
Checking Conformance of a Producer and a Consumer∗

Evan Driscoll, Amanda Burton, and Thomas Reps
Computer Sciences Department, University of Wisconsin – Madison

{driscoll,burtona,reps}@wisc.edu

ABSTRACT
This paper addresses the problem of identifying incom-
patibilities between two programs that operate in a pro-
ducer/consumer relationship. It describes the techniques
that are incorporated in a tool called PCCA (Producer-
Consumer Conformance Analyzer), which attempts to (i)
determine whether the consumer is prepared to accept all
messages that the producer can emit, or (ii) find a counter-
example: a message that the producer can emit and the
consumer considers ill-formed.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability

General Terms
Algorithms, Reliability

Keywords
producer-consumer compatibility, language containment,
visibly pushdown automata

1. INTRODUCTION
Complex systems today are made up of many commu-

nicating components. For instance, a modern fuel-injected
engine has a number of sensors that send their current mea-
surements to the engine-control unit, which decides what the
optimum fuel-air mixture should be. It emits messages to
other components, such as the fuel pumps and fuel injectors,
to carry out its decisions.

∗
Supported by NSF under grants CCF-0540955, CCF-0810053, CCF-

0904371, and CCF-0701957; by ONR under grants N00014-{09-1-
0510, 10-M-0251}, by ARL under grant W911NF-09-1-0413; and by
AFRL under grants FA9550-09-1-0279 and FA8650-10-C-7088. Any
opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect
the views of the sponsoring agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

In such systems, it is vitally important to ensure that the
messages that one component sends to another are under-
stood by the receiving component, otherwise runtime errors
will occur. Send/receive incompatibilities can drive up the
cost of developing a system because different components of
a system are often developed by different development teams
or different subcontractors, and thus compatibility problems
may not be detected until integration time. (The cost of fix-
ing errors found late in the development process is usually
much higher than that of errors found earlier.)

Consider an example system made up of the producer and
consumer shown in Figs. 1 and 2, respectively. The producer
is a program that monitors a sensor, and periodically sends
a “packet” of data to the consumer.1 The system uses an
abbreviated protocol: if the sensor data has not changed
since the last message, then only the Boolean literal false
is sent. Line 2 in Fig. 1 makes this decision.

As presented, these components are correct: both “speak”
the same protocol. However, consider a buggy version of the
consumer that does not account for the possibility that the
producer sends an abbreviated message, and always expects
the full packet. This code is shown in Fig. 3.

To find this bug, can we reason about the languages over
which each component operates? In the consumer, we know
that the updateReading function always reads a double and
then a bool. Furthermore, each time through the loop in the
buggy version of main, the consumer reads a bool then the
double–bool sequence from updateReading. Thus we can
determine that the input language of the buggy consumer,
expressed as a regular expression over types that the con-
sumer reads, is (bool double bool)+. Similarly, we can de-
termine that the output language of the producer, expressed
as a regular expression, is (bool | bool double bool)+.

From these two language descriptions we can see that one
of the components is buggy: the string bool bool, is in the
producer’s language but not in the consumer’s. This dispar-
ity suggests that some execution of the producer could out-
put two Boolean values, but no execution of the consumer
would expect to read that message.

A similar analysis suggests that Fig. 2’s consumer is cor-
rect. The language it expects is (bool (double bool)?)+,
which is equivalent to what we inferred for the producer.

We describe a technique for determining whether two com-
ponents are compatible, which proceeds along lines similar
to this example: we infer a model of the output language
of the producer, infer a model of the input language of the

1We use packet to refer to the data that the components
communicate each time through their “loop”.



1 sendReading(Sensor* device, int prev)
2 if device→setting == prev then
3 writeBool(false);
4 else
5 writeBool(true);
6 writeDouble(device→setting);
7 writeBool(device→valid);

8 loop(Sensor* device, int prev)
9 ... // update device with new readings

10 sendReading(device, prev);
11 if ... then
12 loop(device, device→setting);

13 main()
14 Sensor device;
15 loop(&device, -1);

Figure 1: Example producer

1 updateReading(int* setting, bool* valid)
2 *setting = readDouble();
3 *valid = readBool();

4 main()
5 int setting;
6 bool valid;
7 while ... do
8 if readBool() then
9 updateReading (&setting, &valid);

10 ... // do something with current readings

Figure 2: Example consumer

consumer, and determine whether the two descriptions are
compatible. However, we also investigate using a richer fam-
ily of languages than just regular languages for the format
descriptions, and thus the check of whether the models are
compatible is more than straight language-containment.
This paper addresses the following problem: Given two

programs that operate in a producer/consumer relationship,
(i) determine whether the consumer is prepared to accept all
messages that the producer can emit, or (ii) find a counter-
example: a message that the producer can emit but the
consumer considers ill-formed.
We have implemented our technique in a tool called PCCA

(for Producer-Consumer Conformance Analyzer). Given
the two source programs, along with information about
which functions perform I/O (see §4.1), PCCA infers a de-
scription of the language that the producer generates and
a description of the language that the consumer expects,
and (roughly speaking) determines whether the former is a
subset of the latter.
PCCA starts out by creating an automaton P that models

the producer, which accepts an over-approximation of the
language that the producer emits. We have two versions of
PCCA: one creates a pushdown automaton (PDA) and the
other creates a standard finite automaton (FA). Similarly,
PCCA produces an automaton C for the consumer, which
accepts an over-approximation of the language that the
consumer expects. Our goal becomes determining whether
L(P ) ⊆ L(C). For the FA version, we do this directly. For
the PDA version, this question is undecidable with a direct

1 main()
2 while ... do
3 readBool();
4 updateReading (&setting, &valid);
5 ... // do something with current readings

Figure 3: Example buggy consumer.
(updateReading is the same as in Fig. 2.)

approach; thus we actually use a restricted form of PDAs
called visibly pushdown automata [3, 2] (VPAs) to model the
components’ behaviors. While less powerful than full PDAs,
VPAs provide enough power to recognize important classes
of non-regular languages, such as balanced parentheses.

Unlike PDAs, the restrictions on VPAs allow them to re-
tain closure under complementation and intersection, and
thus language containment is decidable. However, when us-
ing VPAs we must make internal calls and returns explicit in
the words of the languages that PCCA infers from the compo-
nents. If PCCA were to check containment of these languages
directly, we would be requiring that the two components
have the same internal call/return structure, which is un-
desirable. To compensate, PCCA “enriches” the consumer’s
VPA C—and hence its language L(C)—so that differences
in the call/return structures of the producer and the con-
sumer do not preclude answering the language-containment
question. (This step is explained in more detail in §3.2.)

To test language containment, PCCA performs a set-
difference operation to compute L(P ) r L(C) (for the FA
version) or L(P ) r L(Enrich(C)) (for the VPA version) by
complementing the righthand automaton intersecting the re-
sult with P . Finally, it tests whether the language of the
VPA produced by the intersection is empty. If so, then the
subset holds, and PCCA reports the components are compat-
ible; if not, then there is a counter-example in the difference
and PCCA reports the components are incompatible.

The techniques used in PCCA are “transport-agnostic” as
long as the producer and the consumer use a stream-like in-
terface to communicate. That is, PCCA can analyze a pair
of programs—or even the same program playing the roles of
both producer and consumer—that share files, send infor-
mation over sockets, or use standard I/O.

