based
on source code do not provide the right level of detail forakneg certain kinds of properties, and
machine-code analyses do. Moreover, many issues arise arfayzing source code disappear
when analyzing machine code: although Balakrishnan eta&k largued at length with examples
the benefits of analyzing machine code rather than source tof#1], [45] and [40,§1], we
summarize them in the following list:

e Source-level tools are only applicable when source codesadladle, which limits their
usefulness in security applications (e.g., to analyzingecdownloaded from the web or
commercial off-the-shelf (COTS) applications, whose sewode is usually unavailable).
In particular, source-level tools cannot be applied to yiaf viruses and worms. Most
applications are distributed as executables that have mbalytable/debugging informa-
tion (“stripped executables”). Although symbol-tabldddgging information can be used to
adapt source-level analysis techniques to work on mactode ¢when source code is un-
available), most analysis techniques are severely hampeinen symbol-table/debugging
information is absent.

e Even if source code is available, as discussed earlier, stanial amount of information is
hidden from analyses that start from source code, which aasebugs, security vulnerabil-
ities, and malicious behavior to be invisible to such toMsreover, a source-code tool that
strives to have greater fidelity to the program that is atyuedecuted would have to duplicate
all of the choices made by the compiler and optimizer; sucamoroach would be extremely

complicated to carry out. As alternative approach woulddoese a compiler infrastructure,
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such ad_LVM [26] or GCC [12], that supports multiple compilers/optimizers. Suchagp-
proach would allow a source-code analysis tool to analyeeeffects caused by compiler
artifacts, but only for code created via the compiler infirasture on which the analyzer is
based. To make an analyzesmprehensivéy mimicking multiple compilers/optimizers
would require following such an approach for each possiblapiler infrastructure—some
of which are proprietary (e.g., the Microsoft Visual Studiompilercl). In contrast, ana-
lyzing machine code directly provides a comprehensivetsmiu each run of the analyzer
would give an answer for the machine-code program to whichapplied, but such an an-
alyzer can be applied to machine-code programs producexhipgompiler infrastructure,
not just a particular one.

Programs are sometimes modified subsequent to compilatignto perform optimizations
or insert instrumentation code [182] or [112, 176]. Such ifications are not visible to
tools that analyze source code.

Machine-code analysis has an advantage that behavioralswerived from machine code
can bemore accuratethan models derived from source code (particularly becaase-
pilation, optimization, and link-time transformation cahange how the code behaves).
Also, certain choices that the compiler and optimizer made eliminate some possible
behaviors—hence there is sometimes the opportunity tarobtare precise answers from
machine-code analysis than from source-code analysis.

Analyses based on source code typically make (uncheckedjrgions, e.g., that the pro-
gram is ANSI-C compliant. This often means that an analysisschot account for be-
haviors that are allowed by the compiler (e.g., arithmetiperformed on pointers that are
subsequently used for indirect function calls; pointerssenoff the ends of arrays and are
subsequently dereferenced; etc.).

Programs typically make extensive use of libraries, intigddynamically-linked libraries
(DLLs), which may not be available in source-code form. Tgatly, analyses are performed
using code stubs that model the effects of library calls.aBee these are created by hand,

they are error-prone, and thus the analysis can returniiecoresults. Because library code
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can be analyzed directly in machine-code analysis, it i;ieoessary to rely on potentially-
unsound models of library functiors.

e The source code may have been written in more than one laegiiaigs complicates the life
of designers of tools that analyze source code becausegiedétnguages must be supported,
each with its own quirks.

e Even if the source code is primarily written in one high-le\aguage, it may contain in-
lined assembly code in selected places. Source-level typisally either skip over inlined
assembly code [36] or do not push the analysis beyond sitedioéd assembly code [4].
Even if the source code was written in more than one languatpsl that analyzes executa-
bles only needs to support one language. Instructionstetséecause of inlined assembly
directives in the source code are visible, and do not neee tiodated any differently than
other instructions.

e An additional class of examples for which analysis of an aekagle can provide more ac-
curate information than a source-level analysis arisealmss, for many programming lan-
guages, certain behaviors are left unspecified by the sérsaht such cases, a source-level
analysis must account for all possible behaviors, wheraaalysis of an executable gen-
erally only has to deal with one possible behavio—namélg,dne for the code sequence
chosen by the compiler. For instance, in C and C++ the ordarhich actual parameters
are evaluated is not specified: actuals may be evaluatetblefyht, right-to-left, or in some
other order; a compiler could even use different evaluatiners for different functions.
Different evaluation orders can give rise to different bebes when actual parameters are
expressions that contain side effects. For a source-laadysis to be sound, at each call
site it must take the union of the descriptors that resulhfemalyzing each permutation of
the actuals. In contrast, an analysis of an executable adgsto analyze the particular

sequence of instructions that lead up to the call.

I'Machine-code analysis givegatform-specifi@answers. Models can be beneficial in obtaining answers fipgy a
to multiple platforms by providing an answer relevant tolibltary versions that conform to the model.
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2.1 Challenges in Machine-Code Analysis

Even though the advantages of analyzing executables areaged and well-understood,
because of the obstacles standing in the way of doing a gdoadfjmachine-code analysis, there
are a dearth of tools that work on executables directly. Camegb with source-code analysis,
analysis of stripped executables presents many challergedifficulties, including

e absence of information about variablds: stripped executables, no information is provided
about the program’s global and local variables.

e asemantics based on a flat memory modléith machine code, there is no notion of separate
“protected” storage areas for the local variables of défgrprocedure invocations, nor any
notion of protected fields of an activation record. For ins& a procedure’s return address
is stored on the stack; an analyzer must prove that it is notipted, or discover what new
values it could have.

e absence of type informationn particular, int-valued and address-valued quantities are
indistinguishable at runtime.

e arithmetic on addresses is used extensivilgreover, numeric and address-dereference op-
erations are inextricably intertwined, even during simgberations. For instance, consider
the load of a local variable, located at offset12 in the current activation record, into reg-
istereax: mov eax, [ebp-12].2 This instruction involves aumericoperation ébp-12) to
calculate an address whose value is thereferenced [ebp-12]) to fetch the value of,

after which the value is placed #ax.

2For readers who need a brief introduction to the 32-bit Ir88 instruction set (also called 1A32), it has six 32-bit
general-purpose registersafx, ebx, ecx, edx, esi, andedi), plus two additional registersbp, the frame pointer,
andesp, the stack pointer. By convention, registerx is used to pass back the return value from a function call.
In Intel assembly syntax, the movement of data is from rigHeft (e.g.,mov eax,ecx sets the value ofax to the
value ofecx). Arithmetic and logical instructions are primarily twadress instructions (e.gdd eax, ecx performs
eax := eax + ecx). Anoperand in square brackets denotes a dereferencgf{e. a local variable stored at offset
-12 off the frame pointeov [ebp-12],ecx performsv := ecx). Branching is carried out according to the values
of condition codes (“flags”) set by an earlier instructiorr fhstance, to branch tbt wheneax andebx are equal,
one performgmp eax,ebx, which set<F (the zero flag) to 1 ifeax — ebx = 0. At a subsequent jump instruction
jz L1, control is transferred to1 if ZF = 1; otherwise, control falls through.
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e instruction aliasing: Programs written in instruction sets with varying-lengtistructions,
such as x86, can have “hidden” instructions starting attjwos that are out-of-registration
with the instruction boundaries of a given reading of anringfon stream [128].

¢ self-modifying code:With self-modifying code there is no fixed association betwean

address and the instruction at that address.

Standard approaches to source-code analysis assume fiadh aeformation is available—or at
least obtainable by separate analysis phases with limtedactions between phases, e.g.,

e a control-flow graph (CFG), or interprocedural CFG (ICFG)

a call graph

a set of variables, split into disjoint sets of local and glokariables

a set of non-overlapping procedures

type information

e points-to information or alias information
The availability of such information permits the use of teicjues that can greatly aid the analysis
task. For instance, when one can assume that (i) the progkamables can be split into (a) global
variables and (b) local variables that are encapsulatedconaeptually protected environment,
and (ii) a procedure’s return address is never corruptealyaars often tabulate and reuse explicit
summaries that characterize a procedure’s behavior.

Source-code analysis tools often use separate phasegofr(i-to/alias analysis (analysis of
addresses) and (ii) analysis of arithmetic operationsaBse numeric and address-dereference op-
erations are inextricably intertwined, as discussed aponky very imprecise information would
result if a machine-code analyzer used the same organizafianalysis phases. Source-code-
analysis tools sometimes also use questionable techniguels as interpreting operations in in-
teger arithmetic, rather than bit-vector arithmetic. Tladso usually make assumptions about the
semantics that are not true at the machine-code level—#pairte, they usually assume that the
area of memory beyond the top-of-stack is not part of the @tkeie state at all (i.e., they adopt the

fiction that such memory does not exist).
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2.1.1 CodeSurfer/x86

Because the problem of analyzing executables to recovernmdtion about their execution
properties has been receiving increased attention, deeeraiques for analyzing machine code
have been developed. However, much of this work has focusegecializecanalyses to identify
aliasing relationships [80], data dependences [36, 7@jeta of indirect calls [79], values of strings
[68], bounds on stack height [159], and values of parameitedseturn values [190].

In contrast to such specialized analyses, BalakrishnanRaus [38, 41] developed ways to
address all of these problems by means of an analysis thadvdiss an over-approximation of
the set of states that can be reached at each point in thetakbew-where astatemeansall of
the states: values of registers, flags, and the contents wfonye Their techniques have been
incorporated intdCodeSurfer/x8¢5].

They have primarily been concerned with the analysis opp#&d executables (i.e., neither
source code nor symbol-table/debugging information islabke), both because it is the most
challenging situation, and because it is what is needeckiodmmon situation where one needs to
install a device driver or commercial off-the-shelf applion delivered as stripped machine code.
If an individual or company wishes to vet such programs fayysecurity vulnerabilities, or ma-
licious code (e.g., back doors, time bombs, or logic bormdnslysis tools for stripped executables
are required.

Some of the main analyses incorporated into CodeSurfedga8@e summarized as follows:
VSA VSA (Value-Set Analysjsprovides useful information about memory accesses in @i ex

cutable.VSA is a combined numeric-analysis and pointer-analysis dlgarthat determines

a safe approximation of the set of numeric values or addsdbseé each register and abstract
memory location &-loc) holds at each program point. In particular, at each progpamt,
VSA provides information about the contents of registers tpaear in an indirect memory
operand; this permits it to determine the addresses thgi@emntially accessed, which, in
turn, permits it to determine the potential effects on tlaesof an instruction that contains

an indirect memory operand.
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A key feature ofVSA is that it tracks integer-valued and address-valued quessimul-
taneously. This is crucial for analyzing executables bseawmeric values and addresses
are indistinguishable at runtime.

ASI ASI (Aggregate Structure Identificatipf2] is a unification-based, flow-insensitive algorithm
to identify the structure of aggregates in a program. Whenawead or write to a part of a
memory object is encounteredSI records how the memory object is to be subdivided into

smaller objects that are consistent with the memory access.

The remainder of this chapter presents two analyzers thavéldped that made use of, and
extended, CodeSurfer/x862.2 describe&FE/x86, which is a static-analysis tool for extracting an
over-approximation of a program’s output data format frane&ecutable$2.3 describe€onSeq,
which is a consequence-oriented, backward-analysis framkefor detecting concurrency bugs.
ConSeq uses backward slicing obtained from CodeSurfer/x86 totifleshared memory reads that
might impact each potential error si§2.2 and§2.3 describe work that extended CodeSurfer/x86.
§2.4 discusses the drawbacks of that approach, and prekentssearch goals for the work on the

TSL system.

2.2 File-Format Extractor (FFE/x86)

Reverse engineering helps one gain insight into a programesnal workings. It is often
performed to retrieve the source code of a program (e.gausthe source code was lost), to
analyze a program that may be malicious (such as a virusk &diig, to improve the performance
of a program, and so forth. This section describes a revamg@eering tool that can help a human
understand what a program produces as its output.

The technique presented in this section promotes the reusengponents of a tool chain.
For example, when a software engineer wants to build a pnodhat can process the files that
a COTS software product generates, he can use our tool tinabfarmation about the format
specification, which would be useful when creating a progitsethcan act as a substitute consumer

(or producer).
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Not all reverse-engineering activities are legal. One efldgal uses of reverse engineering
is to obtain functional specifications needed for interapédity [29];® hence, the activity that our
tool carries out would generally be considered a legitinoaie.

The technique presented here might also be useful in maldetextion. For instance, when
trying to identify live versions of the same malware, one gdike to have a way to figure out the
format of its network traffic. Our technique can provide heifith this problem.

Furthermore, our technique can provide a summary of a prograehavior: it produces a
structure that consists of a reduced number of entities fewed with the call graph for instance),
which may make it easier to understand what the program rsgdoi

We first construct a hierarchical finite-state machine [14, 3] (HFSM) that represents a
preliminary format structure, as explained §8.2.3.1. However, an HFSM can be difficult to
understand, so to increase the understandability of thdtsesve experimented with the appli-
cation of several transformations (including simplificatiand regularization) to create an over-
approximation of the HFSM as an ordinary finite-state maeliifg5M), which represents a further
over-approximation of the output data format. This can bedus present the final results either

as an FSM or as a regular expression.

The contributions of the work described in this section are:
e It provides a technique for extracting an over-approximatof a program’s output data
format, including
— a way to extract a preliminary structure for the output datafat §2.2.3)
— away to elaborate the structure by annotating it with infation about possible output
values and size$2.2.4)
— a way to simplify the structure to provide greater underdtag of the output data
format §2.2.5)

This provides information that can lead to greater undaditegy of a program’s behavior.

3When a COTS (Commercial Off-The-Shelf) tool uses a proarietile format, interoperability can be inhibited:
the tool can only be used in a tool chain with a consumer oryredof files that have that format.
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o \We report experimental results from applyiR§E/x86 on three applications. Our experi-

ments uncovered a possible bugitp2ico (see [127] for details).

Although we have concentrated on the problem of extractiigut file formats from executables,
the same approach could be applied to source code (wherepaltkalso take advantage of infor-
mation about the program’s variables and their declareddyms well as to extracting input file

formats.

The remainder of this section is organized as folloy2:2.1 discusses the key observations
that inspired our work orFFE/x86 and the assumptions for our approaci.2.3 explains the
process of constructing a structure for the output data &y@nd also provides an overview of
the infrastructure on which our implementation is basé#.2.4 discusses how to elaborate the
structure generated from the first step with static analy$@s2.5 presents a series of filtering
operations for making HFSMs more understanda$ite2.6 describes how we validatE&E/x86.
§2.2.7 presents experimental resuf{2.2.8 describes related work2.2.9 describes possible future

directions.

2.2.1 Programming Styles

This section makes a few observations about programmingsstised in typical application
programs to produce output data.

Programming styles relevant to writing output data can begmized asndividual writesand
bulk writes We present different approaches tailored to handle thetater sections. (Some

programs use both styles; our tool is capable of handling puagrams, as well.)

Individual writes.  The first programming style is to write individual data iteo# separately
to a file or a network. Standard I/O functions, suchfagtsandfputcin C programs, could be
used. In practice, howevenrapper functiongend to be frequently used. Fig. 2.1(a) shows an
example of this programming style using wrapper functichgh asput_byte, put_long, and
writes. Several fields of the output, including magic numbers, $yg&es, and a checksum, are

written out by calling wrapper functions. These functiomsyide an API to append output items



[1] void put_byte(char c) { ...}

[2] void put_long(long c) { ...}

[3] void write_bytes(char* c, int n) { ...}
[4] void type () {

[5]

[6] switch(...) {

[7] case 0: put_byte(’a’); break;

[8] case 1: put_byte(’b’); break;

[9] }

[101}

[11]void chksum() {

[12]

[13] put_long(...);
[141}

[156]void fill data() {
[16]

[17] while(c) {

[18] put_byte(c);
[19]1 }

[201}

[21]void main() {

[22]

[23] put_long(magicl)
[24] put_long(magic2)

[25] write_bytes(filename, sizeof(filename));

[26] type;

[27] put_long(size);
[28] chksum();

[29] return 0;

[301}

[1]
[2]
[3]
(4]
(5]
(6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

struct header {
byte magic[2];
char name[100];
char type;
long size;
long chksum;

}

void write_file() {

struct header* h;
h = (struct header*)malloc(...);
h->magic[0] = ...;
strcpy (h->name, ...);
h->type = ...;
h->size = ...;
h->chksum = ...;
fwrite(fp, sizeof(struct icmphdr), 1, h);
write_data();
}

(@)

Figure 2.1 (a) An example that uses individual writes. (b)eXkample of a bulk write.

(b)

functions and user-defined wrapper functiongatput functions
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to an internal buffer; once the whole buffer has been fillbd,¢ontents of the buffer are flushed.
Whereas the buffer is written out in bulk, the individuallsab the wrapper functions represent

the “individual writes” referred to in our name for this styl We refer to both the standard 1/0
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An output operations an operation relevant to generating an output data abfgmcifically,
the term output operation is defined as a call site that callsuput function—either a standard
I/0 library function or a wrapper function (see lines 7, 8, 18, 23, 24, 25, and 27 in Fig. 2.1(a)).

Our experience so far is that many application programs aded in this programming style.

For instancegzip [15],* compress95 [6], andpng2ico [20] follow such a programming style.

Bulk writes. The second programming style is to usaructs or classes to manipulate headers.
Fig. 2.1(b) shows an example of using a header structure ite wutput data. A headeftruct
object is created at line 10. Each field of theruct is set to some value in lines 11-15. Finally,
at lines 16—17, the object is written out to the file in its gatil. In this programming style, calls
like the one tafwrite are the output operations.

In practice, we observed thair [24] andcpio [8] use such aggregate structures as storage in
preparation for a bulk write. We suspect that this style wdut used for more than just headers

by applications whose output files consist of a sequencecofds.

2.2.2 User-Supplied Information

In our current implementation, the user must identify thépatifunctions and supply some
additional information about them, in particular, infortima about each output-relevant parameter:
e whether it is a numeric value to be written out
e whether it is an address pointing to the memory containiegitdita to be written out
e whether it indicates how many bytes are written out
See§2.2.4.1 for more details. In the case of standard 1/O fumsticuch information is already

known.

4Because thgzip source uses macros instead of functions, output operagi@naot call sites in thgzip ex-
ecutable. This is not compatible with our approach of hatheguser identify the output operations by supplying
the names of output functions. To convgstip into an example in which output operations are visible as@tore
calls—so that it could be used for proof of concept in our expental study—we modified thezip source code to
change all output macro definitions into explicit functiodsutomatically identifying low-level code fragments that
represent output operations remains a challenging profdefature work.
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2.2.3 First step

In our approach, dierarchical Finite State Machine (HFSM3 used to represent an output
data format. An HFSM is a structure in which nesting of finitécamata within states is allowed
[34, 35]. An HFSM captures commonalities by organizingegdh such a hierarchy. Note the
following two points about HFSMs:

e The languages of paths in recursive HFSMs are exactly theexbfree languages.

e The languages of paths in non-recursive HFSMs are the nelgmguages.

» 00O
~@00000O0®0

foo bar baz

(b)

Figure 2.2 (a) An FSM, (b) A hierarchical FSM.

However, non-recursive hierarchical FSMs can be expoaliytinore succinct than conven-

tional FSMs due to sharing, as illustrated in Fig. 2.2.

2.2.3.1 Construction of an HFSM

We will use the code fragment shown in Fig. 2.1(a) to explainapproach. The code emulates
an archive utility. such as tar. It writes two magic numbé&pwed by the file’s name, layout type,
size, and check-sum, using wrapper functions. Fig. 2.4 shtsadisassembled code as generated
by IDAPro [18], a commercial disassembly toolkit.

Each procedure involved with at least one output operatigasgrise to an FSM. The pro-
gram’s wrapper functions includgeut_byte (sub_401050 in the disassembled codejut_long
(sub_401075), andwrites (sub_4010E4), and calls to these functions represent output operations

FFE/x86 finds the output operations and constructs a hierarchidgfatate machine [16, 34, 35]
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(HFSM) based on the control-flow graphs (CFGs) provided gy @odeSurfer/x86 framework
mentioned in the introduction of this chapter [5]. Our aralycreates a reduced interprocedural
control-flow graph (i.e., the HFSM) that is the projectiortiod interprocedural control-flow graph
onto enter nodes, exit nodes, call nodes, and output opegati

Fig. 2.3 shows the outcome from runniR§E/x86. Each node in the HFSM is either an output
operation (such a&11B3) or a call site (such a&011D6) to a sub-FSM (such aspe). A call-site
node, which represents a call to a sub-FSM, implicitly catsiéhe two FSMs in the HFSM.

The HFSM generated by our tool fgeip is shown in Fig. 2.5(a). Our thesis is that HFSMs
(including elaborations and refinements of HFSMs, as empthin§2.2.4 and§2.2.5) provide a
basis for gaining an understanding of the program’s bemaviothis regard, it is instructive to
compare the HFSM with the program'’s call graph, becausel@gh is another structure that a
programmer may use to gain a high-level understanding obgram.

Fig. 2.5(b) shows a part of the call graph fgetip. Gzip is composed of 114 control-flow
graphs (CFGs), 11491 CFG nodes, and 625 call sites. Eveghhine HFSM produced by our
tool appears to be quite complicated, it is substantiallg leomplicated than both the program’s
call graph and its interprocedural control-flow graph: thHeSi for gzip has 12 FSMs, 64 nodes,

and 36 call sites.

2.2.3.2 Existing Infrastructure

FFE/x86 uses intermediate representations (IRs) provided by trdeSorfer/x86 framework
(Fig. 2.6), which provides an analyst with a powerful and ite platform for investigating the
properties and behaviors of x86 executables [5]. As desdrib the introduction of this chapter,
CodeSurfer/x86 includes several static analyses, incgMEA andASI.

VSA is a combined numeric-analysis and pointer-analysis dlgarthat determines an over-
approximation of the set of numeric values and addresség#ich memory location holds at each
program point [41] ASI recovers information about variables and types, espgdi@ilaggregates,

including arrays and structs. The variables recovereti3iyare used bySA to obtain information
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4011B3 4011BE 4011D1
call sub_40107 call sub_40107' all sub_4010E
(put_long) (put_long) (write_bytes)
4011D6 4011DB 4011E6 4011EB
IR all sub_40112 all sub_401167fcall sub_401075fcall sub_4011 D
v 401140 (type) (fill_data) \“ (put_long) ’ (chksum)

all sub_401075)
(put_long)

40114D ¥ 401174 401160
all sub_401075] (el sub_401050 ‘{:}-> all sub_d010754— J-*
(put_long) (put_byte) (put_long)

Figure 2.3 The HFSM for Fig. 2.1(a). The shaded boxes sigrafis to FSMs. Dotted lines
indicate implicit connections between FSMs.

401120 sub_401120 proc near; type 401183 sub_401183 proc near; main
401120 push ebp - '

401121 mov ebg esp igﬁgz push ebp b

401123 su esp mov ebp, esp

401126 mov eax, ebp 4] 401186 sub esp, 28h

a911s2 rgr% ebp 81] eax 401189 and esp, OFFFFFFFOh
2{8::%8 iz shortloc 40113A 38%8% md%v egého

11 cm al eax,
ao11se iz P hOfpl?C 44901114572 401194 add eax, OFh
1911388 1od™R 113 SMOME l0C 401197  shr eax, 4
40113A mov eax, [ebp-4] 40119A  shl eax, 4
2118 1 25) mov esp], eax 40119D mov [ebp-14h], eax
401145 ij <hOTt 158 4011A0 mov eax, [ebp-14h]
401147 loc zP01147: - 4011A3 call sub_401200
401147 mov eax, [ebp-4] 4011A8 call __main
28 g ﬂé st Ree 4011AD  mov eax, [ebp-10h]
401152 loc_4UTI5Z: 4011BO  mov [esp], eax
218 1 g% 'r_%?Xe 4011B3 cdl__sub 401075 )

14 . 4011B8 mov eax, [ebp-0Ch]
218: ] gzl su%ﬂégllgﬁﬁroc near; chksum ;57768 oy [esp]. eax
401155 mov ebp, esp 4011BE  céll _sub_401075 )
40115/ sub esp,8 4 4011C3  mov [esp+4], 4
401120 mg‘\’, X, [eeé’x' 1 4011CB  mov eax, [ebp-8]
401160 4011CE  mov [esp], eax
2118 1 gg Ieave 4011D1 c@ll__sub 4010E4 )|

T - 4011D6 call_sub_401120 J
2118: 3 g; su% 401167g)r0c near; fill_data 4011DB oAl _sub 401167 )
218 1 g% mot\)/ espegp esp 4011E0  mov eax, [ebp-4]

13 D, 4011E3 mov [esp], eax
91188 'chrﬁgllsD [ebp-1], 0 4011E6 c4IT _SuUb 401075 )
401171 jz shortloc_401181 4011EB  call_sub 401154 )
218- ] ;g movsx  eax, egg)—( ] 4011F0 mov eax, 0

11 4011F5 leave
ﬁggé jcmp Short foc 4011F6 retn
401181 loc_401181: -

401181 [eave
401182 retn

Figure 2.4 The disassembled code for Fig. 2.1(a). Transplaxes indicate output operations,
and shaded boxes indicate calls to sub-FSMs.

about the variables’ possible values. The values recousy&$A are used bySI to identify a re-
fined set of variables. Thus, CodeSurfer/x86 rusg andASI repeatedly, either until quiescence,

or until some user-supplied bound is reached.

°If VSA andASI have not quiesced when the bound is reached, it is still safed the results from the final round
of VSA. In particular, each round 8/ SA provides an over-approximation of the set of numeric vahresaddresses
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call 40510¢ call 4056df
call 4054e6 call 4054e6

"‘
‘
| Il 40560 %

= .
=nullsub 1 e
075E8 = sub 4057F2= y! ) =sub_402330%
= = ] T
cal @‘ 04c15= [ 105308 =sub_so1202+* |
0509D: 048 % = sub_401089+
Gall 4056t Call 405641 l — aub_ |
= 6 . o= | W *stazi?|
call 4056df — 03EDD . =sub_401050%
=sub_solocz* |} =sub 401156+
- i} 1+ - 7]
40510c_ENTRY sub_401130 sub_4
= sub_401EE5* =sub_4021D
call 40564t = sub_401BB4* =sub 4
7 4059c8_ENTRY L
=sub_4

call 4056df 703050)

T call 4056d
call 4056df
cal 4056df y
D
G
all 40470e Ceall 405601 %

call 40564t
@) (b)

=sub 40308E*

=sub_4038DD%

=sub_403371%

=sub_403C7D#*

=sub_408D20

Figure 2.5 (a) The HFSM fagzip. (b) a fragment of the call graph g&ip.

IDA Pro 1 g File
Format
disassemble Extractor

Executable [P

able

i
4 1} ‘Connector
Build: I L
VSA CodeSurfer
ol g Back-end

Figure 2.6 Organization doderSurfer/x86and howFFE/x86 interacts with its components.

CodeSurfer/x86 uses an initial estimate of the progranrsbées, the call graph, and control-
flow graphs (CFGs) for the program’s procedures providedRro. IDAPro itself does not
identify the targets of all indirect jumps and indirect sathnd therefore the call graph and control-
flow graphs that it constructs are not complete. In conti@stjeSurfer/x86 uses the values that
VSA discovers to resolve indirect jumps and indirect calls, #nds is able to supply an over-

approximation to the call graph.

for each memory location, modulo the treatment of possil#enry-safety violations—some of which may be due to
loss of precision duriny SA. See [41] for more details.
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§2.2.4 discusses other ways in whi¢BA andASI can be exploited for our purposes.

2.2.4 Augmenting an HFSM with Information from Static Analy ses

In this section, we explain how to exploit the static anasysentioned ir§2.2.3.2 for elabo-

rating HFSMs.

2.2.4.1 Value Set Analysis

The HFSM generated by the method describegli2.3.1 provides some information for un-
derstanding an output format. The HFSM can be made moregerési annotating it with addi-
tional information. In particular, we wish to label each easlith information about:

¢ the size (in bytes) of the data that the node represents, and

e an over-approximation of the value written out.

void put_byte(char c) { mov  byte ptrlespl, 1Fh
outbuf [outcnt++] = (uch) (c); call put_byte
if (outcnt==0UTBUFSIZE)

flush_outbuf ();

() (b)

Figure 2.7 An example code fragmenptit_byte is a output function, and call sites that call it
are output operations.

The values of interest are the actual parameters correspptalthe formal parameters of out-
put functions. For example, suppose that_byte is one of the output functions (see Fig. 2.7(a)).
Suppose that at one of the call sites that calls byte (i.e., at one of the output operations), the
actual parameter is always 1Fh (see Fig. 2.7(b)). This mé&tion can be obtained from the infor-
mation collected by/SA. Note that at the call oput_byte, the relevant value is stored on the stack
in the byte pointed to bgsp. The abstract memory configuration (AMC) thegA would have for
the call site would indicate this: for instance, Fig. 2.8lajstrates the values that the AMC would

contain in this example. In particular, our tool is able tdadb an over-approximation of the set
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of values that the actual may hold by evaluating the operaptession[esp] in the AMC, which

amounts to looking up in the AMC the contents of the cell (dis}¢hatesp may point to. (For

this example, the result would be a singleton set, nariékyh}.)

value—>1Fh ize:1
esp

(@)

1004

value4

value3 . size:?
1002} -----------1 size:4  |_____] H

value2 4
1001} -----------

valuel
1p66 FP

COUNT I
Jias Bt
4 - SIZE {size)
1000 L-BUF_PTR

<+ esp

®) (©

Figure 2.8 How to obtain information fromSA.

There are two kinds of parameters that can be passed intgatdunction: numeric values

and addresses.

Numeric values. The case where an actual parameter holds a numeric valudrbadyabeen

explained above (see Fig. 2.8(a)). The corresponding $iteeovalue can be obtained froAsl,

which infers the size from the usage pattern of the formahpeater in the called function. (In the

case where an output operation calls a standard 1/0O fun¢taninformation is available from the

signature of the function.) For exampleyt_byte would have a 1-byte argumeniut_short a

2-byte argument, and so forth.

Addresses. If the type of a formal parameter is a pointer, the set of askle in the memory

location corresponding to the actual parameter would bd tsok up in the AMC the values in

the cells to which the actual parameter could point (seeZ&(b)).

The case ofwrite at lines 16-17 in Fig. 2.1(b) falls into this category. Thel@ss of the

heap-allocated memory location that contains the datasisqubas the first argument.
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size_t furite(const void *BUF_PTR size_t SIZE size_t COUNT, FILE *FP);

It is known that the product of the second and third pararsaiéfurite is the number of bytes

that are written out (see Fig. 2.8(c)).

Value roles. The kind of abstract value recovered gA sometimes suggests what the value’s
role is, e.g.,
e Singleton - If VSA recovers a singleton value for an actual parameter of anuboipera-
tion, the parameter may correspond to either a magic numteereserved field.
e Set of numeric values - If the value thatvSA recovers is a non-singleton set of numeric
values, the parameter may correspond to an optional field.
e Top - If VSA givesTop, which means any value, for an actual parameter of an oufperee

tion, the parameter may correspond to variant data.

2.2.4.2 Aggregate Structure Identification

As mentioned ir§2.2.1, programmers frequently use#ruct or a class to collect data before
it is written out.

Fig. 2.9 shows a fragment froping [19] in which a network packet is constructed. Instead
of writing individual data items one at a time using outpuergiions, atruct object is used to
store output data while multiple fields are prepared, as shiavines 7-11 of Fig. 2.9. Then the
aggregate object is written out (i.e., sent out) all togetirelines 13—-14.

ASI [155] is a unification-based, flow-insensitive algorithmidentify the structure of aggre-
gates in a program. Whenever a read or write to a part of a mewtgect is encounteredSl
records how the memory object should be subdivided into lemalbjects that are consistent with
the memory access.

In this example, we assume that the user has indicate@éhato, which is a GNU C library
function, is the only output function. The second arguménrtadto is known to be a pointer to a
struct object with unknown substructur@aSl| provides information about this substructure. The

instructions that correspond to the assignment statenagritses 7—11 of Fig. 2.9 are shown in
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[1] u_char outpack [MAXPACKET];

[2] static void pinger(void) {

[3] register struct icmphdr *icp;

[4] register int cc;

[5] int i;

[6] icp = (struct icmphdr*)outpack;

[7]  icp->icmp_type = ICMP_ECHO;

[81 icp->icmp_code = 0;

[0] icp->icmp_cksum = 0;

[10] icp->icmp_seq = ntransmitted++;

[11] icp->icmp_id = ident;

[12]

[13] i = sendto(s, (charx)outpack, cc, 0, &whereto,
[14] sizeof (struct sockaddr));
[15]

[161}

Figure 2.9 Code fragment used to illustrate the usaSifinformation.

Fig. 2.10(a) at lines 2, 4, 6, 9, and 13, respectivelgA provides information about the extent of
memory accessed by each of these instructiass uses that information to subdivide the portion
of memory accessed, thereby producing the structure showigi 2.10(b). This indicates that the
structure of the packet header may consist of two 1-bytedjdtdiowed by three 2-byte fields.

ASl is also capable of recovering information about the stmeotdiaggregates that are allocated
in the heap.

This example illustrates a case where each output functioitsea completely-constructed
chunk of output data, and the HFSM represents the prograutfsub operations at a high level
of abstraction. In bulk writes as this example, structufermation recovered bySI can help

identify the structure of output data format.

2.2.5 Filtering

Because an HFSM can be hard to understand, we experimertfedpylying a series of fil-

tering operations—including simplification, conversidneach FSM to a regular expression, and
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[1] mov eax, dword ptr [ebp - 10h] Global:
[2] mov byte ptr [eax], 8 struct {

[3] mov edx, dword ptr [ebp - 10h]

[4] mov byte ptr [edx + 1], O byte_1 outpack.0;
[6] mov eax, dword ptr [ebp - 10h] byte_1 outpack.1;
[6] mov word ptr [eax + 2], O byte_ 2 outpack.2;
[7] mov eax, dword ptr [ntransmitted] byte 2 outpack.4;
[8] mov edx, dword ptr [ebp - 10h] byte_2 outpack.6;

[9] mov word ptr [edx + 6], ax
[10]inc dword ptr [ntransmitted] }
[11Imov eax, dword ptr [ident]

[12]mov edx, dword ptr [ebp - 10h]

[13]Imov word ptr [edx + 4], ax

(@) (b)

Figure 2.10 (a) The disassembled code fragment for Fig(B)9 he outcome oASI.

inline expansion—to generate a simpler representatiomenbtitput format as a regular expression.
In our experiments, this has been done manually; howewepiibcess would be relatively easy to

automate.

Simplification. Not all nodes in the HFSM are helpful in understanding an wutprmat. An
unnecessarily complicated HFSM could prevent users froderstanding key aspects of an output
format.

Most portions of the HFSM shown in Fig. 2.5(a) turn out to ilb@iTop-value, Top-size,
or an unbounded loop that includes thelap-value means that the node could have any value;
Top-size means that the node could be of any size.

In each of the following cases, a node (or a node set) woulgrotide meaningful informa-
tion:

e A node ofTop-size andTop-value

¢ A node set in an unbounded loop, each of which has Doephsize andTop-value
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To be considered asraeaningful nodea node must be

e A node of nonfop-size

Algorithm 1 Simplification algorithm.
Require: HFSM

Ensure: Trimed HFSM
Set the status of all FSMs to lbeeaningful

while There exists aneaningfulFSM that contains onlpon-meaningful nodesr calls tonon-
meaningful FSMslo

SetM to be anon-meaningful FSM

TransformM into an FSM with a self-loop on a node labeled witla§-size/Top-value)

end while

Alg. 1 describes an algorithm for simplifying HFSMs genethbyFFE/x86. The idea behind
the algorithm is to consider the cases mentioned abovenfBEM that consists of only nodes with
Top-value andTop-size, or an unbounded loop that includes only such items, it mayeier to

simplify it to (T'op)* because the original FSM would not provide much meaningfidrmation

size: size: ): i size: Y !
Top Top 1:} Top | |
value: value: | 7| value: | !
Top Top )i \_Top ) !

about the output format.

Figure 2.11 An example of simplification.

Fig. 2.11 shows an example of simplification. The shaded FBM tontains twanon-
meaningful FSM and threenon-meaningful nodeis simplified to an unbounded self-loop con-

sisting of a nodeTop-size/Top-value).

Conversion to a regular expression. We can convert each FSM in an HFSM into a regular

expression using the Kleene construction.



43

Expansion. The final step is to apply inline expansion. Recursion wasengbuntered in any
of the applications that we used for our experiments 2.7), so inline expansion could be
applied without worrying about non-termination. If recars had been encountered, we could
have summarized strongly connected components of theregdhg

Fig. 2.12 represents the final outcome from using these tgabs on our example.

size: size: size: size: size: size: ) * size: size:
4 4 Top 1 1 1 4 4

value: value: value: value: value: value: value: value:

Ox1F Ox8F Top ‘a’ ‘b’ Top Top Top

Figure 2.12 The final result after simplification, conversiand inline expansion.

2.2.6 Validation against dynamic output

We validated our approach by testing whether the outconme &ar algorithm (i.e., the regular
expression) matches output data produced during actuslaiutme application.

We usedlex[11], a tool for generating scanners for compilers. Givetrgnut specification in
the form of a list of pattern-action pairs (where the patisra regular expressionfijex generates
a program that repeatedly finds the longest prefix of the (neimg) input that matches one of the
patterns. To create a tool for testing whether a regularesgionR generated by our algorithm
describes the output of an application, we gera 2-pattern specification—consisting®{with
an action to report success), plus a default pattern (withcéion to report failure).

As discussed earlier, each box (as shown in Fig. 2.12) indgbelar expression generated by
our technique is labeled with two kinds of information: aueland a size. Value and size are
eitherTop, aSingleton, or a set of numeric values. Thus, to be able to feedfieto the regular
expression needs to be transformed to one in which the bagicsia 1-byte character. Tab. 2.1

shows the transformation rules that are applied to béxes.

6We use ‘. as a shorthand for “any character” flex it is necessary to use the patterfyi'.
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Table 2.1 Transformation of boxes.

size value conversion

Singleton n | Singleton | According to the value of, this is split into multiple boxes that contain a 1-byte valu
(E.g., the first box in Fig. 2.13(a) is transformed to the fiostr boxes in Fig. 2.13(b).

Singletonn | Top Top is transformed to ‘., which matches any character. Thus,ithtransformed to a
sequence of boxes that contain ‘.. (E.g., the fifth box in Fig. 2.13(a}riansformed
to the last two boxes in Fig. 2.13(b).)

Top Top This is transformed to a box that contains ‘.’ with a selfgodE.g., the third box in

Fig. 2.13 (a) is transformed to the box that has a loop in Fit3¢).)

snze s:ze size: size: snze

Top {1, 2)
(@) vulue value value: value: value
0x123 {2, 4} Top Top Top

_________

(b) 1 0x34 P ox12 0 o L - IS )

Figure 2.13 An example of the transformation. ‘. means amgracter.

Tab. 2.1 describes only the cases when size and value hbheeSihgleton or Top. (Note that
there is no case when sizelisp and the value is noflep because this is not a possible outcome of
VSA.) For the case when either size, value, or both have a setroéna values, we split the box
into multiple boxes that have&ingleton value and &ingleton Size. For example, the second
box in Fig. 2.13(a), which has two values (2 and 4), is tramsémn to the two boxes in Fig. 2.13(b)
that have the values 2 and 4, respectively. For the case simrés not &8ingleton, the shaded
boxes in Fig. 2.13(b) show how it is converted.

Note that this process is only for validation, because thgiral values or sets of values are

more likely to be understandable to a human than the sulatiwdlues.
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2.2.7 Experimental Results

We evaluated=FE/x86 on three applicationsgzip, png2ico, andping. In this chapter, we
show the result ogzip. All the experimental resuls are presented in the WCRE’'Ogepa@n
FFE/x86 [127].

Gzip

Gzip is a GNU data-compression program. Fig. 2.14 representsuteeme after filtering the
HFSM from Fig. 2.5(a).

size: size: size: size: size: size: size: sizer ))* size: )) [ size: size:
1 1 1 1 4 1 1 Top Top 4 4

value: || value: || value: || value: || value: || value: || value: value: value: value: value:

Ox1F J{ _0x8B J{_0x08 Top Top Top Top Top Top Top Top

Figure 2.14 The final result fggzip.

Table 2.2 Part of the specification ggip’s format [14].

|1 [ m2 | cm | A6 | MTIME | XL | os | ...

If FLG.FHCRC set
... compressed blocks ... | CRC32 | ISIZE I

ID1 and ID2 | These are the fixed values: 1D1=31 (0xIF), ID2=139 (0x8B)

C™M This identifies compression method: CM=0-7 are reserved=&hlemotes the "deflate” compression method.
FLG This is divided into individual bits: bit 0 FTEXT, bit 1 FHCR&nd so forth.
MTIME This gives the most recent modification time of the originial fiieing compressed.
XFL This is available for use by specific compression methods.
oS This identifies the type of file system on which compressi@k folace: 0 - FAT filesystem, 1 - Amiga, and so forth.

CRC32 This contains a cyclic redundancy check value of the uncesgad data.

ISIZE This contains the size of the original input data mod2id.

The format of.gz files generated bgzip is described in RFC 1952 (see Tab. 2.2). The
outcome shown in Fig. 2.14 correctly over-approximatesdpecification. In other words, the
language of the outcome is a superset of the output languageip. The outcome has the two

magic numbersIiD1=0x1f andID2=0x8b) and a constan€i{=8) at the same positions shown in
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Tab. 2.2. This is followed by a 4-byte element (correspogdmMTIME), two 1-byte elements
(corresponding t&FL and0s). At the end, it has two 4-byte elements, which correspor@h32
andISIZE.

We also applied the validation process describegRi2.6 to this outcome. Thigexgenerated

validator accepted each of fivgz files (chosen arbitrarily from the Internet).

2.2.8 Related Work on Recovering Input/Output Information

Most previous work on reverse engineering of file formats basn dynamic and manual.
Eilam describes a strategy for deciphering file formats gi@esymbol table and a sample output
file [83]. This approach requires manually stepping throdggassembled code and inspecting
memory contents in a debugger while the program producegitien file. Other approaches
ignore the program and rely on heuristic generalizatiomfrone or more sample output files.
For example, one reverse-engineering case study searchetlib-compressed data, file names,
length bytes, and other typical structures [10]. All of th@epproaches require considerable manual
effort and one cannot guarantee that the chosen sampleresifficiently general. In constrast,
the static approach described here over-approximatesfafiteat without relying on sample files,
symbol tables, or extensive manual analysis. Human intéiMe is only needed to identify output
functions and to assign higher-level interpretations.(éfte name” ) to selected fields identified
by the analysis.

There have been similar attempts to statically recovermétion about program data. Chris-
tensen et al. have presented a technique for discoveringpsgble values of string expressions in
Java programs [67]. First, a context-free grammar is geeéray constructing dependence graphs
from class files. The grammar is then widened into a regutagdage, which contains all possible
strings that could be dynamically generated.

The method of Christensen et al. has also been applied téedsVcode; Christodorescu et al.
used the method in a string analysis for x86 executables [@89% approach is similar to ours in the
sense that x86 executables are the targets of both toolthamecovered output data format in the

analysis is represented as a regular language that denstgeeset of the actual output language.
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Their approach, however, is different from ours in the sehse the initial context-free structure
recovered by their tool comes from the structure of operatipurely internal to each procedure,
rather than from the call-return structure of the prograsineour tool.

Our approach is also related to work on host-based intrudetaction, in which models of
expected program behavior are also constructed. The medelapproximates the possible se-
guences of system calls, and, by comparing the actual sequ#rsystem calls to those allowed
by the model, is used to detect when malicious input haskegthe program. Pushdown-system
models have been employed for this purpose, either coristtdmm source code [179] or from
low-level code [91, 92] (in particular, SPARC executable®ur HFSMs are similar in that they
also yield context-free languages that are a projectionpgréion of the program’s behavior. We
have gone beyond previous work by using the results from tataftbw analyses (namelySA

andASiI) to elaborate our models with information about possibte eévalues and value sizes.

2.2.9 Discussion ofFE/x86

In the work onFFE/x86, we focus on output operations. However, the same appraathe
applied to other kinds of operations. For example, one coaktinput operationswhich are asso-
ciated with examining or parsing an input file, using the samgroach taken blfFE/x86 [81]. In
this case, one would want to consider only paths to exit gdhmt represent successful runs of the
program (because these correspond to successful usesdbmedd input files). In addition, one
could apply our approach to network-communication operegithat parse or construct packets.

It may be possible to use such a characterization of the ilgmgluage as a way to generate
test inputs. Similarly, knowledge of the output languagectimponent; in a tool chain could be
used as a source of test inputs for the next compasndntthe chain.

As mentioned earlier, we assume that output functions ametiiied by the user. To create a
more automatic tool for extracting data formats, it wouldlesirable to find a way to automatically
identify output functions, especially wrapper functions.

