Improving Pushdown System Model Checking

Akash Lal and Thomas Repg

1 University of Wisconsin.
2 GrammaTech, Inc.
{akash, reps}@s.wi sc.edu

Abstract. In this paper, we reduce pushdown system (PDS) model clgetgia graph-

theoretic problem, and apply a fast graph algorithm to imerte running time for model
checking. Several other PDS questions and techniques czartied out in the new setting,
including witness tracing and incremental analysis, edcWwhich benefits from the fast
graph-based algorithm.

1 Introduction

Pushdown systems (PDSs) have served as an important fenmfali program analysis
and verification because of their ability to concisely capinterprocedural control flow
in a program. Various tools [6,18, 12, 10, 4] use pushdowtesys as an abstract model
of a program and use reachability analysis on these modedsify program properties.
Using PDSs provides an infinite-state abstraction for therobstate of the program.
Some of these tools [6, 18, 4], however, can only verify proee that have a finite-
state data abstraction. Other tools [10, 12] are based omdhne generalized setting of
weighted pushdown systems (WPDSs) [16] and are capableriffing infinite-state
data abstractions as well.

At the heart of all these tools is a PDS reachability-analgsgorithm that uses a
chaotic-iteration strategy to explore all reachable st§2e7,17]. Even though there
has been work to address the worst-case running time of k@itam [5], to our
knowledge, no one has addressed the issue of giving diretithe chaotic-iteration
scheme to improve the running time of the algorithm in pactin this paper, we try to
improve the worst-case running time, as well as the runtimg-observed in practice.
To provide a common setting to discuss most PDS model checkeruse WPDSs to
describe our improvements to PDS reachability.

An interprocedural control flow graph (ICFG) is a set of greypime per procedure,
connected via special call and return edges [14]. A WPDS witfiven initial query
can also be decomposed into a set of graphs whose structinailiar. (When the un-
derlying PDS is obtained by the standard encoding of an IC&@ BRDS for use in
program analysis, these decompositions coincide.) Nextjse a fast graph algorithm,
namely the Tarjan path-expression algorithm [19] to regmesach graph as a regular
expression. WPDS reachability can then be reduced to splviset of regular equa-
tions. When the underlying PDS is obtained from a struct@reducible) control flow
graph, the regular expressions can be found and solved ffaigetly. Even when the
control flow is not structured, the regular expressions i@ fast iteration strategy
that improves over the standard chaotic-iteration styateg

Our work is inspired by previous work on dataflow analysis iofyjke-procedure
programs [20]. There it was shown that a certain class offldatanalysis problems

* Supported by ONR (N00014-014708,0796) and NSF (CCR-9986308 and CCF-
0524051).

can take advantage of the fact that a (single-procedure)c@ir®e represented using a
regular expression. We generalize this observation toiphedprocedure programs, as
well as to WPDSs. The contributions of this paper can be sutapthas follows:

— We present a new reachability algorithm for WPDSs that imgsoon previously
known algorithms for PDS reachability. The algorithm is mgyotically faster
when the PDS isegular (decomposes into a single graph), and offers substantial
improvement in the general case as well.

— The algorithm is completely demand-driven, and computés tiat information
needed for answering a particular user query. It has anéhplicing stage where
it disregards parts of the program not needed for answehimgser query.

— We show that several other PDS analysis questions and tpamjiincluding wit-
ness tracing and incremental analysis, carry over to theapproach.

The rest of the paper is organized as follo§provides background on PDSs and
WPDSs §3 presents the previously known algorithm and our new aligrfor solving
reachability queries on WPDSs. $4, we describe algorithms for witness tracing and
incremental analysig5 presents experimental resulj6.describes related work.

2 PDS Model Checking

Definition 1. A pushdown systemis a triple P = (P, I, A) where P is the set of
states or control locationd] is the set of stack symbols, adtdC P x I' x P x I'*
is the set of pushdown rules.cdnfiguration of P is a pair (p, u) wherep € P and
uw € I'*. Aruler € Ais written as(p,v) — (p’,u) wherep,p’ € P,~ € I' and
u € I'*. These rules define a transition relatiex on configurations oP as follows: If
r = (p,y) — (', u) then(p,yu') = (p,uwu’) for all v’ € I'*. The reflexive transitive
closure of= is denoted by=-*.

Without loss of generality, we restrict PDS rules to have asttwo stack symbols
on the right-hand side. The standard approach for modeliogram control flow is as
follows: Let (N, £) be an ICFG where eadall node is split into two nodes: one has an
interprocedural edge going to the entry node of the proeebeing called; the second
has an incoming edge from the exit node of the procedurss the set of nodes in this
graph ancf is the set of control-flow edges. Fig. 1(a) shows an exampdndCFG,
Fig. 1(b) shows the pushdown system that models it. The PB% Bangle statp, one
stack symbol for each node iX, and one rule for each edge & We use rules with
one stack symbol on the right-hand side to model intraprocd@dges, rules with two
stack symbols on the right-hand sigmiéhrules) forcall edges, and rules with no stack
symbols on the right-hand sidpdprules) forreturn edges. It is easy to see that a valid
path in the program corresponds to a path in the pushdowersisstransition system,
and vice versa. Thus, PDSs can encode ordinary control flaphg:; but they also
provide a convenient mechanism for modeling certain kirfdsom-local control flow,
such as setjmp/longjmp in C. At a setjmp, we push a speciabsyon the stack, and
at a longjmp with the same environment variable (identifisithgt Some preprocessing)
we pop the stack until that symbol is reached. The longjmpevabn be passed using
the state of the PDS.