Because it is necessary to approximate each component’s
language, the technique we have developed has some limi-
tations. Both approximations are over-approximations: i.e.,
the producer’s model may say that the producer can emit
a string that can never actually be emitted by the pro-
ducer, and similarly for the consumer. Consequently, the
compatibility-checking technique can have both false pos-
itives and false negatives, which puts PCCA among other
bug-hunting approaches, such as work developed by Engler
et al. [16, 22] as well as many other authors.

Our contributions can be summarized as follows:
• We describe our approach to format inference, inspired

by Lim et al. [23], and its application to component
compatibility.

• The model of the program can be described using a
context-free language, but testing language contain-
ment for CFLs is not decidable. We describe how to
side-step this problem by using VPAs, making the in-
ternal calls and returns of the components explicit, and
performing our Enrich operation.



M: mainentry L: loopentry sendentry

sendexitloopexitmainexit

〈, ↓ M 〈, ↓ L bool

double

bool〉, ↑ L〉, ↑ M

〈, ↓ L 〉, ↑ L

〉, ↑ L

〉, ↑ L

〉, ↑ M

Figure 4: The producer’s VPA. To reduce clutter, all
transitions to the implicit “stuck state” are omitted
and sendReading is abbreviated as send.

• We compare the results of a VPA-based model to those
obtained by using ordinary finite automata.

• We describe a new algorithm for determining the emp-
tyness of a VPA, which builds on existing work related
to pushdown systems.

• We implemented our techniques in a tool called PCCA,
and demonstrate its utility on several examples.

Organization. The remainder of the paper is organized as
follows: §2 discusses our goals and the methods we use to
achieve them. §3 discusses the indiv steps that that make
up our technique when PCCA is operating using VPAs. §4
describes the prototype implementation. §5 presents exper-
imental results. §6 discusses related work. §7 has a brief
discussion of future work.

2. OVERVIEW
We now give a description of our technique, framed around

how it operates on the example considered in the Introduc-
tion. We first consider the producer and the correct version
of the consumer, as presented in Figs. 1 and 2, respectively.
(Ex. 2.3 covers the buggy version of the consumer.)
From the standpoint of checking that the producer and

consumer are compatible, even this simplified example has
a number of challenging features. In particular,

1. The producer’s loop procedure uses recursion in-
stead of iteration. In contrast, the consumer is more
straightforward: it reads values in a loop.

2. The calls to the write functions in the producer and
the read functions in the consumer are organized dif-
ferently. The producer calls all the write_* functions
from the same procedure, while the consumer reads
the second two fields (double bool) in a different pro-
cedure from the one in which it reads the first (bool).

PCCA is provided the information that the read_* and
write_* functions are “special” (in that they perform I/O);
in §4.1, we discuss how this information can be supplied.
As mentioned earlier, PCCA is able to use two different

formalisms to model the components: visibly pushdown au-
tomata (VPA) and standard finite automata (FA).

2.1 Visibly Pushdown Automata
From each component we infer a visibly pushdown au-

tomaton when operating in that mode. VPAs [3] are a re-

M: mainentry M: mainexit

updateReadingexit updateReadingentry

bool

〈, ↓ M

doublebool

〉, ↑ M

bool

Figure 5: The consumer’s VPA.

striction of ordinary pushdown automata, and can be used
in program analysis to capture the matched call and return
structure of execution traces through multi-procedure pro-
grams. In essense, each alphabet symbol describes whether
a VPA is allowed to push or pop a symbol from its stack. We
formally define VPAs in §3.1, but for purposes of this section
it suffices to know that, even though they share some power
with general PDAs, determining language containment of
two VPAs remains decidable, in contrast to PDAs.

In our application, the alphabet consists of the types that
are emitted by the producer and read by the consumer, as
well as distinguished call and return symbols 〈 and 〉.

For expository purposes, we talk about the producer au-
tomaton “emitting” strings. Neither FAs nor VPAs actually
emit anything (except a yes/no answer); what we mean is
that a given string is accepted by the producer’s automaton.
However, if a string is accepted by the producer’s automa-
ton, that means it could be emitted by the producer pro-
gram, and it is often convenient to think of the automata as
being the components themselves, rather than models.

2.2 Inferring The I/O Format
The first step in the process is to infer an automaton that

approximates the language of each component. In the case
of the producer, we wish to infer the language of all possible
outputs; in the case of the consumer, we wish to infer the
language of all expected inputs.

The idea behind our technique is to create automata that
mimic the control-flow behavior of the source programs.
Each automaton that PCCA generates has the same language
as one created by transliterating the program’s interproce-
dural control-flow graph (ICFG) in the following manner:

1. There is one state c̃ for each ICFG node c.
2. If a call site c can call an I/O function that outputs

or expects a value of type τ , we add a transition on τ

from c̃ to its corresponding return node. In the VPA
model, this transition does not modify the stack.

3. If a call site c can call a non-I/O function f with entry
node fe and exit node fx, we add one transition from
c̃ to f̃e and a second transition from f̃x to the corre-
sponding return site. In the FA model, both transi-
tions are ε transitions. In the VPA model, the first
transition is on the symbol 〈 and pushes c̃ onto the
VPA’s stack, and the second transition is on the sym-
bol 〉 under the condition that c̃ is at the top of the
stack (which is then popped).

4. All other transitions in the ICFG become ε-transitions.
In the VPA version, these do not modify the stack.

5. The entry node of main becomes the start state, and
the exit node becomes the sole accepting state.

However, if we used this naive translation, the result-



ing automata would be extremely large, which would cause
problems during the determinization phase of PCCA.2

Instead of treating the ICFG as a whole, PCCA proceeds
procedure-by-procedure through the program. For each pro-
cedure, it looks at the intraprocedural CFG and carries out
the above translation, except that step 3 is replaced by the
following:

• If a call site c can call a non-I/O function f , we add an
internal transition from c̃ to the corresponding return,
labeled with a generated symbol call_f .

(Also, the VPA’s starting and accepting states are the entry
and exit nodes of that procedure.)
Even in the VPA version, because each procedure’s au-

tomation has no transitions that modify the stack (stack
operations only happen on a call or return), it can be in-
terpreted as a standard finite-state machine. We do this,
and use the standard algorithms to determinize and min-
imize each procedure’s machine. (PCCA’s implementation
uses the OpenFST library for this purpose [1].) The effi-
ciency upshot is that this technique turns what would be a
multiplicative factor into an additive one, thus dramatically
reducing the time spent in determinization.
Once we have the collection of minimized automata, we

combine all the automata into one and“restore” the call and
return transitions. We replace each transition that moves
from state c to r when reading a symbol call_f with a pair
of transitions that match those in the original step 3:

• We add a transition from c to f ’s entry point. In the
FA version, this is an ε transition; in the VPA version,
it is on the symbol 〈 and pushes c onto the stack.

• We add a transition from the exit point of f to r. In the
FA version, this is an ε transition; in the VPA version,
it is on the symbol 〉 and requires that c appears at the
top of the stack (which is then popped).