Each loop in an HFSM is currently transformed to eithesde-set)* or (node-set)*. How-

ever, there can be cases when the bound on the number of l|goissiations of a loop can be
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obtained fromVSA. In such cases, the information about a loop’s iteratiomiobsuwould provide
users with more precise information about the output format

More details can be found in the paper abBBE/x86 [127].

2.3 ConSeq

CodeSurfer/x86 has also been used as a component of a censeguriented backward-
analysis framework, calle@onSeq,’ to detectconcurrency buggl91]. This section summarizes
ConSeq, and describes the component for static slici§®)3.1), which was my contribution to the
work.

Concurrency bugs are caused by non-deterministic int@riga between shared memory ac-
cesses. They exist widely (e.g., 20% of driver bugs examinedprevious study [162] are con-
currency bugs) and are among the most difficult bugs to datettdiagnose because interleavings
are not only complicated to reason about, but they also dieatly increase the state space of
software. For large real-world applications, each inpuilganaps to billions of execution inter-
leavings, and a concurrency bug may only be exposed by owrdispeterleaving. How to analyze
this huge spaceelectivelyand expose hidden bugs is an open problem for static anaigsidel
checking, and software testing.

The effects of a bug propagate through data and control dispees until they cause software
to crash, hang, produce incorrect output, etc. The lifexytla bug thus consists of three phases:
(2) triggering, (2) propagation, and (3) failure. Traditad techniques for detecting concurrency
bugs mostly focus on phase (1)—i.e., on finding certain tiratpatterns of interleavings that are
common triggers of concurrency bugs. These patterns iediada races (conflicting accesses to a
shared variable) [66, 87, 147, 163, 189], simple atomicitfations (unserializable interleavings
of two small code regions) [132, 151, 177, 188], contexttslvbounded interleavings [56, 121,

142, 143], etc. Although much progress has been made in tt@stidn, those techniques have

“ConSeq was carried out in collaboration primarily with W. Zhang,L%1, and T. Reps, along with R. Olichan-
dran, J. Scherpelz, and G. Jin. My contribution to the wonksisted of the development of the component for static
slicing.
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Figure 2.15 The common three-phase error-propagatiorepsofor most concurrency bugs
(obtained from [191]).

fundamental limitations in that they can suffer from falsgatives (i.e., many of common real-
world concurrency bugs cannot be covered by traditionaepas) and false positives (i.e., the

reported interleavings are not always truly harmful).

Consequence-Oriented Approach

To improve the accuracy and coverage of state-space seadcbusy detectionConSeq is
based on a consequence-oriented approach—that is, it imsekaards approach, (3)(2)—(1).
ConSeq’s backwards approach provides advantages in bug-detembierage and accuracy but is
challenging to carry outConSeq makes it feasible by exploiting the empirical observatibatt
phases (2) and (3) usually are short and occur within onath@onSeq uses potential software
failures to guide its search of the interleaving space. @pr@ach can be divided into the following

three stages:

Stage |I. ConSeq first statically identifies potential failure sites in an extable (i.e., it first
considers a phase (3) issue). This approach is based on #eevabon that concurrency and
sequential bugs have drastically different causes but trenstly similar consequences.

After beingtriggeredby an incorrect execution order across multiple threadgrecarrency
bug usuallypropagatesn onethread through a short data/control-dependence chainlasita
one for a sequential bug [97]. The erroneous internal stgdedpagated until an externally visible

failure occurs. At the end, concurrency and sequential Bugalmost indistinguishable: no matter
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what the cause, a crash is often preceded by a thread touahimgvalid memory location or
violating an assertion; a hung thread is often caused by fmtenloop; incorrect outputs are
emitted by one thread, etc.

ConSeq statically identifiedive types of potential error sites that cover almost all majpety
of concurrency bug failuresStage lof ConSeq as shown in Fig. 2.15): (1) calls to assertions in the
software (for assertion crashes); (2) back-edges in Idopgfinite loop hangs); (3) calls to output
functions (for incorrect functionality failures), (4) ¢alto error-message functions in the software
(for various types of internal errors); and (5) reads on glotariables where important invariants
likely hold according to Daikon [85], a tool for inferring @gram invariants (for miscellaneous

errors and failures).

Stage Il. ConSeq then usesstatic program slicingfrom CodeSurfer/x86 to identify critical
shared-memory read instructions that are highly likely flec potential failure sites through a
short chain of control and data dependences (phaseS®)y¢ Il of ConSeq in Fig. 2.15).

ConSeq exploits two characteristics of concurrency bugs: firse, énror-propagation distance
is usually short in terms of data/control-dependence effydgmore information, including val-
idation of the short-propagation heuristic can be found11])); second, the cause of a con-
currency bug usually involves a specific ordering of just & féwo or three) shared memory
accesses [56, 131].

§2.3.1 presents the details of Stage II.

Stage Ill.  Finally, ConSeq monitors a single (correct) execution of a concurrent paogrand
by using execution-trace analysis and perturbation-bagedeaving testing, it identifies suspi-
cious interleavings that could cause an incorrect statei$e at a critical read and then lead to a

software failure (phase (1)page 11l of ConSeq in Fig. 2.15).
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ConSeq Modules

As shown in Fig. 2.16ConSeq uses a combination of static and dynamic analyses. It uses
the following modules to create an analyzer that works backis/along potential bug-propagation

chains.

Error-site identifier.  This static-analysis component processes an executattlelantifies in-
structions where certain errors might occur. For examplealbto __assert_fail is a potential
assertion-violation failure site. Although currentBonSeq identifies potential error sites for five
types of errors, developers can adjust the bug-detectioarage and performance GbnSeq by

specifying specific types of error sites on which to focus.

Critical-read identifier. ~ This component uses static slicing to find out which instar that

read shared memory are likely to impact a potential errer $ifote that static analysis is usually not
scalable for multi-threaded C/C++ programs. By leveraghmgshort-propagation characteristic
of concurrency bugs and the staged desigi€ofSeq, this module is scalable to large C/C++

programs. §2.3.1 presents more details of this module.)

Suspicious-interleaving finder. This dynamic-analysis module monitors one run of the concur
rent program, which is usually a correct run, and analyzeatvalternative interleavings could
cause a critical read to acquire a different and potentadiygerous value. By leveraging the char-
acteristics of concurrency bugs’ root causes, this moduleffective for large applications. Via
this module,ConSeq generates a bug report, which provides a list of criticatieethat can po-
tentially read dangerous writes and lead to software faducCritical reads, dangerous writes, and
the potential failure sites are represented by their rdgmeprogram counters in the bug report.
Additionally, the stack contents are provided to facit@rogrammers’ understanding of the bug

report. [191] presents more details.

Suspicious-interleaving tester. This module tries out the detected suspicious interleaving

perturbing the program’s re-execution. It helps exposecamency bugs and thereby improves
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Figure 2.16 An overview of th€onSeq architecture (obtained from [191]).

programmers’ confidence in their program. Via this mod@enSeq prunes false positives from
the bug report, and extends the report of each true bug withtbg@erturb the execution and make

the bug manifest. See [191] for more details.

2.3.1 Program Slicing inConSeq

Program slicingis an operation that identifies semantically meaningfubdegositions of pro-
grams, where the decompositions may consist of elementahaot textually contiguous [183].
A backward sliceof a program with respect to a set of program eleméhtnsists of all pro-
gram elements that might affect (either directly or trawsly) the values of the variables used at

members of5S. Slicing is typically carried out usingrogram dependence grapfO3].

CodeSurfer/x86. ConSeq uses backward slicing to identify shared memory reads thghim
impact each potential error site. To obtain the backwaikdior each potential error site, it uses
CodeSurfer/x86 [39], which is a static-analysis framewfwk analyzing the properties of x86
executables. Various analysis techniques are incormbiat€odeSurfer/x86, including ones to
recover asound approximatiomo an executable’s variables and dynamically allocated argm
objects [41]. CodeSurfer/x86 tracks the flow of values tigiothese objects, which allows it to
provide information about control/data dependences tndted via memory loads and stores.
The goal of the critical-read identification module is tontl& critical-read instructions that

are likely to impact potential error sites through datatocolrdependences. It uses static slicing to
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approximate (in reverse) the second propagation phaseafa@iaency bug, as shown in Fig. 2.15.
The major design principle of this module is to only repostmctions with short propagation
distances as critical reads. Computing the complete pnogilice, e.g., all the way back to an
input, is complicated and also unnecessarydonSeq. ConSeq leverages the short-propagation

characteristic of concurrency bugs to improve bug-detactificiency and accuracy.

if (InProgress ) { [0x4884e read InProgress j Distance = 4
Contr 0x48855 conditional jump
Dependence <Busv=TRUE: D: N
isBusy=TRUE; 0x48857 writ isBusy ) Distance=
Data
Dependende
if (isBusy) [0x4f795 read isBusy j Distance=2

0x4f799  conditional jump
Contriol

Dependence

if(lrunningUrl) CEOx4f7f2 read runningUrl ) Distance=1

Dependenge

nsDebug:: Assertion(...); 0x4f81d call nsDebug::Assertion j

Figure 2.17 Static slicing (right) and the distance caltoia(left; obtained from [191]).

In accordance with the short-propagation heurisGonSeq only reports read instructions
whose return values can affect the error sites through at Seguence of data/control depen-
dences. Our static-slicing tool provides the slice, togetith the value of the shortest distance to
the starting point of the slice, for each instruction of thiees An example is shown in Fig. 2.17.
ConSeq provides a tunable thresholaxDistancefor users to control the balance between false
negatives and false positives. By defa@lbnSeq uses 4 adaxDistance A detailed evaluation is

presented in [191].

Side-stepping scalability problems. To avoid the possible scalability problems that can occur
with CodeSurfer/x86 due to the size of the applications useglaluatingConSeq, we set the
starting point of each analysis in CodeSurfer/x86 to theyepobint of the function to which a
given potential error site belongs, instead of the mainyeptiint of the program. By doing so,
CodeSurfer/x86 only needs to analyze the functions of @ésteand their transitive calls rather

than the whole executable. Thus the static-analysis tirmegroughly linearly in the number of
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functions that contain error sites. This approach m&®@sSeq much more scalable, as illustrated
in the experimental section of [191].

This approach is applicable i@onSeq because—based on the observation that the error-
propagation distance is usually shoiGenSeq only requires ashortbackward slice that can be
covered in one procedure. The backward-slicing and oth&lyais operations in CodeSurfer/x86
are, however, still context-sensitive aimderprocedural[103]. Moreover, to obtain better preci-
sion from slices, each of the analyses used by CodeSurtei$xdso performed interprocedurally:
calls to a sub-procedure are analyzed with the (abstragtinaents that arise at the call-site; calls

are not treated as setting all the program elements to

Analysis Accuracy. To obtain static-analysis results that over-approximdtatwan occur in any
execution run, all the program elements (memory, registerd flags) in the initial state with which
each analysis starts are initializedtowhich represents any value. Such an approximation makes
sure that no critical read will be missed BpnSeq at runtime. Of course, some instructions could
be mistakenly included in the backward slice and be wronglgted as critical reads. Fortunately,
our short-propagation-distance heuristic minimizes tbgative impact of over-approximation. In

practice, we seldom observe any inaccuracy caused by tharsapproximation.

Identifying Potential Infinite Loop.  For non-deadlock bugs, infinite loops in one thread are the
main causes of hangs. Every back-edge in a loop is a potsitadbr this type of failureConSeq
identifies strongly connected components (SCCs) that aenpal failure sites for infinite-loop
hangs by checking whether any shared-memory read is indludée backward slice of each
back-edge in an SCC. To identify nested loops, CodeSu#@érimplementBourdonclés algo-

rithm [53], which recursively decomposes an SCC into sul&S§&tc.

More False-Positive Pruning via Symbolic Execution. The precision loss due to the properties
of static analysis can resultin spurious backward slicésclvcan cause false positivesGonSeq.

To prune slices that are likely to be spurious, we introdubewristic based ogymbolic executign
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which tracks symbolic expressions rather than actual wJ62]. A symbolic execution is done
by replaying a concrete trace produced from PIN [133], betcexing it symbolically. Each trace
must contain (i) a possibly false-positive critical readnd (ii) the control pointB (conditional
branch instructions) that controls execution of an errt&.Siwo separate symbolic executions are
performed for pruning: one&vith / (SE), and the othewithout I (SE). Each of the program
elements is initialized to a symbol instead of a concreteiezaéh the initial symbolic state with
which each symbolic execution starts. We obtain the brangchonstraint”; from SE;, and the
second constraint;, from SE,. If the following formula always holds, we can determinetthas

a false positive (i.e. does not impact the control toward the error site):
Cy & C.
Due to the complexity of validity checking, we use the follog/formula as a heuristic:
S1ECye S E=C

whereS; andsS; are satisfying assignments obtained using¥f@S SMT solver forC; andCs,

respectively?

2.3.2 Evaluation

The evaluation o€onSeq on large, real-world C/C++ applications shows t@ahSeq detects
more bugs than traditional approaches and has a much lolserfasitive rate [191]ConSeq was
evaluated on 11 real-world concurrency bugs in seven widegd C/C++ open-source server and
client applications—Mozilla, MySQL, Cherokee, Transnoss Aget, etc. ConSeq was able to
detect 10 out of 11 tested concurrency bugs, which cover a veidge of root causes, from simple
races and single-variable atomicity-violations to ordedations, anti-atomicity violation bugs,
multi-variable synchronization problems, etc. For conmar, we evaluated a race detector and

an atomicity-violation detector and found that they coubhdyadetect 3 and 4 bugs, respectively.

8For the implementation of this particular part, we use syhasalysis primitives (symbolic-execution primitive
and satisfaction relation) created B$L [126, 125], which is the main subject of this thesISSL will be presented
in the following chapters.
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ConSeq detected these bugs with high accuracy: it had about orib-tka false-positive rate of
the race detector and the atomicity-violation detector.

ConSeq also found 2 new bugs in Aget, 2 new bugs in Click, and one dutpo-determinism
in Cherokee, for which bugs had not been previously repor@thSeq found a known infinite-
loop bug in a version of MySQL for which the bug had not beewvimesly reported. Experiments
in which we usedConSeq together with Daikon [85] show th&@onSeq can detect complicated
concurrency bugs that previous tools cannot (e.g., a bughimg 11 threads and 21 shared vari-
ables). The performance GonSeq is suitable for in-house testing.

More details of the experimental results are presentedd®®PLOS’11 paper abo@onSeq
[191].

2.3.3 Discussion o€ConSeq

The work onConSeq provides a new perspective on concurrency-bug detectidnesting,
which is to start from potential consequences and work bacttsy It provides alternative inter-
pretations for some concurrency bugs with complicated eswdisat are difficult to detect using
traditional approaches, and sets up a nice connection etthential bug-detection research, such
as Daikon [85].

ConSeq uses a three-stage bug-detection framework that leverelggascteristics from all
three phases of the concurrency-bug propagation procdss.dé&sign separates the complexity
of inter-thread interleaving analysis and intra-threadpaigation analysis, and makes it easy to
leverage advanced static-analysis techniques, suchcawyséind loop analysis. Each stage of the
framework can be easily extended. In particular, programroan assis€onSeq by putting more
consistency checks into their code, such as assertionsrardreessages.

Overall,ConSeq effectively exposes those non-determinisms among a smiaber of shared
memory accesses that can propagate a relatively shomdéstand cause a common error (such as

infinite loop, error message firing, assertion failure,)eénd end up with a visible failure.
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2.4 Motivation for a New System for Implementing Machine-Cale Analyses

Although the analysis techniques incorporated into Code8u86, in principle, are language-
independent, the original implementation was tied to thellm\32 instruction set. Moreover,
CodeSurfer/x86 incorporated at least eight separate seslgach of which was an independently-
coded abstract interpretation of th&32 instruction set’s concrete semantics. Fig. 2.18 shows
some simplified versions of the implementationsv&A (on the left) andASI (on the right) in
CodeSurfer/x86. The implementation of the abstract tansér for each analysis usually has a
big switch statement where for each instructionlaB2, an abstract transformer is implemented
in the analysis abstract domain according to the concreteasgcs of the instruction. Th&witch
statement for each analysis in CodeSufer/x86 containstadducasesfor frequently-usedA32
instructions. If one wanted to develop, e.g., CodeSurtevétPC, substantial work would be nec-
essary to port the original CodeSurfer/x86 implementatmsupport a new instruction set. In
particular, CodeSurfer/x86 consists of eight analysed aanabstract transformer for each instruc-
tion of PowerPC would need to be implemented for each of thlet@inalyses’ abstract domains.

In general, if one can ha¥ subject languages and a desired tool that consisid @halysis
components, one would have to createx M analysis-component implementations. (One of the
advantages of th€SL system is that to obtain the desirddx M analysis-component implemen-
tations, a human tool designer will only have to perfakm- M work.)

The situation described above is fairly typical of much workprogram analysis: although the
techniques described in the literature are, in princigegliage-independent, implementations are
often tied to a specific language or intermediate repretientdR). Retargeting them to another
language can be an expensive and error-prone process. @v&ouiice-code analysis, this state of
affairs reduces the impact that good ideas developed in oniext (e.g., Java program analysis)
have in other contexts (e.@;++ analysis).

For high-level languages, the situation has been addréysgeleloping common intermediate

languages, e.gGCC’s RTL, Microsoft's MSIL, etc. (although the academic research community

9The remaining instructions out of about 60832 non-floating-point/non-MMX instructions are treated assa
ing the resultant state to Hep.
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[1] VSA_state_t VsaTransformerForlA32( [1] set_of_mini_asi_instr AsiTransformerForlA32(
[2] Instr i, VSA state t S) [2] Instr i, VSA_state_t S)

3] { 3] {

[4] VSA_state_t ans; [4] set.of_mini_asi.instr ans;

[5] switch(i.id) { [5] switch(i.id) {

[6] caselA32_MOV: { [6] caselA32_.MOV: {

[7] VSA value t v = EvalVSA(i.child2, S); [7 set_of_mini_asi_instr vl =

[8] ans = UpdateVSAState(S, i.childl, v); [8] CollectMemAccesses(i.childl, S);
[9] break; [9] set_of mini_asi_instr v2 =

[10] } [10] CollectMemAccesses(i.child2, S);
[11] case IA32_ADD: { [11]  ans =vl.union(v2);

[12] VSA.value_tvl = EvalVSA(i.childl, S); [12]  break;
[13] VSA.value_t v2 = EvalVSA(i.child2, S); [13] }

[14] VSA.value_tv = VSAPIus(vl, v2); [14] case IA32 ADD: {
[15] ans = UpdateVSAState(S, i.child1, v);  [15]

[16] break; [16] break;

[17] } [17 }

[18] case IA32_SUB: { [18] case IA32 SUB: {
9] ... [19]

[20] Dbreak; [20]  break;

[21] } [21] }

[22] } [22] }

[23] return ans; [23] return ans;

[24]) [24]}

Figure 2.18 Two snippets &fSA andASI implementations in CodeSurfer/x86yalVSA/
UpdateVSAState andCollectMemAccesses are otheilA32-specific procedures forSA andASlI,
respectivelyASI makes use of the information fronBA.

has not rallied around a similar common platform). The gitueis more serious for low-level in-

struction sets, because (i) most instruction sets havered@ver time, so that each instruction-set
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Ilwbrx lwbrx

Load Word Byte-Reverse Indexed

Iwbrx rD,rA,rB
[POWER mnemonic: Ibrx]

[] Reserved
B o |« : - o]
0 56 10 11 15 16 20 21 30 3
if ¥A = 0 then b0
alse b e (rh)
A« b + (xB)
rDe (32)0 || MEM(EA + 3, 1) || MEM{(EA + 2, 1) || MEM(EA + 1, 1) || MEM{(EA, 1)

EA is the sum (rAl0) + rB. Bits 07 of the word in memory addressed by EA are loaded
into the low-order 8 bits of rD. Bits 8-15 of the word in memory addressed by EA are
loaded into the subsequent low-order 8 bits of rD. Bits 16-23 of the word in memory
addressed by EA are loaded into the subsequent low-order eight bits of rD. Bits 24-31 of
the word in memory addressed by EA are loaded into the subsequent low-order 8 bits of
rD. The high-order 32 bits of rD are cleared.

The PowerPC architecture cautions programmers that some implementations of the
architecture may run the Iwbrx instructions with greater latency than other types of load
instructions.

Other registers altered:

* None

Figure 2.19 The description of the PowerPC instructiebrx (obtained from the PowerPC
instruction-set manual [27]).

family has a bewildering number of variarifswhich has led to instruction sets with several hun-
dred instructions, and (ii) there are a variety of architeetspecific features that are incompatible
with other architectures.

Fig. 2.19 shows an informal description of the operatiomahantics of an instruction in the
32-bit PowerPC instruction set. One can imagine how experand error prone it would be
to develop an analysis implementation because the devehggels to interpret the instruction’s

concrete semantics in the abstract domain used by the @aalys

0For a brief overview, see http://en.wikipedia.org/w{ki86,ARM architecture,PowerPC In particular, the arti-
cle about ARM lists 25 different architectural versionsp&e9, 2008].
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Our motivation is to provide a systematic way of extending thnalyses used in
CodeSurfer/x86—and others—to instruction sets other thda. The motivation led us to de-
velop a meta-tool (or tool-generator), call€8L (for “ TransformerSpecificationLanguage”), to
help in the creation of tools for analyzing machine cofigL consists of a language for describing
the semantics of an instruction set, along with a run-tinstesy to support the static analysis of
executables written in that instruction set. The work adesrthe state of the art by creating a
system for automatically generating analysis componenta & specification of the language to

be analyzed. In the remaining chapters, we introdieke and describe some of its capabilities.
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Chapter 3

Transformer Specification Language

In Chapter 2, we discussed the importance and advantagesabfime-code analysis and chal-
lenges in developing a system for analyzing machine-coties dhapter presents tAe&L system
that we have developed to address the challenging issuessdied ing2.4. “TSL” stands for
“TransformerSpecificationLanguage”, and is used both for the name of the overall systei a

for the name of the system’s meta-language.

Design Principles

In designingTSL, we were guided by the following principles:

e There should be a formal language for specifying the semsuofi the language to be an-
alyzed. Moreover, an instruction-set-semantics develspeuld specify only the abstract
syntax and a concrete operational semantics of the langodgeanalyzed—each analyzer
should be generated automatically from this specification.

e Concrete syntactic issues—including (i) decoding (magehiade to abstract syntax), (ii)
encoding (abstract syntax to machine code), (iii) parsgsgmbly (assembly code to abstract
syntax), and (iv) assembly pretty-printing (abstract ayxnio assembly code)—should be

handled separately from the abstract syntax and concretargis!

1The translation of the concrete syntaxes to and from alistyatax is handled by a generator tool that is separate
from TSL, and will not be discussed in this thesis. The relationskipveen the two systems is similar to that between
Flex and Bison. With Flex and Bison, a Flex-generated lexssps tokens to a Bison-generated parser. In our case,
the TSL-defined abstract syntax serves as the formalism for comrating values—namely, instructions’ abstract
syntax trees—between the two tools.
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e There should be a clean interface for analysis developespéoify the abstract semantics
for each analysis. An abstract semantics consists aft@npretation an abstract domain
and a set of abstract operators (i.e., for the operatioisoj.

e The abstract semantics for each analysis should be sepdrate the languages to be an-
alyzed so that one does not need to specify multiple versabasm abstract semantics for

multiple languages.

Each of these objectives has been achieved inTthie system: TheTSL system translates the
TSL specification of each instruction set to a common intermedigpresentationqIR) that can

be used to create multiple analyze§8.). Each analyzer is specified at the level of the meta-
language (i.e., by reinterpreting the operation3 6t), which—by extension t@ SL expressions

and functions—provides the desired reinterpretation efitistructions of an instruction se3.3).

Other notable aspects of our work include
e Support for Multiple Analysis Types. The system supports several analysis types:
— Classical worklist-based value-propagation analyses.
— Transformer-composition-based analyses [74, 169], whrehparticularly useful for
context-sensitive interprocedural analysis, and fortieteal analyses.
— Unification-based analyses for flow-insensitive intergaharal analysis.
In addition, an emulator (for the concrete semantics) ig etsated.
¢ Implemented Analyses. These mechanisms have been instantiated for a number ofispec
analyses that are useful for analyzing low-level code uditig value-set analysis [38, 41]
(8§3.3.1), affine-relation analysis [387.2] (§3.3.2), def-use analysis (for memory, registers,
and flags) §3.3.3), aggregate structure identification [423.3.4), and generation of sym-
bolic expressions for an instruction’s semanti¢3.8.5).
e Established Applicability. The capabilities of our approach have been demonstratediby w
ing specifications forA32 andPowerPC. These are nearly complete specifications of the in-
teger subset of these languages, and include such featufgsaliasing among 8-, 16-, and

32-bit registers, e.gal, ah, ax, andeax (for 1A32), (2) endianness, (3) issues arising due



63

to bounded-word-size arithmetic (overflow/underflow, gévorrow, shifting, rotation, etc.),

and (4) setting of condition codes (and their subsequeetpretation at jump instructions).

TheTSL-generated analysis componentsi#g2 andPowerPC have been put together to create a
system that essentially duplicates CodeSurfer/x86 [S]aadtes CodeSurfer/ppc32, respectively.
We have also experimented with sufficiently complex feawkother low-level languages (e.g.,
register windows for SUBPARC and conditional execution of instructions f8RM) to know that

they fit our specification and implementation models.

The remainder of this chapter is organized as follo§&1 presents the overview of tAe&L
system both from the perspective of instruction-set spasif{SS) (§3.1.1) and that of analysis
developers{3.1.2). The section also discusses quirky features of abwetruction sets, and dis-
cusses how those features are handledSh. §3.2 discusses how tHESL compiler generates a
CIR from a TSL specification and how th€IR is used for creating analysis components. The
section also describes how tl&L system handles some important issues, such as recursion and
conditional branches in th@lR. §3.3 presents several analysis components that have bean-ins
tiated for developing a system for analyzing low-level cof®4 discusses the measure of success

and the leverage that tAeSL system provides;3.5 discusses related work.

3.1 Overview of theTsL System

The key principle of thel' SL system is the separation of the semantics of a subject lgegua
from the analysis semantics in the development of an arsatgsnponent. As discusseddh.4.1,
the TSL system is based on semantic reinterpretation, which wagsnaitly proposed as a conve-
nient methodologyfor formulating abstract interpretations [73, 110, 13441248] (se€;1.4.1).
Semantic reinterpretation involves refactoring the sfpeation of the concrete semantics of a lan-
guage into two parts: (i) alient specification, and (ii) a semantore The interface to the core
consists of certain basetypes, function types, and opsrédometimes called semantic algebra
[140]). The client is expressed in terms of this interfacectfan organization permits the core to

bereinterpretedto produce an alternative semantics for the subject larguag
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The key insight behind th&SL system is that if a rich enougheta-languagés provided for
writing semantic specifications, one can avoid éldehocrefactoring step. The advantage of this
approach is that it allows th€SL system to act as aYACC-like” tool for generating analysis

components from a semantic description of an instruction se

Client Analyzer

N Analysis Components

interpinstr, interpinstr, interplnstry

M Instruction-Set Specifications

Figure 3.1 The interaction between th6L system and a client analyzer. The grey boxes
represenff SL-generated analysis components.

The TSL system has two classes of users: (1) instruction-set spec{f$S) and (2) analysis
developers. The former use theL language to specify the concrete semantics of differefriios
tion sets (the lower part of Fig. 3.1); the latter use sencaeinterpretation to create new analyses
(the upper part of Fig. 3.1)§3.1.1 ands3.1.2 present th@SL system from an instruction-set

specifier’s standpoint and an analysis developer’s stantdpespectively.

3.1.1 TsL from an Iss’s Standpoint

Fig. 3.2 shows part of a specification of t82 instruction set taken from the Intel manual
[17]. The specification describes the syntax and the senwotieach instruction only in a semi-
formal way (i.e., a mixture of English and pseudo-code).

Ourwork is based on completely formal specifications thawaitten in a language that we de-
signed TSL). TSL is a strongly typed, first-order functional languad&L supports a fixed set of

base-types; a fixed set of arithmentic, bitwise, relatipaatl logical operators; the ability to define
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General Purpose Registers: ADD r/m32,r32; Add r32 to r/m32
EAX,EBX,ECX,EDX,ESP,EBP,ESI,EDI,EIP ADD r/m16,r16; Add r16 to r/m16. . .
Each of these registers also has 16- or 8-bit subset nan@seration: DEST— DEST + SRC;

Addressing Modes: [sreg:][offset][([base][,index][ede])] | Flags Affected: The OF,SF,ZF,AF,CF, and

EFLAGS register. ZF,SF,OF,CF,AF,PF, . . . PF flags are set according to the result.

Figure 3.2 A part of the Intel manual’s specificationA82’s add instruction.

recursive data-types, map-types, and user-defined fursstand a mechanism for deconstruction

by means of pattern matching.

Basetypes. Fig. A.1 shows the basetypes tA&L provides. There are two categories of primitive
base-typesunparameterize@nd parameterized An unparameterized base-type is just a set of
terms. For exampleBOOL is a type consisting of truth valueB\T32 is a type consisting of
32-bit signed whole numbers, etdAP|«, (] is a predefined parameterized type, with parameters

« andg. Each of the following is an instance of the parameterizee MAP:

MAP[INT32,INT8]
MAP[INT32,BOOL]
MAP[INT32,MAP[INT8,BOOL]]

TSL supports arithmetic/logical operators,(—, *, /, !, &&, ||, xor), bit-manipulation opera-
tors (~, &, |, 7, <, >, right-rotate, left-rotate), relational operatoss, (<=, >, >=, ==, |=), and
a conditional-expression operatdr:§. TSL also provides access/update operators for map-types.

More details of thél' SL syntax and semantics can be found in Appendix A.

Specifying an Instruction Set. Fig. 3.4(a) shows a snippet of tHe&L specification that cor-
responds to Fig. 3.2.Much of what an instruction-set specifier writes im8L specification is
similar to writing an interpreter for an instruction set irsfrorderML [99]. One specifies (i) the
abstract-syntax grammar of the instruction-set, (ii) atjgr concrete states, and (iii) the concrete

semantics of each instruction.

2TheTSL specification is simplified to make the presentation simpler
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Type Terms Constants
BOOL false, true false, true
INT64 64-bit signed integers | 0d64, 1d64, 2d64, ...
INT32 32-bit signed integers | 0d32, 1d32, 2d32, ...
INT16 16-bit signed integers | 0d16, 1d16, 2d16, ...
INT8 8-bit signed integers 0d8, 1d8, 2d8, ...
STR Sequences of characters!"
All characters except | "ab...AB...01...19%..."
"\ 000’ permitted. m\N\F\b\t\f\"\"\\"
"\ 001\002\003..."
MAP[«a, /5] | Maps no constants

Figure 3.3 Syntax of constants of primitive type.

Reserved, but User-Defined Types and Reserved FunctionsEach specification must define
several reserved (but user-defined) typiestruction (lines 2-9 of Fig. 3.4(a))state—e.g., for
32-bit Intel x86 the typstateis a triple of maps (lines 10-12 of Fig. 3.4(a)); as well asrdserved
TSL functioninterplinstr (lines 17-30 of Fig. 3.4(a)). These reserved types andilumeform part
of the API available t@nalysis enginethat use thd SL-generated transformer€(R).

The definition of types and constructors on lines 2—-9 of Fig(& is an abstract-syntax gram-
mar for 1A32. Typereg consists of nullary constructors fdhA32 registers, such aBAX() and
EBX(); flag consists of nullary constructors for th&32 condition codes, such &~() andSF().
Lines 4-6 define types and constructors to represent theuskinds of operands the&&32 sup-
ports, i.e., various sizes of immediate, direct registed, imdirect memory operands. The reserved
(but user-defined) typmstruction consists of user-defined constructors for each instructiooh
asMOV andADD.

The typestate specifies the structure of the execution state. Jtage for IA32 is defined on
lines 10-12 of Fig. 3.4(a) to consist of three maps, i.e., morg-map, a register-map, and a flag-

map. Theconcrete semantias specified by writing a function nameaterpinstr (see lines 17-30
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[1] /I User-defined abstract syntax [1] template <class BT > class CIR {
[2] reg: EAX() |EBX()|. . .; [2] classreg{...};
[3] flag: ZF() |SFQ | .. .; [8] classEAX:publicreg{...};...
[4] operand: Indirect(reg reg INT8 INT32) [4] classflag{...};
[5] | DirectReg(reg) [5] classZF:publicflag{...};...
[6] | Immediate(INT32) | ...; [6] classoperand{... };
[7] instruction [7] class Indirect: public operand { ... };. ..
[8] : MOV(operand operand) [8] class instruction { . .. };
[9] | ADD(operand operand| . . . ; [9] class MOV : public instruction { . . .
[10] state: State(MAP[INT32,INT8] // memory-map [10] operand opl; operand op2;. ..
[11] MAP[reg32,INT32] // register-map  [11] };
[12] MAPI[flag,BOOLY]); // flag-map [12] class MOV : public instruction { . . . };. ..
[13] /I User-defined functions [13] classstate {. .. };
[14] INT32 interpOp(state S, operand op) { . . . }; [14] class State: public state { . . . };
[15] state updateFlag(state S,...) {... }; [15] BT:INT32 interpOp(state S, operand op) { . . . };
[16] state updateState(state S,...){... }; [16] state updateFlag(state S,...){... };
[17] state interpinstr(instruction I, state S) { [17] state updateState(state S, ...) {... };
[18]  with(l) ( [18] state interpInstr(instruction I, state S) {
[19] MOV(dstOp, srcOp): [19] switch(l.id) {
[20] let srcVal = interpOp(S, srcOp); [20] case ID_MOV: . ..
[21] in (updateState( S, dstOp, srcVal ) ), [21] case ID_ADD:
[22] ADD(dstOp, srcOp): [22] operand dstOp = l.get_child1();
[23] let dstVal = interpOp(S, dstOp); [23] operand srcOp = l.get_child2();
[24] srcVal = interpOp(S, srcOp); [24] BT::INT32 dstVal = interpOp(S, dstOp);
[25] res = dstVal + srcVal; [25] BT::INT32 srcVal = interpOp(S, srcOp);
[26] S2 = updateFlag(S, dstVal, srcVal, res);  [26] BT::INT32 res = BT::Plus (dstVal, srcVval);
[27] in (updateState( S2, dstOp, res ) ), [27] state S2 = updateFlag(S, dstVal, srcVal, res);
[28] A [28] ans = updateState( S2, dstOp, res );
[29] ); [29] break;
[30] }; [30] ...}

[31] }};

Figure 3.4 (a) A part of th@SL specification 0fA32 concrete semantics, which corresponds to
the specification oddd from thelA32 manual. Reserved types and function names are
underlined, (b) A part of th€IR generated from (a); Th€IR is simplified in this presentation.
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of Fig. 3.4(a)), which maps ainstruction and astate to astate. For instance, the semantics of
ADD is to evaluate the two operands in the inptdate S and create a returstate in which the

target location holds the summation of the two values andlaigs hold appropriate flag values.

3.1.1.1 Case Study of Instruction Sets

In this section, we discuss the quirky characteristics afesmstruction sets, and various ways

these can be handled rsL.

IA32. To provide compatibility with 16-bit and 8-bit versions bt instruction setA32 provides
overlapping register names, suchAgs (the lower 16-bits oEAX), AL (the lower 8-bits ofaX),
andAH (the upper 8-bits ofX). There are two possible ways to specify this featurésn. One is

to keep three separate maps, for 32-bit registers, 16-fisters, and 8-bit registers, respectively,
and specify that updates to any one of the maps affect the mbhanaps. Another is to keep one
32-bit map for registers, and obtain the value of a 16-bit-bit8egister by masking the value of
the 32-bit register. (The former can yield more pred/SA results.)

Another characteristic to note is thi&32 keeps condition codes in a special register, called
EFLAGS.2 One way to specify this feature is to declared32: Eflags();”, and make every flag
manipulation fetch the bit value from an appropriate bitipos of the value associated wiltflags
in the register-map. Another way is to have symbolic flaganasur examples, and have every

manipulation ofEFLAGS affect the entries in a flag-map for the individual flags.

ARM. Almost all ARM instructions contain a condition field that allows an instion to be
executed conditionally, depending on condition-code flagss feature reduces branch overhead
and compensates for the lack of a branch predictor. Howéwaray worsen the precision of an
abstract analysis because in most instructions’ specdditgtthe abstract values from two arms of

aTSL conditional expression would be joined.

3Many other instruction sets, such8@PARC, PowerPC, andARM, also use a special register to store condition
codes.
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[1] MOVEQ(destReg, srcOprnd):
[2] let cond = flagMap(EQ());

[3] src = interpOperand(curState, srcOprnd);
[4] a = regMap[destReg |—> src];

[5] b = regMap;

[6] answer =cond ? a: b;

[71 in(answer)

Figure 3.5 An example of the specification of ARM conditional-move instruction i SL.

For exampleMOVEQ is one ofARM’s conditional instructions; if the flagQ is true when the
instruction starts executing, it executes normally; othse, the instruction does nothing. Fig. 3.5
shows the specification of the instructionTisL. In many abstract semantics, the conditional
expression tond? a : b” will be interpreted as a join of the original register mapand the
updated map, i.e.,join(a,b). ConsequentlylestReg would receive the join of its original value
andsrc, even whercondis known to have a definite valu8 RUE or FALSE) in VSA semantics.
The paired-semantics mechanism presente¢Bi@.3 can help with improving the precision of
analyzers by avoiding joins. When tl#R is instantiated with a paired semanticsS45A_INTERP
and DUA_INTERP, and theVSA value ofcondis FALSE, the DUA_INTERP value foranswer
gets emptydef- andusesets because the true brarecks known to be unreachable according to
the VSA_INTERP value ofcond(instead of non-empty sets fdefs anduses that contain all the

definitions and uses itestReg andsrcOprnd).

SPARC. SPARC uses register windows to reduce the overhead associatedsantng registers
to the stack during a conventional function call. Each wimdhas 8in, 8 out, 8local, and 8global
registers.Outs becomens on a context switch, and the new context gets a new sett@ndlocal
registers. A specific platform will have some total numberegjisters, which are organized as a
circular buffer; when the buffer becames full, registers spilled to the stack to free up a sufficient

number for the called procedure. Fig. 3.6 shows a way to aodaie this feature. The syntactic
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[1] reg32: Reg(INT8) |CWP() | . .

[2] reg32 : OutReg(INT8) | INnReg(INT8) | . . .;

[3] state: State( ..., MAP[var32,INT32], . ..);

[4] INT32 RegAccess(MAP[var32,INT32] regmap, reg32 r) {
[5] let cwp = regmap(CWP());

[6] key = with(r) (

[7] OutReg(i):

[8] Reg(8+i+(16+cwp*16)%(NWINDOWS*16),
[9] InReg(i): Reg(8+i+cwp*16),

0] ...)

[11] in ( regmap(key) )

[12]}

Figure 3.6 A method to handle tI8PARC register window inTSL.

register QutReg(n) or InReg(n), defined on line 2) in an instruction is used to obtain a seimant

register Reg(m), defined on line 1, where: represents the register’s global index), which is the
key used for accesses on and updates to the register mapeSineddndex of the semantic register

is computed from the index of the syntactic register, theeafCWP (the current window pointer)

from the current state, and the platform-specific vall¢iNDOWS (lines 8-9).

3.1.1.2 Common Intermediate RepresentationIR)

Fig. 3.4(b) shows part of the common intermediate repregiemt CIR) generated by th&SL
compiler from Fig. 3.4(a}. The CIR generated for a giveliSL specification is a C++ template
that can be used to create multiple analysis componentshgntiating the template with different
semantic reinterpretations. Each generdi#d is specificto a given instruction-set specification,

butcommon(whence the nam€IR) across generated analyses.

4This CIR has been simplified for the presentation in the thesis.
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Each generate@IR is a template class that takes as input cEBéstanding for base-type inter-
pretation), which is an abstract domain for an analysig(lirof Fig. 3.4(b)). The user-defined ab-
stract syntax (lines 2-9 of Fig. 3.4(a)) is translated totat€++ abstract-syntax classes (lines 2—
12 of Fig. 3.4(b)). The user-defined types, sucheas operand, andinstruction, are translated
to abstractC++ classes, and the constructors, sucteax(), Indirect(_,_,_,_), and ADD(_,.), are
subclasses of the appropriate parent abstaetclasses.

Each user-defined function is translated t€I&® function (lines 15-31 of Fig. 3.4(b)). Each
TSL basetype and basetype-operator is prepended with the aemphrameter nan&T; BT is
supplied by an analysis developer for the analysis of isterEhewith expression and the pattern
matching on lines 18-22 of Fig. 3.4(a) are translated swtdch statements itc++ (lines 19-30
in Fig. 3.4(b)).

With-normalization. The TSL front-end performswith-normalization which transforms all
multi-level with expressions to use only one-level patterns, and then cemiftie one-level pat-
tern via the pattern-compilation algorithm developed byRdttersson [153, 178]. The algorithm
for compiling term pattern-matching for functional langes is inspired by finite automata theory.
The algorithm avoids duplicating code and introducing rethnt or sub-optimal discrimination
tests by viewing patterns as regular expressions and aptignihe finite automaton that is built to

recognize them.

The function calls for obtaining the values of the two opeésafines 23-24 in Fig. 3.4(a))
correspond to the++ code on lines 22-25 in Fig. 3.4(b). TR&L basetype-operater on line 25
in Fig. 3.4(a) is translated into a call BY::Plus, as shown on line 26 in Fig. 3.4(b). The function
calls for updating thetate (lines 26—27 in Fig. 3.4(a)) are translated ite+ code (lines 27-28
in Fig. 3.4(b)).

63.2 presents more details as to hGWR is generated and what kind of faciliti€dR provides

for creating analysis components.
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3.1.2 TsL from an Analysis Developer’s Standpoint

An analysis developer creates a new analysis componen) bgdgfining (in C++) ther'SL
basetypesBOOL, INT32, INT8, etc.), and (ii) redefining (in C++) the primitive operatgon
basetypes{yT32: +|NT8: €IC.). These are used to instantiate @i& template by passing a
class of basetypes as the template parameter. This inipligfines an alternative interpretation
of each expression and function in an instruction-set'soete semantics (includingterplnstr),
and thereby yields an alternative semantics for an insomaet from its concrete semantics.

Tab. 3.1 shows the implementations of primitives for threlected analyses: value-set analy-
sis (VSA, see§3.3.1), def-use analysi®UA, see§3.3.3), and quantifier-free bit-vector semantics
(QFBV, see§3.3.5). Each interpretation defines an abstract domainekample, line 3 of each
column defines the abstract-domain classifar32: ValueSet32, UseSet, andQFBVTerm32. To
define an interpretation, one needs to define 42 basetypatopgrmost of which have four vari-
ants, for 8-, 16-, 32-, and 64-bit integers, as well as 12 ataess/updateperations. Each abstract
domain is also required to contain a set of reserved funstisuch agoin, meef andwiden which
forms an additional part of the API available to analysisieegthat us& SL-generated transform-

ers (seg3.3).

Usage ofTSL-Generated Analysis Components. Fig. 3.7 shows how th€IR is connected to
an analysis solver. The analysis solver in Fig. 3.7 usesiclalsworklist-based value propagation
in which theTSL-generated transformerterplnstr is invoked with aninstruction and the current
state S. On each iteration of the main loop of the solver, changesv(S) are propagated to
successors/predecessors (depending on propagationiahec;3.3 summarizes three kinds of

analysis engines including worklist-based value progagat

Generated Transformers. Consider the instructionddd ebx, eax”, which causes the sum of
the values of the 32-bit registeebx andeax to be assigned intebx. When Fig. 3.4(b) is instan-
tiated with the three interpretations from Tab. 3.1, lin@s-30 of Fig. 3.4(a) implement the three

transformers that are presented (using mathematicalioojan Tab. 3.2.
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Table 3.1 Parts of the declarations of the basetypes, lj@selyerators, and map-access/update
functions for three analyses.

VSA DUA QFBV

[1] class VSA_INTERP { [1] class DUALINTERP { [1] class QFBV_INTERP {

[2] /I basetype [2] /I basetype [2] /I basetype

[3] typedef ValueSet32 INT32; [3] typedef UseSet INT32; [3] typedef QFBVTerm32 INT32;
4] ... 4 ... (4]

[5] /I basetype-operators [5] /I basetype-operators [5] /I basetype-operators

[6] INT32 Add(INT32 a, INT32b) { | [6] INT32 Add(INT32 @, INT32 b) { | [6] INT32 Add(INT32 a, INT32 b) {
[7] return a.addValueSet(b); [71 return a.Union(b); [7] return QFBVPIus32(a, b);
8} B } 8}

e ... e ... (9]

[10] /I map-basetypes [10] /I map-basetypes [10] /I map-basetypes

[11] typedef Dict<reg32,INT32> [11] typedef Dict<var32,INT32> [11] typedef QFBVArray

[12] REGMAP32; [12] REGMAP32; [12] REGMAP32;

[13] ... [13] ... [13] ...

