
Recovery of Class Hierarchies and Composition
Relationships from Machine Code ?

Venkatesh Srinivasan1 and Thomas Reps1,2

1 University of Wisconsin; Madison, WI, USA
2 GrammaTech, Inc.; Ithaca, NY, USA

Abstract. We present a reverse-engineering tool, called Lego, which
recovers class hierarchies and composition relationships from stripped
binaries. Lego takes a stripped binary as input, and uses information
obtained from dynamic analysis to (i) group the functions in the binary
into classes, and (ii) identify inheritance and composition relationships
between the inferred classes. The software artifacts recovered by Lego
can be subsequently used to understand the object-oriented design of
software systems that lack documentation and source code, e.g., to en-
able interoperability. Our experiments show that the class hierarchies
recovered by Lego have a high degree of agreement—measured in terms
of precision and recall—with the hierarchy defined in the source code.

1 Introduction

Reverse engineering of software binaries is an activity that has gotten an in-
creasing amount of attention from the academic community in the last decade
(e.g., see the references in [2, §1]). However, most of this work has had the goal
of recovering information to make up for missing symbol-table/debugging in-
formation [1, 18, 24, 16, 6, 10], to create other basic intermediate representations
(IRs) similar to the standard IRs that a compiler would produce [2, 3, 22], or to
recover higher-level protocol abstractions or file formats [5, 17, 9].

In this paper, we address a problem that is complementary to prior work
on reverse engineering of machine code,3 namely, the problem of recovery of
class structure at the machine-code level. In particular, we present a technique
to group a program’s procedures into classes, and to identify inheritance and
composition relationships between classes.

Class hierarchies and composition relationships recovered from machine code
can be used to understand the object-oriented design of legacy software bina-
ries while porting them to newer platforms. They can also be used while de-
signing new software that is aimed to be interoperable with existing software

?
Supported, in part, by NSF under grants CCF- {0810053, 0904371}; by ONR under grants N00014-
{09-1-0510, 11-C-0447}; by ARL under grant W911NF-09-1-0413; by AFRL under grants FA9550-
09-1-0279 and FA8650-10-C-7088; and by DARPA under cooperative agreement HR0011-12-2-
0012. Any opinions, findings, and conclusions or recommendations expressed in this publication
are those of the authors, and do not necessarily reflect the views of the sponsoring agencies.
T. Reps has an ownership interest in GrammaTech, Inc., which has licensed elements of the
technology reported in this publication.

3
We use the term “machine code” to refer generically to low-level code, and do not distinguish
between actual machine-code bits/bytes and assembly code to which it is disassembled.

2 Venkatesh Srinivasan and Thomas Reps

binaries. For instance, in the United States, the Digital Millennium Copyright
Act (DMCA) prohibits users from circumventing access-control technologies [8].
However, the DMCA specifically grants a small number of exceptions, including
one for reverse engineering for the purpose of interoperability (§1201(f)). Others
[6] have used similar artifacts as fingerprints of code polymorphic viruses for
malware detection.

We present a tool, called Lego, which takes a stripped executable as input and
uses dynamic analysis to recover the class structure of the program, including
inheritance and composition relationships. Lego is based on two common features
of object-oriented languages. The first is the this-pointer idiom: at the machine-
code level, the object pointer is passed as an explicit first argument to a class’s
methods. Lego exploits this idiom to group calls to instance methods (methods
that have the this-pointer as an explicit first argument), including dynamically
dispatched ones, that have a common receiver object. The second idiom is the
presence of a unique finalizer method in most class declarations, which is called at
the end of an object’s lifetime to do cleanup. Lego exploits this idiom, along with
the aforementioned method-call groupings, to group methods into classes, and
to recover inheritance and composition relationships between recovered classes.

We tested Lego on ten open-source applications. Using the class structure
declared in the source code as ground truth, the classes recovered by Lego had
an average precision of 88% and an average recall of 86.7%.

The contributions of our work include the following:

– We show that even if an executable is stripped of symbol-table and de-
bugging information, and, even if run-time-type information (RTTI) is not
present in the executable, it is still possible to reconstruct a class hierarchy,
including inheritance and composition relationships, with fairly high accu-
racy. Our technique is based on common semantic features of object-oriented
languages, and is not tied to a specific language, compiler, or executable for-
mat. It can be used on any binary generated from a language that uses the
this-pointer and the unique-finalizer features, and a compiler that faithfully
implements those features.

– Our methods have been implemented in a tool, called Lego, that uses dy-
namic analysis to recover a class hierarchy. (Because Lego uses dynamic
analysis, it can recover classes only for the parts of the program that are
exercised during execution.)

– We present a scoring scheme that takes the structure of class hierarchies into
account while scoring a recovered hierarchy with respect to a ground-truth
hierarchy.

– Lego is immune to certain compiler idiosyncrasies and optimization side-
effects, such as reusing stack space for different objects in a given procedure
activation-record.

2 Overview

Lego recovers class structure from binaries in two steps:

Recovery of Class Hierarchies from Machine Code 3

class Vehicle {
public:
Vehicle();
∼Vehicle();
void print_vehicle();

};

class GPS {
public:
GPS();
∼GPS();

};

class Car : public Vehicle {
public:
Car();
Car(int n);
∼Car();
void print_car();

private:
GPS g;

};

class Bus : public Vehicle {
public:
Bus();
∼Bus();
void print_bus();

private:
void helper();

};

void foo(bool flag) {
if (flag) {
Car c;
c.print_car();

} else {
Car c(10);
c.print_car();

}
}

int main() {
Vehicle v;
Bus b;
v.print_vehicle();
foo(true);
foo(false);
b.print_bus();
return 0;

}

Fig. 1: C++ program fragment, with inheritance and composition.

1. Lego executes the program binary, monitoring the execution to gather data
about the various objects allocated during execution, the lifetime of those
objects, and the methods invoked on those objects. Once the program ter-
minates, Lego emits a set of object-traces (defined below) that summarizes
the gathered data.

2. Lego uses the object-traces as evidence, and infers a class hierarchy and
composition relationships that agree with the evidence.

This section presents an example to illustrate the approach.
In our study, all of the binaries analyzed by Lego come from source-code

programs written in C++. Fig. 1 shows a C++ program fragment, consisting of
four class definitions along with definitions of the methods main and foo. Classes
Vehicle, Car, and Bus constitute an inheritance hierarchy with Vehicle being
the base class, and Car and Bus being derived classes. There is a composition
relationship between Car and GPS. (Car has a member of class GPS.) Assume
that, in the class definition, helper() is called by ∼Bus(). Also assume that
the complete version of the program shown in Fig. 1 is compiled and stripped
to create a stripped binary.