Finally, we have to perform one more determinization step
in case connecting the procedures adds nondeterminism.
This translation essentially abstracts the program to its

control flow only: data is not considered. One could envision
a higher-fidelity translation that weaves selected data ele-
ments (or abstractions of data elements) into the automata
we infer, but of course there is a trade-off between precision
and automaton size.
Figs. 4 and 5 show the VPAs that are inferred from the

code in Figs. 1 and 2, respectively. (To reduce clutter, Figs. 4
and 5 have ε-transitions collapsed, which removes 7 states
and a comparable number of transitions in each automaton.)
Call-transitions have labels of the form “〈, ↓X”, where X is
the state at the source of the transition, and ↓X means that
X is pushed onto the call stack. Return-transitions have
labels of the form “〉, ↑X”, which means that the machine
can make the transition only if state X is on the top of the
stack; in so doing, it pops X. The FA version is similar,
except that all call and return transitions are replaced with
ε transitions.

Knowledge about I/O functions. PCCA needs information
about what function calls can perform I/O. There are a num-
ber of ways the user can provide such information (see §4.1).
One important point is that there needs to be agreement

between the producer and consumer regarding what types

2As shown in §5, determinization dominates execution time.

are used. The first, and easiest, issue related to this point is
that the names of the types must agree.

The second issue is that the granularity of the I/O func-
tion specifications must agree. Consider our example. As
written, both the producer and consumer have I/O oper-
ations expressed in terms of their constituent C types. It
would also be possible to have the producer and consumer
store values in a two-element structure SensorData, and do
a “bulk read/write” with fread()/fwrite() to operate on
the struct as a whole. In such a case, it would be reasonable
to say that the type of that I/O operation was SensorData.
However, the two approaches cannot be mixed: the con-
sumer and producer need to agree on the granularity.
Remark. The need for agreement between the producer
and consumer on the granularity of types is not a fundamen-
tal limitation: it would be possible to have the user specify
that SensorData is a {double, bool} struct at either the
format-inference stage or after the VPAs are constructed,
and it should even be possible to extract this information
from struct definitions in the code. We have not investi-
gated these avenues at this point; however, with the current
implementation the user has the ability to specify, for ex-
ample, that a particular call to fread/fwrite operates on a
double and then a bool. 2

2.3 Enriching the Consumer’s VPA
This section applies to the VPA version of PCCA only; §3.2

describes the operation formally.
It would be too restrictive to demand that the producer

and consumer perform calls and returns at corresponding
moments during their executions. The VPAs that we infer
from the producer and consumer follow the same call/return
behavior as the original programs; thus the strings in the
languages of the producer and consumer models contain in-
ternal call and return symbols that are not actually present
in the messages between components. Checking contain-
ment of the languages of the inferred models would require
that the components agree in this respect.

Our running example illustrates the issue. Each “packet”
consists of a Boolean, optionally followed by a double and a
Boolean. The producer sends the entire packet within one
function (sendReading), but the consumer reads the first
Boolean, and then calls another function (updateReading)
to read the remaining values of the packet.

The consequence of the producer and consumer having
different calling structure is that the substrings that cor-
respond to the same packet are different in the producer’s
language and the consumer’s language.

Example 2.1 Consider the string bool double bool, emit-
ted by Fig. 1’s code when the producer performs just one
iteration—hence the string contains just a single packet. For
the producer’s VPA (Fig. 4), the string would be 〈 〈 bool

double bool 〉 〉, while for the consumer’s VPA (Fig. 5),
the corresponding string would be bool 〈 double bool 〉.
These strings have 〈 and 〉 in different locations. 2

To accommodate the different nesting structures, we “en-
rich” the consumer’s VPA so that it can use nondeterminism
to guess when the producer makes an internal call or return
and insert the corresponding symbol into its own strings.

Example 2.2 For the example discussed in Ex. 2.1, the lan-
guage of the consumer’s enriched VPA contains not just bool



〈 double bool 〉 but also 〈 〈 bool double bool 〉 〉. The
latter string is in the languages of both the producer’s VPA
and the consumer’s enriched VPA. 2

After enrichment, a counterexample to the language con-
tainment (and an indication of incompatibility) is a string
that the producer’s NWA can emit where it is impossible
to add and/or remove balanced parentheses and arrive at a
string that the consumer’s NWA accepts.

Example 2.3 For the buggy consumer in Fig. 3, the origi-
nal language contains strings such as bool 〈 double bool 〉,
but not, for instance bool bool (which is in the producer’s
VPA’s language). Denote by Ce the VPA inferred for the
buggy consumer. No matter how you add parentheses to
bool bool, you will not arrive at a string in the language
of Enrich(Ce); this will be a counterexample to language
containment. 2

If an analyst knows that both components use the same
call/return structure, he can omit the enrichment step to ob-
tain a more precise comparison of the two languages. With-
out the approximation caused by Enrich, a “compatible” re-
sult is more credible; however, if there is uncertainty in the
call/return assumption, an“incompatible”result is less cred-
ible.

2.4 Language Containment
Once we have the producer automaton P and the con-

sumer automaton C′ (for the VPA version, C′ is the en-
riched consumer automaton), determining the set difference,
and thus containment, of their languages is straightforward:
L(P ) r L(C′) = ∅ iff L(P ) ∩ L(C′) = ∅. Both FAs and
VPAs are closed under all of these operations, so all that is
necessary is to take C′, complement it, intersect it with P ,
and test the resulting VPA for emptiness. §3 discusses this
step in greater detail for VPAs.

2.5 HelpingPCCA Improve its Results
We now return to the running example to illustrate how

the programmer could improve the results of the analysis.
We start by describing a bug that PCCA would not be able to
find, and then explain how to modify the code—but without
changing the actual protocol—so that the bug is found.
Suppose that the specification of the protocol changed

during development: the final bool field was not originally
needed, but was added later. Suppose that the implemen-
tation of the producer was changed to emit this field, but
the consumer was not updated. (In other words, line 7 in
Fig. 1 was added at the time the specification changed. The
consumer should have been changed to add line 3 in Fig. 2,
but that line was erroneously omitted.)
This situation would almost certainly signify a bug, but

it would not be detected by our tool. The reason is that
there is no association between the function call on lines 3
and 5 in the producer, which writes the first bool in each
packet, and line 8 in the consumer, which reads it. Instead,
the consumer could “use” the call on readBool on line 8 to
consume the final field of the previous packet, then not call
updateReading during that iteration.
We can modify the source code of the producer and con-

sumer to make it possible for our technique to detect the
previous bug. The problem that our technique has with
detecting this bug is that what the producer and consumer

thought were packets got out of sync. By inserting a“phony”
I/O call at the start or end of each loop (e.g., in the el-
lipsis on line 9 of the producer and between lines 8 and 9
in the consumer), we can make the packet divisions visi-
ble to PCCA, allowing it to check that the producer’s and
consumer’s packets cannot get out of sync.

The phony calls would have a type that does not appear
in the packet itself; in our experiments we have called it SEP.
The key point to realize is that this “type” does not have to
have any material presence in any of the communications,
and in fact the function that performs the phony I/O can
be completely empty.

This idea can be generalized to “hijack” the compatibility
algorithm to ensure that events that should occur during
the execution of the producer and consumer occur in the
proper order. From this point of view, a write operation is
essentially an event, during which the fact that the program
communicates is only incidental.