[14] /I map-access/update functions | [14] // map-access/update functions | [14] // map-access/update functions
[15] INT32 MapAccess( [15] INT32 MapAccess( [15] INT32 MapAccess(

[16] REGMAP32 m, reg32 k) { [16] REGMAP32 m, reg32 k) { [16] REGMAP32 m, reg32 k) {
[17] return m.Lookup(k); [17] return m.Lookup(k); [17] return QFBVArrayAccess(m,k);
(18] } [18] } (18] }

[19] REGMAP32 [19] REGMAP32 [19] REGMAP32

[20] MapUpdate( REGMAP32 m, [20] MapUpdate( REGMAP32 m, [20] MapUpdate( REGMAP32 m,
[21]  reg32k, INT32V) { [21]  reg32k, INT32V) { [21]  reg32k, INT32V) {

[22] return m.Insert(k, v); [22] return m.Insert(k,v); [22] return QFBVArrayUpdate(m,k,v);
(23] } (23] } (23] }

[24] ... [24]. . . [24] ...

[25]}; [25]}; [25]};

Table 3.2 Transformers generated by T&. system.

Analysis| Generated Transformers foadd ebx, eax”

1VSA AS.SEebx — S(ebx)+v**S(eax)] [ZF — (S(ebx)+"**S(eax) = 0)][more flag updatds

2DUA | [ ebx — {eax, ebx}, ZF — {eax, ebx}, . . .]

3.QFBV | (ebx' =ebx+%*eax) A (ZF < (ebx+32eax = 0)) A (SF' < (ebx+32eax< O)) A . . .
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N Analysis Components

while(worklist # {}) {

Analysis
! select an edgen m from worklist

1 e
: new_S = interplnstrf(instr(n), S)
1 a
I /
1
1
L 7
state” interpInstr#(instruction |, state* S) {

with(1) (
ADD(dstOp, srcOp):

let dstVal = interpOp(S, dstOp);

srcVal = interpOp(S, srcOp);

res = dstval +# srcVal,

new_S = updateFlag(S, dstVal, srcVal, res);
in (
updateState(new_S, dstOp, res)
)

b

M Instruction-Set Specifications

Figure 3.7 How & SL-generated analysis componeintérpinstr’) is invoked in a solver that
uses classical worklist-based value propagation.



75

3.2 Various Aspects of a Common Intermediate Representatio

Given aTSL specification of an instruction set, tA&L system generates@R that consists
of two parts: one is a list of++ classes for the user-defined abstract-syntax grammar;ttiee o
is a list of C++ template functions for the user-defined functions, inatgdhe interface function
interplnstr. TheC++ functions are generated by linearizing theL specification, in evaluation
order, into a series af++ statements as describedsd.1.1.2.

However, there are some important issues that need to benydpandled for the resulting
code to be able to be used to create abstract interpreteenforstruction-set specification. In
particular, the code generated for each transformer muableeto: (i) execute over abstract states
(§3.2.2), (ii) possibly propagate abstract states to mone time successor in a conditional expres-
sion §3.2.2.1), (iii) compare abstract states and terminataattstxecution when a fixed point is
reached{3.2.2.2), and (iv) apply widening operators, if necesdargnsure terminatior§8.2.2.2).

In §3.2.1, we discuss an additional issue that arise€liR generation, which is important
for avoiding loss of precision for some generated analyZg8<.3 presents thgaired-semantics

facility that theTSL system provides.

3.2.1 Two-LevelCIR

The examples given in Fig. 3.4(b), Fig. 3.10, and Fig. 3.L18how slightly simplified
versions ofCIR code. TheTSL system actually generat€3lR code in which all the base-
types, basetype-operators, aactess/updattunctions are appended with one of two predefined
namespaces that definéveo-levelinterpretation [111, 149]JCONCINTERP for concrete interpre-
tation (i.e., interpretation in the concrete semanticsyl @BSINTERP for abstract interpretation.
Either CONCINTERP or ABSINTERP would replace the occurrences BT in the exampleCIR
shown in Fig. 3.4(b), Fig. 3.10, and Fig. 3.11(b).

The reason for using a two-leVEIR is that the specification of an instruction set often corgtain
some manipulations of values that should always be trestembacrete values. For example, an

instruction-set specification developer could follow thppmach taken in th@owerPC manual
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[1] /I User-defined abstract-syntax grammar
[2] instruction: . ..

[3] | BCx(BOOL BOOL INT32 BOOL BOOL)
4 [...;

[5] // User-defined functions

[6] state interplnstr(instruction I, state S) {

[7]
[8] BCx(BO, BI, target, AA, LK):
[9] let. . .
[10] cia = RegValue32(S, CIA()); // current address
[11] new_ia = (AA ? target /l direct: BCA/BCLA
[12] . Cia + target); // relative: BC/BCL
[13] Ir = RegValue32(S, LR()); //linkage address
[14] new_Ir =
[15] (LK ? cia + 4 // change the link register: BCL/BCLA
[16] . Ir); // do not change the link register: BC/BCA
[17]
[18]}
Figure 3.8 A fragment of thBowerPC specification for interpretin@Cx instructions BC, BCA,

BCL, BCLA).

[27] and specify variants of the conditional branch instiue (BC, BCA, BCL, BCLA) of PowerPC
by interpreting some of the fields in the instructiovA(and LK) to determine which of the four
variants is being executed (Fig. 3.8).

Another reason that this issue arises is that most wellgdesi instruction sets have many reg-
ularities, and it is convenient to factor tA&L specification to take advantage of these regularities
when specifying the semantics. Such factoring leads tashgpecifications, but leads to the in-
troduction of auxiliary functions in which one of the paraers holds a constant value fogaven
instruction. Fig. 3.9 shows an example of factoring. TA®2 instructionsadd andsub both have

two operands and can share the code for fetching the valud® dfvo operands. Lines 4-5 are
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[1] AddSublinstr(op, dstOp, srcOp): // ADD or SUB

[2] let dstVal = interpOp(S, dstOp);

[3] srcVal = interpOp(S, srcOp);

4] ans = (op == ADD() ? dstVal + srcVal

[5] : dstVal - srcval); // SUB()
[6] in(...),

[71 ...

Figure 3.9 An example of factoring iRSL.

the instruction-specific operations; the equality expgoessop == ADD()” on line 4 can be (and
should be) interpreted in concrete semantics.

In both cases, the precision of an abstract transformer caresmes be improved—and is
never made worse—Dby interpreting subexpressions asedamth the manipulation of concrete
values in concrete semantics. For instance, consid&laexpressioriet v = (b7 1 : 2) that
occurs in a context in whichis definitely a concrete value;will get a precise value—either 1 or
2—whenb is concretely interpreted. However,tfis not expressible precisely in a given abstract
domain, the conditional expressiofd? 1 : 2)” will be evaluated by joining the two branches, and

v will not hold a precise value. (It will hold the abstractioh{d, 2}.)

Binding-time analysis. To address the issue, we perform binding-time analysis]|[@0%heTSL
code, the outcome of which is that expressions associatbdive manipulation of concrete values
in an instruction are annotated witty and others withA. We then generate the two-levE€IR
by appendingCONCINTERP for C values, andABSINTERP for A values. The generatgdiR is
instantiated for an analysis transformer by definkBSINTERP. The TSL translator supplies a

predefined concrete interpretation f0ONCINTERP.

The instruction-set-specification developer annotateddp-level user-defined (but reserved)

functions, includingnterplnstr, with binding-time information.

EXPORT <A> interplnstr(<C>, <A>)
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The first argument of typanstruction of interplnstr is annotated with<C'>, which indicates
that all the data extracted from tlestruction are treated asoncrete the second argument of
type state of interplnstr is annotated with< A>, which indicates that all the data extracted from
the state are treated aabstract The return type is also annotated as abstract. The birtcimey-
information<A> is propagated to the caller-sitesioferpinstr.

More details of thel' SL syntax for binding-time analysis can be found in Appendix A.

3.2.2 Execution Over Abstract States

There are (at least) four issues that arise: during the adistrterpretation of each transformer,
the abstract interpreter must be able to (i) execute ovdratistates, (ii) execute both branches
of a conditional expression, (iii) compare abstract states$ terminate abstract execution when a
fixed point is reached, and (iv) apply widening operatorggi€essary, to ensure termination. The

following subsections discuss how these issues are hairdthd translation t&CIR.

3.2.2.1 Conditional Expressions

Fig. 3.10 shows part of th€IR that corresponds to thESL expression fet answer =a ? b
: ¢”. Bool3 is an abstract domain of Booleans (which consists of thréeegd FALSE, MAYBE,
TRUE}, whereMAYBE means “may b&ALSE or may beTRUE”). The TSL conditional expres-
sion is translated into three if-statements (lines 3—&di8-12, and lines 13-15 in Fig. 3.10). The
body of the first if-statement is executed when BueI3 value fora is possibly false (i.e., either
FALSE or MAYBE). Likewise, the body of the second if-statement is executhdn theBool3
value fora is possibly true (i.e., eithéeFRUE or MAYBE). The body of the third if-statement is
executed when thBool3 value fora is MAYBE. Note that in the body of the third if-statement,
answer is overwritten with thgoin of t1 andt2 (line 14).

TheBool3 value for the translation of &SL BOOL-valued value is fetched lyetBool3Value,
which is one of thel'SL interface functions that each interpretation is requiledefine for the
type BOOL. Each analysis developer decides how to handle conditiorzadches by defining

getBool3Value. It is always sound fogetBool3Value to be defined as the constant function that
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[1] BT::BOOLtO =. .. ;// translation of a

[2] BT:INT321t1, t2, answer;

[3] if(Bool3::possibly_false(t0.getBool3Value())) {
[4]

[5] tl=...;/ translation of b

[6] answer = t1;

[71 }

[8] if(Bool3::possibly_true(t0.getBool3Value())) {
[9]

[10] t2=...;/l translation of c

[11] answer =t2;

[12] }

[13] if(t0.getBool3Value() == Bool3::MAYBE) {
[14] answer = tl.join(t2);

[15] }

Figure 3.10 The translation of the conditional expressiendnswer =a? b : c”.

always return®AYBE. For instance, this constant function is useful when Baokedues cannot
be expressed in an abstract domain, sucb@a for which the abstract domain f@OOL is a

set ofuses. For an analysis whei®ool3 is itself the abstract domain for ty@@OOL, such as
VSA, getBool3Value returns theBool3 value from evaluating the translation afso that either an

appropriate branch or both branches can be abstractly tsgcu

3.2.2.2 Comparison, Termination, and Widening

Recursion is not often used TSL specifications, but is needed for handling some instrustion
that involve iteration, such as tih32 string-manipulation instruction§{OS, LODS, MOVS, etc.,
with variousREP prefixes), and theowerPC multiple-word load/store instructionsN\\W, STMW,
etc). For these instructions, the amount of work perforngedaintrolled either by the value of a

register, the value of one or more strings, etc. These iostms can be specified IASL using



[1] state repMovsd(state S, INT32 count) {

(2]
(3]
[4]
[5]
(6]
[7]
(8]
9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

count ==
?S
: with(S) (

)

(18]};

State(mem, regs, flags):
let direction = flags(DF());

edi = regs(EDI());

esi = regs(ESI());

src = MemAccess_32_8_LE_32(mem, esi);

newRegs = direction
? regs[EDI()|—>edi-4][ESI()|—>esi-4]
: regs[EDI()| —>edi+4][ESI()|—>esi+4]

newMem = MemUpdate_32_8_LE _32(
memory, edi, src);

newS = State(newMem, newRegs, flags);

in (repMovsd(newsS, count - 1) )
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[1] state global_S;

[2] BT::INT32 global _count;
[3] state global retval,

[4] BT::state repMovsd(

(5]
(6]
(7]
(8]
El

(101},

INTERP::state S, BT::INT32 count) {
global S = 1;

global_count = 1;

global_retval = 1;

return repMovsdAux(S, count);

[11]INTERP::state repMovsdAux(

(12]
[13]
(14]
[15]
[16]
[17]
(18]
[19]
(20]
(21]
[22]
(23]
(24]
(25]
(26]
[27]
(28]
[29]

[30]};

INTERP::state S, BT::INT32 count) {
/I Widen and test for convergence
state tmp_S = global_S Y/ (global_S LI S);
BT::INT32 tmp_count =
global_count Y/ (global_count LI count);

iftmp_S C global_S

&& tmp_count C global_count) {

return global_retval,
}
S =tmp_S; global S =tmp_S;

count = tmp_count; global _count = tmp_count;

/I translation of the body of repMovsd

statenewS =. .. ;
state t = repMovsdAux(newsS, count - 1);
global retval = global retval L t;

return global_retval,

Figure 3.11 (a) A recursivéSL function, (b) The translation of the recursive functionnfrda).
For simplicity, some mathematical notation is used, initlgd! (join), \/ (widening),C
(approximation), and. (bottom).
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recursior For each recursive function specified by an instructiorspetification developer, the
TSL system generates a function that appropriately compargsaab values and terminates the
recursion if abstract values are found to be equal (i.erdbersion has reached a fixed point). The
function is also prepared to apply the widening operatot tihe analysis developer has specified
for the abstract domain in use.

For example, Fig. 3.11(a) shows the user-defihgd function that handlesep movsd”, which
copies the contents of one area of memory to a second area.amount of memory to be copied
is passed into the function as the argunenint. Fig. 3.11(b) shows its translation into tGéR. A
recursive function likeepMovsd (Fig. 3.11(a)) is automatically split by tHesL compiler into two
functions,repMovsd (line 4 of Fig. 3.11(b)) andepMovsdAux (line 11 of Fig. 3.11(b)). Th&sSL
system initializes appropriate global variabigsbal S andglobal_count (lines 6—8) inrepMovsd,
and then callsepMovsdAux (line 9). At the beginning ofepMovsdAux, it generates statements
that widen each of the global variables with respect to tigei@ents, and test whether all of the
global variables have reached a fixpoint (lines 13-17). JfrepMovsdAux returnsglobal_retval
(line 19). If not, the body ofepMovsdAux is analyzed again (lines 24-27). Note that at the
translation of each normal return frorepMovsdAux (e.g., line 28), the return value is joined into
global_retval. The TSL system requires each analysis developer to define the éunsgtin and

widenfor the basetypes of the interpretation used in the analysis

3.2.3 Paired Semantics

Our system allows easy instantiationgefiuced produc [74] by means opaired semantics
TheTSL system provides a template for paired semantics as showig.i3 22 (a).

The CIR is instantiated with goaired semantic domain defined with two interpretations,
INTERP1 and INTERP2 (each of which may itself be a paired semantic domain), as/shan
line 1 of Fig. 3.12(b). The communication between intergtiiens may take place in basetype-

operators oaccess/updatiinctions; Fig. 3.12(b) is an example of the latter. The t@mponents

5Currently, TSL supports only tail-recursion.
SrepMovsd is called byinterplnstr, which passes in the value of registerx, and setecx to 0 afterrepMovsd
returns.
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[1] template <typename INTERP1, typename INTERP2>
[2] class PairedSemantics {
[3] typedef PairedBaseType<INTERPL::INT32, INTERP2::INT32> INT32;
[4 ...
(@ [6] INT32 MemAccess 32 8 LE 32(MEMMAP32_8 mem, INT32 addr) {
[6] return INT32(INTERP1::MemAccess_32_8_LE_32(mem.GetFirst(), addr.GetFirst()),
[7] INTERP2::MemAccess_32_8_LE_32(mem.GetSecond(), addr.GetSecond()));
8] }
[0 };
[1] typedef PairedSemantics<VSA_INTERP, DUA_INTERP> DUA,;
[2] template<> DUA::INT32 DUA::MemAccess_32_8_LE_32(
[3] DUA::MEMMAP32_8 mem, DUA::INT32 addr) {
[4] DUA:INTERP1:MEMMAP32_8 memoryl = mem.GetFirst();
®) [5] DUA:INTERP2::MEMMAP32_8 memory2 = mem.GetSecond();
[6] DUA:INTERP1:(INT32 addrl = addr.GetFirst();
[71 DUA:INTERP2:INT32 addr2 = addr.GetSecond();
[8] DUA::INT32 answer = interact(mem1, mem2, addrl, addr2);

[9]  return answer;

[10]}

Figure 3.12 (a) A part of the template class for paired seroginib) an example af++ explicit
template specialization to create a reduced product.

of the paired-semantics values are deconstructed on liréofiFig. 3.12(b), and the individ-
ual INTERP1 andINTERP2 components fronboth inputs can be used (as illustrated by the call
to interacton line 8 of Fig. 3.12(b)) to create the paired-semanticsrrevalue,answer. Such
overridings of basetype-operators aactess/updat@unctions are done bg++ explicit special-
ization of members of class templates (this is specifie@#m by “template<>"; see line 2 of
Fig. 3.12(b)).

We also found this method @IR instantiation to be useful to perform a form of reduced prod-
uct when analyses are split into multiple phases, as in dik@CodeSurfer/x86. CodeSurfer/x86
carries out many analysis phases, and the application sedsence of basic analysis phases is
itself iterated. On each round, CodeSurfer/x86 appliesqaieece of analyses/SA, DUA, and

several othersvSA is the primary workhorse, and it is often desirable for tHeimation acquired
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[1] with(op) (. . .
[2] Indirect32(base, index, scale, disp):
[8] let addr = base

[4] + index * SignExtend8To32(scale)
[5] + disp;

[6] m = MemUpdate 32 8 LE 32(

[7] mem,addr,v);

8] ...)
Figure 3.13 A fragment afipdateState.

by VSA to influence the outcomes of other analysis phases by pahiagSA interpretation with
another interpretation.

We can use the paired-semantics mechanism to obtain desuitidphase interactionamong
our generated analyzers—typically, by pairing ¥&®A interpretation with another interpretation.
For instance, wittDUA_INTERP alone, the information required to obtain abstract memory |
cation(s) foraddr is lost because thBUA basetype-operators (used @nandx on lines 4-5 of
Fig. 3.13) just return the union of the argumentse sets. With the pairing o¥/SA_INTERP
with DUA_INTERP (line 1 of Fig. 3.12(b)) DUA can use the abstract address computecddr2
(line 7 of Fig. 3.12(b)) bywSA_INTERP, which uses/SA_INTERP::Add andVSA_INTERP::Mult;
the latter operators operate on a numeric abstract domegimefrthan a set-based one).

Note that during the application of the paired semantit$4 interpretation will be carried
out on theVSA component of paired intermediate values. In some senseistduplicated work;
however, a paired semantics is typically used only in a pligeansformer generation where
the transformers are generated during a single pass oventémprocedural CFG to generate a
transformer for each instruction. Thus, only a limited amioaf VSA evaluation is performed

(equal to what would be performed to check thatWsa solution is a fixed point).
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3.3 TSL-Generated Analysis Components

In this section, we present various analyses that are crégttheTSL system. As illustrated in
Fig. 3.7, a version of the interface functiorterpinstr is created for each analysis. Each analysis
engine callgnterplnstr at appropriate moments to obtain a transformer for an inttra being

processed. Analysis engines can be categorized as follows:

e Worklist-Based Value Propagation (or Transformer Apgiica) [TA]. These perform clas-
sical worklist-based value propagation in which generdtadsformers are applied, and
changes are propagated to successors/predecessorsdigdgpen propagation direction).
Context sensitivity in such analyses is supported by mebigeaall-string approach [169].
VSA uses this kind of analysis enging3(3.1).

e Transformer CompositiofirC]. These generally perform flow-sensitive, contextstve
interprocedural analysi®UA (§3.3.3) uses this kind of analysis engine.

e Unification-Based AnalysdbB]. These perform flow-insensitive interprocedural a/sa.

ASI (§3.3.4) uses this kind of analysis engine.

For each analysis, th€IR is instantiated with an interpretation by an analysis dgvet. This
mechanism provides wide flexibility in how one can coupledixgtem to an external package. One
approach, used witl'SA, is that the analysis engine (written @++) calls interpinstr directly.

In this case, the instantiate@iR serves as #ransformer evaluatar interpinstr is prepared to
receive an instruction and an abstract state, and returistnaat state. Another approach, used
in DUA, is employed when interfacing to an analysis componenttiaatits own input language
for specifying abstract transformers. In this case, théamsatedCIR serves as #@ransformer
generator interplnstr is prepared to receive an instruction and a default absttat€ and return

a transformer specification in the analysis component'atitgnguage.

The following subsections discuss how BER is instantiated for various analyses.

In the case of transformer generation for a TC analyzer, #iaudt state is the identity function.
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3.3.1 Creation of a TA Transformer Evaluator for vsa

VSA is a combined numeric-analysis and pointer-analysis dlgarthat determines an over-
approximation of the set of numeric values and address¢g#th register and memory location
holds at each program point [41]. Awemory regions an abstract quantity that represents all
runtime activation records of a procedure. To represent afseimeric values and addresseSA
usesvalue-se$, where a value-set is a map from memory regions to stridieshvials. A strided
interval consists of a lower bourid, a strides, and an upper bound + ks, and represents the set
of numbers{ib, b+ s, b+ 2s, ..., b+ ks} [160].

The Interpretation of Basetypes and Basetype-Operators. The abstract domain for the integer
basetypes is a value-set. The abstract domaiB@0L is Bool3 ({FALSE, MAYBE, TRUE}),
whereMAYBE means “may bd&-ALSE or may beTRUE”. The operators on these domains are
described in detail in [160].

The Interpretation of Map-Basetypes and Access/Update Functions. The abstract domain for
memory mapsNIEMMAP32_8, MEMMAP64_8, etc.) is a dictionary that maps each abstract mem-
ory location (i.e., the abstraction 6fT32) to a value-set. The abstract domain for register maps
(REGMAP32, REGMAPG64, etc.) is a dictionary that maps each variabskgB2, reg64, etc.) to

a value-set. The abstract domain for flag mapsAGMAP) is a dictionary that maps féag to a
Bool3. Theaccess/updatiinctions access or update these dictionaries.

VSA uses this transformer evaluator to create an output abhsti@e, given an instruction and
an input abstract state. For example, row 1 of Tab. 3.2 shbevgénerate®SA transformer for
the instruction &dd ebx, eax”. The VSA evaluator returns a new abstract state in whebl is
updated with the sum of the valuesedix andeax from the input abstract state and the flags are

updated appropriately.

3.3.2 Creation of a TC Transformer Generator for ARA

An affine relation is a linear-equality constraint betwepteger-valued variablesARA finds

affine relations that hold in the program, for a given set afaldes. This analysis is used to find
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induction-variable relationships between registers aetory locations; these help in increasing
the precision o/SA when interpreting conditional branché8(2.2.1) [38].

The principle that is used to create a TC transformer geaersitas follows: by interpreting
theTSL expression that defines the semantics of an individuakiogtm using an abstract domain
in which values represent transformers, each cahterplinstr will residuate a transformer for the
instruction. In the case &RA, theCIR is instantiated so that for each instruction, the generated
transformer operates on an abstract domain whose valusgt@ref matrices that represent affine
transformations on registers and memory locations of thee $141].

I nterpretation of Basetypes and Basetype-Operators. The abstract domain for the integer base-
types is a set of linear expressions in which variables dheea register or an abstract memory
location—the actual representation of the domain is a sebloimrs that consist of an integer con-
stant and an integer coefficient for each variable. Thisrooluepresents an affine expression over
the values that the variables hold at the beginning of thieioson. The basetype operations are
defined so that only a set of linear expressions can be gedeaty operation that leads to a non-
linear expression, such asmes(eax, ebx), returnsTOP, which means that no affine relationship
is known to hold.

| nterpretation of Map-Basetypes and Access/Update Functions. The abstract domain of the maps
for ARA is a set of matrices of size€V + 1) x (N + 1), whereN is the number of variables.
This abstraction, which is able to find all affine relatioqshin an affine program, was defined
by Muller-Olm and Seidl [141]. Eachccesdunction extracts a set of columns associated with
the variable it takes as an argument, from the set of matfareiss map argument. Eadlpdate
function creates a new set of matrices that reflects the atffamsformation associated with the
update to the variable in question.

For each instruction, th&RA transformer relates linear-equality relationships trattbefore

the instruction to those that hold after execution of théruction.
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3.3.3 Def-Use Analysis{ua)

Def-Useanalysis finds the relationships betwekiinitiongdef9 andusesof state components
(reqgisters, flags, and memory-locations) for each insivact
The Interpretation of Basetypes and Basetype-Operators. The abstract domain for the basetypes
is a set ofuses(i.e., abstractions of the map-keys in states, such asteegiiglags, and abstract
memory locations), and the operators on this domain pertosat union of their arguments’ sets.
The I nterpretation of Map-Basetypes and Access/Update Functions. The abstract domains of the
maps forDUA are dictionaries that map eadef to a set ofuses Eachaccesgunction returns the
set ofusesassociated with the key parameter. Eagldatefunctionupdate(D, k, S), whereD is
a dictionary,k is one of the state components, & a set ofuses returns an updated dictionary
D[k — (D(k) U S)] (or D[k — S] if a strong update is sound).

TheDUA results (e.g., row 2 of Tab. 3.2) are used to create trangfgrior several additional
analyses, such asMOD analysis [72], which is an analysis to find modified varialfteseach
function f (including variables modified by functions transitivelylled from f) and live-flag

analysis, which is used in our version\d$A to perform trace-splitting/collapsing (s€8.3.5).

3.3.4 Creation of a UB Transformer Generator for Asi

ASI is a unification-based, flow-insensitive algorithm to idiynthe structure of aggregates in
a program [42]. For each instruction, the transformer gatoergenerates a set AEl commands,
each of which is either a commanddplit a memory region or a command toify some portions
of memory (and/or some registers). At analysis time, a tiralyzer typically applies the trans-
former generator to each of the instructions in the programd, then feeds the resulting setAs|
commands to aASI solver to refine the memory regions.
The I nterpretation of Basetypes and Basetype-Operators. The abstract domain for the basetypes
is a set ofdatarefs, where adataref is an access on specific bytes of a register or memory. The
arithmetic, logical, and bit-vector operations @atarefs asnon-unifiable dataref, which means

that they will only be used to generagplits.
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The Interpretation of Map-Basetypes and Access/Update Functions. The abstract domain of the
maps forASI is a set ofsplits andunificatiors. Theaccesdunctions generate a set datarefs
associated with a memory location or register. Tipeatefunctions create a set ahificatiors or
splits according to theatarefs of the data argument.

For example, for the instructionnfov [ebx],eax”, when ebx holds the abstract address
AR foo—12, whereARfoo is the memory region for the activation records of procedor the

ASI transformer generator emits oA8I unificationcommand AR fog[-12:-9] :=: eax[0:3]".

3.3.5 Quantifier-Free Bit-Vector (QFBv) Semantics

QFBV semantics provides a way to obtain a symbolic representatas a formula in first-
order quantifier-free bit-vector logic—of an instructisrsemantics.
The Interpretation of Basetypes and Basetype-Operators. The abstract domain for the integer
basetypes is a set of terms, and each operator construgta gt represents the operation. The
abstract domain foBOOL is a formula, and each BOOL-valued operator constructsradta that
represents the operation.
The Interpretation of Map-Basetypes and Access/Update Functions. The abstract domain for the
state components is a dictionary that maps a storage comptana term (or a formula in the case
of FLAGMAP). Theaccess/updatiinctions retrieve from and update the dictionaries, regpely.

QFBV semantics is useful for a variety of purposes. One use isxdBaay information in an
abstract interpreter, such as ¥i®A analysis engine, to provide more precise abstract inte&poa
of branches in low-level code. The issue is that many inftvacsets provide separate instructions
for (i) setting flags (based on some condition that is testew (ii) branching according to the
values held by flags.

To address this problem, we usérace-splitting/collapsinggcheme [136]. Th&SA analysis
engine partitions the state at each flag-setting instrndiased on live-flag information (which is
obtained from an analysis that uses DA transformers); a semantic reduction [74] is performed

on the splitvVSA states with respect to a formula obtained from the transéorgenerated by the



89

[(A) cmp eax, 10]

T F

[(C)succ 1] [(D)succ 2]
v v
:

Figure 3.14 An example for trace-splitting

QFBYV semantics. The set &SA states that result are propagated to appropriate sucsessitre
branch instruction that uses the flags.

The cmp instruction (A) in Fig. 3.14, which is a flag-setting insttion, hassf andzf as
live flags because those flags are used at the branch instrsji(B) andjz (E): js andjz jump
according tasf andzf, respectively. After interpretation of (A), the sta&ges split into four states,
S1, So, S3, andS,, which are reduced with respect to the formulas (eax — 10 < 0) associated
with sf, andy,: (eax — 10 == 0) associated withf .

S; :=S[sf—T] [zf — T] [eax — reducéS(eax), 1 A p3)]

S, :=§[sf—T] [zf — F] [eax — reducdS(eax), 1 A —»)]

S3 ;= §[sf—F] [zf — T] [eax — reducdS(eax), 1 A ¥2)]

S, :=S[sf—F] [zf — F][eax — reducdS(eax), —p; A —p2)]

Becausep; A s is not satisfiable$; becomesl. StateS, is propagated to the true branch of
js (i.e., just before (C)), an8; andS, to the false branch (i.e., just before (D)). Because no flags
are live just before (C), the splitting mechanism maintgust a single state, and thus all states
propagated to (C)—here there is just one—are collapsed itogéesabstract state. Because is

still live until (E), the state$; andS, are maintained as separate abstract states at (D).
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3.4 Measures of Success

As an example of the kind of leverage thBSL provides, the most recent incarnation of
CodeSurfer/x86—a revised version whose analysis compsraa implemented viaSL—uses
eight separate reinterpretations generated fronT 8iespecification of théA32 instruction set. We
estimate that the task of writing transformers (for the eagtalysis phases used in CodeSurfer/x86)
consumed about 20 man-months; in contrast, we have invastel of about 1 man-month to
write the C++ code for the set o SL interpretations that are used to generate the replacement
components. To this, one should add 10-20 man-days to WwefE3L specification folA32: the
current specification folA32 consists of 2,834 (non-comment, non-blank) line3 L.

Because each analysis is defined at the meta-level (i.erdwding an interpretation for the
collection of TSL primitives), abstract transformers for a given analysis ba created automati-
cally for eachinstruction set that is specified rsL. For instance, from theowerPC specification
(1,370 non-comment, non-blank lines, which took approxetyad days to write), we were imme-
diately able to generateowerPC-specific versions adll of the analysis components that had been
developed for théA32 instruction set.

It takes approximately 8 seconds (on an Intel Pentium 4 wihh08GHz CPU and 2GB of
memory, running Centos 4) for tAeL (cross-)compiler to compile tha32 specification to C++,
followed by approximately 20 minutes wall-clock time (on katel Pentium 4 with a 1.73GHz

CPU and 1.5GB of memory, running Windows XP) to compile theegated C++.

It is natural to ask how th@SL-generated analyses perform compared to their hand-coded
counterparts. Due to the nature of the transformers useaénod the analyses that we imple-
mented (affine-relation analysi&RA) [141]), it was possible to write an algorithm to compare the
TSL-generated\RA transformers with the hand-cod@&A transformers that were incorporated in
CodeSurfer/x86. On a corpus of 542 instruction instancasdbvered various opcodes, address-
ing modes, and operand sizes, we found thafltBe-generated transformers were equivalent in
324 cases annhore precisghan the hand-coded transformers in the remaining 218 ¢468s).

For 87 cases, this was because in rethinking howAR abstraction could be encoded usihgL
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hand-codedRA transformers TSL-generated\RA transformers
time (sec) 0.032 0.281
total # of memory allocs 4,735 31,234
max # of memory allocs 20 682

Figure 3.15 Time (in seconds) and the total/maximum numberamory allocations for getting
TSL-generated\RA transformers and hand-coded transformers.

mechanisms, we discovered an easy way to extend [141] io sgtane information for 8-, 16-, and
64-bit operations. (In principle, these could have beepnparated into the hand-coded version,
too.)

The other 131 cases of improvement can be ascribed to “fatigctor” on the part of the
human programmer: the hand-coded versions adopted a pssiview and just treated certain
instructions as always assigning an unknown value to thisterg that they affected, regardless
of the values of the arguments. Because T®&-generated transformers are based onARA
interpretation’s definitions of th&SL basetype-operators, tleSL-generated transformers were
more thorough: a basetype-operator’s definition in an pregation is used imll places that the
operator arises in the specification of the instructiorssathcrete semantics.

We measured time and memory consumption to answer the qnésiow costly is it to use
the TSL-generated analyses”. Fig. 3.15 compares the time (in sis¢@md memory consumption
(in number of memory allocations for matrices, which aredusethe representation of abstract el-
ements in the abstract domain #RA) taken for obtaining 547 SL-generated\RA transformers
with the time and memory for obtaining the corresponddRA transformers by the hand-coded
method that was used in the original CodeSurfer/x86. T8le-based method takes about 8 times
longer than the hand-coded approach and causes about 7nionesnemory allocations. IASL,
all the abstract operations (matrix manipulations) ardguered at the meta-level essentially in a
side-effect-free functional environment. Thereforey¢ghean be many unnecessary memory alloca-
tions and object copies at the meta-operator boundariesetr, there is a room for improvement

by optimization. Also,TSL still takes less than a second for obtaining 242A transformers. In
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the light of the performance measurementA®A, which is the most memory-intensive analy-
sis we have created using tR&L system,TSL-generated analysis does not cause a significant

performance degradation.

We also carried out a study using an algorithm for obtainibgst transformer”. For a given
instruction |, theTSL QFBV reinterpretation was used to obtain a formylathat expresses the
semantics of I. The formula; was then used to obtain (a close approximation to) the ARAt
transformer that over-approximates, using the techniques described in [116, 161]. About 8.5%
of the ARA transformers generated via the best-transformer algontiere more precise than the
ARA transformers generated via ti&L-based method. However, there is a trade-off between
precision and speed: the best-transformer method is alfifutides slower (as of May 3, 2011)
than theTSL-based method.

Leverage

The TSL system provides two dimensions of parameterizabilityfedént instruction sets and
different analyses. Each instruction-set specificatioveltger writes an instruction-set seman-
tics, and each analysis developer defines an abstract ddaraandesired analysis by giving an
interpretation (i.e., the implementations 8L basetypes, basetype-operators, aocess/update
functions). Given the inputs from these two classes of ysleed SL system automatically gener-
ates an analysis component. Note that the work that an asdkgeloper performs iESL-specific
butindependenbf each language to be analyzed; from the interpretatiohdéfines an analysis,
the abstract transformers for that analysis can be genktsat®matically foreveryinstruction set
for which one has &SL specification. Thus, to creafd x /N analysis components, tAeL sys-
tem only requires\/ specifications of the concrete semantics of instructiog, setd/N analysis
implementations (Fig. 3.1), i.e}/ + N inputs to obtain\/ x N analysis-component implementa-
tions.

The TSL system provides considerable leverage for implementiradyars tools and experi-
menting with new ones. New analyses are easily implemergealuse a clean interface is provided

for defining an interpretation.
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TSL as a Tool Generator. A tool generator (or tool-component generator) suciYyAsC [107]
takes a declarative description of some desired behavibaatomatically generates an implemen-
tation of a component that behaves in the desired way. Ofiegénerated component consists of
generated tables and code, plus some unchardgiigr code that is used in each generated tool
component. The advantage of a tool generator is that iteseairrect-by-construction implemen-
tations.

For machine-code analysis, the desired components eadistoha suitable abstract inter-
pretation of the instruction set, together with some kindwélysis driver (a solver for finding the
fixed-point of a set of dataflow equations, a symbolic evaiutdr performing symbolic execu-
tion, etc.). TSL is a system that takes a description of the concrete sersarftan instruction set,

a description of an abstract interpretation, and createsyplementation of an abstract interpreter

for the given instruction set.
TSL : concrete semantics abstract domain- abstract semantics.

In that senseTSL is a tool generator that, for a fixed instruction-set sentantautomatically
creates different abstract interpreters for the instorcset.

The reinterpretation mechanism allowSL to be used to implemendol-component genera-
torsandtool generatorsEach implementation of an analysis component’s drivey. (éxed-point-
finding solver, symbolic executor) serves as the unchantyingr for use in different instantiations
of the analysis component for different instruction setise TSL language becomes the specifica-

tion language for retargeting that analysis componentifiterént instruction sets:
analyzer generator = abstract-semantics generator +ssalgver.

For tools like CodeSurfer/x86, which incorporates mugiphalysis components, we thereby ob-

tain YACC-like tool generators for such tools:

concrete semantics of & Tool/L.

Consistency. In addition to leverage and thoroughness, for a system ligdeSurfer/x86—

which uses multiple analysis phases—automating the psocksreating abstract transformers
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ensuresemantic consistengthat is, because analysis implementations are genernatedasin-
gle specification of the instruction set’s concrete semantigs,guarantees that@nsistenview

of the concrete semantics is adopted by all of the analysasinghe system.

3.5 Related Work

In this section, we discuss work from various domains thiates toTSL. §3.5.1 compares the
way we use the technique of reinterpretingL’s base-types and meta-operators to the concept of
refactoringas in the original work on semantic reinterpretation [1184,1144, 148].§3.5.2 dis-
cusses some instruction-set-description languagesajs@for various purpose§3.5.3 presents

various existing systems for creating analyzers and toanmsérs.

3.5.1 Semantic Reinterpretation

As discussed i§3.1, semantic reinterpretatiomvolves refactoring the specification of a lan-
guage’s concrete semantics into a suitable form by introduappropriatecombinatorghat are

subsequently redefined to create the different subjecfdage interpretations.

Semantic Reinterpretation Versus Standard Abstract Inteppretation. Semantic reinterpreta-
tion [110, 134, 144, 148] is a form of abstract interpretafié3], but differs from the way abstract
interpretation is normally applied: in standard abstraténpretation, one reinterprets the con-
structs of eaclsubject languagein contrast, with semantic reinterpretation one reintetp the
constructs of theneta-language Standard abstract interpretation helps in creating s&oadly
soundtools semantic reinterpretation helps in creating semanticadundtool generators In
particular, if you haveV subject languages and analyses, with semantic reinterpretation you
obtain NV x M analyzers by writing jusiV + M specifications: concrete semantics forsubject
languages and/ reinterpretations. With the standard approach, one must Wr x M abstract

semantics.
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As originally proposed, semantic reinterpretation pesnaitbitrary refactoring of a semantic
specification so that the desired outcome can be achieverkwiterpretation of any combina-
tors introduced. In contrast, inSL—although it is possible to introduce combinators and refac
tor them—the primary mechanism is to reinterpret the bgped and meta-operators of theL
meta-language. This approach is particularly conveniama System to generateultipleanalysis

components from a single specification of a language’s @ecemantics.

Semantic Reinterpretation Versus Translation to a Common htermediate Representation.
The mapping of subject-language constructs to meta-layggaperations that one defines as part
of the semantic-reinterpretation approach resemblesialation to a common intermediate repre-
sentation CIR) data structure Thus, another approach to obtaining “systematic” repritations
that are similar to semantic reinterpretations—in thaytapply to multiple subject languages—
would be to translate subject-language programs @R, and then create various interpreters
that implement different abstract interpretations of tbdetypes of th€IR data structure. Each
interpreter would then be applied to (the translation ofjgsams in any subject languadefor
which one has defined airto-CIR translator. Compared with interpreting objects aCER data
type, the advantages of semantic reinterpretation (ieénterpreting the constructs of timeeta-
language are
1. The presentation of our ideas is simpler because one @vésve to introduce an additional
language of trees for representi@dR objects.
2. With semantic reinterpretation, there is no expl€iR data structure to be interpreted. In
essence, semantic reinterpretation removes a level afpation, and hence generated

analyzers should run faster.

Micro-semantics and Macro-semantics

Pleban and Lee proposed the MESS system, a prototype imptatios of a compiler genera-
tor, which is based on a semantic-definition style, catiiggh-level semantidd.54]. The high-level

semantics was designed to overcome fundamental problenkdke precluded the generation of
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realistic compilers from traditional denotational spexfions. They introduced a separation of
the semantic definition of a programming language into tvebict specifications, calleshacro-

semanticandmicro-semanticsThe macro-semantics of a language is defined by a colleofion
semantic functions that map syntactic phrases, compoaitig to terms of a semantic algebra.

The micro-semantics specifies the meaning of a semantibralge

3.5.2 Instruction-Set-Description Languages

There have been many specification languages for instruséts and many purposes to which
they have been applied. Some were designed for hardwardagiony such as cycle simulation
and pipeline simulation [152, 137]. Others have been usegterate an emulator for compiler-
optimization testing [113, 77]. TDL [113] is a hardware-degtion language that supports the
retargeting of back-end phases, such as analyses and ogiimnis relevant to instruction schedul-
ing, register assignment, and functional-unit bindinge New Jersey machine-code toolkit [158]
addresses concrete syntactic issues (instruction degadstruction encoding, etc.). While some
of the existinganguagesvould have been satisfactory for our purposes, theitime components

were not satisfactory, which necessitated creating ouriavphementation.

In our work, we needed a mechanism to create abstract ietengrof instruction-set spec-
ifications. There are (at least) four issues that arise: ndutihe abstract interpretation of each
transformer, the abstract interpreter must be able to

e execute over abstract states,

e execute both branches of a conditional expression,

e compare abstract states and terminate abstract executien av/fixed point is reached, and

e apply widening operators, if necessary, to ensure ternainat
As far as we knowJ SL is the first system with an instruction-set-specificatiarglaage and sup-
port for such mechanisms.

Although this chapter only discusses the applicatio 8t to low-level instruction sets, we
believe that only small extensions would be needed to betakd@ply TSL to source-code lan-

guages (i.e., to create language-independent analyzessidioce-levelRs), as well as bytecode.
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The main obstacle is that the concrete semantics of a scodelanguage generally uses an exe-
cution state based on a stack of variable-to-value (or blgito-location, location-to-value) maps.
For a low-level language, the state incorporates an addh@&ssd memory model, for which the

TSL language provides appropriate primitives.

Functional languages as instruction-set-description laguage. Harcourt et al. usediL to
specify the semantics of instruction sets [99)SAS [71] is an instruction-set-description lan-
guage that was subsequently developed based on theirexpersing/L. Those two approaches

particularly influenced the design of tA&L language.

A-RTL. TSL shares some of the same goals\e®TL [157] (i.e., the ability to specify the seman-
tics of an instruction set and to support multiple clientt tinake use of a single specification). The
two languages were both influencedMy, but different choices were made about what aspects of
ML to retain: \-RTL is higher-order, but without datatype constructors andngon; TSL is first-
order, but supports both datatype constructors and rexnursis discussed if3.2.2.2, recursion is
not often used in specifications, but is needed for handbngesloop-iteration instructions, such as
thelA32 string-manipulation instructions and tRewerPC multiple-word load/store instructions.
The choices made in the design and implementationsafwere driven by the goal of being able

to define multiple abstract interpretations of an instrtisets semantics.

Insruction-Set Processor Specifications (ISPS). Siewiorek et al. [170] proposed an operational
hardware specification language, the ISP (InstructionP8etessor) notation, for describing the
instructions in a processor and how they are implementedingito automate the generation of
software, the evaluation of computer architectures, aaaémtification of implementations.

They divide a computer system into several levels includimgprogram level which the ISP
notation is designed to properly describe. Their desigmefiEP notation is based on two princi-
ples: (i) the effect of each instruction can be expresseidedntn terms of the information held in
the current memory (state); the components of the prograel fge a set of memories and a set

of operations. The ISP notation is designed for specifyiraj & given operation of a processor is
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performed on a specific data structure that the set of membakl, and (ii) all the data operations
can be characterized as working on varidasa-typeseach data-type requires distinct operations
to process the values of a data-type. A processor can be etghptlescribed at the ISP level by
giving its instruction setand itsinterpreterin terms of itsoperations data-typesandmemories

TSL relies on the same principles.

3.5.3 Systems for Generating Analyzers

Some systems for representing and analyzing programs aialgmtargeted for a single lan-
guage. For instance, SOOT [23] is a powerful and flexible y@misdoptimization framework that
supports analysis and transformation of Java bytecode.n@tkod to support the retargeting of
analyses to different languages is to create a packageuppbds a family of program analyses
that different front ends can use to create analysis compsneéexamples include BDDBDDB
[184], Banshee [117], the Parma Polyhedra Library [21], V&*D [115], and WALI [114]. The
writer of each client front end needs to encode the semaatibss language by creating appro-
priate transformers for each statement and condition iethguage’s IR, using the package’s API
(or input language).

WALA [30] supports a common intermediate form (Common AbstrSyntax Tree), from
which multiple additional IRs (e.g., CFGs and SSA-form) bargenerated, and multiple analyses
can be performed that use these IRs. Thus, this is simildre@éackage approach, but supports a
multiplicity of analyses.

In contrast to the package approadisL provides a domain-specific language for specifying
the semantics of instruction sets. With this approach, 8&developer concentrates on specifying
the concrete operational semantics of his language, usBig and a multiplicity of analyzers
are then created automatically. Analysis developers ceorjporate different analysis packages
into the TSL framework by implementing appropriate abstract operatithrat over-approximate
the semantics of a fixed set ®5L operations (that have a well-defined semantics). (Any of the
aforementioned packages could be used for crediigbased analyses; currently, WALI is used

for all of the TC-style analyzers that have been developedde withTSL so far.)
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There are two analysis systems, TVLA [28] and the optimizer{function inference system
developed by Rice et al. [164], in which sound analysis fiansers are generated automatically
from a concrete operational semantics, plus a specificafian abstraction (either via the abstrac-
tion function (TVLA) or the concretization function (Rice &l.)). In our system, we rely on the
analysis developer to supply sound abstract operationsleWts places an additional burden on
developers, once an analysis is developed it can be use@agdthinstruction set specifiedTisL.

