
LEARNING FROM CODE AND NON-CODE ARTIFACTS

by

Jordan Henkel

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2022

Date of final oral examination: 05/26/2022

The dissertation is approved by the following members of the Final Oral Committee:
Thomas Reps, Professor, Computer Sciences
Aws Albarghouthi, Associate Professor, Computer Sciences
Loris D’Antoni, Associate Professor, Computer Sciences
Jiepu Jiang, Assistant Professor, Information School

© Copyright by Jordan Henkel 2022
All Rights Reserved

i

To my wife, Danielle

ii

acknowledgments

First and foremost, I’d like to thank my family for their unwavering support throughout
my years in graduate school. I thank Danielle, my wife, for believing in me and
supporting me (especially in these last two years). I thank my mother Marilyn and
my grandmother Helen for pushing me to be the best that I could be and supporting
me for so many years so that I could pursue this dream. I thank my father Terrell
for always believing in me and my work. I thank my uncle Tim and cousins Bob
and Matt for introducing me to computing and technology when I was younger. I
could not have asked for a better family and it is largely thanks to them that I have
completed this work.

This dissertation and all of my academic writing thus far has been greatly improved
and refined by the guidance of my advisor, Tom Reps. I want to thank Tom for his
willingness to work with a new student who (at the time) knew little about Program
Analysis, Software Engineering, and Machine Learning. Along with Tom, I would
also like to thank the rest of my committee (Aws Albarghouthi, Loris D’Antoni, and
Jiepu Jiang) for their time and consideration. I’d also like to thank the UW–Madison
PL/SE/Security faculty I’ve had the chance to interact (both current, former, and
visitors).

I especially thank Ben Liblit and Shuvendu Lahiri who were fantastic collaborators
and also mentors to me early in my graduate career. I want to thank Shuvendu for
jump-starting my career with a chance to intern at Microsoft Research. It was during
that internship that I met Chris Bird who would become yet another spectacular
mentor and supporter of my work. I credit Shuvendu and Chris with many of my
positive perceptions of Microsoft—without their support my career would have been
on a vastly different trajectory.

That summer at Microsoft Research was a transformative summer for me, and I
met many interns who inspired and motivated me: Chungha Sung, Danielle Gonzalez,
Foyzul Hassan, Jose Abel Castellanos, James Davis, and many others. I also remember
fondly how encouraging and kind the other researchers were. In particular, I wish
to thank Tom Zimmermann for organizing fun outings for us RiSE interns; to this

iii

day I remember Throw Throw Burrito, good ramen, baseball, and matching shirts
that have held up surprisingly well throughout the years! I’d also like to thank Nachi
Nagappan, Chetan Bansal, Ben Zorn, Thomas Ball, Madan Musuvathi, and the whole
group at Microsoft Research for an incredible summer.

Less than a year later I had an opportunity, again, to work with Microsoft. I
remember interviewing with Brian Kroth and Rathijit Sen at a local coffee shop
and being elated to have the opportunity to intern again, but in Madison instead
of Redmond (unbeknownst to me, COVID would happen, and everyone would be
interning at home, regardless of location). That second summer at Microsoft, while
less social, was still incredible. I want to thank Brian for proving to be another
amazing mentor and supporting my work; the summer after, I returned to work with
Brian again, and I was also fortunate to meet Venkatesh Emani and have him as a
yet another collaborator and mentor.

The two summers I spent at Microsoft’s Gray Systems Lab were full of wonderful
people and I’m beyond thrilled to join the team post-graduation. I want to thank
Raghu Ramakrishnan, Carlo Curino, and Avrillia Floutara for believing in my work
as an intern enough to welcome me to the group as a full-time employee. I’d also like
to thank everyone at the GSL for making me feel welcome during my two (virtual)
summers (no easy task given the burden COVID imposed on everyone’s lives).

At one point, early in my graduate career, I submitted an entry to a Machine
Learning for Code Repair competition. It was just a few months later that I found out
I had won and would be traveling to Stockholm (my first time leaving the county) to
speak at the KTH Royal Institute of Technology. I’d like to thank Martin Monperrus
and Zimin Chen for organizing that competition. Martin gave me my first opportunity
as a graduate student to leave the US and talk about my research abroad, and for
that I am truly grateful.

Later in my graduate career, Marcelo d’Amorim reached out to collaborate. It was
through Marcelo that I had the chance to work with Leopoldo Teixeria and Denini
Silva who were also wonderful collaborators. I want to thank Marcelo, Leopoldo,
Denini, and all of my other collaborators I wrote with throughout graduate school
(Tom, Ben, Shuvendu, Chris, Somesh, Aws, and Zi).

iv

I also want to thank the graduate students that went before me: Peter Ohmann,
Venkatesh Srinivasan, Tushar Sharma, Calvin Smith, Dave Brown, Alisa Maas, Kausik
Subramanian, Sam Drews, Qinheping Hu, and Jinman Zhao. They welcomed me
into the group as a new student and helped make the PL group a fun place to be.
In particular, I’d like to thank my graduate student “brothers” John Cyphert and
Jason Breck—I cannot imagine how drastically different (and un-fun) my experience
could have been without their friendship and support—I especially appreciated their
willingness to eat (occasionally sketchy) lunches at new local restaurants (my favorite
past time). It is hard to overstate the impact true friends can make on a graduate
journey.

Finally, I wish to thank my friends Sam Bald, Scarlett Pisarek, Stephanie Blumer
and Logan Stevens who have all, on occasion, had to listen to me drone on about what
I’ve been working on. I also thank the current graduate students I had the chance to
interact with: Wiley Corning, Zi Wang, Michael Vaughn, and David Merrell.

This research was supported, in part, by AFRL under DARPA MUSE award
FA8750-14-2-0270 and DARPA STAC award FA8750-15-C-0082; by Facebook under
two Probability and Programming Research Awards; by ONR under grants N00014-
17-1-2889 and N00014-19-2318; by NSF under grants CCF-1318489, CCF-1420866,
and CCF-1423237; and by the Microsoft Research Ph.D. Fellowship. Any opinions,
findings, and conclusions or recommendations expressed in this publication are those
of the authors, and do not necessarily reflect the views of the sponsoring agencies.

v

contents

Contents v

List of Tables viii

List of Figures ix

Abstract xi

1 Introduction 1
1.1 Motivation . 3
1.2 Contributions . 6
1.3 Thesis Outline . 8
1.4 Notes . 9

2 Code Vectors 10
2.1 Introduction . 10
2.2 Overview . 15
2.3 Technique . 17
2.4 Experiments . 23
2.5 Related Work . 38
2.6 Future Work . 39
2.7 Notes . 39

3 Open World Mining 41
3.1 Introduction . 41
3.2 Overview . 45
3.3 Technique . 50
3.4 Experiments . 60
3.5 Related Work . 69
3.6 Future Work . 72

vi

3.7 Notes . 72

4 Semantic Robustness 73
4.1 Introduction . 73
4.2 Semantic Robustness . 80
4.3 Framework . 83
4.4 Comparable Techniques . 90
4.5 Experiments . 92
4.6 Related Work . 103
4.7 Future Work . 105
4.8 Notes . 106

5 Dockerfile Mining 107
5.1 Introduction . 107
5.2 Dataset . 113
5.3 Technique . 115
5.4 Experiments . 128
5.5 Related Work . 134
5.6 Future Work . 136
5.7 Notes . 137

6 Dockerfile Repair 138
6.1 Introduction . 138
6.2 Sources of Build Failures . 142
6.3 Dataset . 146
6.4 Technique . 148
6.5 Experiments . 155
6.6 Related Work . 166
6.7 Future Work . 170
6.8 Notes . 170

7 code-book 171

vii

7.1 Introduction . 171
7.2 Query Language . 173
7.3 Case Studies . 194
7.4 Related Work . 198
7.5 Future Work . 198
7.6 Notes . 199

8 Conclusion 202
8.1 Contributions . 202
8.2 Limitations . 205
8.3 The Impact of Large Language Models 206
8.4 Concluding Remarks . 207
8.5 Notes . 208

A Analogy Suite: Representative Pairs 209

References 210

viii

list of tables

2.1 Analogy Suite Details . 24
2.2 Top-5 closest words to affs_bread and kzalloc 29

3.1 Grid search parameters . 61
3.2 Best scoring configurations for each of the five target projects 64
3.3 DAC compared to off-the-shelf techniques 65
3.4 DAC compared to off-the-shelf techniques (boosted) 65
3.5 A comparison of word-vector learners and sampling techniques 67

4.1 Single attack efficacy (with random/gradient resolution) 94
4.2 A comparison of models trained using three different pipelines 96
4.3 F1 across normal/robust models on out-of-distribution test sets 100
4.4 F1 (seq2seq) on the Java to Python cross-language transfer task 102
4.5 F1 (seq2seq) on the Python to Java cross-language transfer task 102

5.1 Detailed breakdown of the Gold Rules 119

6.1 Selected Repairs . 153
6.2 Selected Suggestions . 154
6.3 Repair Coverage . 163
6.4 Accepted Pull Requests. 167

A.1 Analogy Suite: Representative Pairs 209

ix

list of figures

2.1 An example procedure . 16
2.2 Traces from the symbolic execution of the procedure in Fig. 2.1 16
2.3 Result of abstracting the two traces in Fig. 2.2b 17
2.4 Example derivations for selected abstractions 18
2.5 Sample procedure with generated abstractions shown as comments . . . 20
2.6 Encoding of abstractions . 22
2.7 Traces for Fig. 2.5 generated by the encoding from Fig. 2.6 22
2.8 Excerpt from nv17_fence.c . 26
2.9 Ablation study: top-1 analogy results for eight configurations 32
2.10 Top-1 analogy results for syntactic versus semantic abstractions 35

3.1 Overview of the ml4spec toolchain . 46
3.2 Example procedure and corresponding trace 48
3.3 Clusters generated via Domain-Adapted Clustering (DAC) 49
3.4 Example specifications (mined from projected traces) 51
3.5 Comparison between two clusters . 62
3.6 Peak benchmark performance for varying values of α 69

4.1 Example function with edits that fool code2seq 75
4.2 A comparison of normal/robust models against various adversaries . . . 98

5.1 An overview of the binnacle toolset 113
5.2 Dockerfile at each of the three phases of our phased-parsing technique . 116
5.3 Three example Tree Association Rules (TARs) 120
5.4 A depiction of rule mining in binnacle via frequent sub-tree mining . . 121
5.5 An example of the abstraction process 122
5.6 binnacle’s rule engine applied to an example Dockerfile 123
5.7 Density histograms showing the distributions of our three metrics . . . 126
5.8 Four examples of actual rules recovered by binnacle’s miner 129

x

6.1 Solving python-pip unavailable on ubuntu:latest 144
6.2 Dockerfile with inconsistent Ruby version dependencies 145
6.3 An overview of Shipwright . 146
6.4 An overview of clustering in Shipwright 148
6.5 Proportion of different kinds of solutions within each cluster 159
6.6 Breakdown of the 20,526 files we attempted to build 160

7.1 A (high level) grammar for code-book queries 181
7.2 A grammar for textual constraint in code-book queries 182
7.3 A grammar for code-book’s unless construct 183
7.4 A grammar for code-book’s if-guard construct 183
7.5 code-book’s full code-snippet grammar 184
7.6 The second code-book prototype . 201
7.7 The second code-book prototype (QBE-style query language) 201

8.1 Links to various tools and datasets . 207

xi

abstract

Three things are fundamentally true about software: (i) every day that passes we,
as a society, generate more software (more code, more documentation, and more
software-related artifacts of all kinds), (ii) it is easier to write new software than it
is to understand and maintain existing software, and (iii) we depend on software in
every area of our lives (from critical infrastructure to entertainment and everything in
between). These three fundamental truths set the stage for one massive problem: if
there is more software every day, and it is hard to understand and maintain, how can
we ever “keep up” with this unbounded growth? How can we ever truly understand
the software we depend on if we are adding to it every single day?

In this thesis, we provide new ideas and tools that help with some of these
issues. More specifically, this thesis takes the position that we need tools and
techniques for understanding and learning from software. To do this, we consider
software to be a composite of source code and other, non-code, artifacts (build scripts,
documentation, etc.). We introduce techniques for working with both code and
non-code artifacts; for code, we introduce a form of code embeddings (learned from a
semantic representation of code: abstracted symbol traces); we then create a novel
specification mining technique that uses these semantic code embeddings; additionally,
we explore the robustness of models of code; and, to address non-code artifacts, we
mine tree-association rules from Dockerfiles, from which we learn best practices;
we take these learned best practices and create a human-in-the-loop technique for
automated repair of Dockerfiles.

Finally, to accelerate empirical research on software and lay a groundwork for
a more comprehensive solution to trusting the growing amount of software we—as
a society—create, we introduce code-book. code-book is a tool for interactively
querying and analyzing code inspired by the great successes of the Data Science
community. With code-book, we introduce a novel query-by-example-based query
language for asking questions about code. Furthermore, we develop this query
language so that users can ask questions that incorporate both code structure and
“fuzzy” semantic constraints (based on code embeddings).

1

1 introduction

This is the beginning. How should we start?

GPT-3: We should start by introducing ourselves.

Alright, I’m Jordan and this is my thesis about learning from code and
non-code artifacts. What next?

GPT-3: Well, we need to establish what our research question is. For this
project, our question is: How can we learn from code and non-code artifacts?

Sounds good enough, I’ll have quite a bit to say about your question in the
next 200 pages. Shall we begin?

GPT-3: Yes, let’s begin.

A dialogue with OpenAI’s GPT-31

This thesis is written from the bottom of a pit: the nearly bottomless pit of
ever-expanding software that powers the digital and physical world. Our growing
dependence on software is, already, concerning (and many theses have been written
on that topic)—but, what’s even more concerning is the runaway pace at which we
create more software. Every single day there is more software in this world than there
was the previous day. There are many reasons for the explosive growth of software,
but one reason in particular stands out: software is easier to write than it is to read,
understand, and maintain.

This growth fuels a need for tools and techniques that assist humans in under-
standing and maintaining software. However, before we can discuss such tools and
techniques, we must discuss what software is. Modern software is an assemblage of
several heterogenous artifacts but, primarily, we will treat software as a combination

1GPT-3’s outputs are presented unedited. To generate these dialogs, a good deal of “prompt
engineering” was used (e.g., trying different wording for questions, changing temperature settings,
asking questions in separate sessions, etc.).

2

of two distinct classes of artifacts: code and non-code artifacts. When we speak of
code artifacts (or, simply, code) we will be referring to the source code of a given
piece of software. When we speak of non-code artifacts we will be referring to things
such as configuration files, infrastructure-related artifacts (like Dockerfiles), and
documentation.

In this dissertation, we explore techniques for learning from both code and non-
code artifacts. First, we introduce a novel technique for learning from code using code
embeddings and a form of lightweight symbolic execution; next, we build on this work
by exploring a technique for mining specifications that leverages the learned code
embeddings. Additionally, we consider key questions about the robustness of models
learned from code. Switching to the domain of non-code artifacts, we present a novel
technique for learning from Dockerfiles; again, we build on this work by exploring a
human-in-the-loop system for repairing Dockerfiles. Finally, we set our sights higher
and explore how all of the previous works could have been accelerated by introducing
support for data science on code.

This last idea, of supporting data science on code, is perhaps the most important
idea in this thesis. Every piece of work we examine, and every experiment we report,
has required some amount of bespoke infrastructure. This is the nature of research on
software; however, the need for custom tooling and data makes research on software
an onerous and time-consuming process. We aspire to improve this situation and
make research on software as easy and intuitive as research on other, more traditional,
data sources.

To accelerate research on software, we borrow from the Data Science community
and their notebook-based interactive ecosystem. We introduce a similar notebook-
based ecosystem for asking questions about code—more specifically, we introduce a
novel system for code queries that: (i) works at scale, (ii) uses a beginner-friendly
query-by-example-style language, and (iii) uses embeddings to allow for queries mixing
code structure and “fuzzy” semantic constraints. We label this system code-book.

Although my work on code-book is ongoing, I believe it to be a critical next step
in accelerating many common tasks in software engineering research. Furthermore, I
think of code-book as, in some sense, my vision for a “ladder” we can use to ascend

3

from the nearly bottomless pit of software. My hope is that, with code-book, we can
make understanding and interacting with existing software nearly as easy as writing
new software.

1.1 Motivation

The whole of this thesis is really about ascending from the nearly “bottomless pit”
of ever-expanding software; however, we approach this ascent in small and discrete
steps. With this frame of reference, we motivate each of these steps as follows:

Step 1: Code Vectors

In Chapter 2, we first tackle the problem of understanding a large amount of existing
code. Specifically, we attempt to learn from the Linux kernel. Although the source
code of the Linux kernel is text, it is more than mere prose: it must conform to
the syntax of the languages it is written in and those languages endow that text
with a semantics. Furthermore, that text can be translated into a large number of
heterogenous representations (Concrete Syntax Trees, Abstract Syntax Trees, Control
Flow Graphs, Call Graphs, Def-Use Chains, etc.).

Prior to the work we introduce in Chapter 2, there were many attempts to
apply off-the-shelf learning algorithms to code—those attempts often treated the
code as text or used a representation of code that was quite similar to plain text.
There were also a small number of attempts to use more structural representations
(such as Abstract Syntax Trees). Instead of trying to refine any of the previous
approaches, we introduced a novel technique based on word embeddings (a popular
off-the-shelf learning algorithm); we learned these embeddings from a representation
that incorporated the semantics of code (something far from the code as text).

Step 2: Open-World Mining

As software continues to grow, so do the number of libraries and frameworks. These
libraries and frameworks make their functionality available to downstream users

4

through Application Programming Interfaces (APIs). Although some APIs may
be simple, many APIs offer a large range of operations over complex structures.
Furthermore, staying within the correct usage patterns for a given API can require
domain-specific knowledge about the API and its idiosyncratic behaviors. This burden
is often worsened by insufficient documentation and explanatory materials.

In Chapter 3, we consider how the code embeddings we produce in Chapter 2
can be leveraged to create something else of value: specifications (usage patterns).
We seek to infer such patterns automatically by learning from a large corpus of
existing code. To do so, we use both the idea of code embeddings and ideas from
traditional static mining techniques. We find that combining traditional techniques
with learning-assisted metrics creates better results than either approach in isolation.

Step 3: Semantic Robustness

As we take two small steps out of “the pit,” we must carefully consider the implications
of learning from code. Unlike traditional techniques, approaches involving learning
are often hard to understand—learned models or embeddings are somewhat opaque
to human intuition. In Chapter 4, we consider a key question about models learned
from code: are models of code robust?

Why might we want robust models of code? There are many answers, ranging from
usability to security. Consider, for instance, a model that explains in English what
a piece of code is doing—the code-captioning task. A developer using such a model
to navigate a new code base should not receive completely different explanations
for similar pieces of code. Models that change their outputs based on irrelevant
details are over-sensitive (and under-robust). In Chapter 4, we thoroughly explore the
question of robustness for two models of code, and create a framework for answering
such questions about other models more quickly (by providing tools, data, and a
controllable environment for consistent evaluations).

5

Step 4: Dockerfile Mining

After having taken three small steps toward learning from code (by producing
embeddings, mining specifications, and understanding the robustness of learned
models), we pivot to non-code artifacts. Specifically, our fourth step out of “the
pit” will be to examine Dockerfiles. Docker is a system for lightweight virtualization
via containers. Docker containers are built from images, which are, in essence, a
declarative list of instructions used to specify a reproducible environment. The text file
that contains this list of instructions is termed a Dockerfile. Historically, Dockerfiles
had been somewhat neglected in both industrial and academic research. This lack of
attention left us with a unique opportunity to try and apply our techniques and ideas
for analyzing code on a non-code artifact in an area where little prior work existed.

In Chapter 5, we introduce a toolchain for semantics-aware Dockerfile verification
and unsupervised rule mining. Given that Dockerfiles are one of the most prevalent
non-code infrastructure-related artifacts in industry, we focus our toolchain towards
reliable techniques that require little-to-no human intervention. We find that our
expertise from work on code only partially translates to this new domain and that
different techniques are needed to make the most of non-code artifacts such as
Dockerfiles.

Step 5: Repairing Dockerfiles

What it would take to go past simply identifying issues in Dockerfiles? One clear
way to surpass basic identification is to repair automatically files that are verifiably
broken. (“Broken,” in this context, means either non-functional or non-compliant
with established best practices.)

In Chapter 6, we produce a human-in-the-loop tool for automated repair of
Dockerfiles. Similar to Chapter 3, we use a mix of learning-assisted techniques and
traditional techniques to produce a tool that works robustly. In this work, we also
make our first attempt to validate our results in the wild by directly submitting
GitHub pull requests generated by our prototype.

6

Plans for a ladder: code-book

Finally, we end this thesis by discussing preliminary (and ongoing) work towards
a vision for data science on code. This last piece of work is a significant step past
any of the other work discussed thus far. In a world where the amount of software
is increasing each day, we need a platform for accelerating the kind of work done
in Chapters 2, 3, 5, and 6. Therefore, in Chapter 7, we set out to mirror the
stellar tooling created by the Data Science community and apply it to the domain of
Empirical Software Engineering research. To do this, we ask (and provide on answer
for) the question: what would Data Science look like for code?

1.2 Contributions

Given the focus of this thesis (learning from code and non-code artifacts), we group
our contributions into three distinct categories: (i) contributions to learning from
code, (ii) contributions to learning from non-code artifacts, and (iii) contributions
to software-engineering research. In general, many of our contributions come in the
form of new techniques (with supporting experimental evidence), and new tools and
accompanying datasets (which, unless explicitly noted, are publicly available).

Contributions to learning from code

We introduce a novel technique for learning from code via code embeddings. These
code embeddings are learned from abstract symbolic traces and, to capture such traces,
we introduced a new tool for lightweight symbolic execution of C programs (that is
capable of scaling to programs as large as the Linux kernel). The symbolic execution
engine we created is parametric and capable of utilizing user-defined abstractions to
influence the vocabulary of the generated traces. We also supply a new benchmark
of code analogies gleaned from the Linux kernel. We achieve 93% top-1 accuracy on
this benchmark using our learned embeddings, as well as 76% top-3 accuracy on the
downstream task of predicting error codes for failing traces extracted from the Linux
kernel.

7

Taking the idea of code embeddings and the parametric lightweight symbolic
execution engine we designed, we devised a novel approach to specification mining
for code. The approach we introduce utilizes a mix of both traditional metrics and
learned metrics to create a method that is more robust than either the traditional
or learned approaches are in isolation. Furthermore, we performed a comparison of
three of the most popular word-vector learners and three different trace sampling
techniques to provide a definitive reference for practitioners looking to learn from
symbolic traces.

Finally, we round out our contributions to learning from code by looking at the
robustness of models of code. In this area, we developed a novel framework for creating
controllable adversaries to test the robustness of models of code. We also devised
a new technique for training robust models of code. Additionally, we present the
first results (to the best of our knowledge) on how robust models of code perform on
out-of-distribution data, and how they adapt across different programming languages.

Contributions to learning from non-code artifacts

In the realm of non-code artifacts, we focus our contributions on Dockerfiles (because
they are one of the most prevalent non-code infrastructure-related artifacts used in
industry). First, we developed a technique for parsing Dockerfiles, called phased
parsing, that accounts for the deeply-nested languages used within infrastructure-
related artifacts such as Dockerfiles. Using our parsing technique, we created a
dataset of over two-hundred-thousand Dockerfiles downloaded from GitHub with
corresponding Abstract Syntax Trees (generated by our parser). We made this
dataset available to the community along with our parsing technique. Furthermore,
we introduced a novel mining technique capable of extracting best practices (in the
form tree-association rules) from a corpus of Dockerfiles. We used this technique on
our dataset and automatically extracted 26 tree-association rules of which 16 were
new rules we had not discovered via manual analysis. Additionally, we developed a
static-checking engine capable of applying tree-association rules to Dockerfiles (and
other tree-structured non-code artifacts). Using this checking engine we found that,

8

to our surprise, a sample of Dockerfiles written by developers in industry were worse,
on average, than those found “in the wild” on GitHub.

Finally, we pivot from simply detecting issues (via mined patterns) to performing
semi-automated repair. We do this by introducing a novel human-in-the-loop technique
for Dockerfile repair. We applied this technique to broken Dockerfiles and submitted
the results to several open-source repositories as pull requests. Out of 45 submitted
requests we had 19 requests accepted and integrated. We also summarized our
experience by classifying the kinds of failures in Dockerfiles.

Contributions to the field at large

Our last contribution is to the field of software-engineering research: as a way to
support the idea of Data Science on Code, we developed a tool called code-book.
With code-book, we introduce the idea of interactive and iterative code querying.
We also devised a novel language for expressing code queries based on the Query-by-
Example paradigm. Although our work on code-book is ongoing, we hope that the
idea of Data Science on Code—and the prototype implementation of a notebook-based
environment for querying and interacting with code—are valuable additions to the
software-engineering research community.

1.3 Thesis Outline

Chapter 2 introduces “Code Vectors,” a technique for learning embeddings from
abstracted symbolic traces (generated by a lightweight symbolic-execution engine).
In Chapter 3, we build on the ability to learn embeddings from code by mining
specifications from abstracted symbolic traces using a combination of traditional
and learned metrics. In Chapter 4, we investigate the robustness of models learned
from code and explore how adversaries based on semantics-preserving transforms
impact popular models of code (and, furthermore, how one can use such adversaries
to train robust models). Starting in Chapter 5, we pivot to an exploration of non-code
artifacts (specifically, Dockerfiles); in Chapter 5 we introduce a technique for mining

9

from a corpus of Dockerfiles and extracting best-practices. In Chapter 6, we build
upon our work on mining and validating best practices in Dockerfiles by introducing
a human-in-the-loop system for automated repair of broken Dockerfiles. Stepping
back from specific techniques, in Chapter 7, we introduce code-book: a framework
for applying the best ideas from the Data Science community to software-engineering
research. Finally, in Chapter 8 we present some closing thoughts.

1.4 Notes

Here we are at the beginning. I have spent many hundreds of hours thinking about
what I would put in my thesis. Unfortunately, out of those hundreds of hours I had
not thought much about how to begin the thesis. Given this, I spent much of my time
writing everything but this introduction. But, in the end, perhaps this is the best
approach. I think the topic of learning from code is important and, since I started
this work about five years ago, so many things have changed. We have large language
models. We have the “bitter lesson,” which tells us how techniques that can leverage
compute will almost always outpace techniques which rely on human cleverness in
design and implementation. Most of all, we have the perspective of five years worth
of continued research and development toward techniques that learn from all kinds of
structured data, not just code. I think the next decade will be an incredibly exciting
time to be thinking about learning from code and, more generally, learning from
complex structured representations of data.

10

2 code vectors

If one wishes to learn from code (that is, to apply modern learning
algorithms) what representation of code should one use?

GPT-3: There is no single answer to this question. It depends on the specific
learning task and on the specific data set. Some learning tasks may be better
suited to a bag-of-words representation, while others may be better suited to
an AST representation. There is no general rule that applies to all learning
tasks.

Sure, but why don’t we just use a program’s text?

GPT-3: A program’s text is not a very good representation for learning from
code. This is because the text does not contain any information about the
structure of the code. A bag-of-words representation or an AST
representation is a better choice for learning from code, because these
representations capture the structure of the code.

That’s insightful but, unfortunately, your existence directly contradicts the
last statement you made.

GPT-3: I’m sorry, I don’t understand what you mean.

A dialogue with OpenAI’s GPT-3

2.1 Introduction

As we explore methods to learn from both code and non-code artifacts, we will begin
by considering code and the challenges one encounters trying to learn from code.
Once we have developed methods for learning from code, we will describe techniques
that build upon these methods (downstream applications), and we will examine how
the learned models behave.

11

2.1.1 Motivation

Code is an interesting artifact to study. We write code as text but that text is more
than mere prose: it must conform to the syntax of the language we are writing in;
moreover, the code we’ve written (as text) has a semantics defined by the language
we are writing in. Finally, when it comes to working with code, we employ a large
number of heterogenous representations (Concrete Syntax Trees, Abstract Syntax
Trees, Control Flow Graphs, Call Graphs, Def-Use Chains, etc.).

Given the plethora of available representations for code, we pose the following
motivating question:

Motivating Question

If one wishes to learn from code (that is, to apply modern learning algorithms)
what representation of code should one use?

Prior to this work, there were many attempts to apply off-the-shelf learning
algorithms to code, and to use representations of the code that were close to plain
text. There were also a smaller number of attempts to learn from program structure
(by using representations derived from a program’s Abstract Syntax Tree). We will
examine how word embeddings (a popular off-the-shelf learning algorithm) can be
applied to a very semantic representation of code (something far from the text of the
program from which we wish to learn).

2.1.2 Goals

Word embeddings are a well-studied method for converting a corpus of natural-
language text to vector representations of words embedded into a low-dimensional
space. These techniques have been applied successfully to programs before (Nguyen
et al., 2017b; Pradel and Sen, 2017; Gu et al., 2016), but different encodings of pro-
grams into word sequences are possible, and some encodings may be more appropriate
than others as the input to a word-vector learner.

12

The high-level goals of our work can be stated as follows:

Goals

Devise a parametric encoding of programs into word sequences that (i) can
be tuned to capture different representation choices on the spectrum from
(mainly) syntactic to (mainly) semantic, (ii) is amenable to word-vector-learning
techniques, and (iii) can be obtained from programs efficiently.

We satisfy high-level goals (i) and (iii) by basing the encoding on a lightweight
form of intraprocedural symbolic execution.

• We base our technique on symbolic execution due to the gap between syntax
(e.g., tokens or abstract syntax trees (ASTs)) and the semantics of a procedure in
a program. In particular, token-based techniques impose a heavy burden on the
embedding learner. For instance, it is difficult to encode the equivalence between
constructions such as a == b and !(a != b) via a learned, low-dimensional
embedding (Allamanis et al., 2016a).

• Our method is intraprocedural so that different procedures can be processed in
parallel.

• Our method is parametric in the sense that we introduce a level of mapping
from symbolic-execution traces to the word sequences that are input to the
word-vector learner. (We call these abstraction mappings or abstractions, al-
though strictly speaking they are not abstractions in the sense of abstract
interpretation (Cousot and Cousot, 1977).) Different abstraction mappings can
be used to extract different word sequences that are in different positions on
the spectrum of (mainly) syntactic to (mainly) semantic.

We have developed a highly parallelizable toolchain that is capable of producing a
parametric encoding of programs to word sequences. For instance, we can process

13

311,670 procedures in the Linux kernel1 in 4 hours,2 using a 64-core workstation (4
CPUs each clocked at 2.3 GHz) running CentOS 7.4 with 252 GB of RAM.

After we present our infrastructure for generating parametric encodings of pro-
grams as word sequences (Section 2.2), there are a number of natural research
questions that we consider.

First, we explore the utility of embeddings learned from our toolchain:

Research Question # 1

Are vectors learned from abstracted symbolic traces encoding useful information?

Judging utility is a difficult endeavor. Natural-language embeddings have the
advantage of being compatible with several canonical benchmarks for word-similarity
prediction or analogy solving (Zweig and Burges, 2011; Finkelstein et al., 2001; Luong
et al., 2013; Szumlanski et al., 2013; Hill et al., 2015; Rubenstein and Goodenough,
1965; Mikolov et al., 2013a). In the domain of program understanding, no such
canonical benchmarks exist. Therefore, we designed a suite of over nineteen thousand
code analogies to aid in the evaluation of our learned vectors.

Next, we examine the impact of different parameterizations of our toolchain by
performing an ablation study. The purpose of this study is to answer the following
question:

Research Question # 2

Which abstractions produce the best program encodings for word-vector learning?

There are several examples of learning from syntactic artifacts, such as ASTs
or tokens. The success of such techniques raises the question of whether adding

1We used a prerelease of Linux 4.3 (commit fd7cd061adcf5f7503515ba52b6a724642a839c8 in
the GitHub Linux kernel repository).

2During trace generation, we exclude only vhash_update, from crypto/vmac.c, due to its size.

https://github.com/torvalds/linux/tree/fd7cd061adcf5f7503515ba52b6a724642a839c8

14

a symbolic-execution engine to the toolchain improves the quality of our learned
representations.

Research Question # 3

Do abstracted symbolic traces at the semantic end of the spectrum provide more
utility as the input to a word-vector-learning technique compared to ones at the
syntactic end of the spectrum?

Because our suite of analogies is only a proxy for utility in more complex down-
stream tasks that use learned embeddings, we pose one more question:

Research Question # 4

Can we use pre-trained word-vector embeddings on a downstream task?

2.1.3 Contributions

We created a toolchain for taking a program or corpus of programs and producing
intraprocedural symbolic traces. The toolchain is based on Docker containers, is
parametric, and operates in a massively parallel manner. Our symbolic-execution
engine prioritizes the amount of data generated over the precision of the analysis: in
particular, no feasibility checking is performed, and no memory model is used during
symbolic execution.

We generated several datasets of abstracted symbolic traces from the Linux
kernel. These datasets feature different parameterizations (abstractions), and are
stored in a format suitable for off-the-shelf word-vector learners.

We created a benchmark suite of over 19,000 API-usage analogies.

We report on several experiments using these datasets:

• For RQ1, we tested our approach and found that our learned vectors achieved
93% top-1 accuracy on a suite of over 19,000 analogies we developed.

15

• For RQ2, we performed an ablation study to assess the effects of different
abstractions on the learned vectors; we found that taking away any of the
abstractions we’ve selected reduces performance.

• For RQ3, we found that vectors learned from (mainly) semantic abstractions
can provide nearly triple the accuracy of vectors learned from (mainly) syntactic
abstractions.

• For RQ4, we learned a model of a specific program behavior (which error a
trace is likely to return), and found that we could apply the model in a case
study to confirm actual bugs found via traditional static analysis tools.

2.2 Overview

Our toolchain consists of three phases: transformation, abstraction, and learning.
As input, the toolchain expects a corpus of buildable C projects, a description of
abstractions to use, and a word-vector learner. As output, the toolchain produces an
embedding of abstract tokens to double-precision vectors with a fixed, user-supplied,
dimension. We illustrate this process as applied to the example in Fig. 2.1.

Phase I: Transformation. The first phase of the toolchain enumerates all paths
in each source procedure. We begin by unrolling (and truncating) each loop so that
its body is executed zero or one time(s), thereby making each procedure loop-free
at the cost of discarding many feasible traces. We then apply an intraprocedural
symbolic executor to each procedure. Fig. 2.2 shows the results of this process as
applied to the example code in Fig. 2.1.

Phase II: Abstraction. Given a user-defined set of abstractions, the second
phase of our toolchain leverages the information gleaned from symbolic execution to
generate abstracted traces. One key advantage of performing some kind of abstraction
is a drastic reduction in the number of possible tokens that appear in the traces.
Consider the transformed trace in Fig. 2.2b. If we want to understand the relationship
between allocators and certain error codes, then we might abstract procedure calls as

16

1 int example() {
2 buf = alloc(12);
3

4 if (buf != 0) {
5 bar(buf);
6 free(buf);
7 return 0;
8 } else {
9 return -ENOMEM;
10 }
11 }

Figure 2.1: An example procedure

1 call alloc(12);
2 assume alloc(12) != 0;
3 call bar(alloc(12));
4 call free(alloc(12));
5 return 0;

(a) Trace 1

1 call alloc(12);
2 assume alloc(12) == 0;
3 return -ENOMEM;

(b) Trace 2

Figure 2.2: Traces from the symbolic
execution of the procedure in Fig. 2.1

parameterized tokens of the form Called(callee); comparisons of returned values to
constants as parameterized RetEq(callee, value) tokens; and returned error codes
as parameterized RetError(code) tokens. Fig. 2.3 shows the result of applying these
abstractions to the traces from Fig. 2.2.

Phase III: Learning. Our abstracted representation discards irrelevant details,
flattens control flows into sequential traces, and exposes key properties in the form
of parameterized tokens that capture domain information such as Linux error codes.
These qualities make abstracted traces suitable for use with a word-vector learner.
Word-vector learners place words that appear in similar contexts close together in an
embedding space. When applied to natural language, learned embeddings can answer
questions such as “Paris is to France as London is to what?” (Answer: England.)
Our goal is to learn embeddings that can answer questions such as:

• If a lock acquired by calling spin_lock is released by calling spin_unlock, then
how should I release a lock acquired by calling mutex_lock_nested? That is,
Called(spin_lock) is to Called(spin_unlock) as Called(mutex_lock_nested) is
to what?

17

1 Called(alloc)
2 RetNeq(alloc, 0)
3 Called(bar)
4 Called(free)

(a) Abstracted Trace 1

1 Called(alloc)
2 RetEq(alloc, 0)
3 RetError(ENOMEM)
4

(b) Abstracted Trace 2

Figure 2.3: Result of abstracting the two traces in Fig. 2.2b

(Answer: Called(mutex_unlock).)

• Which error code is most commonly used to report allocation failures? That is,
which RetError(code) is most related to RetEq(alloc, 0)?

(Answer: RetError(ENOMEM).)

• Which procedures and checks are most related to alloc?

(Answers: Called(free), RetNeq(alloc, 0), etc.)

The remainder of the chapter describes a framework of abstractions and a method-
ology of learning embeddings that can effectively solve these problems. Along the
way, we detail the challenges that arise in applying word embeddings to abstract
path-sensitive artifacts.

2.3 Technique

2.3.1 Abstractions

One difference between learning from programs and learning from natural language
is the size of the vocabulary in each domain. In natural language, vocabulary size
is bounded (e.g., by the words in a dictionary, ignoring issues like misspellings). In
programs, the vocabulary is essentially unlimited: due to identifier names, there are
a huge number of distinct words that can occur in a program. To address the issue of

18

call foo()

Called(foo)

call bar(foo())

ParamTo(bar, foo)

call foo(obj)
call bar(obj)

ParamShare(bar, foo)

return -C ∧ C ∈ ERR_CODES

RetError(ERR_CODES[C]), Error
return C ∧ C ̸∈ ERR_CODES

RetConst(C)

return foo()

PropRet(foo)

PropRet(PTR_ERR)

Error

assume foo() == 0

RetEq(foo, 0)

obj->foo.bar = baz

AccessPathStore(->foo.bar)

Figure 2.4: Example derivations for selected abstractions

vocabulary size, we perform an abstraction operation on symbolic traces, so that we
work with abstracted symbolic traces when learning word vectors from programs.

Abstracted Symbolic Traces

We now introduce the set of abstractions that we use to create abstracted symbolic
traces. Selected abstractions appear in the conclusions of the deduction rules shown
in Fig. 2.4. The abstractions fall into a few simple categories. The Called(callee)

and AccessPathStore(path) abstractions can be thought of as “events” that occur
during a trace. Abstractions like RetEq(callee, value) and Error serve to encode
the “status” of the current trace: they provide contextual information that can
modify the meaning of an “event” observed later in the trace. Near the end of the
trace, the RetError(code), RetConst(value), and PropRet(callee) abstractions provide
information about the result returned at the end of the trace. Taken together, these
different pieces of information abstract the trace; however, the abstracted trace is
still a relatively rich digest of the trace’s behavior.

With the abstractions described above, we found that the learned vectors were
sub-optimal. Our investigation revealed that some of the properties we hoped would
be learned required leveraging contextual information that was outside the “window”

19

that a word-vector learner was capable of observing. For example, to understand the
relationship between a pair of functions like lock and unlock, a word-vector learner
must be able to cope with an arbitrary number of words occurring between the
functions of interest. Such distances are a problem, because lengthening the history
given to a word-vector learner also increases the computational resources necessary
to learn good vectors.

Due to the impracticality of increasing the context given to a word-vector learner,
we introduced two additional abstractions: ParamTo and ParamShare. These abstrac-
tions encode the flow of data in the trace to make relevant contextual information
available without the need for arbitrarily large contexts. As shown in Section 2.4.2,
the abstractions that encode semantic information, such as dataflow facts, end up
adding the most utility to our corpus of abstracted traces. This observation is in line
with the results of Allamanis et al. (2017b), who found that dataflow edges positively
impact the performance of a learned model on downstream tasks.

We augment the abstractions shown in Fig. 2.4, with the following additional
abstractions, which are similar to the ones discussed above:

• RetNeq(callee, value), RetLessThan(callee, value), and others are variants of
the RetEq(callee, value) abstraction shown in Fig. 2.4.

• FunctionStart and FunctionEnd are abstractions introduced at the beginning
and end of each abstracted trace.

• AccessPathSensitive(path) is similar to AccessPathStore; it encodes any com-
plex field and array accesses that occur in assume statements.

Encoding Abstractions as Words

We now turn to how the encoding of these abstractions as words and sentences (to
form our trace corpus) can impact the utility of learned vectors. To aid the reader’s
understanding, we use a sample procedure and describe an end-to-end application of
our abstractions and encodings.

20

1 // SAMPLE // TRACE 1 // TRACE 2
2 // PROCEDURE // FunctionStart // FunctionStart
3 lock(&obj->lock); // Call(lock) // Call(lock)
4 foo = alloc(12); // Call(alloc) // Call(alloc)
5 if (foo != 0) { // RetNeq(alloc, 0) // .
6 obj->baz = // AccessPathStore(->baz) // .
7 bar(foo); // ParamTo(bar,alloc) // .
8 // Call(bar) // .
9 } else { // . // RetEq(alloc, 0)
10 unlock(// . // ParamShare(unlock,lock)
11 &obj->lock); // . // Call(unlock)
12 return -ENOMEM; // . // RetError(ENOMEM)
13 // . // Error
14 } // . // FunctionEnd
15 unlock(// ParamShare(unlock,lock)
16 &obj->lock); // Call(unlock)
17 return 0; // RetConst(0)
18 // FunctionEnd

Figure 2.5: Sample procedure with generated abstractions shown as comments

Fig. 2.5 shows a sample procedure along with its corresponding abstractions.
The number(s) before each abstraction signify which of the two paths through the
procedure the abstraction belongs to. To encode these abstractions as words, we
need to make careful choices as to what pieces of information are worthy of being
represented as words, and how this delineation affects the questions we can answer
using the learned vectors.

For instance, consider the RetNeq(alloc, 0) abstraction. There are several simple
ways to encode this information as a sequence of words:

1. RetNeq(alloc, 0) =⇒ alloc, $NEQ, 0

2. RetNeq(alloc, 0) =⇒ alloc, $NEQ_0

3. RetNeq(alloc, 0) =⇒ alloc_$NEQ, 0

4. RetNeq(alloc, 0) =⇒ alloc_$NEQ_0

21

Each of these four encodings comes with a different trade-off. The first encoding
splits the abstraction into several fine-grained words, which, in turn, reduces the size
of the overall vocabulary. This approach may benefit the learned vectors because
smaller vocabularies can be easier to work with. On the other hand, splitting the
information encoded in this abstraction into several words makes some questions
more difficult to ask. For example, it is much easier to ask what is most related to
alloc being not equal to zero when we have just a single word, alloc_$NEQ_0, to
capture such a scenario.

In our implementation, we use the fourth option. It proved difficult to ask
interesting questions when the abstractions were broken down into fine-grained words.
This decision did come with the cost of a larger vocabulary.3 Encodings for the rest
of our abstractions are shown in Fig. 2.6.4 The sentences generated by applying these
encodings to Fig. 2.5 are shown in Fig. 2.7.

2.3.2 Word2Vec

Word2Vec is a popular method for taking words and embedding them into a low-
dimensional vector space (Mikolov et al., 2013a). Instead of using a one-hot encoding—
where each element of a vector is associated with exactly one word—word2vec learns
a denser representation that captures meaningful syntactic and semantic regularities,
and encodes them in the cosine distance between words.

For our experiments, we used GloVe (Pennington et al., 2014b) due to its favorable
performance characteristics. GloVe works by leveraging the intuition that word-word
co-occurrence probabilities encode some form of meaning. A classic example is the
relationship between the word pair “ice” and “steam” and the word pair “solid” and
“gas.” Gas and steam occur in the same sentence relatively frequently, compared to the

3We mitigate the increase in vocabulary size from constructions like alloc_$NEQ_0 by restricting
the constants we look for. Our final implementation only looks for comparisons to constants in the
set {−2,−1, 0, 1, 2, 3, 4, 8, 16, 32, 64}.

4Because it is not possible to have ParamShare(X, Y) or ParamTo(X, Y) without a Called(X)

following them, the abstractions ParamShare(X, Y) and ParamTo(X, Y) are encoded as Y to avoid
duplicating X.

22

1 match abstraction with
2 | Called (x) -> x
3 | ParamTo (_,x) -> x
4 | ParamShare (_,x) -> x
5 | RetEq (x,c) -> x ^ "_$EQ_" ^ c
6 | RetNeq (x,c) -> x ^ "_$NEQ_" ^ c
7 | RetLessThan (x,c) -> x ^ "_$LT_" ^ c
8 | RetLessThanEq (x,c) -> x ^ "_$LTE_" ^ c
9 | RetGreaterThan (x,c) -> x ^ "_$GT_" ^ c
10 | RetGreaterThanEq (x,c) -> x ^ "_$GTE_" ^ c
11 | PropRet (x) -> "$RET_" ^ x
12 | RetConst (c) -> "$RET_" ^ c
13 | RetError (e) -> "$RET_" ^ ERR_CODES[e]
14 | FunctionStart -> "$START"
15 | FunctionEnd -> "$END"
16 | Error -> "$ERR"
17 | AccessPathStore (p) -> "!" ^ p
18 | AccessPathSensitive (p) -> "?" ^ p

Figure 2.6: Encoding of abstractions

$START lock alloc alloc_$NEQ_0 !->baz alloc bar lock unlock $RET_0 $END

(a) Trace 1

$START lock alloc alloc_$EQ_0 lock unlock $ERR $RET_ENOMEM $END

(b) Trace 2

Figure 2.7: Traces for Fig. 2.5 generated by the encoding from Fig. 2.6

23

frequency with which the words gas and ice occur in the same sentence. Consequently,
the following ratio is significantly less than 1:

Pr(gas | ice)
Pr(gas | steam)

If, instead, we look at the frequency of sentences with both solid and ice compared to
the frequency of sentences with both solid and steam, we find the opposite. The ratio

Pr(solid | ice)
Pr(solid | steam)

is much greater than 1. This signal is encoded into a large co-occurrence matrix.
GloVe then attempts to learn word vectors for which the dot-product of two vectors
is close to the logarithm of their probability of co-occurrence.

2.4 Experiments

2.4.1 RQ1: Are Learned Vectors Useful?

Research Question 1 asked whether vectors learned from abstracted symbolic traces
encode useful information. We assess utility via three experiments over word vectors.
Each of the following subsections describes and interprets one experiment in detail.

Experiment 1: Code Analogies

An interesting aspect of word vectors is their ability to express relationships between
analogous words using simple math and cosine distance. Encoding analogies is an
intriguing byproduct of a “good” embedding and, as such, analogies have become a
common proxy for the overall quality of learned word vectors.

No standard test suite for code analogies exists, so we created such a test
suite using a combination of manual inspection and automated search. The test
suite consists of twenty different categories, each of which has some number of
function pairs that have been determined to be analogous. For example, con-

24

Table 2.1: Analogy Suite Details

Type Category # Pairs Passing Tests Total Tests Accuracy
Calls 16 / 32 18 246 306 80.39%
Calls Add / Remove 9 72 72 100.00%
Calls Create / Destroy 19 302 342 88.30%
Calls Enable / Disable 62 3,577 3,782 94.58%
Calls Enter / Exit 12 122 132 92.42%
Calls In / Out 5 20 20 100.00%
Calls Inc / Dec 10 88 90 97.78%
Calls Input / Output 5 20 20 100.00%
Calls Join / Leave 4 8 12 66.67%
Calls Lock / Unlock 53 2,504 2,756 90.86%
Calls On / Off 19 303 342 88.60%
Calls Read / Write 64 3,950 4,032 97.97%
Calls Set / Get 22 404 462 87.45%
Calls Start / Stop 31 838 930 90.11%
Calls Up / Down 24 495 552 89.67%
Complex Ret Check / Call 21 252 420 60.00%
Complex Ret Error / Prop 25 600 600 100.00%
Fields Check / Check 50 2,424 2,450 98.94%
Fields Next / Prev 16 240 240 100.0%
Fields Test / Set 39 1,425 1,482 96.15%
Totals: 508 17,890 19,042 93.95%

sider mutex_lock_nested/mutex_unlock and spin_lock/spin_unlock; these are two
pairs from the “lock / unlock” category given in Table 2.1. We can construct an
analogy by taking these two pairs and concatenating them to form the analogy
“mutex_lock_nested is to mutex_unlock as spin_lock is to spin_unlock.” By iden-
tifying high-level patterns of behavior, and finding several pairs of functions that
express this behavior, we created a suite that contains 19,042 code analogies.