3. FORMALIZATION OF VPA-BASED
CONTAINMENT CHECKING

This section discusses the details of how PCCA determines
whether the producer’s language is a subset of the (enriched)
consumer’s when using visibly pushdown automata (VPAs).
Using VPAs provides a potential benefit over FAs (see §3.3)
but introduces a number of complications to the process that
are not present with standard finite automata.

3.1 Visibly Pushdown Automata

Definition 3.1 ([3]) A VPA is a pushdown automaton
(PDA) that operates on a tagged alphabet and whose stack
accesses are restricted by the current symbol. A tagged
alphabet Σ̃ is a partition of a normal alphabet into dis-
joint subsets Σ, Σc, and Σr. In our application, Σc = {〈},
Σr = {〉}, and Σ is the set of types on which the program
being analyzed operates. (In program analysis, pairs of sym-
bols in Σc and Σr are often used to model program calls and
returns; they can also be used to represent other matched
entities such as opening and closing XML tags.)

A visibly pushdown automaton V is a 6-tuple
(Q, Σ̃,Γ⊥, δ, q0, F ) where Q is the set of states, Σ̃ is a
tagged alphabet, Γ⊥ is the stack alphabet (with ⊥, a spe-
cial bottom-of-stack symbol, and Γ = Γ⊥ r {⊥}), q0 ∈ Q is
the initial state, and F ⊆ Q is the set of final states. The
transition relation, δ, is the union of three components:

• δi ⊆ (Q× Σ)×Q

• δc ⊆ (Q× Σc)× (Q× Γ)
• δr ⊆ (Q× Σr × Γ⊥)×Q

A VPA M reads its input and makes transitions on each
symbol as follows. If the current symbol is σ, the current
state is q, and γ is at the top of the stack, then:

• If σ ∈ Σ, then M selects a transition ((q, σ), q′) from
δi and changes its control state to q′.

• If σ ∈ Σc, M selects a transition ((q, σ), (q′, γ′)) from
δc, pushes γ

′ onto its stack, and changes to state q′.
• If σ ∈ Σr, M selects a transition ((q, σ, γ), q′) from δr,

pops γ from its stack, and changes to state q′.
The VPA accepts its input if there is a run that ends in a
final state f ∈ F .

The behavior above can be expressed as limiting the op-
eration of a standard PDA in the following way: when read-
ing σ ∈ Σ, the VPA cannot access the stack; when reading



σc ∈ Σc, the VPA must push exactly one symbol; and when
reading σr ∈ Σr, the VPA must pop exactly one symbol. In
this way, the VPA’s stack accesses are visible in each input.
We refer to the σ ∈ Σ as internal symbols, the σc ∈ Σc

(and the positions in a string at which they appear) as calls,
and σr ∈ Σr (and their positions) as returns. 2

We take Γ = Q and construct VPAs that, when in state
q with a call as the current symbol, push q onto the stack.3

We also allow internal ε-transitions in the natural way.

3.2 Enrichment
As discussed at a high level in §2.3, it is unreasonable

to demand that the producer and consumer have the same
call/return structure, so we introduce an “enriching” oper-
ation, denoted by Enrich, that when applied to the con-
sumer’s VPA will relax the requirement. Enrich creates new
transitions in the consumer’s VPA that allow it to make
arbitrary calls and returns. In essence, this allows the con-
sumer’s VPA to emulate the call/return structure of the pro-
ducer’s VPA. Enrich is defined as follows:

Definition 3.2 Given VPA A = (Q,Σ, q0, δ, F ), augment δ
with the following transitions:

1. For every state p, introduce a call transition δc(p, 〈, p).
2. For every pair of states (p, q), introduce a return tran-

sition δr(p, q, 〉, p).
3. For every call transition δc(p, 〈, q) in the original VPA,

introduce a ε-transition δi(p, ε, q).
4. For every return transition δr(p, p

′, 〉, q) in the original
VPA, introduce a ε-transition δi(p, ε, q). 2

Items 1 and 2 allow the consumer’s enriched VPA to per-
form extra call or return moves to emulate the producer
VPA, while items 3 and 4 allow the consumer’s enriched
VPA to omit calls or returns, in case the producer has fewer.

Example 3.3 The example discussed in Exs. 2.1 and 2.2
requires all four steps: to match the producer, the consumer
needs to add two calls to the beginning of the input string,
add two matching returns to the end of the input string, and
remove the “extra” call between the first “bool” and“double”
and its corresponding return. 2

While in theory it is possible either to enrich the consumer
to match the producer or enrich the producer to match the
consumer, in practice only the former is reasonable. The
goal of the containment check is to determine the emptiness
L(P ) r L(C). Enriching a VPA enlarges its language, so
this operation adds some error E to one of the operands,
resulting in either (L(P ) ∪ E) r L(C) or L(P ) r (L(C) ∪
E). Unfortunately, the error introduced by enriching the
producer’s VPA invariably leads to false positives: for the
consumer to accept everything that the enriched producer
emits, the consumer would have to accept every possible call
structure of every string the producer emits.

3.3 Benefits of Using VPAs
There are several kinds of automata that we could have

chosen. For instance, the FA version of PCCA models each

3Following [3], this restriction is called a “weakly-
hierarchical VPA”, and does not reduce the expressiveness.

1 outputInt()
2 writeInt();

3 producerMain()
4 if ... then
5 outputInt();
6 else
7 writeChar(); outputInt(); writeChar();

8 inputInt1()
9 readInt();

10 inputInt2()
11 readInt();

12 consumerMain()
13 if ... then
14 inputInt1();
15 else
16 readChar(); inputInt2(); readChar();

Figure 6: Components that illustrate the benefits
of VPAs

program as a single finite automaton. This approach re-
moves the need for the enrich operation because calls and
returns are not represented explicitly in the languages.

The trade-offs between VPAS and FAs mirror trade-offs
that one can make in traditional interprocedural dataflow
analysis. The simplest way of performing such analysis is to
build the ICFG and run the analysis as if call and return
edges were just normal intraprocedural control-flow edges.
However, that approach loses precision because of suprious
data flows from one call site c1, into the called function f ,
and then out the return edge to a different call site c2. A
similar kind of imprecision can affect the FA version of PCCA.

For instance, Fig. 6 shows a producer and consumer for
which FAs and VPAs produce different results. Due to space
constraints we omit diagrams of the inferred automata. The
FA version of PCCA infers int | char int char for the lan-
guage of the consumer, but int | char int | int char |

char int char for the producer. The producer’s language
contains two words that are not in the language of the con-
sumer, thus the FA version of PCCA reports that the com-
ponents are incompatible.

One way of getting around this problem is to perform
function inlining: each call site c gets its own copy of the
procedure f , which is only called from c and only returns
to c. This eliminates the suprious control flows, but at the
cost of a potentially exponentially larger model. It would be
possible to do exactly the same thing in our domain: create
a single FSM, but inline procedures.

A more sophisticated mechanism for eliminating these
spurious flows uses context-free-language reachability tech-
niques [31]. This marks each call/return edge pair with a
distinct set of matched parentheses; possible executions of
the program correspond only to strings with matched paren-
theses. The dataflow problem can be formulated so that only
flows along such well-matched paths are considered. Our use
of VPAs closely mirrors this approach for the producer.4

4CFL-reachability distinguishes acceptable return edges
from unacceptable ones by whether the brackets match; our
VPAs distinguish them by whether the corresponding call
site is on the VPA’s stack.