Lego takes a stripped binary and a test input or inputs, and does dynamic
binary instrumentation. When the execution of the binary under the test input
terminates, Lego emits a set of object-traces, one object-trace for every unique
object identified by Lego during the program execution. An object-trace of an
object O is a sequence of method calls and returns that have O as the receiver
object. Additionally, the set of methods directly called by each method in the
sequence is also available in the object-trace. Concretely, an object-trace for an
object O is a sequence of object-trace records. Each object-trace record has the
following form,

〈method,C |R, calledMethods〉,

where method denotes a method that was called with O as the receiver. Because
we are dealing with binaries, methods are represented by their effective addresses,

4 Venkatesh Srinivasan and Thomas Reps

v_1:
Vehicle() C
Vehicle() R
print_vehicle() C
print_vehicle() R
∼Vehicle() C
∼Vehicle() R

g_1:
GPS() C
GPS() R
∼GPS() C
∼GPS() R

g_2:
GPS() C
GPS() R
∼GPS() C
∼GPS() R

c_1:
Car() C
Vehicle() C
Vehicle() R
Car() R

Vehicle()
GPS()

print_car() C
print_car() R
∼Car() C
∼Vehicle() C
∼Vehicle() R
∼Car() R
∼GPS()
∼Vehicle()

c_2:
Car(int) C
Vehicle() C
Vehicle() R
Car(int) R

Vehicle()
GPS()

print_car() C
print_car() R
∼Car() C
∼Vehicle() C
∼Vehicle() R
∼Car() R
∼GPS()
∼Vehicle()

b_1:
Bus() C
Vehicle() C
Vehicle() R
Bus() R

Vehicle()
print_bus() C
print_bus() R
∼Bus() C
helper() C
helper() R
∼Vehicle() C
∼Vehicle() R
∼Bus() R

helper()
∼Vehicle()

Fig. 2: Object-traces for the example program. The records in the return-only suffixes

are underlined.

and so method is an effective address. C denotes a call event for method ; R
denotes a return event. calledMethods denotes the set of effective addresses of
methods directly called by method. Each method in calledMethods can have any
receiver object (not necessarily O). Object-traces are the key structure used for
recovering class hierarchies and composition relationships.

In the rest of this section, when we use the term “method” in the context
of object-traces or recovered classes, we are referring to the effective address of
the method. However, to make our examples easier to understand, we will use
method names rather than method effective addresses.

Fig. 2 shows the set of object-traces obtained from executing our example
binary with Lego. In the figure, the objects encountered by Lego are denoted
by appending instance numbers to the source-code object names: c 1 and c 2

correspond to different objects in two different activations of method foo, and
g 1 and g 2 correspond to the instances of the GPS class in those objects.

We now describe how Lego obtains the class hierarchy and composition re-
lationships from the set of object-traces. Lego computes a fingerprint for each
object-trace. The fingerprint is a string obtained by concatenating the methods
that constitute a return-only suffix of the object-trace. For our example, the
fingerprint for the object-trace of v 1 is ∼Vehicle(), and for the object-trace
of c 1, it is ∼Vehicle() ∼Car(). The object-trace records that are underlined
in Fig. 2 contribute to fingerprints. A fingerprint represents the methods that
were involved in the cleanup of an object. A fingerprint’s length indicates the
possible number of levels in the inheritance hierarchy from the object’s class to
the root. The methods in a fingerprint represent the potential finalizers in the
class and its ancestor classes.

Next, Lego constructs a trie by inserting the fingerprints into an empty trie
and creating a new trie node for each new method encountered. For the finger-
prints of the object-traces in Fig. 2, the constructed trie is shown in Fig. 3. Each

Recovery of Class Hierarchies from Machine Code 5

Fig. 3: Trie constructed by Lego using
the object-trace fingerprints for the ex-
ample program

Trie
node

Methods in the recovered class

1 Vehicle(), print vehicle(), ∼Vehicle()
2 GPS(), ∼GPS()
3 Bus(), print bus(), ∼Bus(), helper()

4 Car(), Car(int), print car(), ∼Car()

Table 1: Methods in the set of recovered
classes.

node’s key is a finalizer method. Event order (i.e., left-to-right reading order in
Fig. 2) corresponds to following a path down from the root of the trie (cf. Fig. 3).

Lego links each object-trace ot to the trie node N that “accepts” ot ’s fin-
gerprint. In particular, N ’s key is the last method in ot ’s fingerprint. In our
example, the object-trace of v 1 is linked to node 1 of Fig. 3, the object-traces
of g 1 and g 2 to node 2, the object-trace of b 1 to node 3, and the object-traces
of c 1 and c 2 to node 4.

Using the linked object-traces, Lego computes, for each trie node, the methods
set and the called-methods set. For a trie node N and a set of object-traces OTN

linked to N, N ’s methods set is the set of methods that appear in some object-
trace record in OTN ; N ’s called-methods set is the set union of the calledMethods
field of the last object-trace record in each object-trace in OTN . For instance,
node 4’s methods set is {Car(), Car(int), Vehicle(), print car(), ∼Car(),
∼Vehicle()}, and its called-methods set is {∼GPS(), ∼Vehicle()}. If methods
present in the methods set of ancestor nodes are also present in the methods set
of descendants, Lego removes the common methods from the descendants. The
resulting trie nodes and their methods sets constitute the recovered classes, and
the resulting trie constitutes the recovered class hierarchy. The methods of each
recovered class are shown in Table 1.

To determine composition relationships between recovered classes, for all
pairs of trie nodes m and n, where neither is an ancestor of the other, Lego
checks if n’s key is present in the called-methods set of m. If so, the recovered
class corresponding to m has a member whose class is the one corresponding
to n, and thus there exists a composition relationship between m and n. For
instance, in our example, the objects c 1 and c 2 (associated with node 4) both
call ∼GPS(), which is the key of node 2; consequently, Lego reports a composition
relationship between nodes 4 and 2.

In this example, the recovered classes exactly match the class definitions from
the source code. However, this example illustrates an idealized case, and for real
applications an exact correspondence may not be obtained.

Threats to validity. There are five threats to the validity of our work.
1. The binaries given as input to Lego must come from a language that uses

the this-pointer idiom.
2. Lego assumes that every class has a unique finalizer method that is called at

the end of an object’s lifetime. If a class has no finalizer or multiple finalizers,

6 Venkatesh Srinivasan and Thomas Reps

the information recovered by Lego might not be accurate. Lego also assumes
that a parent-class finalizer is called only at the end of a child-class finalizer.

In C++, the class destructor acts as the finalizer. Even if the programmer
has not declared a destructor, in most cases, the compiler will generate one.
A C++ base-class’s destructor is called at the very end of a derived-class’s
destructor. The C++ compiler will sometimes create up to three versions of
the class destructor in the binary [14]. Information that certain methods are
alternative versions of a given destructor can be passed to Lego. However,
our experiments show that there is little change in the results when such
information is not provided to Lego (Fig. 9).

3. If the binary has stand-alone methods that do not belong to any class, but
have an object pointer as the first argument, Lego might include those stand-
alone methods in the set of methods of some recovered class. Although the
recovered classes will not match the source-code class structure, it is arguable
that they reflect the “actual” class structure used by the program.

In addition, stand-alone methods that have a non-object pointer as the
first argument may end up in stand-alone classes that are not part of any
hierarchy.

4. Lego relies on the ability to observe a program’s calls and returns. Ordinarily,
these actions are implemented using specific instructions—e.g., call and ret

in the Intel x86 instruction set. Code that is obfuscated—either because it
is malicious, or to protect intellectual property—may deliberately perform
calls and returns in non-standard ways.

5. Inlining of method calls also causes methods to be unobservable. In particu-
lar, if a method has been uniformly inlined by the compiler, it will never be
observed by Lego.

For real software systems, these issues are typically not completely avoidable.
Our experiments are based on C++, which uses the this-pointer idiom, and
issues 4 and 5 were deemed out of scope. The experiments show that, even if
issues 2 and 3 are present in an executable, Lego recovers classes and a class
hierarchy that is reasonably accurate.

3 Algorithm

Lego needs to accomplish two tasks: (i) compute object-traces, and (ii) identify
class hierarchies and composition relationships. In this section, we describe the
algorithms used during these two phases of Lego.