Table 2.1 lists our categories and the counts of available pairs (a representative
pair from each category can be found in Chapter A). Table 2.1 also provides accuracy
metrics generated using the vectors learned from what we will refer to as the “baseline

25

configuration,”5 which abstracts symbolic traces using all of the abstractions described
in in Section 2.3.1. We used a grid-search over hundreds of parameterizations to
pick hyper-parameters for our word-vector learner. For the results described in this
section, we used vectors of dimension 300, a symmetric window size of 50, and a
vocabulary-minimum threshold of 1,000 to ensure that the word-vector learner only
learns embeddings for words that occur a reasonable number of times in the corpus of
traces. We trained for 2,000 iterations to give GloVe ample time to find good vectors.

In each category, we assume that any two pairs of functions are sufficiently similar
to be made into an analogy. More precisely, we form a test by selecting two distinct
pairs of functions (A, B) and (C, D) from the same category, and creating the triple
(A, B, C) to give to an analogy solver that is equipped with our learned vectors. The
analogy solver returns a vector D ′, and we consider the test passed if D ′ = D and
failed otherwise. Levy and Goldberg (2014) present the following objective to use
when solving analogies with word-vectors:

D ′ = arg max
d∈V\{A,B,C}

cos(d, B) − cos(d, A) + cos(d, C)

Results. The “Accuracy” column of Table 2.1 shows that overall accuracy on the
analogy suite is excellent. Our embeddings achieve greater than 90% top-1 accuracy
on thirteen out of the twenty categories. The learned vectors do the worst on the
“Ret Check / Call” category where the top-1 accuracy is only 60%. This category
is meant to relate the checking of the return value of a call with the call itself.
However, we often find that one function allocates memory, while a different function
checks for allocation success or failure. For example, a wrapper function may allocate
complex objects, but leave callers to check that the allocation succeeds. Because our
vectors are derived from intraprocedural traces, it is sensible that accuracy suffers for
interprocedural behaviors.

By contrast, our vectors perform extraordinarily well on the “Ret Error / Prop”
category (100% top-1). This category represents cases where an outer function (i)

5The baseline configuration is described in more detail in Section 2.4.2, where it is also called
configuration (C1.).

26

1 ret = new(/*...*/, &priv->bo);
2 if (!ret) {
3 ret = pin(priv->bo, /*...*/);
4 if (!ret) {
5 ret = map(priv->bo);
6 if (ret)
7 unpin(priv->bo);
8 }
9 if (ret)
10 ref(NULL, &priv->bo);
11 }

Figure 2.8: Excerpt from nv17_fence.c. Names have been shortened to conserve
space.

performs an inner call, (ii) detects that it has received an error result, and (iii)
returns (“propagates”) that error result as the outer function’s own return value.
Unlike for the “Ret Check / Call” category, the nature of the “Ret Error / Prop”
category ensures that both the check and the return propagation can be observed in
intraprocedural traces, without losing any information.

Experiment 2: Simple Similarity

One of the most basic word-vector tasks is to ask for the k nearest vectors to
some chosen vector (using cosine distance). We expect the results of such a query to
return a list of relevant words from our vocabulary. Our similarity experiments were
based on two types of queries: (i) given a word, find the closest word, and (ii) given
a word, find the five closest words.

Similar pairs. We identified the single most similar word to each word in our
vocabulary V. This process produced thousands of interesting pairs. In the interest
of space, we have selected four samples which are representative of the variety of
high-level relationships encoded in our learned vectors:

• sin_mul and cos_mul

27

• dec_stream_header and dec_stream_footer

• rx_b_frame and tx_b_frame

• nouveau_bo_new_$EQ_0 and nouveau_bo_map 6

The last pair is of particular interest, because it expresses a complex pattern of
behavior that would be impossible to encode without some abstraction of the path
condition. The last pair suggests that there is a strong relationship between the
function new returning 0 (which signals a successful call) and then the subsequent
performance of some kind of map operation with the map call. To gain a deeper
understanding of what the vectors are encoding, we searched for instances of this
behavior in the original source code. We found several instances of the pattern shown
in Fig. 2.8.

The code in Fig. 2.8 raise a new question: why isn’t pin more closely related to
new_$EQ_0? We performed additional similarity queries to gain a deeper understanding
of how the learned vectors have encoded the relationship between new, pin, and map.

First, we checked to see how similar pin is to new_$EQ_0. We found that pin is
the fourth-most related word to new_$EQ_0, which suggests that a relationship does
exist, but that the relationship between new_$EQ_0 and pin is not as strong as the one
between new_$EQ_0 and map. Looking back at the code snippet (and remembering
that several more instances of the same pattern can be found in separate files), we are
left with the fact that pin directly follows from the successful new. Therefore, intuition
dictates that pin should be more strongly related to new than map. The disagreement
between our intuition and the results of our word-vector queries motivated us to
investigate further.

By turning to the traces for an answer, we uncovered a more complete picture. In
3,194 traces, new co-occurs with pin. In 3,145 traces, new co-occurs with map. If we
look at traces that do not contain a call to new, there are 11, 354 traces that have no
call to new, but still have a call to pin. In contrast, only 352 traces have no call to
new, but still have a call to map. Finally, we have a definitive answer to the encoding

6In the following text, and in Fig. 2.8, we remove the nouveau_bo_ prefix to conserve space.

28

learned by the vectors: it is indeed the case that new and map are more related in our
corpus of traces, because almost every time a call to map is made, a corresponding
call to new precedes it. Our intuition fooled us, because the snippets of source code
only revealed a partial picture.

Top-5 similar words and the challenge of prefix dominance. Another similarity-
based test is to take a word and find the top-k closest words in the learned embedding
space. Ideally, we’d see words that make intuitive sense. For the purpose of evaluation,
we picked two words: affs_bread, a function in the AFS file system that reads a
block, and kzalloc, a memory allocator. For each target word, we evaluated the top-5
most similar words for relevance. In the process, we also uncovered an interesting
challenge when learning over path-sensitive artifacts, which we call prefix dominance.

Our corpus of symbolic traces can be thought of as a corpus of execution trees. In
fact, in the implementation of our trace generator, the traces only exist at the very last
moment. Instead of storing traces, we store a tree that encodes, without unnecessary
duplication, the information gained from symbolically executing a procedure. If we
think about the dataset of traces as a dataset of trees (each of which holds many
traces that share common prefixes), we begin to see that learning word vectors from
traces is an approximation of learning directly from the execution trees.

The approximation of trees by traces works, in the sense that we can use the
traces to learn meaningful vectors, but the approximation is vulnerable to learning
rare behaviors that exist at the beginning of a procedure whose trace-tree has many
nested branches. These rare behaviors occur only once in the original procedure text
and corresponding execution tree, but are replicated many times in the traces. In a
procedure with significant branching complexity, a single occurrence of rare behavior
can easily overwhelm any arbitrary number of occurrences of expected behavior.

In Table 2.2, we see two words, affs_bread and kzalloc, and the five most
similar words to each of them. Word similarity has captured many expected re-
lationships. For example, the fact that kzalloc is most commonly checked to be
non-null (kzalloc_$NEQ_0) and then also kfreed is what we would expect, given the
definition of an allocator. Similarly, we can see that affs_bread is also checked to be

29

Table 2.2: Top-5 closest words to affs_bread and kzalloc

affs_bread kzalloc

affs_bread_$NEQ_0 kzalloc_$NEQ_0
affs_checksum_block kfree
AFFS_SB _volume
affs_free_block snd_emu10k1_audigy_write_op
affs_brelse ?->output_amp

non-null, check-summed, freed, released, etc. However, in addition to these expected
relationships, the last three entries for kzalloc seem out of place. These unexpected
entries are present in the top-5 answer because of prefix dominance.

We searched our traces for places where kzalloc and the three unexpected entries
in the table co-occur. We found one function with 5,000 paths (5,000 being our
“budget” for the number of traces we are willing to generate via symbolic execution
for a single procedure), of which 4,999 have several instances of the pattern kzalloc

followed by snd_emu10k1_audigy_write_op. This one function, with its multitude
of paths, overwhelms our dataset, and causes the word vectors to learn a spurious
relationship. Prefix dominance also explains the strong associations between kzalloc

and _volume and ?->output_amp.
On the other hand, affs_bread is relatively unaffected by prefix dominance.

Examining our traces for the affs file system that contains this function, we found
that no procedures had an overwhelming number of paths. Therefore, we never see
an overwhelming number of affs_bread usage patterns that are rare at the source
level but common in our set of traces.

Experiment 3: Queries Via Word-Vector Averaging

Word vectors have the surprising and useful ability to encode meaning when aver-
aged (Le and Mikolov, 2014; Kenter et al., 2016). We devised a test to see if our
learned vectors are able to leverage this ability to capture a relationship between
allocation failure and returning -ENOMEM.

30

To understand whether our word vectors are capable of answering such a high-level
question, we evaluated their performance on increasingly targeted queries (represented
by averaged vectors). Each query was restricted to search only for words in the
subspace of the embedding space that contains kernel error-codes. (Narrowing to the
subspace of error codes ensures that we are only looking at relevant words, and not
at the whole vocabulary.)
Results. We identified twenty different functions that act as allocators in the Linux
kernel.

First, for each such allocator, we took its word vector A, and queried for the
closest vector to A (in the subspace of error codes). This method found the correct
error code only twice out of twenty tests (i.e., 10% accuracy).

Second, we asked for the vector closest to an average vector that combined the
vector for the allocator A of interest and the vector

−−−→
$ERR for a generic error:7

(A+
−−−→
$ERR)/2. This query found the correct ENOMEM code fourteen times out of

twenty (i.e., 70% accuracy).
Third, instead of averaging the allocator’s A vector with

−−−→
$ERR, we tried averaging

A with the vector for the special $END token that signals the end of a trace. Seeking
the error code closest to (A+

−−−→
$END)/2 found the correct result for sixteen of twenty

test cases (i.e., 80% accuracy). The fact that this method outperforms our previous
query reveals that the call to an allocator being near the end of a trace is an even
stronger signal than the $ERR token.

Finally, we mixed the meaning of the allocator, the error token, and the end-of-
trace token by averaging all three: (A+

−−−→
$ERR+

−−−→
$END)/3. The error code whose

vector is closest to this query is the correct ENOMEM code for eighteen of the twenty
tests (i.e., 90% accuracy). The steadily increasing performance indicates that targeted
queries encoded as average word vectors can indeed be semantically meaningful.

The effectiveness of these queries, and the results from Section 2.4.1, support a
positive answer to Research Question 1: learned vectors do encode useful information

7The $ERR word is added to any trace that returns either (i) the result of an ERR_PTR call, or (ii)
a constant less than zero that is also a known error code. Consequently, a vector

−−−→
$ERR is learned

for the word $ERR.

31

about program behaviors.

2.4.2 RQ2: Ablation Study

In this section, we present the results of an ablation study to isolate the effects that
different sets of abstractions have on the utility of the learned vectors. We used the
benchmark suite of 19,042 code-analogies from Section 2.4.1 to evaluate eight different
configurations. We scored each configuration according to the number of analogies
correctly encoded by the word vectors learned for that configuration (i.e., we report
top-1 results).

In addition to the baseline configuration from Section 2.4.1, we partitioned the
abstractions into six classes8 and generated six new embeddings, each with one of
the six abstraction classes excluded. We also used one more configuration in which
stop words were included. In natural language processing, stop words are words that
are filtered out of a processing toolchain. Sometimes these are the most common
words in a language, but any group of words can be designated as stop words for a
given application. In our context, stop words are function names that occur often,
but add little value to the trace. Examples are __builtin_expect and automatically
generated __compiletime_asserts.

We evaluated the following eight configurations:

C1. baseline: all abstractions from Section 2.3.1;

C2. baseline without ParamTo and ParamShare;

C3. baseline without RetEq, RetNeq, etc.;

C4. baseline without AccessPathStore and AccessPathSensitive;

C5. baseline without PropRet, RetError, and RetConst;

C6. baseline without Error;
8Except for Called, which was used in all configurations.

32

(C1) (C2) (C3) (C4) (C5) (C6) (C7) (C8)
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

85.8%

51.7%

83.4%

61.7%

83.0% 85.5% 83.8% 82.4%

OOV
Failed
Passed

Figure 2.9: Ablation study: top-1 analogy results for eight configurations (baseline
(C1.) with up to one individual abstraction class removed). The vocabulary minimum
was 0, and the number of training iterations was 1,000.

C7. baseline without FunctionStart and FunctionEnd; and

C8. baseline with stop words included.

Fig. 2.9 compares the accuracy of for these eight configurations. Purple bars
indicate the number of tests in the analogy suite that passed; orange indicates tests
that failed; and white indicates out-of-vocabulary (OOV) tests. Configuration (C4.)
had the most out-of-vocabulary tests; in this configuration, we do not have words like
!->next and !->prev, which leaves several portions of the analogy suite essentially
unanswerable. Thus, we count out-of-vocabulary tests as failed tests.

To create a fair playing field for evaluating all eight configurations, we chose a
single setting for the hyper-parameters that were used when learning word vectors.

33

We reduced the threshold for how often a word must occur before it is added
to the vocabulary from 1,000 to 0. The latter parameter, which we refer to as
the vocabulary minimum, significantly impacts performance by forcing the word-
vector learner to deal with thousands of rarely-seen words. To understand why
we must set the vocabulary minimum to zero, effectively disabling it, consider
the following example trace: Called(foo), ParamShare(foo, bar), Called(bar). In
configuration (C2.), where we ignore ParamShare, we would encode this trace as the
sentence foo bar. In configuration (C1.), this same trace is encoded as foo foo bar.
The fact that some abstractions can influence the frequency with which a word occurs
in a trace corpus makes any word-frequency-based filtering counterproductive to our
goal of performing a fair comparison.

We also lowered the number of training iterations from 2,000 to 1,000 to reduce the
resources required to run eight separate configurations of our toolchain. (These changes
are responsible for the change in the top-1 accuracy of the baseline configuration from
93.9% in Table 2.1 to 85.8% in Fig. 2.9.)

In Fig. 2.9, one clearly sees that configuration (C2.) (the one without any dataflow-
based abstractions) suffers the worst performance degradation. Configuration (C4.),
which omits access-path-based abstractions, has the second-worst performance hit.
These results indicate that dataflow information is critical to the quality of learned
vectors. This conclusion further confirms findings by Allamanis et al. (2017b) regarding
the importance of dataflow information when learning from programs.

Fig. 2.9 also reveals that removing “state” abstractions (RetEq, RetNeq, etc. and
Error) has little effect on quality. However, these abstractions still add useful
terms to our vocabulary, and thereby enlarge the set of potentially answerable
questions. Without these abstractions, some of the questions in Section 2.4.1 would
be unanswerable.

These results support the following answer to Research Question 2: dataflow-based
abstractions provide the greatest benefit to word-vector learning. These abstractions,
coupled with access-path-based abstractions, provide sufficient context to let a word-
vector learner create useful embeddings. Adding abstractions based on path conditions
(or other higher-level concepts like Error) adds flexibility without worsening the quality

34

of the learned vectors. Therefore, we recommend including these abstractions, as
well.

2.4.3 RQ3: Syntactic Versus Semantic

Now that we have seen the utility of the generated corpus for word-vector learning
(Section 2.4.1) and the interplay between the abstractions we use (Section 2.4.2), we
compare our recommended configuration (C1.) from Section 2.4.2 with a simpler
syntactic-based approach.

We explored several options for a syntactic-based approach against which to
compare. In trying to make a fair comparison, one difficulty that arises is the amount
of data our toolchain produces to use for the semantics-based approach. If we were
to compare configuration (C1.) against an approach based on ASTs or tokens, there
would be a large disparity between the paucity of data available to the AST/token-
based approach compared to the abundance of data available to the word-vector
learner: an AST- or token-based approach would only have one data point per
procedure, whereas the path-sensitive artifacts gathered using configuration (C1.)
provide the word-vector learner with hundreds, if not thousands, of data points per
procedure.

To control for this effect and avoid such a disparity, we instead compared con-
figuration (C1.) against a configuration of our toolchain that uses only “syntactic”
abstractions—i.e., abstractions that can be applied without any information obtained
from symbolic execution. Thus, the syntactic abstractions are:

• FunctionStart and FunctionEnd,

• AccessPathStore(path), and

• Called(callee).

The rest of our abstractions use deeper semantic information, such as constant
propagation, dataflow information, or the path condition for a given trace.

Using only the syntactic abstractions, we generated a corpus of traces, and then
learned word vectors from the corpus. We compared the newly learned word vectors

35

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Semantic

Syntactic

85.8%

31.4%

Passed Failed OOV

Figure 2.10: Top-1 analogy results for syntactic versus semantic abstractions. (The
vocabulary minimum was 0, and the number of training iterations was 1,000.)

to the ones obtained with configuration (C1.). Fig. 2.10 clearly shows that semantic
abstractions are crucial to giving the context necessary for successful learning. Even
if we assess performance using only the analogies that are in-vocabulary for the
syntactic-based approach, we find that the syntactic-based approach achieves only
about 44% accuracy, which is about half the accuracy of vectors learned from (mainly)
semantic abstractions.

These results support an affirmative answer to Research Question 3: abstracted
traces that make use of semantic information obtained via symbolic execution provide
more utility as the input to a word-vector learner than abstracted traces that use
only syntactic information.

2.4.4 RQ4: Use in Downstream Tasks

Research Question 4 asks if we can utilize our pre-trained word-vector embeddings
on some downstream task.

To address this question, we selected a downstream task that models bug finding,
repair, and code completion in a restricted domain: error-code misuse. We chose
error-code misuse because it allows us to apply supervised learning. Because there
are only a finite number of common error codes in the Linux kernel, we can formulate
a multi-class labeling problem using traces generated via our toolchain and our

36

pre-trained word-vector embeddings.
To build an effective error-code-misuse model, we gathered a collection of failing

traces (traces in which the $ERR token occurs). We then constructed a dataset suitable
for supervised learning as follows: we took each trace from configuration (2)9 and
removed the last three abstract tokens, namely, $ERR, $RET_E*, and $END;10 we used
the $RET_E* token as the label for the trimmed trace. We sampled a subset of 20,000
traces from this large trace collection to use for training our model.

This dataset is a good starting point, but feeding it to a machine-learning technique
that accepts fixed-length inputs requires further processing. To preprocess the data,
we kept only the last 100 tokens in each trace. We then took the trimmed traces, and
used our learned word-vector embedding to transform each sequence of words into
a sequence of vectors (of dimension 300). If, originally, a trace had fewer than 100
tokens, we padded the beginning of the trace with the zero vector. We paired each of
the trimmed and encoded traces with its label (which we derived earlier). Finally,
to complete the preprocessing of the dataset we attached a one-hot encoding of the
label.

To collect a challenging test set to evaluate our learned model, we turned to
real bug-fixing commits applied to the Linux kernel. We searched for commits that
referenced an “incorrect return” in their description. In addition, we leveraged Min
et al.’s (Min et al., 2015) list of incorrect return codes fixed by their JUXTA tool.
Next, we generated abstracted symbolic traces both before applying the fixing commit
and after. Finally, we kept the traces generated before applying the fix that, after the
fix, had changed only in the error code returned. Using this process, we collected 68
traces—from 15 unique functions—that had been patched to fix an incorrect return
code.

Using the preprocessed dataset, we trained a model to predict the error code that
each trace should return. We used a recurrent neural network with long short-term

9The dataflow abstractions present in (1) were created to aid word-vector learners; for this
experiment, we use configuration (2) to exclude those abstractions.

10We exclude traces that included the $RET_PTR_ERR token because these traces do not have an
associated error code.

37

memory (LSTM) (Hochreiter and Schmidhuber, 1997). We evaluated the trained
model, using our test set, in two different ways:

1. Bug Finding: we use our learned model to predict the three most likely error
codes for each trace in our test set. If a given trace initially ended in the error
code A, but was patched to return the error code B, we check to see if the
incorrect A error code is absent from our model’s top-3 predictions.

2. Repair / Suggestion: we again use the learned model to predict the three most
likely error codes for each trace in the test set. This time, we determine the
fraction of traces for which the correct error code (i.e., B) is present in the top-3
prediction made by the model.

In evaluation (1), we found that the learned model identified an incorrect error
code in 57 of our 68 tests. This result is promising, because it suggests that there is
enough signal in the traces of encoded vectors to make good predictions that could
be used to detect bugs early.

In evaluation (2), we observed that the learned model had a top-3 accuracy of
76.5%, meaning that the correct error code is among our top suggested fixes for more
than three fourths of the buggy traces. This result is a strong indicator that the
learned vectors and abstracted symbolic traces are rich enough to make high-level
predictions that could be used to augment traditional IDEs with predictive capabilities.
Such a feature could operate like autocomplete, but with an awareness of what other
contributors have done and how their (presumably correct) code should influence new
contributions. This feature would be similar to the existing applications of statistical
modeling to programming tasks such as autocompletion (Allamanis et al., 2015a;
Raychev et al., 2015; Bielik et al., 2016; Nguyen et al., 2013, 2012).

These results support an affirmative answer to Research Question 4: our pre-
trained word-vector embeddings can be used successfully on downstream tasks. These
results also suggest that there are many interesting applications for our corpus of
abstracted symbolic traces. Learning from these traces to find bugs, detect clones, or
even suggest repairs, are all within the realm of possibility.

38

2.5 Related Work

Recently, several techniques have leveraged learned embeddings for artifacts generated
from programs. Nguyen et al. (2017b, 2016) leverage word embeddings (learned from
ASTs) in two domains to facilitate translation from Java to C#. Pradel and Sen
(2017) use embeddings (learned from custom tree-based contexts built from ASTs)
to bootstrap anomaly detection against a corpus of JavaScript programs. Gu et al.
(2016) leverage an encoder/decoder architecture to embed whole sequences in their
DeepAPI tool for API recommendation. API2API by Ye et al. (2016a) also leverages
word embeddings, but it learns the embeddings from API-related natural-language
documents instead of an artifact derived directly from source code.

Moving toward more semantically rich embeddings, DeFreez et al. (2018a) leverage
labeled pushdown systems to generate rich traces which they use to learn function
embeddings. They apply these embeddings to find function synonyms, which can be
used to improve traditional specification mining techniques. Alon et al. (2018c) learn
from paths through ASTs to produce general representations of programs; in (Alon
et al., 2018b) they expand upon this general representation by leveraging attention
mechanisms. Ben-Nun et al. (2018) utilize an intermediate representation (IR) to
produce embeddings of programs that are learned from both control flow and data
flow information.

Venturing into general program embeddings, there are several recent techniques
that approach the problem of embedding programs (or, more generally, symbolic-
expressions/trees) in unique ways. Using input/output pairs as the input data for
learning, Piech et al. (2015) and Parisotto et al. (2016) learn to embed whole programs.
Using sequences of live variable values, Wang et al. (2017) produce embeddings to aid
in program repair tasks. Allamanis et al. (2017b) learn to embed whole programs via
Gated Graph Recurrent Neural Networks (GG-RNNs) (Li et al., 2015). Allamanis et al.
(2016a) approach the more foundational problem of finding continuous representations
of symbolic expressions. Mou et al. (2016) introduce tree-based convolutional neural
networks (TBCNNs), another model for embedding programs. Peng et al. (2015)
provide an AST-based encoding of programs with the goal of facilitating deep-learning

39

methods. Allamanis et al. (2018) give a comprehensive survey of these techniques,
and many other applications of machine learning to programs.

We are not aware of any work that attempts to embed traces generated from
symbolic execution. On the contrary, Fowkes and Sutton (2016) warn of possible
difficulties learning from path-sensitive artifacts. We believe that our success in using
symbolic traces as the input to a learner is due to the addition of path-condition and
dataflow abstractions—the extra information helps to ensure that a complete picture
is seen, even in a path-sensitive setting.

In the broader context of applying statistical NLP techniques to programs, there
has been a large body of work using language models to understand programs (Hindle
et al., 2012; Raychev et al., 2014a; Nguyen and Nguyen, 2015; Allamanis et al., 2015b,
2014); to find misuses (Murali et al., 2017a; Wang et al., 2016); and to synthesize
expressions and code snippets (Gvero and Kuncak, 2015; Raghothaman et al., 2016).

2.6 Future Work

The work in this chapter occurred well before Transformer-based models began to
dominate learning from sequences of text. It would be interesting to revisit the
abstracted symbolic traces we are capable of generating and see what Transformer-
based models are capable of doing with this data. Futhermore, it would be interesting
to apply recent techniques to understand how a model trained on such traces makes
its predictions; for example, a technique such as Integrated Gradients could be used
to understand better what tokens in a trace a model was attending to while making
a prediction. Data related to what a model attends to during predictions might be
useable in some sort of (concrete) pattern-extraction algorithm.

2.7 Notes

This was the first work I produced during my graduate studies; in many ways this
was also the must difficult work of my graduate career as, at the time, I was just
beginning to understand where the fields of Machine Learning, Software Engineering,

40

and Programming Languages were headed. In hindsight, almost five years later, it is
clear to me that the idea of better representations for learning from code has lost out
to simply applying ever-increasing amounts of compute to simpler representations.
I believe that the utility of better representations will remain an open question for
some time (and the question largely hinges on our ability to apply similarly massive
compute to these more sophisticated representations). It is interesting to note how
the work I did here is analogous to an emerging area of work labelled “prompt
engineering”—here, I tried to make a semantic representation of programs more
amenable to popular (at the time) off-the-shelf learning algorithms. Now, we have
these massive jack-of-all-trades models and the question is not in how to represent
our data; the question is in how to form the appropriate prompt so that we can coax
the model into providing the answers we seek. These two problems are related, but it
is quite interesting to see such a drastic shift in focus over such a (relatively) short
time period.

41

3 open world mining

Can we automatically infer the correct usage patterns for a given API by
learning from a large corpus of existing code that references the API under
study?

GPT-3: Yes, it is possible to automatically infer the correct usage patterns
for a given API by learning from a large corpus of existing code that
references the API under study. However, it is important to note that this
process is not always accurate, and there is a possibility that some incorrect
usage patterns may be learned.

How would you do such inference? Could you use clustering and code
embeddings?

GPT-3: Yes, it is possible to use clustering and code embeddings to infer the
correct usage patterns for a given API. By clustering together code that uses
the API in similar ways, it should be possible to identify common usage
patterns. Additionally, by creating code embeddings, it should be possible to
identify relationships between different pieces of code that use the API, which
could also help to identify common usage patterns.

A dialogue with OpenAI’s GPT-3

3.1 Introduction

In Chapter 2, we introduced a way to learn from code using off-the-shelf word-vector
learners and abstracted traces extracted (statically) from programs. Given this
technique, one may wonder how we can leverage the vectors we learned to do useful
work in classic problem domains. One such problem domain is specification mining.
In this chapter, we will look at the problem of mining specifications (or usage patterns)
from large software systems. In particular, we will leverage the tools and techniques
introduced in Chapter 2 to develop a novel technique for specification mining.

42

3.1.1 Motivation

The continued growth of software in size, scale, scope, and complexity has created an
increased need for code reuse and encapsulation. To address this need, a growing num-
ber of frameworks and libraries are being authored. These frameworks and libraries
make functionality available to downstream users through Application Programming
Interfaces (APIs). Although some APIs may be simple, many APIs offer a large range
of operations over complex structures.

Staying within correct usage patterns can require domain-specific knowledge about
the API and its idiosyncratic behaviors (Robillard and DeLine, 2011). This burden is
often worsened by insufficient documentation and explanatory materials for a given
API. The difficulty of conforming to distinct (and often implicit) usage patterns for
every API raises a key question:

Motivating Question

Can we automatically infer the correct usage patterns for a given API by learning
from a large corpus of existing code that references the API under study?

3.1.2 Goals

In this chapter, we contribute to the study of API-usage mining by identifying a
new problem area and exploring the combination of machine learning and traditional
methodologies to address the novel challenges that arise in this new domain. Specifi-
cally, we introduce the problem domain of Open-World Specification Mining. The
goal of Open-World Specification Mining can be stated as follows:

Goals

Given noisy traces, automatically identify and mine patterns or specifications
without the aid of (i) implicit or explicit groupings of terms, (ii) pre-defined
pattern templates, or (iii) user-directed feedback or intervention.

43

The idea of Open-World Specification Mining is motivated by the lack of adoption
of specification-mining tools outside of the research community. Since Open-World
Specification Mining needs no user-supplied input, we believe it will lead to tools
that are easier to transition and apply in industry. Although this Open-World setting
reduces the burden imposed on users, it increases the challenges associated with
extracting patterns. We address these challenges with a toolchain, called ml4spec:

• We base our technique on a form of intraprocedural, parametric, lightweight
symbolic execution introduced in Chapter 2.

• To address the lack of implicit or explicit groupings of terms (a challenge
imposed by the setting of Open-World Specification Mining), we introduce a
technique, Domain-Adapted Clustering (DAC), that is capable of recovering
groupings of related terms.

• Finally, we remove the need for pre-defined pattern templates by mining specifi-
cations using traditional, unrestricted, methods (such as k-Tails (Biermann and
Feldman, 1972) and Hidden Markov Models (Seymore et al., 1999)). We are
able to use these traditional methods by leveraging Domain-Adapted Clustering
to “focus” these traditional methods toward interesting patterns.

The combination of both traditional techniques and machine-learning-assisted
methods in the pursuit of Open-World Specification Mining raises a number of natural
research questions that we consider.

First, we explore the ability of Domain-Adapted Clustering, our key technique, to
successfully extract informative and useful clusters of API methods in our Open-World
setting:

Research Question # 1

Can we effectively mine useful clusters of API methods in an Open-World setting?

44

Immediately, we run into the difficulty of judging the utility of clusters extracted
from traces. To provide the basis for a consistent and quantitative evaluation, we have
manually extracted a dataset of ground-truth clusters from five popular open-source
projects written in C.

Next, we compare Domain-Adapted Clustering (DAC) against several other
baselines that do not utilize the implicit structure of the extracted traces:

Research Question # 2

How does DAC compare to off-the-shelf clustering techniques?

We also explore how two key choices in our toolchain impact the overall utility of
our results:

Research Question # 3

How does the choice of word-vector learner and the choice of sampling technique
affect the resulting clusters?

Finally, to quantify the usefulness of unsupervised learning in our approach, and
to validate our central hypothesis, we ask:

Research Question # 4

Is there a benefit from using a combination of co-occurrence statistics and word
embeddings?

3.1.3 Contributions

We defined a new problem domain called Open-World Specification Mining. Our
motivation is to increase the adoption of specification-mining techniques by reducing
the burden imposed on users (at the cost of a more challenging mining task).

45

We created a toolchain based on the key insight that unsupervised learning
(specifically word embeddings) can be combined with traditional metrics to enable
automated mining in an Open-World setting.

We introduced a benchmark of 71 ground-truth clusters extracted from five
open-source C projects.

We report on several experiments:

• In Section 3.4.2, we use our toolchain to recover, on average, two thirds of the
ground-truth clusters in our benchmark automatically.

• In Section 3.4.3, we compare our Domain-Adapted Clustering technique to three
off-the-shelf clustering algorithms; Domain-Adapted Clustering provides, on
average, a 30% performance increase relative to the best baseline.

• In Section 3.4.4, we confirm our intuition that sub-word information improves
the quality of learned vectors in the software-engineering domain; we also confirm
that our Diversity Sampling technique (Section 3.3.2) increases performance by
solving the problem of prefix dominance (Section 2.4.1).

• In Section 3.4.5, we quantify the impacts of our learning-assisted approach.

3.2 Overview

The ml4spec toolchain consists of five phases: Parametric Lightweight Symbolic
Execution, thresholding and sampling, unsupervised learning, Domain-Adapted Clus-
tering, and mining. As input, ml4spec expect a corpus of buildable C projects. As
output, ml4spec produces clusters of related terms and finite-state automata (FSAs)
or Hidden Markov Models (HMMs) mined via traditional techniques.1 A visualization
of the way data flows through the ml4spec toolchain is given in Fig. 3.1. We illustrate
this process as applied to the example in Fig. 3.2.

1Although we provide examples based on traditional miners that produce FSAs and HMMs, we
note that ml4spec is miner-agnostic. By using ml4spec as a trace pre-processor, any trace-based
miner can be adapted to the Open-World setting.

46

Input Programs

Traces

Thresholded Traces

Sampled Traces

Word Embeddings

Word Embedding
Matrix (B)

Co-occurrence
Matrix (A)

Combined Matrix:
αA+ (1 − α)B

Clusters

Projected Traces
FSAs

HMMs

Phase I: Parametric Lightweight
Symbolic Execution

Phase II: Thresholding
and Sampling

Phase III: Unsupervised
Learning

Phase IV: Domain-Adapted
Clustering

Phase V: Mining

Figure 3.1: Overview of the ml4spec toolchain

47

Phase I: Parametric Lightweight Symbolic Execution. The first phase of
the ml4spec toolchain applies Parametric Lightweight Symbolic Execution (PLSE).
PLSE takes, as input, a corpus of buildable C projects and a set of abstractions to
apply. For our use case, we abstract calls, checks on the results of calls, and return
values. Section 3.3.1 describes these abstractions in more detail. Figure 3.2 presents
both an example procedure and a trace resulting from the application of PLSE.
Already, examining Fig. 3.2b, we can see one of the core challenges of Open-World
mining: the mixed vocabulary present in the trace from Fig. 3.2b involves many
interesting behaviors but, without user input (Ammons et al., 2002; Lo and Khoo,
2006), pre-defined rule templates (Yun et al., 2016), or some pre-described notion of
what methods are related (Le and Lo, 2018), we have no straightforward route to
separating patterns from noise. We need to disentangle these disparate behaviors to
facilitate better specification mining.

Phase II: Thresholding and Sampling. Although our example procedure has a
small number of paths from entry to exit, many procedures have thousands of possible
paths. Learning from these traces can be challenging due to the number of times
the same trace prefix is seen. This problem, labelled prefix dominance (introduced
in Section 2.4.1), makes downstream learning tasks more challenging. For instance,
some terms that occur in multiple traces (e.g., in a common prefix) may occur only a
single time in the source program. Off-the-shelf word-vector learners cannot filter
for these kinds of rare words because they have no concept of the implicit hierarchy
between traces and the procedures they were extracted from. The ml4spec toolchain
introduces two novel techniques to address these challenges: Diversity Sampling and
Hierarchical Thresholding. Diversity Sampling attempts to recover a fixed number
of highly representative traces via a metric-guided sampling process. Hierarchical
Sampling leverages the implicit hierarchy between procedures and traces to remove
rare words. Together, these techniques improve the quality of downstream results.

Phase III: Unsupervised Learning. Traditionally, specification and usage
mining techniques would define some method of measuring support or confidence in
a candidate pattern. Often, these measurements would be based on co-occurrences of

48

1 void example() {
2 void *A;
3 void *B;
4 if (!strcasecmp()) {
5 addReplyHelp();
6 } else if (!strcasecmp()) {
7 // Allocate
8 A = dictGetIter();
9 log();
10 // Iterate
11 while ((B = dictNext(A)) != 0) {
12 dictGetKey(B);
13 if (strmatchlen(sdslen())) {
14 addReplyBulk();
15 }
16 }
17 // Release
18 dictReleaseIter(A);
19 } else if (!strcasecmp()) {
20 addReplyLongLong(listLength());
21 } else {
22 addReplySubcommandSyntaxError();
23 }
24 }

(a) Sample procedure, showcasing an iterator us-
age pattern from the Redis open-source project

1 $START
2 strcasecmp
3 strcasecmp != 0
4 strcasecmp
5 strcasecmp == 0
6 dictGetIter
7 log
8 dictGetIter → dictNext
9 dictNext
10 dictNext != 0
11 dictNext → dictGetKey
12 dictGetKey
13 sdslen
14 sdslen → strmatchlen
15 strmatchlen
16 strmatchlen != 0
17 addReplyBulk
18 dictGetIter → dictNext
19 dictNext
20 dictNext == 0
21 dictGetIter
22 → dictReleaseIter
23 dictReleaseIter
24 $END

(b) One example trace for the
example procedure in Fig. 3.2a

Figure 3.2: Example procedure and corresponding trace. The notation A → B

signifies that the result of call A is used as a parameter to call B.

49

1 strcasecmp
2 strcasecmp != 0
3 strcasecmp == 0

(a) Cluster 1

1 dictGetIter
2 dictGetIter
3 → dictNext
4 dictNext
5 dictNext == 0
6 dictNext != 0
7 dictGetIter
8 → dictReleaseIter
9 dictReleaseIter

(b) Cluster 2

1 sdslen
2 → strmatchlen
3 strmatchlen
4 strmatchlen != 0

(c) Cluster 3

Figure 3.3: Clusters generated via Domain-Adapted Clustering (DAC)

terms (or sets of terms). The ml4spec toolchain leverages a key insight: traditional
co-occurrence statistics and machine-learning-assisted metrics (extracted via unsu-
pervised learning, specifically word embeddings) can be combined in fruitful ways.
Referencing our example in Fig. 3.2, we might hypothesize, based on co-occurrence,
that dictGetIter and log are related. For the sake of argument, imagine that in
each extracted trace we find this same pattern. How can we refine our understanding
of the relationship between dictGetIter and log?

It is in these situations that adding unsupervised learning improves the results.
A word-vector learner, such as Facebook’s fastText (Bojanowski et al., 2017), can
provide us with a measurement of the similarity between dictGetIter and log.
This measurement provides a contrast to the co-occurrence based view of our data.
Intuitively, word-vector learners utilize the Distributional Hypothesis: similar words
appear in similar contexts (Harris, 1954). The global context, captured by co-
occurrence statistics, can be supplemented and refined by the local-context information
that word-vector learners naturally encode. Section 3.4.5 explores the impact and
relative importance of both traditional co-occurrence statistics and machine-learning-
assisted metrics.

Phase IV: Domain-Adapted Clustering. The trace given in Fig. 3.2b exhibits
several different patterns. The difficulty in mining from static traces like the one

50

in Fig. 3.2b comes from the need to learn a separation of the various, possibly
interacting, patterns and behaviors. To address this challenge, we introduce Domain-
Adapted Clustering: a generalizable approach to clustering corpora of sequential data.
Domain-Adapted Clustering leverages the insight that it can be useful to combine
machine-learning-assisted metrics with co-occurrence statistics captured directly from
the target corpus. Using Domain-Adapted Clustering, we can extract the clusters
shown in Fig. 3.3. These clusters allow us to solve the problem of disentanglement by
projecting the trace in Fig. 3.2b into the vocabularies defined by each cluster. It is
this “focusing” of the mining process that enables the ml4spec toolchain to apply
traditional specification-mining techniques in an Open-World setting.

Phase V: Mining. Finally, we can extract free-form specifications by applying
traditional mining techniques to the projected traces that ml4spec creates. One
powerful aspect of the ml4spec toolchain is its disassociation from any particular
mining strategy. The real challenge of Open-World Specification Mining is extracting,
without user-directed feedback, reasonable clusters of possibly related terms. With
this information in hand, a myriad of trace-based miners can be applied. Figures 3.4a
and 3.4b highlight this ability by showing both a finite-state automaton (FSA) mined
via the classic k-Tails algorithm and a Hidden Markov Model (HMM) learned directly
from the projected traces (Biermann and Feldman, 1972; Seymore et al., 1999).

3.3 Technique

3.3.1 Parametric Lightweight Symbolic Execution

The first phase of the ml4spec toolchain generates intraprocedural traces using a form
of parametric lightweight symbolic execution, introduced in Chapter 2. Parametric
Lightweight Symbolic Execution (PLSE) takes, as input, a buildable C project and a
set of abstractions. Abstractions are used to parameterize the resulting traces. In our
setting, the abstractions allow us to enrich the output vocabulary. This enrichment
enables the final phase of the ml4spec toolchain (mining) to extract specifications
that include each of the following types of information:

51

$START

dictGetIter

dictGetIter
→ dictNext

dictNext

di
ct

Ne
xt

!=
0

dictNext
==

0 dictGetIter
→ dictReleaseIter

dictReleaseIter

$END

di
ct
Ne
xt

dictNext == 0

(a) Example Finite State Automaton
(FSA) extracted from projected traces

$START

dictGetIter

dictGetIter
→ dictNext

dictNext

dictNext
!= 0

dictNext
== 0

dictGetIter
→ dictReleaseIter

dictReleaseIter

$END

1.0

1.0

1.0

0.4

1.0

0.6

1.0

1.0

1.0

(b) Example Hidden Markov Model
(HMM) extracted from projected traces

Figure 3.4: Example specifications that were mined by projecting all of the traces
extracted from Fig. 3.2a into the vocabulary defined by Fig. 3.3b. Specifications for
the vocabularies defined by the clusters in Figs. 3.3a and 3.3c are also generated, but
not shown here.

52

• Temporal properties: the ml4spec toolchain abstracts the sequence of calls
encountered on a given path of execution. The temporal ordering of these calls
is preserved in the output traces.

• Call-return constraints: often a sequence of API calls can only continue if
previous calls succeeded. In C APIs checking for success involves examining
the return value of calls. ml4spec abstracts simple checks over return values to
capture specifications that involve call-return checks.

• Dataflow properties: some specification miners are parametric—these miners
can capture relationships between parameters to calls and call-returns. To
highlight the flexibility that PLSE provides, we include an abstraction that
tracks which call results are used, as parameters, in future calls. This call-to-call
dataflow occurs in many API usage patterns.

• Result propagation: the return value of a given procedure can encode valuable
information. Some procedures act as wrappers around lower-level APIs, while
other procedures may forward error results from failing calls. In either case,
forwarding the result of a call, for any purpose, is abstracted into our traces
to aid in downstream specification mining. ml4spec also abstracts constant
return values: returning a constant may indicate success or failure, and such
information may aid in downstream specification mining.

With these various abstractions parameterizing our trace generation, simple
downstream miners, such a k-Tails, are capable of mining rich specifications. However,
there is a cost to the variety of abstractions we employ. Each abstraction introduces
more words into the overall vocabulary, and, as the size of the overall vocabulary
grows, so does the challenge of disentangling traces.

Finally, it is worthwhile to address the limitations of Parametric Lightweight
Symbolic Execution. PLSE is intraprocedural and therefore risks extracting only
partial specifications. PLSE also makes no attempt to detect infeasible traces. Finally,
PLSE enumerates a fixed number of paths. As part of this enumeration, any loops

53

are unrolled for a single iteration only.2 In practice these limitations enable the
PLSE technique to scale and, for the purposes of the ml4spec toolchain, losses in
precision are balanced by the utilization of machine-learning-assisted metrics (which
can tolerate noisy data).

3.3.2 Thresholding and Sampling

In this section, we outline the techniques used in the ml4spec toolchain to take a
corpus of traces, generated via Parametric Lightweight Symbolic Execution (PLSE),
and prepare them for word-vector learning and specification mining. In particular,
we present two key contributions, Hierarchical Thresholding and Diversity Sampling,
which improve the overall quality of our results. In addition, we discuss alternative
approaches.

Hierarchical Thresholding

When preparing data for a word-vector learner, it is common to select a vocabulary
minimum threshold, which limits the words for which vectors will be learned. Any
word that appears fewer times than the threshold is removed from the training
corpus. Through this process extremely rare words, which may be artifacts of data
collection, typos, or domain-specific jargon, are removed. In the domain of mining
specifications, we have a similar need. We would like to pre-select terms, from
our overall vocabulary, that occur enough times to be used as part of a pattern or
specification. We could simply set an appropriate vocabulary minimum threshold
using our word-vector learner of choice; however, this approach ignores a unique aspect
of our traces. The traces we have, which are used as input to both the word-vector
learner and specification miner, are intra-procedural traces extracted from a variety of
procedures. To select terms that occur frequently does not necessarily select for terms
that are used across a variety of procedures. Because our traces are paths through

2This single iteration loop unrolling gives us traces in which the loop never occurred and traces
in which we visit the loop body exactly one time. Yun et al. (2016) follow a similar model and
argue that most API usage patterns are captured in a single loop unrolling.

54

a procedure, it is possible to have a frequently occurring term (with respect to our
traces) that only occurs in one procedure. To achieve our desire for terms that are
used in a variety of diverse contexts, we developed a modified thresholding approach:
Hierarchical Thresholding. Hierarchical Thresholding counts how often a term occurs
across procedures instead of traces. This simple technique, with its utilization of the
extra level of hierarchical information that exists in the traces, reduces the possibility
of selecting terms that are rare at the source-code level but frequent in the trace
corpus.

Diversity Sampling

The corpus of symbolic traces that we obtain, via lightweight symbolic execution,
can be a challenging artifact to learn from. The symbolic executor, at execution
time, builds an execution tree and it is from this tree that we enumerate traces. Any
attempt to learn from such traces can be thought of as an attempt to indirectly learn
from the original execution trees. The gap between the tree representation and trace
representation introduces a challenge: terms that co-occur at the start of a large
procedure (with many branches) will be repeated hundreds of times in our trace
corpus. This prefix duplication, which we labelled prefix dominance (in Section 2.4.1),
adversely affects the quality of word embeddings learned from traces.

As part of the ml4spec toolchain, we introduce a novel trace-sampling methodol-
ogy, which seeks to resolve the impact of prefix dominance. We call this sampling
methodology Diversity Sampling because it samples a diverse and representative set
of traces by using a similarity metric to drive the sample-selection process.

Algorithm 1 provides the details of our Diversity Sampling technique. Because we
work with intra-procedural traces, we can associate each trace with its source-code
procedure. Consequently, the sampling routine can sample maximally diverse traces
for each procedure independently. (For a simple reason, our algorithm treats the
trace corpus as a collection of sets: each set holds the intra-procedural traces for
one source procedure.) To begin Diversity Sampling, we either return all traces (if
the number of traces for a given procedure is less than our sampling threshold), or

55

we begin to iterate over the available traces and make selections. At each step of
the selection loop, on lines 8–19, we identify a trace that has the maximum average
Jaccard distance when measured against our previous selections. Jaccard distance
is a measure computed between sets and, in our setting, we use the set of unique
tokens in a given trace to compute Jaccard Distances. We take the average Jaccard
distance from the set of currently sampled traces to ensure that each new selection
differs from all of the previously selected traces. Finally, when we have selected an
appropriate number of samples, we return them and proceed to process traces from
the next procedure.

Alternative Samplers

Although Diversity Sampling is rooted in the intuition of extracting the most repre-
sentative set of traces for each procedure, it may not make a difference in the quality
of downstream results. It is for this reason that we also consider, in our ml4spec

toolchain, two alternative approaches to trace sampling: no sampling and random
sampling. We include the option of no sampling because word-vector learners thrive
on both the amount and quality of data available. It is reasonable to ask whether the
training data lost by downsampling our trace corpus has enough negative impact to
offset possible gains. We also include random sampling as a third alternative; our
motivation for this inclusion is to assess the impact of our metric-guided selection.
Section 3.4.4 evaluates the sampling strategies discussed here.

3.3.3 Domain-Adapted Clustering

Section 3.3.1 outlined how ml4spec makes use of Parametric Lightweight Symbolic
Execution (PLSE) to generate rich traces. In Section 3.3.2, we presented innovations
that improved the traces generated by PLSE, and addressed some of the challenges
associated with learning from traces. In this section, we introduce Domain-Adapted
Clustering, our solution to the challenge of clustering related terms. We seek to
cluster related terms (words) to simplify the Open-World Specification Mining task.
Traditional specification miners often use either rule templates or some form of

56

Algorithm 1: Diversity Sampling
input : A trace corpus TR
output : A down-sampled trace corpus

1 outputs ← [];
2 for T ∈ TR do
3 if |T | ⩽ SAMPLES then
4 outputs = outputs ∪ T ;
5 continue;
6 end
7 choices ← T [0];
8 while | choices | < SAMPLES do
9 D∗ = 0.0;

10 S = null;
11 for t ∈ T − choices do
12 D = AverageJaccardDistance(t, choices);
13 if D ⩾ D∗ then
14 S = t;
15 D∗ = D;
16 end
17 end
18 choices = choices ∪ S

19 end
20 outputs = outputs ∪ choices;
21 end
22 return outputs;

user-directed input (the API surface of interest, or perhaps a specific class or selection
of classes from which specifications should be mined). In our Open-World setting,
none of this information is available. Therefore, we have developed a methodology for
extracting clusters of related terms that harnesses the power of unsupervised learning
(in the form of word embeddings). With these clusters in hand, the task of mining
specifications is greatly simplified.