Because the number of configurations of a pushdown systembisunded, it is
useful to use finite automata to describe certain infinite setonfigurations.

" (1) (p.m) = (p.n2)
(2) (p;n2) = (p;n3)
PSHEE (3) (psn3) = (p,ne na)
n, | loc, =false () (p,na) = (p,ns)
flag = false ‘ (5) <]), Wu> s <])7 5>
(6) (p,me) — (p,n7)
n, (1) {p.n7) = (p;ns)
ES; gp,ﬂsi — é]% na))
n, ret. foo fo-.. 9 p,ng) = (P, N12
4 210; §p7 nyi — 2]37 nloi
4 11 p,Ng) — (p,n
= (12) (p,110) — (o)
(13) (p,n11) = (p,m12)
s TN (14) (p,m2) = (p,e)
(a) (b)

Fig. 1. (@) An ICFG. Thee and exit nodes represent entry and exit points of proce-
dures, respectively.l ag is a global variablel oc; andl oc. are local variables of
mai n andf oo, respectively. Dashed edges represent interprocedunaiotdlow. (b)

A pushdown system that models the control flow of the graplvstio (a).

Definition 2. If P = (P, I, A) is a pushdown system, therPaautomatonis a finite
automaton(Q, I, —, P, F') where@ D P is a finite set of statespC Q x I' X Q is
the transition relation,P is the set of initial states, anfl' is the set of final states of
the automaton. We say that a configuratignu) is accepted by &-automaton if the
automaton can accept when it is started in the state (written asp —-* ¢, where
q € F). A set of configurations is calladgular if someP-automaton accepts it.

A weighted pushdown system is obtained by supplementingshgawn system
with a weight domain that is a bounded idempotent semirirgg 3L Such semirings
are powerful enough to encode finite-state data abstractooh as the one required
for Boolean program verification, as well as infinite-statgadabstractions, such as
copy-constant propagation and affine-relation analy€s [1

Definition 3. A bounded idempotent semiringis a quintuple(D, ®, ®,0,1), where
D is a set whose elements are calledights 0 and1 are elements oD, and® (the
combine operation) ang@ (the extend operation) are binary operators brsuch that

1. (D,®) is a commutative monoid with as its neutral element, and whege is
idempotent(D, ®) is a monoid with the neutral elemeht
2. ® distributes overp, i.e., for alla, b, c € D we have
a®@bdc)=(axb)®(axc)and(adb)@c=(a®c) B (bRc).
3. 0is an annihilator with respect t®, i.e., foralla € D,a® 0 =0=0® a.
4. In the partial orderC defined bya,b € D, a C biff a ® b = a, there are no
infinite descending chains.

Definition 4. A weighted pushdown systenis a triple W = (P, S, f) whereP =
(P, I, A) is a pushdown systerfi,= (D, &, ®, 0, 1) is a bounded idempotent semiring
andf : A — D is a map that assigns a weight to each pushdown rule.

Leto € A* be a sequence of rules. Usifigwe can associate a valuedoi.e., if

o = [r1,...,r), then we define(c) £ f(r1) ® ... ® f(ry). Moreover, for any two

configurations: andc’ of P, we usepath(c, ¢’) to denote the set of all rule sequences
[r1,...,r] that transforme into ¢’. Reachability problems on pushdown systems are
generalized to weighted pushdown systems as follows.

Definition 5. LetW = (P, S, f) be aweighted pushdown system, wifere (P, I, A),
and letC C P x I'* be a regular set of configurations. Tigeneralized pushdown
predecessor GPB problem is to find for eache € P x I'™*:
5(c) £ @{v(o) | o € path(c,d),d € C}
Thegeneralized pushdown successof3P 9 problem is to find for eacle € P x I'*:
5(c) £ D{v(0) | o € path(c',c),d € C'}

To illustrate the above definitions, let us encode Booleagams as a WPDS. Con-
sider the program shown in Fig. 1. It has one global varifibleg. We ignore local vari-
ables for now, and details regarding their treatment cabed in [11]. LetG be the
set of all valuations of global variables. In our ca§e= {0, 1} because we only have
one global variable. Each ICFG edge can be associated wigmsformer, which is a
binary relation orG, and describes the effect of executing that edge on the glaba
ables, e.g., the edde,, n3) will be associated with the relatidr{0, 0), (1,0)} because
f1 agis setto0 (orf al se). Therefore, we use the weight domaé®¥' >, U, o, 0, id),
and for a PDS rule, we associate it with the transformer ofctbreesponding ICFG
edge. Assertion checking in the program can be performeééing if a configuration
c (or a set of configurations) can be reached with non-zerohgig,d(c) # 0.