Moreover,

e The analyses that we support are much more efficient thare tthag can be created with
TVLA and apply to our intended domain of application (lows¢code).
e Some of the analyses that we use, such as ARA [141], appeartieymnd the power of the

heuristics-based transformer-generation methods deedlby Rice et al.
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Chapter 4

Symbolic Analysis via Semantic Reinterpretation

The use of symbolic-reasoning primitives fforward symbolic evaluatignweakest liberal
precondition(VWLP), andsymbolic compositiohas experienced a resurgence in program-analysis
tools because of the power that they provide when exploripgpgram’s state space.

Model-checking tools, such aSLAM [46] and BLAST [102], as well as hybrid con-
crete/symbolic program-exploration tools, suchDesRT [94], CUTE [167], YOGI [98], SAGE
[95], BITSCOPE [54], andDASH [49] use forward symbolic evaluatiohyLP, or both. An im-
portant subroutine in these tools is to determine the falgwgiven a pathr in the program, isr
feasible (i.e., executable)?

Given pathm, symbolic evaluation is used to construct a path formul@r = such thatr is
feasible if and only ify is satisfiable. Moreover, a model ¢fcan be used to create an input for
the program that causes execution to follow path

Symbolic evaluation is used to create path formulas. Tordete whether a path is ex-
ecutable, an SMT solver is used to determine whett®ipath formula is satisfiable, and if so,
to generate an input that drives the program dawrSome of the aforementioned tools also use
WLP to identify new predicates that split part of a program’sesspace [46, 49]. Proof-carrying
code systems [145] us&' LP to create verification conditions.

Bug-finding tools, such aBRCHER [187] andSATURN [186], as well as commercial bug-
finding products, such as CoverityREVENT [7] and GrammaTech'€ODESONAR [4], use
symbolic composition. Formulas are used to summarize agvoof the behavior of a procedure.
Suppose that procedurecalls Q) at call-sitec, and that- is the site inP to which control returns

after the call ate. Whenc is encountered during the exploration Bf such tools perform the
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symbolic composition of the formula that expresses the Wehalong the pathentry,, ..., |
explored inP with the formula that captures the behavior@to obtain a formula that expresses

the behavior along the paténtry,, ..., r].

Motivation. The standard approach to implementing each of the symhbalkdysis primitives for
a programming language of interest (which we call the sullggguage ) is to create hand-written
translation procedures-one per symbolic-analysis primitive—that convert subjanguage com-
mands into appropriate formulas. Such an approach can ety tedious. Itis also error prone:
a system can contain subtle inconsistency bugs if the diftaranslation procedures adopt differ-
ent “views” of the semantics.

One manifestation of an inconsistency bug would be thatéf performs symbolic evaluation
of a pathr starting from a state that satisfies= WLP(r, ), the resulting symbolic state does
not entailp. Such bugs undermine the soundness of an analysis tool.

The consistency problem is compounded by the issue of agjasnost subject languages per-
mit memory states to have complicated aliasing patterrt)dually it is not obvious that aliasing
is treated consistently across implementations of symtasaluation)VLP, and symbolic com-
position.

Such bugs are easy to introduce because each translatioedoie must encode the subject
language’s semantics; however, the encodings for symbuwtituation)VLP, and symbolic com-
position have different flavors.

Our own interest is in analyzing machine code, such as x86PaneerPC. Unfortunately, as
discussed ir2.4, machine-code instruction sets have hundreds of tgtns, as well as other
complicating factors, such as the use of separate instngto set flags (based on the condition
that is tested) and to branch according to the flag valuesalilgy to perform address arith-
metic and dereference computed addresses (hence memiay cda have complicated aliasing
patterns), non-aligned memory accesses, etc. To apprdbiatneed for tool support for creat-
ing symbolic-analysis primitives for real machine-codegaages, consult the Intel instruction-set

reference manual ([31§3.2] and [32,54.1]), and imagine writing three separate encodings of
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each instruction’s semantics to implement symbolic ewgdua)V LP, and symbolic composition.
Some tools (e.g., [54, 95]) need an instruction-set emylatavhich case a fourth encoding of the

semantics is also required.

Our approach. To address these issues, this chapter presents a way toaidaly obtain
mutually-consistent, correct-by-construction impletagions of symbolic primitives, bgener-
atingthem from a specification of the subject language’s con@eteantics.

The semantics of the basic symbolic-reasoning primitiveseasy to state; for instance, if
7(0,0’) is a 2-state formula that represents the semantics of amuatisn, thenWWLP (1, p) can
be expressed a&’'.(7(o0,0") = ¢(0’)). However, this formula uses quantification over states—
i.e., second-order quantificatierwhereas SMT solvers, such as Yices [82] and Z3 [78], support
only quantifier-free first-ordetogic. Hence, such a formula cannot be used directly.

For a simple language that has onlyt-valued variables, it is easy to recast matters in first-
order logic. For instance, the/LP of postconditiony with respect to an assignment statement
var = rhs; can be obtained by substitutinigs for all (free) occurrences ofar in ¢: p[var < rhs|.

For real-world programming languages, however, the siunas more complicated. For instance,

for languages with pointers, Morris’s rule of substitut{@88] requires taking into account all pos-

sible aliasing combinations. In general, tool builderschecreate implementations of symbolic

primitives for full languages, and hence must be prepareattmmmodate whatever features the
language supports.

We present a method to obtain quantifier-free, first-ordgrd formulas for (a) symbolic eval-
uation of a single command, (b)Y LP with respect to a single command, and (c) symbolic com-
position for a class of formulas that express state transitions. The generated implementations
are guaranteed to be mutually consistent, and also to béstemiswith an instruction-set emulator
(for concrete execution) that is generated from the sameifsgion of the subject language’s
concrete semantics.

Primitives (a) and (b) immediately extend to compound ojj@na over a given program path

for use in forward and backwards symbolic evaluation, regpely; see§4.5. (The design of client
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algorithms that use such primitives to perform state-sgaqroration is an orthogonal issue that

is outside the scope of this chapter.)

Achievements and Contributions. We used the approach described in the paper to create a
“YACC-like” tool for generating mutually-consistent, corrdmt-construction implementations of
symbolic-analysis primitives for instruction sefgl(7). The input is a specification of an instruc-
tion set’s concrete semantics; the output is a triple of Cancfions that implement the three
symbolic-analysis primitives—(1) translation of an ingttion into a formula, (2)VLP with re-
spect to an instruction, and (3) symbolic composition. Téw has been used to generate such
primitives for x86 and PowerPC. To accomplish this, we lagedTSL, as the implementation
platform for defining the necessary reinterpretations.

The contributions of the work described in this chapterdighie insights that went into defining
the specific reinterpretations that we use to obtain mutt@hsistent, correct-by-construction im-
plementations of the symbolic-analysis primitives, areldiscovery that’V’ L P could be obtained
by using two different reinterpretations working in tandefie chapter’s other contributions are

summarized as follows:

e We present a new application for semantic reinterpretaidril), namely, to create imple-
mentations of the basic primitives for symbolic reasonit®y 3§ and 4.4). In particular, two
key insights allowed us to obtain the primitives #0¢tLP and symbolic composition:

— The first insight was that we could apply semantic reintdgii@n in a new context,
namely, to the interpretation function ot@gic (§4.3).

— The second insight was to define a particular form of statesfiormation formula—
called a structure-update expression ($&€.1)—to be a first-class notion in the logic,
which allows such formulas (i) to serve as a replacement domavarious reinterpre-
tations, and (ii) to be reinterpreted themseltJ).

e We show how reinterpretation can automatically creal® &P primitive that implements

Morris’s rule of substitution for a language with pointet88] (64.3).
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e We conducted an experiment that used the generated synr@waligation primitive on real
x86 code. The experiment showed that using an exact syméddiluation primitive, as
opposed to one that approximates the real semantics, ieslyva factor of 1.07 but is

dramatically more accuraté4.7).

Moreover, we demonstrate that this approach to creatindgsjimranalysis primitives can handle
languages with pointers and address arithmégtic3 and 4.4). For expository purposes, simplified
languages are used throughout. Our discussion of machihe §4.2.3 and 4.4) is based on a
greatly simplified fragment of the x86 instruction set; heee our implementationsé.7) works
on code from real x86 programs compiled from C++ source codgyding C++ STL, using Visual
Studio.

Organization. The remainder of this chapter is organized as follog¢s2 defines the logic that
we use, as well a simple source-code language (PL) and dizettmachine-code language (MC).
64.3 discusses how to use reinterpretation to obtain the thymbolic-analysis primitives for PL.
84.4 addresses reinterpretation for M§4.5 explains how other language constructs beyond those
found in PL and MC can be handleg4.6 describes how non-determinism can be incorporated
into our approachg4.7 describes how we used tlieL system for the implementation, and also
presents the experiment carried out with the implemematid.8 discusses related work4.9

presents some conclusions. Correctness proofs can be iiodmppbendix B.

4.1 Semantic Reinterpretation

This section presents the basic principles of semantitegiretation in the context of abstract
interpretation. We use a simple language of assignmendgjefime the concrete semantics and an

abstract sign-analysis semantics via semantic reintioa.

Example 4.1 [Adapted from [134].] Consider the following fragment of ertbtational semantics,

which defines the meaning of assignment statements ovexbbesi that hold signed 32-hiht
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S1:x=x DYy, [1] mov eax, [ebp—10]

o . [2] xor eax, [ebp—14]
@ spy=zoy Before After

S3: T =2 DYy,

[3] mov [ebp—10], eax
[4] mov eax, [ebp—10]

0: 0: [5] xor eax, [ebp—14]
H & .
t: *px = *px B *py; px. &py px: | &py [6] mov [ebp—14], eax
py: py: [7] mov eax, [ebp—10]
(b) ba: *py = *pT © *py; [8] xor eax, [ebp—14]
lg: *pr = *px @ *py; [9] mov [ebp—10], eax
(c) (d)

Figure 4.1 (a) Code fragment that swaps timas; (b) code fragment that swaps twots using
pointers; (c) possible before and after configurations éatecfragment (b): the swap is
unsuccessful due to aliasing; (d) x86 machine code (in gyelax) corresponding to (a).

values (whereb denotes exclusive-or):

Ield EGEXpr:::I|E1@E2|...
S e Stmt:=1=F; o € State= Id — Int32

£ : Expr— State— Int32

El]o =0l

E[EL @ Ey]o = E[Er]o @ E[Es]o
7 : Stmt— State— State

I[I = E;]o = o[l — E[E]o]

We use the notation/{I — v],” to mean theStatethat acts liker except that argumertis mapped

to v. The functionZ can be understood as arterpreterfor the language(Z|s]o) is the state that
results from executing statemenbn the stater. A sequence of statements can be executed by
repeatedly calling. For instance, consider the program shown in Fig. 4.1(ajchvbwaps two
ints. Execution of this code, starting from the state= {x — —1,y — 2} can be achieved as

follows:
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op = {x——-1y—2}

op = Ifsitx=x&yfos = {z— -3,y—2}
oy = I[s2:y=z®ylon = {x—-3,y— -1}
o3 = Ilsz:z=a®yloe = {z—2,y— -1}

The languages derivable froExpr and Statedefine the subject language. The semantics is
defined using aneta-languageln this example, the meta-language has one base gf32). It
supports defining map typeState= Id — Int32) and user-defined function§ @ndZ). It also
supports operations on base-type values (e.gh ), map-access operations ), map-update
operations¢[/ — E£[E]o]), and invocation of user-defined functio& £]o).

To highlight better the role of the meta-language, we intik@lnames for certain aspects of
the meta-language. For instance, the one base type, wlavsktasd interpretation it32, will be
calledVal. We also introduce names for the following operators:

e “_xor_", whose standard interpretation is¢ _".

¢ lookup for map-access operations.

e store for map-update operations.

The specification given earlier is thus rewritten as follows

xor : Val — Val — Val
lookup: State— Id — Val

store: State— |d — Val — State

& : Expr — State— Val

E[I]o = lookupo I

E[E, & Ex]o = E[E]o xor E[ Ey]o
7 : Stmt — State — State

I[I = E;]o = storec I E[E]o
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For the concrete (or “standard”) semantics, the meta-lagguypes and operators are defined as

follows:
lookupy= A\o.Al.cl
v € Valgg = Int32
store = Ao A\ \v.o[l — o]
Statgy = Id — Val
XOIlgtg = )\Vl.)\VQ.Vl D vy

Different abstract interpretations of the same languagebeadefined by using the same semantic
specification, but by giving different interpretations bétbase types, function types, and operators
of the meta-language. For example, for sign analysis, asguthatint32 values are represented

in two’s complement, the meta-language is reinterpretefdlsvs:*

v € Valyps = {neg zerapos T}
Statgps = Id — Valyps
lookup,s = Ao Al.ol
storeps = Ao Al \v.o[l — 0]

V2

neg| zero| pos

ne T | neg| ne
Xorabs — )\’U]_-)\’UZ. g g g

VU1 | Zero|| neg| Zzero| pos

pos| neg| pos| T

Ty T T T

=]

Essentially, this redefines (or abstracts) the set of valakg to Val,,s and redefines the operators
(like xor) to operate on the abstract values.

For the code fragment shown in Fig. 4.1(a), sign-analysigegretation creates abstract trans-
formers that, given the initial abstract state= {x — negy — pos}, produce the abstract states

shown in Fig. 4.20

LFor the two’s-complement representatipos xokps Neg = neg Xokys POS = negbecause, for all combinations
of values represented lposand neg the high-order bit of the result is set, which means thatréseilt is always
negative. Howevepos Xogps POS= Neg XokpsNeg= T because the concrete result could be either positive, and
zeroLl pos=T.
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09 := {x > negy — pos
o1:=1I[s1: x =x D y;]|oo = StoOreps oo « (N€Y XOkps POS) = {z — negy — pos}
o9 :=TI[s2:y =@ y;]o; = Storaps oy y (N€g XOkps POS = {z — negy — neg}

o3 :=TI[s3:x =z @ y;]|oy = Storeps o2 x (N€Y X0kpsNEY = {z — T,y — neg.

Figure 4.2 Application of the abstract transformers crédug the sign-analysis reinterpretation
to the initial abstract stai®, = {x — neg y — pos}.

4.2 A Logic and Two Programming Languages

This section defines quantifier-free first-order bit-vedtmyic, L, a simple source-code lan-
guage, PL, which only hast-valued variables and pointer variables, and a simple maebode

languageM/ C.

4.2.1 L: A Quantifier-Free Bit-Vector Logic with Finite Functions

The logicL is quantifier-free first-order bit-vector logic over a vooddry of constant symbols
(I € Id) and function symbolsH € Funcld). Strictly speaking, we work with various instantia-
tions of L, denoted by_[PL| andL|MC], in which the vocabularies of function symbols are chosen
to describe aspects of the values used by, and computatfsped by, the programming lan-
guages PL and MC, respectively.

We distinguish the syntactic symbols bffrom their counterparts in PL§4.1 and 4.2.2) by

using boxes around’s symbols.

c€ Cnz2 = {0,1,...}
op2, € BinOp, = {{+][-}[®].-- .}
rop, € RelOp = {E,, <L)}
bop, € BoolOp, = {[&&], m,...}
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The rest of the syntax df[-] is defined as follows:

I €1d,T € Term ¢ € Formula
F € Funcld FE € FuncExpr U € StructUpdate

T:.= C‘ I ‘ T OpZL T, | ite((p,Tl,T2> ‘ FE(T)

o ==[T]|[F]| Tirop, Ty | [Z]e1 | 1 bopy g

FE::=F | FE|[T1 — T3]

U= ({L; « T;},{F; < FE;})
A Term of the formite(p,T1,T,) represents an if-then-else expression. Names of the form
F € Funcld possibly with subscripts and/or primes, are function sglsb A FuncExpr of
the form FE; [T} — 15| denotes dunction-update expressionA StructUpdateof the form
({l; « T;},{F; «— FE;}) is called astructure-update expressionlt specifies a structure-
transformation operation that yields a structure in whicé identifier/; is updated to the value
of term 73, and the function identifief; is updated to the value of function-expressieB,.
The subscripts and j implicitly range over certain index sets, which will be otad to re-
duce clutter. To emphasize that and F; refer to next-state quantities, we sometimes write
structure-update expressions with prime$7; «— T;},{F; < FE;}). {I] < T;} specifies
the updates to the interpretations of the constant symimal§ &/ < FE;} specifies the updates
to the interpretations of the function symbols (see beloWjus, a structure-update expression
({1; « Ti},{F; < FE;}) can be thought of as a kind of restricteeiocabulary (i.e.2-state)
formula \;(I; = T;) A \;(Fj = FE;). We definelUjq to be

({I'—=I|Ield},{F < F|F €Funcld}).

Semantics of .. The semantics oL[-] is defined in terms of éogical structure which gives

meaning to théd andFuncldsymbols of the logic’s vocabulary:

¢ € LogicalStruct= (ld — Val) x (Funcld— (Val — Val)).

(+11) assigns meanings to constant symbols, énd) assigns meanings to function symbols.

(“(pT1)” and “(p72)” denote thel s and2" components, respectively, of a pai)
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const: Cinse — Val
cond, : Bval— Val — Val — Val
lookupld : LogicalStruct— Id — Val
binop, : BinOp, — (Val x Val — Val)
relop, : RelOp — (Val x Val — BVal)
boolop, : BoolOp, — (BVal x BVal — BVal)
lookupFuncld: LogicalStruct— Funcld — (Val — Val)
access: (Val — Val) x Val) — Val
update: ((Val — Val) x Val x Val) — (Val — Val)

T : Term— LogicalStruct— Val F : Formula— LogicalStruct— BVal
T [c]e = conste) FT]e =T
T[I]c = lookupld: I F[F].=F

T[Ty 0p2, Tx]e = T[Ti]ebinop, (op2,) T[Tx]e  F[Tirop, Tx]e = T[T1]crelop,(rop,) T [12]e
TTite(p, T, T2)]e = cond, (F]e, T[T1]e, T[T2]0) Fl=eide = ~Flen]e
T[FE(T))]. = acces&FE[FE]:, T[T1]:) Flp1bop, pa]e = Flei]e boolop, (bop,) Flw:]e

F¢E : FuncExpr— LogicalStruct— (Val — Val)
FE[F]¢ = lookupFuncld. F
fg[[FEl [Tl g TQH]L = Updatéfg[[FEl]]L, T[[Tl]]L,T[[TQ]]L)

U : StructUpdate— LogicalStruct— LogicalStruct
UI{L; = T} {F; — FE D] = (1)L — T[T]e], (112)[F) — FE[FE;]4)

Figure 4.3 The factored semanticsiaf

The factored semantics d@fis presented in Fig. 4.3. Motivated by the needs of latelicest
we retain the convention frorg4.1 of working with the domaival rather thanint32. Similarly,
we also useBVal rather tharBool. The standard interpretations binop, , relop,, andboolop,
are as one would expect, e.gi,binopL() vy = 1 XOrvy, etc. The standard interpretations

for lookupld,y andlookupFuncld, select from the first and second components, respectively, o
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a LogicalStruct lookupldy¢ I = (¢71)(/) andlookupFuncldy: F' = (:12)(F). The standard
interpretations foaccessandupdateselect from, and store to, a map, respectively.

LetU = ({I; «— T;},{F; «— FE;}). Becausé{[U]. retains from the value of each constant
I and functionF for which an update is not defined explicitly i (i.e., I € (Id — {I;}) and
F € (Funcld— {F}})), as a notational convenience we sometimes tteais if it contains an
identity update for each such symbol; that is, we say thdtl )/ = I for I € (Id — {I;}), and
(U12)F = F for F' € (Funcld— {F}}).

4.2.2 PL: A Simple Source-Level Language

PL is the language frorgd.1, extended with some additional kindsiaft-valued expressions,
an address-generation expression, a dereferencing sigmesind an indirect-assignment state-
ment. Note that arithmetic operations can also occur inaidiereference expression; i.e., PL
allows arithmetic to be performed on addresses (includihgife operations on addresses: see
Ex. 4.2).

c € Cinzp, I € 1d, E € Expr, BE € BoolExpr S € Stmt
cu=0]1]..
E:=c|I|&I|+E|E, 0p2FE, |BE? E; : E,
BE::=T | F | E, rop E, | -BE; | BE; bop BE
Su=I1=F;|«I =E;| S 5

Semantics of PL. The factored semantics of PL is presented in Fig. 4.4. Theasgémdomain
Loc stands fotocations(or memory addresses). We identifgc with the seWal of values. A state
o € Stateis a pair(n, p), where, in the standard semantiesivironment; € Env= Id — Loc
maps identifiers to their associated locations siodep € Store= Loc — Val maps each location

to the value that it holds.
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& . Expr— State— Val

v e Val E[c]o = conste)

l € Loc= Val E[I]o = lookupStater 1

n € Env=Id — Loc E[&I]o = lookupEnw I

p € Store= Loc — Val E[xE]o = lookupStorer (£[E]o)

o € State= Storex Env E[E, op2 Ex]o = E[E1]o binop(op2) E[E:]o

E[BE? E; : Ey]o = cond B[BE]o, E[E1]o, E[Fs]o)

B : BoolExpr— State— BVal

const: Cinsz — Val B[T]e =T
cond: BVal — Val — Val — Val B[F]ec = F
lookupState: State— Id — Val B[E, rop Ex]o = E[E1]o relop(rop) E[Es]lo
lookupEnv: State— Id — Loc B[—-BE;]o = —B[BE,;]o
lookupStore: State— Loc — Val B[BE; bop BE]o = B[BE,;] o boolopbop) B[BE;]o

updateStore State— Loc — Val — State

7 : Stmt— State— State
Z[I = E;]o = updateStore (lookupEnw I) (E£[E]o)
I[*I = E;]Jo = updateStore (E[I]o) (E[E]o)
Z[S1 Sa]o = I[S:](Z]S1]o)

Figure 4.4 The factored semantics of PL.

The standard interpretations of the operators used in theeRlantics are

BVak;y = BVal
Valgq = Int32
LoGsg = INt32

1N € Engg= Id — LOCyy
p € Storgy = L0oGyg — Valg
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condig = Ab.Avy. Avg. (b7 vy vg)
lookupStatgy = A(n, p). A .p(n(1))
(n, ). A (1)
lookupStorgy = A(n, p).Al.p(l)
(n, ). ALAv.(n, pll — v])

lookupEny,, = A

7

updateStorg, = A

Handling Computations that “Go Wrong”.  In accounts of axiomatic semantics [146] and re-
lational semantics [171], one generally considers foucomnes of an execution: an execution
terminateqin some final statelgoes wrongblocks or diverges Because we are only providing
the semantics of individual statements/instructionsirtgpéify matters, we consider only semantic
specifications that are terminating. This eliminates onnes that block or diverge.

We sidestep the need for an explicit outcome for “goes wrdmgintroducing an additional
BValvariable in the state,sRunning, which is set to false to model computations that “go wrong”.
In the extended semantics, a state Stateis a triple(n, p, isRunning). Fig. 4.5 shows a sketch
of how to add the semantics of the outcome for “divide-byeZeiFor the moment, we consider

only deterministic specification§4.6 discusses how we handle non-determinism.

4.2.3 MC: A Simple Machine-Code Language

MC is based on the x86 instruction set, but greatly simplifetiave just four registers, one
flag, and four instructions.
r € register do € dstoperand
so € src.operand: € instruction
r::=eax | ebx | ebp | eip
flagName:= zf
do ::= Indirect(r, Val) | DirectRedr)
so ::= do U ImmediatéVal)
instruction::= mov(do, so) | cmp(do, so)
| XOR(do, so) | jz(do)
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Loc = Val £ : Expr— State— (Val, BVal)
Env=Id — Loc Elc]Jo = (constc), T)
Store= Loc — Val E[I]o = (lookupStater I, T)
State= Storex Envx BVal E[E,/Es]o = (E[Ex]o =0)
7 (1, F)
const : Cinse — Val . (E[E1]o/E[Es]o, T)
lookupState: State— Id — Val
getlsRunning: (Val, BVal) — BVal 7 : Stmt— State— State
lookuplsRunning: State— BVal I[I = E;]o = (lookuplsRunning') = T
updatelsRunning State— BVal — State ? (getlsRunning[[E]o) =T
getlsRunning= A(v,b).b ? updateStorer (lookupEnw 1) (E[E]o)
lookuplsRunning= A(7, p, b).b . updatelsRunning F
updatelsRunning= A(7, p, b).\b".(n, p, V) Do

Figure 4.5 An extended semantics of PL to accommodate tloemg of “divide-by-zero”
execution.

Semantics of MC. The factored semantics of MC is presented in Fig. 4.6. Itnslar to the
semantics of PL, although MC exhibits two features not paRla there is an explicit program
counter éip), and MC includes the typical feature of machine-code |laiggs that a branch is split
across two instructionsfp ... jz). An MC states € Stateis a triple (memreg, flag), where
memis a mapVal — Val, regis a mapregister — Val, andflag is a mapflagName— BVal. We
assume that each instruction is 4 bytes long; hence, theitarof amov, cmp, or XORincrements
the program-counter registetp by 4. cmp sets the value aff according to the difference of the

values of the two operands$z updatesip depending on the value of flagf.

4.3 Symbolic Analysis for PL via Reinterpretation

A PL state(n, p) can be modeled it [PL] by using a function symbat), for storep, and
a constant symbal, € Id for each PL identifierr. (To reduce clutter, we will use for such
constants instead of.) Given: € LogicalStruct the constant symbols and their interpretations in

¢ correspond to environment and the interpretation df, in ¢ corresponds to store
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const: Cinz2 — Val cond : Bval— Val — Val — Val
lookupe, : State— register— Val lookupyen, : State— Val — Val
storgey : State— register— Val — State storenem : State— Val — Val — State
lookup,,, : State— flagName— BVal incre;, : State— State

storgpg : State— flagName— BVal — State iNCreip = A0.StOrgeg(0, eip, R[eip]o binop(+) 4)

R : reg — State— Val O : src.operand— State— Val
Rlr]o = lookupey(a,7) O[Indirect(r, ¢)]o = l00kuRenf o, R[r]o binop(+) constc))
K : flagName— State— BVal O[DirectRegr)]o = R[r]o

K[z£]o = lookup,(o, z£) O[immediatéc)jo = constc)

7 :instruction— State— State
I [mov(Indirect(r, ¢), so)Jo = INCre;,(StOrGnen{ o, Rr]o binop(+) constc), O[so]o))
Z[mov(DirectRedr), so)|o = iNCreip(Storgeg(a, v, Oso] o))

Z[cmp(do, so)]o = INCreip(Storgiag(c, zf, Ofdo]o binop(—) O[so]o relop(=) 0))
Z[XORdo:Indirect(r, c), so)]o = INCre;5(Stor@nen(o, Rr]o binop(+) constc), Odo]o binop@®) O[so]o))
Z[XORdo:DirectRedr), so)|o = iNCre;p(Storgeg(o, r, Odo]o binop(&) Ofso]o))

Z[jz(do)]o = storgey(o, eip, cond K[zt]o, Odo]o, R[eip]o binop(+)4))

Figure 4.6 The factored semantics of MC.

Symbolic Evaluation. A primitive for forward symbolic-evaluation must solve thalowing
problem:Given the semantic definition of a programming languagestiogr with a specific state-
ments, create a logical formula that captures the semantics.of he following table illustrates

how the semantics of PL statements can be expresskfPasstructure-update expressions:

PL LIPL]
x=17;| (0,{F, < F,[x — 17]})
r=y; | (0,{F, < Flx— F,(y)l})
x = *q; | (0,{F, < F,[x— F,(Fy(q))]})

To create such expressions automatically using semanmtiterpretation, we use formulas of the

logic L[PL] as a reinterpretation domain for the meta-language priestused to define PL. The
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base types and the state type of the meta-language arerpeatésl as follows (our convention is
to mark each reinterpreted base type, function type, andatmewith an overbar)Val = Term
BVal = Formula andState= StructUpdate The operators used in PL’s meaning functiehs3,
andZ are reinterpreted over these domains as follows:

e The arithmetic, bitwise, relational, and logical operatare interpreted as syntactic con-

structors ofL[PL] Terns andFormules, e.g.,
b|n0q@) = 11 \T15. T} TQ.

Straightforward simplifications are also performed,; a simplifies toa, etc. Other
simplifications that we perform are similar to ones used Inerd, such as the preprocessing
steps used in decision procedures (e.g., the ite-liftind) r@ad-over-write transformations
for operations on functions [89]).

e condresiduates aite(-, -, -) Termwhen the result cannot be simplified to a single branch.

The other operations used in the PL semantics are reintetpas follows:

lookupState: StructUpdate— Id — Term
lookupState= A\UAL.(U12)F,)((UT1)I)

lookupEnv : StructUpdate— Id — Term

[ooKUPENV= AU.AI.(UT1)I
lookupStore : StructUpdate— Term— Term
lookupStore= AUAT.((U12)F,)(T)
updateStore: StructUpdate— Term— Term

— StructUpdate

updateStore= AUy AT2.((UT1), (U12)[F, — (U12)F,)[T1 — T3]])

By extension, this produces functiofis3, andZ with the types shown in Fig. 4.7.

In particular, given aStructUpdateU, function Z translates a statementof PL to the
StructUpdateZ [s]U in logic L[PL]. To perform symbolic evaluation along a pathone starts
with the StructUpdatd/iy = (0, {F, — F,}) and repeatedly calls functidhwith the next state-

ment in7 and the currenBtructUpdate



117

Standard Reinterpreted

&: Expr— State— Val &: Expr — StructUpdate— Term

B: BoolExpr— State— BVal | B: BoolExpr— StructUpdate— Formula

Z: Stmt— State— State 7: Stmt— StructUpdate— StructUpdate

Figure 4.7 Standard types of the PL meaning functions, aaddimterpreted types used to obtain
an implementation of symbolic evaluation.

0, {F, — F,
0,{F, < F,

x = ((F,(x)[@] F,)[@] F,))ly = F,(x)]})
x = F,(y)ly = Fp(x)]}) = Uswap

Figure 4.8 Symbolic evaluation of Fig. 4.1(a) via semargiaterpretation, starting with the
StructUpdatelq = (0, {F}, < F,}).

Iz =z @ y;]Ua = (0,{F, < F,[x — (] x]]U.d.ﬁ[[y]]U.d
= (0,{F, — F,[x — (F,(x)[®]|F,(y))]})
Iy =z @ y;)Ur = (0,{F, « F)[x — (F,®)[@]F,))ly — 5[[56]]U1.5[[y]]U1 1})
= (0,{F, < F,[x = (F,(x)[®] F,(y))]ly ) [e]Fe)[@]F )]}
= (0,{F, — F,[x = (F,(x)[®] F,(y))] yHFp(X)]}):UZ
I[r =z @ y;]Us = (0,{F, < F,[x — (E[z]U[@]E[y]V)]ly — F,(x)]})
= ( [
= ( [

Example 4.2 The steps of symbolic evaluation of Fig. 4.1(a) via semastiitterpretation, starting
with Uy4, are shown in Fig. 4.8. The resulti@iructUpdateUsyap, Can be considered to be the 2-

vocabulary formula
F,= Folx = Fy(y)lly = F,(x)],

p

which expresses a state change in which the values of progadablesr andy are swapped.

Algebraic simplification plays an important role. For exdeypvheny is updated in/; by

x)[&]F, () [@]F,(y))]

(see Fig. 4.8), the update is simplifiedyo— F,(x)]. O
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Up = (0,{F, < F,[0 — v|[px— pyl[py — pyi})

I[xpz = *pz & *+py;]Us = (0,{F, < F,[0 — v][px— pyl[py — (E[xpz]U:[&|E[xpy]U1)]})
= (0.{F, < F,[0 = v][px+— pyi[py — (py[@]py)]})
= (0,{F, < F,[0 — v][px+— pyi[py — 0]}) = Us

Il*py = #pz & *py;]Us = (0,{F, — F,[0 — (E[xpx]Us[B]E[+py]U2)][px— PV [Py — 0]})
= (0,{F, < F,[0— (0[@]v)][px— pyi[py — 0]})
= (0,{F, < F,[0 — v][px+— pyj[py — 0]}) = Us

I[#pr = #px © *py;|Us = (0,{F, < F,[0 — v][px+— pyi[py — (E[+px]Us[ @ |E[+py]Us)]})
= (0,{F, — F,[0— v][px— pyl[py — (0[&]v)]})
= (0,{F, < F,[0 — v][px+— pyi[py — v]}) = U,

Figure 4.9 Symbolic evaluation of Fig. 4.1(b) via semargiaterpretation, starting with a
StructUpdatehat corresponds to the “Before” column of Fig. 4.1(c).

Example 4.3 To illustrate symbolic evaluation for an example that ime&d pointers and pointer-
dereferencing operations, Fig. 4.9 shows the steps of slyenéealuation of Fig. 4.1(b) via se-
mantic reinterpretation, starting with@tructUpdatehat corresponds to the “Before” column of
Fig. 4.1(c). The program from Fig. 4.1(b) works correctlyemhthere is no aliasing; however, it
does not always work correctly when started from the kindtatesshown in the “Before” col-
umn of Fig. 4.1(c). ThestructUpdatel, obtained via our symbolic-evaluation primitive can be

considered to be the 2-vocabulary formula
F, = F,[0 = v][px — pyj[py — ],

which expresses a state change that does not usually peaf@aumecessful swap. The example
shows that the symbolic-evaluation method can faithfuthgk non-trivial situations that involve

pointer aliasing™d

The correctness of our method for performing symbolic eatain is captured by the following

theorem:
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Theorem 4.4 For all s € Stmt U € StructUpdateand. € LogicalStruct the meaning of [s]U
in ¢ (i.e.,U[Z[s]U]) is equivalent to runnin@ on s with an input state obtained frotd[U]..

That is,
U[Z[s]U]e = Z[s](U[U]e).

Proof: See App. B.1. O

WLP. WCLP(s,¢) characterizes the set of statesuch that the execution of starting ino
either fails to terminate or results in a statesuch thaty(c’) holds. For a language that only
hasint-valued variables, theV LP of a postcondition (specified by formu}g with respect to an
assignment statemewar = rhs; can be expressed as the formula obtained by substitthipr
all (free) occurrences ofar in ¢: ¢[var < rhs.

For a language with pointer variables, such as PL, syntaciistitution is not adequate for
finding WLP formulas. For instance, suppose that we are interesteddm{ira formula for the
WLP of postconditionz = 5 with respect toxp = e;. It is not correct merely to perform the
substitution(z = 5)[xp < e]. That substitution yields = 5, whereas th&VLP depends on the
execution context in whichp = ¢; is evaluated:

e If p points toz, then theW LP formula should be = 5.

e If p does not point ta;, then the/V LP formula should be: = 5.

The desired formula can be expressed informally as
(p=&x)?e:2)=>5.

For a program fragment that involves multiple pointer valés, the)V LP formula may have
to take into account all possible aliasing combinationsisTé the essence of Morris’s rule of
substitution [138]. One of the most important features of approach is its ability to create

correct implementations of Morris’s rule of substitutiamt@matically—and basically for free.
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Example 4.5 In L[PL], such a formula would be expressed as shown in the lower reawbe

Informal | WLP(xp=e,2=5)=((p=&az)?e:2)=5
LIPL | WLP(sp = e, F,(x) []5) = ite(F,(p) [Z]x, F(e), F,(x)) [E]5

In Ex. 4.7, we will show how the latter formula is created vgrgntic reinterpretatiorn

To create primitives foVLP and symbolic composition via semantic reinterpretatioe, w
again useL[PL] as a reinterpretation domain; however, there is a trick: dntast with what
is done to generate symbolic-evaluation primitives, we trse StructUpdatetype of L[PL]
to reinterpret the meaning functiorig¢, 7€, F, and 7 of L[PL| itselfl By this means,
the “alternative meaning” of &ermFormulaFuncExpfStructUpdateis a (usually different)
TermFormulaFuncExprfStructUpdaten which some substitution and/or simplification has taken

place. The general scheme is outlined in the following table

Meaning Type Replacement Function
Functions Reinterpreted Type Created
7,€,B State StructUpdate| Symbolic
evaluation
F, T LogicalStruct| StructUpdate| WLP
Uu,FrFE,F, T | LogicalStruct| StructUpdate| Symbolic
composition

In §4.2.1, we defined the semanticsigf] in a form that would make it amenable to semantic
reinterpretation. However, one small point needs adjustmim §4.2.1, the type signatures of
LogicalStructlookupFuncldaccessupdate andF ¢ include occurrences &fal — Val. This was
done to make the types more intuitive; however, for reimetigtion to work, an additional level of
factoring is necessary. In particular, the occurrencegabf— Val need to be replaced yVal.
The standard semantics BYal is Val — Val; however, for creating symbolic-analysis primitives,
FVal is reinterpreted aBuncExpr

The reinterpretation used fof, 7&, F, and7 is similar to what was used for symbolic evalu-

ation of PL programs:
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e Val = Term BVal = Formula FVal = FuncExpt andLogicalStruct= StructUpdate
e The arithmetic, bitwise, relational, and logical operatare interpreted as syntacfierm

andFormulaconstructors of_, e.g.,

bInOpL() = 11015 T Tg,

although straightforward simplifications are also perfetn

e cond, residuates aite(-, -, -) Termwhen the result cannot be simplified to a single branch.

¢ lookupldandlookupFuncldare resolved immediately, rather than residuated:
— lookupld({I; < T3}, {F}; < FE;}) I = Ty
— lookupFuncld({f; < T;}, {F; < FE;}) F}, = FE;.
¢ accessaindupdateare discussed below.
By extension, this produces reinterpreted meaning funsfig &, F, and7 .

Somewhat surprisingly, we do not need to introduce an exmeration of substitution for
our logic becausa substitution operation is produced as a by-product of teripretation In
particular, in the standard semantics for the return types of meaning functiah and helper
function lookupld are bothVal. However, in the reinterpreted semanticsyal is a Term—i.e.,
somethingsymbolie—which is used in subsequent computations. Thus, whehogicalStructis
reinterpreted a8 € StructUpdatethe reinterpretation of formula via F[o]U substituteSerns
found inU into p: F[p]U calls7[T]U, which may callookupldU I; the latter would return a
Termfetched fromU, which would be a subterm of the answer returnedf§|U, which in turn
would be a subterm of the answer returned®j]U.

To create a formula for’W£LP via semantic reinterpretation, we make use of bBtthe rein-
terpreted logic semantics, afiq the reinterpreted programming-language semantics. /VieP

formula for ¢ with respect to statemestis obtained by performing the following computation:

WLP(s, ¢) = Flel(Z[s]Ui). (4.1)
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Example 4.6 In EX. 4.2 and Fig. 4.8, we derived the followiggructUpdatewhich expresses in

L[PL] the semantics of the swap-code fragm&mapfrom Fig. 4.1(a):

Uswap = -T [[SWE’-FH Uid
= (0{F, = Fy[x = F,(y)lly = F,(x)1}).

Using the method given in Egqn. (4.1), we obtain the followiRgrmula of L[PL| for
WLP(swap F,(x)[=]2):

WLP(swap F,(x)[=]2)
= ?[[Fp(x) EQH Uswap

?[[Fp(X)HUswap) 5(7[[2]] Uswap)
accessF E[F)Uswap T [x]Uswap) ) [Z](CONSE2))
( ‘(IookupFuncIdUswap ,,,) )

acces [=]2

lookupldUswapx

= (accessk),[x — Fu(y)lly — Fo(x)], x))[=]2
= F,(y)[=]2

(To understand the last step, see the discussiac@#sdelow.) O

~—

To understand how pointers are handled during/&€P operation, the key reinterpretations

to concentrate on it.[PL] are the ones for the operations of the meta-language thapuoiate

FVals (i.e., arguments of typdal — Val)—in particular,accessandupdate We wantaccessand

updateto enjoy the following semantic properties:

7 [acceseFEy, To)]e = (FE[FE])(TTo]e)
fS[[updateﬁFEo,To,Tl)ﬂL = (fg[[FEoﬂL)[T[[To]]L — T[[Tl]]b]

Note that these properties require evaluating the restilecoessand updatewith respect to an
arbitrary . € LogicalStruct As mentioned earlier, it is desirable for reinterpretecddstype

operations to perform simplifications whenever possibleemwthey constructerns, Formulas,

FuncExps, andStructUpdats. However, because the value.as unknown,accessandupdate

operate in an uncertain environment.
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accessl ki) = F(ky)
d; if (ky = ky)
acceseFElk, — i) ACCESEFE, k1) it (k1 # k)
ite(ki [=] ko, do, ACCESEFE, k1)) if (k1 = k»)

UpdatéF, ]{71, dl) = F[l{il — dl]

FE[kl — dl] if (]{71 = ]{?2)
UpdatQFE[k’Q — dg], ]{?1, dl) = updatéFE, ]{?1, dl)[k‘g — dg] if (]{31 7’é k‘g)
FE[]{,‘Q —> dg][/{il — dl] if (]{31 = ]{52)

Figure 4.10 Simplifications performed lagcessandupdate The operationss, #, and= denote
equality-as-termgefinite-disequalityandpossible-equalityrespectively. (The possible-equality
tests, k; = k", are really “otherwise” cases of three-pronged companssp

To use semantic reinterpretation to creat®VaP primitive that implements Morris’s rule,
simplifications are performed tgccessandupdateaccording to the definitions given in Fig. 4.10.
The possible-equality case faccesdig. 4.10 introducegte terms. As illustrated in Ex. 4.7, it is
thesdte terms that cause the reinterpreted operations to accounb§sible aliasing combinations,
and thus are the reason that the semantic-reinterpretatathod automatically carries out the

actions of Morris’s rule of substitution [138].

Example 4.7 We now demonstrate how semantic reinterpretation prodinee5[PL| formula for
WLP(xp = e,x = 5) claimed in Ex. 4.5.

U = I[*p = e]Uq
= updateStor@ig, E[p]Uid, €[] Uia)
— updateStord/,q, lookupStaté/,4, p), lookupStatél/,y, e)
= updateStor@id, F, (p), F,(e))
= ((Ug11), {Fp = Fp[Fp(P) = Fp(e)]})
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WLP(+p = e, F,(x) [=]5)

= FIE,(x)[Z]5]U

— (TIE,10) E(TBIV)

= (access§FE[F,|U, T[x]U))[=]5

— (acces§ooKUpFUNCIdU, F,), T0OKUPI U, x))) =15
(BCCESEE, [F(p) > Fy(e)]. %) [Z]5

= ite(F),(p)[=]x, F)(e), accesgl), x))[=]5
= ite(F,(p)[=]x, Fy(e), Fp(x))[=]5

Note how the case faaccesghat involves a possible-equality comparison causetesierm to
arise that testsF,(p) [=]x". The test determines whether the valuea$ the address of, which

is the only aliasing condition that matters for this example

AlthoughW/LP is sometimes confused with the formula-manipulation ofpena used to ob-
tain a formula that expresses it, or with the formulahat results WLP is really a semantic
notion—the set of statedescribedby . For example, for any statemesitvar = rhs; in a lan-
guage that only hasnt-valued variables, and postcondition formylathe formulap|var < rhs|
obtained by substitution is not the only formula that expes3VLP (s, ¢). In fact, there are an
infinity of acceptable formulas. A formula is acceptable ity holds in the pre-state structure

exactly whenp holds in the post-state structugs]..

Definition 4.8 (AcceptableWWLP Formula) « is anacceptabldormula for WLP (s, ) iff, for

all . € LogicalStruct

Flle = Flel(Zls]o),
whereo is the Statethat corresponds tbogicalStruct. (i.e.,o = ((¢11), (¢:12)F,); see Appendix
B).

The correctness of the/ LP primitive defined in Eqn. (4.1) is captured by the followitgpo-

rem:

Theorem 4.9 For anyStmts andFormulayp, ¢ := F[¢](Z[s]Ui) is an acceptabley LP formula

for ¢ with respect tcs.
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UU]U 2 = U0, {F, < Fylx— F,(x)[®]F,y)]ly = F,IH]01,
= (0, (U1212)[F), — FE[F[x — F( .F Iy = Fp(9)]]Ux2])
= (0.{F, < FE[F,[x = F,(x) [@] F,(y)lly = F,(»)][V12})
FE[F,[x — F,(x)[®]F,(y)]]V1.2.

= (0, {F}, < update| T[y]U, ,, H
TIE, (9012

= (0,{F, < (FE[F,[x = F,(x)[@]F,(y)]]U12)ly = F,(x)]})
FE[[ p]]Ul,g,

= (0,{F, < update ?[[x]]Um, ly = F,(x)]})

TIF,(x)[&]F (9]0
= 0,{F, = (F XHT[[F () [®]F,(3)]Ually = Fp())ly = Fp(x)]})
= (0.{F, = Flx = (F,®[&]F,()[@]F)]ly — F,®)]})
= (0, {F’HF[XHF( Ny = F,(x)]})

= UL swap

Figure 4.11 Example of symbolic composition.