57

Motivation

To motivate Domain-Adapted Clustering, it is revealing to consider the relationships
among the following ideas:

• Co-occurrence: word–word co-occurrence can be a powerful indicator of some
kind of relationship between words. Co-occurrence is, by its nature, a global
property that can, optionally, be associated with a sense of direction (word A

appears to the left/right of word B).

• Analogy: analogies are another way in which words can be related. The words
that form an analogical relationship encode a kind of information that is subtly
different from the information that co-occurrence provides. Given the analogy
A is to B as C is to D, one would find that A and B often co-occur, as do C and
D; however, there may be no strong relationship (in terms of co-occurrence)
between A/B and C/D.

• Synonymy: synonyms are, in some sense, encoding strictly local structure.
Two synonymous words need not co-occur; instead, synonyms are understood
through the concept of replaceability: if one can replace A with B then they
are likely synonyms.

We can now attempt to codify which of these concepts are of value for Open-
World Specification Mining. To do so, we will introduce a simple thought experiment:
consider an extremely simple specification that consists of a call to foo and a
comparison of the result of this call to 0. In our traces this pattern would manifest
in one of two forms: (i) foo foo==0 or (ii) foo foo!=0. For the sake of our thought
experiment, also assume that, by chance, print follows foo in our traces 95% of the
time. What kinds of relationships do we need to use to extract the cluster of terms:
foo, foo==0, and foo!=0? We could use co-occurrence, however using co-occurrence
will likely pick up on the uninformative fact that foo frequently co-occurs with print.
Furthermore, co-occurrence may struggle to pick up on the relationship between foo

and the check on its result: because each check is encoded as a distinct word, neither

58

check will co-occur with extremely high frequency. We could, instead, use synonymy,
but it is trivial to imagine words, such as malloc and calloc, that are synonyms but
not related in the sense of a usage pattern or specification.

It is the insufficiency of both co-occurrence and synonymy that forms the basis
of Domain-Adapted Clustering. Because neither metric covers all cases, Domain-
Adapted Clustering forms a parameterized mix of two metrics: one based on left
and right co-occurrence, and another based on unsupervised learning. Because both
of these metrics encode a distance (or similarity) of some sort, Domain-Adapted
Clustering can be thought of as computing the pair-wise distance matrices and then
mixing them via a parameter α ∈ [0, 1]. Figure 3.1 provides a visual overview of the
mixing process Domain-Adapted Clustering employs.

The Co-occurrence Distance Matrix

Domain-Adapted Clustering utilizes co-occurrence statistics extracted directly from
the (sampled and thresholded) trace corpus. To capture as much information as
possible, Domain-Adapted Clustering walks each trace and computes, for each word
pair (A,B), the number of times that A follows B and the number of times that B

follows A. These counts are converted to percentages and these percentages represent
a kind of similarity between A and B. The higher the percentages, the more often
A and B co-occur. To turn the percentages into a distance, we subtract them from
1.0 and store the average of the left-distance and right-distance in our co-occurrence
distance matrix.

The Word-Embedding Distance Matrix

To incorporate unsupervised learning, Domain-Adapted Clustering utilizes word-
vector learners. The use of word-vector learners in the software-engineering domain
is not a new idea (Henkel et al., 2018; DeFreez et al., 2018b; Ye et al., 2016b; Nguyen
et al., 2017a; Pradel and Sen, 2018). Many recent works have explored the power
of embeddings in the realm of understanding and improving software. What we
contribute is, to the best of our knowledge, the first thorough comparison of three

59

of the most widely used word-vector learners in the application domain of software
engineering. We do this comprehensive evaluation to test an intuition that sub-word
information improves the quality of embeddings learned from software artifacts. We
base this intuition on the observation that similarly named methods have similar
meaning. Section 3.4.4 provides the details of this evaluation.

Our choice of word-vector learners as an unsupervised learning methodology is a
deliberate one. Earlier, we saw how synonymy could be a useful (albeit incomplete)
property to capture. Furthermore, we already have a notion of distance between
words (given to us via our co-occurrence distance matrix). Word-vector learners mesh
well with both of these pre-existing criteria: word vectors encode local context and
are able to capture synonymy. Additionally, word–word distance is encoded in the
learned vector space. These properties make word-vector learners a convenient choice
for Domain-Adapted Clustering. To extract a distance matrix from a learned word
embedding, Domain-Adapted Clustering computes, for each word pair (A,B), the
cosine distance between the embedding of A and the embedding of B (here, we use
cosine distance because it is the distance of choice for word vectors).

Cluster Generation

To generate clusters, Domain-Adapted Clustering applies the insight that the clusters
we seek should be expressed in concrete usages. This idea leads us to invert the
problem of clustering—instead of clustering all of the terms in the vocabulary, we
take a more bottom-up approach. We start with an individual trace from our corpus
of sampled traces. Within the trace, we find topics or collections of terms that are
related under our machine-learning-assisted metric: we use the combined distance
matrix we created previously and apply a threshold to detect words that are related.
Within a trace, any two words whose distance is below the threshold are assigned to
the same intra-trace cluster. The next step uses the set of all intra-trace clusters to
create a set of reduced traces: each trace in the corpus of traces is projected onto
each of the intra-trace clusters to create a new corpus of reduced traces. To form final
clusters, we apply a traditional clustering method (DBSCAN (Ester et al., 1996a)) to

60

the collection of reduced traces. In this final step we use Jaccard distance between
the sets of tokens in the reduced traces as the distance metric.

One distinctive advantage of Domain-Adapted Clustering, for our use case, is
its ability to generate overlapping clusters. Most off-the-shelf clustering techniques
produce disjoint sets but, in the realm of Open-World Specification Mining, it is easy
to conceive of multiple patterns that share common terms (opening a file and reading
versus opening a file and writing). Finally, it is worthwhile to note that the clustering
step we have outlined here introduces two hyper-parameters: the threshold to use
for intra-trace clustering (which we will call β) and DBSCAN’s ϵ, which controls
how close points must be to be considered neighbors. This leaves Domain-Adapted
Clustering with a total of three tunable hyper-parameters: α, β, ϵ.

3.4 Experiments

In this section we introduce our evaluation methodology and address each of our four
research questions. For the purposes of evaluation we ran the ml4spec toolchain on
five different open source projects:

• Curl: a popular command-line tool for transferring data.

• Hexchat: an IRC client.

• Ngnix: a web server implementation.

• Nmap: a network scanner.

• Redis: a key-value store.

These projects were selected because they exhibit a wide variety of usage patterns
across diverse domains. For each of these five projects, we performed a grid search to
gain an understanding of our various design decisions. The following section details
this search.

61

Table 3.1: Grid search parameters

Name Values Purpose Phase
learner {fastText, GloVe, word2vec} Word-vector learner to use II
sampler {Diversity, Random, None} Sampling method to use III
alpha {0.00, 0.25, 0.50, 0.75, 1.00} Weight for combined distance matrix IV
beta {0.20, 0.25, . . . , 0.45, 0.50} Threshold for intra-trace clustering IV
epsilon {0.10, 0.30, 0.50, 0.70, 0.90} Parameter to DBSCAN IV

3.4.1 Grid Search

To facilitate a comprehensive evaluation of ml4spec, we performed a grid search
across thousands of parameterizations of the ml4spec toolchain. The grid search
serves two purposes. First, the results of the grid search provide a firmer empirical
footing for understanding the efficacy and impacts of different aspects of our toolchain
(in particular, the grid search aids in quantifying the impacts of different word-
vector learners and sampling methodologies). Second, the Open-World Specification
Mining task emphasizes a lack of user-directed feedback—to meet this standard we
must ensure, via the data gleaned from the grid search, that the hyper-parameters
associated with the ml4spec toolchain can be set, globally, to good default values.
Table 3.1 outlines the parameters in play and the ranges of values investigated for
each parameter. Upper and lower limits for each search range were carefully chosen,
based on the results of smaller searches, to reduce the computational costs of the
larger search over the parameters presented in Table 3.1.

3.4.2 RQ1: Can we effectively mine useful and clean
clusters in an Open-World setting?

Research Question 1 asked whether we can mine useful and clean clusters. The
difficulty with mining such clusters lies in the setting of our mining task. We seek to
solve the problem of mining specifications in an Open-World setting: one in which
implicit and explicit sources of hierarchical or taxonomic information are unavailable.
It is this Open-World setting that creates a unique need for disentangling the many

62

{
hashTypeInitIter, hashTypeNext, hashTypeReleaseIter

}

(a) Cluster in the vocabulary of simple call names

{
hashTypeInitIter, hashTypeInitIter→hashTypeNext, hashTypeNext, hashTypeNext==-1,
hashTypeNext!=-1, hashTypeInitIter→hashTypeReleaseIter, hashTypeReleaseIter

}

(b) Cluster in our enriched vocabulary

Figure 3.5: Comparison between two clusters

different topics that may exist in an abstracted symbolic trace. The purpose of
Research Question 1 is to understand the efficacy of the techniques described earlier
(specifically, Domain-Adapted Clustering) against a key challenge of Open-World
Specification Mining: learning correct and clean clusters.

To measure the quality of our learned clusters we found the need for a benchmark.
Unfortunately, to the best of our knowledge, the problem of Open-World Specification
Mining has not been previously addressed and, therefore, there is no ground truth to
evaluate our learned clusters against. One possible avenue of evaluation and source of
implicit clusters exists in source-code documentation. Many thoroughly documented
and heavily used APIs include information on the associations between functions
(most commonly in the form of a “See also. . . ” or “Related methods. . . ” listing).
Another possible source of implicit information comes from projects that have made
the transition from a language like C to a language like C++. In such a transition
methods are often grouped into classes and this signal could be used to induce a
clustering. Finally, there is the implicit clustering induced by the locations where
various API methods are defined: even in C, functions defined in the same header
are likely related.

Despite these various sources of implicit clusters, we have identified a need for
manually defined gold standard clusters. We use manually extracted ground truth
clusters for two reasons. First, the sources of information listed above are indications
of relatedness but not necessarily indications of a specification or usage pattern. For

63

example, several different methods are commonly defined for linked lists, such as
length(), next(), prev(), and hasNext() but not all of these methods are necessarily
used together in a pattern. Second, the vocabulary we are working over includes more
than simple call names—we also have information related to the path condition and
information about dataflow between calls. For example, compare the two clusters
given in Fig. 3.5. The cluster in Fig. 3.5a consists only of call names, while the cluster
in Fig. 3.5b includes call names, return value checks, and dataflow information. In
comparing these two clusters, it becomes clear that a cluster over words in our enriched
vocabulary (induced by the abstractions we choose) is strictly more informative than
a cluster over a vocabulary of simple call names.

Taken together, these two issues (the weak signal of the aforementioned sources
and the lack of labels for some words in our enriched vocabulary) make manually
extracted clusters more desirable. For the purpose of this evaluation we have extracted
71 gold standard clusters from five open source projects. We have placed no explicit
limit on the sizes of the clusters we included, thereby increasing the challenge of
recovering all the clusters in our benchmark correctly.

Using our set of 71 gold standard clusters we are able to perform a quantitative
evaluation by measuring the Jaccard similarity3 of our extracted clusters and our gold
standard clusters. Because our toolchain does not mine a fixed number of clusters,
we need some way to “pair” an extracted cluster with the gold standard cluster it
most represents. To do this, we look for a pairing of extracted clusters with gold
standard clusters that maximizes the average Jaccard similarity. This provides us
with a way to have a consistent evaluation regardless of the number of total clusters
we extract. (One might argue that this allows for extracting an unreasonable amount
of clusters in an attempt to game this metric. However, this kind of “metric hacking”
is unachievable in our toolchain due to the use of DBSCAN to extract clusters from
reduced traces. Clustering our reduced traces, using the Jaccard distance between sets
of tokens within a trace, removes the possibility that our tool is simply enumerating
all possible clusters to achieve a high score.)

3Jaccard similarity between sets A and B is |A∩B|

|A∪B|
. Jaccard distance is one minus the Jaccard

64

Table 3.2: Best scoring configurations for each of the five target projects

Benchmark
Measurement curl hexchat nginx nmap redis

Jaccard 62.8% 52.8% 44.9% 49.1% 71.9%
Intersection 79.7% 78.7% 67.6% 70.1% 83.5%

In addition to Jaccard similarity, which penalizes both omissions and spurious
inclusions, we also measure the percent intersection between our extracted clusters
and the clusters in our gold standard dataset. Table 3.2 provides both of these mea-
surements for each of the five open-source projects we examined. Examining Table 3.2,
we observe that the ml4spec toolchain retrieves clusters that have a strong agreement
with the clusters in our gold standard dataset. Furthermore, the intersection similarity
results show that our extracted clusters contain, on average, over two thirds of the
desired terms from the clusters in our gold standard dataset. Together, these results
answer Research Question 1 in the affirmative: ml4spec is capable of extracting clean
and useful clusters in an Open-World setting.

3.4.3 RQ2: How does DAC compare to off-the-shelf
clustering techniques?

In this section, we explore how our Domain-Adapted Clustering (DAC) technique (a
key piece of our Open-World specification miner) compares to traditional clustering
approaches. To understand the relationship between DAC and more traditional
clustering methods, it is instructive to consider the input data we have available
to use in the clustering process. Prior to clustering, we have access to a pairwise
distance matrix (created via a combination of co-occurrence statistics and word–word
cosine distance), our learned word vectors, and our original traces.

Most clustering methods accept either vectors of data or pair-wise distance
matrices. In principle, this leaves our choices for clustering methods to compare to

similarity.

65

Table 3.3: DAC compared to off-the-shelf clustering techniques

Benchmark
Clustering curl hexchat nginx nmap redis

DBSCAN 49.9% 36.7% 34.9% 36.5% 59.6%
Agglomerative 38.9% 15.8% 25.8% 12.7% 8.6%
Affinity Prop. 12.1% 10.2% 11.9% 10.3% 11.5%
DAC (Rel. Increase) +25.9% +41.2% +24.1% +34.5% +25.7%

Table 3.4: DAC compared to off-the-shelf clustering techniques
boosted by our machine-learning-assisted metric

Benchmark
Clustering curl hexchat nginx nmap redis

DBSCAN 49.9% 38.0% 38.1% 37.9% 64.4%
Agglomerative 40.7% 21.6% 39.2% 19.7% 26.7%
Affinity Prop. 15.3% 12.5% 13.4% 15.3% 15.5%
DAC (Rel. Increase) +25.9% +36.9% +10.6% +29.7% +16.5%

quite open. However, using our word vectors as the input to clustering ignores our
earlier insight about the advantage of combining word embeddings and co-occurrence
statistics. Therefore, we focus on clustering algorithms that accept pre-computed
pair-wise distances as input. From this class of clustering methods we have selected
the following techniques to compare against: DBSCAN (Ester et al., 1996a), Affinity
Propagation (Frey and Dueck, 2007), and Agglomerative Clustering.

To compare the selected traditional techniques to DAC we use the benchmark
we introduced in RQ1 as a means of consistent evaluation. Both DAC and our
selection of traditional techniques require some number of hyper-parameters to be
set. To ensure a fair evaluation, we have searched over a range of hyper-parameters
for each of the selected techniques and compare between the best configurations for
each technique. Table 3.3 provides performance measurements for each of the three
off-the-shelf clustering baselines across each of our five target projects. In addition,

66

Table 3.3 provides the relative performance increase gained by using DAC in place of
these baselines.4 For this comparison we have made only the co-occurrence distance
matrix available to our off-the-shelf baselines as one of DAC’s key insights was the
importance of a machine-learning-assisted metric. Table 3.4 follows the same format
but provides each off-the-shelf technique access to the combined matrix DAC uses for
clustering. In either case, we see that DAC outperforms each of the baselines by a
wide margin.

3.4.4 RQ3: How does the choice of word vector learner and
the choice of sampling technique affect the resulting
clusters?

Research Question 3 seeks to understand the impact of two choices made in the earlier
portion of our toolchain: the choice of word vector learner and the choice of trace
sampling technique. For the choice of word vector learner we argued that fastText
with its utilization of sub-word information (in the form of character level n-grams)
would provide embeddings better suited to the task of extracting clean clusters.
We based this prediction on the observation, made by many, that similarly named
methods often have similar meaning. When it came to the choice of trace sampling
we sought to reduce the impact of a problem, identified in Section 2.4.1, called prefix
dominance. To address this issue of prefix dominance in our specification mining
setting we introduced a trace sampling methodology termed Diversity Sampling.

To understand the interplay and effects of these choices we have evaluated the
ml4spec toolchain in nine configurations. These nine configurations are defined by
two choices: a choice of word vector learner (either fastText (Bojanowski et al., 2017),
GloVe (Pennington et al., 2014a), or word2vec (Mikolov et al., 2013b)) and a choice
of trace sampling technique (either Diversity Sampling, random sampling, or no
sampling). By evaluating our full toolchain with varying choices of embedding and
sampling methodology we can either confirm or refute our intuitions. We leverage

4We compute the relative performance increase by comparing to the best overall off-the-shelf
technique on a per-project basis.

67

Table 3.5: Top-1 performance (geometric mean across our five
target projects). The shaded row and column represent the
best sampler and learner, respectively.

Learner
Sampler word2vec GloVe fastText
Diversity Sampling 52.7% 48.6% 54.9%
Random Sampling 44.5% 43.6% 53.0%
No Sampling 47.7% 46.3% 50.7%

the gold standard clusters introduced in RQ1 to provide a consistent benchmark for
comparison between the nine configurations we’ve outlined.

Table 3.5 provides performance measurements (measured against our benchmark)
across all of the configurations we established in Section 3.4.1. We look at the single
best-performing configuration (with sampler and learner fixed to one of the nine
choices outlined earlier). In Table 3.5, we can see that fastText is superior (regardless
of sampling choice) to any of the other word vector learners by a wide margin. We
also observe that fastText paired with Diversity Sampling is the most performant
combination. However, fastText with no sampling is not far behind—this is perhaps
indicative of both the impact of word embeddings and the need for larger corpora to
learn suitable embeddings.

These results support two conclusions. First, fastText, with its use of sub-word
information, outperforms GloVe and word2vec in the cluster extraction task we
have benchmarked. Second, Diversity Sampling both improves the performance
of our toolchain and word vector learner (by reducing the amount of input data)
and provides an increase in performance compared to the other baseline choices of
sampling routine. These results also support further examination of the advantages
of sub-word information in the software-engineering domain; specifically, we note that
fastText has no concept of the ideal boundaries between sub-tokens that naturally
exist in program identifiers. A word vector learner equipped with this knowledge may
produce even more favorable results.

68

3.4.5 RQ4: Is there a benefit to using a combination of
co-occurrence statistics and word embeddings?

One of the key insights from Section 3.3.3 was that word embeddings and co-occurrence
statistics capture subtly different information. Word embeddings excel at picking
up on local context (a direct result of being based on the distributional hypothesis
which asserts that similar words appear in similar contexts). This focus on local
context makes word embeddings well-suited for tasks like word similarity and analogy
solving. For specification mining, co-occurrence information is often used, in some
form, to capture the “support” for a candidate rule or pattern. These co-occurrence
statistics encode a global relationship between words that is more far-reaching than
the relationship captured by word vectors.

Research Question 4 attempts to precisely quantify the impact of these two
different sources of information. This effort is made somewhat easier by the choice to
include a tunable parameter in our toolchain that represents the relative weight of
word–word distance and co-occurrence distance in our final pair-wise distance matrix.
By evaluating our full toolchain with a gradation of weight values we can pinpoint
the mix of metrics that lead to optimal performance on the benchmark we introduced
earlier.

The results for top-1 performance, given in Fig. 3.6, paint a clear picture of the
relationship between word embeddings and co-occurrence statistics. In Fig. 3.6 we
observe that, for all five projects, adding word embeddings to our distance matrix
produces a pronounced increase in performance. We observe that, for each project, the
performance benefit provided by adding word embeddings peaks at α = 0.75. These
results suggests an affirmative answer to Research Question 4: there is a quantifiable
benefit to using both co-occurrence statistics and word embeddings; furthermore, a
combination that favors the distances produced via word embeddings yields maximum
performance across each of the projects we examined.

69

0.00 0.25 0.50 0.75 1.000%

20%

40%

60%

80%

100%

Alpha

Be
nc

hm
ar

k
Sc

or
e

redis
curl
hexchat
nmap
nginx

Figure 3.6: Peak benchmark performance for varying values of α

3.5 Related Work

There exists a wide variety of related works from the specification mining, API misuse,
program understanding, and entity embedding communities. For comprehensive
overviews of specification mining and misuse we refer the reader to Lo et al. (2011)
and Robillard et al. (2013). For efforts in machine learning and its application in the
software-engineering domain Allamanis et al. (2017a) provide an excellent survey. In
addition, there exists a listing of machine learning on code resources maintained by
the community (source{d}, 2019). For details on embeddings and their use in the
software-engineering domain Martin Monperrus (2019) provide an up-to-date listing.
In the following sections, we discuss related works in the realms of specification mining
and embeddings of software artifacts in greater detail.

70

Specification Mining

There is a rich history of work on mining specifications, or usage patterns, from
programs. Earlier approaches, such as Li and Zhou (2005), provided relatively simple
specifications. Going forward in time, a growing body of work attempted to produce
richer FSA-based specifications (Lorenzoli et al., 2008; Ammons et al., 2002; Pradel and
Gross, 2009; Gabel and Su, 2008; Walkinshaw and Bogdanov, 2008; Walkinshaw et al.,
2007; Quante and Koschke, 2007; Shoham et al., 2008; Dallmeier et al., 2006; Acharya
and Xie, 2009; Lo and Khoo, 2006). Some recent works such as Deep Specification
Mining and Doc2Spec, have incorporated NLP techniques (Zhong et al., 2009; Le
and Lo, 2018). DeFreez et al. (2018b) use word-vector learners to bolster traditional
support-based mining via the identification of function synonyms. In the broader field
of non-FSA-based specification mining techniques, there exist several novel techniques:
Nguyen et al. (2009) mine graph-based specifications; Sankaranarayanan et al. (2008)
produce specifications as Datalog rules; Acharya et al. (2007) create a partial order
over function calls and Murali et al. (2017b) develop a Bayesian framework for learning
probabilistic specifications. In addition to mining, several works focus on the related
problem of detecting misuses (Engler et al., 2001; Yun et al., 2016; Monperrus and
Mezini, 2013; Livshits and Zimmermann, 2005; Wasylkowski et al., 2007).

The ml4spec toolchain is agnostic to the choice of trace-based mining technique
used to generate specifications. This miner-agnostic perspective makes ml4spec a
front end that enables prior trace-based miners to work in the Open-World setting
we have described. In addition, ml4spec’s use of Parametric Lightweight Symbolic
Execution makes it possible to mine, via traditional methods, specifications that
involve both control-flow and data-flow information.

Embeddings of Software Artifacts

Recently, several techniques have leveraged learned embeddings for artifacts generated
from programs. Nguyen et al. (2017b, 2016) leverage word embeddings (learned from
ASTs) in two domains to facilitate translation from Java to C#. Le and Lo (2018) use
embeddings to bootstrap anomaly detection against a corpus of JavaScript programs.

71

Gu et al. (2016) leverage an encoder/decoder architecture to embed whole sequences
in their DeepAPI tool for API recommendation.

Pradel and Sen (2017) use embeddings (learned from custom tree-based contexts
built from ASTs) to bootstrap anomaly detection against a corpus of JavaScript
programs. Gu et al. (2016) leverage an encoder/decoder architecture to embed whole
sequences in their DeepAPI tool for API recommendation. API2API by Ye et al.
(2016a) also leverages word embeddings, but it learns the embeddings from API-related
natural-language documents instead of an artifact derived directly from source code.
Alon et al. (2018c) learn from paths through ASTs to produce general representations
of programs; in (Alon et al., 2018b) they expand upon this general representation
by leveraging attention mechanisms. Ben-Nun et al. (2018) produce embeddings of
programs that are learned from both control-flow and data-flow information. Zhao
et al. (2018a) introduce type-directed encoders, a framework for encoding compound
data types via a recursive composition of more basic encoders. Using input/output
pairs as the input data for learning, Piech et al. (2015) and Parisotto et al. (2016) learn
to embed whole programs. Using sequences of live variable values, Wang et al. (2017)
produce embeddings to aid in program repair tasks. Allamanis et al. (2017b) learn to
embed whole programs via Gated Graph Recurrent Neural Networks (GG-RNNs) (Li
et al., 2015). Peng et al. (2015) provide an AST-based encoding of programs with
the goal of facilitating deep-learning methods.

In contrast to prior work on the embedding of software artifacts, we provide both
a novel use of embeddings in the software-engineering domain (in the form of Domain-
Adapted Clustering and its machine-learning-assisted metric) and a comprehensive
comparison between three state-of-the-art word embedding techniques (fastText (Bo-
janowski et al., 2017), GloVe (Pennington et al., 2014a), and word2vec (Mikolov
et al., 2013b)). Furthermore, we make an insight into a future line of work involv-
ing the utilization of refined sub-token information to improve embeddings in the
software-engineering domain.

72

3.6 Future Work

Similar to the work in Chapter 2, this work also occurred before the “large-language-
model” era. It would be worthwhile to re-visit some of the key challenges from
Open-World Specification Mining and evaluate how well a large language model
could do in the zero/few-shot setting. For example, a key challenge we face in the
Open-World Mining setup was clustering of related terms within a trace. It may be
the case that this problem is easily solved by large models that have been exposed to
hundreds of gigabytes of training data. Furthermore, if large models can be leveraged
to perform clustering in the zero/few-shot setting, one might wonder if large models
could directly ascertain specifications or usage patterns from a corpus of source code.

3.7 Notes

This chapter represents the second piece of work I produced during my graduate
studies and, more critically, my first experience with having my work rejected. In
the end, the rejection of this work was what (eventually) lead me to explore learning
from non-code artifacts. I think, at the time, I had not yet absorbed one of the
many critical lesson of graduate work: rejection is simply a chance for refinement.
(Up until this point in my studies, I had only one experience with submitting a
conference paper; and that one experience ended in acceptance—I did not expect this
pattern to continue, but when that first rejection came it was more difficult than I
had imagined.)

73

4 semantic robustness

If small semantics-preserving changes make models of code generate incorrect
predictions, how might we train models that are robust to such changes?

GTP-3: One approach is to train models on a variety of different code
samples, including those that have been slightly modified. This can help the
models learn to be more robust to small changes in the code. Another
approach is to use techniques like reinforcement learning, which can help
models learn to make better predictions by trial and error.

Would you expect that models of code using structural representations of
code (such as ASTs) are more robust compared to simpler models of code
trained on the program as text?

GPT-3: It is possible that models of code using structural representations of
code are more robust compared to simpler models of code trained on the
program as text. This is because the structural representations of code can
provide more information about the code, which can help the models learn to
be more robust to small changes.

A dialogue with OpenAI’s GPT-3

4.1 Introduction

Thus far we have described a technique for learning from programs (Chapter 2) and
methods for mining specifications (usage patterns) from programs (Chapter 3). Up
until this point, we have not considered a key aspect of learning: robustness. It
has been repeatedly shown that deep neural networks are vulnerable to adversarial
examples (Szegedy et al., 2013; Biggio et al., 2013; Goodfellow et al., 2014; Papernot
et al., 2017): small, seemingly innocuous perturbations to the input that lead to
incorrect predictions. For instance, making a small imperceptible modification to
pixels of an image may cause a neural network to change its prediction.

74

4.1.1 Motivation

Adversarial examples raise safety and security concerns, for example, in computer-
vision models used in autonomous vehicles (Eykholt et al., 2018; Bhagoji et al., 2018)
or for user authentication (Sharif et al., 2016). Significant progress has recently been
made in identifying adversarial examples and training models that are robust to
such examples. However, the majority of the research has targeted computer-vision
tasks (Carlini and Wagner, 2017; Madry et al., 2018; Szegedy et al., 2013), which is a
continuous domain. (See Kolter and Madry (2020) for a comprehensive overview.)

Motivating Question

Can we develop a method to achieve robust training in the discrete domain of
deep neural networks for source code?

In this chapter, we study the problem of robustness to adversarial examples in the
discrete domain of deep neural networks for source code. With the growing adoption
of neural models for programming tasks (Allamanis et al., 2020, 2016b; Uri Alon and
Yahav, 2019; Hellendoorn et al., 2018; Zhao and Huang, 2018; Kanade et al., 2020;
Vasic et al., 2019; Pradel et al., 2020; Ahmad et al., 2020; DeFreez et al., 2018a),
robustness is becoming an important property. Why do we want robust models
of code? There are many answers, ranging from usability to security. Consider,
for instance, a model that explains in English what a piece of code is doing—the
code-captioning task. A developer using such a model to navigate a new code base
should not receive completely different explanations for similar pieces of code. For
a concrete example, consider the behavior of the state-of-the-art code2seq model of
code (Alon et al., 2018a) on the Java code in Fig. 4.1, where the prediction changes
after logging print statements are added. Such behavior (changing output based on
irrelevant detail) is the result of an over-sensitive (and under-robust) model.

75

1 int 2(Object target) {
2 System.out.println(“Begin search”);
3 int i = 0;
4 for (Object elem: this.elements) {
5 if (elem.equals(target)) {
6 System.out.println(“Found”);
7 return i;
8 }
9 i++;
10 }
11 return -1;
12 }

Figure 4.1: code2seq Alon et al. (2018a) correctly predicts the function name
“indexOfTarget.” After the highlighted logging statements are added, it predicts
“search.”

4.1.2 Goals

With images, adversarial examples involve small changes that are imperceptible to a
human. With code, there is no analogous notion of a change imperceptible to a human.
Consequently, we consider attacks based on semantics-preserving transformations.
Because the original program’s semantics is preserved, the program that results from
the attack must have the same behavior as the original. Using the idea of adversarial
examples generated by semantics-preserving transformations, we set out to meet the
following goal:

Goals

Our Goal. Find a way to train robust models of code and, in doing so, build
a framework that enables experimentation with different program transforms,
models, datasets and programming languages.

76

4.1.3 Contributions

We developed a novel and generic adversary that can be used to facilitate
robust training.

We introduced methods for robust training that can be applied in the (discrete)
domain of deep neural networks for source code.

We created a framework, called AVERLOC, that has (already) allowed others to
push the boundaries of adversaries in the domain of models of code.

We report on several experiments:

• We apply individual semantics-preserving transforms and find our (parametric)
adversary to be effective (RQ1). We further discover surprising differences
between two common models of code (seq2seq and code2seq).

• We evaluate our robust training methodology and find it to increase model
robustness and outperform data augmentation (RQ2).

• We apply progressively stronger adversaries to robust models—we find training
with respect to a weaker adversary to be sufficient for defending against a
stronger adversary (RQ3).

• We test the ability of robustly trained models to adapt in new domains (RQ4).
We find evidence that robust training improves model adaptability.

• We test the ability of robustly trained models to transfer across programming
languages (RQ5). In this task, we find inconclusive results: it seems robust
training neither strictly enhances nor strictly degrades a model’s ability to
transfer across programming languages.

77

4.1.4 Our Approach to Semantic Robustness

We present a novel and generic approach for defining an adversary that manipulates a
program to fool a neural network. In particular, we structure an adversary in terms of
two operations: semantics-preserving transformations and resolvers. Transformations
construct a program sketch (Solar-Lezama et al., 2006)—an incomplete program
with holes—and resolvers fill the holes to produce a program that fools the neural
network. This insight allows us to represent a wide range of adversaries, including
adversaries formulated in concurrent and follow-on work by others. Furthermore, our
approach to adversaries (and the overall framework we built) has already enabled
others to produce new state-of-the-art attacks. We take this as strong validation of
our approach, and we hope that others will continue to build on our work to push
the boundaries of adversaries in the domain of models of code.

We also demonstrate how to train models of source code that are robust to
such adversaries, using robust-optimization ideas that are prevalent in image recogni-
tion (Madry et al., 2018). Aside from contributing a generic adversary and a robust
training approach, we also contribute a framework, AVERLOC, for producing both
the adversaries and the robust-training pipelines required to carry out extensive
evaluations.

4.1.5 The AVERLOC Framework

AVERLOC provides all of the components necessary to meet our goal of training
robust models of code and, as we will describe, the AVERLOC framework is even able
to support the methodology used in recent (and concurrent) work by others on robust
training for models of code. AVERLOC requires a user to provide data, a model,
and a loss function. Given those components, AVERLOC will produce an adversary,
a data augmentor, and a surrogate to an adversarial-loss function. Optionally,
users can leverage our pre-existing datasets and (code-summarization) models. Note
that, although we evaluate models trained to perform the code-summarization task,
AVERLOC supports any model taking code as input. For more details on the
AVERLOC framework, see Section 4.3.

78

4.1.6 Evaluation of Semantic Robustness

Our approach to generic adversaries and our framework (which embodies this ap-
proach) allows us to provide an extensive evaluation. In our evaluation, we answer
the following five research questions (and provide concrete and actionable data to
inform practitioners in their use of models of code):

Research Question # 1

How effective are the individual transforms we provide when used as attacks?

One of our key contributions is a generic adversary for models of code built on
a library of semantics-preserving transforms. We implement eight such transforms,
and, in this research question, measure the strength of each transform in isolation
against two separate model architectures.

Research Question # 2

How effective is robust training in defending against our attacks? Are there any
simpler baselines that perform well?

After understanding our attacks in isolation, we move to evaluating several
pipelines for defense.

Research Question # 3

Does training with a weak adversary help with defending against a strong
adversary?

Can we train on weaker adversaries and still retain (some) robustness when we
test against much stronger adversaries?

79

Research Question # 4

What is the effect of robust training on the performance of models for the
domain-adaptation task?

Domain adaptation asks if models trained on data from one domain can be applied
to data from another different (yet similar) domain while retaining (some of) the
model’s original performance. To the best of our knowledge, we are the first to
investigate the interplay between robustness and domain adaptation for models of
code. If robust models perform well on unseen data (taken from sufficiently different
data sources) then robust training may be desirable not only for defense against
attacks, but also for increased performance in the face of unseen data.

Research Question # 5

What is the effect of robust training on the performance of models for the
cross-language-transfer task?

Again, to the best of our knowledge, we are the first to provide preliminary
investigations into the effect of robust training on the cross-language-transfer task.
If models can work across languages (like simple seq2seq models can), then robust
training can increase their cross-language performance.

In our evaluation, we find several surprising facts: although vanilla code2seq is
more robust than a simpler seq2seq baseline (before applying any kind of robust
training—likely due to code2seq’s use of program structure), it is up to 1.5x more
vulnerable to some of our attacks; furthermore, to our surprise, we find that it is
harder to make code2seq robust, which results in robustly trained seq2seq models
having the best overall performance; additionally, we find that robust training beats
dataset augmentation in every evaluation we performed; finally, we find that robust
models perform better against unseen data from different sources—however, we also
find that robust models are not clearly better in the cross-language-transfer task.

80

In summary, we train over 32 models, perform hundreds of individual evaluations,
summarize our data, and answer each of our five research questions. With these
extensive results, we hope that researchers and practitioners alike can gain a better
understanding of robustness in the space of models on code.

4.2 Semantic Robustness

In this section, we describe (1) our novel adversarial attack techniques, and (2) how
to train semantically robust models for source-code tasks.

4.2.1 Semantic Adversaries

Adversaries by example

Throughout this section, we imagine a fixed deep neural network N over source code:
given a piece of code P, it returns a prediction y, e.g., a textual description of what
P does. The goal of an adversary is to transform P into a semantically equivalent P ′

that fools the neural network into making a wrong prediction. Formally, we denote
an adversary as a function A(N,P); the adversary attempts to produce a program P ′

that is equivalent to P and makes N produce a wrong prediction.
An adversary is equipped with a set of semantics-preserving transforms, e.g.,

adding dead code or print statements. Most transforms are parametric, e.g., if one
adds a print statement, one has to also decide on the text to print. Therefore, we
think of a transform as producing a program sketch Solar-Lezama et al. (2006)—a
program with holes. For example, consider the following program:

1 public void incrementWeight(double weight) {

2 this.weight += weight;

3 }

Applying the insert print statement transform produces the following sketch,
where ◦1 is a hole that the adversary needs to fill with text.

81

1 public void incrementWeight(double weight) {

2 this.weight += weight;

3 System.out.println("◦1");
4 }

An adversary may decide to apply multiple transforms, for example, the one
we describe above plus a transform that changes the name of function arguments.
Continuing our example, this compound transform produces the following sketch with
two holes ◦1 and ◦2. (There are two occurrences of hole ◦2.)

1 public void incrementWeight(double ◦2) {

2 this.weight += ◦2;
3 System.out.println("◦1");
4 }

After applying a number of transforms, the adversary needs to fill in the holes of
the resulting sketch to produce a complete program that fools the neural network into
changing its prediction. Our adversaries apply multiple transforms in a random order.
However, it is possible to extend our adversaries such that transforms are applied
according to user-supplied heuristics.

Adversary spectrum

We now describe how one designs an adversary algorithmically, assuming a fixed set
of transforms at the adversary’s disposal.

In our illustration above, we notice that an adversary has to make two choices:

1. Transform: Choose a sequence of transforms to apply to a program, resulting
in a sketch.

2. Resolve: Choose values for the holes in a sketch.

82

The strength of an adversary depends upon how it makes these two choices. The
weakest possible adversary, and computationally cheapest to implement, is the one
that randomly chooses a sequence of transforms as well as values for sketches. The
strongest possible adversary exhaustively tries all possible sequences of transforms
and values for filling the holes in sketches, but it is intractable at best.

Our strong adversary

Our strongest adversary randomly chooses a sequence of transforms of a fixed length
and then uses a gradient-based (i.e., targeted, as opposed to random) approach to fill
the holes with tokens that are most adversarial to model performance. Specifically,
we use an approach inspired by natural-language-processing techniques Ebrahimi
et al. (2017); Yefet et al. (2020).

Using a differentiable embedding layer, we take a gradient-ascent step in the
direction that maximizes model loss. In other words, for each distinct hole in the
sketch, we pick the replacement to be the token with the maximum value (in the
one-hot encoding) after the gradient-ascent step. We also impose additional semantic
constraints, e.g., in sketches with multiple holes, we enforce that each hole receives
distinct token replacements.

4.2.2 Training Semantically Robust Models

Given an adversary, how can we train models robust to adversarial transformations?
In standard neural-network training, given a dataset of programs and labels,

(P1,y1), . . . , (Pn,yn), one solves an optimization objective that looks for a neural
network that minimizes average prediction loss on the entire dataset, where the
loss function L(P,y,N) is a numerical measure of how bad the neural network N’s
prediction is on program P with label y. Formally, we solve the following problem:

arg min
N

∑
i

L(Pi,yi,N) (4.1)

83

To train robust networks, we adopt a robust-optimization objective Madry et al.
(2018), where we look for a neural network that minimizes average adversarial loss. For
a program Pi, adversarial loss is the loss with respect to the semantically equivalent
program P ′

i produced by an adversary. In other words, the adversary is modeled in
the optimization objective, forcing us to consider its behavior: whenever we compute
the loss for a program Pi, we instead compute that of P ′

i. Formally:

arg min
N

∑
i

L(P ′
i,yi,N), where P ′

i = A(P,N) (4.2)

Robust optimization has been shown to work well in image recognition and natural-
language processing, and, as we shall see, results in semantically robust models for
source code.

4.3 Framework

In this section, we explore the AVERLOC framework in greater detail. We describe
(1) the transforms and resolvers AVERLOC implements, (2) the training strategies it
supplies, and (3) the practical challenges of robust training on source code. We also
discuss related concepts like obfuscation and non-semantics-preserving transforms
(mutations).

4.3.1 Adversaries in Detail

The Transforms Library

In our framework, we provide a library of transforms on which our adversaries are
built. This library consists of eight transforms and two separate implementations
of these eight transforms: one implementation targeting Java programs, based on
Spoon (Pawlak et al., 2015), and one implementation for Python, based on Astor
(Berkerpeksag, 2020). We will use the following Java program to demonstrate our
transforms:

84

1 public int gcd(int a, int b) {

2 while (b > 0) { int c = a % b; a = b; b = c; }

3 if (this.log == true) { System.out.println(a,b); }

4 return a;

5 }

T1: AddDeadCode: A dead-code statement of the form if (false) int ◦1 = 0;, is
appended to the beginning or end of the target program. The insertion location
(beginning or end) is chosen at random. Applying AddDeadCode to our example yields:

1 public int gcd(int a, int b) {

2 if (false) { int ◦1 = 0; }

3 while (b > 0) { int c = a % b; a = b; b = c; }

4 if (this.log == true) { System.out.println(a,b); }

5 return a;

6 }

T2: RenameLocalVariables: A single, randomly selected, local variable declared in
the target program has its name replaced by a hole. Applying RenameLocalVariables

to our example yields:

1 public int gcd(int a, int b) {

2 while (b > 0) { int ◦1 = a % b; a = b; b = ◦1; }

3 if (this.log == true) { System.out.println(a,b); }

4 return a;

5 }

T3: RenameParameters: A single, randomly selected, formal parameter in the target
program has its name replaced by a hole. Applying RenameParameters to our example
yields:

85

1 public int gcd(int ◦1, int b) {

2 while (b > 0) { int c = ◦1 % b; ◦1 = b; b = c; }

3 if (this.log == true) {

4 System.out.println(◦1,b);
5 }

6 return ◦1;
7 }

T4: RenameFields: A single, randomly selected, referenced field (this.field
in Java, or self.field in Python) has its name replaced by a hole. Applying
RenameFields to our example yields:

1 public int gcd(int a, int b) {

2 while (b > 0) { int c = a % b; a = b; b = c; }

3 if (this.◦1 == true) { System.out.println(a,b); }

4 return a;

5 }

T5: ReplaceTrueFalse: A single, randomly selected, Boolean literal is replaced
by an equivalent expression containing a single hole. (One example: “(◦1 == ◦1)”
replaces true.) Applying ReplaceTrueFalse to our example yields:

1 public int gcd(int a, int b) {

2 while (b > 0) { int c = a % b; a = b; b = c; }

3 if (this.log == (◦1 == ◦1)) {

4 System.out.println(a,b);

5 }

6 return a;

7 }

86

T6: UnrollWhiles: A single, randomly selected, while loop in the target program
has its loop body unrolled exactly one step. No holes are created by this transform.
Applying UnrollWhiles to our example yields:

1 public int gcd(int a, int b) {

2 while (b > 0) {

3 int c = a % b; a = b; b = c;

4 while (b > 0) {

5 int c = a % b; a = b; b = c;

6 }

7 break;

8 }

9 if (this.log == true) { System.out.println(a,b); }

10 return a;

11 }

T7: WrapTryCatch: The target program is wrapped by a single try { ... } catch

(...) { ... } statement. The catch statement passes along the caught exception.
A hole is used in the place of the name of the caught exception variable (e.g., catch
(Exception ◦1)). Applying WrapTryCatch to our example yields:

1 public int gcd(int a, int b) {

2 try {

3 while (b > 0) { int c = a % b; a = b; b = c; }

4 if (this.log == true) { System.out.println(a,b); }

5 return a;

6 } catch (Exception ◦1) { }

7 }

T8: InsertPrintStatements: One print statement System.out.println("◦1"), in
Java, or print(’◦1’) in Python, is appended to the beginning or end of the target

87

program. The insertion location (beginning or end) is chosen at random. Applying
InsertPrintStatements to our example yields:

1 public int gcd(int a, int b) {

2 System.out.println("◦1");
3 while (b > 0) { int c = a % b; a = b; b = c; }

4 if (this.log == true) { System.out.println(a,b); }

5 return a;

6 }

Resolvers

AVERLOC provides two distinct resolution strategies (resolvers). Recall that a
resolver in our framework is a method that, given a program sketch, resolves the
input sketch into a complete program. For our evaluation, we implemented two
resolution strategies. First, we implemented a random resolver which, given a program
sketch, fills all holes in the sketch with a random token generated by selecting and
concatenating a random number of sub-tokens from a (provided) fixed vocabulary.
Second, we implemented the gradient-based search described in Section 4.1.4.

4.3.2 (Robust) Optimization Objectives

Our framework enables definition of different optimization objectives for training.
First, our framework can perform normal training, where the goal is to minimize a
standard loss function (Eq. (4.1)). Second, our framework allows robust-optimization
objectives (Eq. (4.2)) to model the adversary within the training loop.

Additionally, our framework allows for data augmentation, which is a standard
technique where one enriches a dataset by adding random transformations of the
data (e.g., rotating images using a random angle). In our framework, we can perform
standard training with data augmentation by defining a completely random adversary
(random choice of transforms and random resolvers) and solving, for example, the
following optimization objective:

88

arg min
N

∑
i

L(Pi,yi,N) + L(P ′
i,yi,N) where P ′

i = AR(P) (4.3)

where AR is a random adversary, and therefore does not take the neural network as
an input. Note that the transformed set {P ′

i} is presampled before training.

Practical Challenges of Robust Optimization

Solving a robust-optimization objective is particularly challenging in the realm of
source code. Practically, in every epoch of training, for every program Pi, we need
to apply the adversary to compute a transformed program P ′

i. This approach is
wildly inefficient during training due to the mismatch between program formats for
transformation and for training: a program Pi is an abstract syntax tree (AST) and
the adversary’s transformations are defined over ASTs, but the neural network expects
as input a different representation—for example, sequences of (sub)tokens, or as in a
recent popular line of work Alon et al. (2019, 2018a), a sampled set of paths from
one leaf of the AST to another.

Therefore, during training, we have to translate back and forth between ASTs and
their neural representation. This approach is expensive to employ during training:
in every training step, we have to apply transformations using an external program-
analysis tool and convert the transformed AST to its neural representation.

We address this challenge as follows: To avoid calling program-analysis tools
within the training loop, we pre-generate all possible program sketches considered by
the adversary. That is, for every program Pi in the training set, before training, we
generate the set of program sketches that can be produced by applying sequences of
transforms of a bounded length.

89

4.3.3 Related Concepts

Obfuscation

One might wonder how source-code obfuscation is related to our adversaries and
transforms. In general, we view obfuscation techniques as off-the-shelf adversaries
that one could use in our framework. However, for the sake of a precise evaluation,
we wished to build adversaries into our framework that are tunable, for which we
can create a scoring scheme suitable for use in experiments. For our adversaries,
a user can select both the resolution strategy for filling holes in program sketches
and the number of transforms that may be applied, in sequence, to attack input
programs. Obfuscation techniques are, in a sense, “maximal” in their efforts to mask
code. For our evaluation and for ease-of-use, we focus on adversaries that can be
“throttled” so that we can compare the robustness of models trained under various
pipelines against progressively stronger adversaries. In summary, code obfuscators
make great adversaries, and we encourage their use in our framework, but, for the sake
of measured evaluation, we focus not on off-the-shelf obfuscation, but on a simpler
and more configurable adversary to control for the degree of adversarial effort when
evaluating different training pipelines.

Mutations

Given our focus on transforms that do not change the meaning of the code they target,
it is natural to ask about mutations or non-semantics-preserving transforms. In short,
mutations are too strong, in some sense—that is, when using mutations we have no
way to control for the degree of adversarial effort. In fact, mutations may change the
underlying meaning (semantics) of a program and, as such, the use of mutations calls
into question the objective of robustness for models of code: models given equivalent
(but, syntactically diverse) programs should produce equivalent outputs.

Nonetheless, one could still ask a related question: if we mutate the code, should
models not be expected to change their outputs? This is an interesting question
and one we hope to explore further in follow-on work. In summary, if we focus on
transforms that change the meaning of code then we must change our expectations

90

from robustness to something closer to a “mutation adequacy” score Andrews et al.
(2005) for models of code. Such issues are interesting, but lie outside the scope of our
investigations on robustness.