The code in Fig. 6 benefits from this increase in precision.
The VPA’s constraints on the return transitions from the
exit node of outputInt to each of the two return sites re-
stricts the data flow, thus the producer’s language is inferred
to be 〈 int 〉 | char 〈 int 〉 char. The VPA version of PCCA
reports that the two components are compatible.
Unfortunately, this benefit only applies to the producer’s

model: the enrich operation we do to the consumer essen-
tially makes a regular approximation out of the original. We
have not investigated applying the ideas of inlining to obtain
increased precision, although we think it would be possible.
In other words, using VPAs to model the components pro-

vides a way to obtain a context-sensitive analysis in one of
the components without the exponential blowup of inlining.

3.4 Complement and Intersection
As mentioned in §2.4, determining the set difference of the

producer VPA and the enriched consumer VPA, is straight-
forward: L(P )rL(Enrich(C)) = ∅ iff L(P )∩L(Enrich(C)) =
∅, and VPAs support all of the required operations.

3.5 Checking Emptiness
Although other algorithms are known even for general

PDAs, for completeness we describe a new algorithm that
we devised, which harnesses previously known operations
for answering reachability queries on pushdown systems
(PDSs). Our approach is purely automata-theoretic, and
does not translate the VPA language to a context-free gram-
mar. We can use the witness tracing [32] feature supported
by the PDS reachability operation (post∗) to trace non-
emptiness answers back to a string that is in the producer’s
VPA’s language but not in the consumer’s; such a string
suggests a potential bug in one of the components.
To describe the algorithm, it is necessary to review some

known results about PDSs [5, 14].

Definition 3.4 A pushdown system (PDS) is a three-
tuple P = (P,Γ,∆), where P is a finite set of control
locations, Γ is a finite set of stack symbols, and ∆ ⊆
P × Γ × P × Γ∗ is a finite set of rules. A configuration
of P is a pair 〈p, u〉 where p ∈ P and u ∈ Γ∗. A rule r ∈ ∆
is written as 〈p, γ〉 →֒ 〈p′, u〉, where p, p′ ∈ P , γ ∈ Γ, and
u ∈ Γ∗. The rules define a transition relations ⇒ on con-
figurations of P as follows: If r = 〈p, γ〉 →֒ 〈p′, u′〉, then
〈p, γu〉 ⇒ 〈p′, u′u〉 for all u ∈ Γ∗. 2

Because the number of configurations of a PDS is un-
bounded, it is useful to use finite automata to describe cer-
tain infinite sets of configurations.

Definition 3.5 A configuration automaton that defines
a language of configurations of PDS P = (P,Γ,∆) is a finite-
state automaton C = (S,Γ,→, P, F ), where S is a finite set
of states, C uses P’s set of stack symbols Γ as its alphabet,
→⊆ S × Γ × S is the transition relation, the set of initial
states consists of P’s set of control locations P (which must
be a subset of S), and F ⊆ S is the set of final states. We
say that a configuration 〈p, u〉 is accepted by configuration
automaton C if C can accept u (in the ordinary sense from
the theory of finite-state automata) when it is started in the

state p; that is, p
u

−→
∗

s, where s ∈ F . A set of configura-
tions is said to be regular if some configuration automaton
accepts it. 2

Let ⇒∗ denote the reflexive transitive closure of ⇒. For
a set of configurations C, pre∗P(C)

def

= {c′ | ∃c ∈ C : c′ ⇒∗ c}

and post∗P(C)
def

= {c′ | ∃c ∈ C : c ⇒∗ c′}—i.e., backward
and forward reachability, respectively, with respect to tran-
sition relation ⇒. When C is a regular language of config-
urations, automata for the configuration languages pre∗

P
(C)

and post∗P(C) can be constructed by algorithms that run in
time polynomial in the size of P [5, 14].

Given a VPA A, the first step of checking whether L(A) =
∅ is to convert A to a PDS PA.

Definition 3.6 Given VPA A = (Q, Σ̃, Q, δ, q0, F ), we de-
fine PDS PA = ({s}, Q,∆), where each transition of A is
converted to one or two rules in ∆, as follows:

• For each transition ((q, σ), q′) ∈ δ, ∆ has a rule
〈s, q〉 →֒ 〈s, q′〉.

• For each transition ((q, σc), (q
′, γ)) ∈ δ, ∆ has a rule

〈s, q〉 →֒ 〈s, q′ q〉. (This pushes q′ onto the stack, the
top of which is currently q.)

• For each transition ((q, γ, σr), q
′) ∈ δ, ∆ has two rules,

〈s, q〉 →֒ 〈sx, ε〉 and 〈sx, γ〉 →֒ 〈s, q′〉. (Conceptually
this can be thought of as a single transition 〈s, q γ〉 →֒
〈s, q′〉 of a prefix rewriting system [8].)

One can interpret this conversion as simply moving the in-
formation in the VPA’s finite control into the top symbol of
the stack. 2

In our application, the initial state of the producer’s VPA
is mainentry, and the only final state is mainexit. Assum-
ing that main is never invoked recursively, we only consider
perfectly-matched strings (those with balanced calls and re-
turns) and whether the set of perfectly-matched strings is
empty. To test this condition, we create trivial configuration
automata for the languages of initial-state and final-state
configurations (where the machine has an empty stack)

L(InitialConfigurations) = {〈s, q0〉}
= {〈s, mainentry〉}

L(FinalConfigurations) = {〈s, f〉 | f ∈ F}
= {〈s, mainexit〉}

We can check whether the set of perfectly-matched strings
is empty by answering the question of whether there
is a path in the transition relation ⇒ from a config-
uration in L(InitialConfigurations) to a configuration in
L(FinalConfigurations). One way to answer this question
is to check whether the language of the finite-state automa-
ton constructed as follows is empty:

FinalConfigurations ∩ post
∗

PA
(InitialConfigurations). (1)

(This reduces the question of VPA emptiness to emptiness
of the language of an ordinary FA.)
Remark. The more general question of VPA emptiness
when non-perfectly-matched strings are of interest can also
be addressed using Eqn. (1): one merely has to use more
elaborate languages of initial and final configurations. 2

4. IMPLEMENTATION
This section describes a prototype implementation of the

ideas presented in §2 and §3 in a tool called PCCA (Producer-
Consumer Conformance Analyzer).

PCCA has two phases: inference and compatibility. During
the inference phase, PCCA uses CodeSurfer/C [10] to per-



form pointer analysis and build an interprocedural control-
flow graph (ICFG) and call graph for each component. It
traverses the ICFG to create a list of all call sites that (di-
rectly) call an I/O function (see §4.1), then traverses the call
graph to determine which procedures to prune (see §4.2). It
then traverses the ICFG again to create the automaton for
each procedure as described in §2.2, minimizes each of them,
and combines them into our model of the program.
During the compatibility phase, PCCA reads the automa-

ton produced for each component and proceeds with the
compatibility check according to PCCA’s mode. For the
VPA-mode, PCCA actually uses a formalism called Nested-
Word Automata (NWAs) instead of VPAs, but each is essen-
tially an alternative expression of the other [3]. We use an
extension to the WALi library that implements NWAs [6].