Proof: See App. B.2. O

Symbolic Composition. The goal of symbolic composition is to have a method thagmitwo
symbolic representations of state changes, computes aafigmépresentation of their composed
state change. In our approach, each state change is refge$etogic L[PL] by a StructUpdate
and the method computes a n8tructUpdatehat represents their composition. To accomplish
this, L[PL] is used as a reinterpretation domain, exactly a3¥a?. Moreover,/ turns out to be

exactly the symbolic-composition function that we séfarticularZ{ works as follows:

UIKL < T} AR « FEDIU = (UL — TGV (U12)[F; — FE[FE]U])

Example 4.10 At the syntactic level, we can demonstrate the abilitg/ofplus simple algebraic

simplification) to perform symbolic composition by showithgt for the swap-code fragment from
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Fig. 4.1(a)
I[s1; s2; 53] Uia = U[Z[33]Uia] (Z[51; 52]Uia)-

First, consider the left-hand side. As shown in Fig. 4Z8s; s; s3]Uq = ((Z),F; — Fx —
F,(y)]ly — F,(x)]) = Uswap Now consider the right-hand side. L&t , andU; be defined as

follows:
Uio = I[s1;52]Uid

= (0,{F, < Fy[x = F,)[®]F,Wlly — Fpx)]})
Us = I[s3]Uid
= (0.{F) = Fplx = F,(x)[®] )]y = F,(3)]}).
As shown in Fig. 4.11,

UIUs]Ur2 = (0,{F, < Fy[x = F,(y)lly = F,(x)]})-
Thereforeﬂ[[Ug]]ULg = Uswap O

The semantic correctness of the symbolic-compositionigixie?/ is captured by the following
theorem, which shows that the meaning4jf/,] U, is the composition of the meanings©f and

Ul:
Theorem 4.11 For all Uy, U, € StructUpdate
UTUU]UL] = UU:] o U[UL].

Proof: See App. B.3. O

4.4 Symbolic Analysis for MC via Reinterpretation

To obtain the three symbolic-analysis primitives for MC, u&e a reinterpretation of MC’s
semantics that is essentially identical to the reintegtieh for PL, modulo the fact that the seman-
tics of PL is written in terms of the combinatdsokupEnylookupStoreandupdateStorewhereas
the semantics of MC is written in terms tfokup,y, Storgeg, l0okup,,,, Storiag, I00kupy,e,, and

Storénem
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Symbolic Evaluation. The base types are redefinedBdal = Formula Val = Term State=
StructUpdatewhere the vocabulary fdrogicalStrucs is

({zf, eax, ebx, ebp, eip}, { Fimem})-

Lookup and store operations for MC, suchlaskup,,.,andstore,.n are handled the same way

thatlookupStoreandupdateStorare handled for PL.

lookupem : StructUpdate— Term— Term
lookup,em= AUAT.((U12) Fimem) (T')
storgnem : StructUpdate— Term— Term— StructUpdate
storenem= AU N\T7.\T5.
((UT1), (U12)[Fimem— ((U12) Fimem[T1 — T2]])
lookup,g : StructUpdate— register— Term
lookuReg = AUAr.(UT1)(r)
storgeq : StructUpdate— register— Term
— StructUpdate
Storgeg = AU AT.((UT1)[r — T, (U12))

Because we placezf in the set of constant symbols (which denbtt82 values), we use the

following definitions oflookup,,, andstoreiag, Where instorei,g the Int32 valuesl and( encodeT
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andF, respectively.

lookupy,y : StructUpdate— flagName— Formula
100KURsg = AU (UTD)(f)[E]1)
storg,g : StructUpdate— flagName— Formula
— StructUpdate
Stor@ag = AUAS A (UTD)[f — ite(p, 1,0)], (U12))
Example 4.12 Fig. 4.1(d) shows the MC code that corresponds to the swap o#ig. 4.1(a):
lines 1-3, lines 4-6, and lines 7-9 correspond to lines 1nd, 3aof Fig. 4.1(a), respectively.
For the MC code in Fig. 4.1(d}, uc[swagdUis, which denotes the symbolic evaluationsyfap
produces th&tructUpdate

{eax’ <= Fen(ebp [-] 14)},
Flem< Fmem|ebp [-] 10 — Fien{ebp [-] 14)]
{ [ebp [-] 14 — Finen{ebp [-] 10)] }
Fig. 4.1(d) illustrates why it is essential to be able to Haratldress arithmetic: an access on
a source-level variable is compiled into machine code tleatférences an address in the stack
frame computed from the frame pointeibp) and an offset. This example shows ti#ai: is able

to handle address arithmetic correctly.

WLP. To create a formula for th&yLP of ¢ with respect to instruction via semantic rein-
terpretation, we use the reinterpreted MC semarifigs, together with the reinterpretetiMC]
meaning functionFyc, whereFyc is created via the same approach useg4iB to reinterpret
L[PL]. WLP(i, ) is obtained by performingvc[](Zmc[i]Uid)-

2To simplify the exposition[ is intentionally a limited logic over values of typet32. To definelookup,,4 and
storey.g, it would be more convenient to use a logic with Boolean-gdlgonstant symbolB; < Boolld, in which
case &tructUpdatevould be a triple of the form

({Li « T;},{Bj < »;}, {Fk < FE}),

andlookuplag andstorgiag could be defined as follows:

lookupy,g = AUAf.(UT2)(f)
Stor@iag = AU fAp.((UT1), (UT2)[f = ¢], (U13))
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[1] void foo(int e, int x, int* p) { [1] mov eax, p;
[2] [2] mov ebx, e;
[3] *p = e; [3] mov [eax], ebx;
(4] if(x == 5) [4] cmp x, 5;
(5] goto ERROR; [5] jz ERROR;
(6] } 6] ...
[7] ERROR: ...
() (b)

Figure 4.12 (a) A simple source-code fragment written in (l.the MC code for (a).

Example 4.13 Fig. 4.12(a) shows a source-code fragment; Fig. 4.12(blshbe corresponding
MC code. (To simplify the MC code, source-level variable eanare used.) In Fig. 4.12(a), the
largest set of states just before lifg] that cause the branch ERROR to be taken at lind4] is
described byWWLP(xp = e,z = 5). In Fig. 4.12(b), an expression that characterizes whether
the branch t&RROR is taken iSWLP (s13-1s1, (eip[=]crr ), Wheres;-s; denotes instructions

[11-[5] of Fig. 4.12(b), and; is the address &dRROR. Using semantic reinterpretation,
Fucl(eip[=]ern)](Zuc[st-s1]1Uia)
produces the formula
(ite((Fmen{p) [(E]%), Fmen{©), Fmen(x)) [-]5) [Z]0,

which, transliterated to informal source-level notatim,((p = &z) 7 e : ) — 5) = 0.
Even though the (source-level) branch is split across twtruictions in Fig. 4.12(b)\WLP

can be used to recover the branch condition. First,
WLP(cmp x,5; jz ERROR, (eip[=]cm))

returns the formula

ite(((Fmen{x)[=]5)[=]0), ct1, cte1) [=] ¢t
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as shown by the following derivation:

Imclemp x,5]Uiq = ({z£’ < ite((Fmen(x)[-]5)[=]0,1,0)},0)
=U
Twc[jz ERROR]U; =
zt' < ite((Fmen(x)[£]5)[=]0, 1,0)
(Finen(x) 55) EO),

) 0
eip/ «— |te C[7:|7
Cle]
:U2
((Fmenx)[-]15)[=]0),
Fucleip[=]em Uz =ite | ¢(r, [=]em
Clel

Second, becausg;; # ce, the formula in the last line simplifies (@ men(x) [-]5)[=]0; i.€., in

source-level termgz — 5) = 0. O

Symbolic Composition. For MC, symbolic composition can be performed usifg:.

4.5 Other Language Constructs

Branching. Ex. 4.13 illustrated &V LP computation across a machine-code branch instruction.

We now illustrate forward symbolic evaluation across a bhan
Example 4.14 Suppose that an if-statement is represented by
IfStm{BE, Int32, Int32),

where BE is the condition and the twint32s are the addresses of the true-branch and false-
branch, respectively. Its factored semantics would spduifv the value of the program counter

PC changes:

Z[IfStm(BE, cr, cr)]o = updateStorer PCcond B[BE]o, conster), constcr)).
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FormulaObtainPathConstraintFormuRgthr) {
Formulay = ; /I Initial path-constraint formula
StructUpdatd/ = Uyg; // Initial symbolic state-transformer
let [PC; :i1,PG :4s,...,PC, :i,,PC, 1 : sSkip] =xin
for (k =1;k < n; k++) {
U =TZI[i,JU; Il Symbolically execute,
0= F[PC[=]PG..1]U; /I Conjoin the branch condition fay,
}

return o;

}

Figure 4.13 An algorithm to obtain a path-constraint foranilat characterizes which initial
states must follow path.

() (b)

Figure 4.14 Conversion of a recursively defined instructigportrayed in (a) as a “microcode
loop” over the actions denoted by the dashed circles anavasranto (b), an explicit loop in the
control-flow graph whose body is an instruction defined withasing recursion. The three
microcode operations in (b) correspond to the three opmraiin the body of the microcode loop

in (a).

In the reinterpretation for symbolic evaluation, th8tructUpdate U obtained by
TZ[IfStm{BE, cr, cx)]|Uiq would be({PC « ite(pgg, cr, cr)}, ), wherepge is the Formulaob-
tained forBE under the reinterpreted semantics. To obtain the brancdiwon for a specific
branch, say the true-branch, we evaludEPC[=]c;]U. The result is(ite(pgg, cr, cr) [=]cr),

which (assuming that; # cr) simplifies topge. (A similar formula simplification was performed

in Ex. 4.13 on the result of the/LP formula.)
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Loops. One kind of intended client of our approach to creating syikenalysis primitives is
hybrid concrete/symbolic state-space exploration [94, B&, 54]. Such tools use a combination
of concrete and symbolic evaluation to generate inputsititaease coverage. In such tools, a
program-level loop is executed concretely a specific numob&mes as some pathis followed.
The symbolic-evaluation primitive for a single instructics applied to each instruction af to
obtain symbolic states at each pointmaf A path-constraint formulahat characterizes which
initial states must followr can be obtained by collecting the branch formula obtained at each

branch condition by the technique described above; theidhgois shown in Fig. 4.13.

X86 String Instructions. X86 string instructions can involve actions that performaapriori
unbounded amount of work (e.g., the amount performed igéted by the value held in register
ecx at the start of the instruction). This can be reduced to tbp ltase discussed above by giving
a semantics in which the instruction itself is one of its twmeaessors. In essence, the “microcode

loop” is converted into an explicit loop (see Fig. 4.14).

Procedures. A call statement’s semantics (i.e., how the state is chahgéie call action) would
be specified with some collection of operations. Again, #ieterpretation of the state transformer
is induced by the reinterpretation of each operation:

e For a call statement in a high-level language, there wouldm®peration that creates a
new activation record. The reinterpretation of this woudthgrate a fresh logical constant to
represent the location of the new activation record.

e For a call instruction in a machine-code language, regigparations would change the
stack pointer and frame pointer, and memory operations dvitialize fields of the new
activation record. These are reinterpreted in exactly #mesway that register and memory

operations are reinterpreted for other constructs.

Dynamic Allocation. Two approaches are possible:
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e The allocation package is implemented as a library. One patyaur techniques to the
machine code from the library.

e If a formula is desired that is based on a high-level semantccall statement that calls
malloc Or new can be reinterpreted using the kind of approach used in sifstems (a fresh

logical constant denoting a new location can be generated).

4.6 Incorporating Non-Determinism

Many formalisms for symbolic analysis of programs suppbeg tise of non-determinism,
which is useful for writing “harness code” (code that modakspossible client environments from
which the code being analyzed might be called), as well asnfmileling the possible inputs to a
program. A common approach is to provide a primitive thatimes an arbitrary value of a given
type. Examples include th&vMakeChoice primitive of SLAM [46] and thehavoc (x) primitive
of BoogiePL [48]. In this section, we discuss adding such a primit@aLL randint32 to MC.
CALL randInt32is an instruction that assigns an arbitrary value to regisie.®> We refer to MC
extended withCALL randInt32as NDMC.

This section describes how implementations of the basmipvies used in symbolic program
analysis are obtained for NDMC. (Essentially the same ntetam be applied to a version of PL
extended with its own primitive for generating an arbitrémy32 value.)

Because our approach to creating implementations of thmifpres used in symbolic pro-
gram analysis is based on semantic reinterpretation, oalrigdo give a concrete semantics for
CALL randInt32whose reinterpretation produces the desired effect. Anantive level, we would
like to treat each invocation &€ALL randInt32as reading the next input value, and have the se-
mantics of the program arrange to record all of the inputesluo carry out something equivalent
to this, we assume that the meta-language in which semag@feations are written supports a
primitive for creating aandom mapwhich is a map initialized with arbitrary valuésRather than

recording input values, we will materialize—in a random ntlagt is part of the input state—the

3In the x86 instruction set, registesx is used to pass back the return value from a function call.
4A random map is easy to model in logicusing a function that is unconstrained.



134

sequence of non-deterministic values tiat will receive on successive calls @ALL randint32
The state will also contain an index-variable, which intisathe index of the next choice. Thus,
all non-determinism in the concrete semantics is pusheal thetinitialization of the random map
in the initial state; all transitions thereafter are deteiistic.

The CALL randInt32instruction and its semantics are defined as an extensidred¥iC lan-

guage presented {#.2.3:
instruction:= ... | CALL randInt32

An NDMC state is defined in terms of
choiceMape Val — Val

choicelndexc Val

and an NDMC state € Stateis now a quintuple
(memreg, flag, choiceMapchoicelnde)

wherechoiceMaps a random map.

lookURgicemap : State— Val

looku RhoiceMap=

A(memreg, flag, choiceMapchoicelndex choiceMagchoicelndex

incrchoice|ndex . State_> State

incrchoicelndex:
A(memreg, flag, choiceMapchoicelndex
.(memreg, flag, choiceMapchoicelndext 1)

The concrete semantics 6RALL randInt32is defined as follows:

Z[CALL randInt33c

inCrchoicelnde(U)a

= INCleip | StOrGeq | eax,

IOOkthoiceMar(U>
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Reinterpretation in Logic. As before, Stateis reinterpreted as &tructUpdate State =

StructUpdatewhere the vocabulary fdrogicalStrucs is

{choicelndexzf, eax, ebx, ebp, eip},
{FchoiceMap Fmem}

andUyg is
{choicelndek« choicelndexzf’ « zf, ...},

' _ '
{FchoiceMap(_’ choiceMap Fmem<_> mem}

WLP in the Presence of Non-Determinism. In previous sections, we have referred to the
backwards-reasoning primitive generated by our methotVasP, which is correct for the sit-
uation considered i§4.3 and 4.4, namely languages whose primitive statemestsictions are
total and deterministic.

In the terminology of relational semantics [171], one cdess two backwards-reasoning prim-
itives, pre andpre, defined as follows (wher& is a binary relation o), andy defines a subset
of Q):

pre[R|(¢) = 3¢ (R(q,q) A (d))

pre[R](¢) =Vq'. (R(q,q") = ()
pre specifies the set of all predecessorsiinf states that satisfy. pre specifies the largest set of
states such that for each statall successors af (possibly the empty set) satisfy.

The backwards-reasoning primitive considered4n3 and 4.4 could be referred to as either
pre Or pre, because the two operators are identical for total, detasti¢ transitions. For a non-
deterministic transition system, howevere andpre are different. For instance, execution of the
havoc (x) primitive of BoogiePL [48] assigns an arbitrary value 0 Forhavoc (x), pre andpre

are defined as follows:
pre[havoc(x)[(¢) = Jz. ¢

pre[havoc (x) () = Vz. ¢
The following example shows that the backwards-reasonimgifve created by our technique

behaves similarly tpre.
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Example 4.15 Consider what the backwards-reasoning primitive createsaf[=]5 with respect
to CALL randInt32

Z[CALL randInt33Uyq

choicelndek«— (Uig11)(choicelnde +]1,
eax’ < ((UidT2)(FchoiceMarD)((UidTl)(ChOicemde)() ’

(Uia12)
choicelndek«— choicelndek+]1,

= eax’ < Fenoicemad ChOICEINdEX
(Uia12)

-U,

WLP(CALL randint32eax[=]5)
= Fleax[=]5]Us
= Fthoicemad Choicelndex =15

Fenoicemapcan be thought of as an array of logical variables. In the tfiemnfree logic we work
with, formulas are implicitly existentially quantified. tténg v denoteFnoicemad Choicelndey, the
formula Fenoicemad Choicelndex[=]5 can be thought of as the quantifier-free version of the foemul
Jv.v[=]5, which corresponds tpre[havoc (v) | (v[=]5).

Thus, in earlier sections it would have been more preciseat@ eferred to the backwards-
reasoning primitive agre, rather than/V LP—although the termWLP was also correct because
earlier sections dealt only with languages whose primisitaements/instructions are total and

deterministic.

Guaranteed Replay in the Presence of Non-Determinism. The application of directed test
generation [54, 94, 95, 167] requires path constraints ¢nable the test-generation system to
create new test inputs that are guaranteed to follow a pdatipath through the prografn.in

particular, during forward symbolic evaluation, we wantfpaonstraint generation (Fig. 4.13) to

®See§4.7 and 4.8 for more detailed discussion of systems for thicktest generation.
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Start

call randInt32
cmp eax, 5
jz ..

call randInt32
cmp eax, 11
B iz
2 call randInt32
cmp eax, 17
\jz

P “a

Figure 4.15 In a symbolic evaluation of the trace fr8tartto P, the three path constraints
obtained from the branch instructionsiy, B,, and B, constrain the values dfcnoicemad0),
Fenoicemad 1), and Fenoicemad 2), respectively. To create a new initial state that causeserete
execution of the program to follow the same path, exceptandin the opposite way &, (to

reach(), we need the satisfying assignment returned by the theprewer to satisfy the
constraints o ghoicemad 0) and Fenoicemad 1) @and the negated constraint &ihoicemad 2)-

produce a formula such that when a theorem prover is ableoge an assignment that satisfies
the formula, the satisfying assignment serves as an isiizé that will cause concrete execution
of the program to follow a specific path. The paths of inteagstones that replay at least part of a
previous execution trace.

The situation is illustrated in Fig. 4.15. During directedttgeneration, suppose that a concrete
execution tracd’ follows the path fronStartto P. Associated withl" are three path constraints
obtained from the branch instructions &f, B;, and B,. The three constraints constrain the
values ofFhoicemad0), Fenoicemad 1), @aNd Fenoicemad 2), respectively. To increase branch coverage, a
directed-test-generation tool would like to obtain aniatistate that drives the program along the
same path, except when it reachgs when the program should proceedjo

With the scheme presented in this section, the theorem pi®wable to create such an initial
state by providing initial values for the first three entredsFinoicemap (Which models the random
mapchoiceMap.

Repeatability comes from the fact that we have kept the e@aegemantics deterministic by,
in essence, recording all non-deterministically chosdnesin a kind of shadow input stream.
As a result, repeatability is automatically obtained fottbhgymbolic evaluation as well 88 LP.

In each case, for a given path we obtain an assignment fonfhe that forces execution along



138

TSL Specifications Generated C++ Templates
I[] | FITUTIJUrELJUUL] | Z[] | FITUT[JUFE[JuU[]

x86 3,524 1,510| 23,109 15,632
PowerPC|| 1,546 (already written)|| 12,153 15,632

Figure 4.16 The number of (non-blank) lines of C++ that aneegated from th@ SL
specifications of the x86 and PowerPC instruction sets (&9nf2010). The number of
(non-blank) lines off SL are indicated in bold.

that path: in symbolic evaluation, one works forwards antects path constraints; inLP, one
works backwards starting frorfi; the solver is constrained to return an assignment thaiact e

branch instruction, causes a concrete execution to bramitteidirection that stays on the path.

4.7 Implementation and Evaluation

We usedTSL to (1) define the syntax df|-| as a user-defined datatype; (2) create a reinterpre-
tation based ofi|-] formulas; (3) define the semanticsiof | by writing functions that correspond
to 7, F, etc.; and (4) apply reinterpretation (2) to the meaningfioms of L[-] itself. (We already
had in handr'SL specifications of x86 and PowerPC.)

When semantic reinterpretation is performed in the manmgparted byl SL, it is independent
of any given subject language. Consequently, now that we bafried out steps (1)—(4), all three
symbolic-analysis primitives can be generated automigtifta a new instruction selS merely by
writing a TSL specification oiS, and then applying th&SL compiler. In essencd,SL acts as a
“YACC-like” tool for generating symbolic-analysis primitivesofn a semantic description of an
instruction set.

To illustrate the leverage gained by using the approachepted in this chapter, the table
shown in Fig. 4.16 lists the number of (non-blank) lines oftGat are generated from tHeL
specifications of the x86 and PowerPC instruction sets. Timeber of (non-blank) lines of SL

are indicated in bold.
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In addition to the components for concrete and symbolicuataln, one also obtains an imple-
mentation ofYW LP—via the method described i#.3—by calling the C++ implementations of
F[-] andZ[-]: WLP(s, p) = Fle](Z[s]Uq). By Thm. 4.9 of Appendix BWLP is guaranteed
to be consistent with the components for concrete and syimbaluation (modulo bugs in the

implementation off SL).

Evaluation. Some tools that use symbolic reasoning employ formula toamstions that are not
faithful to the actual semantics. For instance, 8%GE system for directed test generation [95]
uses an approximate x86 symbolic evaluation in which cdaacralues are used when non-linear
operators or symbolic pointer dereferences are encouhteks a result, its symbolic evaluation
of a path can produce an “unfaithful” path-constraint fotang; that is, an actual execution path
may not match the program path predicted by the path-canstfi@mula . This situation is
called adivergenceg95]. Because the intended use SAGE is to generate inputs that increase
coverage, it can be acceptable for the tool to have a sulkatdivergence rate (due to the use of
unfaithful symbolic techniques) if the cost of performingrsolic operations is lowered in most
circumstances.

In contrast with directed test generation, to model checkhime code [120, 174Jan imple-
mentation of a faithful symbolic technique is required. AHé&ul symbolic technique could raise
the cost of performing symbolic operations because fditbpéth-constraint formulas could be a
great deal more complex than unfaithful ones. Thus, our x@at was designed to answer the

guestion

“What is the cost of using exact symbolic-evaluation prineis instead of unfaithful

ones?”

It would have been an error-prone task to implement a fdithfmbolic-evaluation primitive for
x86 machine code manually. UsifigL, however, we were able to generate a faithful symbolic-
evaluation primitive from an existing, well-testd@&L specification of the semantics of x86 in-

structions. We also generated an unfaithful symbolictetabn primitive that adoptSAGE'’s

5The model-checking tool for machine code is describegbin



140

approximate approach. We used these to create two diréeseédieneration tools that perform
state-space exploration—one that uses the faithful prieniand one that uses the unfaithful prim-
itive.

Although the presentation in earlier sections was couchégtins of simplified core languages,
the implemented tools work with real x86 programs. Our expent used seven C++ programs,
each exercising a single algorithm from the C++ STL, contpuader Visual Studio 2005.

To compare the two tools’ divergence rates and running timesused the algorithm shown
in Fig. 4.17. All execution runs were performed on a singleeaaf a quad-core 3.0GHz Pentium
Xeon processor running Windows XP, configured so that a useregs has 4 GB of memory.
Tab. 4.1 shows the divergence rates and running times thatewsured.

Tab. 4.1 reports the number of tests executed, the averagéhlef the trace obtained from
the tests, and the average number of branches in the tragetheHaithful version, we report the
average time taken for concrete execution (CE) and symbuhtuation (SE). In the approximate
(“unfaithful”) version, concrete execution and symboh@kiation were done in lock step and their
total time is reported in (CE+SE). (All times are in secoipdor each version, we also report the
average time taken by the SMT solver (Yices [82]), the averagmber of constraints foung(),
and the divergence rate. For the approximate version, wesdlew the average distance (as a
percentage of the total length of the trace) before a dingrdest divergedI»/Ts denotes the
ratio of the times (CE+SE+SMT) for the faithful version aihe approximate version.

On average, the unfaithful primitive had5a% divergence rate (computed as the arithmetic
mean of the seven measured divergence rates), whereasangeatices were reported for the faith-
ful primitive. The faithful primitive had.27 times more constraints i than the unfaithful prim-
itive (computed as the geometric mean of the ratios of thev®rsions for the seven programs),

and was about.07 times slower than the unfaithful version (geometric mean).

4.8 Related Work

Symbolic analysis is used in many recent systems for testialgverification:
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o = arandom initial input state
Perform concrete execution, starting with input statand obtain the tracé
numTracesConsidered 05 divergenceg,,;,, ‘= 0; divergences, ;. := 0
Worklist := {(c, T') }; AlreadyConsideredTraces =
while Worklist # () and numTracesConsideredthresholddo
Select and remove a pdis, 7') from Worklist
Perform two symbolic evaluations @f using the faithful and unfaithful symbolic primitives,
respectively, generating branch predicates for each brarstruction inT’
Let By, B,, ..., B, be the branch instructions, in order,ih
for i := k downto 1 do
For each of the two symbolic evaluations, conjoin all thenbtrepredicates iff’ prior to B;
with the negation of the branch predicate f8rin 7', creating path formulag .z, and
Punfaithful reSpECtively
Ts, :=the prefix ofT" up to and including3;, plus the intended successori®f
if Tp, € AlreadyConsideredTraceken
Break /* Exit thefor loop; all prefixes ofl 5, are in AlreadyConsideredTraces, too */
else
InsertT, into AlreadyConsideredTraces
end if
if @ puinpu 1S Unsatisfiablehen
Continue /* Go to the next iteration of tHer loop */
end if
Oluitnu, = @ Satisfying assignment fQuz,s, i
Perform concrete execution, starting with input stfg, ,;, and obtain the tracé’
numTracesConsidered := numTracesConsideréd
if 7" does not match’s, then
Increment divergences,,, by 1
end if
if Yunfaitnu 1S UNSatisfiableéhen
Increment divergences,; ... by 1
else
T unfaithful = @ SaLISTYiNg assignment fQ,, uithsu
Perform concrete execution, starting with input stafg,,,,, and obtain the tracé”
if 7" does not matcli’s, then
Increment divergences, ;... by 1
end if
end if
Insert(o},p: T") iNto Worklist
end for
end while

Figure 4.17 Directed-test-generation algorithm used éonparing the divergence rates of the
faithful and unfaithful symbolic-evaluation primitives.
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Name #Tests| |Tracd | #Branches Faithful Approximate Slowdown

(STL) (#Instrs) CE SE| SMT | |¢| | Div. | CE+SE| SMT | |¢| | Div. | Dist. | (Tr/Ta)
copy 12 1462 19| 0.3| 3.44|0.017| 6| 0% 3.58| 0.013| 1|50% | 93% 1.05
equal 202 1604 64| 0.33| 5.56| 0.48| 54| 0% 5.75| 0.46| 24| 60% | 73% 1.11
find 344 1240 1741 0.15| 5.34 0.2 144 | 0% 531 0.17| 85| 50% | 82% 1.07
partition 19 1293 43| 0.24| 5.26| 0.79| 43| 0% 543| 0.26| 1|73% | 87% 1.16
randomshuffle 94 2448 71| 0.48| 7.56|0.028| 37| 0% 7.88| 0.014| 1|48% | 99% 1.03
search 274 1422 107 0.33 6.3| 0.17| 59| 0% 6.37| 0.13| 31| 55% | 89% 1.07
transform 200 3749 95| 0.82| 18.56| 0.05| 85| 0% 19.36| 0.012| 1| 64% | 99% 1.00

Table 4.1 Experimental results. Key: CE = time for concregecation; SE = time for symbolic
execution; SMT = solver timéjp| = avg. number of constraints found; Div. = divergence rate;
CD+SE = time for concrete + symbolic execution (when run itklstep); Dist. = avg. distance
before a diverging test divergesy /T4 denotes the ratio of the times (CE+SE+SMT) for the
faithful version and the approximate version. (All times ar seconds.)

e Hybrid concrete/symbolic tools for directed test genemaf{b4, 94, 95, 167] use a combina-
tion of concrete and symbolic evaluation to generate infh#tsincrease coverage. They use
concrete evaluation to identify an executable patithey use symbolic evaluation to obtain
a path formula forr, then change the formula to be one for a patlthat follows the same
sequence of branches asexcept that at the final branch nogéebranches in the direction
opposite to the one taken hy and call an SMT solver to determine if there is an input that
drives the program down'.

e W/LP can be used to create new predicates that split part of agrogabstract state space
[46, 49].

e Symbolic composition is useful when a tool has access tomtftar that summarizes a called
procedure’s behavior [186]; re-exploration of the proaeds avoided by symbolically com-
posing a path formula with the procedure-summary formula.

However, compared with the way such symbolic-analysis piKies are implemented in existing
program-analysis tools, our work has one definite advantiageeates the key concrete-execution
and symbolic-analysis components in a way that ensures hstreation that they arenutually

consistent
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We use aleclarative approachone provides a specification of the subject languastasdard
semantics; then, as describedsh3 and 4.4, mutually-consistent implementations of sylinbo
evaluation WLP, and symbolic composition are obtained from the subjeqjuage’s standard
semantics by (i) reinterpreting meta-language constinderms of logic, and (ii) reinterpreting a
logic’s meaning functions. The advantage of this approad¢hat one obtains implementations of
(a) concrete execution, (b) symbolic evaluation, ¢ P, and (d) symbolic composition from a
singlespecification, which removes the possibility of differenalysis components having differ-
ent “views” of the semantics.

It appears to be the case that in most tools, the concretasar and symbolic-analysis prim-
itives are not implemented in a way that guarantees such sistency property. For instance, in
the source code for B2 [106] (the next-generatBirAST), one finds symbolic evaluatiopdst)
andW.LP implemented with different pieces of code, and hence mwtoasistency is not guar-
anteed WLP is implemented via substitution, with special-case codé&mdling pointers. Any
modification of the B2 intermediate representation woulguiee changing bothvost andWLP,
and possibly rethinking the substitution method.

Recently, directed-test-generation tools have been exlefar x86 executables—e.dSAGE
[95] andBITSCOPE [54].

e BITSCOPE is a framework that takes an x86 executable and providesnaton about exe-
cution paths that can be used for additional, more specifityaas, such as finding out what
inputs cause erroneous behavior. To perform symbolic etaln, they first translate each
x86 instruction into an intermediate representation teatasigned to model the semantics
of the original x86 instruction, including all implicit sedeffects (such as flags that are set),
register addressing modes, and other issues. Symbolioaiai is performed on the IR
with a symbolic transformer for each IR statement.

e SAGE is awhite-box fuzz-testing todbdr x86 Windows applications [95]. The system uses
offline, trace-basedonstraint generation: concrete execution and symboktuation are
performed over a separately recorded, replayable exetttiae in which the outcome of

each nondeterministic event encountered during the redordn has been captured. To
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generate path constrainSAGE maintains a concrete state and a symbolic state—a pair of
stores that associate each memory location and registdryttessized value andsymbolic
tag, which is an expression that represents either an inpuevala function of some input
values. A symbolic tag is propagated on the trace during tbegss of symbolic evalua-
tion by using a symbolic transformer written specifically &ach instruction. The concrete
store is sometimes used toncretizesymbolic values that are overly complex. 8AGE,
symbolic pointer dereferences are intentionally ignoredetduce complexitySAGE could
be improved to increase coverage by using more precise paistraints created from the
symbolic-evaluation primitive produced by our technigg.7 shows that the faithful con-
straints created by our technique dramatically reduce timeloer of divergences with only a
modest (7%) increase in running time.
BITSCOPE uses the approach of translating each instruction to a cammtermediate repre-
sentation (CIR) (seé4.1), which provides a level of assurance that the con@eéeution and
symbolic-evaluation components are mutually consist8AGE uses independently created com-
ponents for capturing execution traces and for path-caimtgeneration. It also uses approximate
techniques during the symbolic-evaluation part of comstrgeneration; hence, the treatment of
program semantics iSAGE is definitely inconsistent, which causes divergenced/LP and

symbolic composition do not play a role in eitif@AGE or BITSCOPE.)

Relationship to Partial Evaluation, Binding-Time Analysis, and 2-Level Semantics. In gen-
eral, the semantic definition of an imperative programmargguage is a meaning functi@nwith
typeZ : Stmtx State— State The objective of a primitive for symbolic evaluation candiated

as follows:

Given the semantic definition of a programming langudge Stmtx State— State
together with a specific programming-language statemenng@ruction)s € Stmg

create a logical formula that captures the semantics of

Given such a goal for the primitive to be created, it is nopsising that partial-evaluation tech-

niques come into play in the tool that generates implememsbf such primitives. In essence, we
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wish to partially evaluat& with respect tdStmts so that the residual object captures the semantics
of s, while at the same time the result is translated t&emantic reinterpretation permits us to do
this: letU, be theStructUpdateZ[s]U,4. ThenU, is the partial evaluation of with respect tos,
translated to logic.

In our implementation, th&SL system is supplied with &SL program for the meaning func-
tion Z (i.e.,interplnstr). AlthoughTSL is not a partial-evaluation systeper se for reasons dis-
cussed irg3.2.1, theTSL compiler performs binding-time analysis [108], and antegahe code
for interplnstr to create an intermediate representation in a two-levgjuage [149]. In our case,
Level 1 corresponds to parameteof interpinstr, and Level 2 corresponds to parameieate.

To generate implementations of symbolic-analysis priragivia semantic reinterpretation, we use
two different reinterpretations for the two levels:

e Concrete semantics (C) for Level 1.

e Something close to the Herbrand interpretation (H) for L&eoperators of., are used as

syntactic constructors, but algebraic simplifications@egormed whenever possible.

Let interplnstr-CH denote interpinstr-21level reinterpreted in this fashion.  When
interplnstr-CH is executed, it creates a residual expression as outputauBecconcrete seman-
tics is used for level 1, all parts afterpinstr that are not relevant to the form ofare eliminated.

Overall, theTSL compiler and the two interpretations create something thaery similar
to a generating extension [10Bjterplinstr-gen for interplnstr. If p is a two-input program, a

generating extensiop-gen is any program with the property that for every input paandb,
[p-gen](a) = p,. where[p,]() = [p](a.b).

Thus,Z-gen is a program such that for every statemeandStateo,
[Z-gen](s) = Z,, where[Z,](0) = [Z](s. ).

Generating extensianterplnstr-gen would be a program with the following property:

[interpinstr-gen](I) = interplnstr;, where

linterpinstr;[(S) = [interplnstr](I,s).
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interplnstr-CH has similar properties:

[interpinstr-CH] (I, Uqg) = U, where
U[U:](S) = [interpInstr](I,s).

Consequentlyinterplnstr-gen andinterplnstr-CH are not the same, although the difference be-
tween is quite smallinterplnstr-CH still requirestwo inputs to be supplied (but we could use the
trivial value Uy for the second input).

When partial-evaluation machinery is included in the déston, the explanation is complicated
by the number of language levels involved. Consequentlyhim chapter we chose to base the
discussion on the simpler principle of semantic reintegdren, which has benefits and drawbacks:

e The benefit is that the explanation is simpler, and could la¢soseful for direct hand imple-
mentation when a meta-system suci &8s is not available.

e The drawback is that in some of the sections it may appeamthbat steps perform rather
trivial transliteration of expressions from programmimgtjuage PLinto expressions of the
corresponding logid.[PL;]. In part, this is an artifact of trying to present the methodn
easy-to-digest manner; in part, it mimics the behavior okaegating extension: copying
(or transliterating) the appropriate residual expresssoone of the principles of “writing a

generating extension by hand” [51, 123].

4.9 Conclusion

This chapter presents a way to obtain automatically muttadhsistent, correct-by-
construction implementations of symbolic primitives—iarficular, quantifier-free, first-order-
logic formulas for (a) symbolic evaluation of a single cormda(b) W L P with respect to a single
command, and (c) symbolic composition for a class of formulat express state transforma-
tions. The approach presented in the chapter invalegeratingimplementations of each of the
primitives from a single specification of the subject langgia concrete semantics. The generated

implementations are guaranteed to be mutually consisteai(lo bugs in the implementation of
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the program-generation implementation), and also to bsistant with an instruction-set emula-
tor (for concrete execution) that is generated from the sspeeification of the subject language’s
concrete semantics.

In this work, the method used to generate such implemen&tgsemantic reinterpretation,
a technique originally introduced by Mycroft and Jones [1184] as a method for formulating
abstract interpretations. In this work, we are not doingrales interpretatiorper se(i.e., to over-
approximate the concrete semantics [73]), but we take tladdvantage of their methodology:
we use two separate semantic reinterpretations—(i) ngargtation of gorogramming language’s
meaning function(s), and (ii) reinterpretation ofagic’s meaning function(s). The two kinds of
reinterpretations define the key primitivésF, andZ{ from which the desired implementations of
symbolic evaluationyyV £P, and symbolic composition are obtained.

As far as we are aware, the application of semantic reingé¢aion to a logic is a new idea. A
related innovation on which our results rest was to definertigodar form of state-transformation
formula (structure-update expressions) as a first-clag®man the logic. By this device, such
formulas could (i) serve as a replacement domain in the egnetations of both the program-
ming language’s meaning functions and the logic’s meanimgtions, and (ii) be reinterpreted
themselves.

We applied our technique to both the x86 and PowerPC insbrusets, using th&SL system
as our implementation platform34.7 discusses the substantial leverage that we obtainad usi
TSL’s facilities for semantic reinterpretation: from 6,580ds of TSL, 101,788 lines of C++ were
produced that impleme, Z, F, 7, FE, andl{ for x86 and PowerPC. Moreover, for each instruc-
tion set all six primitives are guaranteed to be mutuallysistent (modulo bugs in the implemen-
tation of TSL and in the implementations of the primitives for the two lsraf reinterpretations).

As proposed by Mycroft and Jones [110, 144], in a semantidegretation one refactors the
specification of a language’s concrete semantics into aldeiform by introducing appropriate
combinators that are subsequently redefined. While thls sfysemantic reinterpretation is sup-
ported by thél SL system, ordinarily one never has to be concerned with refexct a specification.

Instead, each reinterpretation is performed at the me:lthat is, each reinterpretation involves
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redefining the approximately 40 primitives of tiieL meta-languagé In our TSL-based semantic
reinterpretations of specifications of the concrete seimsnf x86 and PowerPC, we did not have
to refactor the specification to introduce any special coraturs.

Finally, we conducted an experiment that used the genepaiiedtives on x86 code, compiled
under Visual Studio 2005 from C++ STL source code, to gaimgimson the question “What is
the cost of using exact symbolic-evaluation primitivegéasl of unfaithful ones in a system for
directed test generation?” The experiment showed thaguestact symbolic-analysis primitives,
as opposed to ones that approximate the real semanticewisrdby a factor of 1.07, but is dra-

matically more accurate.

“Each of the numeric primitives comes in four bit-widths: i8-b6-bit, 32-bit, and 64-bit. All four must be reinter-
preted; however, generally the reinterpretation of a gieenily of four such numeric primitives can be parameterized
on bit-width, so we only count each family as a single privaiti
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Chapter 5

Case Studies

This chapter discusses two applications that us@ 8iegenerated analysis components. Both
applications use logic-based search procedures to estgibtperties of machine-code programs.
Compared to work by others on logic-based search procedaramachine code, what distin-
guishes the work described in this chapter is that both egitins aregoal-directed That is, they
both have a target property or program point of interest,thrgitarget is used to focus the search.
More discussion of related work is found§b.1.5 anc;5.2.9.

§5.1 presents the algorithms usedMCVETO (MachineCode VErification TOol), a tool
to check whether a stripped machine-code program satisfeededy property. The verification
problem thatMCVETO addresses is challenging because it cannot assume tha &chass to
(i) certain structures commonly relied on by source-coddfigation tools, such as control-flow
graphs and call-graphs, and (ii) meta-data, such as infosmabout variables, types, and aliasing.
It cannot even rely on out-of-scope local variables andrreiddresses being protected from the
program’s actions. What distinguishB®sCVETO from other work on software model checking
is that it shows how verification of machine code can be paréat, while avoiding conventional
techniques that would be unsound if applied at the machode-tevel.

Botnets are a major threat to the security of computer systamd the Internet. An increasing
number of individual Internet sites have been compromiseattacks from across the world to be-
come part of various kinds of malicious botn€jS.2 presents a tool, call&LCE, for automatically
extracting botnet-command information from bot execudabBCE helps analyzing the behavior

of bots by providing proper input commands that trigger wialis behaviors.
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Both applications make use ®EL-generated analysis components, including concrete execu
tion as well as the symbolic-analysis primitives preseimechapter 4AMCVETO also uses several

TSL-generated static-analysis components, includiRg (§3.3.2) andAsi (§3.3.4).

5.1 MCVETO

As discussed in Chapter 2, machine-code analysis presamgmew challenges. For instance,
at the machine-code level, memory is one large byte-adalésarray, and an analyzer must han-
dle computed—and possibly non-aligned—addresses. ltusiarto track array accesses and
updates accurately; however, the task is complicated bfattiig¢hat arithmetic and dereferencing
operations are both pervasive and inextricably interngdglFor instance, if local variableis at
offset 42 from the activation record’s frame pointer (regisé®p), an access onwould be turned
into an operanddbp—12]. Evaluating the operand first involves pointer arithméticbp—12") and
then dereferencing the computed addresg’J:[ On the other hand, machine-code analysis also
offers new opportunities, in particular, the opportundyitack low-level, platform-specific details,
such as memory-layout effects. Programmers are typicalyvare of such details; however, they
are often the source of exploitable security vulneraletiti

The algorithms used in software model checkers that workooince code [47, 49, 102] would
be be unsound if applied to machine code. For instance, dstarting the verification process
proper,SLAM [47] andBLAST [102] perform flow-insensitive (and possibly field-sena)ipoints-
to analysis. However, such analyses often make unsounchasisms, such as assuming that the
result of an arithmetic operation on a pointer always remanside the pointer’s original target.
Such an approach assumes—uwithout checking—that the pnagrANSI C compliant, and hence
causes the model checker to ignore behaviors that are alowsome compilers (e.g., arithmetic
is performed on pointers that are subsequently used foraatdfunction calls; pointers move off
the ends of structs or arrays, and are subsequently demetsd®e A program can use such features
for good reasons—e.g., as a way for a C program to simulateasging [172]—but they can also

be a source of bugs and security vulnerabilities.
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In this work, we developed a model checker for machine coddbedMCVETO (Machine-
CodeVErification TOol).! MCVETO usesdirected proof generatio(DPG) [98] to find either an
input that causes a (bad) target state to be reached, or atpatdhe bad state cannot be reached.
(The third possibility is thaMCVETO fails to terminate.)

What distinguishes the work dMICVETO is that it addresses a large number of issues that have
been ignored in previous work on software model checking,vaould cause previous techniques
to be unsound if applied to machine code. The contributidreuo work can be summarized as
follows:

1. We show how to verify safety properties of machine coddevéwoiding a host of assump-
tions that are unsound in general, and that would be inapjategn the machine-code con-
text, such as reliance on symbol-table, debugging, or tgfmmation, and preprocessing
steps for (a) building a precomputed, fixed, interproceldewatrol-flow graph (ICFG), or
(b) performing points-to/alias analysis.

2. MCVETO builds its (sound) abstraction of the program'’s state sjpaethe-fly, performing
disassembly one instruction at a time during state-spagkation, without static knowl-
edge of the split between code vs. data. (It does not have fwdpared to disassemble
collectionsof nested branches, loops, procedures, or the whole progitaahonce, which is
what can confuse conventional disassemblers [128].)

The initial abstraction has only two abstract states, ddfinethe predicates “P€E target’
and “PC+ target (where “PC” denotes the program counter). The abstragsgradually
refined as more of the program is exercisgbl.{.2). MCVETO can analyze programs with
instruction aliasingbecause it builds its abstraction of the program’s stateespatirely on-
the-fly. MoreoverMCVETO is capable of verifying (or detecting flaws in) self-modifgi

code (SMC). With SMC there is no fixed association betweerddness and the instruction

IMCVETO was carried out in collaboration primarily with A. Thakur, Bal, and T. Reps, along with A. Burton,
D. Driscoll, M. Elder, and T. Andersen. My contribution tcetiwork consisted of th& SL-generated anaysis com-
ponents for concrete execution and symbolic executiorrudsed in Chapter 4, along with the development of the
techniques described §9.1.2.1 ang5.1.2.2.

2Programs written in instruction sets with varying-lengthtructions, such as x86, can have “hidden” instructions
starting at positions that are out of registration with thstiuction boundaries of a given reading of an instruction
stream [128].
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at that address, but this is handled automatical\/I8VETO’s mechanisms for abstraction
refinement. To the best of our knowledddCVETO is the first model checker to handle
SMC.