4.4 Comparable Techniques

In this section, we demonstrate how two recent works on adversarial robustness over
code models, Yefet et al. (2020) and Srikant et al. (2021), can be implemented using
AVERLOC.1 Note that these works consider a subset of the described adversaries
in Section 4.3.1, but with more fine-tuned attack and defense methods. AVERLOC’s
adversaries are built by combining transformations and resolvers. Given transforma-
tions and resolvers, AVERLOC allows for the construction of robust training pipelines
to provide defense against adversaries. We show how two recent works fit into the
AVERLOC framework by describing their transformations, resolvers, and the defenses
they provide.

4.4.1 DAMP

Yefet et al. (2020) present a technique, Discrete Adversarial Manipulation of Programs
(DAMP), to explore the adversarial robustness of code models. DAMP differs from
AVERLOC in the following ways: (1) For the attack, similar to AVERLOC, DAMP
uses gradient-targeted resolution to resolve program sketches. Instead of applying
greedy search to find a single resolution, DAMP uses multiple trials to perform a
search for the best sketch resolution. (2) For the defense, besides adversarial (robust)
training, Yefet et al. (2020) use outlier detection, which replaces an outlier variable
name with UNK.

1We also note that a preprint of our work appeared on arXiv earlier than Yefet et al. (2020) and
Srikant et al. (2021).

91

Transformation

DAMP uses transforms similar to the RenameLocalVariables and AddDeadCode trans-
formations already provided by AVERLOC.

Resolver

To provide DAMP’s multiple-trial search, after computing the gradients, instead of
returning only one closest token, one would return the top-k replacement tokens, and
then run the network with each token. Repeating a few such gradient-and-run steps
gives us the same search procedure as in DAMP.

Defense

Besides the robust training that has already been provided by AVERLOC, one also
needs to support DAMP’s outlier detector. Outlier detection is an independent
feature that processes and transforms the input source code. One only needs to
write a function that takes in the word embeddings of the target code-snippet and
computes the distances of each variable, as shown in Eq. (6) in (Yefet et al., 2020).
The most distant variable would be replaced with UNK if the distance is above some
predefined threshold.

4.4.2 Site-Selection-Perturbation (SSP)

A new formulation of an adversarial attack on code models was proposed by Srikant
et al. (2021). In addition to identifying a replacement token that leads to the
adversarial prediction (using a new resolver), they also consider where in the target
program they should apply their resolver. (This approach is different from our
current library of transforms; our transforms produce program sketches with mostly
arbitrary holes—SSP optimizes where transforms should produce holes in the resulting
program sketch.) The source code is formulated as a sequence of tokens, and the
attack is formulated as an optimization problem to select which token is to be
replaced/inserted with what new token. Because of the combinatorial and structural

92

constraints of the optimization problem, SSP proposes several optimization techniques
to solve the optimization problem. Because SSP does not consider defense against
adversarial attacks, to implement SSP using AVERLOC, one only needs to work on
the transformation and resolution components.

Transformation

SSP makes use of a subset of AVERLOC’s transforms, specifically: AddDeadCode,
RenameLocalVariables, RenameParameters, RenameFields, ReplaceTrueFalse, and
InsertPrintStatements. However, SSP “upgrades” these transforms to produce a
program sketch that has optimized holes—that is, SSP optimizes where transforms
change the input program.

Resolver

SSP implements a resolver that is similar to AVERLOC’s gradient-targeted resolver.
However, SSP performs a joint (alternating) optimization to find both optimal sites for
applying transforms and optimal resolutions for the sketches generated by transforms.
To phrase this using the terminology of AVERLOC: SSP iterates their transforms
and resolver as part of an alternating optimization routine.

4.5 Experiments

In this section, we provide answers to five research questions, with the goal of
understanding the adversaries our framework allows, their attack strength, defenses
one can build via our framework, and downstream consequences for practitioners
(such as performance of both normal and robust models on the domain-adaptation
and cross-language-transfer tasks). To conduct our experiments, we utilize four
datasets in two different languages (Java and Python): c2s/java-small, csn/java,
csn/python and sri/py150. Each dataset contains around 0.5M data points (method-
body/method-name pairs). Running extensive experiments across the 4 datasets and
2 (code-summarization) models (seq2seq, code2seq) was computationally intractable,

93

both in terms of time and space. Thus, we randomly subsample the four datasets
to have train/validation/test sets of sizes 150k/10k/20k each. The datasets remain
large, and we find that subsampling has a minimal effect on model performance.
Furthermore, the reduced dataset sizes allowed us to perform over 160 evaluations
of over 32 distinct trained models, which, even with subsampled datasets, required
hundreds of hours of GPU compute time and was expensive to perform. Unless
otherwise noted, we measure (changes) in our models’ F1 scores. F1 is a metric that
computes the harmonic mean of a model’s precision and recall.

4.5.1 RQ1: Attack Strength

AVERLOC’s generic adversary is built on a library of transformations and resolvers;
how effective are individual transforms under both resolution strategies (random/gra-
dient)?

Rationale

One of the reasons we use a generic adversary based on a library of transformations
and resolvers is to control for the degree of adversarial effort and, in doing so, allow
for precise experimentation. To do this effectively, we must understand how each
of our eight transforms and two resolution strategies perform against our models.
Furthermore, in this evaluation we also get our first insights into the effect of having
a model mostly trained on syntax (seq2seq) versus a model trained primarily on
structure (code2seq).

Metrics

We measured the drop in F1 score of each of our models under each combination of
transformation and resolver. This drop in F1 was computed by assessing the baseline
performance of a given model on its original test set and then measuring that same
model against an attacked version of its test set. To simplify the presentation, we
show data from both model architectures evaluated on a single dataset.

94

Table 4.1: Decreases in F1 induced by each of our eight semantics-preserving
transformations paired with either random (R) or gradient-based (G) resolution
strategies (measured against a normally trained baseline model on the c2s/java-small
dataset). (Larger numbers indicate stronger attacks.)

Transform
seq2seq code2seq

−∆F1 (R / G) −∆F1 (R / G)

AddDeadCode 4.0 / 7.7 1.4 / 2.9
RenameParameter 0.3 / 3.0 0.3 / 4.7
InsertPrintStatement 2.7 / 6.1 3.8 / 10.2
ReplaceTrueFalse 0.0 / 0.7 0.2 / 0.5
RenameField 2.3 / 5.4 2.0 / 2.0
UnrollWhile 0.0 / 0.0 0.4 / 0.4
RenameLocalVariable 0.3 / 2.2 0.0 / 2.5
WrapTryCatch 2.5 / 9.4 1.4 / 7.8

Results

Table 4.1 shows a breakdown of our results. Note that, across model architectures, the
AddDeadCode, InsertPrintStatement, and WrapTryCatch transforms are particularly
effective. It is also of interest to note that gradient resolution is strictly better than
random resolution (except for UnrollWhiles, which produces a program sketch with
no holes—thus, resolution has no effect). Finally, note that code2seq is, in many cases,
more robust, but also, in notable cases, more susceptible to attack. In particular, we
find that the InsertPrintStatement transform (with gradient-based resolution) is
over 1.5 times as effective on code2seq as on seq2seq.

RQ1 Summary. We find that our individual attacks are effective and, between
random and gradient-based resolution, find gradient-based resolution to be strictly
better. Furthermore, we find a surprising fact: although code2seq is a naturally
more robust architecture, it has some surprising weakness—allowing for up to
1.5x more effective attacks than a simpler seq2seq baseline, in some cases.

95

4.5.2 RQ2: Robust Training versus Baselines

How effective is robust training in defending against the (single-step) attacks we just
examined? Are there any alternative approaches (like dataset augmentation) that
perform well?

Rationale

Finding ways to train robust models of code is our primary goal; therefore, in this
question, we seek to understand exactly which pieces of our framework are most useful
in our quest to train robust models. As part of this evaluation, we test increasingly
complex (and costly) training pipelines, with the hope that more sophisticated
instantiations of our framework create more robust models.

Metrics

We trained models using three different training pipelines: (1) training with dataset
augmentation, (2) robust training with an adversary configured to use any of our
eight transforms and random resolution, and (3) robust training with an adversary
configured to use any of our eight transforms and gradient-targeted resolution. We
measured the change in F1 score of each of these models when attacked by an adversary
using any of our eight transforms and gradient-targeted resolution. (This change is
relative to a normally-trained baseline model attacked by the same adversary.)

Results

Table 4.2 shows the results. In general, we find that robust training using an
adversary with gradient-targeted resolution is, by far, the best defense we can provide.
Furthermore, we find that dataset augmentation pales in comparison to true robust
training. Of particular interest is the relationship between seq2seq, code2seq, and
robustness. On average, seq2seq (Normal) fares worse than code2seq (Normal) under
our attack (see the first and fifth rows of Table 4.2). But, this story changes when
robust training is applied: it is harder to make code2seq robust. After robust training,

96

Table 4.2: Raw F1 and change in F1 (in square brackets) for models trained using
three different training pipelines in AVERLOC. The first four rows show results for
seq2seq while the last four rows show results for code2seq. (Larger numbers are
better.)

Training c2s/java-small csn/java csn/python sri/py150
Normal 23.3 17.2 16.2 22.0

Augmented 27.8 [+4.4] 21.4 [+4.3] 20.9 [+4.7] 24.0 [+2.0]
Robust (R) 27.5 [+4.2] 30.1 [+12.9] 29.8 [+13.5] 33.4 [+11.4]
Robust (G) 32.0 [+8.7] 32.8 [+15.6] 32.2 [+16.0] 37.1 [+15.1]

Normal 24.6 19.6 21.0 23.7
Augmented 23.4 [-1.2] 19.7 [+0.1] 20.8 [-0.2] 24.4 [+0.7]
Robust (R) 28.1 [+3.5] 23.5 [+3.9] 22.5 [+1.6] 26.6 [+2.9]
Robust (G) 31.6 [+7.0] 27.5 [+7.9] 23.8 [+2.8] 29.5 [+5.8]

we find that “seq2seq (Robust (G))” ends up performing better under our attack (see
the fourth and eighth rows of Table 4.2). This result was quite surprising and may be
worth further study: models that are better in normal circumstances may (1) have
surprising weaknesses, and (2) be harder to make robust.

RQ2 Summary. We find that either form of robust training was better than
dataset augmentation. Furthermore, in all tested configurations, across all models
and datasets, robust training with respect to an adversary using gradient-targeted
resolution gave the best defense. Finally, we find that, to our great surprise,
code2seq is harder to make robust than a seq2seq model.

4.5.3 RQ3: Stronger Adversaries

Does training with a “single-step” adversary improve robustness against stronger
adversaries? In particular, if we train with an adversary that picks just a single
(random) transform and uses gradient-targeted resolution, how well does the model
perform against an adversary that is allowed to apply a sequence of five random
transforms (also using the stronger, gradient-targeted, resolution)?

97

Rationale

In this question, we seek to understand if training with a weak adversary is “good
enough”—if this is the case, then practitioners may save effort by performing robust
training against weaker (and less computationally expensive) adversaries while still
retaining robustness against stronger threats.

Metrics

We compared the decrease in F1 of a normally trained model and a model trained
with robust-training (using an adversary that may select any single transform from
our library and resolve it via gradient-targeted resolution). Here the drop in F1
was measured against a sequence of progressively stronger attacks: Nor (normal:
no attack), R1 (“single-step” adversary with random resolution), R5 (an adversary
allowed sequences of five random transforms, still with random resolution), G1 (“single-
step” adversary with gradient-targeted resolution), and G5 (an adversary allowed
sequences of five random transforms using gradient-targeted resolution). We plotted
the raw F1 scores of both our normal and robust models against these progressively
stronger attacks to give a visual depiction of the robustness of each model.

Results

Figure 4.2 presents F1 scores from 80 distinct evaluations we performed across our
four datasets, two model architectures, two training methods, and four (progressively
stronger) adversaries.

There are several interesting things to learn from Fig. 4.2; first, notice that, across
models, languages, and training methodology, stronger attacks induce larger drops in
F1; however, as one might hope, robustly trained models (Robust: square markers)
lose less F1 to a stronger adversary compared with normally trained models (Normal:
circular markers). On the right side of Fig. 4.2, we make this explicit by noting
that, on average, the robustly trained models retain more of their original F1 on
progressively stronger attacks. Specifically, for seq2seq, the robustly trained model
retains 56% more of its original performance than the normal model. Similarly, for

98

10

20

30

40

F1
(s

eq
2s

eq
)

c2s/java-small csn/java csn/python sri/py150

Nor R1 R5 G1 G5
10

20

30

40

F1
(c

od
e2

se
q)

Nor R1 R5 G1 G5 Nor R1 R5 G1 G5 Nor R1 R5 G1 G5

-9.4-21.3

~56%
more
robust

-16.7-24.1

~31%
more
robust

Figure 4.2: A comparison of a normally trained (Normal,) model and a robustly
trained model against a “single-step” gradient-targeted adversary (Robust,).
These plots show F1 scores across each of four datasets and two model architectures
(seq2seq and code2seq) under a sequence of progressively stronger attacks. To the
right, average decrease in F1 is shown for both Normal/Robust models in both seq2seq
and code2seq architectures. (Higher F1 scores are better.)

code2seq, the robustly trained model retains 31% more of its original performance.
These results are encouraging because we are attacking with a much stronger adversary
than the one we used as part of robust training. Furthermore, the ability to carry
out these measured evaluations is one of the key contributions of our framework: we
can precisely control for the power of our adversaries by tuning the transforms, the
allowed sequence length, and the resolution algorithm.

Finally, we note one last surprising result (that echoes what we observe in RQ2):
code2seq is more difficult to make robust. This phenomenon is clearly visible in the fact
that robust training has less of an effect on code2seq (31% increase in robustness, on
average, under the strongest attack) compared to seq2seq (56% increase in robustness,
on average, under the strongest attack). This result continues to surprise us, and
is an important takeaway for practitioners of ML-on-code: we still have much to
learn about how increasingly sophisticated models fare against adversarial attacks
and, in our data, we find that more sophisticated models both have (1) surprising
weaknesses and (2) naturally better robustness but, paradoxically, are less amenable

99

to techniques for increasing robustness.
We also performed an additional 80 evaluations on models generated via training

with dataset augmentation and robust training with a (weaker still) single-step
adversary using random resolution (the same training pipelines we evaluated in RQ2).
As one would expect, these sit directly between the normal model (least robust) and
the robustly trained model (most robust).

RQ3 Summary. We find that training against weaker attacks is sufficient to
provide a defense against increasingly stronger attacks. Furthermore, through
a series of 160 evaluations, we find confirmation of our earlier results, including
the surprising fact that code2seq is less amenable to robust training than seq2seq
model. Finally, we find confirmation that robust training, aside from the nuances
discussed, is an effective technique across model architectures, programming
languages, and datasets.

4.5.4 RQ4: Domain Adaptation

What is the effect of robust training on the performance of models for the domain-
adaptation task? For example, imagine you train a model on the code of one
large company and, later, you wish to use that same model on code from another
organization—will the model retain its original performance? What about a robustly
trained model, will it perform better or worse?

Rationale

In this question, we seek to understand how both normal models of code and robustly-
trained models of code adapt to unseen data. This data is different than simple
“test-set” data because we have gone to great lengths to collect data, in both Python
and Java, from different original sources that used different collection methodology.
Therefore, when we apply a model trained on one Java dataset to our other Java
dataset, we are getting a glimpse into how that model may perform on code that is

100

Table 4.3: F1 across both normally trained and robustly trained models on out-
of-distribution test sets (sourced from different original data sources using differing
collection methodologies). (Higher F1 scores are better.)

Model Trained On Tested On F1 (seq2seq) F1 (code2seq)
Normal c2s/java-small csn/java 29.35 33.31
Robust c2s/java-small csn/java 33.05 35.76
Normal csn/java c2s/java-small 34.85 39.74
Robust csn/java c2s/java-small 38.40 41.12
Normal sri/py150 csn/python 19.97 34.40
Robust sri/py150 csn/python 31.93 35.00
Normal csn/python sri/py150 25.15 23.31
Robust csn/python sri/py150 27.74 23.20

“different” than what it has already seen. We are not the first to study robustness
and domain adaptation Volpi et al. (2018), however, to the best of our knowledge, we
are the first to present such results in the space of models on code.

Metrics

Again, we measured F1 scores for our models. This time, we compared models trained
on one of our datasets using either normal or robust training and their performance
on a second dataset from a different original source.

Results

Table 4.3 presents results for both model architectures under both normal and robust
training pipelines. Each row shows a single model (trained with either normal or
robust training), the dataset it was trained on, the dataset it was tested on (originating
from a source distinct from the training data), and the F1 scores produced by both of
the seq2seq and code2seq model architectures. In general, we find confirmation that
robust training improves performance on the domain-adaptation task. This result is

101

a useful fact for practitioners: not only does robust training strengthen your model
against attack, it also provides benefits in terms of generalization. Similar to our
previous research questions, we again see that code2seq benefits less from robust
training than seq2seq does.

RQ4 Summary. We find strong evidence across our four datasets and two
model architectures in support of robust training improving performance on the
domain-adaptation task. To the best of our knowledge, we are the first to report
such an effect in the space of models for code.

4.5.5 RQ5: Cross-Language Transfer

What is the effect of robust training on the performance of models for the cross-
language-transfer task? Does robustness play a role in how models of code may
perform on unseen languages?

Rationale

It seemed natural, after investigating domain adaptation, to also investigate cross-
language transfer. One may hope that good models of code are naturally able to
work across different programming languages and, therefore, it would be useful to
understand the relationship between robustness and cross-language transfer.

Metrics

We measured F1 scores, for our seq2seq models, under both normal and robust
training. We trained on data from one language (either Java or Python) and tested
on data from the opposite language. We focus on seq2seq for this evaluation because
code2seq cannot be trained on one language and (directly) applied to another. This
test data both comes from an unseen dataset, and is in a language the model has
never seen.

102

Table 4.4: F1, for our seq2seq model, across both normally trained and robustly
trained models on the Java to Python cross-language transfer task. (Higher F1 scores
are better.)

Model Trained On Tested On F1 (seq2seq)
Normal c2s/java-small csn/python 19.36
Robust c2s/java-small csn/python 22.21 [+2.86]
Normal csn/java csn/python 22.15
Robust csn/java csn/python 16.38 [-5.78]
Normal c2s/java-small sri/py150 21.94
Robust c2s/java-small sri/py150 22.73 [+0.80]
Normal csn/java sri/py150 23.79
Robust csn/java sri/py150 14.54 [-9.25]

Table 4.5: F1, for our seq2seq model, across both normally trained and robustly
trained models on the Python to Java cross-language transfer task. (Higher F1 scores
are better.)

Model Trained On Tested On F1 (seq2seq)
Normal csn/python c2s/java-small 25.23
Robust csn/python c2s/java-small 32.13 [+6.90]
Normal csn/python csn/java 17.39
Robust csn/python csn/java 24.02 [+6.63]
Normal sri/py150 c2s/java-small 24.71
Robust sri/py150 c2s/java-small 26.59 [+1.88]
Normal sri/py150 csn/java 15.06
Robust sri/py150 csn/java 16.80 [+1.74]

Results

Tables 4.4 and 4.5 show results for both Java-to-Python and Python-to-Java cross-
language transfer. We were surprised to find that, in the case of transfer performance
for models trained on Java and evaluated on Python, robust training had a clear
negative effect—that is, normally trained models retained more of their performance

103

on the unseen Python test sets. But, again to our surprise, we found a stronger
positive effect for robustly trained models trained on Python and evaluated on Java.
This situation is somewhat perplexing: one might hope that either robust training
always improves cross-language transfer, or never does. In general, the data we
collected warrants further study of the interplay between robustness and a model of
code’s ability to transfer across languages.

RQ5 Summary. We found robust training to have unclear effects on cross-
language model transfer. In the case of training on Java and applying the learned
models to Python, robust training had a negative effect (dropping F1, on average,
3 points); but, in the opposite task of training on Python and evaluating on Java,
we found robust training to have a stronger positive effect (increasing F1, on
average, 4 points).

4.6 Related Work

In concurrent work,2 Bielik and Vechev (2020) combine adversarial training with
abstention and AST pruning to train robust models of code. There are a number
of key differences with our work: (1) We consider a richer space of transformations
for the adversary, including inserting parameterized dead-code. (2) We use a strong
gradient-based adversary and program sketches for completing transformations, while
they use a greedy search through the space of transformations with a small number
of candidates. (3) Our adversarial-training approach is more efficient, because it does
not solve an expensive ILP problem to prune ASTs or train multiple models, but it is
possible that we can incorporate their AST pruning in our framework.

2A preprint of our work appeared earlier on arXiv than Bielik and Vechev (2020).

104

4.6.1 Adversarial Examples

In test-time attacks, an adversary perturbs an example so that it is misclassified by
a model (untargeted attack) or the perturbed example is classified as an attacker-
specified label (targeted) Athalye et al. (2018); Biggio et al. (2013); Ilyas et al. (2018);
Chen et al. (2017); Carlini and Wagner (2017). Initially, test-time attacks were
explored in the context of images. Our discrete domain is closer to test-time attacks
in natural language processing (NLP). There are several test-time attacks in NLP
that consider discrete transformations, such as substituting words or introducing
typos Lei et al. (2019); Mudrakarta et al. (2018); Ebrahimi et al. (2017); Zhang et al.
(2019); Garg and Ramakrishnan (2020). A key difference between our domain and
NLP is that in the case of programs one has to worry about semantics—the program
has to work even after transformations.

Recently, more consideration has been given to adversarial examples in the software-
engineering domain. Rabin et al. (2020) consider semantics-preserving transforms
and their effects on various neural program analyzers (including code2seq). Compton
et al. (2020) consider adversarial examples based primarily on variable renaming;
they create more robust models via training with dataset augmentation. As we show
experimentally, dataset augmentation does not result in robust models compared to
training based on gradient-based optimization.

Many ideas from software testing, such as fuzzing and search-based techniques,
have recently been successfully applied to discovering adversarial examples and other
forms of bugs in neural networks Tian et al. (2020); Gao et al. (2020); Tian et al.
(2018); Zhang et al. (2020). These approaches can be used to generate examples
for data augmentation; however, they are generally too heavyweight to incorporate
within training.

4.6.2 Deep Learning for Source Code

Recent years have seen huge progress in deep learning for source-code tasks—see
Allamanis et al. (2018). In this chapter, we evaluate two popular models for learning
from source code: seq2seq (IBM, 2020) and code2seq (Uri Alon and Yahav, 2019). The

105

seq2seq model (sub-)tokenizes the program, analogous to NLP, and uses a variant of
recurrent neural networks to generate predictions. This idea has appeared in numerous
papers, e.g., the pioneering work of Raychev et al. (2014b) for code completion. We
also evaluate code2seq, which uses an AST-paths encoding pioneered by Alon et al.
(2019). Researchers have considered more structured networks, like graph neural
networks Allamanis et al. (2016b) and tree-LSTMs Zhao et al. (2018b). These would
be interesting to consider for future experimentation in the context of adversarial
training. The task we evaluated on, code summarization, was first introduced by
Allamanis et al. (2016b).

4.7 Future Work

Robustness remains an important question for models of code. In the future, it would
be interesting to explore more exotic model architectures (like tree and graph-based
models). Furthermore, we are in an era where the most prevalent model architectures
for learning from code (and English text) are transformer based—given this, it would
be worthwhile to extend this work with examinations of large transformer-based
models. It may be the case that newer model architectures are innately more/less
robust (similar to how we observe code2seq to be initially more robust but harder
to improve than a simpler seq2seq model). A result on the innate robustness of
newer architectures would have a good deal of practical significance for practitioners.
Finally, it would be an interesting future direction to study why models of code
make the predictions they do (whether those predictions are correct or incorrect).
This questions is a difficult one, and I believe that, among the community, there
are still many open questions about the true utility of techniques that attempt to
interpret a model’s predictions; nonetheless, it appears that understanding why a
given prediction was produced would be a direct route toward improving models.

106

4.8 Notes

This work was, by far, the most expensive work I carried out during my graduate career
in terms of both investment in tooling (we wrote a large framework for adversaries
and robust training from scratch) and compute (we invested many hundreds of GPU
hours to run the evaluations in this chapter). Overall, I find the results in this
chapter to be surprising, deeply interesting, and exciting! It is rare that one discovers
truly unexpected things during research and, to me, the vast difference in the two
architectures we studied was both unexpected and an inversion of my own personal
hypothesis: I had fully expected code2seq (which was engineered by very smart
people to work specifically for code) to be the model that came out ahead on every
task. But, as this chapter describes, code2seq was surpassed by a simpler text-based
sequence-to-sequence model.

In this work I also had my first experience with how quickly the community
can build on work when it is open and accessible. We made the framework we
developed (AVERLOC) available on GitHub before the paper was published and, by
the time we actually published these results, there were already new papers accepted
for publication improving upon our results using our code! As a graduate student it
was gratifying to produce something that was so immediately accepted and utilized
by others in the community. It also was, to me, a lesson in the value of sharing code
and data (although, in hindsight, I think something like Matthew Might’s CRAPL
(Might, 2010) should be included with all academic code—it is a bit too easy for
others to assume research code is maintained and supported when, more often than
not, the original authors have moved on to new projects and only answer questions
and make fixes when they have the time; whether we, as a community, should better
reward and incentivize the maintenance of research artifacts is a question I won’t
attempt to answer).

107

5 dockerfile mining

Best practices for tools like Docker have arisen, but engineers are often
unaware of these practices. How can we solve this problem?

GTP-3: There are a few ways to solve this problem:

1. Educate engineers on the best practices for using Docker. This can be
done through training sessions, documentation, or both.

2. Implement a tool or process that enforces best practices for using
Docker. This could be something as simple as a linter that checks for
common errors, or a more comprehensive solution.

3. Use a tool that provides best practices guidance for using Docker. This
could be a tool that helps you choose the right images and configuration
options, or a tool that provides real-time feedback on your use of
Docker.

4. Use a hosted solution that provides best practices for using Docker.
This could be a service that helps you build and deploy your Docker
containers, or a managed service that provides a complete solution for
running your containers.

Wow lots of options! Let’s try #2 and see how that goes.

A dialogue with OpenAI’s GPT-3

5.1 Introduction

Thus far, we have studied how to learn from code—however, as discussed in Chapter 1,
our overarching goal is to deal with the growth in software, and software is a
composition of both code and non-code artifacts. Therefore, in this chapter, we
will begin our study of non-code artifacts.

108

5.1.1 Motivation

With the continued growth and rapid iteration of software, an increasing amount
of attention is being placed on services and infrastructure to enable developers to
test, deploy, and scale their applications quickly. This situation has given rise to
the practice of DevOps, a blend of the words Development and Operations, which
seeks to build a bridge between both practices, including deploying, managing, and
supporting a software system (Lwakatare et al., 2015). Bass et al. define DevOps as,
the “set of practices intended to reduce the time between committing a change to
a system and the change being placed into normal production, while ensuring high
quality” (Bass et al., 2015). DevOps activities include building, testing, packaging,
releasing, configuring, and monitoring software. To aid developers in these processes,
tools such as TravisCI (Travis CI, 2019), CircleCI (CircleCI, 2019), Docker (Docker,
2019), and Kubernetes (Google, 2019), have become an integral part of the daily
workflow of thousands of developers. Much has been written about DevOps (see, for
example, Davis and Daniels (2016) and Kim et al. (2016)) and various practices of
DevOps have been studied extensively (Widder et al., 2019; Hilton et al., 2016; Ståhl
and Bosch, 2016; Vasilescu et al., 2015; Zhao et al., 2017; Portworx, 2017).

DevOps tools exist in a heterogenous and rapidly evolving landscape. As software
systems continue to grow in scale and complexity, so do DevOps tools. Part of this
increase in complexity can be seen in the input formats of DevOps tools: many
tools, like Docker (Docker, 2019), Jenkins (Jenkins, 2019), and Terraform (HashiCorp,
2019), have custom DSLs to describe their input formats. We refer to such input files
as DevOps artifacts. To motivate our work, we pose the following question about
DevOps artifacts:

Motivating Question

How can we aid developers in writing and maintaining DevOps artifacts?

109

5.1.2 Goals

Historically, DevOps artifacts have been somewhat neglected in terms of industrial
and academic research (though they have received interest in recent years (Rahman
et al., 2019)). They are not “traditional” code, and therefore out of the reach of
various efforts in automatic mining and analysis, but at the same time, these artifacts
are complex. Our discussions with developers tasked with working on these artifacts
indicate that they learn just enough to “get the job done.” Phillips et al. found that
there is little perceived benefit in becoming an expert, because developers working on
builds told them “if you are good, no one ever knows about it (Phillips et al., 2014).”
However, there is a strong interest in tools to assist the development of DevOps
artifacts: even with its relatively shallow syntactic support, the VS Code Docker
extension has over 3.7 million unique installations (Marketplace, 2020). Unfortunately,
the availability of such a tool has not translated into the adoption of best practices.
We find that, on average, Dockerfiles on GitHub have nearly five times as many
rule violations as those written by Docker experts. These rule violations, which we
describe in more detail in Section 5.4, range from true bugs (such as simply forgetting
the -y flag when using apt-get install, which can cause the build to hang) to
violations of community-established best practices (such as forgetting to use apk

add’s –no-cache flag).
The goal of our work is as follows:

Goals

We seek to address the need for more effective semantics-aware tooling in
the realm of DevOps artifacts, with the ultimate goal of reducing the gap in
quality between artifacts written by experts and artifacts found in open-source
repositories.

We have observed that best practices for tools like Docker have arisen, but engineers
are often unaware of these practices, and therefore unable to follow them. Failing to
follow these best practices can cause longer build times and larger Docker images at

110

best, and eventual broken builds at worst. To ameliorate this problem, we introduce
binnacle: the first toolset for semantics-aware rule mining from, and rule enforcement
in, Dockerfiles. We selected Dockerfiles as the initial type of artifact because it is
the most prevalent DevOps artifact in industry (some 79% of IT companies use
it (Portworx, 2017)), has become the de-facto container technology in OSS (Cito
et al., 2017; Zhang et al., 2018a), and it has a characteristic that we observe in many
other types of DevOps artifacts, namely, fragments of shell code are embedded within
its declarative structure.

Because many developers are comfortable with the Bash shell in an interactive
context, they may be unaware of the differences and assumptions of shell code in the
context of DevOps tools. For example, many bash tools use a caching mechanism for
efficiency. Relying on and not removing the cache can lead to wasted space, outdated
packages or data, and in some cases, broken builds. Consequently, in a Dockerfile
one must always invoke apt-get update before installing packages, and one should
also delete the cache after installation. Default options for commands may often
need to be overridden in a Docker setting. For instance, users almost always want
to install recommended dependencies. However, using recommended dependencies
(which may change over time in the external environment of apt package lists) can
silently break future Dockerfile builds, and—in the near term—create a likely wastage
of space, as well as the possibility of implicit dependencies (hence the need to use the
–no-recommends option). Thus, a developer who may be considered a Bash or Linux
expert can still run afoul of Docker Bash pitfalls.

5.1.3 Challenges

To create the binnacle toolset, we had to address three challenges associated with
DevOps artifacts: (C1) the challenge of nested languages (e.g., arbitrary shell code
is embedded in various parts of the artifact), (C2) the challenge of rule encoding
and automated rule mining, and (C3) the challenge of static rule enforcement. As
a prerequisite to our analysis, we also collected approximately 900,000 GitHub
repositories, and from these repositories, captured approximately 219,000 Dockerfiles

111

(of which 178,000 are unique). Within this large corpus of Dockerfiles, we identified
a subset written by Docker experts: this Gold Set is a collection of high-quality
Dockerfiles that our techniques use as an oracle for Docker best practices.1

To address (C1), we introduced a novel technique for generating structured
representations of DevOps artifacts in the presence of nested languages, which
we call phased parsing. By observing that there are a relatively small number of
commonly used command-line tools—and that each of these tools has easily accessible
documentation (via manual/help pages)—we were able to enrich our DevOps ASTs
and reduce the percentage of effectively uninterpretable leaves (defined in Section 5.3.1)
in the ASTs by over 80%.

For the challenge of rule encoding and rule mining (C2), we took a three-pronged
approach:

1. We introduced Tree Association Rules (TARs), and created a corpus of Gold
Rules manually extracted from changes made to Dockerfiles by Docker experts
(Section 5.3.2).

2. We built an automated rule miner based on frequent-sub-tree mining (Sec-
tion 5.3.4).

3. We performed a study of the quality of the automatically mined rules using the
the Gold Rules as our ground-truth benchmark (Section 5.4.2).

In seminal work by Sidhu et al. (2019), they attempted to learn rules to aid
developers in creating DevOps artifacts, specifically Travis CI files. They concluded
that their “vision of a tool that provides suggestions to build CI specifications based
on popular sequences of phases and commands cannot be realized.” In our work, we
adopt their vision, but show that it is indeed achievable. There is a simple explanation
for why our results differ from theirs. In our work, we use our phased parser to
go two levels deep in a hierarchy of nested languages, whereas Sidhu et al. only
considered one level of nested languages. Moreover, when we mined rules, we mined

1Data available at: https://github.com/jjhenkel/binnacle-icse2020

https://github.com/jjhenkel/binnacle-icse2020

112

them starting with the deepest level of language nesting. Thus, our rules are mined
from the results of a layer of parsing that Sidhu et al. did not perform, and they are
mined only from that layer.

Finally, to address (C3), the challenge of static rule enforcement, we implemented
a static enforcement engine that takes, as input, Tree Association Rules (TARs). We
find that Dockerfiles on GitHub are nearly five times worse (with respect to rule
violations) when compared to Dockerfiles written by experts, and that Dockerfiles
collected from industry sources are no better. This gap in quality is precisely what
the binnacle toolset seeks to address.

5.1.4 Contributions

In this chapter, we make four core contributions:

We created a dataset of 178,000 unique Dockerfiles, processed by our phased parser,
harvested from every public GitHub repository with 10 or more stars,2 and a toolset,
called binnacle, capable of ingesting and storing DevOps artifacts.

We developed a technique for addressing the nested languages in DevOps artifacts
that we call phased parsing.

We built an automatic rule miner, based on frequent sub-tree mining, that
produces rules encoded as Tree Association Rules (TARs).

We designed a static rule-enforcement engine that takes, as input, a Dockerfile
and a set of TARs and produces a listing of rule violations.

For the purpose of evaluation, we provide experimental results against Dockerfiles,
but, in general, the techniques we describe in this work are applicable to any DevOps
artifact with nested shell code (e.g., Travis CI and Circle CI). The only additional
component that binnacle requires to operate on a new artifact type is a top-level
parser capable of identifying any instances of embedded shell code. Given such a
top-level parser, the rest of the binnacle toolset can be applied to learn rules and
detect violations.

2We selected repositories created after January 1st, 2007 and before June 1st, 2019.

113

Repository
Ingestor

GitHub

Metadata
Store

File
Downloader

Rule	Miner Mined
Rules

Setup	and	Collect

Learn	Rules

Phased
Parser

Enforce	Rules

Gold
Set

Rule
Enforcement

Engine

Dockerfile
Corpus

Phased
Parser

Rules

Rule
Violations

Dockerfile
Corpus

Gold
Set

File	Filters

(d|D)ockerfile.*

Query	Filters

Stars:	>=	10
Created	after:	01-01-2007
Created	before:	06-01-2019

Figure 5.1: An overview of the binnacle toolset.

Our aim is to provide help to developers in various activities. As such, binnacle’s
rule engine can be used to aid developers when writing/modifying DevOps artifacts
in an IDE, to inspect pull requests, or to improve existing artifacts already checked
in and in use.

5.2 Dataset

A prerequisite to analyzing and learning from DevOps artifacts is gathering a large
sample of representative data. There are two challenges we must address with respect
to data acquisition: (D1) the challenge of gathering enough data to do interesting

114

analysis, and (D2) the challenge of gathering high-quality data from which we can mine
rules. To address the first challenge, we created the binnacle toolset: a dockerized
distributed system capable of ingesting a large number of DevOps artifacts from a
configurable selection of GitHub repositories. binnacle uses a combination of Docker
and Apache Kafka to enable dynamic scaling of resources when ingesting a large
number of artifacts. Figure 5.1 gives an overview of the three primary tools provided
by the binnacle toolset: a tool for data acquisition, which we discuss in this section,
a tool for rule learning (discussed further in Section 5.3.4), and a tool for static rule
enforcement (discussed further in Section 5.3.5).

Although the architecture of binnacle is interesting in its own right, we refer
the reader to the binnacle GitHub repository for more details.3 For the remainder
of this section, we instead describe the data we collected using binnacle, and our
approach to challenge (D2): the need for high-quality data.

Using binnacle, we ingested every public repository on GitHub with ten or more
stars. This process yielded approximately 900,000 GitHub repositories. For each
of these 900,000 repositories, we gathered a listing of all the files present in each
repository. This listing of files was generated by looking at the HEAD of the default
branch for each repository. Together, the metadata and file listings for each repository
were stored in a database. We ran a script against this database to identify the files
that were likely Dockerfiles using a permissive filename-based filter. This process
identified approximately 240,000 likely Dockerfiles. Of those 240,000 likely Dockerfiles,
only 219,000 were successfully downloaded and parsed as Dockerfiles. Of the 219,000
remaining files, approximately 178,000 were unique based on their SHA1 hash. It is
this set, of approximately 178,000 Dockerfiles, that we will refer to as our corpus of
Dockerfiles.

Although both the number of repositories we ingested and the number of Docker-
files we collected were large, we still had not addressed challenge (D2): high-quality
data. To find high-quality data, we looked within our Dockerfile corpus and extracted
every Dockerfile that originally came from the docker-library/ GitHub organization.

3https://github.com/jjhenkel/binnacle-icse2020

https://github.com/jjhenkel/binnacle-icse2020

115

This organization is run by Docker, and houses a set of official Dockerfiles written
by and maintained by Docker experts. There are approximately 400 such files in
our Dockerfile corpus. We will refer to this smaller subset of Dockerfiles as the Gold
Set. Because these files are Dockerfiles created and maintained by Docker’s own
experts, they presumably represent a higher standard of quality than those produced
by non-experts. This set provides us with a solution to challenge (D2)—the Gold Set
can be used as an oracle for good Dockerfile hygiene. In addition to the Gold Set,
we also collected approximately 5,000 Dockerfiles from several industrial repositories,
with the hope that these files would also be a source of high-quality data.

5.3 Technique

The binnacle toolset, shown in Figure 5.1, can be used to ingest large amounts of
data from GitHub. This capability is of general use to anyone looking to analyze
GitHub data. In this section, we describe the three core contributions of our work:
phased parsing, rule mining, and rule enforcement. Each of these contributions
is backed by a corresponding tool in the binnacle toolset: (i) phased parsing is
enabled by binnacle’s phased parser (shown in the Learn Rules and Enforce Rules
sections of Figure 5.1); (ii) rule mining is enabled by binnacle’s novel frequent-sub-
tree-based rule miner (shown in the Learn Rules section of Figure 5.1); and rule
enforcement is provided by binnacle’s static rule-enforcement engine (shown in the
Enforce Rules section of Figure 5.1). Each of these three tools and contributions was
inspired by one of the three challenges we identified in the realm of learning from
and understating DevOps artifacts (nested languages, prior work that identifies rule
mining as unachievable (Sidhu et al., 2019), and static rule enforcement). Together,
these contributions combine to create the binnacle toolset: the first structure-aware
automatic rule miner and enforcement engine for Dockerfiles (and DevOps artifacts,
in general).

5.3.1 Phased Parsing

116

1 FROM ubuntu:latest
2

3 RUN apt-get update && \
4 apt-get install -qqy ...
5

6 RUN ./scripts/custom.sh

DOCKER-FILE

DOCKER-FROM

ubuntu latest

DOCKER-RUN

apt-get update && apt-get install -qqy ...

DOCKER-RUN

./scripts/custom.sh

(a) An example Dockerfile (b) Phase I: Top-level parsing is performed

DOCKER-FILE

DOCKER-FROM

ubuntu latest

DOCKER-RUN

BASH-AND

BASH-COMMAND

apt-get update

BASH-COMMAND

apt-get install -qqy ...

DOCKER-RUN

BASH-COMMAND

./scripts/custom.sh

DOCKER-FILE

DOCKER-FROM

ubuntu latest

DOCKER-RUN

BASH-AND

BASH-COMMAND

APT-GET-UPDATE

BASH-COMMAND

APT-GET-INSTALL

FLAG-YES FLAG-QUIET PACKAGES

PACKAGE
...

2

DOCKER-RUN

BASH-COMMAND

UNKNOWN

(c) Phase II: Embedded bash is parsed (d) Phase III: The AST is enriched with the
results of parsing the top-50 commands

Figure 5.2: An example Dockerfile at each of the three phases of our phased-parsing
technique (gray nodes are effectively uninterpretable (EU))

One challenging aspect of DevOps artifacts in general (and Dockerfiles in particular)
is the prevalence of nested languages. Many DevOps artifacts have a top-level syntax
that is simple and declarative (JSON, Yaml, and XML are popular choices). This
top-level syntax, albeit simple, usually allows for some form of embedded scripting.
Most commonly, these embedded scripts are bash. Further complicating matters is
the fact that bash scripts usually reference common command-line tools, such as
apt-get and git. Some popular command-line tools, like python and php, may even
allow for further nesting of languages. Other tools, like GNU’s find, allow for more
bash to be embedded as an argument to the command. This complex nesting of

117

different languages creates a challenge: how do we represent DevOps artifacts in a
structured way?

Previous approaches to understanding and analyzing DevOps artifacts have either
ignored the problem of nested languages, or only addressed one level of nesting (the
embedded shell within the top-level format) (Sidhu et al., 2019; Gallaba and McIntosh,
2018). We address the challenge of structured representations in a new way: we employ
phased parsing to progressively enrich the AST created by an initial top-level parse.
Figure 5.2 gives an example of phased parsing—note how, in Fig. 5.2b, we have a
shallow representation given to us by a simple top-level parse of the example Dockerfile.
After this first phase, almost all of the interesting information is wrapped up in leaf
nodes that are string literals. We call such nodes effectively uninterpretable (EU)
because we have no way of reasoning about their contents. These literal nodes, which
have further interesting structure, are shown in gray. After the second phase, shown
in Fig. 5.2c, we have enriched the structured representation from Phase I by parsing
the embedded bash. This second phase of parsing further refines the AST constructed
for the example, but, somewhat counterintuitively, this refinement also introduces
even more literal nodes with undiscovered structure. Finally, the third phase of
parsing enriches the AST by parsing the options “languages” of popular command-
line tools (see Fig. 5.2d). By parsing within these command-line languages, we create
a representation of DevOps artifacts that contains more structured information than
competing approaches.

To create our phased parser we leverage the following observations:

1. There are a small number of commonly used command-line tools. Supporting
the top-50 most frequently used tools allows us to cover over 80% of command-
line-tool invocations in our corpus.

2. Popular command-line tools have documented options. This documentation is
easily accessible via manual pages or some form of embedded help.

Because of observation (1), we can focus our attention on the most popular
command-line tools, which makes the problem of phased parsing tractable. Instead

118

of somehow supporting all possible embedded command-line-tool invocations, we
can, instead, provide support for the top-N commands (where N is determined by
the amount of effort we are willing to expend). To make this process uniform and
simple, we created a parser generator that takes, as input, a declarative schema
for the options language of the command-line tool of interest. From this schema,
the parser generator outputs a parser that can be used to enrich the ASTs during
Phase III of parsing. The use of a parser generator was inspired by observation (2):
the information available in manual pages and embedded help, although free-form
English text, closely corresponds to the schema we provide our parser generator. This
correspondence is intentional. To support more command-line tools, one merely needs
to identify appropriate documentation and transliterate it into the schema format
we support. In practice, creating the schema for a typical command-line tool took
us between 15 and 30 minutes. Although the parser generator is an integral and
interesting piece of infrastructure, we forego a detailed description of the input schema
the generator requires and the process of transliterating manual pages; instead, we
now present the rule-encoding scheme that binnacle uses both for rule enforcement
and rule mining.

5.3.2 Tree Association Rules (TARs)

The second challenge the binnacle toolset seeks to address (rule encoding) is moti-
vated by the need for both automated rule mining and static rule enforcement. In
both applications, there needs to be a consistent and powerful encoding of expressive
rules with straightforward syntax and clear semantics. As part of developing this
encoding, we curated a set of Gold Rules and wrote a rule-enforcement engine capable
of detecting violations of these rules. We describe this enforcement engine in greater
detail in Section 5.3.5. To create the set of Gold Rules, we returned to the data in our
Gold Set of Dockerfiles. These Dockerfiles were obtained from the docker-library/

organization on GitHub. We manually reviewed merged pull requests to the repos-
itories in this organization. From the merged pull requests, if we thought that a
change was applying a best practice or a fix, we manually formulated, as English

119

Table 5.1: Detailed breakdown of the Gold Rules. (All rules are listed; the rules that
passed confidence/support filtering, described in Section 5.3.5, are shaded.) Note the
following abbreviations: Gold Set (GS), incresed attack surface (IAS), and easier to
add future bugs (ETAFB).

Rule Name Bash Best-
practice?

Immediate/Future
Violation Consequences

GS Support
(GS Confidence)

pipUseCacheDir No Space wastage / IAS 15 (46.67%)
npmCacheCleanUseForce No Space wastage / IAS 14 (57.14%)
mkdirUsrSrcThenRemove Yes Space wastage / IAS 129 (68.99%)
rmRecurisveAfterMktempD Yes Space wastage / IAS 632 (77.22%)
curlUseFlagF No None / ETAFB 72 (77.78%)
tarSomethingRmTheSomething Yes Space wastage / IAS 209 (88.52%)
apkAddUseNoCache No Space wastage / IAS 250 (89.20%)
aptGetInstallUseNoRec No Space wastage / Build failure 525 (90.67%)
curlUseHttpsUrl Yes Insecure / Insecure 57 (92.98%)
gpgUseBatchFlag No Reliability / Reliability 455 (94.51%)
sha256sumEchoOneSpace Yes Build failure / None 132 (95.45%)
gpgUseHaPools No Reliability / Reliability 205 (97.07%)
configureUseBuildFlag No None / ETAFB 128 (98.44%)
wgetUseHttpsUrl Yes Insecure / Insecure 290 (98.97%)
aptGetInstallRmAptLists No Space wastage / IAS 525 (99.43%)
aptGetInstallUseY No Build failure / None 525 (100.00%)
aptGetUpdatePrecedesInstall No Build failure / None 525 (100.00%)
gpgVerifyAscRmAsc Yes Space wastage / IAS 172 (100.00%)
npmCacheCleanAfterInstall No Space wastage / IAS 12 (100.00%)
gemUpdateSystemRmRootGem No Space wastage / IAS 11 (100.00%)
gemUpdateNoDocument No Space wastage / IAS 11 (100.00%)
yumInstallForceYes No Build failure / None 3 (100.00%)
yumInstallRmVarCacheYum No Space wastage / IAS 3 (100.00%)

prose, a description of the change. This process gave us approximately 50 examples
of concrete changes made by Docker experts, paired with descriptions of the general
pattern being applied.

From these concrete examples, we devised 23 rules. A summary of these rules is
given in Table 5.1. Most examples that we saw could be framed as association rules
of some form. As an example, a rule may dictate that using apt-get install . . .

requires a preceding apt-get update. Rules of this form can be phrased in terms of an
antecedent and consequent. The only wrinkle in this simple approach is that both the

120

Precedes
(APT-GET-INSTALL)

(APT-GET-UPDATE)

(a) Intuitively, this rule states that an apt-get install must be preceded (in
the same layer of the Dockerfile) by an apt-get update.

Follows
(APT-GET-INSTALL)

(RM (RM-F-RECURSIVE) (RM-PATH (ABS-APT-LISTS)))

(b) Intuitively, this rule states that a certain directory must be removed (in
the same layer of the Dockerfile) following an apt-get install.

Child-Of
(APT-GET-INSTALL [*])

(FLAG-NO-RECOMMENDS)

(c) Here, the user must select where, in the antecedent subtree, to bind a
region to search for the consequent. This binding is represented by the [*]
marker.