3.1 Phase 1: Computing Object-Traces

The input to Phase 1 is a stripped binary; the output is a set of object-traces.
The goal of Phase 1 is to compute and emit an object-trace for every unique
object allocated during the program execution. This ideal is difficult to achieve
because Lego works with a stripped binary and a runtime environment that is
devoid of object types. We start by presenting a näıve algorithm; we then present
a few refinements to obtain the algorithm that is actually used in Lego. In the

Recovery of Class Hierarchies from Machine Code 7

Algorithm 1 Algorithm to compute full object-traces

Input: Currently executing instruction I
1: if InstrFW.isCall(I) then
2: m← InstrFW.eaOfCalledMethod(I)
3: ShadowStack.top().calledMethods.insert(m)
4: ID← InstrFW.firstArgValue(I)
5: expectedRetAddr← InstrFW.eaOfNextInstruction(I)
6: ShadowStack.push(〈ID, expectedRetAddr, ∅〉)
7: OTM[ID].append(m, C, ∅)
8: else if InstrFW.isReturn(I) then
9: if not IgnoreReturn(I) then

10: m← InstrFW.eaOfReturningMethod(I)
11: 〈ID, expectedRetAddr, calledMethods〉 ← ShadowStack.top()
12: ShadowStack.pop()
13: OTM[ID].append(m, R, calledMethods)
14: end if
15: else
16: // Do Nothing
17: end if

algorithms that follow, a data structure called the Object-Trace Map (OTM) is
used to record object-traces. The OTM has the type: OTM:ID → ObjectTrace,
where ID is a unique identifier for a runtime object that Lego has identified.

3.1.1 Base algorithm. A näıve first cut is to assume that every method in
the binary belongs to some class, and to treat the first argument of every method
as a valid this pointer (address of an allocated object). When Lego encounters
a call instruction, it obtains the first argument’s value, treats it as an ID, and
creates an object-trace call-record for the called method. It then appends the
record to ID ’s object-trace in the OTM. (It creates a new object-trace if one does
not already exist.) The highlighted lines of Alg. 1 show this strawman algorithm.

The algorithms of Phase 1 work in the context of a dynamic binary-
instrumentation framework. They use the framework to answer queries (rep-
resented as calls to methods of an InstrFW object) about static properties of the
binary (“Is this instruction a call?”) and the dynamic execution state. (“What
is the value of the first argument to the current call?”) In this version of the
algorithm, an ID is a machine integer. An ID for which there is an entry in the
OTM corresponds to the value of the first argument of some method called at
runtime.

To enable the strawman algorithm to append an object-trace return-record
for a method m, Lego must remember the value of m’s first argument to use as
ID when it encounters m’s return instruction. To accomplish this, Lego uses
a shadow stack. Each shadow-stack frame corresponds to a method m; a stack
frame is a record with a single field, firstArgValue, which holds the value of m’s
first argument. At a call to m, Lego pushes the value of m’s first argument on
the shadow stack. At a return from m, Lego obtains the value at the top of the

8 Venkatesh Srinivasan and Thomas Reps

Algorithm 2 Algorithm IgnoreReturn

Input: Instruction I
Output: true or false
1: actualRetAddress← InstrFW.targetRetAddr(I)
2: 〈firstArgValue, expectedRetAddr, calledMethods〉 ← ShadowStack.top()
3: if actualRetAddr 6= expectedRetAddr then
4: if ShadowStack.matchingCallFound(actualRetAddr) then
5: ShadowStack.popUnmatchedFrames(actualRetAddr)
6: else
7: return true
8: end if
9: end if

10: return false

shadow stack, treats it as the ID, creates an object-trace return-record for m,
and appends it to ID ’s object-trace in the OTM. It then pops the shadow stack.

Due to optimizations, or obfuscations that use calls or returns as obfuscated
jumps [21], some binaries may have calls with unmatched returns, and returns
with unmatched calls. Unmatched calls and returns would make Lego’s shadow
stack inconsistent with the runtime stack, leading to incorrect object-traces. To
address this issue, Lego does call-return matching. The actions taken are those
of line 9 of Alg. 1, and Alg. 2.

To record the methods called by a method in an object-trace record, we
add another field, calledMethods, to each shadow-stack frame. For a frame cor-
responding to method m, calledMethods is the set of methods that are directly
called by m (dynamically). The basic algorithm that computes full object-traces
along with call-return matching is shown in Alg. 1 (both the highlighted and
non-highlighted lines). Note that the calledMethods set is empty for call-records.

3.1.2 Blacklisting methods. Alg. 1 records the necessary details that we
want in object-traces. However, because Alg. 1 assumes that all methods receive a
valid this pointer as the first argument, stand-alone methods and static methods,
such as the following would end up in object-traces:

void foo();

static void Car::setInventionYear(int a);

The algorithm actually used in Lego tries to prevent methods that do not re-
ceive a valid this pointer as their first argument from appearing in object-traces.
Because inferring pointer types at runtime is not easy, when the instrumentation
framework provides the first argument’s value v for a method m, Lego checks
whether v could be interpreted as a pointer to some allocated portion of the
global data, heap, or stack. If so, Lego heuristically treats v as a pointer (i.e.,
it uses v as an object ID); if not, Lego blacklists m. Once m is blacklisted, it is
not added to future object-traces; moreover, if m is present in already computed
object-traces, it is removed from them.

Recovery of Class Hierarchies from Machine Code 9

class A {
. . .
printA();
};
class B {
. . .
printB();
};

void foo() {
A a;
a.printA();

}
void bar() {
B b;
b.printB();

}

int main() {
foo();
bar();
return 0;

}

Fig. 4: Example program to illustrate

reuse of stack space for objects in different

activation records.

int main() {
{
Foo f;

}
...

{
Bar b;

}
...
}

(a) (b)

Fig. 5: (a) Example to illustrate reuse of

stack space for objects in the same activa-

tion record; (b) a stack snapshot.

The metadata maintained by Lego is only an estimate. For example, Lego
keeps track of the stack bounds by querying the instrumentation framework for
the value of the stack pointer at calls and returns. If the estimates are wrong, it
is possible for a method that receives a valid this pointer to be blacklisted. If the
estimates are correct, methods that receive a valid this pointer are unlikely to
ever be blacklisted. In contrast, methods that do not receive a valid this pointer
are likely to be blacklisted at some point, and thereby prevented from appearing
in any object-trace. One final point is worth mentioning: methods that expect
a valid pointer as their first argument, but not necessarily a valid this pointer,
will not be blacklisted (threat 3 to the validity of our approach).

3.1.3 Object-address reuse. §3.1.2 presented a version of the algorithm to
compute object-traces that, on a best-effort basis, filters out methods that do
not receive a valid this pointer as the first argument. However, there are several
possible ways for the methods of two unrelated classes to appear in the same
object-trace. Consider the example shown in Fig. 4. Assuming standard compi-
lation and runtime environments, a and b will be allocated at the same address
on the stack (but in two different activation-record instances). As a consequence,
printA() and printB() will end up in the same object-trace. Methods of un-
related classes can also end up in the same object-trace when the same heap
address is reused for the allocation of different objects of different classes.

Lego detects reuse of the same object address by versioning addresses. When
Lego treats the value v of a method’s first argument as a valid this pointer, Lego
associates a version number with v. If v is deallocated (i.e., if it is freed in the
heap, or if the method in whose activation record v was allocated returns), Lego
increments the version number for v. An ID now has the form 〈Addr, n〉, where
Addr is the object address and n is the version number.