3. MCVETO introducedrace generalizationa new technique for eliminatirfgmiliesof infea-
sible traces. Compared to prior techniques that also hasallity [50, 101], our technique
involvesno calls on an SMT solveandavoids the potentially expensive step of automaton
complementation

4. MCVETO introduces a new approach to performing DPG (Directed P@erfieration) on
multi-procedure programs. Godefroid et al. [96] presemteéclarative framework that cod-
ifies the mechanisms used for DPGSMNERGY [98], DASH [49], andSMASH [96] (which
are all instances of the framework). In their framewarkerprocedural DPG is performed
by invoking intraprocedural DPG as a subroutine. In contrd8GVETO's algorithm lies
outside of that framework: the interprocedural componéMiGVETO uses (and refines) an
infinite graph which is finitely represented and queriedsymbolic operations

5. We developed a language-independent algorithm to igethie aliasing condition relevant
to a property in a given stat§g.1.2.1). Unlike previous techniques [49], it applies when
static names for variables/objects are unavailable.

6. We developed several techniques to enhance the methedslusng DPG to elaborate the
abstraction in use. Although these techniques are speajlabundness is retaineat all
times.

Items 1 and 2 address execution details that are typicafigrigd (unsoundly) by source-code
analyzers. Item 2 is specific to machine-code analysis. 3,and 6 are applicable to both source-
code and machine-code analysiBICVETO is not restricted to an impoverished language. In
particular, it handles pointers and bit-vector arithmetic

We implementedMCVETO in a language-independent way by using Tr&t system to im-

plement the analysis components neededVIGVETO—i.e., (a) an emulator for running tests,
(b) a primitive for performing symbolic execution, and (cpamitive for the pre-image operator

(Pre). In addition, we developed language-independenbappes to the issues discussed above
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(e.g., item 5). As discussed in Chapter 3, &t system acts as a"ACC-like” tool for creating
versions ofMCVETO for different instruction sets: given an instruction-sesdription, a version
of MCVETO is generated automatically. We created two such instémistof MCVETO from

descriptions of the Intel x86 and PowerPC instruction sets.

The remainder of this section is organized as follo#s1.1 contains a brief review of DPG.
65.1.2 explains the methods used to achieve the contritaibbRICVETO. §5.1.3 describes how
different instances oMCVETO are generated automatically by using fheL system. §5.1.4

presents experimental resul§®.1.5 discusses related wors.1.6 concludes.

5.1.1 Background on Directed Proof Generation (DPG)

Given a progran® and a particular control locatidargetin P, DPG returns either an input for
which execution leads ttargetor a proof thatargetis unreachable (or DPG does not terminate).
Two approximations of”’s state space are maintained:

e A setT of concrete traces, obtained by runniRgvith specific inputs” undemapproximates

P’s state space.

e A graph G, called theabstract graph obtained fromP via abstraction (and abstraction

refinement) G overapproximates’s state space.
Nodes inG are labeled with formulas; edges are labeled with prograatestents or program
conditions. One node is thstart node(where execution begins); another node istédrget node
(the goal to reach). Information to relate the under- andawgroximations is also maintained: a
concrete state in a trace inl’ is called awitnessfor a noden in G if o satisfies the formula that
labelsn.

If G has no path fronstartto target then DPG has proved th&drgetis unreachable, an@
serves as the proof. Otherwise, DPG locatéwatier: a triple (n, I, m), where(n, m) is an edge
on a path fronstart to targetsuch that: has a witness butm does not, and is the instruction
on (n,m). DPG either performs concrete execution (attempting toheéargef) or refinesG by
splitting nodes and removing certain edges (which may pthattargetis unreachable). Which

action to perform is determined using the basic step fdinected test generatiof®4], which uses
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I I

Figure 5.1 The general refinement step across frofief, m). The presence of a witness is
indicated by a $” inside of a node.

symbolic execution to try to find an input that allows exeentto cross frontie(n, I, m). Sym-
bolic execution is performed over symbolic states, whicheltsvo components: path constraint
which represents a constraint on the input state, asydreébolic mapwhich represents the current
state in terms of input-state quantities. DPG performs jlimlexecution along the path taken
during the concrete execution that produced witnedsr n; it then symbolically executek and
conjoins to the path constraint the formula obtained bywatahgm'’s predicate) with respect to
the symbolic map. It calls an SMT solver to determine if ththgaonstraint obtained in this way
is satisfiable. If so, the result is a satisfying assignmieaitis used to add a new execution trace to
T. If not, DPG refiness by splitting node: into »’ andn”, as shown in Fig. 5.1.

Refinement changés to represent someon-connectivitynformation: in particularp’ is not
connected ton in the refined graph (see Fig. 5.1). Letbe the formula that labels:, ¢ be the
concrete witness of, andS,, be the symbolic state obtained from the symbolic executiou
n. DPG chooses a formula called therefinement predicateand splits node: into »’ andn”
to distinguish the cases whenis reached with a concrete state that satisfi¢s”) and when it
is reached with a state that satisfies (n'). The predicate is chosen such that (i) no state that
satisfies—p can lead to a state that satisfiesfter the execution of, and (ii) the symbolic state
S, satisfies—p. Condition (i) ensures that the edge frorhto m can be removed. Condition (ii)
prohibits extending the current path aloh¢forcing the DPG search to explore different paths). It
also ensures thatis a witness for’ and not forn” (because satisfiesS, )—and thus the frontier

during the next iteration must be different.
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5.1.2 McVETO

In this section, we focus on explaining the language-inddpat algorithm that we developed
to identify the aliasing condition relevant to a propertyaigiven state§6.1.2.1), and the mecha-
nisms to discover candidate invariants from a trace, whrehtlaen incorporated into the abstract
graph §5.1.2.2). The details of contributions 1, 2, 3, and 4 listethe introduction t¢5.1 can be
found in the full paper ([174, 175]).

5.1.2.1 ALanguage-Independent Approach to Aliasing Rel@nt to a Property

This section describes hoMICVETO identifies—in a language-independent way suitable for
use with machine code—the aliasing condition relevant tmagrty in a given state (contribution
5 from the introduction t¢5.1). Chapter 4 showed how to generate a pre-image prinitigdor
machine code; however, repeated application of Pre caefieaement predicates to explode. We
now present a language-independent algorithm for obtgamaliasing condition that is suitable
for use in machine-code analysis. Franone immediately obtains RyeThere are two challenges
to defining an appropriate notion of aliasing condition fesewvith machine code: (int-valued
and address-valued quantities are indistinguishablerdiinne, and (ii) arithmetic on addresses is
used extensively.

Suppose that the frontier is:, I, m), ¢ is the formula onm, and .S, is the symbolic state
obtained via symbolic execution of a concrete trace thathvesn. For source code, Beckman
et al. [49] identify aliasing conditiomx by looking at the relationship, i%,,, between the ad-
dresses written to by and the ones used inn. However, their algorithm for computing is
languagedependenttheir algorithm has the semantics of C implicitly encodedt$ search for
“the addresses written to b¥'. In contrast, as explained below, we developed an altemat
languagendependenapproach, both to identifying and computing Pte

For the moment, to simplify the discussion, suppose thatrerebe machine-code state is
represented using two mapd : INT — INT and R : REG — INT. Map M represents
memory, and magR represents the values of machine registers. (A more rgatisfinition of

memory is considered later in this section.) We use the sta@htheory of arrays to describe
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(functional) updates and accesses on maps, @pgatém, k, d) denotes the map: with index

k updated with the valud, andaccesém, k) is the value stored at indexin m. (We use the
notationm(r) as a shorthand foaccesém,r).) We also use the standard axiom from the the-
ory of arrays: (updatém, ki, d))(k2) = ite(k; = ko, d, m(k2)), whereite is anif-then-elseterm.
Suppose thaf is “mov [eax],5” (which corresponds teeax = 5 in source-code notation) and
that is (M (R(ebp) — 8) + M(R(ebp) — 12) = 10).® First, we symbolically executé start-
ing from the identity symbolic statéi4 = [M — M,R — R] to obtain the symbolic state
S" = [M +— updaté M, R(eax),5), R — R]. Next, we evaluate) underS’—i.e., perform the
substitutiony)[M — S’(M), R — S’(R)]. For instance, the term/ (R(ebp) — 8), which denotes
the contents of memory at addre8&bp) — 8, evaluates tQupdaté M, R(eax), 5))(R(ebp) —8).
From the axiom for arrays, this simplifiesite( R(eax) = R(ebp) — 8,5, M (R(ebp) —8)). Thus,
the evaluation of) underS’ yields

ite(R(eax) = R(ebp) — 8,5, M (R(ebp) — 8)) _ 10
+ ite(R(eax) = R(ebp) — 12,5, M (R(ebp) — 12))

(5.1)

This formula equals Pr(é, ¢) as discussed in [125] and Chapter 4.

The process described above illustrates a general prodertany instruction/ and formula
v, PreI,¢) = Y[M «— S'(M),R — S'(R)], whereS” = SE[I]Siq and SH:] denotes symbolic
execution [125].

The next steps are to identify and to create a simplified formutd that weakens P(é, ).
These are carried out simultaneously during a traversategf ) that makes use of the symbolic
stateS,, at noden. We illustrate this on the example discussed above for ainashkich S,,(R) =
leax — R(ebp) — 8] (i.e., continuing the scenario from footnote &x holds &x). Because
theite-terms in Egn. (5.1) were generated from array accesgespnditions represent possible
constituents of aliasing conditions. We initializeo trueand traverse Eqn. (5.1). For each subterm
t of the formite(y, t1, t2) whereyp definitely holds in symbolic stat,, ¢ is simplified tot; andy
is conjoined tav. If ¢ can never hold irb,,, ¢ is simplified tot, and—y is conjoined tax. If ¢ can

sometimes hold and sometimes fail to holdsin ¢ anda are left unchanged.

3In x86, ebp is the frame pointer, so if program variabids at offset -8 andy is at offset 42, ) corresponds to
x+y=10.
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In our example R(eax) equalsRk(ebp) — 8 in symbolic state5,,; hence, applying the process
described above to Eqn. (5.1) yields

W' = (5+ M(R(ebp) — 12) = 10)
a = (R(eax) = R(ebp) — 8) A (R(eax) # R(ebp) — 12)

(5.2)

The formulan = ¢’ is the desired refinement predicate Rie ¢)).

In practice, we found it beneficial to use an alternative apph, which is to perform the same
process of evaluating conditions ibé terms in Pré¢/, ), but to use one of the concrete witness
statediV/,, of frontier noden in place of symbolic stat§,,. The latter method is less expensive (it
uses formula-evaluation steps in place of SMT solver calis) generates an aliasing condition
specific tolV,, rather than one that covers all concrete states describég.by

Both approaches alanguage-independetviecause they isolate where the instruction-set se-
mantics comes into play in Rr& ) to the computation of’ = SE[I]Siy; all remaining steps
involve only purely logical primitiveg. Although our algorithm computes Rike +/) explicitly, that
step alone does not cause an explosion in formula size; splts due taepeatedapplication of
Pre. In our approach, the formula obtained via(Pre) is immediately simplified to create first

Y, and thery = /.

Byte-Addressable Memory.We assumed above that the memory map hasliype— INT. When
memory is byte-addressable, the actual memory-map typéTi82 — INT8. This complicates
matters because accessing (updatingl-bit quantity in memory translates into four contiguous

8-bit accesses (updates). For instanc&-ait little-endian access can be expressed as follows:

access32_8_LE_32(m,a) = letvd = 2% x Int8To32ZEm(a + 3))

v3 = 216 % Int8To32ZEm(a + 2))
v2 = 28 % Int8To32ZEm(a + 1)) (5.3)
vl = Int8To32ZEm(a))

in (v4 | v3|v2 | vl)

4A system for DPG needs the symbolic-execution primitivel §Eanyway for other steps of state-space explo-
ration. Because an implementation of[$Ecan be generated from a description of the semantics of tnati®n set
([125] and Chapter 4), an implementation of (& v)) can be generated as well.
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224 4 Int8To32ZEite(z + 3 = p + 3,0,ite(x + 3 = p + 2,0,ite(z +3 = p+ 1,0, ite(x + 3 = p, 5, *(x + 3)))))
| 216 % Int8To32ZHite(x + 2 = p + 3,0, ite(x + 2 = p + 2,0,ite(x + 2 = p + 1,0,ite(z + 2 = p, 5, *(z + 2)))))
| 28 % Int8To32ZFite(x + 1 = p+ 3,0,ite(z + 1 = p+ 2,0,ite(x + 1 = p+ 1,0,ite(x + 1 = p, 5, *(z + 1))))))
| Int8To32ZKite(x = p + 3,0, ite(x = p + 2,0,ite(x = p+ 1,0, ite(z = p, 5, *x)))))

224 x Int8To32ZKite(y + 3 = p + 3,0,ite(y + 3 = p + 2,0,ite(y + 3 = p + 1,0,ite(y + 3 = p, 5, *(y + 3))))))
| 216 x Int8T032ZKite(y + 2 = p + 3,0, ite(y + 2 = p + 2, 0,ite(y + 2 = p+ 1,0,ite(y + 2 = p, 5, *(y + 2))))))
| 28 « Int8To32ZKite(y + 1 = p + 3,0,ite(y + 1 = p+ 2,0,ite(y + 1 = p+ 1,0, ite(y + 1 = p, 5, x(y + 1))))))
| Int8To32ZKite(y = p + 3,0, ite(y = p+ 2,0,ite(y = p+ 1,0, ite(y = p, 5, *y)))))
=10

)
)

Figure 5.2 The formula for P(é, ), wherey is
update32_8_LE_32(M, R(ebp) — 8) + update32_8_LE_32(M, R(ebp) — 12) = 10, obtained by
evaluatingy on the symbolic stat8’ = [M — update32_8_LE_32(M, R(eax),5), R — R]. For
brevity, the following notational shorthands are used mftirmula:p = R(eax),
x = R(ebp) — 8,y = R(ebp) — 12, xx = M (R(ebp) — 8), xy = M (R(ebp) — 12), etc.

wherelnt8To32ZEconverts ariNT8 to anINT32 by padding the high-order bits with zeros, and

" denotes bitwise-or.

Letupdate32_8_LE_32 denote the similar operation for updating a map of tiyy€32 — INT8
under the little-endian storage convention. Note that wheh |k; —nt32 k2| < 3, we no longer

have the property
access32_8_LE_32(update32_8_LE_32(M, k;,d), ko) = access32_8_ LE_32(M, k).

and hence it is invalid to simplify formulas by the rule

access32_8_LE_32(update32_8_LE_32(M, ky,d), ks)
= ite(k; = ko, d,access32_8_LE 32(M, k,)).

However, the four single-byte accessesom Eqn. (5.3) (n(a), m(a+1), m(a+2), andm(a+3))
are accessoperations for which it is valid to apply the standard axiofraoays (i.e.,(m[k; —
d))(ks) = ite(ks = ka, d,m(k2))).

Returning to the example discussed above, in wiit¢bax) equalsR(ebp) — 8 in symbolic
stateS,,, we perform the same steps as before. First, the symbolauéee of / = mov [eax],5

starting from the identity symbolic statg = [M — M, R — R] results in the symbolic state

S" = [M +— update32 8_LE_32(M, R(eax),5), R — R].
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The formulay is now written as follows:
access32_8_LE_32(M, R(ebp) — 8) + access32_8_LE_32(M, R(ebp) — 12) = 10.

To obtain Prél, ), we evaluate) underS’, which yields the formula shown in Fig. 5.2.
The formula shown in Fig. 5.2 is the analog of Eqgn. (5.1).
The step that uses symbolic stafg to identify o and create a simplified formula’ that

weakens Prd, ¢) is now applied to the formula shown in Fig. 5.2 and produces

224 & Int8T032ZE*(y + 3))
216 & INt8TO32ZE () + 2
s | By +2) | _
| 28 % Int8TO32ZE*(y + 1))

| Int8To32ZExy)

The « that is the analog of Eqgn. (5.2) is the conjunction of the glisdities collected from the
formula shown in Fig. 5.2:

def

a=r+3#p+3N...2+3F%pA...x£p+3N...x#p
ANYy+3#p+3AN...y+3%£pAN...y£p+3A...y#p.

As before, the formula: = ¢’ is the desired refinement predicate Rte ).

5.1.2.2 Speculative Trace Refinement

Motivated by the observation that DPG is able to avoid extiaikop unrolling if it discovers
the right loop invariant, we developed mechanisms to discoandidate invariants from a trate,
which are then incorporated into the abstract graph. Algfioilney are onlycandidateinvariants,
they are introduced into the abstract graph in the hope llegtare invariants for the full program.
The basic idea is to apply dataflow analysis to a graph olddoen the trace~,.. The recovery of
invariants fromG,, is similar in spirit to the computation of invariants fronates in Daikon [84],
but inMCVETO they are computeex post factdy dataflow analysis on the trace. While any kind

of dataflow analysis could be used in this fashihfGVETO currently uses two analyses:

5The trace idoldedby grouping together all nodes with the same effective asijrand augmenting it in a way
that overapproximates the portion of the program not exgalday the trace (see [174, 175] for more details).



160

o Affine-relation analysis§3.3.2 and [141]) is used to obtain linear equalities oveistegs
and a set of memory locations, V' is computed by running aggregate structure identifica-
tion [156] onG . to obtain a set of inferred memory variabl®g then selecting” C M as
the most frequently accessed locationgin

e An analysis based on strided-interval arithmegi@.8.4 and [160]) is used to discover range
and congruence constraints on the values of individuastegs and memory locations.

The candidate invariants are used to create predicatetdanddes of+,. Because an analysis
may not account for the full effects of indirect memory refieces on the inferred variables, to
incorporate a discovered candidate invariantor noden into GG, safely, we splitn. on ¢ and
—. Again we have two overapproximation&:,, from the trace, augmented with the candidate
invariants, and the original abstract gra@gh To incorporate the candidate invariants idto we
performG := G N G,; then operation labels a product statg, ¢») with the conjunction of the
predicates on states of G andg, of G;.

5.1.3 Implementation

The MCVETO implementation incorporates all of the techniques deedriim §5.1.2. The
implementation uses only language-independent techgsigoasequentl)yICVETO can be easily
retargeted to different languages. The main compone8XfETO are language-independent in
two different dimensions:

1. TheMCVETO DPG driver is structured so that one only needs to providéempntations of
primitives for performing concrete and symbolic executidia language’s constructs, plus a
handful of other primitives (e.g., Py Consequently, this component can be used for both
source-level languages and machine-code languages.

2. For machine-code languages, we used two toolspthragratethe required implementations
of the primitives for concrete and symbolic execution froescriptions of the syntax and
concrete operational semantics of an instruction set. beact syntax and concrete seman-

tics are specified usingSL. Translation of binary-encoded instructions to abstrgatax
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trees is specified using a tool callAL (I nstructionSet Architecturel anguage¥. The rela-
tionship betweelSAL andTSL is similar to the relationship between Flex and Bison—ae.,
Flex-generated lexer passes tokens to a Bison-generatset.pla our case, thESL-defined
abstract syntax serves as the formalism for communicataiges—namely, instructions’
abstract syntax trees—between the two tools.
In addition, we developed language-independent solutmeach of the issues MCVETO, such
as identifying the aliasing condition relevant to a spegifaperty in a given statg$.1.2.1). Con-
sequently, our implementation acts asYaACC-like” tool for creating versions oMCVETO for
different languages: given a description of languége version oMCVETO for L is generated
automatically. We created two specific instantiation$/afVETO from descriptions of the Intel
x86 and PowerPC instruction sets. To perform symbolic @seoin the conceptually-infinite ab-
stract graph (see [174, 175] for details), the implemeotatises OpenFst [33] (for transducers)
and WAL [114] (for WPDSSs).

5.1.4 Experiments

Our experiments (see Fig. 5.15) were run on a single core ahglesprocessor quad-core
3.0 GHz Xeon computer running Windows XP, configured so thasexr process has 4 GB of
memory. They were designed to test various aspects of a Dg@ithim and to handle various
intricacies that arise in machine code (some of which arevisdtle in source code). We compiled
the programs with Visual Studio 8.0, and ldCVETO on the resulting object files (without using
symbol-table information}.

The examples:x5, ex6, andex8 are from the NECLA Static Analysis BenchmarksThe
examplesarber, berkeley, cars, efm are multi-procedure versions of the larger examples on

which SYNERGY [98] was tested. §YNERGY was tested using single-procedure versions only.

6ISAL also handles other kinds of concrete syntactic issuesyditg (a)encodingabstract syntax trees to binary-
encoded instructions), (lparsing assemblgassembly code to abstract syntax trees), andgsgmbly pretty-printing
(abstract syntax trees to assembly code).

"The examples are availablewatw . cs . wisc.edu/wpis/examples/McVeto.
8

9

www.nec—-labs.com/research/system/systems SAV-website/benchmarks.php
www.cse.ilitb.ac.in/~bhargav/synergy
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Program MCVETO performance (x86
Name Outcome || #Instrs | time '
blast2/blast2 timeout 326 *
fib/fib-REACH-0 timeout 287 **
fib/fib-REACH-1 counterex. 287 0.07
slam1/slam1l proof 290 61.85
smcl/smcl-REACH-0* proof 21 959
smcl/smcl-REACH-1* counterex. 21 0.016
exb/ex counterex. 270 0.18
doubleloopdep/count—COUNT-5 | counterex. 252 1.09
doubleloopdep/count—COUNT-6 | counterex. 252 1.08
doubleloopdep/count—COUNT-7 | counterex. 252 1.21
doubleloopdep/count—-COUNT-8 | counterex. 252 1.51
doubleloopdep/count—COUNT-9 | counterex. 252 2.82
inter.synergy/barber timeout 454 2.02
inter.synergy/berkeley counterex. 305 **
inter.synergy/cars proof 378 5.13
inter.synergy/efm timeout 403 *x
share/share—CASE-0 proof 262 93.95
stress/diamonds—SHORT proof 257 0.27
cert/underflow counterex. 323 0.52
instraliasing/instraliasing—REACH-0 proof 46 15.0
instraliasing/instraliasing—REACH-1counterex. 46 5.86
longjmp/jmp AE viol. 74 0.015
overviewO/overview proof 49 54.9
smalLstaticbench/ex5 proof 251 0.13
smallstaticbench/ex6 proof 259 1.93
smallstaticbench/ex8 proof 297 4.6
verisec-gxine/simypad counterex.| 1067 0.094
verisec-gxine/simmk proof | 1068 **
clobberret addr/clobber—CASE-4 AE viol. 43 2.13
clobberret addr/clobber—CASE-8 AE viol. 35 0.625
clobberret addr/clobber—CASE-9 proof 35 1.44

Figure 5.3 MCVETO experiments. The columns show whetMZVETO returned a proof,
counterexample, or an AE violation (Outcome); the numbenstructions (#Instrs); the number
of concrete executions (CE); the number of symbolic exeast(SE), which also equals the
number of calls to th&'ICES solver; the number of refinements (Ref), which also equals th

number of Prg computations; and the total time (in seconds). *SMC test.ca&xceeded
twenty-minute time limit.

Instraliasing illustrates the ability to handle instruction aliasinghélinstruction count for this
example was obtained via static disassembly, and hencdyigspproximate.Smc1 illustrates the
ability of MCVETO to handle self-modifying codeUnderflow is taken from a DHS tutorial on

security vulnerabilities. It illustratesstrncpy vulnerability.
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The examples are small, but challenging. They demonsM&eETO’s ability to reason au-
tomatically about low-level details of machine code usirgeguence of sound abstractions. The
guestion of whether the cost of soundness is inherent, othehéhere is some way that the well-
behavedness of (most) code could be exploited to make thgseacale better is left for future

research.

5.1.5 Related Work

Machine-Code Analyzers Targeted at Finding Vulnerabilities. A substantial amount of work
exists on technigues to detect security vulnerabilitiesabglyzing source code for a variety of
languages [129, 180, 185]. Less work exists on vulnerghidigtection for machine code. Kruegel
et al. [118] developed a system for automating mimicry &dadt uses symbolic execution of
machine code to discover attacks that can give up and regaougon control by modifying the
contents of the data, heap, or stack so that the applicaiforéed to return control to injected
attack code at some point after the execution of a systemCalla et al. [75] used that platform
to detect security vulnerabilities in x86 executables yiaolic execution.

Prior work exists on directetdstgeneration for machine code [55, 95]. Directed test geitarat
combines concrete execution and symbolic execution to fipdts that increase test coverage. An
SMT solver is used to obtain inputs that force previouslyxph@red branch directions to be taken.
In contrast MCVETO implements directegroof generation for machine code. Unlike directed-
test-generation tool$/CVETO is goal-directed, and works by trying to refute the claim ‘frath
exists that connects program entry to a given goal state”.

Machine-Code Model Checkers SYNERGY applies to an x86 executable for a “single-procedure
C program with only {nt-valued] variables” [98] (i.e., no pointers). It uses defpug information

to obtain information about variables and types, and usdsavi173] to obtain a CFG. It uses
integer arithmetic—not bit-vector arithmetic—in its setv Quoting A. Nori, “[[98] handles] the
complexities of binaries via its front-end Vulcan anot via its property-checking engine” [150].
In contrast MCVETO addresses the challenges of checking properties of sttippecutables ar-

ticulated in Chapter 2.
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AIR (“Assembly Iterative Refinement”) [61] is a model checkarPowerPCAIR decompiles
an assembly program to C, and then checks if the resultingp@ram satisfies the desired property
by applyingCOPPER [60], a predicate-abstraction-based model checker forutcgocode. They
state that the choice @OPPER is not essential, and that any other C model checker, such as
SLAM [47] or BLAST [102] would be satisfactory. However, the C programs thatiltsfrom their
translation step use pointer arithmetic and pointer dezef@ng, whereas many C model checkers,
includingSLAM andBLAST, make unsound assumptions about pointer arithmetic.

[MC]SQUARE [165] is a model checker for microcontroller assembly codeuses explicit-
state model-checking techniques (combined with a degrabsifaction) to check CTL properties.

Our group developed two prior machine-code model check€jeSurfer/x86 [44] and
DDA/x86 [43]. Neither system uses either underapproxioratr symbolic execution. For over-
approximation, both use numeric static analysis and ardiffeform of abstraction refinement than
the one used iIMCVETO.
Self-Modifying Code. The work onMCVETO addresses a problem that has been almost entirely
ignored by the PL research community. There is a paper on SiM&dsth [90], and a recent paper
by Cai et al. [59]. However, both of the papers concern prgetesms for reasoning about SMC.
In contrast MCVETO can verify (or detect flaws in) SMC automatically.

As far as we knowMCVETO is the first model checker to address verifying (or detecliags
in) SMC.

5.1.6 Conclusion

MCVETO resolves many issues that have been unsoundly ignored wopsework on soft-
ware model checkinglCVETO addresses the challenge of establishing properties of duhime
code that actually executes, and thus provides one apptoatiecking the effects of compilation
and optimization on correctness. The contributions of tlekwdescribed ir§5.1.2 lie in the in-
sights that went into defining the innovations in dynamic synabolic analysis used MCVETO:

(i) sound disassembly and sound construction of an oveoappation (even in the presence of

instruction aliasing and self-modifying code) (see [17di the details), (i) a new method to



165

eliminate families of infeasible traces (see [174] for thegadls), (iii) a method to speculatively,
but soundly, elaborate the abstraction in ug®X.2.2), (iv) new symbolic methods to query the
(conceptually infinite) abstract graph (see [174] for théads), and (v) a language-independent
approach to Pre(§5.1.2.1). Not only are our techniques language-indepéentienimplementa-
tion is parameterized by specifications of an instructidis s@mantics. By this mean8ICVETO

has been instantiated for both x86 and PowerPC.

5.2 BCE

As discussed i§1.5.4, an increasing number of individual Internet sitegehldeen compro-
mised by attacks from across the world to become part of uarkinds of malicious botnets. The
Internet security research community has made significtioite to identify botnets, to collect
data on their activities, and to develop techniques foralite, mitigation, and disruption.

We have developed a tool call®CE (Botnet-Command Extractor) for extracting botnet-
command information from bot executabld¥CE aims to provide useful information from anal-
ysis of bot executables by automatically extracting prapputs that trigger malicious behavior.
Applications of the information recovered include obsegvand analyzing malicious behaviors,
as well as identifying and mitigating botnets.

A typical way to analyze the behavior of a bot is to run the exalsle and observe its actions.
To carry this out, however, one needs proper inputs to triggadicious behaviors. Some widely-
known commands are often used for this purpose. Howeverlkats can easily change their
commands to evade such dynamic analysis. Also, it is a harolgm to obtain such inputs by
manually stepping through the executabBCE automates the extraction of information about
botnet commands and the arguments to commands.

The work described in the section makes the following cobntions:

1. BCE automatically extracts botnet-command information froot bxecutables, without

source code or symbol-table/debugging information. Thieaeted information includes
(a) constant command strings that trigger API-level bebrayi(b) relationships, including

type relationships, between the input command string aachtiiual parameters of an API
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[11 ... [1] procedure foo
[2] else if(strcmp(cmd,““:1p’’)==0) { [2] . push offset aPl; ‘‘:!p’’
(3] /7 1) [3] . 1lea eax, [ebp+arg0]
(a1 } [4] . push eax
[6] else if(st (cmd, ¢ €:1p2°?)==0)
erse Thistrempien P { [6] . call strcmp
[61 /1 (2)
[6] . add esp, OCh
(71 } P
[8] else if(strcmp(cmd, ‘‘:!ppp’?)==0) { [7] . or eax, eax
[9] 7/ (3) [8] . jnz short loc 402210
(101} P1 . ... // (D)
[10]. push offset aPl; ‘‘:1p27’
[11]. 1lea eax, [ebp+arg 0]
11 ... [12]. push eax
[2] else if (kcmd++ == “:’ [13]. call strcmp
[3] && *cmd++ == ‘I’ [14]. add esp, OCh
[4] && *cmd++ == ‘p’) { [15]. or eax, eax
(5] if(xcmd == 0) [16]. jnz short loc_402210
6 1
e 7. ... /@
[7] else if (¥cmd == ¢27)
[18]. push offset aPl; ‘‘:!ppp’’
[8] /1 (2)
[19]. 1lea eax, [ebp+argO]
[9] else if (kcmd++ == ‘p’
[10] && *cmd++ == ‘p’) [20].  push eax
[11] /7 (3) [21]. call strcmp
[121} [22]. add esp, OCh
[23]. or eax, eax
[24]. jnz short loc_402210
[251. ... // (3)

Figure 5.4 (a) (top left) A snippet of the EvilBot source code, (b) (loottleft) alternative source code,
(c) (right) the assembly code of (a).

call, and (c) constraints on the actual parameters of an ARI The information obtained

via BCE can be used to build up proper input commands that triggerl&rl behaviors.

2. BCE is able to provide a specification of the API-level behaviaira bot program without
running the bot. Along with the input-command strings ectied from a bot progranBCE
also provides a sequence of API calls controlled by each camdmwhich can help the user

understand the API-level behavior.
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3. BCE is not based on signatures. Some recent approaches to fiodirigptnet commands
are based on pattern-matching techniques. Many bot prague® standard string-library
functions to process the input command string, as showngn3-#(a). The assembly code
of Fig. 5.4(a) obtained using the IDAPro disassembler issshim Fig. 5.4(c). One can
find a pattern in the assembly code: there are pweh instructions, one of which is for a
constant string that IDApro readily identifies, followed &gall tostrcmp. However, such a
technique is ad hoc and can be easily evaded, e.g., by cligiiigirrode in Fig. 5.4(a) to use
byte-by-byte comparison instead of using standard libiangtions, as shown in Fig. 5.4(b).

4. BCE uses directed test generation [94], enhanced with a newels¢achnique that uses
control-dependence information [86] to direct the searCur experiments show that the
method provides higher coverage of the parts of the progelevant to identifying bot
commands, as well as lower overall execution time than taedstrd program exploration

that does not use control-dependence information.

5. We performed experiments with four real bot programs. @uetiminary results show that

BCE is able to effectively extract bot-command information.

Organization. The remainder of the section is organized as folloy#s2.1 discusses what kind of
informationBCE extracts, and how one can make use of the information todriggtentially ma-
licious behaviors from a bot;5.2.2 presents background on directed test generation §842.3
presents the enhanced techniques for exploring prograhs pla&t we developed for use BCE.
§5.2.4 describes the use of nondeterminisnBiDE, which is used for writing “harness” code
to model possible client environments, possible inputsl, possible return values from library
functions or system call$5.2.5 discusses additional information tBsE recovers, which com-
bines the recovered information about constraints on smputh type information for the target
API calls. §5.2.6 describes how a language-indepen&g& implementation was creategh.2.7
presents experimental result§5.2.8 discusses the limitations BCE. §5.2.9 discusses related

work. §5.2.10 concludes.
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5.2.1 Botnet-Command Extractor BCE)

In this section, we first discuss what informatiBCE relies on to extract botnet commands.
We then summarize the kind of information tH&€E provides, and how one can make use of such

information to generate proper input commands.

5.2.1.1 WhatBcE Relies On

1. API prototypesBCE relies on information about function prototypes of API ftinos (system

calls). For example, the prototype $hellExecutés as follows:

HINSTANCE ShellExecute(
HWND hwnd,
LPCTSTR lpOperation,
LPCTSTR 1pFile,
LPCTSTR lpParameters,
LPCTSTR lpDirectory,
INT nShowCmd
);
1pDirectory: [in] A pointer to a null-terminated
string that specifies the default (working)
directory for the action.
The function prototypes are used to construct reasonapl& kcommands given the com-

mand specification extracted BCE.

2. Control-Dependence GraplBCE makes use of the control-dependence graph for a bot binary
to optimize its state-space-exploration algorithm. Wedss the use of control dependences

in more detail ing5.2.3.
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(a) [1] cmd < char* for command string
[2] token[] « tokenization of cmd
[3]
[4] if (strcmp(token[0], ‘‘hello’’) == 0) {

[5] if (strcmp(token[1], ¢¢,’’) == 0) {
[6] if (stremp(token[2], ‘world’’) == 0) {
[7] WinExec(‘‘login.exe’’);
[8] ShellExecute(..., token[3], ...);
[9] }
[0l }
[111}
(b)
h el 1 o > wo r 1 d__
L )
L Y J Y
token[0] token[1] token[2]
(c)
WinExec IZ> ShellExecute

/I
The argument is a The fifth argument is from th
constant “login.exe” fourth token of the command,

and its type is LPCTSTR.

(d) [1] void foo(char* cmd) {

[2] int n = atoi(cmd);

(3] if @ > 0) {

[4] if (n < 25) {

(5] ApiCall(n);

(6] }

[7] }

(81 }

1 7 \e n_sym_expr
3 \o = (cmd[@] - 48) x 10 n_sym_expr > ©
- + (cmd[1] - 48) && n_sym_expr < 25
(e) () ©)

Figure 5.5 (a) A simple example program; (b) the command string corstdibased on the information
obtained fromBCE; (c) a sequence of API calls obtained fr®8€E; (d) another simple example;
(e) constant examples provided BZE; (f) the symbolic expression obtained frdBCE for the argument
n; (g) the constraint obtained froBICE.
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5.2.1.2 WhatBcEeE Recovers and How to Use the Recovered Information

1. Constant command strings that control a bBor example, there are three nested if-statements
in the code shown in Fig. 5.5(a). Two API calls are invoked whiee three branch condi-
tions are satisfied. Suppose thatl has been tokenized into three null-terminated strings.
Fig. 5.5(b) is the command string constructed based on floenmation extracted byBCE.

This information is obtained from conditional branches weha portion of the command
string is compared against some constants, as the thregss{thello”, “,”, and “world”) in

the example.

2. A sequence of API calls controlled by each commakidng with each commandBCE pro-
vides a sequence of API calls that are controlled by the caomim&or example, the code
executed when the command string shown in Fig. 5.5(b) isesswbsequently invokes
WinExecandShellExecuteThis information can be directly used to get an idea of thé&- AP

level behavior of a bot without actually executing it.

3. Information about the actual arguments of each API chil.addition to a sequence of API
calls, BCE provides information about the arguments to each API calthsas constant
values for an argument, symbolic expressions, and constran the symbolic expressions,

as shown in Fig. 5.5(e), (f), and (g), respectively.

e Constant arguments:in many cases, API calls take constant arguments that one
can statically extract from binaries. For example, the fngfument ofWinExecin
Fig. 5.5(a) is a constant string “login.exe”. In additionttee sequence of API calls,
information about argument values enables one to get arbdda of the API-level

behavior of a bot without running it.

e Symbolic expressions in the input-state vocabulaBZE also provides a symbolic
expression for each actual parameter of an API call, alontf it8 type information,
as long as the argument is related to some part of the inputm@ord. For example,
ShellExecuten Fig. 5.5(a) takes the fourth token of the input commandtsdifth

argument. BCE automatically extracts a symbolic expression that has gneslic
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term,token[3], along with its type LPCTSTR. The type information is obtadrfrom

the prototype of the API call. The type information is useattone up with a proper
input string. Given the information that the fourth tokensigpposed to be a null-
terminated string that specifies a working directory nanme, can build up a complete

command string as follows:

"hello , world C:\temp"

Fig. 5.5(f) shows another example of a symbolic expressiat BCE provides.
Fig. 5.5(f) is the symbolic expression obtained fom Fig. 5.5(d). In Fig. 5.5(d), the
input command string is a numeral, which is converted intomiper by callingatoi;
the number is then passed into an API call as an argument. yrhiedlic expression
is in theinput vocabularyin that the symbolsdnd [0] and cmd[1]) that appear in
it represent individual byte values of the input commanahgtr We discuss how the

symbolic expression is generatedi 2.2.

Constraints on symbolic expressiorBCE also provides constraints on the symbolic
expressions extracted for each actual parameter of an ARlifcany. For example,
BCE extracts the constraint shown in Fig. 5.5(g) for the act@abmeter to the API
call in Fig. 5.5(d).

This constraint is obtained from the two conditional braesthat guard the API call.
BCE finds out the conditional branches on which the API call titaredy depends. It
only collects branches whose predicates constrain thegiymbolic expression.

The obtained constraints also play an important role fotdg up proper input
commandsBCE provides some concrete examples#g@as shown in Fig. 5.5(e): the
numeral strings 17" and “3” satisfy the two branch predicates (~ 0 andn < 25).
Therefore, these input strings cause the API call to be iegpnd thus can be directly
used to run the bot program. However, there are cases whantbmatically generated
concrete examples fail to trigger observable behavior obta Bor example, suppose
the API in Fig. 5.5(d) is some API that takes an IP address atglup a connection

to the server (e.ghttpserver of SpyBot). Because concrete examples are randomly
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selected to satisfy the constraints collected during syimleaecution, it is not likely
thatBCE finds out a reasonable IP address unless there are contlliranahes where
it can extract proper constraints on the command. Thergilome cases, the user is

responsible for making use of the extracted constraintemsttuct reasonable inputs.

65.2.5 discusses other kinds of information about the bat'armands thaBCE provides—in par-
ticular, information that combines the recovered symbisiformation about inputs with type in-

formation for the target API calls.

5.2.2 Background on Directed Test Generation and Overviewfd CE

This section provides background directed test generatiof94], which collects path con-
straints and uses them to explore new paths systematitabypplying directed test generation in
BCE to the problem of extracting bot commands, we developed melwniques to explore pro-
gram paths, which differ from conventional directed-tgstieration techniques. We discuss our
enhanced search algorithmsgi.2.3.

One example of a directed test-generation to8ASE [95], which is a whitebox fuzz-testing
tool, an advance on fuzz testing based on random mutat®AGE records an actual run of a pro-
gram under test, starting with a well-formed input, then bglfitally evaluates the recorded trace
and generates constraints that capture how the programtsseputs. The generated constraints
are then systematically modified and solved with a condtisoiver to produce new inputs that
cause the program to follow different control-flow pathseTgrocess is repeated with a coverage-
maximizing heuristic designed to find defects as fast asiples$-ig. 5.6 shows a simple example
taken from [95]. There are 5 values leading to the error ou®sf possible values for 4 bytes.
Therefore, the probability of hitting the error with randaesting is about /232, In contrast,
whitebox dynamic test generation can find the error in at radst 16 iterations (4 valid path

constraints are collected during the exploration process)



173

Algorithm 2 SingleBCE lteration

Require: A concrete staté.

Require: Atrace tre€l’

1:

10:

11:

12:

13:

Concretely execute the program with the concrete state

Let C'T be the concrete trace obtained from the concrete execution.

. Symbolically execute the traceT.
. LetT” be the trace tree augmented by the symbolic execution.

. if at least one API call is encountered in the concrete tilaee

Based on the symbolic state obtained in the symbolic exatutollect information about
the command tokens that appear in the arguments to each API ca
end if
repeat
Choose a new pathin the trace tred’.
Let ¢ be the path-constraint formula obtained by conjoining ttabh constraints along
until ¢ is satisfiable
Let M be the model obtained by calling the constraint solver with

Create the new concrete stateupdated with the assignments from the matiel

Alg. 2 shows the basic search step of B@E algorithm. The outline of the algorithm is similar

to typical directed-test-generation techniques, which lba roughly summarized as repeatedly

applying the following three steg§:

BCE maintains a trace tree that is expanded during the procesgnabolic execution. Each

node in a trace tree represents a different execution iostafa branch instruction in the program.

Each node can have two children, one of which representsrgtéfanch node encountered along

the path through the true successor, the other of which iditstiebranch node along the path

through the false successor. The path from the root node éafanlode represents the branch

10The first step (concrete execution) and the second step (dicexecution) can be done simultaneously, which
is sometimes calledoncolic executiofil67]. In concolic execution, concrete values from the ecetecexecution state
are sometimes used to simplify the symbolic states createdgisymbolic execution.
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void top(char input[4]) {

int cnt = 0;

if (input[0] == ‘b’) cnt++;
if (input[1] == ‘a’) cnt++;
if (input[2] == ‘d’) cnt++;
if (input[3] == ‘!I’) cnt++;

if (cnt >= 4) abort();
}

Figure 5.6 An example for whitebox fuzz testing

instructions of a concrete trace. Each edge holds a brancstreant obtained from symbolic
execution. Each time a branch is symbolically executedoftow the direction taken by a previous

concrete execution), the trace tree is extended apprepyriat

5.2.3 Program Exploration using Control-Dependence Infomation

This section presents the enhanced techniques for exglprogram paths that we developed
for use iINnBCE. MineSweeper [55] and the work of Moser et al. [139] have si¢he potential
for carrying out better exploration in malware. Other toasch asSAGE, have addressed the
problem of path explosion by introducing heuristics to i@ coverage [95].SAGE uses so-
calledgenerational searcdesigned to partially explore the state spaces of largacgtjgns with
the aim of finding bugs faster. As in most of other directest-geeneration toolSSAGE aims to
improve test coverage. Unlike bug-finding tools or toold #ien to improve coverage, iIBCE we
are interested igoal-directed techniquesimed at extracting bot commands.

The characteristics of how the bot code parses the trareinitmmands and takes actions
depending on the parsed commands can be used to come up wathebgloration strategies that
avoid possible explosion and obtain more complete spetidit®about the command structure.

We incorporated the following path-exploration strategie¢o BCE:
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e Choose as a candidate for the new path the branches that pasgsihility of leading to API
callst
e Prune the search performed BZE so that each path includes a limited number of API calls
if a candidate branch for extending the path is independahedranches involved with the
API calls already found in the path.
The exploration strategies are based on the fact that odigtaidentify as many feasible input
commands as possible that lead to API calls of interest.
To identify branches that have a possibility of encounteriPI calls, we usecontrol-
dependence information§5.2.3.1 discusses control-dependence information.§5l2.3.2 and

65.2.3.3, we present how control-dependence informatioisésl inBCE.

5.2.3.1 Control Dependence

The control dependenceelation is one of the fundamental relationships amongestahts
or instructions used in compilers and optimizers. For inséga control-dependence information is
used in compilers to determine whether it is safe to reordpaaallelize statements [86]. A control
dependence holds when the decision made at a braAncbntrols whether another statement or
instructionY” is executed.

Control dependence is defined in terms of the post-dominaéiation.

Definition 5.1 NodeZ post-dominatesodeX iff Z # X and all paths fromX to the end of the

procedure include’. (Note that by this definition a node does not post-domiratsfi)

Definition 5.2 NodeY is directly control dependent on node iff
1. there exists a path: X —* Y such that” post-dominates every node indifferent from
X, and
2. X is not post-dominated by .

We useC' to denote the direct-control-dependence relation.

HBCE is parameterized to take a list of interesting API entry poof interest.
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Control dependences can be broken down more finely into digmees on the true branch or

false branch of a branch-nodg, as follows:

Definition 5.3 NodeY is directly control-dependent on edgé — W iff
1. there exists a path: W —* Y such that” post-dominates every node indifferent from
X, and
2. X is not post-dominated by .

We say that the relatiofi;, (X, Y') holds whenX is a branch node and is directly control depen-

dent onX's true branch( is defined similarly.

Each branch node is associated with two sets of CFG nodescanssts of the transitive
control-dependence successors for its true branch (dermt€’;C'«); the other consists of the

transitive control-dependence successors for its falaadbr (denoted by, C'+).

C;C'x : True control successors

C;Cx : False control successors

For example, in Fig. 5.7, the statemeiGts) and (s2) are transitively control dependent on
the true branch ob1; statements3) is transitively control dependent on the false branch iof
Statemeni(s4) is not transitively control dependent on any branch in tikisneple. (Henceforth,
we will abbreviate “transitive control dependence” by “tmhdependence”.)