4.1 Seeding the System with I/O Functions
PCCA requires information about (i) what function calls

of the producer can perform output, and (ii) what function
calls of the consumer can perform input. There are a number
of ways such information can be supplied to PCCA:

1. The user can provide a list of I/O functions (e.g. read-
Boolean, writeInt, as in the example) and their asso-
ciated types. For calls to standard functions such as
puts, PCCA is already equipped with such mappings.

2. For calls to printf- or scanf-style procedures, if the
format string is a constant in the code, PCCA will parse
the string to determine the types being operated on.
The implementation is flexible enough so that the

producer or consumer can contain user-defined proce-
dures with printf/scanf-like format-strings, provided
that the format-string syntax is either the same as
what is used by printf or what is used by scanf.
PCCA just needs to know the name of the procedure
and which formal parameter holds the format string.

3. If all else fails, the user can supply comments that
annotate procedure-call sites to specify that a partic-
ular call site performs either input or output. The
annotation includes the type that is operated on. This
method also allows the user to selectively choose only
some call sites to a particular procedure.

4. Finally, the list of procedure-call sites that the tool
should consider to be I/O functions is explicitly mate-
rialized in a text file, so the user can add, remove, or
change call sites in that list, or even generate it by dif-
ferent means. (In fact, in the current version of PCCA,
the techniques described in items 1 and 2 are imple-
mented by one program, and the technique described
in item 3 is implemented by a second program.)

4.2 Removing Irrelevant Procedures
To reduce the size of the inferred VPA, PCCA prunes pro-

cedures that cannot possibly participate in I/O operations.
If there is no path from the entry of procedure P to the exit
of procedure P along which an I/O procedure is invoked, P
can be discounted entirely. One of the first steps of PCCA is
to traverse the call graph generated by CodeSurfer, deter-
mine which procedures can transitively call an I/O function,
and ignore all others. As illustrated in columns 3 and 4 of
Fig. 7 (see §5), the effect of pruning is substantial, reducing
the number of procedures by as much as 90%.

5. EXPERIMENTS
To test the capabilities of PCCA, we ran it on a small cor-

pus of examples (whose characteristics are listed in columns
2 and 3 of Fig. 7). The experiments were run on a sys-
tem with dual quad-core, 2.27GHz Xeon E5520s processors;
however, PCCA is entirely single-threaded. The system has
12 GB of memory, and runs Red Hat Enterprise Linux 5.

The experiments were designed to test whether PCCA

would detect bugs in producer-consumer pairs that were
buggy, correctly identify (presumably) correct code as hav-
ing the language-containment property, and scale to realis-
tic programs. We also compared the results between the FA
and VPA-based modes of operation to determine whether
the potential benefits discussed in §3.3 arose.

Each example consisted of a pair of programs—a producer
and a consumer. In several cases, we used the program as
both the producer and the consumer, which makes sense for
programs that read and write the same format.

The examples are as follows:5

• ex-prod/ex-cons make up our running example (stubs
for the I/O functions are included in the count),

• ex-prod/ex-cons-fig3 uses the buggy version of the con-
sumer presented in Fig. 3,

• ex-prod-§2.5/ex-cons-§2.5 are buggy versions of the
running example, modified as described at the end of
§2.5 with the separator to mark the packets,

• gzip and bzip2 are the common Unix compres-
sion/decompression utilities,

• gzip-fixed uses a modified version of gzip (discussed
below) to eliminate an erroneous report,

• png2ico is an image-conversion program, which we
compare to a hand-written specification.

Reported times are the median of 5 runs. The num-
bers for the FA version use NWAs with no call or return
transitions. This gives an apples-to-apples comparison with
NWAs, but is slower than an alternative implementation
that converts each NWA to an OpenFST acceptor, deter-
minizes with OpenFST, and converts back. All times are
less than 1 sec. with the latter approach. There is an in-
trinsic cost to using an NWA representation, but we feel
that most of the difference between our FA numbers and
OpenFST’s indicates room for improving the WALi imple-
mentation. (That would improve the NWA version as well.)

We also performed an informal experiment using the VPA
version without Enrich (as mentioned at the end of §2.3). We
tested programs that read and write trees in infix and pre-
fix notation. Both the standard VPA version of PCCA and
the no-Enrich version reported that the infix components
are compatible with each other, that the prefix components
are compatible with each other, and that each is incompat-
ible with the other. As discussed in §2.3, the compatibility
results are more credible for the no-Enrich version; the in-
compatibility results are more credible for the standard VPA
version.

Omitting the Enrich step also dramatically decreased de-
terminization time; even the gzip-fix-cons could be deter-
minized in less than one second. Thus, it might be beneficial
to try to combine enrichment and determinization.

Two of the tests, gzip and png2ico, required relatively
minor modifications. gzip uses input and output operations

5Our experiments can be found at http://www.cs.wisc.
edu/wpis/examples/pcca/



#Funcs Infer VPA version (sec.) FA version (sec.)
Test LOC Orig. Pruned |Q| #I/O aut. ¬C Total OK? ¬C Total OK?
ex-prod 43 11 3 9 4 2.12 0.35 4.90 Y 0.10 4.76 Y
ex-cons 26 7 2 5 3 2.24
ex-prod 43 11 3 9 4 2.12 0.16 4.49 N 0.10 4.61 N
ex-cons-fig3 25 7 2 5 3 2.09
ex-prod-§2.5 43 11 3 10 5 2.29 0.70 4.87 N 0.10 5.09 N
ex-cons-§2.5 25 7 2 5 3 2.40
gzip-prod 4396 100 17 51 25 26.3 123 177 N* 101 157 N*
gzip-cons 4396 100 24 71 50 27.8
gzip-prod 4396 100 17 51 25 26.3 583 646 Y 102 156 Y
gzip-fix-cons 4389 100 24 73 51 27.8
bzip2-prod 5772 121 15 32 8 26.3 47.7 102 Y 47.1 101 Y
bzip2-cons 5772 121 13 29 10 27.4
png2ico-prod 806 39 1 22 29 9.48 14.4 33.1 Y 0.16 10.1 Y
ico-spec-cons n/a n/a n/a 26 28 n/a

Figure 7: The experiments. “LOC” is lines of code, “orig.” is the number of functions in the program,
“pruned” is that number after pruning. |Q| is the number of states in the inferred automaton (equal between
the two variants). “# I/O” is the (static) number of calls to I/O functions. “Infer aut.” is the time (sec.) to
produce the automata for every procedure in the program. (The output of this step is used for both the VPA
and FA versions.) For both the VPA and FA version, ¬C is the time (sec.) to determinize and complement the
automaton. (Determinizing each procedure’s FA is not included in this time, but takes a negligible amount
of time in all experiments.) “Total” is the end-to-end time for analysis, including the inference step. “OK?”
reports the output of PCCA.