3.1.4 Spurious traces. Even with address versioning, it is possible for meth-
ods of two unrelated classes to end up in the same object-trace. This grouping
of unrelated methods in the same object-trace is caused by the idiosyncrasies
of the compiler in reusing stack space for objects in the same activation record
(as opposed to reusing stack space in different activation records, which §3.1.3
dealt with). We call such traces spurious traces. Consider the example program
and its stack snapshot shown in Fig. 5. Because f and b are two stack-allocated

10 Venkatesh Srinivasan and Thomas Reps

class A {
∼A();

};

class B:
public A {
∼B();

};

class C:
public B {
∼C();

};

class D:
public C {
∼D();

};

∼D() C
∼C() C
∼B() C
∼A() C

∼A() R
∼B() R
∼C() R
∼D() R

(a) (b)

Fig. 6: (a) Example program, and (b) object-trace snippet to illustrate an object-trace

fingerprint (underlined returns).

objects in disjoint scopes, the compiler could use the same stack space for f and
b (at different moments during execution). Note that object-address versioning
does not solve this issue because an object going out of scope within the same
activation record cannot be detected by a visible event (such as a method return
or a heap-object deallocation).

To handle this issue, once the object-traces have been created by Alg. 1, Lego
computes a set of potential initializers and finalizers by examining each object-
trace ot. It adds the method of ot ’s first entry to the set of potential initializers,
and the method of ot ’s last entry to the set of potential finalizers. It then scans
each object-trace, and splits a trace at any point at which one of the potential
finalizers is immediately followed by one of the potential initializers. This scheme
breaks up spurious traces into correct object-traces. Note that if a class does not
have an initializer or a finalizer, many methods of that class might end up in the
set of potential initializers and the set of potential finalizers. As a consequence,
non-spurious object-traces of objects of that class might be split. We examine
the effects of splitting and not splitting spurious traces in our experiments (§4.4).

3.2 Phase 2: Computing Class Hierarchies

If the application does not use inheritance, the object-trace of an object will
contain only the methods of the object’s class. However, if the application uses
inheritance, the object-trace of an object will contain methods of the object’s
class, plus those of the class’s ancestors. In this section, we describe how Lego
teases apart methods of different classes in a hierarchy. The input to this phase
is a set of object-traces from Phase 1. The output is the recovered hierarchy.

3.2.1 Identifying candidate classes. A common semantics in object-
oriented languages is that a derived class’s finalizer cleans up the derived part
of an object, and calls the base class’s finalizer just before returning (to clean
up the base part of the object). This behavior is visible in the object-traces that
Lego gathers. Consider the example program and object-trace snippet of a D ob-
ject shown in Fig. 6. The snippet covers all of the records between and including
the last return record and its matching call record. (The values of calledMethods
fields of the object-trace records are omitted.)

We construct a string by concatenating the method fields that appear in the
return-only suffix of an object-trace. We call such a string the fingerprint of the
object-trace. We can learn two useful things from the fingerprint.

Recovery of Class Hierarchies from Machine Code 11

Algorithm 3 Algorithm to populate candidate classes

Input: OTM, Trie T
Output: Trie T with candidate classes populated with methods
1: for each object-trace ot in OTM do
2: lastRec← ot.getLastRecord()
3: m← lastRec.method
4: c← T.getCandidateClassWithFinalizer(m)
5: c.calledMethods← lastRec.calledMethods
6: for each object-trace record r in ot do
7: m′ ← r.method
8: c.methods.insert(m′)
9: end for

10: end for

1. Because the fingerprint contains the methods involved in the cleanup of the
object and its inherited parts, a fingerprint’s length indicates the number of
levels in the inheritance hierarchy from the object’s class to the root.

2. The methods in the fingerprint correspond to potential finalizers in the class
and its ancestor classes.
Lego computes a fingerprint for every computed object-trace, and creates

a trie from the fingerprints (see §2). Every node in the trie corresponds to a
candidate class, with the node’s key constituting the candidate class’s finalizer.

3.2.2 Populating candidate classes. Every computed object-trace ot is
linked to the trie node (candidate class) that accepts ot ’s fingerprint. Every
candidate class has a methods set and a called-methods set. The methods set
represents the set of methods in the object-traces linked to the candidate class,
and is used in the computation of the final set of methods in each recovered
class (see §3.2.3). The called-methods set represents the methods called by the
finalizer of the candidate class, and is used to find composition relationships
between recovered classes. The algorithm to populate the sets is given as Alg. 3.

3.2.3 Trie reorganizations. Some methods may appear both in the methods
set of a candidate class C and candidate classes that are descendants of C. To
remove this redundancy, Lego processes the candidate classes in the trie from
the leaves to the root, and eliminates the redundant methods from the methods
sets of candidate classes of descendants.

If two candidate classes C1 and C2, neither of which is an ancestor of the
other, have a common method m in their methods sets, m is removed from
the methods sets of C1 and C2, and put in the methods set of their lowest
common ancestor. This reorganization handles cases where a class C was never
instantiated during the program’s execution, but its descendants C1 and C2

were, and the descendants had methods inherited from C in their object-traces.
After these two transformations, if a candidate class has no methods in its

methods set, its trie node is removed from the trie. The resulting candidate

12 Venkatesh Srinivasan and Thomas Reps

Algorithm 4 Algorithm to find composition relationships

Input: Trie T
Output: Set of candidate class pairs 〈A,B〉 such that A has a member whose class is

B
1: compositionPairs = ∅
2: for each pair of non-ancestors 〈c, c′〉 in T do
3: if c′.finalizer ∈ c.calledMethods then
4: compositionPairs← compositionPairs ∪ 〈c, c′〉
5: end if
6: end for

class Car {
private:
GPS g;
. . .

};

(a) (b)

Fig. 7: (a) Example class-definition

snippet; (b) a possible object layout to

illustrate a composition relationship.

class Car {
...

};
class Van {
...

};

class Minivan:
public Car,
public Van {
...

};

(a) (b)

Fig. 8: (a) Example class-definition snippet;

(b) a possible object layout to illustrate multi-

ple inheritance.

classes and their corresponding methods sets constitute the final set of classes
recovered by Lego. The final trie represents the recovered class hierarchy.

3.2.4 Composition relationships. A composition relationship is said to ex-
ist between two classes A and B if A has a member whose class is B. The instance
of the member is destroyed when the enclosing object is destroyed. However, un-
like inheritance, A and B do not have an ancestor-descendant relationship. The
algorithm for determining composition relationships is shown in Alg. 4.

Certain relationships between classes exist only at the source level. At the bi-
nary level, they become indistinguishable from other relationships. Lego cannot
distinguish between certain composition relationships and inheritance. Consider
the example shown in Fig. 7. Because the member g is the first member of a
Car object, it might result in the Car object having the same object address as
g. Methods of g end up in the object-trace of the Car object, and Lego would
recover a hierarchy in which GPS becomes the base class of Car.

Because Lego operates at the binary level, Lego sees multiple inheritance
as a combination of single inheritance and composition. Consider the example
shown in Fig. 8(a). For the object layout shown in Fig. 8(b), Lego would recover
a class hierarchy in which Car is the base class, Minivan is derived from Car,
and Minivan has a member whose class is Van.

4 Experiments

This section describes Lego’s implementation, the scoring scheme used to score
the conformance of Lego’s output with ground-truth, and the experiments per-
formed.