In the next section, we discuss a novel usage of control+ipee information IBCE.

5.2.3.2 Choosing Interesting Branches using Control-Depelence Informa-
tion
BCE uses control-dependence information (CDI) to annotatérdee tree. If there is at least
one API call inC;Cx (or C';Cx) of a branch node, the node is marked\gqor N;). Any branch
that has a call to a function that contains at leastdher N, in C;,Cx (C;Cx) is also marked as
N, (or Ny). BCE only chooses one of the nodes marked withor V; as a candidate for the new
path. Fig. 5.8 compares an exploration strategy that usetsatalependence information (CDI)

to one that does not. The solid lines in the figures indicagepidiths that have previously been
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[1] if (@ > 0) { // (b1

[2] b=1; // (s1)

[3] if (a < 25) { // (b2)
(4] c=2;// (s2)

(5] }

(6] }

[7] else {

[8] d=3; // (s3)

(91 }

[10]e = 4; // (s4)

Figure 5.7 An example to show control dependences.

(@) (b)

Figure 5.8 Two trace trees; (a) A trace tree without CDI; (b) a trace it CDI; the circles represent
branch nodes; the solid arrows represent possible pathgtore; the half-shaded circles represent nodes
labeled as eitheN s or V;.

explored. One chooses as the next candidate one of the nmuése(solid lines in Fig. 5.8) that
has a solid edge to only one child. Such choices are markédswiid grey arrows. There are fewer
candidates to explore in Fig. 5.8(b) than in Fig. 5.8(a). @kgree of the improvement by using
CDI depends on the percentage of nodes marked Wijtbr N;. We discuss how the approach

works out with real bot programs #5.2.7.
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[1] char* pl; // input;

[2] char p2[] = "bot.execute";

[3] int v;

[4] char ci;

(61 do {

(6] cl = *pl++;

[7]1 C2 = *p2++;

(8] v = (unsigned)cl - (unsigned)c2;
[9] if(v = 0)

[10] break;
[11] } while(cl !'= ’\0’);
[12]

[13] if(v == 0)
[14] APICall

Figure 5.9 An example in which it is necessary to choose an alternatingliclate as a new path; the
source code oftrcmp is inlined in this example.

Algorithm 3 ChooseNewPath
Require: Atrace tre€l’

Ensure: Formulay
1: Let Frontier be the branch node that is either marked a&'; and does not have a false
child inT", or marked asV; and does not have a true childii) and has the shortest path from
the root node.
2. Let ¢ be the formula conjoined with all the formulas associatetthwie branches on the path
from Frontier back to the root node.

3: Returny

Algorithms. Alg. 3 and Alg. 4 describe the path-exploration algorithnBafE. In Alg. 3, BCE
chooses a node in the trace tree marked &$; or NV, whose corresponding branch is not in the
trace tree BCE then conjoins all the formulas of the branches on the path ftdack to the root

node. Alg. 4 takes that formula and calls a constraint sdlvebtain a model. If the formula for
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Algorithm 4 GenerateNewConcreteState
Require: Atrace tre€l’

Ensure: A concrete state CS

1: ¢ = ChooseNewPatli()

2. Call the constraint solver with the formula

3: if ¢ is feasiblethen

4:  Let M be the model from the constraint solver

5. Let CS be a random concrete state

6: Let CS be CS updated with all the assignmentgin

7:  Return C$

8: else

9: Let7” beT augmented with a dummy node at the previously selected node
10:  GenerateNewConcreteStafe)

11: end if

the path thaBCE chose to explore is feasible, it generates a new concrdeethia gets used in
the next round of exploration. Otherwise, it augments thedritree so that the previously explored
path is never selected again, and calls itself recursively.

Fig. 5.10(a) is an example in which the number of possible@ken paths is exponential
in the number of branches: each of the & statements is independent of each other. For this
code fragmentBCE takes 8 iterations when it uses CBlof Alg. 2 to identify 2 different paths
(one toward the API call inside the seconflstatement, and the other toward the fifth statement)

whereas without CDI it exhibits exponential behavior.

Indirect control-dependence. In some cases, it is possible that a candidate node markag as
or Ny has a branch predicate, the negation of which causes thecpagitraint to be infeasible,
that does not help program exploration. For example, in &i@,.p1 points to the input character

array, ant?2 points to the constant strinpot . execute". The branch on line 13 is marked &%

12The body ofstrcmp includes some branches to compare an individual charatteedirst argument with one
constant character from the second argument. To get to thé&RV call sitesBCE needs several trials for each.
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[1] if(strcmp(c[0], "aaa")==0) { [1] if(strcmp(c[0], "aaa")==0) {

[2] n = atoi(c[5]); [2] n = atoi(c[5]);

(31 } (31 }

[4] if(strcmp(c[1], "bbb")==0) { [4] elseif(stremp(c[1], "bbb")==0) {
[5] APICalli(...); (5] APICalli(...);

61 } (el }

[7] if(stremp(c[2], "cccmy==0) { 71 elseiflstremp(cl2], Mcec™)==0) {

(8l n = atoi(c[5]);
o1 } 7 )
[10] else if(strcmp(c[3], "ddd")==0) {

[8] n = atoi(c[5]);

[10] if (stremp(c[3], "ddd")==0) {
[11] n = atoi(c[5]);

(121 }
[13] elseif(strcmp(c[4], "eee")==0) {

[11] n = atoi(c[5]1);
[12] }

[13] if(strcmp(c[4], "eee")==0) {
[14]  APICall2(...);

[14] APICall2(...); [15] }

[15] }
() (b)

Figure 5.10(a) An example with independent-statements (and thus an exponential number of paths).
(b) An example more typical of bot code (with a linear numbfgpaths).

because its true branch contains an API call. Suppose tha initial concrete state, the first input
byte pointed to by1 is something different fromb’, and thus the loop in lines 5-11 terminates
at line 9 after one iteration with the conditien!= 0, and the false branch of line 13 is executed.
In the subsequent symbolic execution in which the charactay pointed to by1 is treated as a

list of symbols, the path constraint toward the true brartdma 13 is
(Se1 —Cy #0) A (Se1 — Cy =0),

wheresS,; is a symbol that represents the first input byte, @pts a constant symbol. This formula
is infeasible. In such cases, as a heuri®iCE chooses branches prior to the candidate node on
the trace as an alternative candidate. In this exampleatbe branch at line 9 is chosen as a new
path so that from the path constraint

S —Cy, =0,
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the constraint solver can provide a new test input in whiehfitst input byte equald'.
When a situation occurs like the one described for line 13rarnand-line flag controls how

many prior branches to try.

5.2.3.3 Pruning the Trace Tree using Control-Dependence farmation

CDI helps to direct program exploration toward API call sitetHowever, even when some
candidate branches are excluded by CDI, there is still thlesipdity of combinatorial explosion.
For example, in Fig. 5.10(a), there are 24 paths in total ithatke the API call(s): there are 8
paths that invoke each call (and not the other) and an additi® that invoke both. When the
branches controlled by different commands are indepenofesdich other, it means that multiple
commands can be combined to produce different sequenceBlatalls. In other words, if there
aren independenti f-statements involved with API calls, the total number ofpbke paths that
invoke at least one API call &&".

To avoid such combinatorial explosion, we limit the exptarma performed byBCE so that
each path includes a limited number of API calls if a candgidatanch for extending the path is
independent of the branches involved with the API callsaalyefound in the path. In particular, the
path exploration irBCE only findsn paths when there areindependeni f-statements involved
with API calls. The information obtained in this way is stibeful to a user, although it shifts the
burden onto the user to identify the API-level behaviors bbaby trying various combinations of

then extracted commands. For the example in Fig. 5.1@&k only extracts

“bbb” for the second token of cmd

“eee” for the fifth token of cmd

and the user can try running the bot with the three kinds ofiisyp-“bbb”, “eee”, and “bbb” +
“eee”—t0 observe possibly different behaviors.
The heuristic for avoiding combinatorial explosion is penhed by pruning the trace tree dy-

namically. The following code illustrates what is involveddynamically pruning the trace tree.
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s1: API call s1: API call
encountered! encountered!

\ . \
] \ !

. ] V1 \
- 1s3:ST,! 1s2:ST,!
_/ ’ @ \\ ,/ \\ II

'~ ~ /,

- -

(a) (b) () (d)

Figure 5.11 (a) A control-dependence graph; (b) a trace tree when sédstre pruned using
control-dependence graph (a); (c) another control-depecelgraph; (d) the trace tree when sub-trees are
pruned using control-dependence graph (c).

Fig. 5.11(a) is the control-dependence graph of the codeg,Fagn 5.11(b) is the corresponding

trace tree.

[1] if (strcmp(token[0], ‘‘hello’’) ==0) {
[2] APICalli(...)

(3] if (atoi(token[1]) > 0)

[4]

(5]

(6] }

Figure 5.12 A simple example for pruning.

An API call is invoked immediately in the true branch of linenlFig. 5.12. In this caséBCE
considers pruning the sub-tree ST of the trace tree staftomy line 3. The control-dependence
information is used to determine whether the sub-tree SThexcluded from further exploration.
ST can be excluded if it does not include any node marked,as N, that is control dependent on
line 3 (see Fig. 5.11(b)). If there is at least one other ARlicdine 4, as shown in Fig. 5.11(c) and
(d), the true branch remains as a candidate to explore bet¢hasecond f-statement is control

dependent on the first one.
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In practice, many bot programs are written as shown in FiO@®), where eachf-statement
is dependent on other ones. However, even if when they anéttenvin the form of Fig. 5.10(a),

the pruning technique is effective in practice.

5.2.4 Using Nondeterminism to Sidestep System Calls

Many formalisms for symbolic analysis of programs supplogtiise of nondeterminism, which
is useful for writing “harness code” (code that models thesilole client environments from which
the code being analyzed might be called), as well as for nrgi¢he possible inputs to a pro-
gram. A common approach is to provide a primitive that resuam arbitrary value of a given
type. Examples include th&ivMakeChoice primitive of SLAM [46] and thehavoc (x) primitive
of BoogiePL [48].

In some cases, a value returned from a system call or a Windd®i€all is used in a branch
condition, as shown in Fig. 5.13. GetCurrentDirectoryreturns a value greater th@nAPICalll

is invoked; otherwiseAPICall?2 is invoked.

[1] for (G=0; i<3; i++) {

[2] int n = GetCurrentDirectory(...);
[3] if (n>0) {

[4] APICalli(...)

(5] }

(6] else {

(7] APICall2(...)

(8] }

(9] }

Figure 5.13 A simple example for modeling a system call.

In the current version dBCE, concrete execution and symbolic execution do not go instesy
calls and Windows API functions. InstediCE keeps a sequence of random numb&andSeyy

for concrete execution, and a sequence of symi®&n{Sejfor symbolic execution. During
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concrete execution and symbolic execution, the successaives inRandSeqndRandSegre-
spectively, are used as the successive return values frdroalRites. In the above example, there
are three calls t&etCurrentDirectoryin a trace because the loop is executed three times. Each of
the three return values comes from successive elemeRamdSe@ndRandSeq|In this way, we

model the state of the operating system. Network inputs aréebed similarly.

5.2.5 Extracting Type Information

65.2.1 briefly discussed how one can use the information ebedesfromBCE to understand a
bot program and construct proper input commands. This@ediscusses some additional infor-
mation thatBCE provides to help users understand the recovered informati@mut the botnet's
commands, based on combining the recovered symbolic irdeom about inputs with type infor-
mation for the target API calls.

Some extracted constant command strings can be directtitageagger interesting API-level
behaviors of a bot program in cases where there are no adalitwguments to a command. How-
ever, some of the information extracted about a commandtisariorm ofsymbolic expressions
A symbolic expression captures the semantics of all theunosbns on a specific path from the
starting point to the API call site. In some cases, the etechsymbolic expression simply repre-
sents a sub-string of the command, whereas there are otbes wdnen the command is converted
to another form. A typical action is to convert part of theumgtring, using the standard library
function atoi, into a number that is passed to the API call. In other wortgks,imput string holds
numerals, whereas the API call receives a number.

OnceBCE extracts a symbolic expression for an argument to an APJitalthe user’s respon-
sibility to choose a proper input with which to run the bot &@®n the symbolic expression. To
help in this stepBCE extracts type information for each symbolic expressiongisihe algorithms
shown in Alg. 5 and Alg. 6.

Alg. 5 and Alg. 6 are pseudo-code for collecting type infotimafor each extracted symbolic

expression. Our approach uses information about the fumgtiototypes of API calls, as well as

a database of OS and network-related types. For example5Rid(a) shows the prototype of
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Algorithm 5 ExtractTypelnformation
Require: A function prototypel’

Require: A symbolic stateS
Require: The current stack addresp
Ensure: Updated database
1: Let N be the number of arguments of function type
2. fori=0to N —1do
3:  LetT; be the type of thé" argument of function typ@&

4: addr, = sp + i x paramsize

a

CollectTypelnformatiori(;, addr;)

6: end for

getaddrinfo and thestruct typesADDRINFO andsockaddr_in. ADDRINFO is the type of the
third and fourth arguments @fetaddrinfo, andsockaddr_in is the type of one of the fields of
ADDRINFO.

For each API call siteBCE collects type information by callingxtractTypelnformation
(Alg. 5). Along with such informationExtractTypelnformatiortakes the symbolic state at the
API call site, and the symbolic expression that represdr@stirrent stack pointer. For example,
Fig. 5.14(b) is an example that includes a call to the systalingetaddrinfo. The first token
of the command is converted to a numeric value throaghi to be used asin_zero for the
sockaddr_in object, and the second token is usedaa@scanonname for the ADDRINFO object.
BCE calls CollectTypelnformationvith the actual argumentsABDRINFO* and the current stack
pointer—for the third argument @gfetaddrinfo.

For each argument to the API call, it calculates the addrebeaorresponding stack location,
and passes it t€@ollectTypelnformatiorfAlg. 6), along with the argument type from the function
prototype and the symbolic stat€ollectTypelnformatiois a recursive function that tries to asso-
ciate each type with the corresponding symbolic expressiotihe stack. Depending on the type,

the actions are slightly different:
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Algorithm 6 CollectTypelnformation
Require: AtypeT

Require: An addressddr
Require: A symbolic stateS
Ensure: Updated database
1: if T is a pointer typél”’* then
2. Letsymexprbe the symbolic expression obtained by lookingaaialrin S.
3: Insert the mappingsfymexpr, 7"x) into the database
4:  Letaddr be the symbolic expression at addregmexprin S

5. if addr is a scalathen

6: CollectTypelnformatiori(”, addr)
7. endif
8: else if T" is a basetypéhen

©

Let symexprbe the symbolic expression obtained by lookingagialrin S.
10:  Insert the mappingsfymexpr, 7)) into the database
11: else if T is a structure typé¢hen

12: forall T; afield type ofl’ do

13: CollectTypelnformatiori(;, addr + offsef)
14:  end for
15: end if

¢ Inthe case of a pointer tygex, BCE first adds the mapping{m_cxpr, Tx) to the database,
and looks up the corresponding value in the symbolic staté,racursively callsCollect-
Typelnformation passing the value along with the tyfieof the object referred to. For
example CollectTypelnformatiofADDRINFO*, sp) recursively calls

CollectTypelnformatiofADDRINFO, S(sp*3)

¢ In the case of a basetyfé BCE looks up the corresponding valuey(n_expr) in the sym-
bolic state, and it adds the mapping/_expr, T). For example, the first token of the

135 (sp) denotes a lookup afpin symbolic states.
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[1] int getaddrinfo ( [1] sockaddr_in* s = ...; // malloc

[2] charx* nodename; [2] s->sin_zero = atoi(cmd_token[0]);

[3] charx* servname; [3] ADDRINFO* a = ...; // malloc

[4] ADDRINFO* hints; [4] a->ai_canonname = ...; // malloc

[5] ADDRINFO* res; [5] strcpy(a->ai_canonname, cmd_token[1]);
(61 }; [6] a->ai_addr = s;

[7] struct { [7] getaddrinfo(..., ..., a, ...);

(8]

[9] charx* ai_canonname;

[10] sockaddr_in* ai_addr;
[11]

[12]} ADDRINFO;

[13]struct {

[14]

[15] unsigned long sin_zero;

[16]} sockaddr_in;
(@) (b)

Figure 5.14(a) The prototypes ofetaddrinfo, ADDRINFO, andsockaddr_in; (b) an example code
fragment.

command is used for the fiekdn_zero of sockaddr_in in Fig. 5.14, which is of base-type
unsigned long. In this caseBCE collects the information that the associated symbolic

expression is of typensigned long.

¢ In the case of a structure type, suchsasuct or class, BCE iterates over the structure’s
fields, callingCollectTypelnformatiorwith each type and the address of the correspond-
ing field. For exampleCollectTypelnformatiofADDRINFO, S(sp)) recursively call<ollect-
Typelnformatiofchar*, S(sp) + offset), CollectTypelnformatiofsockaddr_in*, S(sp) +

offset), and so forth, where offsgis the corresponding offset for each field.
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5.2.6 Implementation

TheBCE implementation has been structured so that it can be retarge different languages

easily. The core components of the system are languageendent in two different dimensions:

1. TheBCE driver implements Alg. 2. It is structured so that one onled® to provide an
implementation of concrete execution and symbolic exeoutf a language. Consequently,
this component of the system can be used for source-levgutages or for machine-code
languages.

2. For machine-code languages, we used Ti$&-generated primitives for concrete exe-
cution and symbolic execution. THESL-generated symbolic-analysis primitives enable
to obtain accurate path constraints. Consequently, urSik€e or other tools that use
approximation—e.g., all non-linear operations (such affiplication, division, and bitwise
arithmetic) as well as symbolic dereferences of pointeescancretized either for efficiency

or due to technical difficulty-BCE guarantees ndivergencess discussed if4.7.

Control-Dependence Information. The control-dependence information used for the systemati
path-exploration oBCE is collected from the control-dependence graph for a bogiaim. BCE
uses CodeSurfer/x86 [44] to obtain the control-dependgrageh for a bot program.

API Call Prototypes. BCE uses IDApro [18] and its Fast Library Identification and Rgmaition
Technology (FLIRT) [9] to identify calls to library functies. It then uses a database of func-
tion prototypes and OS and network-related types to extyget information from the recovered

symbolic information, as described §6.2.5.

Library Functions. In BCE, each library-function call is replaced with a simplified deb on

which concrete and symbolic execution are performed asetithr user functions.

5.2.7 Experiments

We performed experiments on four bot programs. The botsrara flifferent families, and

they have different sets of commands. Fig. 5.15 summarimgxperimental results. The table
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Bot Program Results Time
Name | # Instrs.| % Nf/Nt | # Traces| # SymExprs| # Iterations| Trace Leng| Avg.CE | Total.CE| Avg.SE | Total.SE| Avg.PE | Total.PE| Total
dBot 32168 19% 18 7 89 1893 2.6 2314 4.8 427.3 0.9 831.3| 1489.9
AgoBot | 54641 | 36% 17 8 123 4167 7.9 979.1 12.5| 1538.7 16.8| 2067.6| 4585.4
SpyBot| 8360 40% 31 10 279 1290 39| 1074.2 7.2| 2003.2 8.5| 2374.3|5451.7
EvilBot | 2917 29% 17 4 133 2476 25 333.8 4.4 589.2 25 328.5| 1251.5

Figure 5.15BCE experiments. The columns, in order, are: the number ofuctins (#Instrs);
the percentage of nodes marked as eitkigor NV, in the final trace tree; the number of unique
traces ending with at least one API call; the number of comdador whichBCE provides
symbolic expressions; the total number of iterations toitig the traces; the average trace
length; the average time taken for concrete execution;dtad time taken for concrete execution;
the average time taken for symbolic execution; the tota¢tiaken for symbolic execution; the
average time taken for path exploration; the total time mafloe path exploration; and the total
time taken in seconds. The experiments were run on a Intél'®&GHz machine withl .49GB

RAM.
Bot Program Configuration
Name w/ CDI & w/ Pruning | w/o CDI & w/ Pruning| w/ CDI & w/o Pruning| w/o CDI & w/o Pruning
dBot 18/89 (20%) 18/101+ 18%) 18/99+ < 18%) 11/142+ &8%)
AgoBot 17/123 (14%) 17/172+ 10%) 17/158+ £11%) 13/167+ £8%)
SpyBot 31/279 (11%) 28/281+ £10%) 271420+ € 6%) 25/528+ &5%)
EvilBot 17/133 (13%) 14/206+ & 7%) 17/163+ £10%) 11/308+ k4%)

Figure 5.16 BCE experiments. The table reports results for four configoratiofBCE: (1) “w/
CDI” and “w/ Pruning”, (2) “w/o CDI” and “w/ Pruning”, (3) “w/CDI” and “w/o Pruning”, and
(4) “w/o CDI” and “w/o Pruning”. The numbers reported in easiiumn are the number of
unique traces ending with API call(s), the total number efations, and the percentage of
iterations that resulted in a trace ending with API callse Bxperiments were run on a Intel P4
1.79GHz machine with .49GB RAM,; the symbol “+” after the number of iterations meanatth
BCE with the configuration did not finish (i.e., program explasatcould continue infinitely even
if all possible commands had been identified.)

first shows the size of each program in terms of the numberstfuntions, and the percentage of
the branches marked a&§; or N, for each program.
The four columns listed under “Results” shows the numberaxfeés ending with at least one

API call, the total number of iterations performed BZE,'* and the number of the command

14 An iteration means one run of the basic search step oB84& algorithm (Alg. 2); on each iteration, a new path
is found that leads to a new concrete state.
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strings that expect one or more argumerBE£E provides a symbolic expression for such argu-

ments, as discussed§b.2.5.

For dBot and AgoBot, we had source code and we were able to a@ntbe extracted com-
mands with the commands that one can obtain from the soud® dm case of AgoBot, there
are two commands—"bot.quit” and “bot.die”’—that were natridified as bot commands BCE,
but are actually commands. This is because they are notvestakith any Windows API call.
Those commands modify some values to change the state obth&wen thouglBBCE was able
to identify those stringsBCE did not mark them as commands becaB&E requires some API
call to be controlled by an input string for the string to basdified as a command. Each complete

command string, such as “bot.q@, is extracted through multiplBCE iterations as follows:

“bot.d”
“bot.di”
“bot.die”
“pbot.die\0”

If there is no indication that the extracted string is a comdh@.e., it controls no API calls), such
as “bot.die”, there needs to be some manual interpretatidC&’s results, such as whether one
should consider an array of bytes in the input that ends witdlianiter (e.g.,\0 in case o&trcmp)

to be a command.

We also performed an experiment to determine how well thestate-space-exploration strate-
gies that we introduced i§5.2.3.2 and 5.2.3.3 perform: one strategy chooses a padthaisahe
possibility of encountering API calls (denoted as “w/ CDIthe other stops further exploration
along the current path once the trace encounters an APId=albted as “w/ Pruning”).

The results are shown in Fig. 5.16. We compared the numbeacés ending with API calls
and the total number of iterations under the configuratioh@BI” and “w/ Pruning” with three
other configurations—(i) “w/o CDI” and “w/ Pruning”, (ii) “WCDI” and “w/o Pruning”, and (iii)
“w/o CDI” and “w/o Pruning”. BCE performs best using the configuration “w/ CDI” and “w/

Pruning”.
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One other way in which the four configurations differed isheit ability to report whether all
commands had been found. Only the configuration “w/ CDI” awdPruning” is able to do this;
i.e., it exhausted its (pruned) search space and hence epdd that there was nothing more to be
found. With the other configurationBCE did not finish even if it had identified all the commands.

As explained in55.2.3.3, the user must bear in mind that the commands idshidie really

command fragments, and various combinations of the comrfragthents must be tried.

5.2.8 Limitations

BCE currently has the following limitations:

1. Plain (unpacked) binariesBCE only handles unpacked binaries. In principle, directetiges-
eration is applicable even for packed binaries by invokirtdgeoder on the fly during con-
crete execution. However, the current implementatioBOE needs a preprocessing step
to obtain control-dependence information, which our impdatation obtains from a pre-
built control-flow graph. One would need some heuristiceotihan control-dependence
information as an alternative for avoiding combinatorigbkesion.

2. Manual identification of the right starting poinBCE starts its exploration from some
command-processing function other than main. This all@letively short traces for both
concrete execution and symbolic execution, resulting ttebeverall performance @&CE.
Typically, there is some initialization code between thgibeing of the main function
and the command-processing function that is not relevamixtracting input commands.
However, this can be problematic if the initialization coalifects concrete execution in
significant ways. Finding a way to stdBCE from the very beginning of a program with
low cost is left for future work.

3. Approximation.BCE currently approximates some library function calls by gssome simpli-
fied models. For example, dBot usesprintf as follows to generate a string in a specific
format for the purpose of sending a log to the bot-master.

snprintf (buf, sizeof (buf), ‘‘%s %s\r\n’’, ..., alx+1]);

wherea[x+1] is one of the command tokens.



192

A portion of the command is copied intmf in snprintf. Thebuf is then passed as a
parameter to an API call.

If concrete execution and symbolic execution go insidesyrintf, BCE can obtain a
symbolic expression fobuf that contains symbols from the input command. Instead of
doing that, to simpliyBCE’s handling of calls tenprintf, we modeknprintf as a copy
operator so that the input command symhk+1] is copied into the buffebuf ignoring

the format string.

4. Obfuscation on branch conditionBCE relies on branch conditions to explore a program.
Therefore, if the branch conditions are obfuscated by o, it preventsBCE from
exploring program paths correctly. For example, fragmentkelow is a normal branch
condition that checks a byte value against a constant. Asosex by Sharif et al. [168], the
code can be obfuscated as shown in fragment (b). Becausdiftigsilt to invert the hash
function, it is infeasible to find givenH...

(11 if (X ==¢) { [1] if (Hash(X) == Hc) {
[2] B [2] run Decrypt(Bg, c)

[31 } (3] }
[4] // where Hc = Hash(c), Bg = Encrypt(B, c)

(a) (b)
5.2.9 Related Work

Machine-Code Analyzers Targeted at Finding Vulnerabilities. §5.1.5 discussed some work on
techniques to detect security vulnerabilities by analgzaurce code (for a variety of languages).
MineSweeper [55], the work of Moser et al. [139], aBAGE have been discussedih.2.3.

Dynamic Techniques. J. Caballero et al. proposed techniques that can be usedraxtethe
format of the protocol messages sent from a bot-master dyzng bot binaries [58]. They intro-
duced a technique calldaliffer deconstructiothat builds the message field tree of a sent message
by analyzing how the output buffer is constructed. Furthmemthey used type-inference-based

techniques to find out the type information of each field ofeék&racted structure by monitoring
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how the received (or sent) data is used at places where tls gie known, such as system calls.
Their technigue focuses on extracting message formats gixegper inputs that trigger malicious
actions, whereaBCE aims to extract such proper inputs.

Cho et al. proposed a technique for inferring protocol staéehines and applied it to the anal-
ysis of botnet Command and Control (C&C) protocols [65]. Tiferred protocol state machines
can be used for formal analysis for botnet defense, inctydiimding the weakest links in a pro-
tocol, uncovering protocol design flaws, inferring the éxge of unobservable communication

back-channels among botnet servers, etc.

5.2.10 Conclusion

We developed a tool calld8iCE that automatically extracts botnet-command informatromf
bot executables, without using source code or symbol-tddleigging information. The informa-
tion obtained usindBCE can be used to build up proper input commands that triggerlar
behaviors.BCE furnishes other kinds of information about a bot's commamagparticular, in-
formation that combines the recovered symbolic infornratout inputs with type information
for the target API callsBCE also provides a sequence of API calls controlled by each camaim
which helps users to understand the bot’s API-level belavio

BCE performs directed test generation on executables andpocates a new search technique
based on control-dependence information. Our experinsdrawed that the new search strategies
developed foBCE yielded both substantially higher coverage of the partbiefdrogram relevant

to identifying bot commands, as well as lowered run-time.
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Chapter 6

Conclusion

As discussed in Chapter 2, the problem of analyzing exetegdb recover information about
their execution properties has been receiving increadedtain, in part because of the WYSIN-
WYX phenomenon. The WYSINWYX phenomenon is due to severavbacks of source-code
analysis and can be addressed only by machine-code levgsend he approach of working with
machine-code exposes the actual instructions that willkeewded, and thus works on an artifact
that reveals the actual behavior that arises during progresnution.

Although establishing execution properties at the machode level is a daunting task due
to the challenges of machine-code analysis, as discuss€tiapter 2, several research efforts
have been made to develop tools and techniques for machaeanalysis. One major effort is
CodeSurfer/x86, of which | was partly involved in the deymieent. In Chapter 2, we presented
the two applications that | developed-FE/x86 andConSeg—that made use of CodeSurfer/x86.

Unfortunately, although the techniques incorporated GtmeSurfer/x86 are, in principle,
language-independent, they were instantiated only fongleiinstruction set (Intel x86). As al-
ready mentioned in Chapter 1, this situation is common irkveor program analysis: although the
techniques described in the literature are language-grdgnt, analysis implementations are of-
ten tied to particular language-specific compiler infrasture. Unlike the situation in source-code
analysis, which can be addressed by developing commonrietiate languages, machine-code
analysis suffers from the fact that instruction sets tylhychave hundreds of instructions and a
variety of architecture-specific features that are incotmbpawith other architectures. With future

computing platforms based on multicore architectures amstactional memory, future runtime
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environments using just-in-time compiling, future syssepmoviding cloud computing and auto-
nomic computing, plus cell phones, PDAs, wearable compugerd autonomous vehicles all en-
tering the fray, both (i) security and reliability problepasd (ii) the variety of computing platforms
to analyze will only increase.

To address these concerns, we developed improved teclsrfapenalyzing machine code—in
particular, a language callersL (for “ TransformerSpecificationLanguage”) for describing the
semantics of an instruction set, along with a runtime systesapport the creation of a multiplicity

of static-analysis, dynamic-analysis, and symbolicggialcomponents.

In addition to the two applications to CodeSurfer/x86 presd in Chapter 2, the main contri-
butions that this dissertation made can be summarized lasvil

¢ In Chapter 3, we presented tl6L system in detail. In th&SL system, analysis components
are generated from formal specifications of the abstradiasyand the concrete semantics
of an instruction set.TSL was presented from two perspectives: (i) how to writ€SL
specification from the point of view of instruction-set-siieation developers, and (ii) how
to write TSL reinterpretations from the point of view of analysis deysrs.

In §3.2, we presented various techniques incorporated to immgié¢ theTSL compiler,

which translates a specification to a common intermedigieesentationCIR). The tech-
nical contributions that we made in the design and developmithe TSL system can be

summarized as follows:

— Two-level semantics (along with binding-time analysis)A two-level CIR allows
the precision of an abstract transformer to sometimes beavepl—and never made
worse—Nby interpreting subexpressions associated withrtaeripulation of concrete
values in concrete semantics, which the specification ohatruction set often con-
tains. This is done by separating the subexpressions assdavith the manipula-
tion of abstractvalues in abstract semantics from other manipulationsdaatalways
be treated asoncrete valuesTo this end, we made use of the existing technique of

binding-time analysis [109].
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— Paired-semantics: The TSL system allows easy instantiations reduced product
[74] by means opaired semanticsOne can use the paired-semantics mechanism to
obtain desirednulti-phase interactionamongTSL-generated analyzers. By creating
a duplicated, but improved CodeSurfer/x86, we demonstridtat this method o€IR
instantiation is useful for performing a form of reducedgwot when analyses are split
into multiple phases, as in a tool like CodeSurfer/x86.

— With-normalization and pattern compilation: TSL provides a mechanism for de-
construction by means of pattern matching. TheL front-end performswith-
normalization which transforms all multi-levekith expressions to use only one-level
patterns; an efficient pattern matcher is then generatetheipattern-compilation al-
gorithm developed by Pettersson [153, 178].

— Execution over abstract statesAn appropriate translation of conditional expressions
and recursion functions allows to create abstract intéepsdor an instruction-set spec-
ification: in particular, the code generated for each tramsér is able to: (i) execute
over abstract state§3.2.2), (ii) possibly propagate abstract states to mone din& suc-
cessor in a conditional expressidi3(2.2.1), (iii) compare abstract states and terminate
abstract execution when a fixed point is reach§g®i2.2.2), and (iv) apply widening

operators, if necessary, to ensure terminatfid.2.2).

In chapter 3, we summarized the applications thatsé system has been applied to,
including the various static-analysis components geadrébm theTSL specification of
thelA32 instruction set to develop a new incarnation of CodeSw8&+—a revised version
whose analysis components are implementedi@a. The analogous components for the
PowerPC32 instruction set were generated from &L specification oPowerPC32.

We also discussed the leverage that T8 system provides i§3.4. We showed that
the TSL system provides considerable leverage for implementimdyais tools and experi-
menting with new ones. New analyses are easily implemergeduse a clean interface is

provided for defining an interpretation.
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The reinterpretation mechanism alloWsSL to be used to implemembol-component gen-
eratorsandtool generators Each implementation of an analysis component’s drivey. (e.
fixed-point-finding solver, symbolic executor) serves as timchanging driver for use in
different instantiations of the analysis component fofedént instruction sets. Th&SL
language becomes the specification language for retaggtbidt analysis component for dif-
ferent instruction sets.

Furthermore, for a system like CodeSurfer/x86—which useftipte analysis phases—
automating the process of creating abstract transfornmeygressemantic consistengthat
is, because analysis implementations are generated feangkespecification of the instruc-
tion set’s concrete semantics, this guarantees tbahaistentview of the concrete semantics
is adopted by all of the analysis implementations used irsyiseem.

In Chapter 4, we presented a novel way to obtain semantiterpiretation automatically,
via mutually-consistent, correct-by-construction impentations of symbolic primitives—
in particular, quantifier-free, first-order-logic formsléor

— (a) symbolic evaluation of a single command,

— (b) WLP with respect to a single command, and

— (c) symbolic composition for a class of formulas that expr&ste transformations,
for everyinstruction set for which one hasTeéL specification. We also demonstrated that
semantic reinterpretation could create such primitivesgoguages with pointers, aliasing,
dereferencing, and address arithmetic.

As far as we are aware, the application of semantic reintésion to a logic is a new
idea. A related innovation on which our results rest was fndea particular form of state-
transformation formula (structure-update expressiong first-class notion in the logic. By
this device, such formulas could (i) serve as a replacenmantgh in the reinterpretations of
both the programming language’s meaning functions andoije’s meaning functions, and

(ii) be reinterpreted themselves.
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¢ In Chapter 5, we presented two applicationgleVETO andBCE—developed using SL-
generated analysis components, which use logic-basechsgarcedures to establish prop-
erties of machine-code programs. Compared to work by othelsgic-based search pro-
cedures for machine code, what distinguishes the workIGVETO andBCE is that both
applications argoal-directed That is, they both have a target property or program point of

interest, and this target is used to focus the search.

— MCVETO. MCVETO is a tool to check whether a stripped machine-code program sa
isfies a safety property. The chapter described how veiidicatf machine code in
MCVETO is performed, and discussed h&WCVETO avoids using conventional tech-
niques on software model checking that would be unsoundphieg at the machine-
code level.

MCVETO is capable of verifying (or detecting flaws in) self-modifgicode (SMC).
With SMC there is no fixed association between an addresshenich$truction at that
address, but this is handled automaticallyMdgVETO’s mechanisms for abstraction
refinement. To the best of our knowledd#CVETO is the first model checker to handle
SMC.

In Chapter 5, we also presented a language-independentthigdo identify the
aliasing condition relevant to a property in a given stateliké previous techniques, it
applies when static names for variables/objects are uladeai

We also developed several techniques to enhance the matkedsluring directed
proof generation to elaborate the abstraction in use: ttieniques enable exhaustive
loop unrolling to be avoided by discovering the right loopdriant. The method in
which we exploit program invariants allovg®undness to be retained all times even
though the techniques we use for obtaining invariants ageldptive.

— BCE. BCE is a tool for automatically extracting botnet-command infation from
bot executables, without using source code or symbol+adéleigging information.
The information obtained usinBCE can be used to build up proper input com-

mands that trigger API-level behaviors. What distingussBEE from other existing
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symbolic-execution-based test-generation tools is BGE is goal-directed, using a

new search technique that | developed based on controlhkdepee information.
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Appendix A: User Guide for TsL

Appendix A describes th&ransformer Specification Langua@&SL). It also contains infor-
mation about how to write &SL specification of the programming language of interest (Wwhve
call thesubjectlanguage). Th&SL system is applicable to both source languages and low-level
machine code. Machine-code languages are used in the eesaml descriptions in this manual.

TSL is a strongly typed, first-order functional language withadiadlype-definition mechanism
for defining recursive datatypes, plus deconstruction byamseof pattern matching. Much of
what aTSL user writes an instruction-set specification is similar titing an interpreter for an
instruction set in first-ordeML. The user specifies (i) the abstract syntax of an instrucetnby
defining the constructors for a (reserved, but user-defitygminstruction, (i) an execution-state

type, by defining typetate.

Lexical Matters. An identifieris a sequence of letters, digits, or underscore charadiegsn-
ning with a letter or an underscore. Upper- and lower-caserkeare considered distinct characters.

The following identifiers are reserved and may not be usedtoer purposes.

true, false, with, default, let, in, phylum, MAP, COMMON,
EXPORT, UNIQUEREP, NOWIDEN, DECLARATIONS,
FUNCTIONLIST, EXPORT_FUNCTIONLIST

Blanks, tabs, and newlines in the specification file are igd@xcept that they serve to delimit

tokens. Comments, delimited by // and a newline, may apdearany token.

TSL Specification. EachTSL specification consists of a list declarationswhich are split into
two parts: a definition of an abstract syntax, given as a sgtashmar rules, and a list of functions.

A specification is structured as follows:
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NAME : instruction_set_name
DECLARATIONS {

production_declarations

}
FUNCTIONLIST {

function_declarations

}
EXPORT_FUNCTIONLIST {

exported _function_declarations

}

DECLARATIONS, FUNCTIONLIST, and EXPORT_FUNCTIONLIST blocks can ap-
pear in any order. [Each part can be repeated in a specificatidbECLARATIONS
contains definitions of user-defined types-dduction_declarations). FUNCTIONLIST and
EXPORT_FUNCTIONLIST contain user-defined functionsfu@.ction_declarations) and an
exported-function list {zported_function_declarations), respectively.§A.1, §A.2, and§A.4 de-

scribe how to write production, function, and exporteddtion declarations, respectively.

A.1 Type Definitions DECLARATIONS)
A.1.1 Phyla, Operators, and Terms

The core of a specification for a given language is the defimitf the language’s abstract
syntax, given as a set of grammar rules. The grammar rulessaemntially productions of a regular-
tree grammar.

The derivation trees derived from nonterminal symbols amevikn astermsand the set of
terms derived from a given nonterminal symbol constitutghglum The grammar should be
viewed as a type-definition mechanism in which the nonteamsymbols are type names and
each nonterminal symbol, taken as a type name, denotes d galues known as a phylum.
We often refer to nonterminal symbols as phyla, althoughermecisely they are the names of

phyla. Each production derives terms that can be thoughs ofary records. The alternatives
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of a given nonterminal give rise to different record varmanierms are used both (i) as abstract
representations of instructions, operands, and otheastiotconstructs and (ii) as computational
values. Each production has a name, known asgerator, that can be used in computational
expressions (in different contexts) both as a record coosir and as a selector that discriminates
between variants.

The conceptphylum operator, andtermare defined mutually recursively. phylumis a set
of terms. Atermis the result of applying &-ary operator tdk terms of the appropriate phyla. A
k-ary operator is a constructor-function mappkggrms to a term. Operators are typed.

Productions, nonterminal symbols, and operator namesedneed simultaneously iphylum
declarations

Example A.1(a).Let us consider a phylum of binary tre@REE. Associated witiTREE are
two operatorsieaf (of arity 0), andNode (of arity 2, with parameter phylAREE andTREE).

TREE can be defined inductively as follows:

1) The termLeaf() is in TREE;
2) If t; andt, are terms iNTREE, then the ternNode(t,, t;) is in TREE;
3) No other terms are iMREE.

PhylumTREE is the infinite collection of terms

{

Leaf (),

Node(Leaf (), Leaf()),

Node (Node (Leaf (), Leaf()), Leaf()),
Node (Leaf (), Node(Leaf (), Leaf())),
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A.1.2 Basetypes

Fig. A.1 shows the basetypes tiHaL provides. There are two categories of primitive base-types
unparameterize@nd parameterized An unparameterized base-type is just a set of terms. For
example,BOOL is a phylum consisting of truth valueB\T32 is a phylum consisting of 32-bit
signed whole numbers, etMAP[«, (] is a predefined parameterized phylum, with parameters

andg. Each of the following is an instance of the parameterizedyh MAP:

MAP[INT32,INT8]
MAP[INT32,BOOL]
MAP[INT32,MAP[INT8,BOOL]]

TSL provides special syntax for denoting the terms of primifgyla, often referred to ason-
stants For example, the truth values of phyl B®OL are denoted byrue andfalse, the integers
in phylum INT8 are denoted b¥d8, 1d8, 2d8, etc. The syntax of these primitive constants is

summarized in Fig. A.1.

Phylum Terms Constants

BOOL false, true false, true

INT64 64-bit signed integers | 0d64, 1d64, 2d64, ...
INT32 32-bit signed integers | 0d32, 1d32, 2d32, ...
INT16 16-bit signed integers | 0d16, 1d16, 2d16, ...
INT8 8-bit signed integers 0d8, 1d8, 2d8, ...

STR Sequences of characters""

All characters except | "ab...AB...01...1%..."

"\000’ permitted. AN\ r\b\t\f\"\"\\"
"\ 001\002\003..."
MAP[«a,3] | Maps no constants

Figure A.1 Syntax of constants of primitive phyla.
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Some primitive values do not have corresponding constamitdéons. For example, there is
no TSL constant corresponding to negative one, siAtés an expression — the negation function
applied to positive one.

§A.3 presents the operators of theL base-types.

A.1.3 Syntax

A production declaratiordefines a new operator and includes all terms constructiplndt

operator in a given phylum. The form of a production deciarats

phylum-name operator-namé phylum <identifier, > --- phylum, <identifier, > ) ;

The phylum named bphylum-namas referred to as théeft-hand-side phylum phylum, ...,
phylum, are theparametersof the operatooperator-name A production declares that all terms
constructed by applying-ary operatoroperator-nameo argument terms of phylgphylum, ...,
phylum, are members of the left-hand-side phylum. An operator mayaa@ssociated with more
than one phylum. Each parameter is associated with a nameepdifameter nameadentifier, ...
identifier, need to be distinctive in an operator.

Example A.1(b).The following code snippet shows an example of a definitioA®ST syntax

rules:

DECLARATIONS {
reg32: EAX() | EBXQ);
operand: DirectReg32(reg32<Reg>)
| Immediate32(INT32<Val>)
instruction: ADD(operand<0Opl> operand<0p2>)
...

state: State(MAP[INT32,INT8]<Memory> MAP[reg32,INT32]<Registers>)
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A.1.4 Reserved, but User-Defined Types
Each instruction-set specification must include defingiohthe following types:
reg64, reg32, reg16, reg8, cc, instruction, and state

Exported phyla are treated as interfaces betweg&Blaspecification of a subject language and a
client analysis for the language.

Each reserved type is annotated WHKPORT and either<E> or <R> (binding-directivé.
There are two kinds of phylaconcretephyla andabstractphyla. If a phylum is only used as a
concrete type, such agg32 andinstruction, the phylum is annotated withE>. If a phylum
is to be used in a reinterpreted semantics, sucatase, the phylum is annotated withR>. The
TSL system generates a common intermediate representatiomah whyla annotated witk E>
are converted to concrete types, and the ones annotatee:Rithsupport both concrete types and
reinterpreted versions of those types.

Example A.1(c).Becauseeg32, instruction, andstate are reserved, the code in Example

2.2.1 (b) is amended as follows:

DECLARATIONS {
EXPORT reg32<E>: EAX() | EBXQ);
operand: DirectReg32(reg32<Reg>)
| Immediate32(INT32<Val>)
EXPORT instruction<E>
: ADD(operand<0Opl> operand<0p2>)
...

EXPORT state<E>: State(MAP[INT32,INT8]<Memory> MAP[reg32,INT32]<Registers>);
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A.1.5 Redefinable Phylum Definitions

TSL allows one to associate base-types (especially paramedease-types, such BAP)
with other names. Each phylum defined as reinterpretablédearinterpreted in a client applica-

tion. The form of a reinterpretable-type declaration is

phylum phylum identifiey
phylum MAP[phylum <binding-directive-, phylum2] identifier,

Binding-directive(<E> | <R>) controls the reinterpretation property of the key type o t
map.binding-directive<E> is used in the examples in this chapter.

In addition to the unparameterized base-types, sudBGOL andINT32, such user-defined
reinterpretable types, such EEMMAP32_8 andREGMAP32, are reinterpreted with new types pro-
vided by an analysis developer to create an analysis conmpone

Example A.1(d).The following code is a part of file-system definiticdfLLESTREAM is defined
asMAP[INT64<E>,INT8]; the key type of*DATA is renamed asnode; andFDATA is defined as
MAP[inode<E> ,FILESTREAM)].