much like those in our running example, except implemented
as macros. Because PCCA uses the control-flow graph gen-
erated by CodeSurfer/C, these macros are not visible, so
we replaced the macro definitions with functions. In ad-
dition, gzip calls the function that actually performs the
compression or decompression through a function pointer.
CodeSurfer/C performs points-to analysis, but PCCA does
not yet take such indirect calls into account; thus we mod-
ified the source to call the function directly. (This is not a
fundamental limitation of our technique, though imprecise
pointer analysis could lead to further imprecision.) A final
modification that applies in a similar manner to both gzip
and png2ico will be described in their respective sections.
As shown in Fig. 7, PCCA reports that some commonly-

used programs operate in a correct manner with regard to
their I/O behavior, regardless of the automaton model used.
PCCA also detects synthetic programming errors in small
examples, as shown by the second pair of examples.
As can be seen in the results, the potential VPA benefits

did not appear to affect the results of the analysis. (PCCA
does report different results for the example in §3.3, but
we do not include that experiment in Fig. 7.) This result
surprised us, and in the future we plan to look at additional
examples to see whether any of them benefit from VPAs.

gzip. The analysis of gzip reported a erroneous bug in the
distributed version; we examine the issues more closely here.
For gzip, the actual compressed data appears as just a se-
quence of bytes, so the compatibility check essentially is test-
ing the compatibility of the code that reads and writes the
header and footer. Fig. 8 describes the header format of a
gzip file. The code that writes this header (in zip.c) corre-
sponds very closely to the header format:

put_byte(GZIP_MAGIC[0]); /* magic header */

put_byte(GZIP_MAGIC[1]);

put_byte(DEFLATED); /* compression method */

...

put_byte(flags); /* general flags */

put_long(time_stamp);

...

put_byte((uch)deflate_flags); /* extra flags */

put_byte(OS_CODE);

For this code, PCCA infers the format specified in Fig. 8.
However, the code that reads the header is reported to

be incompatible; this is a false positive. Unlike the output
functions, input is always done one byte at a time:

stamp = (ulg)get_byte();

stamp |= ((ulg)get_byte()) << 8;

stamp |= ((ulg)get_byte()) << 16;

stamp |= ((ulg)get_byte()) << 24;

Because the consumer reads the time_stamp field as four
bytes instead of one long, it appears incompatible. This is
similar to the issue of granularity of types discussed in §2.2.

To address this, we replaced this code (and similar code
that reads long fields in the footer) with a new get_long

function. This function can be implemented in terms of
four bytewise reads; as long as PCCA is told that get_long
performs I/O, PCCA will recognize the call as reading a long.
(In addition to helping PCCA, we feel that the modified code
is cleaner: by having the code for reading and writing a
long in one place, it is easier for the programmer to see that
those functions agree, for instance by reading and writing
the bytes in the same order. It should even be possible to
use our techniques to perform this check as well, by giving
different types to each byte in the long.)

After making this change, PCCA reports that the programs
are compatible. It is unclear why there is such a dramatic
difference between the time it takes to determinize each ver-
sion of the consumer in the VPA version. The input VPAs
are of almost identical size and makeup, but it appears that
the extra long alphabet symbol in the revised version causes



ID1 ID2 CM FLG MTIME XFL OS ...

ID1, ID2 Fixed constants; gzip’s “magic number”
CM Compression algorithm
FLG Flags, as a bitmap
MTIME The modification time of the original file
XFL Compression-method-specific flags
OS ID of the OS where the file was compressed

Figure 8: The specification of gzip’s header format.
Each field is 1 byte except for MTIME, which is 4.

the determinized VPA to be much bigger (176 states vs. 27).
(Note that neither of these automata are minimal; it could
be that the extra size in the revised version could be reduced
to be more in line with the original version.) The sizes of
the two automata in the FA version are much closer.

png2ico. For png2ico, we demonstrate a slightly different
application of our techniques. Instead of comparing a pro-
ducer to a consumer, we compare a producer to a manually-
crafted specification acting as the consumer. This checks
that the producer emits only messages that are allowed by
the specification. In the case of png2ico, we see that the
program indeed appears to conform to the specification.
We manually crafted an automaton that describes the for-

mat of an icon file [18] and used that as the consumer. For
the ICO format, this was reasonably straightforward and
took less than two hours. The automaton allows PCCA to
check header information, similar to gzip but with a much
richer format. An icon file can hold several different images.
In addition to a global header (that mainly says how many
images there are), there is a directory that gives the offset
and other information about each image and a header for
the image data itself. We can check all of this, leaving only
the raw image data itself appearing as a “meaningless” byte
stream. (We cannot check that the image headers actually
appear at the correct offsets, however.)
While most of the output from png2ico is done through

the functions WriteByte, WriteWord, and WriteDWord, there
are three places where a raw write is done using fwrite.
Two of these locations write a sequence of raw bytes of an
image to the file. We could reasonably infer just byte* for
those calls (similar to how the actual compressed data comes
across in gzip), however we decided to put in a bit of extra
effort to obtain higher confidence in the result. The two
fwrite calls correspond to the “xor mask” and “and mask”
of the bitmap. We manually specified that the first fwrite
call outputs “xor mask” bytes and the second call outputs
“and mask” bytes, and required that each bitmap in the
icon file contains a sequence of “xor mask” bytes followed by
a sequence of “and mask” bytes. However, there is one call
to WriteByte amongst those writing the “xor mask”, so we
had to manually change the type of that call to match that
of the preceding fwrite. (We repeated the experiment but
just used byte*, and PCCA still reported compatibility.)
The third call to fwrite is used instead of a sequence of

four WriteByte calls; the reason the author choose this is
not clear. We replaced this fwrite with the four individual
WriteByte calls. In the future we hope to implement the

ability to automatically break apart a write such as this, to
make such manual intervention unnecessary.

We only report the results for the version with specific
types. The other variants we tried did not have much effect.

6. RELATED WORK

Inferring Input or Output Formats of Programs.
PCCA’s format-inference techniques, as well as the problem
in general, was inspired by the File Format Extractor tool
(FFE) by Lim et al. [23]. FFE infers output models of x86
executables using a weighted pushdown system. We skip
the WPDS step, performing the procedure discussed in §2.2
instead. The minimization we perform on each procedure’s
model gets us the benefits intended by FFE’s use of WPDSs,
and produces far smaller automata.

Inferring input formats of executables has received much
attention lately, particularly in the context of protocol re-
verse engineering for network security [7, 12, 34, 24, 25].
However, most of this work involves the use of dynamic-
analysis techniques.

Komondoor and Ramalingam developed methods to re-
cover an object-oriented data model from a program written
in weakly-typed languages, such as Cobol [21]. It is capa-
ble of recovering information about the record structure of
entities that occur in a file, as well as information about
subtyping relationships between such entities.

Checking Compatibility/Conformance. Rajamani and
Rehof [30] developed a way to check that an implementation
model I extracted from a message-passing program conforms
to a specification S. Their goal was to support modular rea-
soning; they established that if I conforms to S and P is
any environment in which P and S cannot starve waiting to
send or receive messages, then P and I also cannot starve.

A related question is checking conformance of software
components as software evolves and components are re-
placed or upgraded. Clarke et al. [9] survey several ap-
proaches that have been devised to answer the question,
including interface automata, behavioral subtyping [26],
input/output-based compatibility of upgrades [27], and
model checking.