Recovery of Class Hierarchies from Machine Code 13

4.1 Implementation

Lego uses Pin [20] for dynamic binary instrumentation, and Phase 1 of Lego is
written as a “Pintool”. Pin can instrument binaries at the instruction, basic-
block, routine, and image level. (Lego mainly uses instruction instrumentation
for the algorithms of Phase 1; it uses image instrumentation for instrumenting
routines for dynamic memory allocation and deallocation.) Pin executes the bi-
nary for each given test input, while performing Lego’s Phase 1 instrumentation
and analysis actions. Object-traces are computed and stored in memory, and
emitted at the end of the execution of the program. A post-processing step of
Phase 1 reads the object-traces, removes spurious traces, and emits the final set
of object-traces. Phase 2 reads the final object-traces and emits four output files:
1. The set of recovered classes: each class is a set of methods; each class is

uniquely identified by an ID.
2. The recovered class hierarchy: a trie with every node (except the root) having

a class’s ID as its key.
3. The recovered finalizers: a set of methods in which each method is identified

as the finalizer of some class recovered by Lego.
4. The recovered composition relationships: a set of class ID pairs. Each pair
〈A,B〉 indicates that class A has a member whose class is B.

4.2 Ground Truth

We used C++ applications to test Lego. To score the outputs created by Lego,
we collected ground-truth information for our test suite. For each application,
the methods in each class and the set of destructors were obtained from the un-
stripped, demangled binary. The class hierarchy and composition relationships
were obtained from source-code class declarations. We refer to this informa-
tion as Unrestricted Ground Truth (UGT). We removed classes and methods
of libraries that were not included in the source code (for example, the C++
standard library) from the UGT (even if they were statically linked to create
the executable) because common library functions could potentially occupy the
bulk of UGT for all our test applications, thereby skewing our scores.

We cannot use UGT to score Lego’s outputs because it contains all the
methods and classes in the program, whereas Lego’s outputs contain only the
subset of classes and methods that was exercised during Phase 1. We give the
UGT files to Lego as an additional input—used only to prepare material for
scoring purposes—and Lego emits “exercised” versions of the ground-truth files
at the end of Phase 1. We refer to these files as Partially-Restricted Ground
Truth (PRGT). Only methods that were exercised, and only classes that had
at least one of their methods exercised, appear in the PRGT files. (For exam-
ple, the destructors file now has only the set of exercised destructors, and the
composition-relationships file contains only pairs 〈A,B〉 for which methods of A
and methods of B were exercised.)

Lego tries to group only methods that receive a this pointer, and it expects
every class in the binary to have a unique finalizer that should be called when-
ever an instance of the class is deallocated. However, PRGT does not comply

14 Venkatesh Srinivasan and Thomas Reps

with Lego’s goals and restrictions. Some classes in PRGT might contain static
methods, and some might not have a finalizer. (Even if they did, the finalizer
might not have been exercised during Phase 1.) To see how Lego performs in the
ideal case where the ground-truth complies with Lego’s goals and restrictions, we
create another set of ground-truth files called Restricted Ground Truth (RGT).
RGT is a subset of PRGT: RGT is PRGT with all static methods removed,
and all classes removed that lack a destructor, or whose destructors were not
exercised during Phase 1. When Lego’s results are scored against RGT, we are
artificially suppressing threats 2 and 3 to the validity of our study. Note that
the set of exercised destructors is the same for PRGT and RGT.

Scoring against RGT corresponds to the ideal case, whereas scoring against
PRGT corresponds to the more realistic case that would be encountered in
practice. We report Lego’s results for both PRGT and RGT in §4.4.

4.3 Scoring

This section describes the algorithms used to score Lego’s outputs against
ground-truth files. In this section, when we say “ground-truth” we mean RGT
or PRGT.

4.3.1 Scoring finalizers. This output is the easiest to score because the
ground-truth and Lego’s output are both sets of methods. We merely compute
the precision and recall of the recovered set of destructors against ground-truth.

4.3.2 Scoring the class hierarchy. It is not straightforward to score re-
covered classes because we are dealing with sets of sets of methods, which are
related by inheritance relationships. We do not want to match ground-truth
classes against recovered classes because a perfect matching may not always be
possible. (For example, due to spurious traces, Lego may coalesce methods of two
ground-truth classes into one recovered class.) Thus, as our general approach to
scoring, we see if any of the recovered classes match a ground-truth class, both
in terms of the set of methods, as well as its position in the hierarchy.

A näıve way to score would be as follows: Compare the set of methods in each
ground-truth class against the set of methods in each recovered class to determine
the maximum precision and maximum recall obtainable for each ground-truth
class. Note that different recovered classes can contribute to maximum preci-
sion and maximum recall, respectively, for the ground-truth class. However, this
simple approach treats classes as flat sets, and does not account for inheritance
relationships between classes. As a consequence, the penalty for a recovered class
having an extra method from an unrelated class will be the same as having an
extra method from an ancestor class.

The scoring scheme used below addresses the inheritance issue. For every class
in the ground-truth hierarchy and in the recovered hierarchy (except the dummy
root nodes), we compute the extended-methods set. The extended-methods set of
a class is the set union of its methods and the methods of all of its ancestors. For
every ground-truth class, we compare the extended-methods set against every

Recovery of Class Hierarchies from Machine Code 15

recovered class’s extended-methods set to determine a maximum precision and
maximum recall for the ground-truth class. This scoring scheme incorporates
inheritance into scoring, by scoring with respect to paths of the inheritance hier-
archy, rather than with respect to nodes. For every unique path in the inheritance
hierarchy, it measures how close are the paths in the recovered hierarchy.

Scoring could also be done in the converse sense—comparing the extended-
methods set of each recovered class with the extended-methods sets of all ground-
truth classes—to determine a maximum precision and maximum recall for each
recovered class. However, recovered classes may contain classes and methods not
present in ground-truth (for example, library methods). For this reason, we do
not score in this converse sense.

We can also view our scoring problem as one of computing an appropriate
similarity measure. For this task we make use of the Jaccard Index. The Jaccard
Index for a pair of sets A and B is defined as

J(A,B) =
|A ∩B|
|A ∪B|

For every ground-truth class, we compare the extended-methods set against
every recovered class’s extended-methods set to determine the recovered class
with the maximum Jaccard Index for the ground-truth class. In contrast, when
computing maximum precision and maximum recall for a ground-truth class, the
respective maxima might be associated with the extended-methods set of two
independent recovered classes.

To obtain the precision, recall, and Jaccard Index for the entire ground-truth
hierarchy, we compute the weighted average of, respectively, the maximum preci-
sion, maximum recall, and maximum Jaccard Index computed for each ground-
truth class, using the number of methods in each ground-truth class as its weight.
We compute a weighted average because we want classes with a larger number
of methods to contribute more to the overall score than classes with a smaller
number of methods.

4.3.3 Scoring composition relationships. For each ground-truth composi-
tion pair and each recovered composition pair, we compute the composed-methods
set. The composed-methods set of a pair of classes is the set union of the methods
of the two classes. We compare the composed-methods set of each ground-truth
composition pair against the composed-methods sets of recovered composition
pairs to determine the maximum precision, maximum recall, and maximum Jac-
card Index. (We compute the Jaccard Index for scoring composition pairs as well
because two different recovered composition pairs might contribute to maximum
precision and maximum recall, respectively, for one ground-truth composition
pair.) Finally, we compute the weighted-average precision, recall, and Jaccard
Index for all ground-truth composition pairs, using the size of the composed-
methods set of each pair as its weight.