DECLARATIONS {
phylum MAP[INT64<E>,INT8] FILESTREAM;
phylum INT8 inode;
phylum MAP [inode<E>,FILESTREAM] FDATA;

}
Example A.1(e). The code in Example 2.1 (c) can be rewritten by replac-
ing MAP[INT32,INT8] and MAP[reg32,INT32] with the redefined nameMEMMAP32_8 and
REGMAP32, respectively.

1Ordinarily, the key types of maps areE>. <R> is used in a few circumstances, but certain conditions must
hold for such a reinterpretation to work correctly. Th8L system does not check whether such a reinterpretation
obeys the necessary conditions.
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DECLARATIONS {
EXPORT reg32<E>: EAX() | EBX(Q);
operand: DirectReg32(reg32<Reg>)
| Immediate32(INT32<Val>)
EXPORT instruction<E>
: ADD(operand<0pl> operand<0p2>)
| ...
phylum MAP[INT32<E>,INT8] MEMMAP32.8;
phylum MAP[reg32<E>,INT32] REGMAP32;
EXPORT state<E>: State(MEMMAP32 8<Memory> REGMAP32<Registers>) ;

A.1.6 Phylum Directives

TSL provides two optional directiveSOMMON andUNIQUEREP—for phylum declarations.

e COMMON directive. A phylum can be shared among various languagesbgtating the
phylum declarations with the directf@OMMON. For example, the phylum definitions for
modeling context-switches are language-independent.

COMMON phylum MAP[reg32<E>,INT32] SAVEREGS;
COMMON phylum MAP[cc<E>,BOOL] SAVEFLAGS;
COMMON context : Context(SAVEREGS<SaveRegs> SAVEFLAGS<SaveFlags>);

e UNIQUEREP directive. A phylum prefixed withUNIQUEREP is translated into a
type that only allows a single instance to be constructedngf given term. For ex-
ample, if QFBVFormula is annotated witHUNIQUEREP, there is only one instance for
each term ofjFBVFormula, such afFBV_TRUE () andQFBV_LT (QFBVSymbo132("Sym1"),
QFBVScalar32(0)).
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COMMON UNIQUEREP QFBVFormula
QFBV_TRUE() | QFBV_FALSE()
| QFBV_LT(QFBVTerm32<t1> QFBVTerm32<t2>)
] QFBV_AND (QFBVFormula<f1> QFBVFormula<f2>)
| QFBV_OR(QFBVFormula<f1l> QFBVFormula<f2>)
|

UNIQUEREP cannot preced€OMMON.

A.2 Function Definitions (FUNCTIONLIST)

The form of afunction declarations

[directive§ phylumy function-name(
phylum parameter-namg
phyluny parameter-namsg

.« .y

phylum, parameter-namg

) { expression} ;

It declaresfunction-namdo be ak-ary function with result phylunphylum, and has, for each
i, 1 <i < k, a parameter namgaarameter-nameof type phylum. The body of the function,
expressionis an expression ovgrarameter-name . .., parameter-namethat must evaluate to a
term in the result phylurphylumy.

Function declarations are global — they cannot be definaderane another, nor can they be
defined within the scope of productions. Functions are nst-filass objects, i.e., they cannot be

the value of a parameter or an expression. Functions carchesiee.
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A.2.1 Function Directives

This section contains information about function direesiywhich direct how a function is
translated into the common-intermediate representatieumction directives direct the way the

TSL system translates a functioRSL supports the following directives for function definitions
COMMON, NOWIDEN, andCACHED

e COMMON. A function can be shared among various languages by ammptéte function
declaration with the directiv€ OMMON. The directiveCOMMON causes the function to be
generated in a common namespace. This directive can be saty for functions that are
language/instruction-set-indedepndent. E.g.,

COMMON INT32 isSignedOverflowForAddition(INT32 a, INT32 b) {

}s
e CACHED. The directiveCACHED causesI'SL to implement function-caching for the function.
E.g.,
CACHED BOOL Eval Formula(Formula f, state S) {
// ezpression
}s
For example, the return values of the functibral _Formula for each actual argument pair
<f, 8> are cached so that they can be retrieved the next time th&éduans called with the
same pair of actuals, instead of evaluating the whole fonapgain.

e NOWIDEN. When a tail-recursive function has a reinterpretable gt type or reinter-
pretable return type, the default way of translating thategpretable version of the function
in the CIR is to create a function template that will invoke a widenimgration to ensure
termination [126]. The directivBOWIDEN causes th&SL compiler to translate the function
to a recursiveC++ function that does not perform widening. This directive ¢enused in

the cases when termination is guaranteed even without wigek.g.,
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CACHED NOWIDEN BOOL Eval Formula(Formula f, state S) {

Formula f1 = f.Argl1();

Formula f2 = f.Arg2();

return Eval Formula(f1l, S) && Eval_Formula(f2, S),

A.3 Expressions

Expression®ccur in function declarationgA.3.1 discusses variables in expressiofs.3.2
and§A.3.3 discuss applications of functions and operators, mas®type operators, respectively.

§A.3.4 presents conditional and binding expressions.

A.3.1 Variables

A variableis a name bound toaalue The different lexical contexts of expressions give rise

to the distinct sorts of variables itemized below.

Parameters of functions. Each parameter of a function is a variable that denotes tlie whthe
corresponding argument passed to the function. The typeabf a variable is the one specified for

the parameter in the function declaration.

Pattern variables. Patterns irwith-expressions, (described§A.3.4), contain pattern variables.
Pattern matching binds each pattern variable to some temch Rattern variable has a scope
within which pis a variable that denotes the term to which it has been boLimeltype of a pattern
variablep is determined by the context in which it first occurs in a patter'his context is either
thei-th argument of some operatgy in which case the type qf is the phylum specified for the
i-th parameter of}, or it is an entire pattern, in which case the typ@ @ the type of the expression

against whictp is being matched.

Let-bound variables. Binding lists oflet-in-expressions, as describedifn.3.4, create variables

whose scope is the expression that followsithkeeyword.
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A.3.2 Application of functions and operators.

The application of &-ary function or operator t& arguments of the appropriate phyla is an

expression.

Function applications. A function application has the form

function-namd expression . .., expressiopn)

Assume thatunction-nameéias been declared by

phylum function-name
phylum parameter-namg
phylum, parameter-name

) { expression} ;

and further assume that argumeextpression,. . ., expressiophave values., . . ., v, respectively.
Then the value of the function application is the valuexpressiorevaluated in an environment
in which parameters parameter-name ., parameter-nameare bound ta, . . ., v, respectively.
The types ofexpression. . ., expressiop must bephylum, ..., phylum, respectively. The type
of the application igphylum. If function-nameas nullary, an empty pair of parentheses is still

required to indicate function application.

Operator applications. An operator application has the form

operator-name expression, expressiog, ..., expressiopn)

Assume the operator has been declared by

phylum-name

. operator-namégphylum <name;> phylum<name> --- phylum,<name>);
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and further assume that argumeetgression ..., expressiop have values, ..., v, respec-
tively. Then the value of the operator application is thent@perator-namév, ..., vx). The
types ofexpression, . . ., expressiopmust bephylum, ... phylum, respectively. The type of the

application isphylum-name

A.3.3 Operations on primitive phyla.

A collection of operations on primitive values is built infi@L. Operations for which special
syntax is provided are summarized in Fig. A.2. Library fuocs on basetypes are summarized in

Fig. A.3. The two arguments of a binary expression must bessgions of the same type.

A.3.4 Conditional and binding expressions.

Conditional and binding expressions permit the value of@ression to depend on the value
of a constituent subexpression. Three forms are allowtth-expressionconditional-expressign

andlet-expression

With-expressions. A with-expressions a multi-branch conditional expression that permits dis-
crimination based on the structure of the value of a giverresgion. The syntax of a with-

expression is

with (identifier) (
pattern : expression,

pattern, : expressiog

pattern, : expression

)

The value ofdentifieris called thematched valueThe value of the with-expression is the value of

the expressioncorresponding to the firgiattern thatmatcheghe matched value. Eagiattern

may containpattern variables which, if the match succeeds, are bound to constituentbeof t
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| Result | Syntax | Operation |
BOOL by && by logical conjunction ob; andb,
by Il by logical disjunction of); andb,
by ™M by exclusive logical disjunction df; andb,
'b logical negation ob
random(BOOL) random boolean value
e1 < ey e, less thare,
e] <= es e; less than or equal te,
e1 > ey e1 greater thare,
e1 >= e e1 greater than or equal
e1 <U ey e less than (unsigned)
e1 <=U eg e less than or equal to (unsigned)
e1 >U e e1 greater than (unsigned)
e1 >=U ey e1 greater than or equal to (unsigned)
€] == ey e1 equal toe,
e; !=es e1 hot equal tce,
INT64 %0 product ofi; andiy
INT32 1111 quotient ofi; andi,
INT16 i1 + s sum ofi; andis
INT8 i1 — i difference ofi; andi,
11 % 79 11 mOdiQ
11 &9 bitwise-and ofi; andi,
11 Mo bitwise-exclusive-or of; andis
11 | i bitwise-inclusive-or of; andi,
-1 negation ofi
~ bitwise-complement of
random(a) random integer value
MAP[«,3] | [OPAQUETYPE a — €] | empty map fromy with default value
mley |- >es] mapm updated so that the image @fis e,
random(OPAQUETYPBH | random map

Figure A.2 Operations on the primitive phyla. (In this talife areBOOL parametersi’s are
integer parametersy’s areMAP parametersg’s are parameters of arbitrary typeandj are
phyla, andOPAQUETYPEis a reinterpretable map-type defined iplaylum statement (see
§A.1.5).)

matched value. The value ekpressionis then computed in terms of those bindings. The types of

all expressiopnmust be the same phylumthe type of the entire with-expression is that phylpm
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| Result | Function(parameters) | Operation |

INT32 | Int8To32ZE(INT8 7) zero-extension of to 32-bit value
INt16TO32ZE(INT16 ¢) zero-extension of to 32-bit value
INt8TO32SE(INTS 1) sign-extension of to 32-bit value
INt16TO32SE(INT16 1) sign-extension of to 32-bit value
INt64To32(INT64 1) truncation ofi to 32-bit value
BoolToInt32(BOOL b) if b is true, return 1, otherwise 0
unsignedDiv32(INT32 i;, INT32 i5) unsigned division of; by i,

BOOL | getBit32(INT32 iy, INT32 i5) get the bit value at the inde in

the 32-bit value,
signedOverflowAdd32(INT32 i1, INT32 i5) return true if an overflow occurs in
a signed addition
signedOverflowSub32(INT32 i1, INT32 i5) return true if an overflow occurs i
a signed subtraction
unsignedOverflowAdd32(INT32 i,, INT32 iy) | return true if an overflow occurs i
an unsigned addition
unsignedOverflowSub32(INT32 i1, INT32 iy) | return true if an overflow occurs in
an unsigned subtraction

-

-

STR ConcatSTR(STR sy, STR s5) concatenation of; andss
SUbSTR(STR s, INT32 i, INT32 i5) sub-string ofs from indexi; to i,
INT32toSTR(INT32 7) convert 32-bit integer value to ja

string

MEMMAP32_8 | MemAccess_32 8 LE _32( 32-bit little-endian memory ac-

MEMMAP32_8 m, INT32 i) cess addressed by
MemUpdate_32_8_LE_32( 32-bit little-endian memory upt
MEMMAP32_8 m, INT32 i1, INT32 i,) | date

MemAccess_32_8_BE_32( 32-bit big-endian memory access
MEMMAP32_8 m, INT32 1) addressed by

MemUpdate_32_8 BE_32( 32-bit big-endian memory up-
MEMMAP32_8 m, INT32 iy, INT32 i,) | date

Figure A.3 Library functions on the primitive phyla. In theble,i's are integer parameterss
areSTR parameters, ankls areBOOL parametersMEMMAP32_8 is a reinterpretable map-type
whose original type isMAP[INT32,INT8]; m’'s areMAP-type parameters.

The patterns of a given with-expression must be exhaustie,it must be possible for the
compiler to determine statically that for every evaluatafrthe given with-expression, one of the

patterns will match. This will always be the case if one of pla¢terns is* or default.
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Patternsare defined inductively, as follows:

1) Constants of primitive phylaISL base-types) are patterns.
2) Pattern variables are patterns. A pattern variable islantifier.
3) Both the symbot and the keywordlefault are patterns.

4) A k-ary operatooperator-namepplied tok patterns is a pattern:

operator-nam¢ pattern, ..., pattern, )

The same pattern variable may occur multiple times in a patfEhe leftmost occurrence of a
given pattern variable is itsinding occurrenceand all subsequent occurrences in the same pattern
arebound occurrencesThe type of a pattern variabjeis determined by the context of its binding
occurrence. This context is either théh argument of some operatgrin which case the type of
is the phylum specified for thieth parameter of, or it is an entire pattern, in which case the type
of p is the type of the expression against whicis being matched.

Let p be a pattern antlbe a term. Thep is said tomatcht under the following circumstances:

1) Whenp is a constant of a primitive phylum arids the same constant.

2) Whenp is the binding occurrence of a pattern variaplg in which casew is bound tor.

3) Whenp is a bound occurrence of a pattern variaplethat has been bound to some tefm
andt==t'.

4) Whenp is either* or default.

5) Whenp isop(py, ...,px) andtisop(ty, ...,t;) andp; matcheg; forall i, 1 <i < k.

The lexical scope of a pattern variable bound in sqma#ern begins at its binding occur-
rence and extends through the correspondixgression The scope of pattern variables is block-
structured, i.e., a given pattern variable may be rededler@n inner scope.

Example A.3.4(a).Consider the following definitions of phylBNV andBINDING:

ENV
: NullEnv()
| EnvConcat( BINDING ENV )

BINDING: Binding( INT32 INT8 );
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A value env of phylumENYV is analyzed by the with-expression that is the body of fuorcti

lookup:

BINDING lookup(INT32 id, ENV env) {
with (env) (
NullEnv(): Binding(7d32, 0d48),
EnvConcat (b, e):
with (b) (

Binding(s, *): id==s 7 b : lookup(id, e)

)
¥

The two operator&NullEnv and EnvConcat exhaust all possible alternatives 8NV, so no de-
fault pattern is necessary. If the valueaiv is NullEnv(), then the pattertNullEnv() matches
it and the value of thevith-expression iBinding(7d32, 0d8). Otherwise, the value agnv is

necessarily a pair and the patté&nvConcat(b, €) matches with pattern variablésande bound

to the first and second components, respectively. In this,¢he value of thevith-expression is
the value of the innawith-expression, wherein pattern variabkeande have type8INDING and

ENV, respectively.

The same effect can be obtained by combining the two negteeexpressions into one:

BINDING lookup(INT32 id, ENV env) {
with (env) (
NullEnv(): Binding(7d32, 048),
EnvConcat (Binding(s, v), e):

id==s 7 Binding(s, v) : lookup(id, e)
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Conditional-expressions. A more traditional form of conditional expression is avalain TSL,
based not on pattern matching but on the value of a Boolearssipn. Aconditional-expression

has the form

expression? expression: expressiox

Whenexpressionis an identifier, it is exactly equivalent to the expression

with (¢ ) (true : expressiop false : expression)

Let-expressions. Let-expressions are useful for binding values to names. Thpleshform of

let-expression is:

let id = expressionin ( expression)

When several values are to be matched, a more general fonvailalale:

let id; = expressiog id; = expressiog . . . id; = expression in (
expressiop

)

An occurrence of a variable cannot be rebound in subsequrdinigs. The last binding in a

let-expression is effective iaxpression The type of thdet-expression is the type @kpressiop
A semicolon before the keywoid is optional.
The value of the general form &dt-expression is determined as follows:
Each identifier is bound to the value of the correspondixigression The value of thdet-
expression is the value @xpression as computed in an environment containing bindings
for all variables. Theexpression®f a binding are all evaluated in the environment with
includes all variables bound in all previous patterns uptdhe initial environment in case

of the first binding.
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A.4  Export Function Definitions (EXPORT_FUNCTIONLIST)

A function can be exported to the interface available tontlenalyses by using a declaration

of the following form:

EXPORT <cir-directive> function-name(<cir-directive>, ..., <cir-directive>);

TheTSL compiler only translates functions derivable from the ex@d functions.
Eachcir-directive is either<E> or <R>. The return type and parameter types of an exported
function are annotated with eitherE> or <R> in a EXPORT_FUNCTIONLIST block. <E>
directs theT SL system to translate the type as non-reinterpretable, \akerB> causes the type
to be translated as reinterpretable.

Example A.4(a).The concrete semantics of each instruction is specified figidg the func-
tion interplinstr, which takes an instruction and a state, and returns an egdsate that captures

the semantics of the instruction.

FUNCTIONLIST {

state interpInstr(instruction I, state S) {

}s
}
Example A.4(b).interpinstr in Example 2.4(a) can be translated into two versionSI&¥s by

including the followingexport-function declarationas follows:

EXPORT_FUNCTIONLIST {
EXPORT <E> interpInstr(<E>, <E>);
EXPORT <R> interpIlnstr(<E>, <R>);

}

The first export declaration, in which all the types are dexxlaas<E>, generates a component

that can be used for creating an emulator for the subjectulagg. With the second declaration,
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in which the state types for both the input and the output ard&k>, the interpinstr is to be

reinterpreted in an alternative semantics:

state” interpInstr(instruction I, state” S) {

}s
A.4.1 Reserved, but User-Defined Functions (Exported Funidns)

Tab. A.1 shows a list oF SL reserved exported functiodsThe set of exported functions spec-
ifies the interface between a specification and an analyigistdb create an analysis component.
A specification must contain a8XPORT_FUNCTIONLIST block with an export-function dec-
laration for each of the functions in Tab. A.1.

This section described how to write a concrete semanticssofbgect language imSL from
the point of view of instruction-set-specificatiol$§) developers. Th&SL compiler automati-
cally generates from @&SL specification a&ommon intermediate representati@@iR) that can be
instantiated to create multiple analysis components. Thapter presents how tHESL system
generates th€IR (§A.5), as well as how th€IR is instantiated to create an analysis component

(8A.6) from the point of view of analysis developers.

A.5 Common Intermediate Representation

The TSL system automatically generate€#R from a TSL specification of the concrete op-
erational semantics of an instruction set. Each genef@lBds specificto a given instruction-set
specification, butcommon(whence the nam€IR) across generated analys€3dR is a template
class that takes as input a cl&s, an abstract domain for an analysis, as shown in Fig.2A.5.
This section describes how thethat TSL uses internally to represenfl&L specification (hence-

forth calledTSL-IR) is translated into the outp@IR. A specification inTSL is simply linearized,

2The list can vary depending on the client analysis systema:table shows a list of reserved, but user-defined
functions for machine-code instruction sets.
3CIR is in C++ in reality.
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Function Name

Discription

state interpinstr(instruction I, state S)

specifies the concrete operational semantics o

struction |

fin-

INT32 GetPC32()

returns the program counter (PC)

INT32 GetSP32()

returns the stack pointer (SP)

INT32 AccessPC(state S)

returns the value of PC in state S

state UpdatePC(state S, INT32 v)

updates the value of PC with v in state S

INT32 AccessSP(state S)

returns the value of SP in state S

state UpdateSP(state S, INT32 v)

updates the value of SP in state S

INT32 GetEA32(instruction I)

returns the PC value of instruction |

INT32 GetlInstrSize(instruction 1)

returns the size of instruction |

INT32 TopOfState32(state S)

returns value at the address pointed to by SP

state Pop32(state S)

adjusts SP to pop the top value

state Push32(state S, INT32 v)

pushes the value v to SP

Table A.1 Reserved exported functions; a complete listeémeed export functions can be found
in

TSL/instructionsets/common/exports.tsl

in evaluation order, into a series Gf+ statements, in which the names of basetypes, basetype-
operators, andccess/updatiinctions are prepended wiBT ::. The user-defined abstract syntax
(lines 3—16 of Fig. A.4) is translated to a set@f+ abstract-domain classes (lines 2—-17 of Fig. A.5)
that contain appropriate abstract operators. The usematefypes, such asg32, operand32, and
instruction, are translated to abstraCt+ classes, and the constructors, sucleas Indirect32,
andadd32. 32, are subclasses of the parent absttast class. Each user-defined function is trans-
lated to aCIR member function.

EachTSL basetype and basetype-operator is prepended with thedeygarameter nangT;
BT is supplied for each analysis by an analysis developer.TEiebasetype-operater on line 42

in Fig. A.4 is translated into a static function call 8::P1us, as shown on line 42 in Fig. A.5.
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Thewith expression and the pattern matching on lines 35-45 of Fi§j.afe translated tewitch

statements i€++* (lines 35-45 in Fig. A.5).

A.5.1 Translation to Two-Level Common Intermediate Represntation

This section describes a mechanism for improving a certaiellof precision of analyzers by
separating concrete and abstract semantit¢s Nielson and Nielson [149]).

The concrete semantics of an instruction set often consinge manipulations of values that
should always be treated as concrete values (for everyaabstterpretation of the instruction).
For example, theSS developer could follow the approach taken in t@verPC manual [27]
and specify variants of the conditional branch instruc(i@, BCA, BCL, BCLA) of PowerPC by
interpreting one of the fields in the instruction to deterenimhich of the four variants is being
executed. In this case, the precision of an abstract tremsfocould be harmed by interpreting
such subexpressions in the abstract semantics. For imstanaTSL expression = (b7 1 : 2),
whereb is definitely a concrete value,can get a precise value—either 1 or 2—wlésconcretely
interpreted. However, if is not expressible precisely in a given abstract domaingctmalitional
expression (b 7 1 : 2)” will be evaluated by joining the two branches andiill not hold a precise
value.

To address this issue, we perform a kind of binding-timeysialon theTSL-IR, in which the
expressions associated with the manipulation of concraligeg in an instruction are annotated
with C, and others wittA. Then, we generate tavo-levelCIR by appendingCONC_SEM for C
values, andABS_SEM for A values. The generat€@iR is instantiated for an analysis transformer

by definingABS_SEM. We provide a predefined concrete semanticSClONC_SEM.

A.6 CIR Instantiation

This section describes how an analysis developer instasttheCIR to create an analysis

component.

4TheTSL front end performsvith-normalizationwhich transforms all (multi-leveNvith expressions to use only
one-level patterns, using the pattern-compilation atgarifrom [153, 178].
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The generatedIR is instantiated for an analysis by defining (@#+) an interpretation a
representation class for ea@lsL basetype, and implementations of ed@L basetype-operator.
Tab. A.2 shows the implementations of primitives for threé¢ested analyses: value-set analy-
sis (VSA [41]), quantifier-free bit-vector semanticQKBV), and def-use analysi®(A). Each
interpretation defines an abstract domain. For example Jiaf each column defines the abstract-
domain class fotNT32: ValueSet32, QFBVTerm32, andUseSet. Each abstract domain is also
required to contain a set of reserved functions, sucfois meet andwiden which forms an

additional part of the API available to analysis engines tis@ TSL-generated transformers.

A.6.1 Required Operators of Abstract Domains for aTSL Reinterpretation

Fig. A.6 shows the required operators that an abstract domast provide for & SL reinter-

pretation. An abstract domain for a map-basetype must gesuapAccess andmapUpdate.

A.6.2 Paired-Semantics

Our system allows easy instantiationgefluced produc [74] by means opaired semantics
TheTSL system provides a template for paired semantics as showig.id\F .

The CIR is instantiated with goaired semantic domain defined with two interpretations,
INTERP1 andINTERP2 (each of which may itself be a paired semantic domain), asslon line 1
of Fig. A.8. The communication between interpretations r@ke place in basetype-operators or
access/updattunctions; Fig. A.8 is an example of the latter. The two comgrats of the paired-
semantics values are deconstructed on lines 3—6 of Fig. ax@8,the individualINTERP1 and
INTERP2 components fronbothinputs can be used (as illustrated by the calhteracton line 7
of Fig. A.8) to create the paired-semantics return vahmswer. Such overridings of basetype-
operators andccess/updatiinctions are done b@++ explicit specialization of members of class
templates (this is specified T+ by “template<>"; see line 2 of Fig. A.8).

This method ofCIR instantiation is also useful to perform a form of reduceddo when
analyses are split into multiple phases, as in a tool likegSanifer/x86. CodeSurfer/x86 carries

out many analysis phases, and the application of its segquainbasic analysis phases is itself
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Table A.2 Parts of the declarations of the basetypes, baesetgerators, and map-access/update
functions for three analyses.

VSA QFBV DUA

[1] class VSA_INTERP { [1] class QFBV_INTERP { [1] class DUA_INTERP {

[2] // basetypes [2]1 // basetype [2]1 // basetype

[3] typedef ValueSet32 INT32; [3] typedef QFBVTerm32 INT32; [3] typedef UseSet INT32;
[41 ... 41 ... [4]

[6] // basetype operators [5] // basetype operators [5] // basetype operators

[6] INT32 Add(INT32 a, INT32 b) | [6] INT32 Add(INT32 a, INT32 b) | [6] INT32 Add(INT32 a, INT32 b)

71 { 71 { (71 {

[8] return a.addValueSet(b); [8] return QFBVPlus32(a, b); (8l return a.Union(b);
(o1 } o] } o1 }

[10] ... (10l ... (10l ...

[11] // map-basetypes [11] // map-basetypes [11] // map-basetypes

[12] typedef Dict<reg32,INT32> | [12] typedef Dict<var32,INT32> | [12] typedef KillUseSet VAR32MAP;
[13] REGMAP32; [13] VAR32MAP; [131 ...
[14] ... [14] ... [14] // map-basetype operators

[15] // map-basetype operators [15] // map-basetype operators [15] INT32 Access(

[16] INT32 Access( [16] INT32 Access( [16] REGMAP32 m, reg32 k) {
[17]  REGMAP32 m, reg32 k) { [17]  REGMAP32 m, reg32 k) { [17] return UseSet (k) ;
[18] return m.Lookup (k) ; [18] return m.Lookup (k) ; (18] }

[19] } (191 } [19] REGMAP32

[20] REGMAP32 [20] REGMAP32 [20] Update( REGMAP32 m,

[21] Update( REGMAP32 m, [21] Update( REGMAP32 m, [21]  reg32 k, INT32 v) {
[22] reg32 k, INT32 v) { [22] reg32 k, INT32 v) { [22]  REGMAP32 a2 =

[23] return m.Insert(k, v); [23] return m.Insert(k, v); [23] m.Insert2Kill(k);
[24] } [24] } [24] return a2.Insert2Use(v);
[25] ... [25] ... [25] }

[26]1}; [261}; [261};

iterated. On each round, CodeSurfer/x86 applies a sequdrarealysesVSA, DUA, and several
others. VSA is the primary workhorse, and it is often desirable for thimimation acquired by

VSA to influence the outcomes of other analysis phases.
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We can use the paired-semantics mechanism to obtain desukidphase interactionamong
our generated analyzers—typically, by pairing #®A interpretation with another interpretation.
For instance, witlDUA_INTERP alone, the information required to get abstract memorytiooés)
for addr is lost because thBUA basetype-operators-(and* on line 3 of Fig. A.9) just return
the union of the argumentsisesets (e.g., see lines 6-9 of the third column of Tab. A.2. With
the pairing of VSA_LINTERP with DUA_INTERP (line 1 of Fig. A.8), DUA can use the abstract
address computed faddr2 by VSA_INTERP (line 6 of Fig. A.8), which use¥SA_INTERP::Add
andVSA_INTERP::Mult; the latter operators operate on a numeric abstract domatinef than a

set-based one).
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[1] [1] template <class BT> class CIR {
[2] // User-defined abstract syntax [2] class reg32 {...};
[3] reg32: EAX(Q) | EBXQ); [3] class EAX: public reg32 {...};
[4] flag: ZF(Q) | SFO; A ...
[5] operands2 E:% zi: (I)Eceilirizciigi' ’ i‘i}lic operand32 {...};
[6] : Indirect32(reg32 INT32) o ©F P RN
(7] | DirectReg32(reg32) [8] class instruction {...};
(8] | Immediate32(INT32) [9] class ADD32.32: public instruction {
ol ; [10]  enum TSL.ID id;
[10] instruction [11] operand32 opl;
[11] :ADD32_32(operand32 operand32) [12] operand32 op2;
[12] | MOV32 32 (operand32 operand32) [13]
[13] ; [14] };
[14] state:State(MAP[INT32,INT8] // memory (151 ...
. [16] class state” {...};
[15] MAP[reg32,INT32] // registers [17] class State”: public state? {...};
[16] MAP[flag,BOOL]); // flags [18] // User-defined functions
[17] [19] BT::INT32 interpOp32#( state” S, operand32 I ) {
[18] // User-defined functions [20] with(S) (
[19] INT32 interpOp32( state S, operand32 I ) { [21] State” (mem,regs,flags):
[20] with(S) ( [22] with(srcOp) (
[21] State(mem,regs,flags) : [23] DirectReg32(r): BT::Access(regs,r),
[22] with(srcOp) ( [24] Indirect32(base, disp):
[23] DirectReg32(r): regs(r), [25] let b = BT: :Access(regs,‘?ase);
. K [26] addr = BT::Plus(b, disp);
[24] Indirect32(base, disp): [27] ( BT: :Access (men,addr) )
[25] let b = regs(base); [28] Immediate32(i): i
[26] addr = b + disp; [29] )
[27] ( mem(addr) ) [30]
[28] Immediate32(i): i [311 };
[29] ) [32] state” updateFlag32#(state” S, ...) {...}
[301 ) [33] state” updateState32”(state” S, ...) {...}
[31] } [34] state# interpInstr#(instruction I, state” S) {
. [35] with(I) (
o) s mmetaenne s, 0 L) D i, o
> T [37] let srcVal = interpOp32% (S, srcOp);
[34] state M(instruction I, state S) { [38] in ( updateState32#( S, dstOp, srcVal ) ),
[38] with(I) ( [39]  ADD32.32(dstOp, srcOp):
[36] MOV32_32(dstOp, srcOp): [40] let dstV = interp0p32#(S, dstOp);
[37] let srcVal = interp0p32(S, srcOp); [41] srcV = interp0p32#(S, srcOp);
[38] in ( updateState32( S, dstOp, srcVal ) ), [42] res = BT::Plus(dstV, srcV);
[39] ADD32_32(dst0p, srcOp): [43] 82 = updateFlag#(S, dstV, srcV, res);
[40]  let dstV = interpOp32(S, dstOp); [44]  in ( updateState32”( 52, dstlp, res ) )
[41] srcV = interpOp32(S, srcOp); Eig })
[42] res = dstV + srcV; [471};
[43] S2 = updateFlag(S, dstV, srcV, res);
[44] in ( updateState32( S2, dstOp, res ) )
Eig }) Figure A.5 TheCIR generated from Fig. A.4.
[47] (The superscript # is used to abbreviate the actual

generated names used in fA8L implementation.)

Figure A.4 ATSL specification of a
simplified1A32 concrete semantics; reserved
types and function names are underlined.
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Basetypes

Map-basetypes

constructors that handles concrete basetypes
bool approximates(const T & a)

T join(const T & a, const T & b)

T widen(const T & a, const T & b)
T meet(const T & a, const T & b)
bool isBottom()

void setToBottom()

static T BTM()

bool isTop()

void setToTop()

static T TOP()

bool operator ==

bool operator >

TVL::Bool isEqual(const T & a)

std::ostream & print(std::ostream & 0)

constructors that handles concrete map-basetypes
bool approximates(const T & a)

T join(const T & a, const T & b)

T widen(const T & a, const T & b)

T meet(const T & a, const T & b)

bool isBottom()

void setToBottom()

static T BTM()

bool isTop()

void setToTop()

static T TOP()

bool operator ==

TVL::Bool isEqual(const T & a)
std::ostream & print(std::ostream & 0)

T mapUpdate(const T & m, const K_T & key)

D_T mapAccess(const T & m)

Figure A.6 Required operators that an abstract domain nmrasidge for aTSL reinterpretation;
T: the abstract domain for a maptyp€;T: the key type of the map-typg D_T: the datum type
of the map-typd’; TVL::Bool: a three value logic (FALSE, ONE, and MAYBE);

[1] template <typename INTERP1, typename INTERP2>

[2] class PairedSemantics {
(3]
[4]
(5]
(6]
[7]
8l }
91 };

typedef PairedBaseType<INTERP1::INT32, INTERP2::INT32> INT32;

INT32 MemAccess_32_8_LE_32 (MEMMAP32_8_LE mem, INT32 addr) {
return INT32(INTERP1::MemAccess 32_8_LE_32(mem.GetFirst(), addr.GetFirst()),

INTERP2: :MemAccess_32_8_LE_32 (mem.GetSecond(), addr.GetSecond()));

Figure A.7 A part of the template class for paired semantics.
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[1] typedef PairedSemantics<VSA_INTERP, DUA_INTERP> DUA;

[2] template<> DUA::INT32 DUA::MemAccess_32_.8_LE_32( DUA: :MEMMAP32_8_LE mem, DUA::INT32 addr) {
[3] DUA: : INTERP1: :MEMMAP32 8 _LE memoryl = mem.GetFirst();

[4] DUA: : INTERP2: :MEMMAP32 8 LE memory2 = mem.GetSecond() ;

[5] DUA: :INTERP1::INT32 addrl = addr.GetFirst();

[e] DUA: : INTERP2: :INT32 addr2

addr.GetSecond () ;
[7] DUA::INT32 answer = interact (meml, mem2, addrl, addr2);

[8] return answer;

(o1 }

Figure A.8 An example of++ explicit template specialization to create a reduced pcodu

[1] with(op) (

[2] Indirect32(base, index, scale, disp):

[3] 1let addr = base + index * SignExtend8To32(scale) + disp;
[4] m = MemUpdate_32_8_LE_32 (mem, addr,v) ;

(5] ...

Figure A.9 A fragment ofipdateState32.
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Appendix B: Semantic-Reinterpretation for Symbolic-Analysis
Primitives

In this appendix, we give correctness proofs for our geeeratimitives for symbolic evalua-
tion, WLP, and symbolic composition. These apply to the language;RI2(2) and reinterpreta-
tions given in§4.3; the proofs for MC differ only slightly.

As a notational convenience, we do not distinguish betwe8tateand alLogicalStruct A
LogicalStruct. corresponds to th8tate ((.11), (¢12)F,). Because, for PL, logical structures only
contain the single functiofr,, there is a one-to-one correspondence with states. Hemesever
necessary (e.g. in the applicationsgdf]), 5[.], andZ[.]), we assume that thatlagicalStruct. is
coerced tq(¢11), (¢12)F),).

B.1 Correctness of the Symbolic-Evaluation Primitive

Lemma B.1 (Relationship of€ to £ and B to B)

(1) T[E[E]U]: = E[E]U]U]:)
(2) FIB[BE]U]: = B[BE]U[U]:)

Proof: The two lemmas are simultaneously proved using structadhalétion onE and BE, as
shown below. LeU be ({I; < T;}, {F; < FE;}).

Note that the standard interpretation$ofop, relop, andboolopcoincide with those abinop, ,
relop, , andboolop, . Thus, reasoning steps of the folwnop, (op2,) ~ binop(op2) are short-
hands for reasoning about each case, sudfirasp, ([ +]) ~ binop(+), etc.

(1) (0)
T[E[c]U]e = T[constc)]e
=T[c]e
= constc)
= E[dwU]e)



(i)
lhs : T[E[I]U]e
= T [lookupStaté/ I].
=TI((UT2)E,)(UT)I)]e
rhs : E[IJ(U[U]e)
_eppy (VM THOTOIL,
(12)[F; — FE(UT2)E3])
 ookupstard (1D~ TIUTOLL
(12)[F; = FENU2) F3l)I
= ((12)[F; = FENUT2) E3]) (TTUTHI]e)
= (FENUT2)E,]o) (TIUTHI]e)
=accessFE[(UT2)F, e, T[(UT1)I]e)
= TI(UT2)F,)(UTH)]e
(iit)
lhs : T[E[&I]U]e = T [lookupEnwU I]e = T[(UT1)I]e
rhs : E[&I](U[U]e)

_ g[&l] (DL — TIUTD) L],
(L12)[F; — FELUT2)Fy]e)

= lookupEnv I = TIUTHLL,
(L12)[Fy — FEN(UT2)Fy]u) 1

= T(UTD)I]e
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(iv)

=T[E[+E]U]
= T [lookupStordJ (E[E]U)]e
=TI(UT12)F,)(E[E]V)]e
rhs : E[«EJU[U]e)
ey DU~ THOTOIL,
(12)[E = FE[UT2)Ej]e)

)
DL = TIUT) L],
(12)[F; — FE[UT2) F3]0) (ETETU[U]L))

= lookupStore

= (FENUT2)Fp]e) (E[E]UU]L))
= (FE[(UT2)F,]v) (TIE[EIUT) // by ind. via(1)
= acces&FE[(UT2)F, ], T[E[E]U]L)
=T[(UT2)F,)(E[E]U)]e
(v) T[E[E10p2 E5] U]
= T[E[E\]U op2, E[E]U]w
= T[E[E,]U] binop, (0p2,) T [E[E-]U]¢
= E[E](U[U]e) binop(op2) E[E,](U[U]e)
// by ind. via(1)
= E[E7 op2 B (UUT])
(vi) T[E[BE? B, : EJU]
— T[ite(B[BE]U, E[E:]U, E[E-]U)]e
= cond, (F[B[BE]U]:, T [E[EL]U]e, T[E[ E-]U]e)
— FIB[BEJU]: ? T[E[E]U]: : T[E[E]U]:
— BIBEJU[U) ? ELEUIUL) : EER]UIU])
// by ind. via(1) and(2)
=E[BE? E; : E5]J(U[U])
(2) (i) FIBITU]: = F[T]: = T = BITU[U])

243



244

(ii) F[B[F]|U]t = F[F]. = F = B[F]|(U[U]:)
(iii) F[B[E; rop Ex]U]
= F[E[EL]U rop; E[E,]U]w
= T[E[E1]U]. relopy (rop,) T[E[E]U]e
= E[E\]U[U]:) relop(rop) E[E>] U [U]:)
// by ind. via(1)
= B[ E, rop Ex](U[U])
(iv) F[B[-BEJU]:
= FI[=]1B[BE]U]:
= -F[B[BE U]
= -B[BE | (U[U]:) // by ind. via(2)
= B[-BE [(U[U])
(v) F[B[BE, bop BE]U]:
= F[B[BE,]JU bop, B[BE]U]:
= F[B[BE,;]U]: boolop, (bop, ) F[B[BE]U]¢
= B[BE,](U[U]:) boologbop) B[BE,](U[U]:)
// by ind. via(2)
= B[BE; bop BE](U[U]:)
Theorem 4.4For all s € Stmt,U € StructUpdate, and € LogicalStruct, the meaning @fs]U in
v (i.e.,U[Z[s]U].) is equivalent to running@ on s with an input state obtained frotd[U]:. That

is,

U[Z[s]U]e = Z[s]U[U]e).
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Proof:
(i) U[Z[I = ;U]

= U[updateStoré/ (lookupEnvU 1) (E[E]U)]e

= U[updateStoré/ ((UT1)I) (E[E]V)].
“|for )l
(UT2)[F, = (UT2)F)[(UTHT — E[EU]])
(@ )
UIUT2)[T[U[U])I] — TIEIEJ UV
memx
( )
// by Lem. B.1(1)
= updateStore (U[U]:)
(ElEIWUUTL)
=1I[I = E;Ju[U])

(wwnm
UIUT2)[@U U] )T — 5[[E]](U[[U]]L)J)
(lookupEnVU[U]¢) I)

(i) U[Z]*I = E;]U]v
= U[updateStord/ (E[IJU) (E[E]U)]e

‘| |
(UT2)[F, = (U1 F)EUU — E[EU]
(@), )
UTUT)TENINUUT)] — TIE[ENUIUT)]
) (unU]]m), )

UIUT2)[ETTUIU]e) — ELETUUT)]

// by Lem. B.1(1)

= updateStoréU/[U].) (E[I](U[U]e)) (E[E]U[U]e))
= 1[I = E;JU[U].)

o~ o~~~
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(iti) U[Z[S15:2]U]e)
= (U[Z[SD(Z[S:]U)]e)
= Z[S)(U[Z[S:]U]e) // by induction O
=Z[S:](Z[S:](U[U]e)) // by induction
=Z[S1S:](UU])

B.2 Correctness oWWLP

Lemma B.2 (Relationship of7 to 7, F to F, FE€ to FE)

(1) TITIT10T = TITUIUT)
(2) FIF[LIUT = Flel@IU])
(3) FE[FE[FE]U]. = FE[FE](U[U]L)

Proof: The three lemmas are simultaneously proved using strdehdaction on7’, o, andFE,
as shown below. Let’ be ({; < T;},{F; < FE;}). (Thus,T; = (U11)l; andFE; = (U12)F}.)
Let f be(:12)[F; — FE[FE;]].
(1) (i) T[T [JU]e = T [e] = conste) = T[] U[U])
(i)
lhs = T[T [I]U]: = T [lookupldU I]c = T[(UT1)I]e
ths = TIIIUUTe) = TUNAD U = TIT]d, £)
= lookupld((:T1)[Z; — T[T:]e], f) I
=T[UTHI]e
(4ii) T[T [Ty op2, To]U]:
=T[T[T]U op2, T[T:]U]e
— T[T[7,)U]: binop, (0p2,) T[T [T:]U]e
= T[Ti)[U].) binop, (op2;) TT:](U[U]:)
// by ind. via(1)
=TT, op2, To)(U[U]¢)



(iv) T[T [ite(p, T1, To) U]
= Tlite(Fo]U, T[T ]U, T [T2]U)]e
= cond, (F[F[e]U]e, T[T[11]U]e, T[T[1:]U]e)
= F[FlelUNe ? T[T [TV : T[T [T2]U]e
= Flel@U]e) ? TIL]UUT) - T U[U])
// by ind. via(1) and(2)
=Fle?T1 : TJU[U)
(v) T[T [FE(T)]U]:
= T[FE[FEJU(T[T]U)]e
= (FE[FEIFENUL(TITITIULe)
= (FE[FEJUIUI)NT[TT@U]))
// by ind. via(3)
= T[FE(D)]@U[U].)
(2) () FIFITIVL = FIT[ = T = FITIGUT)
(it) FIFIENUT = FIE]e = F = FIE[@U])
(i31) F[F[T} rop, To]U]e
= F[T[T1]U relop, (rop,) T [T:]U]¢
= T[T[T1]U]. relop, (rop,) T[T [T2] U]
= T[T )(U[U]e) relop,,(rop,) T[] (U[U]e)
// by ind. via(1)
= F[1y rop, To](U[U]e)
(i) FIF [V
= FI=F U]
= ~F[Fle:]U]e
= ~Fler]@[U]e) // by ind. via(2)
= Fl=]e]@[U]e)
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(v) F[Flp1 bopy, 2] U]
= F[F[¢1]U boolop, (bop, ) Fle]U]:
= F[F[¢:]U]e boolop, (bop, ) F[F[:]U]e
= Fle]([U]e) boolop, (bopy,) F ] (U[U]e)
// by ind. via(2)
= Fle1 bop, 2] (U[U])
(3) (4)
lhs= FE[FE[F]U].
= FE&[lookupldU FJ.
=FEN(UT2)F]¢
rhs= FE[F](U[U]e)
= FEIFI(( )L = T[T, £)
= lookupFuncld((¢11)[Z; — T[T3]:], f) F
=FEN(UT2)F]¢
(i) FE[FE[FES T, — T3]]U]e
= FENFEIFEU)TITIU = T[]V
= FENFEIFEU)UTITIT:)U]e = T[T[12]U]]
= FEFEJUU)T[NIU[U]:) — T[] U[U])]
// by ind. via(1)
= FE[FE[Th — To]J(U[U]e)
Theorem 4.9For any Stmt and Formulay, ¢ := F[](Z[s]Uq) is an acceptabléV LP formula
for ¢ with respect tes. O

Proof: For all. € LogicalStruct

FlW]e= FIFle)(Z[s]Ua)]e
= FlelU[Z[s]Ua]e) // by Lem.B.2
= Flel(Z[s]U[Uia]e)) // by Thm. 4.4
= Fle](Z]s]e)
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and therefore, by Defn. 4.8 [](Z[s]Ui) is an acceptableyLP formula for ¢ with respect to
S. O

B.3 Correctness of the Symbolic-Composition Primitive

We now show that the meaning @f{U,] U, is the composition of the meanings©f andU; .

Theorem 4.11For all Uy, U, € StructUpdate,

O Proof: LetU, = ({I; «— T;},{F; «— FE;}); let I, and F,, range ovelld andFuncld respec-

tively; and let. € LogicalStructbe an arbitrary logical structure.

U[[U[[UQ]]Ulﬂb

I TG a i AR
| \ (W12 — FE[FE JU3)

o L[ = (@) = TITJ]) L
| \{En = (U112)[F; — FE[FEIUL) F}

)Ty — TIO DI — TITITIU, )

ey = T D IR = TTU[UL])), )

// by Lem.B.2
@wmmmmemwmwm )
(UIU)12)[F; — FEFEIUITL)
— U U]