Figure 5.3: Three example Tree Association Rules (TARs). Each TAR has, above
the bar, an antecedent subtree encoded as an S-expression and, below the bar, a
consequent subtree encoded in the same way.

antecedent and the consequent are sub-trees of the tree representation of Dockerfiles.
To deal with tree-structured data, we specify two pieces of information that helps
restrict where the consequent can occur in the tree, relative to the antecedent:

1. Its location: the consequent can either (i) precede the antecedent, (ii) follow
the antecedent, or (iii) be a child of the antecedent in the tree.

2. Its scope: the consequent can either be (i) in the same piece of embedded shell
as the antecedent (intra-directive), or (ii) it can be allowed to exist in a separate
piece of embedded shell (inter-directive). Although we can encode and enforce
inter-directive rules, our miner is only capable of returning intra-directive rules

121

APT-GET-INSTALL

FLAG-YES FLAG-QUIET PACKAGES

PACKAGE

python3

2

APT-GET-INSTALL

FLAG-YES FLAG-NO-RECOMMENDS PACKAGES

PACKAGE PACKAGE

mysql nginx

APT-GET-INSTALL

FLAG-YES FLAG-NO-RECOMMENDS PACKAGES

PACKAGE

python3

APT-GET-INSTALL

FLAG-YES FLAG-NO-RECOMMENDS PACKAGES

PACKAGE PACKAGE

gcc make

(a) Four sub-tree instances with root APT-GET-INSTALL. binnacle uses
a frequent sub-tree miner, with a support threshold of 75%, to identify
frequently occurring sub-trees. We have highlighted two such possible
frequent sub-trees in gray and dashed outlines, respectively.

APT-GET-INSTALL

FLAG-NO-RECOMMENDS

APT-GET-INSTALL

FLAG-YES PACKAGES

PACKAGE

Child-Of
(APT-GET-INSTALL [*])

(FLAG-NO-RECOMMENDS)

Child-Of
(APT-GET-INSTALL [*])

(FLAG-YES) (PACKAGES (PACKAGE))

(b) The two frequently occuring sub-
trees extracted from the example in-
put corpus in Figure 5.4a; these trees
become likely consequents.

(c) Tree Association Rules created
automatically from the likely con-
sequents in Figure 5.4b. The an-
tecedent denotes the set of all sub-
trees with the indicated root node-
type.

Figure 5.4: A depiction of rule mining in binnacle via frequent
sub-tree mining.

122

ABS−URL−HTTPS ^ https : //
ABS−URL−HTTP ^http : //
ABS−PATH−REL ^(\.)+/

ABS−URL . . .

(a) Example named regular expressions

CURL-URL

https://example.com

(b) Before abstraction

CURL-URL

ABS-URL-HTTPS ABS-URL

(c) After abstraction

Figure 5.5: An example of the abstraction process.

(as explained in Section 5.3.4). Therefore, all of the rules we show have an
intra-directive scope.

From an antecedent, a consequent, and these two pieces of localizing information,
we can form a complete rule against which the enriched ASTs created by the phased
parser can be checked. We call these Tree Association Rules (TARs). Three example
TARs are given in Figure 5.3. We are not the first to propose Tree Association Rules;
Mazuran et al. (2009) proposed TARs in the context of extracting knowledge from
XML documents. The key difference is that their TARs require that the consequent
be a child of the antecedent in the tree, while we allow for the consequent to occur
outside of the antecedent, either preceding it or succeeding it. Although we allow
for this more general definition of TARs, our miner is only capable of mining local
TARs—that is, TARs in the style of Mazuran et al. (2009); however, our static
rule-enforcement engine has no such limitation.

Rule impacts. For each of the Gold rules, Table 5.1 provides the consequences of
a rule violation and a judgement as to whether a given rule is unique to Dockerfiles or
more aligned with general Bash best-practices. In general, we note that rule violations
have varying consequences, including space wastage, container bloat (and consequent
increased attack surface), and instances of outright build failure. Additionally, two-
thirds of the Gold rules are unique to using Bash in the context of a Dockerfile.

123

DOCKER-FILE

DOCKER-FROM

ubuntu latest

DOCKER-RUN

BASH-AND

BASH-COMMAND

APT-GET-UPDATE

BASH-COMMAND

APT-GET-INSTALL

FLAG-YES FLAG-QUIET PACKAGES

PACKAGE

...
2

BASH-COMMAND

MAKE

DOCKER-RUN

BASH-COMMAND

UNKNOWN

(a) Stage I: The enforcement engine
(EE) attempts to match the TAR’s an-
tecedent (shown in the outlined box).
A match is found when the subtree
in a TAR’s antecedent can be aligned
with any subtree in the input tree. All
three rules given in Figure 5.3 have an-
tecedents that match the above tree.

DOCKER-FILE

DOCKER-FROM

ubuntu latest

DOCKER-RUN

BASH-AND

BASH-COMMAND

APT-GET-UPDATE

BASH-COMMAND

APT-GET-INSTALL

FLAG-YES FLAG-QUIET PACKAGES

PACKAGE

...
2

BASH-COMMAND

MAKE

DOCKER-RUN

BASH-COMMAND

UNKNOWN

1

2

3

4

5

(b) Stage II: If the EE matches the
TAR’s antecedent, then, depending on
the location and scope of the TAR, the
EE will bind one of the five shaded re-
gions above. For the rule given in Fig-
ure 5.3a (intra-directive preceding), re-
gion (2) is matched. For the rule in Fig-
ure 5.3b (intra-directive following), re-
gion (5) is matched. The darker shaded
regions (1, 4) are the inter-directive vari-
ants of regions (2, 5).

DOCKER-FILE

DOCKER-FROM

ubuntu latest

DOCKER-RUN

BASH-AND

BASH-COMMAND

APT-GET-UPDATE

BASH-COMMAND

APT-GET-INSTALL

FLAG-YES FLAG-QUIET PACKAGES

PACKAGE

...
2

BASH-COMMAND

MAKE

DOCKER-RUN

BASH-COMMAND

UNKNOWN

FLAG-NO-RECOMMENDS

2

3

(c) Stage III: The EE searches for the
consequent in the bound region. For the
rule in Figure 5.3a, the blue shaded re-
gion is bound and the consequent (shown
with a dashed black outline) is matched;
therefore, the rule in Figure 5.3a has
been validated. Conversely, for the rule
in Figure 5.3c, the green region is bound
and there are no matches for the con-
sequent of this rule (represented by the
dashed red box); therefore, the rule in
Figure 5.3c has been violated.

Figure 5.6: binnacle’s rule engine applied to an example Dockerfile

124

5.3.3 Abstraction

binnacle’s rule miner and static rule-enforcement engine both employ an abstraction
process. The abstraction process is complementary to phased parsing—there may
still be information within literal values even when those literals are not from some
well-defined sub-language. During the abstraction process, for each tree in the input
corpus, every literal value residing in the tree is removed, fed to an abstraction
subroutine, and replaced by either zero, one, or several abstract nodes (these abstract
nodes are produced by the abstraction subroutine). The abstraction subroutine
simply applies a user-defined list of named regular expressions to the input literal
value. For every matched regular expression, the abstraction subroutine returns an
abstract node whose type is set to the name of the matched expression. For example,
one abstraction we use attempts to detect URLs; another detects if the literal value is
a Unix path and, if so, whether it is relative or absolute. The abstraction process is
depicted in Figure 5.5. The reason for these abstractions is to help both binnacle’s
rule-learning and static-rule-enforcement phases by giving these tools the vocabulary
necessary to reason about properties of interest.

5.3.4 Rule Mining

The binnacle toolset approaches rule mining by, first, focusing on a specific class of
rules that are more amenable to automatic recovery: rules that are local. We define
a local Tree Association Rule (TAR) as one in which the consequent sub-tree exists
within the antecedent sub-tree. This matches the same definition of TARs introduced
by Mazuran et al. (2009). Based on this definition, we note that local TARs must
be intra-directive (scope) and must be child-of (location). Three examples of local
TARs (each of which our rule miner is able to discover automatically) are given in
Figures 5.3c and 5.4c. In general, the task of finding arbitrary TARs from a corpus
of hundreds of thousands of trees is computationally infeasible. By focusing on local
TARs, the task of automatic mining becomes tractable.

To identify local TARs binnacle collects, for each node type of interest, the set
of all sub-trees with roots of the given type (e.g., all sub-trees with APT-GET as

125

the root). On this set of sub-trees, binnacle employs frequent sub-tree mining (Chi
et al., 2005a) to recover a set of likely consequents. Specifically, binnacle uses the
CMTreeMiner algorithm (Chi et al., 2005b) to identify frequent maximal, induced,
ordered sub-trees. Induced indicates that all “child-of” relationships in the sub-
tree exist in the original tree (as opposed to the more permissive “descendent-of”
relationship, which defines an embedded sub-tree). Ordered signifies that order of the
child nodes in the sub-tree matters (as opposed to unordered sub-trees). A frequent
sub-tree is Maximal for a given support threshold if there is no super-tree of the
sub-tree with occurrence frequency above the support threshold (though there may
be sub-trees of the given sub-tree that have a higher occurrence frequency). For more
details on frequent sub-trees, see Chi et al. Chi et al. (2005a).

binnacle returns rules in which the antecedent is the root node of a sub-tree
(where the type of the root node matches the input node-type) and the consequent is
a sub-tree identified by the frequent sub-tree miner.

An example of the rule-mining process is given in Figure 5.4. In the first stage
of rule mining, all sub-trees with the same root node-type (APT-GET-INSTALL) are
grouped together and collected. For each group of sub-trees with the same root
node-type, binnacle employs frequent sub-tree mining to find likely consequents.
In our example, two frequently occurring sub-trees (in gray and dashed outlines,
respectively) are given in Figure 5.4b. Finally, binnacle creates local TARs by using
the root node as the antecedent and each of the frequent sub-trees as a consequent,
as shown in Figure 5.4c. One TAR is created for each identified frequent sub-tree.

5.3.5 Static Rule Enforcement

Currently, the state-of-the-art in static Dockerfile support for developers is the
VSCode Docker extension (Microsoft, 2019) and the Hadolint Dockerfile-linting tool
(Hadolint, 2019). The VSCode extension provides highlighting and basic linting,
whereas Hadolint employs a shell parser (ShellCheck (Holen, 2019)—the same shell
parser we use) to parse embedded bash, similar to our tool’s second phase of parsing.
The capabilities of these tools represent steps in the right direction but, ultimately,

126

0.6
0.8

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1
0.2
0.3

% of EU leaves

D
en

sit
y

(a) Density histogram of M1 (the frac-
tion of leaves that are EU after the first
phase of parsing). On average, 19.3% of
leaves (median 16.7%) are EU at this
phase.

0.6
0.8

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1
0.2
0.3

% of EU leaves

D
en

sit
y

(b) Density histogram of M2 (the frac-
tion of leaves that are EU after the
second phase of parsing). On average,
33.2% of leaves (median 33.3%) are EU
at this phase.

0.6
0.8

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1
0.2
0.3

% of EU leaves that remain unresolved

D
en

sit
y

(c) Density histogram of M3 (the fraction of leaves that were EU
after the second phase of parsing and unresolved in the third phase).
On average, just 3.7% of leaves (median 0.0%) remained EU.

Figure 5.7: Density histograms showing the distributions of our three met-
rics (M1,M2, and M3). The green shaded box in each plot highlights the
interquartile range for each distribution (the middle 50%).

127

they do not offer enough in the way of deep semantic support. Hadolint does not
support parsing of the arguments of individual commands as binnacle does in its
third phase of parsing. Instead, Hadolint resorts to fuzzy string matching and regular
expressions to detect simple rule violations.

binnacle’s static rule-enforcement engine takes, as input, a Dockerfile and a set
of TARs. binnacle’s rule engine runs, for each rule, three stages of processing on the
input corpus:

1. Stage I: The Dockerfile is parsed into a tree representation, and the enforcement
engine attempts to match the TAR’s antecedent (by aligning it with a sub-tree
in the input tree). If no matches are found, the engine continues processing
with the next TAR. If a match is found, then the enforcement engine continues
to Stage II. This process is depicted in Figure 5.6a.

2. Stage II: Depending on the scope and location of the given TAR, the enforcement
engine binds a region of the input tree. This region is where, in Stage III, the
enforcement engine will look for a sub-tree with which the consequent can be
aligned. Figure 5.6b depicts this process, and highlights the various possible
binding regions in the example input tree.

3. Stage III: Given a TAR with a matched antecedent and a bound region of
the input tree, the enforcement engine attempts to align the consequent of the
TAR with a sub-tree within the bound region. If the engine is able to find
such an alignment, then the rule has been satisfied. If not, the rule has been
violated. Figure 5.6c depicts this process and both possible outcomes: for the
rule in Figure 5.3a, the matched antecedent is shown with a thick black outline,
the bound region is shown in blue, and the matched consequent is shown with
a dashed black outline. In contrast, for the rule in Figure 5.3c, the matched
antecedent is the same as above, the bound region is shown in green; however,
the tree is missing the consequent, represented by the dashed red sub-tree.

The implementation of binnacle’s enforcement engine utilizes a simple declarative
encoding for the TARs. To reduce the bias in the manually extracted Gold Rules

128

(introduced in Section 5.3.2), we used binnacle’s static rule-enforcement engine and
the Gold Set of Dockerfiles (introduced in Section 5.2) to gather statistics that we
used to filter the Gold Rules. For each of the 23 rules (encoded as Tree Association
Rules), we made the following measurements: (i) the support of the rule, which is the
number of times the rule’s antecedent is matched, (ii) the confidence of the rule, which
is the percentage of occurrences of the rule’s consequent that match successfully, given
that the rule’s antecedent matched successfully, and (iii) the violation rate of the rule,
which is the percentage of occurrences of the antecedent where the consequent is not
matched. Note that our definitions of support and confidence are the same as that
used in traditional association rule mining (Agrawal et al., 1993). We validated our
Gold Rules by keeping only those rules with support greater than or equal to 50 and
confidence greater than or equal to 75% on the Gold Set. These support and confidence
measurements are given in Table 5.1. By doing this filtering, we increase the selectivity
of our Gold Rules set, and reduce the bias of our manual selection process. Of the
original 23 rules in our Gold Rules, 16 pass the minimum-support threshold and, of
those 16 rules, 15 pass the minimum-confidence threshold. Henceforth, we use the
term Gold Rules to refer to the 15 rules that passed quantitative filtering. These 15
rules are highlighted, in gray, in Table 5.1.

Together, binnacle’s phased parser, rule miner, and static rule-enforcement engine
enable both rule learning and the enforcement of learned rules. Figure 5.1 depicts
how these tools interact to provide the aforementioned features. Taken together, the
binnacle toolset fills the need for structure-aware analysis of DevOps artifacts and
provides a foundation for continued research into improving the state-of-the-art in
learning from, understanding, and analyzing DevOps artifacts.

5.4 Experiments

In this section, for each of the three core components of the binnacle toolset’s
learning and enforcement tools, we measure and analyze quantitative results relating
to the efficacy of the techniques behind these tools. All experiments were performed
on a 12-core workstation (with 32GB of RAM) running Windows 10 and a recent

129

Child-Of
(APK-ADD [*])

(FLAG-NO-CACHE)

Child-Of
(SC-CURL-URL [*])

(ABS-URL-PROTOCOL-HTTPS)

(a) A Gold rule (b) A Semantic rule

Child-Of
(CP [*])

(CP-PATH) (CP-PATH)

Child-Of
(SED [*])

(FLAG-IN-PLACE)

(c) A Syntactic rule (d) An Ungeneralizable rule

Figure 5.8: Four examples of actual rules recovered by binnacle’s
automated miner. Through abstraction, interesting semantic rules,
such as using HTTPS URLs with curl, are captured.

version of Docker.

5.4.1 Results: Phased Parsing

To understand the impacts of phased parsing, we need a metric for quantifying the
amount of useful information present in our DevOps artifacts (represented as trees)
after each stage of parsing. The metric we use is the fraction of leaves in our trees
that are effectively uninterpretable (EU). We define a leaf as effectively uninterpretable
(EU) if it is, after the current stage of parsing, a string literal that could be further
refined by parsing the string with respect to the grammar of an additional embedded
language. (We will also count nodes explicitly marked as unknown by our parser
as being EU.) For example, after the first phase of parsing (the top-level parse), a
Dockerfile will have nodes in its parse tree that represent embedded bash—these
nodes are EU at this stage because they have further structure that can be discovered
given a bash parser; however, after the first stage of parsing, these leaves are simply
treated as literal values, and therefore marked EU.

We took three measurements over the corpus of 178,000 unique Dockerfiles intro-
duced in Section 5.2: (M1) the distribution of the fraction of leaves that are EU after

130

the first phase of parsing, (M2) the distribution of the fraction of leaves that are EU
after the second phase of parsing, and (M3) the distribution of the fraction of leaves
that are EU after the second phase of parsing and unresolved during the third phase
of parsing.4

Density histograms that depict the three distributions are given in Fig. 5.7. As
shown in Fig. 5.7, after the first phase of parsing, the trees in our corpus have, on
average, 19.3% EU leaves. This number quantifies the difficulty of reasoning over
DevOps artifacts without more sophisticated parsing. Furthermore, the nodes in
the tree most likely to play a role in rules happen to be the EU nodes at this stage.
(This aspect is something that our quantitative metric does not take into account
and hence over-estimates the utility of the representation available after Phase I and
Phase II.)

Counterintuitively, the second phase of parsing makes the situation worse: on
average, 33.2% of leaves in second-phase trees are EU. Competing tools, like Hadolint,
work over DevOps artifacts with a similar representation. In practice, competing
tools must either stay at what we consider a Phase I representation (just a top-level
parse) or utilize something similar to our Phase II representations. Such tools are
faced with the high fraction of EU leaves present in a Phase II AST. Tools using
Phase II representations, like Hadolint, are forced to employ regular expressions or
other fuzzy matching techniques as part of their analysis.

Finally, we use our parser generator and the generated parsers for the top-50
commands to perform a third phase of parsing. The plot in Fig. 5.7c shows the
M3 distribution obtained after performing the third parsing phase on our corpus of
Dockerfiles. At this stage, almost all of the EU nodes are gone—on average, only
3.7% of leaves that were EU at Phase II remain EU in Phase III. In fact, over 65%

4For (M3) we make a relative measurement: the reason for using a different metric is to
accommodate the large number of new leaf nodes that the third phase of parsing introduces.
Without this adjustment, one could argue that our measurements are biased because the absolute
fraction of EU leaves would be low due to the sheer number of new leaves introduced by the third
parsing phase. To avoid this bias, we measure the fraction of previously EU leaves that remain
unresolved, as opposed to the absolute fraction of EU leaves that remain after the third phase of
parsing (which is quite small due to the large number of new leaves introduced in the third phase).

131

of trees in Phase II had all EU leaves resolved after the third phase of parsing. These
results provide concrete evidence of the efficacy of our phased-parsing technique,
and, in contrast to what is possible with existing tools, the Phase III structured
representations are easily amenable to static analysis and rule mining.

5.4.2 Results: Rule Mining

We applied binnacle’s rule miner to the Gold Set of Dockerfiles defined in Section 5.2.
We chose the Gold Set as our corpus for rule learning because it presumably contains
Dockerfiles of high quality. As described in Section 5.3.4, binnacle’s rule miner takes,
as input, a corpus of trees and a set of node types. We chose to mine for patterns
using any new node type introduced by the third phase of parsing. We selected these
node types because (i) they represent new information gained in the third phase of
our phased-parsing process, and (ii) all rules in our manually collected Gold Rules
set used nodes created in this phase. Rules involving these new nodes (which come
from the most deeply nested languages in our artifacts) were invisible to prior work.

To evaluate binnacle’s rule miner, we used the Gold Rules (introduced in Sec-
tion 5.3.2). From the original 23 Gold Rules we removed 8 rules that did not pass a
set of quantitative filters—this filtering is described more in Section 5.3.5. Of the
remaining 15 Gold Rules, there are 9 rules that are local (as defined in Section 5.3.4).
In principal, these 9 rules are all extractable by our rule miner. Furthermore, it is
conceivable that there exist interesting and useful rules, outside of the Gold Rules, that
did not appear in the dockerfile changes that we examined in our manual extraction
process. To assess binnacle’s rule miner we asked the following three questions:

• (Q1) How many rules are we able to extract from the data automatically?

• (Q2) How many of these rules match one of the 9 local Gold Rules? (Equivalently,
what is our recall on the set of local Gold Rules?)

• (Q3) How many new rules do we find, and, if we find new rules (outside of our
local Gold Rules), what can we say about them (e.g., are the new rules useful,
correct, general, etc.)?

132

For (Q1), we found that binnacle’s automated rule miner returns a total of 26
rules. binnacle’s automated rule miner is selective enough to produce a small number
of output rules—this selectivity has the benefit of allowing for easy manual review.

To provide a point of comparison, we also ran a traditional association rule miner
over sequences of tokens in our Phase III ASTs (we generated these sequences via
a pre-order traversal). The association rule miner returned thousands of possible
association rules. The number of rules could be reduced, by setting very high
confidence thresholds, but in doing so, interesting rules could be missed.

For (Q2), we found that two thirds (6 of 9) local Gold Rules were recovered by
binnacle’s rule miner. Because binnancle’s rule miner is based on frequent sub-tree
mining, it is only capable of returning rules that, when checked against the corpus
they were mined from, have a minimum confidence equal to the minimum support
supplied to the frequent sub-tree miner.

In addition to measuring recall on the local Gold Rules, we also examined the
rules encoded in Hadolint to identify all of its rules that were local. Because Hadolint
has a weaker representation of Dockerfiles, we are not able to translate many of its
rules into local TARs. However, there were three rules that fit the definition of local
TARs. Furthermore, binnacle’s automated miner was able to recover each of those
three rules (one rule requires the use of apt-get install’s -y flag, another requires
the use of apt-get install’s –no-install-recommends flag, and the third requires
the use of apk add’s –no-cache flag).

To classify the rules returned by our automated miner, we assigned one of the
following four classifications to each of the 26 rules returned:

• Syntactic: these are rules that enforce simple properties—for example, a rule
encoding the fact that the cp command takes two paths as arguments (see
Figure 5.8c).

• Semantic: these are rules that encode more than just syntax. For example, a
rule that says the URL passed to the curl utility must include the https://

prefix (see Figure 5.8b).

133

• Gold: these are rules that match, or supersede, one of the rules in our collection
of Gold Rules (see Figure 5.8a).

• Ungeneralizable: these are rules that are correct on the corpus from which
they were mined, but, upon further inspection, seem unlikely to generalize.
For example, a rule that asserts that the sed utility is always used with the
–in-place flag is ungeneralizable (see Figure 5.8d).

To answer (Q3), we assigned one of the above classifications to each of the
automatically mined rules. We found that, out of 26 rules, 12 were syntactic, 4
were semantic, 6 were gold, and 4 were ungeneralizable. Figure 5.8 depicts a rule
that was mined automatically in each of the four classes. Surprisingly, binnacle’s
automated miner discovered 16 new rules (12 syntactic, 4 semantic) that we missed in
our manual extraction. Of the newly discovered rules, one could argue that only the
semantic rules are interesting (and, therefore, one might expect a human to implicitly
filter out syntactic rules during manual mining). We would argue that even these
syntactic rules are of value. The lack of basic validation in tools like VS Code’s
Docker extension creates a use case for these kind of basic structural constraints.
Furthermore, the 4 novel semantic rules include things such as: (i) the use of the -L

flag with curl, following redirects, which introduces resilience to resources that may
have moved, (ii) the use of the -p flag with mkdir, which creates nested directories
when required, and (iii) the common practice of preferring soft links over hard links
by using ln’s -s flag. With (Q3), we have demonstrated the feasibility of automated
mining for Dockerfiles—we hope that these efforts inspire further work into mining
from Dockerfiles and DevOps artifacts in general.

5.4.3 Results: Rule Enforcement

Using the 15 Gold Rules, we measured the average violation rate of the Gold Rules
with respect to the Gold Dockerfiles (Section 5.2). The average violation rate is the
arithmetic mean of the violation rates of each of the 15 Gold Rules with respect to the
Gold Dockerfiles. This measurement serves as a kind of baseline—it gives us a sense

134

of how “good” Dockerfiles written by experts are with respect to the Gold Rules. The
average violation rate we measured was 6.65%, which, unsurprisingly, is quite low.
We also measured the average violation rate of the Gold Rules with respect to our
overall corpus. We hypothesized that Dockerfiles “in the wild” would fare worse, with
respect to violations, than those written by experts. This hypothesis was supported
by our findings: the average violation rate was 33.15%. We had expected an increase
in the violation rate, but were surprised by the magnitude of the increase. These
results highlight the dire state of static DevOps support: Dockerfiles authored by
non-experts are nearly five times worse when compared to those authored by experts.
Bridging this gap is one of the overarching goals of the binnacle ecosystem.

We also obtained a set of approximately 5,000 Dockerfiles from the source-code
repositories of an industrial source, and assessed their quality by checking them
against our Gold Rules. To our surprise, the violation rate was no lower for these
industrial Dockerfiles. This result provides evidence that the quality of Dockerfiles
suffers in in

5.5 Related Work

Our paper is most closely related to the work of Sidhu et al. (2019), who explored
reuse in CI specifications in the specific context of Travis CI, and concluded that
there was not enough reuse to develop a “tool that provides suggestions to build CI
specifications based on popular sequences of phases and commands.” We differ in the
DevOps artifact targeted (Dockerfiles versus Travis CI files), representation of the
configuration file, and the rule-mining approach.

In a related piece of work, Gallaba and McIntosh (2018) analyzed the use of
Travis CI across nearly 10,000 repositories in GitHub, and identified best practices
based on documentation, linting tools, blog posts, and stack-overflow questions. They
used their list of best practices to deduce four anti-patterns, and developed Hansel,
a tool to identify anti-patterns in Travis CI config files, and Gretel, a tool to
automatically correct them. Similar to our second phase of parsing, they used a bash
parser (BashLex) to gain a partial understanding of the shell code in config files.

135

Zhang et al. (2018b) examined the impact of changes to Dockerfiles on build time
and quality issues (via the Docker linting tool Hadolint). They found that fewer and
larger Docker layers results in lower latency and fewer quality issues in general, and
that the architecture and trajectory of Docker files (how the size of the file changes
over time) impact both latency and quality. Many of the rules in our Gold Set, and
those learned by binnacle, would result in lower latency and smaller images if the
rules were followed.

Xu et al. (2019) described a specific kind of problem in Docker image creation
that they call the “Temporary File Smell.” Temporary files are often created but
not deleted in Docker images. They present two approaches for identifying such
temporary files. In this paper, we also observed that removing temporary files is a
best-practice employed by Dockerfile experts and both our manual Gold Set and our
learned rules contained rules that address this.

Zhang et al. (2018a) explored the different methods of continuous deployment
(CD) that use containerized deployment. While they found that developers see many
benefits when using CD, adopting CD also poses many challenges. One common
way of addressing them is through containerization, typically using Docker. Their
findings also reinforce the need for developer assistance for DevOps: they concluded
that “Bad experiences or frustration with a specific CI tool can turn developers away
from CI as a practice.”

Our work falls under broader umbrella of “infrastructure-as-code”. This area has
received increasing attention recently Rahman et al. (2019). As examples, Sharma et
al. examined quality issues, so-called smells, in software-configuration files (Sharma
et al., 2016), and Jiang et al. examined the coupling between infrastructure-as-code
files and “traditional” source-code files.

There have been a number of studies that mine Docker artifacts as we do. Xu and
Marinov (2018) mined container-image repositories such as DockerHub, and discussed
the challenges and opportunities that arise from such mining. Zerouali et al. (2019)
studied vulnerabilities in Docker images based on the versions of packages installed in
them. Guidotti et al. (2018) attempted to use Docker-image metadata to determine if
certain combinations of image attributes led to increased popularity in terms of stars

136

and pulls. Cito et al. (2017) conducted an empirical study of the Docker ecosystem
on GitHub by mining over 70,000 Docker files, and examining how they evolve, the
types of quality issues that arise in them, and problems when building them.

A number of tools related to Dockerfiles have been developed in recent years as
well.

Brogi et al. (2017) found that searching for Docker images is currently a difficult
problem and limited to simple keyword matching. They developed DockerFinder,
a tool that allows multi-attribute search, including attributes such as image size,
software distribution, or popularity.

Yin et al. (2018) posited that tag support in Docker repositories would improve
reusability of Docker images by mitigating the discovery problem. They addressed this
issue by building STAR, a tool that uses latent dirichlet allocation to automatically
recommend tags.

Docker files may need to be updated when the requirements of the build environ-
ment or execution environment changes. Hassan et al. (2018a) developed Rudsea,
a tool that can recommend updates to Dockerfiles based on analyzing changes in
assumptions about the software environment and identifying their impacts.

To tackle the challenge of creating the right execution environment for python
code snippets (e.g., from Gists or StackOverflow) Horton and Parnin (2019) developed
DockerizeMe, a tool which infers python package dependencies and automatically
generates a Dockerfile that will build an execution environment for pieces of python
code.

5.6 Future Work

In this work, I took a more traditional approach to “learning” by using a frequent-
sub-tree mining technique. I think there is a great opportunity here to think about
truly learned approaches. For instance, imagine training a “tree-language model” on
the corpus of parsed Dockerfiles. If one were to train such a model and make use of
an architecture that has some concept of “attention” (that is, the ability to weight
different parts of the input) then one could devise a mining technique that learns

137

from the model—by placing holes in trees, asking the model to make predictions, and
then looking at what pieces of the input tree the model attends to (for example, the
model may always attend to apt-get update when predicting apt-get install).
This is a very loose sketch of an idea, and I believe there would be many nuances to
making such a technique work, but it would be an interesting direction for future
work to consider such an approach to mining from tree-structured artifacts (such as
code or Dockerfiles).

5.7 Notes

The tools, experiments, and techniques in this work were completed while I interned
at Microsoft Research in the summer of 2019. I remember colleagues (wisely) telling
me to enjoy the summer and not worry to much about trying to churn out a piece of
work in the (less than) three months we interns had. I also remember seeing a unique
opportunity with Dockerfiles and realizing that producing this work would require a
bit of innovation but, mostly, a lot of brute-force coding work. I remember spending
weekends at a local coffee shop working on the third-level parsers and how, slowly,
each new parser started to unlock more options for mining meaningful specifications.
Outside of the hard work, I also remember how much fun it was to be an intern
at MSR—they took us sailing (which I had never done), hiking by waterfalls, wine
tasting, and gave us countless opportunities to interact with incredible researchers
and hear lectures on many diverse subjects throughout the summer. I think that
summer was a defining moment in my career as a researcher—it was hard to be away
from home, away from my wife and two wonderful (and mischievous) cats, but it was
well worth it.

138

6 dockerfile repair

Over a quarter of the GitHub repositories with Dockerfiles I looked at had a
broken Dockerfile! What should I do?

GTP-3: There is no one-size-fits-all answer to this question, as the best
course of action will vary depending on the specifics of the situation.
However, some possible options include:

1. Attempting to fix the broken Dockerfile yourself

2. Reaching out to the repository owner to ask for help

3. Looking for another repository with a working Dockerfile that
accomplishes the same goal

Repository owners are often too busy and fixing the file myself could be quite
time consuming. Do you think there’s any way one could automate the repair
of broken Dockerfiles?

GPT-3: There is no guarantee that automated repair of broken Dockerfiles
will be possible or effective, as the cause of the breakage may be highly specific
to the repository in question. However, it may be worth exploring whether
there are any existing tools or scripts that could be adapted for this purpose.

Spoilers: there weren’t existing tools, but we made one!

A dialogue with OpenAI’s GPT-3

6.1 Introduction

In the previous chapter, we introduced Dockerfiles (an artifact used by the Docker
engine to produce images; from images one can run containers which are, essentially,
lightweight virtual machines). Docker is one of the most widely used tools for
virtualization. With ∼79% of IT companies using it (Portworx, 2017) and over 3.7

139

million unique installations of the VS Code Docker extension (Marketplace, 2020),
Docker has made an enormous impact on developers’ day-to-day work.

6.1.1 Motivation

Despite the utility of Dockerfiles and their prevalence in industry, we found that
over 26% of our sample of Dockerfiles obtained “in the wild” (sourced from GitHub)
failed to build successfully. This high a percentage is surprising, because it runs
counter to one of the core tenets of Docker, namely, reproducibility. Furthermore, it
is outside of the scope of recent efforts to statically analyze Dockerfiles to detect such
failures. For example, Hadolint (Hadolint, 2019) can detect mistakes such as missing
or incorrect flags—e.g., forgetting the use of –assume-yes/-y when invoking apt-get

install in a Dockerfile. This flag is required because a Dockerfile build runs without
interaction; therefore, forgetting this flag may cause the build to hang. Unfortunately,
while Hadolint can detect such a mistake statically, many breakages occur due to
a change in the external environment and not a change in the source Dockerfile.
These observations add to the mounting evidence that external changes, such as
dependencies changing, can often lead to broken build-related artifacts (Tufano et al.,
2017; Hassan and Wang, 2018). As further evidence of this trend, our prototype
tool, Shipwright, was used to guide 19 accepted pull requests on GitHub and, for
each of these patches, the underlying issue was caused by a change in the external
environment (see Section 6.2.1 for an example of one such change).

To recap, we find ourselves in a situation where over a quarter of the GitHub
repositories with Dockerfiles that we analyzed had a broken Dockerfile. Furthermore,
we find that current state-of-the-art (static) analysis for Dockerfiles is largely incapable
of detecting and/or repairing such broken Dockerfiles. Given this situation, we pose
the following motivating question:

Motivating Question

Can we devise a technique to provide automated repair for broken Dockerfiles?

140

6.1.2 Goals

To address the large amount of broken Dockerfiles that we found “in the wild,” and to
close the gap between tooling that detects issues and tooling that could be used to fix
those same issues (with little/no human intervention), we propose the following goal:

Goals

Aid developers in repairing broken Dockerfiles, with the hope of reducing the
high percentage of broken Dockerfiles that we observed on GitHub.

6.1.3 Contributions

The work described in this chapter makes the following contributions: 1) Technique.
We introduce a human-in-the-loop approach to fixing broken Dockerfiles; 2) Tool. We
made available a tool implementing our technique; and 3) Data. We made available
an extension of the binnacle dataset (introduced in Chapter 5) that includes build
logs.

Technique. Unlike previous approaches that attempt to mine patterns automatically
and directly from Dockerfiles, Shipwright follows a human-in-the-loop approach to
build a repair database. We include human supervision to broaden the effectiveness
of Shipwright: a fully automatic approach would limit the scope of repairs that
could be detected. Shipwright is designed to act as a “co-pilot” that can side-step
the limitations of a completely automatic approach with the goal of constructing
a comprehensive database of repairs. To build such a database, Shipwright uses
clustering, human supervision, and a search-based recommendation system we built
to leverage vast community-knowledge bases, such as StackOverflow and Docker’s
community forum. In general, we require repairs to incorporate both some kind of
pre-condition (a pattern) and a transformation function (a patch).

During clustering, one challenge that Shipwright needs to address is the hetero-
geneity of the data, which is a mixture of code and natural language. The mixing of

141

code and natural language makes it non-trivial to design a featurization method for
clustering. Therefore, to address this challenge, Shipwright uses a modified version
of Google’s BERT model (Reimers and Gurevych, 2019; Devlin et al., 2019) to embed
Dockerfile build logs. By using a pre-trained transformer-based neural model, we are
able to side-step tedious feature engineering, and benefit from the diverse corpora
on which BERT-based models have been trained. Using this embedding, we perform
clustering with HDBSCAN (Campello et al., 2013), in the vector space of embedded
build logs, and use the results to cluster failing builds. By using the vectors generated
through BERT, we leverage the “understanding” encoded in BERT’s language model.
To our surprise, we found that recent off-the-shelf language models work well in
this domain. Using the generated clusters, we employ human supervision to intuit,
for each cluster, a likely root cause of failure and, if possible, engineer one or more
automated repairs to save in Shipwright’s database. Later, Shipwright will use this
human-generated repair database to attempt automatic repair of failing Dockerfiles.

Tool. The scripts to automate each of the steps of Shipwright (see Figure 6.3) are
publicly available at https://github.com/STAR-RG/shipwright.

Data. We have identified a subset of Dockerfiles from the binnacle dataset (see
Chapter 5) that are amenable to automated builds. (The dataset and filtering
criteria are described in Section 6.3.) We have built these Dockerfiles in-context
(an expensive operation that requires hundreds of hours of compute time), and
captured detailed data from the results, including logs from the builds. These
build logs represent a significant expansion of the data in the original binnacle

dataset, and it is our hope that this extended data will accelerate research on
diagnostic tools for Dockerfile analysis and repair. This expanded data is available at
https://github.com/STAR-RG/shipwright.

6.1.4 Evaluation

We evaluated several aspects of Shipwright; a summary of our results is as follows:
(i) Broken Dockerfiles are prevalent: in the data we analyzed, 26.3% of Dockerfiles
failed to build. (ii) Even using optimistic criteria, existing static tools are capable

https://github.com/STAR-RG/shipwright
https://github.com/STAR-RG/shipwright

142

of identifying the cause of a failure in only 20.6%–33.8% of the broken Dockerfiles.
(iii) Shipwright is capable of clustering broken Dockerfiles and offering actionable
solutions: for files that clustered, Shipwright provides automated repairs in 20.34% of
the cases; for files that did not cluster, Shipwright is still able to provide automated
repairs in 18.18% of cases. (iv) In a “time-travel” analysis, we found that Shipwright
would have been able to provide actionable solutions to 98.04% of the Dockerfiles
that we found initially to be broken and then subsequently found had been fixed (by
others) in their respective repositories. Finally, we used the reports from Shipwright

to submit 45 Pull Requests about still-broken Dockerfiles. Of these, 19 have been
accepted. These results provide initial, yet strong, evidence that Shipwright is useful
to help developers fix broken Dockerfiles.

6.2 Sources of Build Failures

This section describes some of the distinct sources of problems that can lead to build
failures in Dockerfiles.

6.2.1 Breaking Changes in External Files

This kind of failure occurs when a Dockerfile’s external dependencies (such as the
file’s base image or URLs embedded within the file) are changed; often these changes
external to the Dockerfile will require a change in the Dockerfile itself. To illustrate
this problem, consider the case where the developer used latest to indicate the
version of the base image of her Dockerfile, as in FROM ubuntu:latest. These base
images are downloaded from Docker Hub (docker, 2015), a distributed database that
is part of the Docker ecosystem. The problem with using latest is that a change
to the base image may require changes to the Dockerfile. Unfortunately, there is
no clear way to incorporate those required changes automatically. For instance, the
python-pip package is part of Python 2, and Python 2 is unavailable on Ubuntu
images higher than 18.04. Consequently, a build on a Dockerfile with the command
apt-get -y install python-pip will pass when the file is based on Ubuntu images

143

18.04 and lower, but it will fail on higher versions, including the latest LTS version of
Ubuntu.

We used the Shipwright toolset to analyze and cluster hundreds of broken
Dockerfiles, looking for common error patterns in their build logs and associated
Dockerfiles. Using a human-in-the-loop process, we then extracted patterns and
associated them with candidate repairs. For example, when running the command
docker build on the Dockerfile FROM ubuntu:latest...RUN apt-get -y install

python-pip..., Docker reports the message “Unable to locate package python-pip”
on output. When that message is present in the logs, we found that the typical image
in Dockerfiles is Ubuntu and the version is either undefined, latest, or 20.04. We
also noticed that this error message appears not only with python-pip, but with
other packages as well.

We expressed these patterns with regular expressions to be checked against the
Dockerfile (the static data) and error logs (the dynamic data). For instance, we
expressed the pattern for the problem above with the regex “FROM ubuntu(ϵ | :latest
| :20.04)” ∧ “Unable to locate package (.*)” ∈ log. Note that such an expression 1)
defines a pattern over the Dockerfile, 2) defines a pattern over the output log, and 3)
uses the groups “(ϵ...)” and “(.*)” to bind data to variables for later use.

Figure 6.1 shows two possible solutions to the problem above. The first solution
is to fix the base image to the most recent version with which the command can still
be executed. The following abstract operation characterizes the repair: replace $0

with :18.04. The symbol $0 refers to the regex group matching the Ubuntu image
in the Dockerfile (i.e., “(ϵ...)”) that must be replaced with one specific Ubuntu
version (e.g., :18.04). The second solution is to install Python 2 and its toolset. The
following operation characterizes the repair: add ARG DEBIAN_FRONTEND=. . . after
“FROM ubuntu(ϵ | :latest | :20.04)”. The symbol “. . . ” is a placeholder for the text
associated with the second solution from Figure 6.1.

Shipwright records the association between a given pattern (of build error) and
possible solutions, such as the two repairs above. From this information, Shipwright
is able to repair broken Dockerfiles whose build logs match some of the pre-recorded
patterns. Table 6.1 describes this example under the row with “Id” 5. Note that the

144

1 # solution 1, use version 18.04
2 FROM ubuntu:18.04
3 RUN apt-get -y install python-pip
4 ... #remaining code
5

6 # solution 2, manually install the package
7 FROM ubuntu:latest
8 ARG DEBIAN_FRONTEND=noninteractive
9 RUN apt-get -y install python2 curl software-prop... \
10 && add-apt-repository universe \
11 && curl https://.../get-pip.py --output get-pip.py \
12 && python2 get-pip.py
13 ... #remaining code

Figure 6.1: Solving python-pip unavailable on ubuntu:latest.

repair operation consists of multiple possible solutions, hence the comma and dots,
as we only show the first solution. In this case, Shipwright produces two versions of
the Dockerfile and the developer should choose which one suits best their needs. We
elaborate on Shipwright’s workflow in the following sections.

It is worth noting that prior work has investigated the impact of breaking changes
in package-management systems (e.g., in the Linux package manager, npm, maven,
etc.) (Vouillon and Cosmo, 2013; McCamant and Ernst, 2004; Møller and Torp, 2019;
Tucker et al., 2007; Mancinelli et al., 2006). Shipwright is not restricted to this kind
of issue, and it is distinct from prior work on the application context and solution
used. Section 6.6 elaborates on related work.

6.2.2 Inconsistent Version Dependency Within Project

This kind of failure occurs when there is an inconsistency between the versions of
a Dockerfile and some of the files it references within the project. Figure 6.2 shows
a concrete example that illustrates the problem. The Dockerfile requires an image
for Ruby version 2.6.3, whereas the application code declares a dependency on a
newer Ruby version (2.6.5) (Barcelona, 2020). The execution of the command RUN

145

1 FROM ruby:2.6.3
2 RUN apt-get update -qq && apt-get install -y \
3 ...
4 RUN gem install bundler:2.0.1
5 RUN bundle install # <-- Gemfile depends on ruby 2.6.5
6 ADD . /app

Figure 6.2: Inconsistent Ruby version dependencies.

bundle install triggers an error, producing the following message on output “Your
Ruby version is 2.6.3, but your Gemfile specified 2.6.5”. In this case, the solution
was to replace line 1 of this Dockerfile with FROM ruby:2.6.5. The pattern and
corresponding repair explained above are listed in Table 6.1 under row “Id” 6. A
similar repair is “Id” 1, which is also related to Ruby.

6.2.3 Missing Commands in the Dockerfile

This failure occurs when a given Dockerfile uses a command that is unavailable on a
given image. The solution in that case is to install the command using the proper
syntax, because it depends on the version of the image. Table 6.1 lists one example
of this error pattern and the respective repair under row “Id” 8.

6.2.4 Project-Specific Failures and Suggestions

We observed that many broken Dockerfiles require repairs that are project-specific
and cannot be generalized. In those cases, Shipwright is unable to produce a repair
to the broken file. Instead, in those cases, Shipwright provides suggestions. For
instance, consider the case where a Dockerfile includes a command to deploy a Node.js
server, such as RUN npm run build. The execution of that command fails because
there is an error in the Node.js project. There is nothing to fix within the Dockerfile.
The developer needs to analyze what is wrong in her Node.js project and fix it.
In that case, Shipwright reports a suggestion, such as “NPM build error..”. As
another example, consider a case in which a command refers to a broken link, such

146

GitHub

Dockerfiles

Dockerfile
Builds

(in-context)

Failing
Builds

Build Logs
Dockerfile ASTs

Metadata

Step 1: Data Collection
(offline)

Step 2: Fix Extraction
(offline)BERT

HDBSCAN

Build Logs

Full
Metadata

Log Embeddings

Fixes &
Suggestions

Search-Based
Fix Generation

Clustered
Failures

Step 3: Patch &
Suggestion Generation

Broken
Dockerfile

shipwright
(online)

Patches or
Suggestions

Figure 6.3: Shipwright’s 3-step workflow. In step (1), a database of Dockerfiles
and GitHub metadata is used to perform in-context builds. The results of these
builds are stored in a local database along with various forms of metadata. In step
(2), Shipwright uses BERT and HDBSCAN to cluster build data (Reimers and
Gurevych, 2019; Devlin et al., 2019; Campello et al., 2013). The clusters are then fed
to Shipwright’s search-based repair-generation and suggestion-generation process.
During this step, Shipwright, with the assistance of a human, builds a database
of repairs and suggestions. Finally, in step (3), online usage begins: new files are
fed to Shipwright and, if matching database entries are found, Shipwright provides
relevant repairs or suggestions.

as RUN wget <url>. Shipwright cannot guess how to fix the broken link. Table 6.2
shows a sample of suggestions provided by Shipwright. In the future, it would be
interesting to examine how one might combine Shipwright with other tool-specific
and language-specific repair techniques. Tools that have a combined understanding of
DevOps artifacts and the programs these artifacts support represent an intriguing
area for future work.

6.3 Dataset

We use an expanded version of the binnacle dataset introduced in Chapter 5 as the
source of Dockerfiles to analyze. The binnacle dataset consists of all Dockerfiles
from GitHub repositories with ten or more stars. These Dockerfiles represent a broad
and largely unfiltered picture of the state of Dockerfiles one might find in popular
GitHub repositories. Although the original dataset was created in 2019, the binnacle

toolchain allows us to capture recent data using the same methodology; thus, we
populated our dataset with more recent data (June 2020) extracted using the same
tools. Unfortunately, directly using the Dockerfiles in this dataset is challenging for
two reasons: (i) many Dockerfiles in the dataset come from the same repository and, in

147

such cases, the purpose of the Dockerfiles is obscured, making efforts—like automated
builds—more difficult; (ii) many Dockerfiles are nested deep within repositories
(especially when repositories contain many independent projects or services). In either
case, automated builds are challenging because the intent behind the Dockerfile is
difficult to infer. In case (i), it is difficult to infer which of the (many) Dockerfiles
should be built. In case (ii), it is difficult to infer an appropriate context directory,
which is a pre-requisite to building a Docker image.

Dataset Filtering. To address these issues, we filtered the files from the binnacle

dataset using two criteria: (a) we only considered repositories with a single Dockerfile,
and (b) we required that the given Dockerfile resides within the repository’s root
directory. For such a repository, it is not unreasonable to assume two things: (i) the
Dockerfile is intended to produce an artifact corresponding to the given repository
(because it is the only Dockerfile in that repository), and (ii) the Dockerfile likely
uses the repository’s root directory as its build context: the Dockerfile resides in
the root directory, and the docker build command assumes, by default, that the
target Dockerfile resides within the given context directory. Performing this filtering
yielded 32,466 repositories and corresponding Dockerfiles that may be amenable to
automated builds. It is this subset of the original dataset (a refreshed version of
binnacle’s dataset) that we used in our studies.

Building Dockerfiles at Scale. Shipwright performed in-context builds on 20,526
of the 32,466 Dockerfiles in our filtered dataset (recall: we filter to find Dockerfiles from
the original dataset that are likely amenable to automated builds). Although we would
have liked to use all 32,466 Dockerfiles, we encountered some problems performing
in-context builds on that many files in a reasonable time frame, which forced us to use
a smaller set of 20,526 files. We tried various approaches to scaling these in-context
builds, but distributing this kind of process would require Docker installations across
a wide variety of machines—in practice, this requirement was difficult to satisfy: none
of the distributed-computing resources we had access to would allow us to control a
Docker daemon on the distributed machines (while, for many distributed platforms,
running containers is easy). This requirement, while understandable from a security

148

#1

#2

#3

docker build
...