16 Venkatesh Srinivasan and Thomas Reps

Software KLOC No. of
classes
in
pro-
gram

No.
of
meth-
ods
in
pro-
gram

No. of
classes
with
multiple
de-
structor
versions

No. of
classes
in
PRGT

No. of meth-
ods in PRGT
(Method cov-
erage)

No. of
methods
in PRGT
belonging
to classes
with un-
exercised
destructors

No. of
classes
in
RGT

No.
of
meth-
ods
in
RGT

TinyXML - XML Parser 5 16 302 13 16 236 (78.14%) 19 13 203

Astyle - source-code
beautifier

10.5 19 350 14 12 195 (55.71%) 3 10 192

gperf - perfect hash func-
tion generator

5.5 25 207 16 20 109 (52.65%) 37 13 72

cppcheck - C/C++
static code analyzer

121 77 1354 46 62 657 (48.52%) 31 54 567

re2c - scanner generator 7.5 36 257 29 32 119 (46.30%) 54 16 57

lshw - hardware lister 18.5 13 161 4 6 61 (37.88%) 2 4 59

smartctl - SMART disk
analyzer

50.5 34 192 30 18 36 (18.75%) 16 8 19

pdftohtml - pdf to html
converter

52.5 131 1693 126 57 314 (18.54%) 37 50 267

lzip - LZMA compressor 3.2 12 74 0 6 11 (14.86%) 7 2 4

p7zip - file archiver 122 372 2461 216 105 365 (14.83%) 38 74 327

Table 2: Characteristics of our test suite. The applications are sorted by increasing
method coverage.

4.4 Results

We tested Lego on ten open-source C++ applications obtained from SourceForge
[25], the GNU software repository [13] and FreeCode [12]. The characteristics of
the applications are listed in Table 2. The applications were compiled using
the GNU C++ compiler. The test suite that came with the applications was
used to create test inputs for the binary for Phase 1. The experiments were
run on a system with a dual-core, 2.66GHz Intel Core i7 processor; however,
all the applications in our test suite and all the analysis routines in Lego are
single-threaded. The system has 4 GB of memory, and runs Ubuntu 10.04.

Our experiments had three independent variables:

1. Partially-restricted ground-truth (PRGT) vs. restricted ground-truth
(RGT): See §4.2.

2. Destructor versions provided (Destr) vs. destructor versions not provided
(NoDestr): Recall that some compilers produce up to three versions of a
single declared destructor. In one set of experiments, for each destructor
D we supplied all compiler-generated versions of D as additional inputs to
Phase 1. This information was used to compute object-traces as if each class
had a unique destructor in the binary. In another set of experiments, we did
not coalesce the different destructor versions, and generated object-traces
based on multiple destructors per class.

3. Split spurious traces (SST) vs. do not split spurious traces (NoSST): We
described the additional pass to remove spurious traces from the object-
traces emitted at the end of Phase 1 in §3.1.4. In one set of experiments

Recovery of Class Hierarchies from Machine Code 17

0

20

40

60

80

100

Class Hierarchies - Precision
Destr

0

20

40

60

80

100

Class Hierarchies - Precision
NoDestr

0

20

40

60

80

100

Class Hierarchies - Recall
Destr

0

20

40

60

80

100

Class Hierarchies - Recall
NoDestr

0

20

40

60

80

100

Class Hierarchies - Jaccard Index
Destr

0

20

40

60

80

100

Class Hierarchies - Jaccard Index
NoDestr

RGT-

SST

PRGT-

SST

RGT-

NoSST

PRGT-

NoSST

Fig. 9: Weighted-average precision, recall, and Jaccard Index for recovered class hier-
archies.

(SST), we executed this pass and used the resulting object-traces for Phase
2. In another set of experiments (NoSST), we did not execute this pass.

The first set of experiments measured the conformance of the recovered class
hierarchy with the ground-truth hierarchy. Fig. 9 shows the weighted-average
precision, recall, and Jaccard Index obtained for different combinations of inde-
pendent variables. The applications in the figure are sorted by increasing method
coverage.

The aggregate precision, aggregate recall, and aggregate Jaccard Index re-
ported for the entire test suite is the weighted average of the reported numbers,
with the number of methods in the corresponding ground-truth as the weight.
(The number of methods in PRGT is used as the weight in computing PRGT
aggregates, and the number of methods in RGT is used as the weight in com-
puting RGT aggregates.) One observation is that there is only a slight variation
in precision, recall, and Jaccard Index in the Destr vs. NoDestr case. This tells
us that the destructor versions are not essential inputs to recover accurate class
hierarchies. Also, we can see that there is very little difference between preci-
sion, recall, and Jaccard Index numbers for the RGT vs. PRGT case. This tells
us that even if we do not know if the binary came from clean object-oriented
source-code, Lego’s output can generally be trusted.

Another observation is that for some applications like TinyXML, cppcheck,
etc., comparing against PRGT causes an increase in precision numbers compared

18 Venkatesh Srinivasan and Thomas Reps

0

20

40

60

80

100

TinyXML

(5)

Astyle (1) Cppcheck

(2)

re2c (1) lshw (1) pdftohtml

(1)

p7zip (27) Aggregate

(38)

Composition Relationships - Precision

0

20

40

60

80

100

TinyXML AStyle Cppcheck re2c lshw pdftohtml p7zip Aggregate

Composition Relationships - Recall

0

20

40

60

80

100

TinyXML AStyle Cppcheck re2c lshw pdftohtml p7zip Aggregate

Destr-

SST

Destr-

NoSST

NoDestr

-SST

NoDestr

-NoSST

Composition Relationships-Jaccard Index

Fig. 10: Weighted-average precision, recall, and Jaccard Index for recovered composi-
tion relationships.

to RGT (which seems counter-intuitive). This increase in precision is because of
the fact that the recovered classes corresponding to the extra classes present in
PRGT (and absent in RGT) get fragmented, with each fragment containing very
few methods of the class and they are not mixed with other recovered classes’
methods. Because we compute weighted-average precision, this fragmentation
causes an increase over the RGT weighted-average precision. However, if the
methods of the extra classes get mixed with other recovered classes’ methods,
we see the intuitive decrease in weighted-average precision for PRGT (cf. lzip)

With SST, the precision increases or stays the same compared with NoSST.
The increase is more pronounced if the source-code heavily uses code blocks
within the same method—for example, TinyXML—à la Fig. 9. The recall for the
SST case is better only if destructor versions were provided and if the source-
code heavily uses code blocks (TinyXML). If, say, by inspecting and testing the
binary, we suspect that code blocks are used, we could ask Lego to run the
split-spurious-traces pass before recovering classes.

The second set of experiments measured the conformance of recovered compo-
sition relationships with ground-truth composition relationships. Lego detects a
composition relationship by looking for finalizers called from the enclosing class’s
finalizer. It makes the most sense to use only RGT as the ground truth while
scoring recovered composition relationships because all classes in the composi-
tion pairs of RGT have their destructors exercised during Phase 1. (All classes
in PRGT may not satisfy this property.) Fig. 10 shows the results. Note that
applications that do not have any composition relationships between classes in
RGT are not shown in the figure. One of the applications (TinyXML) had a
composition pair in RGT, in which the enclosing class’s first member was a
class. Because Lego sees this composition relationship as single inheritance (as
described in §3.2.4), we removed this pair from the set of composition rela-

Recovery of Class Hierarchies from Machine Code 19

0

20

40

60

80

100
Destructors - Precision

Destr-

SST

NoDestr

-SST

Destr-

NoSST

NoDestr

-NoSST

60

80

100
Destructors - Recall

Fig. 11: Precision and recall for recovered
destructors.