There have also been many papers on session types, start-
ing with [17, 15, 29]. In some sense, this body of work has
the same goal that we have—helping to ensure that differ-
ent components communicate properly—but their approach
is far different. Session types, at a high level, convey much
the same information as our inferred languages. (For in-
stance, in the syntax of [17], “↑int; (↑char & ↑double)” is
the type of a component that emits an int followed by either
a char or double.) Some recent work, e.g. [19], is integrating
session types into common programming languages.

In most of this literature, session types need to be incor-
porated into the language being used to write the compo-
nents, which means they cannot be applied to legacy soft-
ware without rewriting it. In contrast to these papers, our
work analyzes existing C/C++ code for compatibility by in-
ferring the format. In return for this re-engineering, session
types support richer interactions than we currently do; most
notably, it can specify bidirectional communications.

Recently there have been advances in inferring session
types, which is much closer to our goal. Mezzina [28] and



Collingbourne and Kelly [11] each developed such an algo-
rithm. Collingbourne’s is particularly related, as they im-
plemented their technique in a source-to-source translator
for C++. However, neither paper really gives enough infor-
mation on how it performs in practice to compare to PCCA.
In a similar vein – and actually of equivalent power –

are channel contracts from the Singularity OS [13]. Chan-
nel contracts specify a protocol between two endpoints as
a state machine, where each state specifies messages that
each endpoint can send or receive. Fähndrich et al. describe
an analysis that verifies certain memory-safety properties in
programs that use channel contracts. More recent work has
analyzed channel contracts with respect to deadlocks [33]
and developed formal type theories for channels [4].

7. FUTURE WORK
We have a number of extensions to the basic idea described

in this paper in mind; we describe two of them here. The
discussion in this paper is framed from the point of view that
the VPA alphabet consists of the actual programming lan-
guage types used by the programs. However, our approach
is more flexible. It is possible to have even finer-granularity
types. To do this, we would use types that do not corre-
spond to those in C. For instance, it would be possible to
have an int_ascii symbol for an integer expressed in ASCII
digits (e.g., the three-byte sequence “255”) and int_bin for
an integer in binary (e.g., the four bytes 0x000000FF). (§2.5
described how a particular way of using a phony I/O call to
help PCCA detect bugs; this idea expands that technique.)
It should also be possible to extend our work to include in-
formation about the values that are read or written—for
instance, to specify that write_int outputs a “4” or that
write_int outputs a value in the range “[4,7]” (and simi-
larly for the input operations of the consumer). This would
require a change to the compatibility portion as well.
Second, there are some engineering tasks that should make

it easier to get more helpful results. For example, we can im-
plement the technique mentioned in the remark at the end
of §2.2, where we make it possible to break apart automat-
ically a structure or array type into its component fields.
This would allow the producer and consumer to use data
structures that are organized differently from one another
but have the same semantic meaning, and would avoid the
most invasive changes we had to make in our experiments.

8. REFERENCES
[1] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and

M. Mohri. OpenFst: A general and efficient weighted
finite-state transducer library. In CIAA, 2007.

[2] R. Alur and P. Madhusudan. Visibly pushdown languages.
In STOC, 2004.

[3] R. Alur and P. Madhusudan. Adding nesting structure to
words. J. ACM, 56(3), 2009.

[4] V. Bono, C. Messa, and L. Padovani. Typing copyless
message passing. In ESOP, 2011.

[5] A. Bouajjani, J. Esparza, and O. Maler. Reachability
analysis of pushdown automata: Application to model
checking. In CONCUR, 1997.

[6] A. Burton, A. Thakur, E. Driscoll, , and T. Reps. WALi:
Nested-word automata. TR-1675, Comp. Sci. Dept., Univ.
of Wisconsin, Madison, WI, July 2010.

[7] J. Caballero and D. Song. Polyglot: Automatic extraction
of protocol format using dynamic binary analysis. In CCS,
2007.

[8] D. Caucal. On the regular structure of prefix rewriting. In
CAAP, 1990.

[9] E. Clarke, N. Sharygina, and N. Sinha. Program
compatibility approaches. In FMCO, 2005.

[10] CodeSurfer system.
www.grammatech.com/products/codesurfer.

[11] P. Collingbourne and P. Kelly. Inference of session types
from control flow. ENTCS, 238(6), 2010.

[12] W. Cui, M. Peinado, K. Chen, H. Wang, and L. Irun-Briz.
Tupni: Automatic reverse engineering of input formats. In
CCS, 2008.

[13] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson,
G. Hunt, J. R. Larus, and S. Levi. Language support for
fast and reliable message-based communication in
Singularity OS. In EuroSys. 2006.

[14] A. Finkel, B.Willems, and P. Wolper. A direct symbolic
approach to model checking pushdown systems. ENTCS, 9,
1997.

[15] S. Gay, V. Vasconcelos, and A. Ravara. Session types for
inter-process communication. TR-2003-133, Dept. of
Computing Sci., Univ. of Glasgow, March 2003.

[16] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and
language for building system-specific, static analyses. In
PLDI, 2002.

[17] K. Honda. Types for dyadic interaction. In CONCUR. 1993.
[18] J. Hornick. Icons. http:

//msdn.microsoft.com/en-us/library/ms997538.aspx.
[19] R. Hu, D. Kouzapas, O. Pernet, N. Yoshida, and K. Honda.

Type-safe eventful sessions in java. In ECOOP. 2010.
[20] N. Kidd, A. Lal, and T. Reps. WALi: The Weighted

Automaton Library, 2007.
www.cs.wisc.edu/wpis/wpds/download.php.

[21] R. Komondoor and G. Ramalingam. Recovering data
models via guarded dependences. In WCRE, 2007.

[22] T. Kremenek, P. Twohey, G. Back, A. Ng, and D. Engler.
From uncertainty to belief: inferring the specification
within. In OSDI, 2006.

[23] J. Lim, T. Reps, and B. Liblit. Extracting output formats
from executables. In WCRE, 2006.

[24] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic protocol
format reverse engineering through context-aware
monitored execution. In NDSS, 2008.

[25] Z. Lin and X. Zhang. Deriving input syntactic structure
from execution. In FSE, 2008.

[26] B. Liskov and J. Wing. Behavioral subtyping using
invariants and constraints. In H. Bowman and J. Derrick,
editors, Formal Methods for Distributed Processing: An
Object Oriented Approach. Cambridge Univ. Press, 2001.

[27] S. McCamant and M. Ernst. Early identification of
incompatibilities in multicomponent upgrades. In ECOOP,
2004.

[28] L. Mezzina. How to infer finite session types in a calculus of
services and sessions. In D. Lea and G. Zavattaro, editors,
Coordination Models and Languages. 2008.

[29] O. Nierstrasz and M. Papathomas. Viewing object as
patterns of communicating agents. In OOPSLA, 1990.

[30] S. Rajamani and J. Rehof. Conformance checking for
models of asynchronous message passing software. In CAV,
2002.

[31] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In POPL, 1995.

[32] S. Schwoon. Model-Checking Pushdown Systems. PhD
thesis, TUM, Munich, Germany, July 2002.

[33] Z. Stengel and T. Bultan. Analyzing Singluarity channel
contracts. In ISSTA. 2009.

[34] G. Wondracek, P. Comparetti, C. Kruegel, and E. Kirda.
Automatic network protocol analysis. In NDSS, 2008.