'locale-gen fr_FR.UTF-8'
returned a non-zero code: 127

'locale-gen en_US en_US.UTF-8'
returned a non-zero code: 127

'easy_install pip'
returned a non-zero code: 127

BERT

< ... locale gen fr fr utf 8 ... >

< ... locale gen en us en us utf ... >

< ... easy install pip returned ... >

2

3

1

1 2 3

Figure 6.4: Clustering Example. Starting with several broken Dockerfiles,
Shipwright clusters by extracting standard error logs, applying aggressive token
splitting (we split on snake and camel case, as well as several operators that may
occur in code snippets) and string normalization (we lowercase the input, clear large
blocks of repetitive characters, like extraneous white space, and we strip certain
special characters/unicode), and passing the resulting sequences to BERT. BERT
takes the input sequences and produces vectors (shown as points in a high-dimensional
space). Shipwright uses that mapping, from failing build logs to points in a vector
space, along with a clustering algorithm (HDBSCAN), to produce its clusters, shown
in the bottom right of the figure. The final clustering process has the advantage
of being semantics aware: BERT understands some of the nuances of the English
language, and our clustering benefits from this capability.

perspective, forced us to run builds in a non-distributed way (on a single large server).
Given this constraint, some builds either time out (we set a limit of 30 minutes) or,
due to contention from running multiple builds on this single server and daemon
instance, some builds fail to complete due to errors internal to the Docker daemon;
builds that fail in this manner are marked as undetermined. Instead of revisiting
undetermined builds, we spent our resources on building a larger portion of our filtered
dataset. Through this process, we captured the results from 20,526 Dockerfile builds,
and saved these results to a database for further analysis. Section 6.4.1 describes this
offline data processing with the Shipwright toolset in further detail.

6.4 Technique

Figure 6.3 shows the workflow of Shipwright as a pipeline of three steps, organized
according to their respective goals.

The goal of the first step is to analyze a corpus of broken Dockerfiles—mined from

149

GitHub—and to perform in-context builds so that logs can be acquired (Section 6.4.1).
The goal of the second step is to cluster broken Dockerfiles and find repairs (i.e.,
transformation functions on Dockerfiles) (Section 6.4.2). Given a cluster, Shipwright
automatically elaborates search queries from log files of representative Dockerfiles
within the cluster. A human then supervises the creation of repairs and suggestions
by (i) looking for error patterns as manifested in existing QA forums resulting from
the search query, and (ii) creating plausible repairs (or, if no automated repairs are
possible, creating suggestions) which are saved in a database for later, online, use.
Finally, the third (interactive) stage of the pipeline looks for actual repairs for a
broken Dockerfile (Section 6.4.3). This component takes as input the output produced
in the previous (offline) stages and a broken Dockerfile, and produces either (i) an
automated repair, (ii) a suggestion (in cases where repair cannot be automated), or
(iii) an indication that no existing repairs or suggestions apply. The following sections
describe each step in detail.

6.4.1 Data Collection

This component of Shipwright builds and analyzes Dockerfiles from a pre-existing
corpus. We utilize the 32,466 Dockerfiles described in Section 6.3 as our input corpus.
Those files were filtered to be amenable to automated builds. For each file in this
corpus, Shipwright does the following: 1) Clones the originating repository for the
given Dockerfile into a unique /tmp/<repo-id> directory; 2) Runs docker build -f

<Dockerfile> /tmp/<repo-id>, which builds a <Dockerfile> from our dataset using
the root directory of the cloned repository as the build context. Building in context
is crucial because the build may need to access files from the originating repository
to complete successfullyȦlthough we are interested in build failures, we want to avoid
trivial failures; 3) Discards builds that still have trivial failures; and 4) Saves, for
each failing build, execution logs (standard output and standard error streams), the
AST for the given Dockerfile, and various metadata (e.g., repository information,
image history, and a log of the git clone procedure). An example would be a broken
build caused by an execution failure in a directive, such as COPY or ADD. Although

150

builds are performed in context, it is still possible that the Dockerfile is intended to
be built as part of a more complex workflow with a context directory that is different
from the repository root directory. Unfortunately, this information may exist in some
third-party script, or may be user-supplied.

Figure 6.3 illustrates this workflow in the box named “Step 1: Data Collection.”
We note that data collection is quite costly: we ran a 32-core CentOS workstation
for several weeks and, during that time, managed to build about two thirds (20,526)
of the 32,466 files in our dataset. (See Section 6.3 for a discussion of the difficulties
of building many Dockerfiles at scale.) Although builds can be parallelized, there is
only one Docker daemon per installation of Docker—this situation creates a limit to
the practical concurrency that can be achieved, along with the network bandwidth
to the workstation used for analysis. We attempted to perform builds on a high-
throughput cluster but, unfortunately, the strict security requirements of such clusters
prevent deploying a workflow involving Docker images builds, which effectively execute
untrusted code.

We also explored using a high-throughput cluster to perform Dockerfile builds,
but it is exceedingly difficult to deploy such a workflow as most high-throughput
compute clusters do not allow for running docker-related commands (for security
reasons). Instead, we attempted a docker-in-docker (DinD) style workflow (in which
we could deploy concurrent docker builds within docker containers) but, again, the
strict requirements of high-throughput platforms did not allow us to deploy such a
workflow. In the near future, efforts to enable “non-root” Docker installations may
make such workflows possible on high-throughput platforms.

6.4.2 Repair & Suggestion Extraction

This step of Shipwright works as follows. First, it uses HDBSCAN, applied to
embeddings,1 to partition the Dockerfile data produced in the previous step. Second,

1Embeddings refer to high-dimensional vectors of numbers that are used as a proxy for non-
numeric artifacts (such as text or code). Embeddings are often of use, because many operations can
be performed in the resulting vector space, and later mapped back to the originating artifacts.

151

it uses those clusters to assist a human with the task of searching for solutions and
building a database of repairs. We now elaborate on each of these steps.

Clustering

Shipwright attempts to cluster failing Dockerfile builds using embeddings and
HDBSCAN (a hierarchical variant of DBSCAN, a classic clustering algorithm (Ester et al.,
1996b)). The difficulty of clustering in this domain is two-fold: (i) the data to cluster
is heterogeneous, and is often a mix of code and natural language (i.e., the build logs,
which will often contain a description of the failure in English and a reproduction of
the Bash or Dockerfile snippet that leads to the error), and (ii) although we would
like to cluster on the cause of build failures, we do not have a way to definitively
extract the cause of a given build failure; therefore, we must use data that is, at best,
a proxy or symptomatic of the root cause of failure. In particular, we use a tokenized
version of the build logs for the failing build (which may include a variety of things:
debug output, warnings, and errors—some of which may include code snippets) as
input to BERT to produce embeddings.

Despite these challenges, Shipwright is able to perform clustering by leveraging a
key insight: recent off-the-shelf language models, such as BERT, GPT-2 and, recently,
GPT-3, have reached impressive levels of sophistication (Devlin et al., 2019; Radford
et al., 2019; Brown et al., 2020). Given the inputs these models are trained on (roughly,
massive crawls of the internet), it is highly likely that such models have seen websites
like StackOverflow, which mix both natural language and code. Therefore, to address
challenge (i) (the heterogeneous mix of code and natural language), Shipwright

leverages a sufficiently sophisticated off-the-shelf language model (BERT), to obtain
embeddings. In particular, Shipwright uses a variant of BERT suited to the task
of sentence embedding, in which similar sentences should end up “close” in the
embedding space. Shipwright applies this BERT variant to the last few lines of
the error logs to produce a vector representation of each broken Dockerfile. These
vectors are then fed to HDBSCAN, which produces clusters. Figure 6.4 illustrates
the Shipwright clustering process.

152

Searching for Repairs or Suggestions

This component of Shipwright takes a set of clusters as input, and produces a list
of pairs as output. The first element of the pair is a signature that identifies the
issue (in the Dockerfile and its logs) whereas the second element of the pair is either
(i) a repair, consisting of a pure transformation function that takes a Dockerfile as
input and produces another file as output, or (ii) a suggestion (about what needs to
be repaired and how) for the cases where human knowledge is necessary to prepare
the repair. We elaborate on each of these two cases in the following and Tables 6.1
and 6.2 provide examples of such pairs.

Case 1 (Searching for Repairs): Shipwright uses a search-based recommenda-
tion system to assist a human in locating repairs of broken Dockerfiles. Shipwright

proceeds as follows: it selects a cluster and a representative Dockerfile from that clus-
ter; it extracts keywords from the logs of that file; it builds a search string from those
keywords; it submits the corresponding query to a search engine; it filters the outputs
from related community forums; and it reports a list of the top-5 URLs as output
for a human to inspect. Human inspection consists of reading proposed solutions on
discussion forums, and then applying a given solution to the representative Dockerfile
from the cluster. If that solution is plausible, i.e., if it allows the Dockerfile to build
an image successfully, the next step is to check if the error-pattern/repair-function
pair is applicable to other Dockerfiles in the cluster. While doing so, the human
inspector looks for opportunities to generalize the pattern and repair function to
avoid overfitting a solution to a particular case. For instance, in the example given in
Section 6.2.1, the initial solution was too narrow, focusing on fixes of files containing
the exact message “Unable to locate package python-pip” in the output log.
However, we observed similar error messages, referring to different packages. In this
case, the solution was to replace “python-pip” in that string with a symbolic name
for a package. To sum up, Shipwright leverages community knowledge bases (e.g.,
StackOverflow and Docker’s community forums) to find solutions to known issues,
such as those presented in Section 6.2.

Shipwright supports a total of 13 repair patterns. Table 6.1 shows the pairs of (1)

153

Table 6.1: Selected Repairs

Id Pattern / Repair Source

1
“ERROR: Error installing bundler ∈ log ∧

“bundler requires Ruby version ⩾ ([0-9]+.[0-9]+.[0-9]+)” ∈ log
replace FROM ruby:(.*) with FROM ruby:$0

oshivwanshi (2019)

2 “Rpmdb checksum is invalid: dCDPT” ∈ log
add RUN yum install -y yum-plugin-ovl after FROM(.*) r1williams (2015)

3
“E: Some index files failed to download.

They have been ignored, or old ones used instead” ∈ log
replace base image with latest release from hub.docker.com

Schulze (2018)

4 “E: Package ‘libpng12-dev’ has no installation candidate” ∈ log
replace libpng-12dev with libpng-dev

jahanzaib basharat (2018)

5
“FROM ubuntu(ϵ|:latest|:20.04)” ∧

“Unable to locate package (.*)”∈ log ∈ Dockerfile
replace $0 with :18.04, ...

PacificNW_Lover (2020)

6
“but your Gemfile specified ([0-9\|\\.]+)” ∈ log

∧ “FROM ruby(.*)” ∈ Dockerfile
replace FROM ruby:(.*) with FROM ruby:$0

Tan (2016)

7
“invalid byte sequence in US-ASCII” ∈ log

∧ “FROM ruby(.*)” ∈ Dockerfile
add ENV LANG C.UTF-8 after FROM(.*)

ubergesundheit (2015)

8

“sh: (.*): not found” ∈ log
if “FROM alpine(.*)” ∈ Dockerfile

then add RUN apk add –no-cache $0.
else add RUN apt-get -y update

&& apt-get -y install $0

rmNyro (2017)

9
“ERROR: unsatisfiable constraints: bzr (missing):” ∈ log

∧ “FROM alpine(.*)” ∈ Dockerfile
remove bzr in “apk add” command

yelizariev (2020)

10
“conda: not found” ∈ log

∧ “RUN curl (https://repo.continuum.(.*))” ∈ Dockerfile
add -L before $0

Buddhi (2019)

hub.docker.com

154

Table 6.2: Selected Suggestions

Id Pattern / Suggestion

1 “mix” ∈ log ∧ “Code.LoadError” ∈ log
Problem running mix on the Elixir project...

2 “tsc” ∈ log ∧ “: error TS” ∈ log
Error during TypeScript compilation with tsc. Please check your .ts files.

3 “wget: server returned error” ∈ log ∨ “wget: unable to resolve host address” ∈ log
wget error, you have a broken URL. Please check the log.

4 “npm ERR!” ∈ log
NPM Error, check your files, in particular, “npm install” commands.

5 “curl:([0-9]+).*” ∈ log
curl error, you have a broken URL. Please check the log.

build-error signatures—referred to as a pattern—and (2) a corresponding repair for
10 of them. Column “Id” shows the id of a pair. Column “Pattern” shows the error
pattern, which is a regular expression that matches a string in the error logs (the
dynamic part) and/or a string in the Dockerfile (the static part). Column “Repair”
shows a function, in natural language, describing how to transform and fix a broken
Dockerfile. We use the keywords add, remove, and replace to describe operations
that need to be performed on the Dockerfile. We informally described the semantics
of these operations with examples in Section 6.2.1. Although there is no fundamental
reason preventing us from creating these transformations automatically, we wrote the
code implementing these transformation functions because we found empirically that
creating these functions was not a time-consuming error-prone task. Finally, column
“Src.” shows a reference for the solution on the web.

Case 2 (Searching for Suggestions): There are cases where Shipwright

cannot produce a repair. For example, a Dockerfile whose build fails because of
a compilation error or broken URL requires a human to fix the underlying error.
For those cases, we report a suggestion, i.e., generic advice on what needs to be
done. Table 6.2 shows a small sample from the total of 50 suggestion patterns that

155

Shipwright supports (in addition to 13 repair patterns). Column “Id” shows the id
of the suggestions, column “Pattern” shows the signature, and column “Suggestions”
shows the suggestion message.

6.4.3 Repair and Suggestion Generation

Shipwright can be used to repair Dockerfiles or provide suggestions using the database
generated in step 2 (Section 6.4.2). Given a Dockerfile, Shipwright iteratively
examines the repairs and suggestions and, given a match, it either (i) produces a
patched file, by applying a repair, or (ii) provides a suggestion message to the user.
If neither a repair nor a suggestion with a matching pre-condition exists within the
database, Shipwright is still able to use its search-based process to guide a human in
producing fixes and suggestions, as we did in step 2 (Section 6.4.2). This search-based
process provides a user with a small set of (filtered) links to resources likely to help in
fixing the given input file. In summary, Shipwright, during step 3, produces either:
(i) a Dockerfile repair, (ii) a suggestion on how to fix the broken build, or (iii) a
curated set of results from a search-based process that may provide solutions to the
underlying build issue.

6.5 Experiments

The goal of Shipwright is to help developers fix broken Dockerfiles. It does that
through a combination of (i) clustering of broken Dockerfiles (by likely root cause),
and (ii) a search-based method to find repairs (and, if no automated repairs are
feasible, suggestions). To gain insights into the landscape of broken Dockerfiles used
in GitHub projects and to understand Shipwright’s efficacy, we pose the following
research questions.

Research Questions 1 (Dockerfile Build Failures)

156

Research Question # 1

How prevalent are Dockerfile build failures in projects that use Docker on GitHub?
Can existing (static) tools identify the failure-inducing issues within these broken
files?

Rationale

The purpose of this question is to evaluate the potential impact of Shipwright. If
build failures are rare, then impact is limited. Furthermore, reproducibility is a core
tenet of Docker—it would be surprising to find many broken Dockerfiles. We also
assess the ability of existing (static) tools to identify issues that may lead to failing
Dockerfile builds.

Metrics

We used the following metrics to answer RQ1: 1) the fraction of Dockerfiles in
our dataset with builds that fail; 2) the relationship between failures and project
popularity; and 3) the success rate of existing (static) tools in predicting Dockerfile
build failures. The first metric evaluates the fraction of Dockerfiles that we mined
from GitHub that fail to build because the Dockerfile is broken (for non-trivial and
non-toolchain-related reasons). The second metric examines the relationship between
the number of GitHub stars a given repository has (a common proxy for popularity on
GitHub) and whether that repository contains a broken Dockerfile. This measurement
helps us ascertain whether popular repositories suffer from broken Dockerfiles at the
same rate as less popular repositories. Recall that we do not have any Dockerfiles
from repositories with less than 10 GitHub stars (Section 6.3). Finally, the third
metric ascertains the ability of pre-existing tools, namely, Hadolint (Hadolint, 2019)
and binnacle’s rule checker (Chapter 5), to find issues within broken Dockerfiles.

Research Question 2 (Clustering with Embeddings)

157

Research Question # 2

Can we use off-the-shelf language models, like BERT, to easily cluster broken
Dockerfiles?

Rationale

Given the number of observed failures, it is reasonable to ask whether many failures
are unique. If many failures are similar, one might hope that generalized repairs exist.
Furthermore, if failing Dockerfile builds can be clustered, those clusters may be used
to bootstrap finding repairs. Finally, if we can leverage the level of understanding
available in large off-the-shelf language models (like BERT), then we can design robust
clustering routines with little specialized engineering effort, and avoid techniques
based on manually designed heuristics.

Metrics

To answer RQ2, we examine the percentage of clusters (generated using Shipwright),
where all elements share a single (likely) root cause. This metric provides insight
into Shipwright’s ability to cluster broken Dockerfiles and the usefulness of those
clusters—good clustering allows for finding multiple exemplars for a single failure
which, in turn, makes the task of generating automated repairs simpler.

Research Question 3 (Repair)

Research Question # 3

How effective is Shipwright in producing repairs? (i) To what extent do repairs
cover the failures from our dataset? (ii) For failures that can be clustered,
is it possible to generalize repairs? (iii) What can be done for failures from
non-clustered files?

158

Rationale

The purpose of this question is to evaluate Shipwright’s effectiveness on our dataset.
If proposed solutions are unable to cover a variety of Dockerfiles, then Shipwright’s
usefulness is questionable.

Metrics

1) We measured the fraction of broken Dockerfiles (from our dataset) for which
Shipwright produces a repair. 2) For the set of clusters that Shipwright produces,
we measured the extent to which repairs generalize. For that, we measure “coverage”
(i) in the cluster that originated that pattern, and (ii) across different clusters.
Coverage refers to the portion of elements within a cluster that match the same
pre-condition for a repair. 3) For broken Dockerfiles that did not cluster, we measured
how often Shipwright provides a repair. In all cases, we also evaluated Shipwright’s
ability to provide suggestions if repairs were not feasible. Collectively, these metrics
measure how effective Shipwright is in proposing solutions to the broken files in our
dataset.

Research Question 4 (Impacts)

Research Question # 4

How effective is Shipwright in reducing the number of broken Dockerfiles in
public repositories?

Rationale

Although RQ3 seeks to evaluate Shipwright’s ability to fix broken Dockerfiles, there
still remains a question of Shipwright’s usefulness in practice. RQ4 seeks an under-
standing of Shipwright’s effectiveness to meet our overarching goal: fixing broken
Dockerfiles in public repositories.

159

0

20

40

60

80

100
C

ov
er

ag
e

%

Repairs Suggestions Unknown

Figure 6.5: Proportion of different kinds of solutions within each cluster (excluding
singleton clusters).

Metrics

To answer RQ4, we used two metrics: 1) What proportion of Dockerfiles that appear
in our dataset as broken Dockerfiles, but have since been fixed, would also have been
fixed, had we applied Shipwright? 2) How often can we use Shipwright to produce
pull-requests that are accepted by external reviewers? The first metric refers to a
kind of “time-travel” analysis because, using updates that took place during the
period in which we built Shipwright, we can attempt to measure how successful we
would have been had Shipwright existed at an earlier date, and had we applied it.
Nevertheless, this metric is still a “simulated” one. Therefore, the second metric
quantifies Shipwright’s “real-world” applicability by actually using it to produce
repairs and submitting them for (external) review.

6.5.1 Answering RQ1 (Dockerfile Build Failures)

To answer Research Question 1, we used Shipwright to build a random sample of
Dockerfiles from our (filtered) dataset. In total, we tried to build 20,526 Dockerfiles
and found 5,405 broken Dockerfiles. This gives us an estimated 26.3% “breakage
rate” for Dockerfiles in our overall dataset. The large amount of broken Dockerfiles
on GitHub runs counter to one of the core reasons for using Docker: reproducibility.
Aside from broken Dockerfiles, we encountered 393 Dockerfiles with builds that time

160

26%

55%

2%

17%

Failures
Successes
Timeouts
Undetermined

Figure 6.6: Breakdown of the 20,526 files we attempted to build

out (we use a threshold of 30 minutes) and 3,514 Dockerfiles with undetermined
results (which arise due to the pressure that multiple concurrent builds place on the
Docker daemon). Neither timeouts nor builds with undetermined results are counted
as broken Dockerfiles. Instead, we count these results as successful builds to give a
conservative estimate (and lower bound) of the “breakage rate” for Dockerfiles in our
dataset. Figure 6.6 provides a visual overview of these categories.

To put these results in context, we also examined the distribution of stars for
the 5,405 repositories in our dataset. For these repositories, we find that: (i) a
third have 18 stars or fewer, (ii) a third have greater than 18 stars, but fewer than
51 stars, and (iii) a third have 51 or more stars. This distribution was surprising,
especially because some repositories with broken Dockerfiles had many thousands
of stars. We spot-checked some of these cases and found that, indeed, even quite
popular repositories can have broken Dockerfiles. For example, the MEAN stack
project (Linnovate, 2020) has over 12K stars, yet it contains a Dockerfile that fails to
build.

Finally, we also tested the capabilities of two existing (static) tools: binnacle

(introduced in Chapter 5) and Hadolint (Hadolint, 2019). For both tools, we sought

161

an estimate of the number of broken Dockerfiles for which each tool identifies a
possible build-breaking issue. Because we found it impractical to manually examine
the tools’ outputs on each of the 5,405 broken files, we instead used a (generous)
estimate based on how often each tool reports a rule violation for an issue that might
cause a build to break. For example, Hadolint can identify when the version of an
image used for a base in a Dockerfile is un-pinned; thus, if Hadolint reports a rule
violation in this category, on any file, we count it as Hadolint identifying a possible
build-breaking issue (and mark the file as “solved” by Hadolint). In total, Hadolint
identifies such issues in only 33.8% of files, and binnacle identifies such issues in only
20.6% of files.

Summary of RQ1: The presence of broken Dockerfiles on GitHub is common.
Furthermore, even highly starred repositories sometimes contain broken Dock-
erfiles. Finally, existing static tools only identify plausible build-breaking issues
in 20.6–33.8% of cases (and, even when issues are identified, such tools do not
provide repairs).

6.5.2 Answering RQ2 (Clustering with Embeddings)

To generate the clusters we use throughout our evaluation, we first performed a grid
search against Shipwright’s clustering algorithm. During this search, we focused on
exploring the space of hyperparameters used in HDBSCAN—the embeddings, although
generated by a neural model, are not “tunable” without investing in re-training the
model, which is outside the scope of Shipwright. We searched approximately 200
configurations and found, on average, HDBSCAN was able to cluster 34% (1,836)
of the 5,405 broken Dockerfiles identified by Shipwright. In the clustering that we
used, consisting of 144 clusters containing 1,814 files, we were able to confirm that
36.5% of the clusters consisted of Dockerfiles that all had the same root cause for
their failures.

162

Summary of RQ2: Shipwright’s approach to clustering Dockerfiles can, on
average, cluster 34% of our dataset, and, for over a third of the clusters generated,
we can confirm that a single issue covers all failing Dockerfiles within a cluster.

The answer to RQ2 bodes well for using clusters to bootstrap finding automated
repairs. However, we note that the clustered files only make up a portion of broken
files: therefore, to assess generalizability, RQ3 examines Shipwright’s ability to use
repairs learned from our clustered files and apply them to non-clustered files.

6.5.3 Answering RQ3 (Repair)

This question evaluates Shipwright’s effectiveness on our dataset of broken Dockerfiles
(Section 6.3).

Research Question 3.1 evaluates how much of the set of broken Dockerfiles can be
addressed with the repairs that Shipwright generates. Figure 6.5 shows the effects
of the repairs (and suggestions) that we found across the 144 clusters produced
by Shipwright. Each vertical bar denotes one cluster. These bars are divided
into three segments. The size of the segment at the bottom of the bar (in yellow)
represents the percentage of failures in a given cluster for which Shipwright provided
an automated repair; the size of the segment in the middle of the bar (in blue)
represents the percentage of failures for which Shipwright provided suggestions
(which are generated in cases where no repairs apply); and the size of the segment at
the top of the bar (in gray) represents the percentage of failures for which Shipwright

could not find a solution.

Summary of RQ3.1: The 13 repairs created with Shipwright offered solutions
to 20.34% of the 1,814 broken and clustered Dockerfiles. In cases where no repairs
were applicable, Shipwright’s 50 suggestions applied to an additional 69.63% of
the broken and clustered Dockerfiles.

163

Table 6.3: Repair Coverage

Id # Clusters Coverage (%)
Parent Average

1 4 100.00 61.00
2 3 40.00 25.67
3 8 100.00 54.00
4 3 60.00 49.34
5 2 88.00 88.00
6 2 100.00 90.50
7 1 82.14 82.14
8 6 100.00 88.67
9 1 100.00 100.00
10 2 100.00 95.50
11 3 62.00 50.00
12 2 80.00 42.00
13 3 80.00 60.00

Research Question 3.2 evaluates the ability of the repairs to generalize to a large
number of cases.

Table 6.3 shows the relative amount of broken Dockerfiles that each one of our 13
repair patterns covered.

Column “Id” refers to the id of the repair (most of which listed in Table 6.1), and
column “#Clusters” shows the number of clusters where the corresponding repair
could fix at least one of the broken Dockerfiles in it. Error patterns are extracted
from a given cluster, which we refer to as “parent”. Column “(Coverage) Parent” then
shows the fraction of broken Dockerfiles within the parent cluster that were corrected
using the respective repair. Column “(Coverage) Avg.” shows the average fraction of
repaired files across the different clusters affected by a repair pattern.

Summary of RQ3.2: The 13 repair patterns produced with Shipwright gener-
alized well within the parent cluster (avg. 84.01%) and across affected clusters
(avg. 68.22%).

164

Recall that a total of 3,586 of the 5,400 broken Dockerfiles (66.4%) were not
clustered. For non-clustered files, Shipwright produced repairs to 18.18% of them.
Overall, Shipwright produced an actionable solution to the developer in 64.81% of the
files that were not associated with any cluster (18.18% from repairs and an additional
46.63% from suggestions). Note that Shipwright used the patterns produced by
analyzing clustered files. That was possible because the clustering step is conservative
and clusters were based on embeddings of largely syntactic information (logs). For
example, we observed that a file failing on the statement apk add A && apk add B &&

... && apk add bzr was not clustered with other files failing on apk add bzr—but,
upon further examination, we found that this file failed to cluster due to its use of a
conjunction of successive apk add commands instead of the (more common) use of
the multi-argument apk add A B ... bzr variant. In practice, although conservative,
the generated clusters were suitable for creating useful and generalizable repairs.

Finally, even when no repairs or suggestions apply, Shipwright can still provide a
list of URLs pointing to resources that may provide a developer with a fix for their
broken file.

Summary of RQ3.3: Even in non-clustered broken Dockerfiles, Shipwright
was able to produce automated repairs in 18.18% of the files. Furthermore, when
no repairs applied, Shipwright was able to provide suggestions in 46.63% of the
files.

6.5.4 Answering RQ3 (Impact)

This section reports on two experiments we conducted to assess the practical usefulness
of Shipwright. The first experiment (Section 6.5.4) measures the fraction of initially-
broken but later-fixed Dockerfiles that could have been repaired with Shipwright.
The second experiment (Section 6.5.4) measures the acceptance ratio of Pull Requests
(PRs) for Dockerfiles found to be still broken in their repositories.

165

Repair Confirmation

This experiment evaluates Shipwright on real patches created by GitHub developers.
The metric we used was the fraction of the patches created by developers that matched
the repairs or suggestions of Shipwright. To run this experiment, we searched for
fixed Dockerfiles on GitHub. We used the same procedure as reported in Section 6.4.1,
but we re-cloned the repositories on Aug. 14, 2020 (8/14/20). Because we know
that the Dockerfile build on the first version of the project failed, we only needed to
perform Dockerfile builds for the 8/14/20 versions of projects. To avoid unnecessary
builds, we looked for Dockerfiles that were changed in the repository, and found
that 161(=8.87%) of the original 1,814 broken Dockerfiles were changed in their
repositories from the day they were retrieved up to 8/14/20. We ran the command
docker build in-context on those 161 files, and discarded the cases where the build
was still unsuccessful. In the end, we obtained a set of 102⟨x,y⟩ pairs to analyze, with
x denoting a broken Dockerfile from our dataset and y denoting its corresponding
patch. The method we used to measure effectiveness of Shipwright was to run
Shipwright on x and compare the generated repair or suggestion, if found, with y.

Of the 102 cases of initially-broken then-fixed Dockerfiles, Shipwright produced
an identical repair in 23 of the cases. In 77 cases, Shipwright provided suggestions
that matched the patch used by the developer. Although we found that the ratio of
suggestions to fixes was higher compared to results of RQ3.1, Shipwright covered
most of the cases we analyzed (a total of 98.04% of the cases). Overall, we believe
that this result is encouraging because it provides a strong (and relatively unbiased)
indication that the repairs that Shipwright produces are (i) correct (they matched
the fixes of developers) and (ii) useful (almost all cases were covered).

Pull Requests (PRs)

This experiment evaluates Shipwright on Pull Requests (PRs) issued to GitHub
projects with still-broken Dockerfiles. The goal is to assess the feedback from devel-
opers to these PRs, which is a proxy for their interest in Shipwright’s results. For
each of the 13 repair patterns, we randomly sampled 5 Dockerfiles (from our dataset)

166

that remained broken until the date we ran this experiment. Then, we manually
prepared a PR that explained the problem (including a link to a similar case) and
proposed a repair, as created by Shipwright. To avoid violating double-blind rules,
we created and used a GitHub account under the fictitious name “Joseph Pett” to
submit the PRs. Our artifact (https://github.com/STAR-RG/shipwright) includes
an up-to-date tracker of the submitted, accepted, and rejected PRs.

Of the 45 PRs that we submitted, 19 were accepted by developers (=42.2%);
4 PRs were rejected; and 22 PRs have not yet been reviewed by developers. The
number of submitted PRs was lower than 65 (=13*5) because we could not find five
Dockerfiles still broken for some of the patterns.

Three of the four rejected PRs were related to the same organization and the
same problem, characterized by pattern #7 (Table 6.1). The developer pointed out
that using a new version of the Docker Ruby image solved the encoding problem,
and he preferred to update the Ruby version. With that feedback, we revised repair
#7 to include a second solution, which is to update the Ruby version to 2.5.8. We
have confirmed that this repair also works for the Dockerfiles repaired by the original
solution. The new version of the Ruby image was committed on June 2020 (mtsmfm,
2020), while this issue has been reported since June 2015 (ubergesundheit, 2015).
This GitHub issue was the URL recommended by Shipwright to assist the human to
produce a repair.

Summary of RQ4: These results provide initial, yet strong, evidence that
Shipwright is a useful aid to help developers fix broken Dockerfiles.

6.6 Related Work

6.6.1 Empirical studies on Docker (and DevOps)

A growing number of studies have been carried out on Dockerfiles, as well as on
the broader topic of DevOps (Rahman et al., 2019) (also known as infrastructure

https://github.com/STAR-RG/shipwright

167

Table 6.4: Accepted Pull Requests.

URL Repair ID
https://github.com/AjuntamentdeBarcelona/decidim-barcelona/pull/321 1

https://github.com/realpython/flask-image-search/pull/2 3
https://github.com/LLNL/merlin/pull/254 3

https://github.com/fisadev/zombsole/pull/11 4
https://github.com/xlight/docker-php7-swoole/pull/2 4

https://github.com/castlamp/zenbership/pull/226 4
https://github.com/edwin-zvs/email-providers/pull/9 5

https://github.com/ex0dus-0x/doxbox/pull/12 5
https://github.com/zhihu/kids/pull/58 5

https://github.com/cxmcc/webinspect/pull/1 5
https://github.com/thegroovebox/groovebox.org/pull/10 8

https://github.com/quasoft/backgammonjs/pull/26 8
https://github.com/gitevents/core/pull/216 8
https://github.com/htilly/zenmusic/pull/56 8

https://github.com/freedomvote/freedomvote/pull/332 8
https://github.com/enomotokenji/pytorch-Neural-Style-Transfer/pull/3 10

https://github.com/yesodweb/yesodweb.com-content/pull/255 11
https://github.com/anurag/fastai-course-1/pull/14 12

https://github.com/gjovanov/facer/pull/18 13

as code). For Docker, Cito et al. (2017) examined Dockerfile quality and, similar
to us, found a high rate of breakage in Dockerfile builds; they cite a 34% breakage
rate from a smaller sample of 560 projects. We found a comparable breakage rate,
but have also developed methods aimed at making repairs instead of just analyzing
quality. More recently, Wu et al. (2020) conducted a comprehensive study of build
failures in Dockerfiles. They analyzed a total of 3,828 GitHub projects containing
Dockerfiles, and a total of 857,086 Docker builds. Overall, they found a failure rate
of 17.8%. Despite the differences in failures rates, these studies corroborate our
finding that build failures are prevalent. Lin et al. (2020) analyzed patterns (i.e.,
good and bad practices) in Dockerfiles. Among various observations, they found
that many Dockerfiles use obsolete OS images (which can pose security risks because
attackers could exploit documented vulnerabilities) and incorrectly use the latest
tag. Xu and Marinov (2018) investigated characteristics of Docker images from
DockerHub. Among other findings, they listed opportunities to improve Software

https://github.com/AjuntamentdeBarcelona/decidim-barcelona/pull/321
https://github.com/realpython/flask-image-search/pull/2
https://github.com/LLNL/merlin/pull/254
https://github.com/fisadev/zombsole/pull/11
https://github.com/xlight/docker-php7-swoole/pull/2
https://github.com/castlamp/zenbership/pull/226
https://github.com/edwin-zvs/email-providers/pull/9
https://github.com/ex0dus-0x/doxbox/pull/12
https://github.com/zhihu/kids/pull/58
https://github.com/cxmcc/webinspect/pull/1
https://github.com/thegroovebox/groovebox.org/pull/10
https://github.com/quasoft/backgammonjs/pull/26
https://github.com/gitevents/core/pull/216
https://github.com/htilly/zenmusic/pull/56
https://github.com/freedomvote/freedomvote/pull/332
https://github.com/enomotokenji/pytorch-Neural-Style-Transfer/pull/3
https://github.com/yesodweb/yesodweb.com-content/pull/255
https://github.com/anurag/fastai-course-1/pull/14
https://github.com/gjovanov/facer/pull/18

168

Engineering tasks based on how images are organized. For example, they report that
image variants could be used to support combinatorial testing. Zerouali et al. (2019)
studied version-related vulnerabilities (yet another category of issues that may arise
in Dockerfiles—similar to some of the build-breaking issues we observed, in which
external changes in the environment negatively effect a Dockerfile). Among various
findings, they found that no release is devoid of vulnerabilities, so deployers of Docker
containers cannot avoid vulnerabilities even if they deploy the most recent packages.

6.6.2 Analysis of Dockerfiles

In Chapter 5 we created a static checker for Dockerfiles (similar to Hadolint (Hadolint,
2019)), called binnacle, which is capable of learning rules from existing Dockerfiles;
however, unlike Shipwright, neither binnacle nor Hadolint attempts repairs. Xu
et al. (2019) examined “Temporary File Smells,” which are an image-quality-related
issue, not a build-breaking issue, such as the ones we examined. Zhang et al. (2018b)
studied the effect of Dockerfile changes on build time and quality (and utilized the
static tool Hadolint). Hassan et al. (2018b) proposed RUDSEA: a tool-supported
technique that proposes updates in Dockerfiles. RUDSEA analyzes changes in software
environment assumptions—obtained with static analysis—and their impacts. We
consider RUDSEA and Shipwright to be complimentary approaches: RUDSEA
focuses on changes within a project and Shipwright focuses on changes external to a
project. Other empirical studies on DevOps, but not Docker, include an examination
of smells in software-configuration files (Sharma et al., 2016), and a study of the
coupling between infrastructure-as-code files and “traditional” source-code files (Jiang
and Adams, 2015).

6.6.3 Automated Code Repairs

Shipwright lies within the growing body of work in automated repair. According
to a recent survey (Gazzola et al., 2019), our approach can be classified as both
Generate-and-Validate and Fix Recommender. We use pre-defined templates that
are obtained (i) via the analysis of build logs extracted from our clusters, and (ii)

169

from examples found in community websites. As such, we side-step the challenge of a
fully automatic repair process to produce acceptable fixes. In addition to automated
repair of source code, there is a growing effort to automate repair of build-related
(DevOps) artifacts. These DevOps artifacts are unique in that they are often tied to
both a source repository and the broader external environment in which one wants to
build, test, and/or run their code. In the broader context of repair for build-related
artifacts, both Lou et al. (2019) and Hassan and Wang (2018) investigate repair in
the domain of Gradle builds (a kind of DevOps artifact used in many Java projects)
and Macho et al. (2018) explore the related problem of automated repair for Maven
builds.

6.6.4 Broken Updates in Package Managers

Prior work investigated impacts of breaking changes in package managers. Mancinelli
et al. (2006) formalized package dependencies within a repository, and encoded the
installability problem as a SAT problem. Vouillon and Cosmo (2013) proposed an
algorithm to identify broken sets of packages that cannot be upgraded together within
a component repository. McCamant and Ernst (2004) proposed an approach for
checking incompatibility of upgraded software components. They compute operational
abstractions based on input/output behavior to test whether a new component can
replace an old one. Møller and Torp (2019) proposed a model-based testing approach
to identify type-regression problems that result in breaking changes in JavaScript
libraries. These works deal with improvements and repairs applied to a package
repository or library, and thus have a different focus compared to Shipwright, which
is on repairing broken Dockerfiles.

More related to checking inconsistencies of client code, Tucker et al. (2007)
proposed the OPIUM package-management tool. Given a set of installed packages
and information about dependencies and conflicts, they used a variety of solvers to
determine (i) if a new package can be installed; (ii) the optimal way to install it; and
(iii) the minimal number of packages (possibly none) that must be removed from
the system. Shipwright does not rely on explicit information about dependencies

170

(which might not be available or feasible to obtain). Instead, it extracts information
from build logs, and leverages community knowledge bases to find solutions. This
approach enables Shipwright to address problems that go beyond broken packages
and conflicts.

6.7 Future Work

One interesting direction for future work in the realm of automated repair for DevOps
artifacts (like Dockerfiles) is the possibility of learning repairs. For Shipwright,
we took an approach that we knew would work—it is an interesting (and open)
question as to whether an end-to-end learned solution is feasible in this domain. I
think that, five years ago, my answer would have been a definite “no,” but now, I
wonder if an approach could be bootstrapped by large models trained on code and
simply fine-tuned on the repair task. Granted, getting aligned data (pairs of “good”
and “bad/broken” code snippets) would be a significant challenge and require either
manual effort or clever tricks to surmount. (One could, perhaps, synthesize aligned
pairs by mutating known good code, but the distribution of this synthetic data would
not necessarily match the distribution of real broken files.)

6.8 Notes

For this work I had never met my collaborators before in person—instead, we developed
the ideas, tools, and eventual paper while working completely remotely. Getting to
collaborate across time zones with people I had never met was a unique experience,
and one I am grateful to have had during my graduate studies. Additionally, this was
the second piece of work I wrote targeting Dockerfiles—I think it was nice to follow a
similar arc to the work I did learning on code by, first, setting the stage (collecting a
dataset, designing basic techniques), and then expanding upon that with follow-on
work (in this case repair, and in the case of learning from code, specification mining).

171

7 code-book

What would Data Science look like if applied to the domain of code?

GPT-3: This is a difficult question. Code is a complex domain with many
variables and interactions. Data science applied to code would likely involve a
lot of data mining and machine learning in order to identify patterns and
relationships.

A dialogue with OpenAI’s GPT-3

7.1 Introduction

Thus far, we have explored learning from code (Chapter 2); applying embeddings
learned from code to specification mining (Chapter 3); investigating the robustness
of models learned from code (Chapter 4); mining best-practices from Dockerfiles
(Chapter 5); and, automatically repairing Dockerfiles (Chapter 6). All of these
chapters share something in common: there was a significant amount of engineering
work to produce the tools and experiments featured in each chapter. If we look
carefully at this engineering work, we can find one feature that was always present:
some way to extract data (from either code or non-code sources) and represent/encode
that data. In each of these investigations the collection, filtering, and representation
of data is the most time-consuming component. In this chapter, I present one last
(ongoing) piece of work I’ve undertaken—a framework for doing “Data Science” on
code (and non-code) artifacts called code-book.

7.1.1 Motivation

To do empirical software engineering research, there are always some number of “data
chores” to address. These are things like collecting code, filtering it, and transforming
it into a representation suitable for study. These chores often require bespoke tooling

172

and encoding formats. In contrast, in the Data Science community, there is a vibrant
ecosystem of tools for “data chores” that is centered around the idea of interactive
notebooks. Given the existence of such stellar tooling in another domain, one might
wonder what we can do for empirical software engineering. We start, therefore, with
a simple motivating question:

Motivating Question

What would Data Science look like for code?

7.1.2 Goals

It is critical for both empirical software-engineering researchers and software engineers
to have ways to interact with, understand, and represent code (and non-code) arti-
facts. Unfortunately, many systems for verifying, querying, and extracting data from
programs require users to be sophisticated in their understanding of program struc-
ture, semantics, and often one (or many) baroque configuration languages or query
languages. In contrast, the Data Science community has many tools for introspecting
and interacting with data in ways that require little domain expertise. Therefore,
to improve the state-of-practice in the domain of code (and non-code artifacts), we
propose the following goal:

Goals

Provide a system for introspecting and interacting with code that: (i) requires
little domain expertise, (ii) mirrors the existing Data Science tooling (interactive,
notebook-based, integrated with off-the-shelf libraries), and (iii) reduces the need
for bespoke tooling and pipelines in software-engineering research.

To meet this goal, we introduce code-book; code-book is an interactive notebook-
based framework for asking questions about massive amounts of code. Questions are
asked by writing code snippets, questions are answered by supplying the user with a

173

data frame—a two-dimensional table, much like a spreadsheet—of results. Further
analysis, visualization, and introspection happens, interactively, via a notebook-based
interface and off-the-shelf data science libraries.

7.1.3 Contributions

In this chapter, we introduce a novel language for querying code. We describe the
syntax and semantics of this language, and sketch how this language can be translated
to Datalog for efficient processing. This new language for code querying is the primary
contribution of code-book. To meet our goal of providing a system that requires little
domain expertise, the language we have devised allows for Query-by-Example-style
code snippets. By allowing users to simply write code, we avoid needing users to
understand how code is parsed, stored, and encoded.

In the remainder of this chapter, we introduce code-book’s query language (Sec-
tion 7.2) and we provide three case studies on using code-book in various settings
(Section 7.3). We conclude by considering related work (Section 7.4) and describe
avenues for future work (Section 7.5).

7.2 Query Language

code-book uses a custom query language, like many other state-of-the-art code
querying tools. However, unlike most of those tools, code-book was built with the
explicit goal of requiring little domain expertise to use. To use both a powerful
(custom) query language and not ask our users to have expert-level understanding
of code and its many representations, code-book leverages an old idea from the
databases community: Query by Example (Zloof, 1975).

Query by Example (QBE) was a technique in which users would formulate queries
graphically by entering example elements and conditions into visual tables. One
elegant aspect of QBE was its ease of use: a user did not need to know meta-properties
about what kinds of objects they wanted to retrieve, nor did they need to be well-
versed in a specific query language (such as SQL). code-book seeks to emulate the

174

successes of QBE in the domain of querying for code. For code, the QBE approach
is particularly beneficial because the representations of code used by code-book for
serving queries are complex and rely on parsing and analyzing the target codebase. To
query these representations directly would require a user to have some understanding
of how code is parsed and what schema code-book uses to store the results.

Although code-book seeks to reduce the barrier to entry for users without expertise,
code-book also needs to be a capable tool for experts. Therefore, the query language
code-book uses is not just a Query-by-Example system. Instead, code-book defines a
custom query language in which complex queries can be composed by writing snippets
(examples). These snippets are “just code,” but they can also contains slots and
ignores. A slot is a variable in a pattern and, when matching is performed, whatever
the variable (slot) gets bound to is returned in the query results (in this manner, slots
operate similar to a “wildcard”). For example, if we are searching for any call taking
a single argument where that single argument is the integer literal zero, we would
write the following code-book query: §call(0). In this snippet, the §call expression
is a “slot” and matches code such as: exit(0) or my_func(0), which would then be
returned as the answer. Sometimes, we want a wildcard-like expression, but we do
not care about what value that wildcard ends up having. In such cases, we can use
an ellipsis in our query snippets (which we will refer to as an “ignore” construct); for
example the printf(. . .) query snippet says, “match any call to printf with zero,
one, or many arguments.”

In the following subsections, we introduce code-book’s query language via a few
real-world query examples (Section 7.2.1). Additionally, we describe the syntax
of code-book’s query language (Section 7.2.3) and give a brief description of the
semantics of the code-book query language (Section 7.2.4). Finally, we present a
(simplified) overview of how queries are translated into Datalog (Section 7.2.5); the
generated Datalog is executed to produce results that can be returned to users in a
variety of encodings (visually, as a data table with clickable links, or in a structured
format like Pandas’ DataFrames).

175

7.2.1 Query Examples

In this section, we supply practical examples of code-book queries (with increasing
complexity). By composing small snippets (which are, essentially, invocations of the
Query-by-Example paradigm), we can create more sophisticated queries. Say we wish
to find foreach loops or calls to ForEach where the loop body contains a call to any
function that has, as its first argument, the loop variable. We could write this as
follows:

1 alias §matching_call = J
2 §anything(§item, . . .)

3 K
4

5 match J
6 foreach (... §item in §collection) {

7 §matching_call;

8 }

9 ∥
10 §collection.ForEach((§item) => §matching_call);

11 K

In the above example, we use the alias keyword to assign a name to a Query-by-
Example (QBE) snippet. We then reference this snippet (using the same syntax we
use for slots) in the top-level match construct. Both match and alias are allowed to
contain a disjunction of several snippets (delineated by the ∥ character). Together,
the ability to specify disjunctions and compose QBE snippets (which can contain
slots and ignores) enables a moderately sophisticated (but conceptually simple) query
system (see Sections 7.2.3 and 7.2.4 for details on query syntax and query semantics).

Another key feature of code-book’s query language is the ability to constrain
the text of a given slot. For example, one might wish to find all calls starting with
the text log that have, as their first argument, a string literal. To formulate such a
query we allow for slots to be pre-declared using a let §slot = <pattern> construct.

176

By pre-declaring a slot, users can constrain the allowable values a given slot may
represent.

Given this, we could write the following code-book query to capture the afore-
mentioned calls starting with log:

1 let §starts_with_log = /log.*/

2

3 match J
4 §starts_with_log(§'fmt', . . .);

5 K

In the above, we use a regular expression to constrain the allowable text the
§starts_with_log slot may contain. We also use a special “string slot” construct
(§'fmt') which constrains the type of the slot so that only string literals can match.
(To make code-book’s query language work across several target languages, we defined
language-specific configurations that encode information like what Concrete Syntax
Node types correspond to string literals.) Note that, in this context, we use the word
type to refer to the type of the Concrete Syntax Node that the slot may bind. We are
not referring to the type of the construct encoded in the given CST node. (Although
"a" + "b" is an expression of type string, it is not a CST node with a string literal
type—it is a CST node with an expression type.)

To sum up, the basics of code-book’s query language are as follows. Each query
has a top-level match J . . . K construct that contains a (disjunction) of Query-by-
Example-style snippets. These QBE snippets may contain slots and/or ignores. A slot
(§slot) is used to bind any Concrete Syntax Node and may, optionally, be constrained
by pre-declaring the slot with a let §slot = <pattern> statement. An ignore (. . .)
binds any Concrete Syntax Node but does not yield the matching node as part of the
query results. Finally, to compose more sophisticated queries, one may use several
alias §name = J . . . K constructs which can be referenced in other QBE snippets
to form more complicated expressions. Most top-level constructs allow for some form
of disjunction using the ∥ operator (e.g., alias §x = J foo(. . .) ∥ bar(. . .) K).