Software pin
NULL

pinINSTR
(SD)

I/O Phase
2

tinyxml 3.62 30.54 (8.43x) 7.24 0.49

astyle 6.61 25.04 (3.78x) 2.74 0.88

gperf 2.05 6.51 (3.17x) 0.66 0.085

cppcheck 17.41 60.08 (3.45x) 5.14 1.04

re2c 3.31 7.44 (2.24x) 0.05 0.02

lshw 4.55 20.63 (4.53x) 0.46 0.33

smartctl 5.35 80.58 (15.06x) 1.78 0.15

pdftohtml 4.26 60.60 (14.22x) 15.22 6.40

p7zip 6.88 54.66 (7.94x) 9.73 0.04

lzip 1.47 3.70 (2.51x) 0.02 0.03

Table 3: Time measurements (seconds).
SD indicates slowdown.

tionships (and added it as single inheritance in the RGT class hierarchy). The
number of composition relationships between classes for each application is listed
below its label in the precision graph. The aggregate precision, aggregate recall,
and aggregate Jaccard Index for the entire test suite is the weighted average of
the computed precision, recall, and Jaccard Index values with the sum of the
sizes of all the composed-methods sets (§4.3.3) of an application as its weight.

The third set of experiments measured the conformance of recovered destruc-
tors with ground-truth destructors. Fig. 11 shows the results. Recall that RGT
and PRGT have the same set of destructors (§4.2), so we report the results only
for the RGT case. The number of destructors in each application is below its
label in the precision graph. (Applications with different numbers of destructors
for the Destr and NoDestr cases have both numbers listed.) The aggregate pre-
cision and recall for the entire test suite is the weighted average of the computed
precision and recall values, with the number of destructors in ground-truth as
the weight for each application. Lego identifies all of the destructors in most
cases. In TinyXML, NoSST fails to expose a few destructors that are trapped in
the middle of spurious object-traces. In pdftohtml, a few destructors get black-
listed by Lego and never end up in object-traces. Although Lego succeeds in
identifying most of the destructors (high recall), the overall precision is low be-
cause destructors of classes in libraries—which are not present in the ground
truth—are also reported by Lego.

Table 3 shows the timing measurements for our test suite. pinNULL repre-
sents the execution time of the application on pin, with Lego’s analysis routines
commented out. pinINSTR represents the execution time of the application on
pin, with Lego’s analysis routines performing dynamic analysis. The instrumen-
tation and analysis overhead can be seen in the slowdown reported for each
application. I/O represents the time taken to do file I/O in Phase 1 (read-
ing ground-truth and destructor versions, writing object-traces, and exercised
ground truth). pinINSTR + I/O represents the total running time of Phase 1 of
Lego. Phase 2 reports the wall-clock time for Phase 2.

20 Venkatesh Srinivasan and Thomas Reps

50

60

70

80

90

100

20 30 40 50 60 70 80
Method Coverage (%)

Coverage - Precision

50

60

70

80

90

100

20 30 40 50 60 70 80
Method Coverage (%)

Coverage - Recall

50

60

70

80

90

100

20 30 40 50 60 70 80
Method Coverage (%)

Coverage - Jaccard Index

TinyXML

cppcheck

gperf

**
*

Fig. 12: Weighted-average precision, recall, and Jaccard Index for class hierarchies at
different method coverages.

The fourth set of experiments aimed to study the impact of code coverage
on the scoring metrics. For three applications (tinyxml, gperf, and cppcheck) we
aggregated the object-traces from 5 test runs: just run 1; 1 and 2; 1 through
3; 1 through 4; and 1 through 5, resulting in five different amounts of method
coverage for each application, and fed those object traces to Phase 2 of Lego.
The combination of independent variables used in this set of experiments was
Destr-RGT-NoSST. The results are shown in Fig. 12. We did not observe any
global trends for precision, recall, or Jaccard Index with respect to increasing
coverage. We observed that any of the following might happen when there is
additional method coverage in Phase 1:

1. The additional coverage covers methods of a new class, thereby boosting the
overall score for the test suite (see plots for gperf).

2. The additional coverage covers inherited methods of a class that is a sibling of
a class already explored by Lego. This results in common inherited methods
being hoisted to the parent class (see §3.2.3), thereby boosting similarity
(see the line segment marked “*” in the Jaccard Index plot for TinyXML).

3. The additional coverage causes Lego to encounter an object of a class A,
but not objects of A’s ancestors or siblings. This results in methods of A’s
ancestors ending up in the class recovered for A, thereby lowering the the
similarity (see the line segment marked “**” in the Jaccard Index plot for
TinyXML).

We also varied the compiler and optimization levels that were used to gener-
ate the binaries used in our experiments, and tested Lego on the newly generated
binaries. Fig. 13 summarizes the results. We chose gperf as a representative ap-
plication and compiled it using the Intel C++ compiler. We also compiled it
using the GNU C++ compiler with different optimization levels. (We used the
optimization flags -O0, -O1, -O2, and -O3.) The PRGT of the binaries generated
using the -O1, -O2, and -O3 flags had 82 fewer methods than that of the binary
generated using the -O0 flag. Methods being optimized away led to recovered
classes that had fewer inherited base-class methods (which causes the slight in-
crease in precision that one sees by comparing the gperf0 case to the other cases
in Fig. 13).

To test Lego on binaries generated from a different object-oriented language,
we collected applications written in the D programming language [7]. Lego did
poorly in this experiment because D is garbage-collected, and thus many classes

Recovery of Class Hierarchies from Machine Code 21

0

20

40

60

80

100

gperf0 gperf1 gperf2 gperf3 gperfI

Class Hierarchies – Precision
Destr

0

20

40

60

80

100

gperf0 gperf1 gperf2 gperf3 gperfI

Class Hierarchies – Precision
NoDestr

0

20

40

60

80

100

gperf0 gperf1 gperf2 gperf3 gperfI

RGT-SST

PRGT-SST

RGT-NoSST

PRGT-NoSST

Class Hierarchies – Recall
Destr

0

20

40

60

80

100

gperf0 gperf1 gperf2 gperf3 gperfI

Class Hierarchies – Recall
NoDestr

0

20

40

60

80

100

gperf0 gperf1 gperf2 gperf3 gperfI

Class Hierarchies – Jaccard Index
Destr

Class Hierarchies – Jaccard Index
NoDestr

0

20

40

60

80

100

gperf0 gperf1 gperf2 gperf3 gperfI

gperf0 – gperf,

g++, O0

gperf1 – gperf,

g++, O1

gperf2 – gperf,

g++, O2

gperf3 – gperf,

g++, O3

gperfI – gperf,

Intel C++

Compiler, O2

Fig. 13: Weighted-average precision, recall, and Jaccard Index for recovered class hi-
erarchies measured for binaries generated from different compilers and at different
optimization levels.

in the collected applications lacked a destructor. This failed experiment illus-
trates threat 2 to the validity of our approach, listed in §2.