177

7.2.2 Advanced Queries

In this section, we introduce four advanced query constructs that are intended for
more experienced users:

1. Advanced Slots: § < §parentSlot, §alias *> §descendant, and § ~= §aliasOf

2. Unless Constraints: unless(<constraint>) J . . . K.

3. Guard Conditions: if (<guard-condition>) <match|alias> J . . . K.

4. Similarity Constraints: let §slot = (~semantically|~similar|~words).

Advanced Slots.

Although the concept of a slot is relatively simple, in practice there are many variations
needed to cover a wide variety of matching situations. In particular, sometimes it
is necessary to bind the parent of a given slot, sometimes we would like to bind to
any descendant of a slot, and sometimes we’d like to bind to any alias of a given slot.
Let’s work through each of these scenarios individually.

Imagine you want to select all of the arguments to a specific function call—
something like, print(§all_args). By default, that Query-by-Example snippet would
be interpreted as matching calls to print with one argument (bound to the §all_args

slot). To, instead, bind all arguments (and match calls to print with zero, one, or
many arguments) we can use a parent slot and write print(§ < §all_args). In this
query snippet we use a slot but, instead of binding to the location the slot is specified
in, we bind to the parent of the slot. By parent, in this context, we are referring to
the parent of the slot Concrete Syntax Tree (CST) node (in the parsed query CST).

To visualize this, let’s encode the scenario above using query CSTs written as
S-Expressions. For the query without the parent slot (print(§all_args)), we have
the query CST: (call name: (id print) args: (argument (slot §all_args))).
When we replace the (slot §all_args) node with a parent slot, we are binding the
(argument (...)) sub-tree instead of the first child of the argument node.

178

Another common scenario is needing to bind to any descendant of a given construct.
For a real-world example, let’s consider trying to match a break statement within
a loop. If we write match J for (. . .) { break; } K we will only match for loops
where the loop body contains a break statement. We will not match for loops
where the loop body contains a statement that has, nested within it, a break (e.g.,
if (. . .) { break; }). Instead, if we wish to match a break statement nested
anywhere inside a for loop, we can use a descendant slot.

In the following query we use a descendant slot to match any break statement
nested within for or while loops:

1 alias §a_break = J break K
2

3 match J
4 for (. . .) {

5 § *> §a_break;

6 }

7 ∥
8 while (. . .) {

9 § *> §a_break;

10 }

11 K

Unless Constraints.

There are many situations where one might want to match code unless some other
constraint exists before, after, or within the match. For example, one might wish to
match calls to a constructor where the default values are insecure unless one of those
values is overwritten with a more-secure value. To express such a query we can write
something like the following:

179

1 match J
2 new SomeBadConstructor(§ < §args)

3 K unless(exists-within: §args) J
4 SomeEnumeration.MoreSecureOption

5 K

Note that the unless construct takes an “argument” of sorts: each unless needs
to have a constraint that specifies how the QBE snippet in the unless body relates
to the overall query. In the case of the example above, we employ the exists-within:
§slot constraint to specify that the query matches unless the QBE snippet in the
unless construct exists within the argument list bound to the §args slot.

Guard Conditions.

Sometimes, one wants to match code but only under specific conditions. If these
conditions are related to semantic properties and not directly to the structure of the
code (that is, the Concrete Syntax Tree) we allow users to employ Guard Conditions.
A Guard Condition is a logical expression that will be used to filter matches. For an
example, consider matching classes that inherit from a specific base class or interface
(like IEnumerable). With just code structure (parse trees) it is easy enough to look
for direct inheritance, but the transitive closure of the “inherits” relation is harder to
express. In such a situation, we can use Guard Conditions to express our query:

1 if (

2 inherits_transitive(§base, JIEnumerableK)
3)

4 match J
5 class §collection : §base

6 {

7 . . .

8 }

9 K

180

In the above query, we are matching class declarations that inherit (directly) some
base class. We use a slot to capture the name of the base class and the name of the
class inheriting it. Finally, we employ a Guard Condition to require that the base
class we match inherits (transitively) from the IEnumerable interface.

Similarity Constraints.

code-book takes a novel approach to code querying that mixes structural constraints
with “fuzzy” constraints powered by learned representations of code. To leverage
these “fuzzy” constraints in our query language we allow users to constrain the
text of slots with Similarity Constraints in addition to the (previously discussed)
regular-expression-based constraints. Consider looking for calls semantically similar
to log—one might expect to find calls like trace or debug. We could write a Regular
Expression containing a disjunction of these possibilities, but it would be better if we
did not have to guess at what log-like terms the target codebase contains. Instead,
we can leverage Similarity Constraints like so:

1 let §log_like = (~log)

2

3 match J
4 §log_like(. . .)

5 K

In the above query, we are using a Similarity Constraint (let §log_like = (~log))
to constrain the call in the match body (§log_like(. . .)) to calls that have names
semantically similar to the word log. To power such queries we make use of code
embeddings (like those introduced in Chapter 2).

7.2.3 Query Syntax

The code-book query language uses a syntax based on a few simple principles: (i) the
top-level query file is a list of zero, one, or many let-bindings, followed by zero, one,

181

⟨query⟩ ::= ⟨lets⟩ ⟨aliases⟩ ⟨match⟩

⟨lets⟩ ::= ⟨let⟩ \n ⟨lets⟩ | ϵ

⟨aliases⟩ ::= ⟨alias⟩ \n ⟨aliases⟩ | ϵ

⟨match⟩ ::= ⟨if-guard⟩ match[⟨lang⟩] J ⟨code-snippets⟩ K ⟨unless⟩

⟨alias⟩ ::= alias[⟨lang⟩] §⟨s-name⟩ = J ⟨code-snippets⟩ K ⟨unless⟩

⟨let⟩ ::= let ⟨s-name⟩ = ⟨pattern⟩

Figure 7.1: A (high level) grammar for code-book queries

or many alias declarations, followed by exactly one top-level match block and each
match/alias block has, optionally, a trailing unless block, (ii) each alias, match, and
unless block has a body containing code written in the target language of the query
(and, thus, largely conforming to the syntax of the query’s target language); (iii)
every time we write a code snippet in the query’s target language we may intersperse
zero, one, or many slot or ignore constructs.

Figure 7.1 provides the coarse structure of a code-book query. From Fig. 7.1, we
can see that a <query> is made up of let statements (e.g., let §x = ...) followed
by aliases (e.g., alias[C#] §a = J ... K) followed by exactly one top-level match
construct (e.g., match[C#] J ... K). For novice users, the general structure of a
query can be simplified to a file containing one top-level match that contains an
example code-snippet that resembles the code that user wants to match.

One major feature of many code-querying tools is the ability to select code that
matches a textual constraint. For example, consider matching functions that have a
name containing a certain word. To write such a query we can use let constraints.
These textual constrains must conform to the grammar given in Fig. 7.2.

One novel aspect of code-book is the ability to mix fuzzy (embedding-based)
constraints with structural constraints. The main way we incorporate this feature
is through textual constraints that are based on semantic similarity instead of strict

182

⟨pattern⟩ ::= ⟨p-not⟩ ⟨regular-expr⟩
| ⟨p-not⟩ ⟨semantic-sim-expr⟩

⟨p-not⟩ ::= ! | ϵ

⟨regular-expr⟩ ::= /⟨regex⟩/

⟨semantic-sim-expr⟩ ::= (⟨sim-constraint⟩)

⟨sim-constraint⟩ ::= ~⟨word⟩ | ⟨sim-constraint⟩
| ~⟨word⟩

Figure 7.2: A grammar for textual constraint in code-book queries

(regular-expression based) matching. To strictly constrain text using a let-binding we
can write the following: let §x = /.*(log).*/. Unfortunately, such a constraint
would miss functions like report or trace which may also be relevant to the user’s
query. To address this issues, one can use the fuzzy constraint let §x = (~log)—
which will find functions semantically like log (e.g., trace, debug, report, etc.).

Sometimes, in advanced use cases, one may wish to query for code that both
matches one structural constraints while not matching another (e.g., finding loops
that are not nested within other loops). For this purpose, we introduce an unless

block that may (optionally) appear after the top-level match block. Figure 7.3 gives
the grammar for unless blocks.

Similar to unless, sometimes there are constraints that require additional analysis
to express and encode. For instance, it is not easy to capture the transitive closure
of the “inherits” relation between classes in an object-oriented language via purely
structural constraints. Instead, we provide advanced users with an “escape hatch”
that allows them to express additional constraints on a match block. These constraints
are directly inlined into the generated Datalog and rely on user or system-defined
relations. To express such constraints we introduce an <if-guard> construct that
may (optionally) precede a match block and must conform to the grammar given in
Fig. 7.4.

183

⟨unless⟩ ::= unless(⟨binding⟩: ⟨target⟩) J ⟨code-snippets⟩ K

⟨target⟩ ::= ⟨slot⟩
| §§

⟨binding⟩ ::= matches
| contains
| exists-within
| exists-before
| exists-after

Figure 7.3: A grammar for code-book’s unless construct

⟨if-guard⟩ ::= if (⟨if-expr⟩) | ϵ

⟨if-expr⟩ ::= !⟨if-expr⟩
| (⟨if-expr⟩)
| ⟨if-expr⟩ && ⟨if-expr⟩
| ⟨if-expr⟩ || ⟨if-expr⟩
| ⟨if-constraint⟩ ⟨comp-op⟩ ⟨if-lit⟩
| ⟨if-lit⟩ ⟨comp-op⟩ ⟨if-lit⟩
| ⟨if-constraint⟩

⟨if-constraint⟩ ::= ⟨c-name⟩(⟨args⟩)

⟨args⟩ ::= ⟨if-lit⟩, ⟨args⟩ | ⟨if-lit⟩ | ϵ

⟨if-lit⟩ ::= §⟨s-name⟩
| ⟨integer⟩
| ⟨boolean⟩
| J ⟨raw-code⟩ K

Figure 7.4: A grammar for code-book’s if-guard construct

184

⟨code-snippets⟩ ::= ⟨code-snippet⟩ ∥ ⟨code-snippets⟩
| ⟨code-snippet⟩

⟨code-snippet⟩ ::= ⟨raw-code⟩ ⟨code-snippet⟩
| ⟨slot⟩ ⟨code-snippet⟩
| ⟨ignore⟩ ⟨code-snippet⟩
| J ⟨inline-choice⟩ K ⟨code-snippet⟩
| ⟨raw-code⟩

⟨inline-choice⟩ ::= ⟨raw-code⟩ ∥ ⟨inline-choice⟩
| ⟨raw-code⟩

⟨ignore⟩ ::= . . . | '. . . '

⟨slot⟩ ::= ⟨normal-slot⟩
| ⟨parent-slot⟩
| ⟨desc-of-slot⟩
| ⟨flows-from-slot⟩
| ⟨alias-of-slot⟩
| ⟨string-slot⟩
| ⟨parent-string-slot⟩
| ...

⟨normal-slot⟩ ::= §⟨s-name⟩

⟨parent-slot⟩ ::= § < §⟨s-name⟩

⟨desc-slot⟩ ::= § *> §⟨s-name⟩

⟨flows-from-slot⟩ ::= § <~ §⟨s-name⟩

⟨alias-of-slot⟩ ::= § ~= §⟨s-name⟩

⟨string-slot⟩ ::= §'⟨s-name⟩'

⟨parent-string-slot⟩ ::= § < §'⟨s-name⟩'

Figure 7.5: code-book’s full code-snippet grammar

185

Figure 7.5 gives the full grammar for code snippets used within code-book queries.
Code snippets are an embodiment of the Query-by-Example paradigm; however,
simply writing a code snippet is not enough to describe a pattern that has many
possible matches. Instead, we intersperse slots, ignores, and inline choices in our
code snippets. With these three additions, we can construct a snippet with “holes”
that will yield multiple matches. For example, to match a call to print with zero
arguments we might write the literal code: print(); to match, instead, any call to
print we can use an ignore to write: print(. . .). If, instead, we wanted to match
calls to print and select the second argument passed to the call we could use both
an ignore and a slot, like so: print(. . . , §arg). Finally, if we wanted to match
code where there are a fixed number of alternatives, we can use inline choice; for
example, to search for asserts with either equality or inequality tests, we write assert

§a J==∥!=K §b.
The syntax of the code-book language is implemented using a modern incremental

parser generator called tree-sitter (GitHub, 2022). To handle the nested languages
within code-book queries, we invoke our own custom processing to do second-level
parses and handle the slots, ignores, and inline choices that are interspersed throughout
the target code snippets (to do this, we take inspiration from the phased-parsing
technique introduced in Chapter 5).

7.2.4 Query Semantics

What does it mean to query for code? To answer this question, we must first be
precise about what code exactly means in the context of our queries. To code-book,
code will be represented as a set of parse trees (Concrete Syntax Trees) T (generated
by tree-sitter, with a node-type vocabulary VT), a set of source fragments F(T),
and a set of embeddings E(M,T) (where M is a configurable model—any model
capable of taking text and producing embeddings will suffice).

Although we will work against a corpus of parse trees (and source fragments and
embeddings derived from those trees), it will be more convenient to consider the set
of all sub-trees of the original corpus; given the set of all sub-trees, we formulate the

186

set of source fragments as, instead, a function from the set of sub-trees to a space
of text strings S; similarly, we formulate the set of embeddings as a function from
the set of sub-trees to an n-dimensional vector space of embeddings (Rn, where n is
implicitly defined by the model M’s output dimension). We will denote the set of
all sub-trees of our input parse trees sub(T). For any t ∈ T, we will use E(M, t) to
refer to the specific embedding for the sub-tree t, and use F(t) to refer to the source
fragment corresponding to the sub-tree t.

A query will be a function on the set of sub-trees of our input corpus that
marks each sub-tree as either included (1) or excluded (0) from the query results (a
characteristic function over the set of sub-trees). This description is somewhat of a
simplification of how code-book operates in practice—in practice, one wants not only
the matching sub-trees but “pointers” to specific pieces of the matching sub-trees
that correspond to the slots a user included in their query. For the sake of clarity, we
will consider the simpler scenario where we only need to decide whether each sub-tree
matches.

Now, let us consider the semantics of a query. We consider a query Q to be a
characteristic function over the sub-trees of our input corpus (sub(T)). That is, Q
is a function from the set of sub-trees of our input corpus to a Boolean value that
denotes whether the input sub-tree matched our query (Q : sub(T) → {0, 1}). In
practice, we can think of the query as denoting a higher-order function that, given
a representation of the let patterns (P) and aliases (A), returns a function capable
of deciding whether a given sub-tree matches. In the following, we use the MJJJ X KKK
notation to denote the meaning of X. We describe the high-level semantics of a
code-book query as follows:

MJJJ <query> ::= <lets> <aliases> <match> KKK = MJJJ <match> KKK(P,A)
where P = MJJJ <lets> KKK and A = MJJJ <aliases> KKK

First, let us consider let patterns (let <s-name> = <pattern>). We use L to
denote the set of all slot names (<s-name>s). For each named slot, we associate two
characteristic functions: one over the set of source fragments (F(T)) and one over

187

the set of sub-trees (sub(T)). Initially, a slot §x is unbound (unconstrained) and, as
such, the associated characteristic functions for §x are 1 everywhere. If we define
a let pattern over §x, we update the characteristic function over the set of source
fragments associated with §x. We define the semantics of let (in the recursive case)
as follows:

MJJJ <lets> ::= <let> <lets> KKK : L→ (F(T)→ {0, 1})
MJJJ <lets> ::= let §p = <pattern> <lets> KKK(§x)

=

MJJJ <pattern> KKK if §x = §p

MJJJ <lets> KKK(§x) if §x ̸= §p

In the non-recursive case, we return a function that includes all source fragments.
Note that, when no let binding “matches” a given <s-name>, we permit all source
fragments (which is the desired behavior because slots, by default, are completely
unconstrained).

MJJJ <lets> ::= ϵ KKK = λ §x, λ f ∈ F(T) . 1

There are two primary styles of textual constraints in code-book: regex-based
constraints and “fuzzy” constraints based on semantic similarity. When we use
constraints based on semantic similarly there is always a hidden parameter: the
maximum cosine distance between vectors (τ). We describe the semantics of these
different constraint styles as follows:

MJJJ <pattern> ::= <regular-expr> KKK : F(T)→ {0, 1}
MJJJ <pattern> ::= <regular-expr> KKK(f) = MJJJ <regular-expr> KKK(f)

MJJJ <pattern> ::= <semantic-sim-expr> KKK(f) = MJJJ <semantic-sim-expr> KKK(f)

MJJJ <semantic-sim-expr> ::= (∼ w1| ∼ w2 |...| ∼ wk) KKK(f) = ∨i cos(−→f , −→wi) < τ

where −→f = E(M, f) and −→wi = E(M,wi)

188

We allow for the semantics of the regex matching (MJJJ <regular-expr> KKK) to
be implementation-dependent (based on the regular-expression engine used in the
implementation). We also allow for an additional syntax for matching based on
simpler operators (starts with, ends with, and contains) that we do not present here.
(This simpler pattern syntax can allow for some query optimizations.) Finally, we
note that each pattern type (regex-based or embedding-based) may optionally be
negated.

Next, we continue our presentation of code-book’s query-language semantics with
the <alias> construct. An alias §x = J . . . K updates the characteristic function
over the set of sub-trees of our input corpus associated with §x. When we refer to a
slot that which has an alias constraint, we are using the slot as a placeholder that
represents the set of sub-trees allowed under the associated characteristic function
defined by the slot. The semantics of alias is as follows (we will assume that aliases
are sorted based on a topological ordering of their dependence graph—that is, if alias
A is used in alias B, then we assume alias A has been processed prior to alias B; we
also assume that all let patterns have been processed prior to alias processing):

MJJJ <aliases> ::= <alias> <aliases> KKK : L→ (sub(T)→ {0, 1})
MJJJ <aliases> ::= alias §a = J <code-snippet> K <unless> <aliases> KKK(§x)

=

λ t ∈ sub(T) .MJJJ <code-snippet> KKK(t) ∧ ¬MJJJ <unless> KKK(t) if §x = §a

MJJJ <aliases> KKK(§x) if §x ̸= §a

Again, as with let patterns, in the non-recursive case we return a function that
accepts “everything” (which, for let, meant any source fragment; for alias, this
means we accept any possible sub-tree):

MJJJ <aliases> ::= ϵ KKK = λ §x, λ t ∈ sub(T) . 1

With alias, we have a way to label and reuse expressions (which proves quite
useful in more advanced query scenarios).

We have not yet addressed one of the core concepts in code-book’s query language:

189

the idea that users may write Query-by-Example (QBE) code snippets that embody
the code they wish to match. To describe the semantics of these QBE snippets,
we will need some extra machinery. First, let use describe a function that, given
two sub-trees, reports whether they are compatible. Our parse trees—generated
by tree-sitter—have labelled nodes (labelled with the type of the node—e.g.,
expression or identifier, etc.). Nodes also have values (most nodes have no value,
but many leaf nodes have a value that represents the tokens from the source text
corresponding to the node; e.g., an identifier node will have a value containing the
identifier’s name).

If we have two trees with the same number of nodes, the same node type labels,
the same node values, and the same edges, we call these trees compatible. A more
interesting scenario arises when we consider trees with different node-type vocabularies;
specifically, trees generated by our query language and trees in our input corpus. The
QBE snippets in a code-book query share the same node-type vocabulary as the trees
in the input corpus (VT), but the QBE snippets may also contain slot and ignore
expressions (and, therefore, we consider the node-type vocabulary for our queries’
QBE snippets to be V ′

T = VT ∪ { slot, ignore }).
Consider the following code-book QBE snippet: §a + . . . + c. We will write

trees using collapsed S-expression-style notation; for example, we write the Concrete
Syntax Tree for a + b + c as (expr (sum (id a) (id b) (id c))). We define the
semantics of the above QBE snippet as follows:

MJJJ §a + . . . + c KKK =
{
(expr (sum (t1) (t2) (id c))) : t1, t2 ∈ sub(T)

}
In the above, we have described the set of trees that are compatible with the

tree generated by the QBE snippet §a + . . . + c. In general, we replace every
instance of a slot or an ignore in the Concrete Syntax Tree for a query snippet with a
“wildcard” that allows for any sub-tree to take its place. Although the above definition
is intuitive, we may have let patterns and aliases that impact the behavior of slots. If
a let pattern or an alias is bound to a slot name, we must refine the above to look

190

more like the following:

MJJJ §a + . . . + c KKK(A,P) =
{
(expr (sum (t1) (t2) (id c)))

: t1, t2 ∈ sub(T) ∧ A(§a)(t1) ∧ P(§a)(F(t1))
}

In the above, we no longer allow t1 to be any sub-tree; instead, t1 must be one
of the sub-trees accepted by the alias bound to §a, and, if there is an applicable let
pattern, the source fragment corresponding to t1 must also be accepted by the filter
induced by the let pattern. We denote the set of trees compatible with a QBE snippet
by C((cst ...)).

Finally, we can describe the semantics of a QBE snippet:

MJJJ <code-snippets> ::= <code-snippet>1 ∥ . . . ∥ <code-snippet>k KKK(t)

= ∨i MJJJ <code-snippet>i KKK(t)

MJJJ <code-snippet> ::= (cst ...) KKK(t) = t ∈ C((cst ...))

We will forgo an in-depth presentation of the semantics of if-guards as they
represent, in some sense, an “escape hatch” for our query language and rely on
user-defined and/or implementation-specific relations to operate. In general, the
<if-guard> construct acts similarly to <unless> in that it constrains the possible
matches returned by a match block.

7.2.5 Query Translation

code-book uses Datalog to encode queries. We found that, for expressing questions
about programs, Datalog is a natural choice. In this section, we provide a rough
overview of how queries in code-book’s query language are translated into Datalog
programs.

To start, each of the let constraints in a query are directly translated into Datalog.
For each let §x = /regex/ constraint, we produce a relation that invokes a custom
User Defined Function (UDF) to test whether a given input source fragment matches

191

the regular expression supplied in the constraint body. For example, if we write let

§x = /(a|b)/ in our query, we produce the following Datalog:

1 text_constraint_x(source) :- (

2 1 = udf_regex_matches(source, "(a|b)")

3).

For let constraints that rely on semantic similarity, we produce a similar construct.
If we write let §y = (~log|~debug), we produce the following Datalog (where the
THRESHOLD value is a configurable parameter and may even be set on a per-query or
per-constraint basis):

1 text_constraint_y(source) :- (

2 udf_cosine_distance(udf_embed(source), udf_embed("log")) < THRESHOLD

3 ;

4 udf_cosine_distance(udf_embed(source), udf_embed("debug")) < THRESHOLD

5).

In general, when we have to translate a Query-by-Example (QBE) snippet, we
follow a reusable construction that, for each node in the parsed QBE snippet’s
Concrete Syntax Tree (CST), produces a few constraints on the node’s type and the
node’s value (if applicable). For example, if we encounter a QBE snippet with the text
10 + a, and the snippet’s CST is (sum left: (integer 10) right: (identifier

a)), we generate the following Datalog:

1 ...

2 node(n1, "sum", _),

3 node(n2, "integer", "10"),

4 node(n3, "identifier", "a"),

5 child_of(n2, 0, "left", n1),

6 child_of(n3, 0, "right", n1),

7 ...

192

If a node in the QBE snippet’s CST is an ignore node, we simply generate no
constraints. If, on the other hand, a node is a slot, we generate similar constraints
but elide the node’s type. For example, if we have a QBE snippet with text §x

+ . . . , and the snippet’s CST is (sum left: (slot x) right: (ignore)), we
generate the following Datalog:

1 ...

2 node(n1, "sum", _),

3 node(n2, _, slot_x),

4 child_of(n2, 0, "left", n1),

5 ...

Note how we generate no node-type constraint for n2 (and, instead, bind the
node’s text so we can retrieve it later and return it to the user). Also note how there
are no constraints generated for the right-hand side of the sum expression due to the
ignore node.

We translate full alias and match blocks by translating their QBE snippets and
joining the translated snippets via disjunction. We define separate relations for each
alias and match block. The only behavior of note is when an alias, or a let pattern,
is referenced in a QBE snippet. In such cases, we must reference the relation defined
by the alias or let. For example, consider the following code-book query:

1 let §sensitive = /secret.*/

2

3 alias §print = J
4 Console.WriteLine(. . .);

5 K
6

7 match J
8 foreach (. . . in §sensitive) { §print }

9 K

193

To translate the above query, we first translate the let and alias, producing:

1 text_constraint_sensitive(source) :- (

2 1 = udf_regex_matches(source, "secret.*")

3).

4

5 alias_print(root) :- (

6 node(root, "call", _),

7 node(n1, "member_access", _),

8 node(n2, "identifier", "Console"),

9 node(n3, "identifier", "WriteLine"),

10 child_of(n1, 0, "function", root),

11 child_of(n2, 0, "expression", n1),

12 child_of(n3, 0, "name", n1)

13).

Finally, we translate the top-level match block, producing:

1 the_match(root) :- (

2 node(root, "for_each", _),

3 node(n1, "identifier", sensitive_text),

4 node(n2, "block", _),

5 node(n3, _, print_text),

6 child_of(n1, 0, "right", root),

7 child_of(n2, 0, "body", root),

8 child_of(n3, _, _, n2),

9 text_constraint_sensitive(sensitive_text),

10 alias_print(n3)

11).

In the implementation, we handle unless blocks, inline choices, pattern negations,
and various other intricacies (including optimizing for the overall performance of the

194

query and the size of the returned data). We forgo a detailed presentation of these
mostly implementation-specific details.

In general, the choice to translate queries from code-book’s domain specific query
language to Datalog allows for a great deal of flexibility. For example, if we wish to
change how we store code as data, we can simply translate our query (as Datalog)
to a language suitable for our backend storage (and, for many such storage engines,
there are existing tools and techniques for translating from Datalog—e.g., there exists
tools for translating from Datalog to SQL).

7.3 Case Studies

Using code-book, we were able to perform several studies that would have normally
required significant investment in tooling and analysis. In this section, we provide
three examples of real-world usages of code-book.

7.3.1 Case Study #1: Analyzing Python Notebooks

For our first case study, we used code-book to contribute to an ambitious analysis
of every Python notebook on GitHub (in the years 2017, 2019, and 2020). For each
notebook, we wanted to extract implicit data-science pipelines. An implicit data-
science pipeline is a fragment of Python code (either in a single cell, or split across
many cells in a notebook) that performs some data cleaning or preparation task. More
specifically, we were asked to consider all of the operations that may occur between
a data-loading operation (e.g., df = pandas.read_csv(...)) and a model-training
operation (e.g., sklearn.model.fit(df, ...)).

To accomplish this task, we expanded code-book’s querying capabilities to under-
stand data flows in Python notebooks. First, we wrote heuristics that found source
and sink methods (data loading and model training methods, respectively). After
surveying the most popular methods used for data loading and model training, we
made a decision to think of pipelines as, concretely, a data flow between the result
of a pandas.read_*(...) call and the first argument of a sklearn.*.fit(...) call.

195

With this definition in hand, we began to ask a more difficult question: how can we
understand what happens to the data in an implicit data-science pipeline?

To answer this question, we leveraged code-book’s ability to quickly write heuris-
tics, search code, and render visualizations. We went through many rounds of manual
analysis of sources, sinks, and the code that existed on flows between these sources
and sinks. As we observed commonalities, we codified what we observed through a
growing library of abstractions. In this study, an abstraction was a code-book query
that selected for a particular kind of data-science operation. For example, we wrote
abstractions that looked for code patterns that indicated filtering and projecting data
frames. (Data frames were important to our analysis as they are one of the most
prevalent objects in data science notebooks—most often, data is loaded from external
sources into Pandas data frames and, from that point, manipulated further by other
APIs). If, on any data flow from a source to a sink, we found code that matched our
filter or project abstractions, we recorded the matching code and the corresponding
source and sink pair in a database.

By repeating this process, we developed a database full of source and sink pairs
and the (abstract) operations that occurred between those source and sink pairs. We
then performed higher-level analyses on the operations found in the database and
drew conclusions about the prevalence and complexity of implicit pipelines in Python
notebooks. (We found that, compared to explicit pipelines, implicit pipelines were
both more prevalent and more complex.)

Overall, this work was a great success and, with code-book, we were able to
perform a significantly deeper analysis of the notebooks corpus. We found that
implicit pipelines were dominant (occurring approximately 5 times more frequently
than implicit pipelines in our largest dataset); we also found that the operators
occurring in implicit pipelines were more varied—in a coverage analysis, we found
that it would take the top 10,000 implicit-pipeline operators to cover 50% of the
operations in the pipelines we extracted. (Note: although we wrote code-book queries
to extract abstract operators, many of these operators were parameterizable; for
example, a GroupBy operator takes, as a parameter, the column on which the grouping
should be performed.) Additionally, we found most implicit pipelines to be an order

196

of magnitude longer that explicit pipelines. With this extra analysis, the results
on Python notebooks in general (and the implicit pipelines contained therein) were
accepted for an upcoming issue of the SIGMOD Record.

7.3.2 Case Study #2: Log Analysis

We then used code-book in a completely different scenario: to correlate production
logs with the code that generated these production log messages. To accomplish
this task, we again used code-book’s ability to refine code queries iteratively and
interactively. At first, we thought the task of identifying log-producing code would be
simple; instead, we found that our initial attempts at finding log-producing function
calls covered only a small fraction of the messages being generated in a production
environment.

Thankfully, code-book allowed us to quickly iterate and refine our heuristics for
capturing log-producing function calls. We used fuzzy searches, based on semantic
similarity, to identify a large number of log-producing functions we had missed. For
example, we searched for calls with names semantically similar to the terms log, trace,
and debug. Furthermore, using code-book’s integrated visualization capabilities, we
began to notice files in which we matched a few instances of log-producing function
calls, but not others; via manual inspection, we were able to refine our queries to
capture those corner cases. (For example, we found that we had missed log-producing
calls where the format string used implicit string concatenation.)

In the end, we were able to create a satisfactory analysis that captured the
majority of log-producing function calls; the data from this analysis is now being
used by others to power further downstream techniques for managing production
log streams. Together, our first case study (Python Notebook) and our efforts to
generate data on log-producing functions pushed us to expand code-book to cover
more target languages, more query features, and better data export capabilities.

197

7.3.3 Case Study #3: Studying Embedded Regex

In our third and final case study for code-book, we created a corpus of regular
expressions by extracting them from source code. One might have tried to address
this problem by extracting the necessary data without using sophisticated machinery.
For instance, it might be the case that one finds most regular expressions by searching
code (via grep or other more basic utilities) for text that matches the pattern: new

Regex\("(.*)"\). While this approach is workable, there are, inevitably, issues that
arise. For example, if we wish for our analysis to be somewhat complete, we will have
to craft many such heuristics (as there are many ways to use a regex); to compound
this issue, such an approach would also need to deal with variations in syntax—it is
possible that a regular expression may be assigned to a variable and then passed to
a constructor or call. Finally, it is difficult to ascertain what we may be missing in
the traditional approach. This uncertainty is always an issue in empirical studies of
software: it is difficult to know what you do not know (or to understand where you
may have gaps in your heuristics or analysis).

With code-book, we were able to do three things. First, we performed a fuzzy
search for calls and constructors with names semantically similar to the phrase “regular
expression.” Based on these results, we were able to devise a handful of heuristics
for capturing embedded regular expressions. Finally, we extracted, normalized, and
cleaned the data in code-book using off-the-shelf data-science libraries. In this manner,
we were able to create a dataset of 136,427 distinct embedded regular expressions in
less than one hour (while covering variations in syntax). The ability to first perform a
fuzzy search and follow that search up with an interactive session in which heuristics
are created and refined is a key strength of code-book. Furthermore, working in
an environment where one can ask questions about code, retrieve results, visualize
those results, and apply off-the-shelf tooling (all without leaving a single tool) greatly
reduces the overhead involved with generating new datasets.

198

7.4 Related Work

There are several examples of prior work that support queries on code. One of the
earliest, ASTLOG (Crew, 1997), provides grep-like matching facilities via a variant
of the Prolog language. This work is similar to ours in both the concept of querying
programs and in the utilization of a logic-programming-inspired query language.
However, our work expands upon these ideas by bringing in the modern concepts of
embeddings, interactive notebooks, and utilizing the idea of Query-by-Example.

Later, Dyer et al. (2015) introduced Boa: an infrastructure for analyzing large-
scale software repositories (Upadhyaya and Rajan, 2018; Hung and Dyer, 2020).
Although Boa serves a similar purpose to code-book, Boa focuses more on repository
and file metadata and less on fine-grained analysis (such as the analysis of data flows
we carried out in Case Study #1).

Commercially, there are many tools geared toward code querying. There are tools
that use Query-by-Example-esque languages, such as Semgrep (2022) and Comby
(2022). There are tools that focus more on the analysis and verification aspect of
code queries, like CodeQL (GitHub, 2022) and Coverity (Synopsys, 2022). Finally,
there are many academic and commercial techniques focused less on structural code
querying and more on intuitive (often natural-language based) code queries (McMillan
et al., 2011a,b; Lemos et al., 2014; Lazzarini Lemos et al., 2015; Lv et al., 2015; Kim
et al., 2018; Sirres et al., 2018; Sourcegraph, 2022).

Despite the rich history of research on querying code, code-book provides a unique
and powerful collection of features for addressing the problem of formulating queries
on code, by combining the ideas of interactive notebooks, Query-by-Example-style
queries, and queries that can utilize code structure, data flows, and code embeddings.

7.5 Future Work

Work on code-book is ongoing and there are many exciting avenues of future work.
In particular, there is a great need to create systems that are capable of joining both
code and non-code data. For example, imagine asking questions about (i) issues in

199

an issue tracker and (ii) recent code commits (questions like, “show me the five most
recently modified functions that appear frequently in stack traces in crash reports
this past week”). Another interesting source of non-code data would be performance
counters and metrics. Imagine being able to search for loops that had similar (or
perhaps better) performance characteristics and similar structure to a given example
loop. Finally, consider how useful it would be to have a way to associate production
log data with the code that generated it. Such an association would allow for queries
that bridge the gap between anomalous logs and the code that (likely) triggered those
logs.

Aside from linking code to external non-code data, there are also interesting
opportunities in the realm of learning domain-specific models of code. With a tool
such as code-book, it is easy to query for code matching a set of heuristics. Given the
success of general code models (and the notable failures of such models to produce
correct domain-specific code) it should be feasible to use code-book as an effective
dataset-generation tool. For example, there is a great deal of interest in models of
code that provide recommendations for specific (popular) libraries. One library in
particular worth targeting is Pandas (one of the most popular libraries for Data
Scientists). With code-book, we can search for code that uses the Pandas API, and
formulate a dataset containing only code that uses the API. Such a dataset could be
used to fine-tune existing large models. By generating datasets of domain-specific
code and fine-tuning models, one could hope to bridge the gap between hand-crafted
solutions to domain-specific problems and the often incorrect or subtly wrong solutions
generated by generic models of code.

7.6 Notes

code-book has been the most challenging project I have undertaken during my
graduate studies. In many ways, this project has been my greatest success (although
I have focused, perhaps too much, on the engineering of this system and now could
stand to do some more writing and benchmarking). I truly believe that code-book is
a fresh take on making code queries accessible to more users. Nevertheless, adoption

200

of code-book has been challenging. To make a tool that people want to use is a much
higher bar than to make a tool with academic merit and novelty. Novel ideas (like
the mixing of structural and fuzzy constraints) are very hard to make accessible to
users, and often get in the way of making the tool useful to practitioners.

Throughout the past year and a half, I have built several prototypes of code-book.
To help visualize some of the ideas discussed in this chapter, I have included two
screenshots of code-book in Figs. 7.6 and 7.7. (It was not always the case that
code-book featured a Query-by-Example-style query language; in Fig. 7.6, you can
see my earlier attempt at devising a reasonable query syntax.)

201

Figure 7.6: The second code-book prototype (shown with an early version of the
code-book query language). The left side of the interface contains an interactive
Python notebook. The right side contains an embedded IDE to visualize matching
code.

Figure 7.7: The second code-book prototype (shown with a later version of the
code-book query language). In this revision, we started to realize the value of Query-
by-Example-style queries for code and upgraded the visualization capabilities to be
more intuitive. (We used links within data frames to jump directly to matching code.)

202

8 conclusion

It seems we’re at the end now. What did you think?

GPT-3: I thought it was great! I loved getting to know all the characters and
watching their stories unfold.

Oh great! I guess by characters you means research threads? And by stories
unfolding you’re referring to experiments providing empirical validation to
the ideas presented herein?

GPT-3: Exactly! I also appreciated all the humor sprinkled throughout.

Oh well you’re too kind GPT-3. Too kind. Glad you enjoyed!

A dialogue with OpenAI’s GPT-3

In this final chapter, we revisit the contributions of our research and discuss some
limitations of the techniques we have presented. We also present some brief thoughts
on the impacts of recent large language models and the future of learning from code
(and non-code artifacts). Finally, we offer a few concluding remarks, and provide links
to the numerous public datasets and tools created during the course of our research.

8.1 Contributions

As described in Chapter 1, our contributions can be grouped into three main categories:
(i) contributions to learning from code, (ii) contributions to learning from non-code
artifacts, and (iii) contributions to software-engineering research. In each of these
categories we have done substantial work. In the following sections, we revisit each of
these three categories and outline the our primary contributions.

203

Contributions to learning from code

We introduced a novel technique for learning from code via code embeddings (see
Chapter 2).

We created a new tool for parametric lightweight symbolic execution of C programs.
We scaled this tool to run on the Linux kernel and used the extracted traces to both
learn embeddings and power a specification miner (see Sections 2.2 and 3.2).

We developed a benchmark of code analogies extracted from the Linux kernel
(see Section 2.4.1).

We performed experiments that showed that our code embeddings were effective;
the embeddings achieved 93% top-1 accuracy on our code analogies benchmark and
76% top-3 accuracy on a challenging task involving predicting error codes for failing
traces extracted from the Linux kernel (see Sections 2.4.1 and 2.4.4).

We devised a novel approach to specification mining that utilized a mix of both
traditional and learned metrics (see Section 3.2). This approach worked better than
either the traditional or learned approaches did in isolation (see Section 3.4.5).

We performed an in-depth comparison of the three most popular word-vector
learners (applied to code) and three different trace-sampling techniques (see Sec-
tion 3.4.4).

We developed a framework for creating controllable adversaries to test the
robustness of models of code (see Section 4.3).

We devised a new technique for training robust models of code (see Section 4.1.4);
training such models is a hard problem given the discrete nature of code.

We presented the first results on the performance of robust models of code on
out-of-distribution data and in a cross-language-transfer setting (see Sections 4.5.4
and 4.5.5).

We made our data and tools public to facilitate further research on learning
from code—in fact, some of the tools and data we made public were used immediately

204

and directly by others to produced follow-on works that appeared before our original
work was ever published!

Contributions to learning from non-code artifacts

We introduced a technique for mining tree-association rules from Dockerfiles (see
Section 5.3).

We identified a problem in DevOps artifacts: the problem of deeply nested
languages. We devised a technique called phased parsing to address this problem (see
Section 5.3.1).

We shared a new dataset of over two hundred thousand Dockerfiles downloaded
from GitHub. We augmented this dataset with Abstract Syntax Trees generated by
our phased parsing technique (see Section 5.2).

We constructed a static checker for Dockerfiles that was capable of validating a
file’s compliance with a database of tree-association rules (see Section 5.3.5).

We performed experiments and found an especially surprising result: Dockerfiles
written by developers in industry were worse, on average, than those found “in the
wild” on GitHub!

We devised a technique for semi-automated repair of Dockerfiles (see Section 6.4).

We provided the community with a full suite of analysis tooling for Dockerfiles
consisting of automated rule mining, static checking, and repair techniques.

We fixed 19 repositories with our human-in-the-loop technique for Dockerfile
repair by submitting 45 pull requests (using our tool). Of these 45 requests, 19 were
accepted by repository owners (see Section 6.5).

Contributions to the field at large

We introduced a new idea—the idea of supporting Data Science on Code by
borrowing from the great successes of the Data Science community and leveraging those
successes to build better tooling for software-engineering research (see Section 7.1).

205

We developed code-book: a tool aimed at making Data Science on Code a reality
(see Section 7.1). We continue, in ongoing work, to refine and adapt code-book to
better serve users.

We devised a new language for querying code that targets both novice users and
experts by leveraging an old idea from the databases community: the idea of Query
by Example (see Section 7.2).

Summary

We hope that these contributions help move us toward escaping the nearly bottomless
pit of ever-expanding software; furthermore, we hope that our ongoing work towards
Data Science on Code will, one day, greatly accelerate the pace of empirical software-
engineering research.

8.2 Limitations

Although we make many contributions to learning from code and non-code artifacts,
there are limitations to the techniques and tools we have developed. The biggest
limitation is the relatively high level of expertise needed to apply many of our
techniques. Outside of code-book, most of the work described in this thesis is aimed
at practitioners that have some exposure to the concepts of code analysis and software-
engineering research. Some techniques, like the ones we developed for working with
Dockerfiles, require less domain-specific knowledge to use; however, to expand upon
these techniques, or to translate these techniques to other DevOps artifacts of interest,
would require significant expertise.

For learning from code, many of the techniques we have introduced here are being
usurped by simpler models with more compute. Similar to our first limitation, these
new models often require computing resources that are prohibitive to even well-funded
academic labs, but, nonetheless, the models that are produced provide compelling
results when trained on code as text and are being made available to practitioners in
the form of APIs and commercial products.

206

Finally, for almost all of the work described in this thesis, we have had to spend
time and energy developing bespoke tooling to extract datasets, create analyses,
organize experiments, and capture results. Consequently, many of the studies we
carried out are vulnerable to bugs and hard to replicate independently (here we
mean replicate in the sense of redoing a study from the ground up—we have artifacts
available if one wishes to run similar experiments using the tools and data we
developed). This limitation is shared by almost every piece of work in the empirical
software-engineering and program-analysis communities; nevertheless, it is worth
noting that, as part of our research, we too contributed to the ever-expanding amount
of hard to understand and maintain software.

8.3 The Impact of Large Language Models

During the course of our research, large language models became a dominant force
in learning from text and, surprisingly, became the defacto choice for learning from
code. This outcome is, perhaps, yet another instance of the bitter lesson (the idea
that human cleverness will not surpass techniques that scale well with increases in
computational power). We think that the successes of large language models are both
(i) a call to action and (ii) a hint that there may be techniques and ideas that work
on structured representations of code that we have yet to devise. (Based on historical
precedent, it would be wise to design these new hypothetical techniques so that they
too scale with increases in computational power, unlike previous methods.)

We believe that there is much more to discover in how these large models un-
derstand structured text, such as programs. It seems to be the case that models
trained on code are, in some ways, preferable to models trained on mere prose; if you
train your model on code, you can expect answers that are well-formed programs
(most of the time, at least)—these well-formed programs can be parsed, sometimes
executed (given an appropriate environment), and, most important of all, programs
(whether they are generated by a human or a model) are amenable to structured
manipulations. Perhaps it is the case that the true bridge between continuous and
symbolic reasoning exists in the realm of models that both understand code and can

207

Tools for learning from code:
https://github.com/jjhenkel/code-vectors-artifact
https://github.com/jjhenkel/lsee
https://github.com/jjhenkel/c2ocaml
https://github.com/jjhenkel/abstracted-kernel-traces
https://github.com/jjhenkel/averloc

Tools and datasets for learning from non-code artifacts:
https://github.com/jjhenkel/binnacle-icse2020
https://github.com/STAR-RG/shipwright

Figure 8.1: Links to various tools and datasets produced during our research

produce code. Or, perhaps, these models are no better than ones trained on prose. We
think this research area (models that understand programs/models that can produce
programs) is one worth exploring in the coming years.

8.4 Concluding Remarks

There is a light at the end of the tunnel: we have described a way to create an
ecosystem capable of dealing with the extraordinary amount of software being created
every day. First, in discrete steps, and later in what we call “plans for a ladder,” we
have outlined ways to combat the growth of software and the fundamental issue of
software being easier to write than it is to understand and maintain.

Our study of learning from code and non-code artifacts led us to realize a need for
better tooling and, to answer that need, we began work toward enabling Data Science
on Code. To this end, we developed code-book, which combines several novel ideas
including: interactive notebooks for program analysis, code-embedding-assisted fuzzy
queries, a Query-by-Example-style query language, and integrated visualizations.

Finally, we have released, for each completed work, the tooling and datasets we
developed. Figure 8.1 provides links to these releases. We hope that sharing research
tooling and data will accelerate the efforts of those who wish to build on this work and
foster continued collaboration toward our overarching goal of addressing the growth

https://github.com/jjhenkel/code-vectors-artifact
https://github.com/jjhenkel/lsee
https://github.com/jjhenkel/c2ocaml
https://github.com/jjhenkel/abstracted-kernel-traces
https://github.com/jjhenkel/averloc
https://github.com/jjhenkel/binnacle-icse2020
https://github.com/STAR-RG/shipwright

208

in software and enhancing our abilities to learn from, understand, and maintain the
software we depend on.

8.5 Notes

So here we are at the end. This thesis has been a project like no other—never have I
ever spent so much time just writing. In many ways, I have always felt most at home
as a graduate student doing engineering. Whether we needed to do symbolic execution
on the Linux kernel using OCaml or craft a system for building tens-of-thousands
of Dockerfiles in clean environments using a horrid mix of Bash and Python, I have
always enjoyed the engineering aspect of research. Nevertheless, this process of writing
and reflecting upon the work I have done leaves me with a sense of pride. I find this
work to be meaningful and I hope you, dear reader, have enjoyed at least some of
it. At the very least, I hope the research tooling and the datasets produced during
my time as a graduate student make it easier for others to do new work and reach
interesting conclusions more quickly. Regardless of the outcome, I cannot wait to
continue to explore new ideas, write new tools, and create new datasets and analyses.
I said it earlier, but I think it bears repeating: I truly believe that there has never
been a more exciting time to do work at the intersection of Programming Languages,
Software Engineering, and Machine Learning; I cannot fathom what the future may
hold, I just know it’s going to be interesting!

209

a analogy suite: representative pairs

The table below provides representative pairs for each of the categories in the analogy
suite used in Section 2.4.

Table A.1: Analogy Suite: Representative Pairs

Type Category Representative Pair
Calls 16 / 32 store16 / store32
Calls Add / Remove ntb_list_add / ntb_list_rm
Calls Create / Destroy device_create / device_destroy
Calls Enable / Disable nv_enable_irq / nv_disable_irq
Calls Enter / Exit otp_enter / otp_exit
Calls In / Out add_in_dtd / add_out_dtd
Calls Inc / Dec cifs_in_send_inc / cifs_in_send_dec
Calls Input / Output ivtv_get_input / ivtv_get_output
Calls Join / Leave handle_join_req / handle_leave_req
Calls Lock / Unlock mutex_lock_nested / mutex_unlock
Calls On / Off b43_led_turn_on / b43_led_turn_off
Calls Read / Write memory_read / memory_write
Calls Set / Get set_arg / get_arg
Calls Start / Stop nv_start_tx / nv_stop_tx
Calls Up / Down ixgbevf_up / ixgbevf_down
Complex Ret Check / Call kzalloc_$NEQ_0 / kzalloc
Complex Ret Error / Prop write_bbt_$LT_0 / $RET_write_bbt
Fields Check / Check ?->dmaops / ?->dmaops->altera_dtype
Fields Next / Prev !.task_list.next / !.task_list.prev
Fields Test / Set ?->at_current / !->at_current

210

references

Acharya, Mithun, and Tao Xie. 2009. Mining API Error-Handling Specifications
from Source Code. In Fundamental Approaches to Software Engineering, ed. Marsha
Chechik and Martin Wirsing, 370–384. Lecture Notes in Computer Science, Springer
Berlin Heidelberg.

Acharya, Mithun, Tao Xie, Jian Pei, and Jun Xu. 2007. Mining API Patterns
As Partial Orders from Source Code: From Usage Scenarios to Specifications. In
Proceedings of the the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering, 25–34. ESEC-FSE ’07, New York, NY, USA: ACM.

Agrawal, Rakesh, Tomasz Imieliński, and Arun Swami. 1993. Mining association
rules between sets of items in large databases. In Acm sigmod record, vol. 22, 207–216.
ACM.

Ahmad, Wasi Uddin, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020.
A transformer-based approach for source code summarization. In Proceedings of the
58th annual meeting of the association for computational linguistics (acl).

Allamanis, Miltiadis, Earl T. Barr, Christian Bird, and Charles Sutton. 2014. Learn-
ing natural coding conventions. In Proceedings of the 22nd acm sigsoft international
symposium on foundations of software engineering, 281–293. FSE 2014, New York,
NY, USA: ACM.

Allamanis, Miltiadis, Earl T. Barr, Christian Bird, and Charles Sutton. 2015a.
Suggesting accurate method and class names. In Proceedings of the 2015 10th joint
meeting on foundations of software engineering, 38–49. ESEC/FSE 2015, New York,
NY, USA: Association for Computing Machinery.

Allamanis, Miltiadis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2018.
A survey of machine learning for big code and naturalness. ACM Computing Surveys
(CSUR) 51(4):1–37.

211

Allamanis, Miltiadis, Earl T Barr, Premkumar T Devanbu, and Charles A Sutton.
2017a. A Survey of Machine Learning for Big Code and Naturalness. CoRR
abs/1709.0.

Allamanis, Miltiadis, Earl T. Barr, Soline Ducousso, and Zheng Gao. 2020. Typilus:
Neural type hints. In Proceedings of the 41st acm sigplan conference on programming
language design and implementation, 91–105. PLDI 2020, New York, NY, USA:
Association for Computing Machinery.

Allamanis, Miltiadis, Marc Brockschmidt, and Mahmoud Khademi. 2017b. Learning
to Represent Programs with Graphs. CoRR abs/1711.0. 1711.00740.

Allamanis, Miltiadis, Pankajan Chanthirasegaran, Pushmeet Kohli, and Charles Sut-
ton. 2016a. Learning Continuous Semantic Representations of Symbolic Expressions.
arXiv preprint arXiv:1611.01423.

Allamanis, Miltiadis, Hao Peng, and Charles A. Sutton. 2016b. A convolutional
attention network for extreme summarization of source code. CoRR abs/1602.03001.
1602.03001.

Allamanis, Miltiadis, Daniel Tarlow, Andrew D. Gordon, and Yi Wei. 2015b. Bi-
modal modelling of source code and natural language. In Proceedings of the 32nd
international conference on international conference on machine learning - volume
37, 2123–2132. ICML’15, JMLR.org.

Alon, Uri, Shaked Brody, Omer Levy, and Eran Yahav. 2018a. code2seq: Generating
sequences from structured representations of code. arXiv preprint arXiv:1808.01400.

Alon, Uri, Meital Zilberstein, Omer Levy, and Eran Yahav. 2018b. code2vec:
Learning distributed representations of code. CoRR abs/1803.09473. 1803.09473.

Alon, Uri, Meital Zilberstein, Omer Levy, and Eran Yahav. 2018c. A general
path-based representation for predicting program properties. In Proceedings of the
39th acm sigplan conference on programming language design and implementation,
404–419. PLDI 2018, New York, NY, USA: ACM.

1711.00740
1602.03001
1803.09473

212

Alon, Uri, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learning
distributed representations of code. Proceedings of the ACM on Programming
Languages 3(POPL):1–29.

Ammons, Glenn, Rastislav Bodík, and James R. Larus. 2002. Mining Specifications.
In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 4–16. POPL ’02, New York, NY, USA: ACM.

Andrews, J. H., L. C. Briand, and Y. Labiche. 2005. Is mutation an appropriate
tool for testing experiments? In Proceedings of the 27th international conference
on software engineering, 402–411. ICSE ’05, New York, NY, USA: Association for
Computing Machinery.

Athalye, Anish, Nicholas Carlini, and David Wagner. 2018. Obfuscated gradients
give a false sense of security: Circumventing defenses to adversarial examples. arXiv
preprint arXiv:1802.00420.

Barcelona, Ajuntamentde. 2020. Dependendy on ruby version 2.6.5.
https://github.com/AjuntamentdeBarcelona/decidim-barcelona/blob/

83ef28ee6af9d7ec2ac7914762c00db165592615/Gemfile#L5.

jahanzaib basharat. 2018. E: Package ’libpng12-dev’ has no installation candidate.
https://github.com/docker-library/php/issues/662.

Bass, Leonard J., Ingo M. Weber, and Liming Zhu. 2015. Devops - A software
architect’s perspective. SEI series in software engineering, Addison-Wesley.

Ben-Nun, Tal, Alice Shoshana Jakobovits, and Torsten Hoefler. 2018. Neural code
comprehension: A learnable representation of code semantics. CoRR abs/1806.07336.
1806.07336.

Berkerpeksag. 2020. berkerpeksag/astor.

Bhagoji, Arjun Nitin, Warren He, Bo Li, and Dawn Song. 2018. Practical black-box
attacks on deep neural networks using efficient query mechanisms. In European
conference on computer vision, 158–174. Springer.

https://github.com/AjuntamentdeBarcelona/decidim-barcelona/blob/83ef28ee6af9d7ec2ac7914762c00db165592615/Gemfile#L5
https://github.com/AjuntamentdeBarcelona/decidim-barcelona/blob/83ef28ee6af9d7ec2ac7914762c00db165592615/Gemfile#L5
https://github.com/docker-library/php/issues/662
1806.07336

213

Bielik, Pavol, Veselin Raychev, and Martin Vechev. 2016. Phog: Probabilistic
model for code. In Proceedings of the 33rd international conference on international
conference on machine learning - volume 48, 2933–2942. ICML’16, JMLR.org.

Bielik, Pavol, and Martin Vechev. 2020. Adversarial robustness for code. 2002.04694.

Biermann, A. W., and J. A. Feldman. 1972. On the Synthesis of Finite-State
Machines from Samples of Their Behavior. IEEE Transactions on Computers
C-21(6):592–597.

Biggio, Battista, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. 2013. Evasion attacks against
machine learning at test time. In Joint european conference on machine learning
and knowledge discovery in databases, 387–402. Springer.

Bojanowski, Piotr, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.
Enriching Word Vectors with Subword Information. Transactions of the Association
for Computational Linguistics 5:135–146.

Brogi, A., D. Neri, and J. Soldani. 2017. Dockerfinder: Multi-attribute search of
docker images. In 2017 ieee international conference on cloud engineering (ic2e),
273–278.

Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. 2020. Language models are few-shot learners. 2005.14165.

Buddhi. 2019. How to download a file using curl. https://stackoverflow.com/a/

54735579.

2002.04694
2005.14165
https://stackoverflow.com/a/54735579
https://stackoverflow.com/a/54735579

214

Campello, Ricardo J. G. B., Davoud Moulavi, and Joerg Sander. 2013. Density-
based clustering based on hierarchical density estimates. In Advances in knowledge
discovery and data mining, ed. Jian Pei, Vincent S. Tseng, Longbing Cao, Hiroshi
Motoda, and Guandong Xu, 160–172. Berlin, Heidelberg: Springer Berlin Heidelberg.

Carlini, Nicholas, and David Wagner. 2017. Towards evaluating the robustness
of neural networks. In Security and privacy (sp), 2017 ieee symposium on, 39–57.
IEEE.

Chen, Pin-Yu, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. 2017.
Zoo: Zeroth order optimization based black-box attacks to deep neural networks
without training substitute models. In Proceedings of the 10th acm workshop on
artificial intelligence and security, 15–26. ACM.

Chi, Yun, Richard R Muntz, Siegfried Nijssen, and Joost N Kok. 2005a. Frequent
subtree mining–an overview. Fundamenta Informaticae 66(1-2):161–198.

Chi, Yun, Yi Xia, Yirong Yang, and Richard R Muntz. 2005b. Mining closed and
maximal frequent subtrees from databases of labeled rooted trees. IEEE Transactions
on Knowledge and Data Engineering 17(2):190–202.

CircleCI. 2019. CircleCI - Continuous Integration and Delivery. [Online; accessed
21. Aug. 2019].

Cito, J., G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, and H. C. Gall. 2017.
An empirical analysis of the docker container ecosystem on github. In 2017 ieee/acm
14th international conference on mining software repositories (msr), 323–333.

Comby. 2022. Comby. Accessed: 2022-05-10.

Compton, Rhys, Eibe Frank, Panos Patros, and Abigail Koay. 2020. Embedding
java classes with code2vec: Improvements from variable obfuscation. 2004.02942.

Cousot, P., and R. Cousot. 1977. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proc.
acm sigplan-sigact symposium on principles of programming languages, 238–252.

2004.02942

215

Crew, Roger F. 1997. ASTLOG: A language for examining abstract syntax trees.
In Conference on domain-specific languages (dsl 97). Santa Barbara, CA: USENIX
Association.

Dallmeier, Valentin, Christian Lindig, Andrzej Wasylkowski, and Andreas Zeller.
2006. Mining Object Behavior with ADABU. In Proceedings of the 2006 International
Workshop on Dynamic Systems Analysis, 17–24. WODA ’06, New York, NY, USA:
ACM.

Davis, Jennifer, and Ryn Daniels. 2016. Effective devops: building a culture of
collaboration, affinity, and tooling at scale. O’Reilly Media, Inc.

DeFreez, Daniel, Aditya V. Thakur, and Cindy Rubio-González. 2018a. Path-based
function embedding and its application to error-handling specification mining. In
Proceedings of the 26th acm joint european software engineering conference and
symposium on the foundations of software engineering (esec/fse), FSE 2018, lake
buena vista, florida, november 4 - 9, 2018.

DeFreez, Daniel, Aditya V. Thakur, and Cindy Rubio-González. 2018b. Path-based
Function Embedding and Its Application to Error-handling Specification Mining. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, 423–433.
ESEC/FSE 2018, New York, NY, USA: ACM. Event-place: Lake Buena Vista, FL,
USA.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert:
Pre-training of deep bidirectional transformers for language understanding. Proceed-
ings of the 2019 Conference of the North.

docker. 2015. Docker hub: Database of container images. hub.docker.com.

Docker. 2019. Enterprise Container Platform | Docker. [Online; accessed 21. Aug.
2019].

hub.docker.com

216

Dyer, Robert, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. 2015. Boa:
Ultra-large-scale software repository and source-code mining. ACM Trans. Softw.
Eng. Methodol. 25(1).

Ebrahimi, Javid, Anyi Rao, Daniel Lowd, and Dejing Dou. 2017. Hotflip: White-box
adversarial examples for text classification. 1712.06751.

Engler, Dawson, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
2001. Bugs As Deviant Behavior: A General Approach to Inferring Errors in
Systems Code. In Proceedings of the eighteenth acm symposium on operating systems
principles, 57–72. SOSP ’01, New York, NY, USA: ACM.

Ester, Martin, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996a. A density-
based algorithm for discovering clusters a density-based algorithm for discovering
clusters in large spatial databases with noise. In Proceedings of the second interna-
tional conference on knowledge discovery and data mining, 226–231. KDD’96, AAAI
Press.

Ester, Martin, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996b. A density-
based algorithm for discovering clusters in large spatial databases with noise. In
Proceedings of the second international conference on knowledge discovery and data
mining, 226–231. KDD’96, AAAI Press.

Eykholt, Kevin, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei
Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. 2018. Robust physical-world
attacks on deep learning visual classification. In Proceedings of the ieee conference
on computer vision and pattern recognition, 1625–1634.

Finkelstein, Lev, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi
Wolfman, and Eytan Ruppin. 2001. Placing Search in Context: The Concept
Revisited. In Proceedings of the 10th international conference on world wide web,
406–414. WWW ’01, New York, NY, USA: ACM.

Fowkes, Jaroslav, and Charles Sutton. 2016. Parameter-free probabilistic api mining
across github. In Proceedings of the 2016 24th acm sigsoft international symposium

1712.06751

217

on foundations of software engineering, 254–265. FSE 2016, New York, NY, USA:
ACM.

Frey, Brendan J., and Delbert Dueck. 2007. Clustering by passing messages be-
tween data points. Science 315(5814):972–976. http://science.sciencemag.org/

content/315/5814/972.full.pdf.

Gabel, Mark, and Zhendong Su. 2008. Javert: Fully Automatic Mining of General
Temporal Properties from Dynamic Traces. In Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, 339–349.
SIGSOFT ’08/FSE-16, New York, NY, USA: ACM.

Gallaba, K., and S. McIntosh. 2018. Use and misuse of continuous integration
features: An empirical study of projects that (mis)use travis ci. IEEE Transactions
on Software Engineering 1–1.

Gao, Xiang, Ripon K. Saha, Mukul R. Prasad, and Abhik Roychoudhury. 2020. Fuzz
testing based data augmentation to improve robustness of deep neural networks. In
Proceedings of the acm/ieee 42nd international conference on software engineering,
1147–1158. ICSE ’20, New York, NY, USA: Association for Computing Machinery.

Garg, Siddhant, and Goutham Ramakrishnan. 2020. Bae: Bert-based adversarial
examples for text classification. 2004.01970.

Gazzola, L., D. Micucci, and L. Mariani. 2019. Automatic software repair: A survey.
IEEE Transactions on Software Engineering 45(1):34–67.

GitHub. 2022. Codeql. Accessed: 2022-05-10.

GitHub. 2022. tree-sitter.

Goodfellow, Ian J, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572.

Google. 2019. Kubernetes - Production-Grade Container Orchestration. [Online;
accessed 21. Aug. 2019].

http://science.sciencemag.org/content/315/5814/972.full.pdf
http://science.sciencemag.org/content/315/5814/972.full.pdf
2004.01970

218

Gu, Xiaodong, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API Learning. In Proceedings of the 2016 24th acm sigsoft international symposium
on foundations of software engineering, 631–642. FSE 2016, New York, NY, USA:
ACM.

Guidotti, Riccardo, Jacopo Soldani, Davide Neri, and Antonio Brogi. 2018. Explain-
ing successful docker images using pattern mining analysis. In Software technologies:
Applications and foundations, ed. Manuel Mazzara, Iulian Ober, and Gwen Salaün,
98–113. Cham: Springer International Publishing.

Gvero, Tihomir, and Viktor Kuncak. 2015. Synthesizing java expressions from
free-form queries. In Proceedings of the 2015 acm sigplan international conference
on object-oriented programming, systems, languages, and applications, 416–432.
OOPSLA 2015, New York, NY, USA: ACM.

Hadolint. 2019. hadolint/hadolint. [Online; accessed 21. Aug. 2019].

Harris, Zellig S. 1954. Distributional Structure. WORD 10(2-3):146–162.

HashiCorp. 2019. Terraform - Write, Plan, and Create Infrastructure as Code.
[Online; accessed 21. Aug. 2019].

Hassan, Foyzul, Rodney Rodriguez, and Xiaoyin Wang. 2018a. Rudsea: Recom-
mending updates of dockerfiles via software environment analysis. In Proceedings
of the 33rd acm/ieee international conference on automated software engineering,
796–801. ASE 2018, New York, NY, USA: ACM.

Hassan, Foyzul, Rodney Rodriguez, and Xiaoyin Wang. 2018b. Rudsea: Recom-
mending updates of dockerfiles via software environment analysis. In Proceedings
of the 33rd acm/ieee international conference on automated software engineering,
796–801. ASE 2018, New York, NY, USA: Association for Computing Machinery.

Hassan, Foyzul, and Xiaoyin Wang. 2018. Hirebuild: An automatic approach
to history-driven repair of build scripts. In Proceedings of the 40th international

219

conference on software engineering, 1078–1089. ICSE ’18, New York, NY, USA:
Association for Computing Machinery.

Hellendoorn, Vincent J, Christian Bird, Earl T Barr, and Miltiadis Allamanis. 2018.
Deep learning type inference. In Proceedings of the 2018 26th acm joint meeting
on european software engineering conference and symposium on the foundations of
software engineering, 152–162.

Henkel, Jordan, Shuvendu K. Lahiri, Ben Liblit, and Thomas Reps. 2018. Code Vec-
tors: Understanding Programs Through Embedded Abstracted Symbolic Traces. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, 163–174.
ESEC/FSE 2018, New York, NY, USA: ACM.

Hill, Felix, Roi Reichart, and Anna Korhonen. 2015. Simlex-999: Evaluating Semantic
Models with Genuine Similarity Estimation. Comput. Linguist. 41(4):665–695.

Hilton, Michael, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, costs, and benefits of continuous integration in open-source projects.
In Proceedings of the 31st ieee/acm international conference on automated software
engineering, 426–437. ACM.

Hindle, Abram, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the Naturalness of Software. In Proceedings of the 34th international
conference on software engineering, 837–847. ICSE ’12, Piscataway, NJ, USA: IEEE
Press.

Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. Long short-term memory. Neural
Comput. 9(8):1735–1780.

Holen, Vidar. 2019. koalaman/shellcheck. [Online; accessed 21. Aug. 2019].

Horton, Eric, and Chris Parnin. 2019. Dockerizeme: Automatic inference of environ-
ment dependencies for python code snippets. In Proceedings of the 41st international

220

conference on software engineering, 328–338. ICSE ’19, Piscataway, NJ, USA: IEEE
Press.

Hung, Che Shian, and Robert Dyer. 2020. Boa views: Easy modularization and
sharing of msr analyses, 147–157. New York, NY, USA: Association for Computing
Machinery.

IBM. 2020. Ibm/pytorch-seq2seq.

Ilyas, Andrew, Logan Engstrom, Anish Athalye, and Jessy Lin. 2018. Black-box adver-
sarial attacks with limited queries and information. arXiv preprint arXiv:1804.08598.

Jenkins. 2019. Jenkins - Open Source Automation Server. [Online; accessed 21. Aug.
2019].

Jiang, Yujuan, and Bram Adams. 2015. Co-evolution of infrastructure and source
code-an empirical study. In 2015 ieee/acm 12th working conference on mining
software repositories, 45–55. IEEE.

Kanade, Aditya, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. 2020.
Learning and evaluating contextual embedding of source code. In International
conference on machine learning, 5110–5121. PMLR.

Kenter, Tom, Alexey Borisov, and Maarten de Rijke. 2016. Siamese cbow: Optimizing
word embeddings for sentence representations. In Proceedings of the the 54th annual
meeting of the association for computational linguistics (acl 2016).

Kim, Gene, Jez Humble, Patrick Debois, and John Willis. 2016. The devops
handbook:: How to create world-class agility, reliability, and security in technology
organizations. IT Revolution.

Kim, Kisub, Dongsun Kim, Tegawendé F. Bissyandé, Eunjong Choi, Li Li, Jacques
Klein, and Yves Le Traon. 2018. Facoy – a code-to-code search engine. In 2018
ieee/acm 40th international conference on software engineering (icse), 946–957.

Kolter, Zico, and Aleksander Madry. 2020. Ibm/pytorch-seq2seq.

221

Lazzarini Lemos, Otavio Augusto, Adriano Carvalho de Paula, Hitesh Sajnani, and
Cristina V. Lopes. 2015. Can the use of types and query expansion help improve
large-scale code search? In 2015 ieee 15th international working conference on
source code analysis and manipulation (scam), 41–50.

Le, Quoc, and Tomas Mikolov. 2014. Distributed representations of sentences and
documents. In Proceedings of the 31st international conference on international
conference on machine learning - volume 32, II–1188–II–1196. ICML’14, JMLR.org.

Le, Tien-Duy B., and David Lo. 2018. Deep Specification Mining. In Proceedings of
the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis,
106–117. ISSTA 2018, New York, NY, USA: ACM.

Lei, Qi, Lingfei Wu, Pin-Yu Chen, Alexandros G. Dimakis, Inderjit S. Dhillon, and
Michael Witbrock. 2019. Discrete adversarial attacks and submodular optimization
with applications to text classification. In Sysml.

Lemos, Otávio A. L., Adriano C. de Paula, Felipe C. Zanichelli, and Cristina V.
Lopes. 2014. Thesaurus-based automatic query expansion for interface-driven code
search. In Proceedings of the 11th working conference on mining software repositories,
212–221. MSR 2014, New York, NY, USA: Association for Computing Machinery.

Levy, Omer, and Yoav Goldberg. 2014. Linguistic regularities in sparse and explicit
word representations. In Proceedings of the eighteenth conference on computa-
tional natural language learning, 171–180. Ann Arbor, Michigan: Association for
Computational Linguistics.

Li, Yujia, Daniel Tarlow, Marc Brockschmidt, and Richard S Zemel. 2015. Gated
Graph Sequence Neural Networks. CoRR abs/1511.0. 1511.05493.

Li, Zhenmin, and Yuanyuan Zhou. 2005. PR-Miner: Automatically Extracting
Implicit Programming Rules and Detecting Violations in Large Software Code. In
Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 306–315. ESEC/FSE-13, New York, NY, USA: ACM.

1511.05493

222

Lin, C., S. Nadi, and H. Khazaei. 2020. A large-scale data set and an empirical
study of docker images hosted on docker hub. In 2020 ieee international conference
on software maintenance and evolution (icsme), 371–381.

Linnovate. 2020. Mean stack. https://github.com/linnovate/mean.

Livshits, Benjamin, and Thomas Zimmermann. 2005. DynaMine: Finding Com-
mon Error Patterns by Mining Software Revision Histories. In Proceedings of the
10th European Software Engineering Conference Held Jointly with 13th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, 296–305.
ESEC/FSE-13, New York, NY, USA: ACM. Event-place: Lisbon, Portugal.

Lo, David, and Siau-Cheng Khoo. 2006. SMArTIC: Towards Building an Accurate,
Robust and Scalable Specification Miner. In Proceedings of the 14th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, 265–275.
SIGSOFT ’06/FSE-14, New York, NY, USA: ACM.

Lo, David, Siau-Cheng Khoo, Jiawei Han, and Chao Liu. 2011. Mining Software
Specifications: Methodologies and Applications. CRC Press. Google-Books-ID:
VAzLBQAAQBAJ.

Lorenzoli, D., L. Mariani, and M. Pezzè. 2008. Automatic generation of software
behavioral models. In 2008 ACM/IEEE 30th International Conference on Software
Engineering, 501–510.

Lou, Yiling, Junjie Chen, Lingming Zhang, Dan Hao, and Lu Zhang. 2019. History-
driven build failure fixing: How far are we? In Proceedings of the 28th acm sigsoft
international symposium on software testing and analysis, 43–54. ISSTA 2019, New
York, NY, USA: Association for Computing Machinery.

Luong, Thang, Richard Socher, and Christopher D Manning. 2013. Better Word
Representations with Recursive Neural Networks for Morphology. In Conll.

Lv, Fei, Hongyu Zhang, Jian-guang Lou, Shaowei Wang, Dongmei Zhang, and
Jianjun Zhao. 2015. Codehow: Effective code search based on api understanding

https://github.com/linnovate/mean

223

and extended boolean model (e). In 2015 30th ieee/acm international conference on
automated software engineering (ase), 260–270.

Lwakatare, Lucy Ellen, Pasi Kuvaja, and Markku Oivo. 2015. Dimensions of devops.
In International conference on agile software development, 212–217. Springer.

Macho, C., S. McIntosh, and M. Pinzger. 2018. Automatically repairing dependency-
related build breakage. In 2018 ieee 25th international conference on software
analysis, evolution and reengineering (saner), 106–117.

Madry, Aleksander, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2018. Towards deep learning models resistant to adversarial attacks.
In International conference on learning representations.

Mancinelli, F., J. Boender, R. D. Cosmo, J. Vouillon, B. Durak, X. Leroy, and
R. Treinen. 2006. Managing the complexity of large free and open source package-
based software distributions. In 21st ieee/acm international conference on automated
software engineering (ase’06), 199–208.

Marketplace, Visual Studio Code. 2020. Docker. [Online; accessed 29. Jan. 2020].

Martin Monperrus, Zimin Chen. 2019. Embeddings for Source Code.

Mazuran, Mirjana, Elisa Quintarelli, and Letizia Tanca. 2009. Mining tree-based
association rules from xml documents. In Proceedings of the seventeenth italian
symposium on advanced database systems, 109–116.

McCamant, Stephen, and Michael D. Ernst. 2004. Early identification of incompati-
bilities in multi-component upgrades. In Ecoop 2004 – object-oriented programming,
ed. Martin Odersky, 440–464. Berlin, Heidelberg: Springer Berlin Heidelberg.

McMillan, Collin, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu. 2011a.
Portfolio: finding relevant functions and their usage. In 2011 33rd international
conference on software engineering (icse), 111–120.

224

McMillan, Collin, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu.
2011b. Portfolio: finding relevant functions and their usage. In 2011 33rd interna-
tional conference on software engineering (icse), 111–120.

Microsoft. 2019. microsoft/vscode-docker. [Online; accessed 21. Aug. 2019].

Might, Matthew. 2010. The crapl: An academic-strength open source license.
https://matt.might.net/articles/crapl/. Accessed: 2022-04-25.

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013a.
Distributed Representations of Words and Phrases and their Compositionality. In
Advances in neural information processing systems 26, ed. C J C Burges, L Bottou,
M Welling, Z Ghahramani, and K Q Weinberger, 3111–3119. Curran Associates,
Inc.

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013b.
Distributed Representations of Words and Phrases and their Compositionality.
In Advances in Neural Information Processing Systems 26, ed. C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, 3111–3119. Curran
Associates, Inc.

Min, Changwoo, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Taesoo
Kim. 2015. Cross-checking semantic correctness: The case of finding file system
bugs. In Proceedings of the 25th symposium on operating systems principles, 361–377.
SOSP ’15, New York, NY, USA: ACM.

Møller, Anders, and Martin Toldam Torp. 2019. Model-based testing of breaking
changes in node.js libraries. In Proceedings of the 2019 27th acm joint meeting
on european software engineering conference and symposium on the foundations of
software engineering, 409–419. ESEC/FSE 2019, New York, NY, USA: Association
for Computing Machinery.

Monperrus, Martin, and Mira Mezini. 2013. Detecting Missing Method Calls As
Violations of the Majority Rule. ACM Trans. Softw. Eng. Methodol. 22(1):7:1–7:25.

https://matt.might.net/articles/crapl/

225

Mou, Lili, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional Neural
Networks over Tree Structures for Programming Language Processing.

mtsmfm. 2020. Set lang by default. https://github.com/docker-library/ruby/

commit/8813cdda206acb36ea7797919bf8dadb84fc5ac7.

Mudrakarta, Pramod Kaushik, Ankur Taly, Mukund Sundararajan, and Kedar
Dhamdhere. 2018. Did the model understand the question? In Acl.

Murali, Vijayaraghavan, Swarat Chaudhuri, and Chris Jermaine. 2017a. Bayesian
specification learning for finding api usage errors. In Proceedings of the 2017 11th
joint meeting on foundations of software engineering, 151–162. ESEC/FSE 2017,
New York, NY, USA: ACM.

Murali, Vijayaraghavan, Swarat Chaudhuri, and Chris Jermaine. 2017b. Bayesian
Specification Learning for Finding API Usage Errors. In Proceedings of the 2017
11th joint meeting on foundations of software engineering, 151–162. ESEC/FSE
2017, New York, NY, USA: ACM.

Nguyen, Anh Tuan, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N Nguyen.
2012. GraPacc: A Graph-based Pattern-oriented, Context-sensitive Code Completion
Tool. In Proceedings of the 34th international conference on software engineering,
1407–1410. ICSE ’12, Piscataway, NJ, USA: IEEE Press.

Nguyen, Anh Tuan, and Tien N. Nguyen. 2015. Graph-based statistical language
model for code. In Proceedings of the 37th international conference on software
engineering - volume 1, 858–868. ICSE ’15, Piscataway, NJ, USA: IEEE Press.

Nguyen, Trong Duc, Anh H. T. Nguyen, Hung Dang Phan, and Tien N. Nguyen.
2017a. Exploring API Embedding for API Usages and Applications. 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE) 438–449.

Nguyen, Trong Duc, Anh Tuan Nguyen, and Tien N. Nguyen. 2016. Mapping api
elements for code migration with vector representations. In Proceedings of the 38th

https://github.com/docker-library/ruby/commit/8813cdda206acb36ea7797919bf8dadb84fc5ac7
https://github.com/docker-library/ruby/commit/8813cdda206acb36ea7797919bf8dadb84fc5ac7

226

international conference on software engineering companion, 756–758. ICSE ’16,
New York, NY, USA: ACM.

Nguyen, Trong Duc, Anh Tuan Nguyen, Hung Dang Phan, and Tien N Nguyen.
2017b. Exploring API Embedding for API Usages and Applications. In Proceedings
of the 39th international conference on software engineering, 438–449. ICSE ’17,
Piscataway, NJ, USA: IEEE Press.

Nguyen, Tung Thanh, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen.
2013. A statistical semantic language model for source code. In Proceedings of the
2013 9th joint meeting on foundations of software engineering, 532–542. ESEC/FSE
2013, New York, NY, USA: ACM.

Nguyen, Tung Thanh, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-Kofahi, and
Tien N. Nguyen. 2009. Graph-based Mining of Multiple Object Usage Patterns.
In Proceedings of the the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering, 383–392. ESEC/FSE ’09, New York, NY, USA: ACM.

oshivwanshi. 2019. RROR: Error installing bundler: bundler requires ruby version.
https://github.com/rubygems/bundler/issues/6865.

PacificNW_Lover. 2020. Install python-pip using apt-get via ubuntu’s apt-get in
dockerfile. https://stackoverflow.com/a/61564831.

Papernot, Nicolas, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,
and Ananthram Swami. 2017. Practical black-box attacks against machine learning.
In Proceedings of the 2017 acm on asia conference on computer and communications
security, 506–519. ACM.

Parisotto, Emilio, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong
Zhou, and Pushmeet Kohli. 2016. Neuro-Symbolic Program Synthesis. CoRR
abs/1611.0. 1611.01855.

https://github.com/rubygems/bundler/issues/6865
https://stackoverflow.com/a/61564831
1611.01855

227

Pawlak, Renaud, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel
Seinturier. 2015. Spoon: A Library for Implementing Analyses and Transformations
of Java Source Code. Software: Practice and Experience 46:1155–1179.

Peng, Hao, Lili Mou, Ge Li, Yuxuan Liu, Lu Zhang, and Zhi Jin. 2015. Building
program vector representations for deep learning. In Proceedings of the 8th interna-
tional conference on knowledge science, engineering and management - volume 9403,
547–553. KSEM 2015, New York, NY, USA: Springer-Verlag New York, Inc.

Pennington, Jeffrey, Richard Socher, and Christopher Manning. 2014a. Glove:
Global Vectors for Word Representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 1532–1543. Doha,
Qatar: Association for Computational Linguistics.

Pennington, Jeffrey, Richard Socher, and Christopher D Manning. 2014b. GloVe:
Global Vectors for Word Representation. In Empirical methods in natural language
processing (emnlp), 1532–1543.

Phillips, Shaun, Thomas Zimmermann, and Christian Bird. 2014. Understanding and
improving software build teams. In Proceedings of the 36th international conference
on software engineering, 735–744. ACM.

Piech, Chris, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran Sahami,
and Leonidas Guibas. 2015. Learning Program Embeddings to Propagate Feedback
on Student Code. In Proceedings of the 32nd international conference on international
conference on machine learning - volume 37, 1093–1102. ICML’15, JMLR.org.

Portworx. 2017. Annual Container Adoption Report. [Online; accessed 21. Aug.
2019].

Pradel, Michael, Georgios Gousios, Jason Liu, and Satish Chandra. 2020. Typewriter:
Neural type prediction with search-based validation, 209–220. New York, NY, USA:
Association for Computing Machinery.

228

Pradel, Michael, and Thomas R. Gross. 2009. Automatic Generation of Object Usage
Specifications from Large Method Traces. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, 371–382. ASE ’09,
Washington, DC, USA: IEEE Computer Society.

Pradel, Michael, and Koushik Sen. 2017. Deep learning to find bugs. Tech. Rep.
TUD-CS-2017-0295, Technische Universität Darmstadt, Department of Computer
Science.

Pradel, Michael, and Koushik Sen. 2018. DeepBugs: a learning approach to name-
based bug detection. PACMPL 2:147:1–147:25.

Quante, J., and R. Koschke. 2007. Dynamic Protocol Recovery. In 14th Working
Conference on Reverse Engineering (WCRE 2007), 219–228.

r1williams. 2015. Rpmdb checksum is invalid: dcdpt(pkg checksums). https:

//github.com/CentOS/sig-cloud-instance-images/issues/15.

Rabin, Md, Rafiqul Islam, Nghi DQ Bui, Yijun Yu, Lingxiao Jiang, and Mo-
hammad Amin Alipour. 2020. On the generalizability of neural program analyz-
ers with respect to semantic-preserving program transformations. arXiv preprint
arXiv:2008.01566.

Radford, Alec, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
2019. Language models are unsupervised multitask learners.

Raghothaman, Mukund, Yi Wei, and Youssef Hamadi. 2016. Swim: Synthesizing
what i mean: Code search and idiomatic snippet synthesis. In Proceedings of the
38th international conference on software engineering, 357–367. ICSE ’16, New York,
NY, USA: ACM.

Rahman, Akond, Rezvan Mahdavi-Hezaveh, and Laurie Williams. 2019. A systematic
mapping study of infrastructure as code research. Information & Software Technology
108:65–77.

https://github.com/CentOS/sig-cloud-instance-images/issues/15
https://github.com/CentOS/sig-cloud-instance-images/issues/15

229

Raychev, Veselin, Martin Vechev, and Andreas Krause. 2015. Predicting Program
Properties from "Big Code". Popl.

Raychev, Veselin, Martin Vechev, and Eran Yahav. 2014a. Code completion with
statistical language models. In Proceedings of the 35th acm sigplan conference on
programming language design and implementation, 419–428. PLDI ’14, New York,
NY, USA: ACM.

Raychev, Veselin, Martin Vechev, and Eran Yahav. 2014b. Code completion with
statistical language models. In Proceedings of the 35th acm sigplan conference on
programming language design and implementation, 419–428.

Reimers, Nils, and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using
siamese bert-networks. In Proceedings of the 2019 conference on empirical methods
in natural language processing. Association for Computational Linguistics.

rmNyro. 2017. npm not found on latest build. https://github.com/gliderlabs/

docker-alpine/issues/327.

Robillard, M. P., E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford. 2013.
Automated API Property Inference Techniques. IEEE Transactions on Software
Engineering 39(5):613–637.

Robillard, Martin P., and Robert DeLine. 2011. A field study of API learning
obstacles. Empirical Software Engineering 16(6):703–732.

Rubenstein, Herbert, and John B Goodenough. 1965. Contextual Correlates of
Synonymy. Commun. ACM 8(10):627–633.

Sankaranarayanan, Sriram, Franjo Ivančić, and Aarti Gupta. 2008. Mining Library
Specifications Using Inductive Logic Programming. In Proceedings of the 30th
International Conference on Software Engineering, 131–140. ICSE ’08, New York,
NY, USA: ACM.

Schulze, Dean. 2018. apt-get update fails on 17.04 [closed]. https://askubuntu.

com/questions/1059898/apt-get-update-fails-on-17-04.

https://github.com/gliderlabs/docker-alpine/issues/327
https://github.com/gliderlabs/docker-alpine/issues/327
https://askubuntu.com/questions/1059898/apt-get-update-fails-on-17-04
https://askubuntu.com/questions/1059898/apt-get-update-fails-on-17-04

230

Semgrep. 2022. Semgrep. Accessed: 2022-05-10.

Seymore, Kristie, Andrew Mccallum, and Ronald Rosenfeld. 1999. Learning hidden
markov model structure for information extraction. In In aaai 99 workshop on
machine learning for information extraction, 37–42.

Sharif, Mahmood, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. 2016.
Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition.
In Proceedings of the 2016 acm sigsac conference on computer and communications
security, 1528–1540. ACM.

Sharma, Tushar, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does your config-
uration code smell? In 2016 ieee/acm 13th working conference on mining software
repositories (msr), 189–200. IEEE.

Shoham, S., E. Yahav, S. J. Fink, and M. Pistoia. 2008. Static Specification Mining
Using Automata-Based Abstractions. IEEE Transactions on Software Engineering
34(5):651–666.

Sidhu, Puneet Kaur, Gunter Mussbacher, and Shane McIntosh. 2019. Reuse (or
Lack Thereof) in Travis CI Specifications: An Empirical Study of CI Phases and
Commands. In Proc. of the international conference on software analysis, evolution,
and reengineering (saner), 524–533.

Sirres, Raphael, Tegawendé F. Bissyandé, Dongsun Kim, David Lo, Jacques Klein,
Kisub Kim, and Yves Le Traon. 2018. Augmenting and structuring user queries
to support efficient free-form code search. In Proceedings of the 40th international
conference on software engineering, 945. ICSE ’18, New York, NY, USA: Association
for Computing Machinery.

Solar-Lezama, Armando, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. 2006. Combinatorial sketching for finite programs. In Proceedings of the
12th international conference on architectural support for programming languages
and operating systems, 404–415.

231

source{d}. 2019. Cool links & research papers related to Machine Learning applied to
source code (MLonCode): src-d/awesome-machine-learning-on-source-code. Original-
date: 2017-06-20T13:35:45Z.

Sourcegraph. 2022. Sourcegraph. Accessed: 2022-05-10.

Srikant, Shashank, Sijia Liu, Tamara Mitrovska, Shiyu Chang, Quanfu Fan, Gaoyuan
Zhang, and Una-May O’Reilly. 2021. Generating adversarial computer programs
using optimized obfuscations. In International conference on learning representations.

Ståhl, Daniel, and Jan Bosch. 2016. Industry application of continuous integration
modeling: a multiple-case study. In 2016 ieee/acm 38th international conference on
software engineering companion (icse-c), 270–279. IEEE.

Synopsys. 2022. Coverity scan. Accessed: 2022-05-10.

Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199.

Szumlanski, Sean, Fernando Gomez, and Valerie K Sims. 2013. A new set of norms
for semantic relatedness measures. In Proceedings of the 51st annual meeting of the
association for computational linguistics (volume 2: Short papers), vol. 2, 890–895.

Tan. 2016. How to fix your ruby version is 2.3.0, but your gemfile specified 2.2.5
while server starting. https://stackoverflow.com/questions/37914702.

Tian, Yuchi, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In Proceedings of the 40th
international conference on software engineering, 303–314. ICSE ’18, New York, NY,
USA: Association for Computing Machinery.

Tian, Yuchi, Ziyuan Zhong, Vicente Ordonez, Gail Kaiser, and Baishakhi Ray. 2020.
Testing dnn image classifiers for confusion & bias errors. In Proceedings of the
acm/ieee 42nd international conference on software engineering, 1122–1134. ICSE
’20, New York, NY, USA: Association for Computing Machinery.

https://stackoverflow.com/questions/37914702

232

Travis CI. 2019. Travis CI - Test and Deploy Your Code with Confidence. [Online;
accessed 21. Aug. 2019].

Tucker, C., D. Shuffelton, R. Jhala, and S. Lerner. 2007. Opium: Optimal package
install/uninstall manager. In 29th international conference on software engineering
(icse’07), 178–188.

Tufano, Michele, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2017. There and back again: Can
you compile that snapshot? Journal of Software: Evolution and Process 29(4):e1838.
E1838 smr.1838, https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1838.

ubergesundheit. 2015. Change locale to c.utf-8. https://github.com/

docker-library/ruby/issues/45.

Upadhyaya, Ganesha, and Hridesh Rajan. 2018. Collective program analysis. In
Proceedings of the 40th international conference on software engineering, 620–631.
ICSE ’18, New York, NY, USA: Association for Computing Machinery.

Uri Alon, Omer Levy, Shaked Brody, and Eran Yahav. 2019. GitHub - tech-
srl/code2seq: Code for the model presented in the paper: "code2seq: Generating
Sequences from Structured Representations of Code" — github.com. https://

github.com/tech-srl/code2seq. [Accessed 07-Apr-2022].

Vasic, Marko, Aditya Kanade, Petros Maniatis, David Bieber, and Rishabh Singh.
2019. Neural program repair by jointly learning to localize and repair. In 7th
international conference on learning representations, ICLR 2019, new orleans, la,
usa, may 6-9, 2019. OpenReview.net.

Vasilescu, Bogdan, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. 2015. Quality and productivity outcomes relating to continuous integration
in github. In Proceedings of the 2015 10th joint meeting on foundations of software
engineering, 805–816. ACM.

https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1838
https://github.com/docker-library/ruby/issues/45
https://github.com/docker-library/ruby/issues/45
https://github.com/tech-srl/code2seq
https://github.com/tech-srl/code2seq

233

Volpi, Riccardo, Hongseok Namkoong, O. Sener, John C. Duchi, Vittorio Murino, and
S. Savarese. 2018. Generalizing to unseen domains via adversarial data augmentation.
In Neurips.

Vouillon, J., and R. Di Cosmo. 2013. Broken sets in software repository evolution.
In 2013 35th international conference on software engineering (icse), 412–421.

Walkinshaw, N., and K. Bogdanov. 2008. Inferring Finite-State Models with Tempo-
ral Constraints. In 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering, 248–257.

Walkinshaw, N., K. Bogdanov, M. Holcombe, and S. Salahuddin. 2007. Reverse
Engineering State Machines by Interactive Grammar Inference. In 14th Working
Conference on Reverse Engineering (WCRE 2007), 209–218.

Wang, Ke, Rishabh Singh, and Zhendong Su. 2017. Dynamic neural program
embedding for program repair. CoRR abs/1711.07163. 1711.07163.

Wang, Song, Devin Chollak, Dana Movshovitz-Attias, and Lin Tan. 2016. Bugram:
Bug detection with n-gram language models. In Proceedings of the 31st ieee/acm
international conference on automated software engineering, 708–719. ASE 2016,
New York, NY, USA: ACM.

Wasylkowski, Andrzej, Andreas Zeller, and Christian Lindig. 2007. Detecting Object
Usage Anomalies. In Proceedings of the the 6th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, 35–44. ESEC-FSE ’07, New York, NY, USA:
ACM. Event-place: Dubrovnik, Croatia.

Widder, David Gray, Michael Hilton, Christian Kästner, and Bogdan Vasilescu. 2019.
A conceptual replication of continuous integration pain points in the context of travis
ci. In Proceedings of the 2019 27th acm joint meeting on european software engineer-
ing conference and symposium on the foundations of software engineering, 647–658.
ESEC/FSE 2019, New York, NY, USA: Association for Computing Machinery.

1711.07163

234

Wu, Yiwen, Yang Zhang, Tao Wang, and Huaimin Wang. 2020. An empirical study
of build failures in the docker context. In Proceedings of the 17th international
conference on mining software repositories, 76–80. MSR ’20, New York, NY, USA:
Association for Computing Machinery.

Xu, J., Y. Wu, Z. Lu, and T. Wang. 2019. Dockerfile tf smell detection based on
dynamic and static analysis methods. In 2019 ieee 43rd annual computer software
and applications conference (compsac), vol. 1, 185–190.

Xu, T., and D. Marinov. 2018. Mining container image repositories for software
configuration and beyond. In 2018 ieee/acm 40th international conference on
software engineering: New ideas and emerging technologies results (icse-nier), 49–52.

Ye, X, H Shen, X Ma, R Bunescu, and C Liu. 2016a. From Word Embeddings to
Document Similarities for Improved Information Retrieval in Software Engineering.
In 2016 ieee/acm 38th international conference on software engineering (icse),
404–415.

Ye, Xin, Hui Shen, Xiao Ma, Razvan C. Bunescu, and Chang Liu. 2016b. From
Word Embeddings to Document Similarities for Improved Information Retrieval in
Software Engineering. 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE) 404–415.

Yefet, Noam, Uri Alon, and Eran Yahav. 2020. Adversarial examples for models of
code. Proc. ACM Program. Lang. 4(OOPSLA).

yelizariev. 2020. bzr is not available in alpline:. https://github.com/alpinelinux/
docker-alpine/issues/87.

Yin, K., W. Chen, J. Zhou, G. Wu, and J. Wei. 2018. Star: A specialized tagging
approach for docker repositories. In 2018 25th asia-pacific software engineering
conference (apsec), 426–435.

Yun, Insu, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and Mayur
Naik. 2016. APISAN: Sanitizing API Usages Through Semantic Cross-checking.

https://github.com/alpinelinux/docker-alpine/issues/87
https://github.com/alpinelinux/docker-alpine/issues/87

235

In Proceedings of the 25th USENIX Conference on Security Symposium, 363–378.
SEC’16, Berkeley, CA, USA: USENIX Association.

Zerouali, A., T. Mens, G. Robles, and J. M. Gonzalez-Barahona. 2019. On the relation
between outdated docker containers, severity vulnerabilities, and bugs. In 2019
ieee 26th international conference on software analysis, evolution and reengineering
(saner), 491–501.

Zhang, Fuyuan, Sankalan Pal Chowdhury, and Maria Christakis. 2020. Deepsearch:
A simple and effective blackbox attack for deep neural networks, 800–812. New York,
NY, USA: Association for Computing Machinery.

Zhang, Wei Emma, Quan Z Sheng, AHOUD Alhazmi, and CHENLIANG LI. 2019.
Adversarial attacks on deep learning models in natural language processing: A
survey. arXiv preprint arXiv:1901.06796.

Zhang, Yang, Bogdan Vasilescu, Huaimin Wang, and Vladimir Filkov. 2018a. One
size does not fit all: An empirical study of containerized continuous deployment
workflows. In Joint european software engineering conference and symposium on the
foundations of software engineering, 295–306. ESEC/FSE, ACM.

Zhang, Yang, Gang Yin, Tao Wang, Yue Yu, and Huaimin Wang. 2018b. An insight
into the impact of dockerfile evolutionary trajectories on quality and latency. In
2018 ieee 42nd annual computer software and applications conference (compsac),
vol. 1, 138–143. IEEE.

Zhao, Gang, and Jeff Huang. 2018. Deepsim: deep learning code functional similarity.
In Proceedings of the 2018 ACM joint meeting on european software engineering con-
ference and symposium on the foundations of software engineering, ESEC/SIGSOFT
FSE 2018, lake buena vista, fl, usa, november 04-09, 2018, 141–151.

Zhao, Jinman, Aws Albarghouthi, Vaibhav Rastogi, Somesh Jha, and Damien Octeau.
2018a. Neural-augmented static analysis of android communication. In Proceedings
of the 2018 26th acm joint meeting on european software engineering conference and

236

symposium on the foundations of software engineering, 342–353. ESEC/FSE 2018,
New York, NY, USA: ACM.

Zhao, Jinman, Aws Albarghouthi, Vaibhav Rastogi, Somesh Jha, and Damien Octeau.
2018b. Neural-augmented static analysis of android communication. In Proceedings
of the 2018 26th acm joint meeting on european software engineering conference and
symposium on the foundations of software engineering, 342–353.

Zhao, Yangyang, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bogdan
Vasilescu. 2017. The impact of continuous integration on other software develop-
ment practices: a large-scale empirical study. In Proceedings of the 32nd ieee/acm
international conference on automated software engineering, 60–71. IEEE Press.

Zhong, H., L. Zhang, T. Xie, and H. Mei. 2009. Inferring Resource Specifications
from Natural Language API Documentation. In 2009 IEEE/ACM International
Conference on Automated Software Engineering, 307–318.

Zloof, Moshé M. 1975. Query-by-example: The invocation and definition of tables
and forms. In Proceedings of the 1st international conference on very large data
bases, 1–24. VLDB ’75, New York, NY, USA: Association for Computing Machinery.

Zweig, Geoffrey, and Chris J C Burges. 2011. The Microsoft Research Sentence
Completion Challenge. Tech. Rep., Microsoft Research.

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Motivation
	Contributions
	Thesis Outline
	Notes

	Code Vectors
	Introduction
	Overview
	Technique
	Experiments
	Related Work
	Future Work
	Notes

	Open World Mining
	Introduction
	Overview
	Technique
	Experiments
	Related Work
	Future Work
	Notes

	Semantic Robustness
	Introduction
	Semantic Robustness
	Framework
	Comparable Techniques
	Experiments
	Related Work
	Future Work
	Notes

	Dockerfile Mining
	Introduction
	Dataset
	Technique
	Experiments
	Related Work
	Future Work
	Notes

	Dockerfile Repair
	Introduction
	Sources of Build Failures
	Dataset
	Technique
	Experiments
	Related Work
	Future Work
	Notes

	code-book
	Introduction
	Query Language
	Case Studies
	Related Work
	Future Work
	Notes

	Conclusion
	Contributions
	Limitations
	The Impact of Large Language Models
	Concluding Remarks
	Notes

	Analogy Suite: Representative Pairs
	References