5 Related Work

Reverse-Engineering Low-Level Software Artifacts from Binaries.
Many prior works have explored the recovery of lower-level artifacts from bina-
ries. Balakrishnan and Reps use a conjunction of Value Set Analysis (VSA) and
Aggregate Structure Identification (ASI) to recover variable-like entities from
stripped binaries [1]. Lee et al. describe the TIE system that recovers types from
executables [16]. TIE uses VSA to recover variables, examines variable-usage
patterns to generate type constraints, and then solves the constraints to infer a
sound and most-precise type for each recovered variable. Dynamic analysis has
also been used to reverse engineer data structures from binaries [24, 18, 6]. Such
approaches can be used in conjunction with Lego to recover high-level types for
recovered classes. Fields in recovered classes can either be of primitive type or
user-defined type (composition or aggregation). While the tools and techniques
described in the papers mentioned above can be used to recover primitive types,
Lego can be used to recover composition relationships. (Recovering aggregation
relationships is possible future work – see §6.)

Jacobson et al. describe the idea of using semantic descriptors to fingerprint
system-call wrapper functions and label them meaningfully in stripped bina-
ries [15]. Bardin et al. use Value Analysis with Precision Requirements (VAPR)
for recovering a Control Flow Graph (CFG) from an unstructured program [3].
Schwartz et. al. describe the semantics-preserving structural-analysis algorithm
used in Phoenix, their x86-to-C decompiler [22], to recover control structures.
Fokin et al. describe techniques for decompilation of binaries generated from
C++ [11]. During decompilation, they use run-time-type information (RTTI)

22 Venkatesh Srinivasan and Thomas Reps

and virtual function tables in conjunction with several analyses to recover poly-
morphic parts (virtual methods) of class hierarchies. The artifacts recovered by
Lego complement those recovered by the aforementioned tools and techniques.

Recovering Protocol/File Formats from Executables. Prior works
have also explored recovering higher-level abstractions from binaries. Cho et
al. use concolic execution in conjunction with the L* learning algorithm to con-
struct and refine the protocol state machine from executables that implement
protocols [5]. Lim et al. describe recovering output file formats from x86 binaries
using Hierarchical Finite State Machines (HFSMs) along with information from
VSA and ASI [17]. Driscoll et al. use Finite Automata (FA) and Visibly Push-
down Automata (VPA) to infer I/O format of programs and check conformance
of producer and consumer programs [9].

Modularizing Legacy Code. Formal Concept Analysis (FCA) has been
extensively used for software-reengineering tasks [26, 19, 23]. Siff and Reps used
FCA to modularize C code [23]. They used types and def/use information as
attributes in a context relation to create a concept lattice, which was partitioned
to obtain a set of concepts. Each concept was a maximal group of C functions
that acted as a module. Bojic and Velasevic describe using dynamic analysis in
conjunction with FCA to recover a high-level design for legacy object-oriented
systems [4]. The high-level goals of Lego and these works are the same—namely,
to recover a modular structure. However, Lego works at the binary level, where
types are either absent or difficult to precisely obtain.

6 Conclusion and Future Work

In this paper, we described Lego, a tool that uses dynamic analysis to recover
class hierarchies and composition relationships from stripped object-oriented
binaries. We presented the algorithms used in Lego, and evaluated it on ten open-
source C++ software applications by comparing the class hierarchies recovered
by Lego with ground truth obtained from source code. Our experiments show
that the class hierarchies recovered by Lego have a high degree of agreement—
measured in terms of precision and recall—with the hierarchy defined in the
source code. On average, the precision is 88% and the recall is 86.7%.

One possible direction for future work would be to use concolic execution to
generate more inputs to achieve better coverage. For the Lego context, a concolic-
execution engine should aim to maximize method coverage, not merely path
coverage. A second direction would be to see how run-time-type information and
virtual-function-table information could be used to improve the class hierarchy
produced by Lego. When such information is available, it allows a portion of the
source-code class hierarchy to be recovered exactly. (The hierarchy is incomplete
because it contains only the program’s virtual functions.) A third direction
would be to use Lego’s object-traces and recovered classes to infer temporal
invariants on method-call order.

Another direction for future work is to use the information maintained by
Lego about objects allocated during program execution to find aggregation re-
lationships between inferred classes.

Recovery of Class Hierarchies from Machine Code 23

References

1. G. Balakrishnan and T. Reps. DIVINE: DIscovering Variables IN Executables. In
VMCAI, 2007.

2. G. Balakrishnan and T. Reps. WYSINWYX: What You See Is Not What You
eXecute. TOPLAS, 32(6), 2010.

3. S. Bardin, P. Herrmann, and F. Vdrine. Refinement-based CFG reconstruction
from unstructured programs. In VMCAI, 2011.

4. D. Bojic and D. Velasevic. A Use-case driven method of architecture recovery for
program understanding and reuse reengineering. In CSMR, 2000.

5. C. Y. Cho, D. Babić, P. Poosankam, K. Z. Chen, E. X. Wu, and D. Song. MACE:
Model inference assisted concolic exploration for protocol and vulnerability discov-
ery. In USENIX Sec. Symp., 2011.

6. A. Cozzie, F. Stratton, H. Xue, and S. T. King. Digging for data structures. In
OSDI, 2008.

7. D Programming Language. http://dlang.org.
8. DMCA §1201. Circumvention of Copyright Protection Systems. www.copyright.

gov/title17/92chap12.html\#1201.
9. E. Driscoll, A. Burton, and T. Reps. Checking compatibility of a producer and a

consumer. In FSE, 2011.
10. K. ElWazeer, K. Anand, A. Kotha, M. Smithson, and R. Barua. Scalable variable

and data type detection in a binary rewriter. In PLDI, 2013.
11. A. Fokin, E. Derevenetc, A. Chernov, and K. Troshina. SmartDec: Approaching

C++ decompilation. In WCRE, 2011.
12. Freecode. www.freecode.com.
13. GNU Software Repository. www.gnu.org/software/software.html.
14. Itanium C++ ABI. refspecs.linux-foundation.org/cxxabi-1.83.html.
15. E. R. Jacobson, N. Rosenblum, and B. P. Miller. Labeling library functions in

stripped binaries. In PASTE, 2011.
16. J. Lee, T. Avgerinos, and D. Brumley. TIE: Principled reverse engineering of types

in binary programs. In NDSS, 2011.
17. J. Lim, T. Reps, and B. Liblit. Extracting output formats from executables. In

WCRE, 2006.
18. Z. Lin, X. Zhang, and D. Xu. Automatic reverse engineering of data structures

from binary execution. In NDSS, 2010.
19. C. Lindig and G. Snelting. Assessing modular structure of legacy code based on

mathematical concept analysis. In ICSE, 1997.
20. C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.

Reddi, and K. Hazelwood. Pin: Building customized program analysis tools with
dynamic instrumentation. In PLDI, 2005.

21. K. A. Roundy and B. P. Miller. Binary-code obfuscations in prevalent packer tools.
ACM Computing Surveys, 46(1), 2013.

22. E. J. Schwartz, J. Lee, M. Woo, and D. Brumley. Native x86 decompilation using
semantics-preserving structural analysis and iterative control-flow structuring. In
USENIX Sec. Symp., 2013.

23. M. Siff and T. Reps. Identifying modules via concept analysis. TSE, 25(6), 1999.
24. A. Slowinska, T. Stancescu, and H. Bos. Howard: A Dynamic excavator for reverse

engineering data structures. In NDSS, 2011.
25. SourceForge. sourceforge.net.
26. P. Tonella. Concept analysis for module restructuring. TSE, 27(4), 2001.