Boolean programs can also be encoded using PDSs by usingtée af the PDS to
encode valuations of global variables. However, WPDSsigeoa more efficient rep-
resentation of Boolean programs because the weights cabadigally encode trans-
formers, for example, by using BDDs [17]. Moreover, WPDSs4drictly more power-
ful than PDSs because they can be used imfihite-widthabstract domains to perform
copy-constant propagation and affine relation analysip Mare details on the uses of
PDSs for model checking, and their encoding as WPDSs canumelfio [11].

3 Solving Reachability Problems

In this section, we review the existing algorithm for solyigeneralized reachability
problems on WPDSs [16], which is based on chaotic iterationl, present our new
algorithm, which uses Tarjan’s path-expression algorith®j. We limit our discussion
to GPP; GPS is similar but slightly more complicated.

3.1 Solving GPP using Chaotic Iteration

Let W = (P,S, f) be a WPDS wher® = (P, T, A) is a pushdown system and
S = (D,®,®,0,1) is the weight domain. Lef’ be a regular set of configurations that
is recognized byP-automatond = (Q, I, —o, P, F'). GPP is solved by saturating this
automaton with new weighted transitions (each transitibas a weight labdl(t)), to
create automatod .-, such that(c) can be read-off efficiently fromi,.-: 6({p, w))

is the combine of weights of all accepting pathsdmtarting fromp, where the weight
of a path is the extend of the weight-labels of the transg&ionthe path in order. We
present the algorithm for building,,.- based on its abstract grammar problem.

Definition 6. [16] Let (S,M) be a meet semilattice. Aabstract grammar over (.S, M)
is a collection of context-free grammar productions, wheseh productiord has the

form Xy — g¢(X1,. .., Xy). Parentheses, commas, aggd(whered is a production)
are terminal symbols. Every productiénis associated with a functiogy: S* — S.
Thus, every stringy of terminal symbols derived in this grammar denotes a coimpos
tion of functions, and corresponds to a unique valu&jwhich we callval (). Let

L (X) denote the strings of terminals derivable from a nontermiXiaTheabstract
grammar problem is to compute, for each nonterminal, the valueMOD¢(X) =
HQGLG(X) valg (). This value is called thmeet-over-all-derivationsvalue forX.

We define abstract grammars over the meet semilgtficer), whereD is the set
of weights as given above. An example is shown in Fig. 2. Theteominalts can
derive the stringv = ¢4(g3(g1)) andwval () = w4 ® w3 & wy.

(1) t1 — gi(e) g1 = w1 (3) t2 — g3(t1) g3 = Ar.w3 @
(2) tl — gg(tg) g2 =)\.T.’UJQ XRx (4) t3 — g4(t2) gag =)\.73.11)4 KT
Fig. 2. A simple abstract grammar with four productions.
Production for each
(1) PopSe@mq,) — gi(e) (2,7,4") € =0
g1=1
(2) Popsegjfy,p’) - 92(6) r= <p7 7) - <p,7€> €A
g2 = f(r)

(3) Popsegg,'y,q) - g3(Popsegg’,jy’,q)) r= <p’ ’Y) — <p/a’y/> € A7q € Q
g3 =Ar.f(r)®@x
(4) PopSeg, , ;) — g4(PopSeg, . ., PopSeq, . ;)
ga =z Ay f(r)®z®y r={p1) = @) EAqdEQ
Fig. 3. An abstract grammar problem for solving GPP.

The abstract grammar for solving GPP is shown in Fig. 3. Tlaengnar has one
non-terminalPopSeg for each possible transitione @ x I' x @ of Ap..-. The pro-
ductions describe how the weights on those transitions @mgated. Let(¢) be the
weight label on transition. Then we want(t) = MOD(PopSeg). The meet-over-
all-derivation value is obtained as follows [16]: Initzdi/(¢) = O for all transitions
t. If PopSeq — g(PopSegq| ,PopSeq,) is a production of the grammar (with possi-
bly fewer non-terminals on the right-hand side) then upda¢eweight label ort to
1(t) ® g(I(t1),1(t2)). The existing algorithm for solving GPP is a worklist-baséghb-
rithm that uses chaotic iteration to choqsg a transition in the worklist andiz) all
productions that have this transition on the right side, apdates the weight on the
transitions on the left-hand side of the productions asritest earlier. If the weight on
a transition changes then it is added to the worklist. Defiy) Guarantees convergence.

Such a chaotic-iteration scheme is not very efficient. Glarghe abstract grammar
in Fig. 2. The most efficient way of saturating weights on $iians would be to start
with the first production and then keep alternating betwdenrtext two productions
until I(¢1) andl(t2) converge before choosing the last production. Any othetetry
would have to choose the last production multiple times.sT s important to identify
such “loops” between transitions and to stay within a loofolexiting it.

3.2 Solving GPP using Path Expressions
To find a better iteration scheme for GPP, we convert GPP ihipargraph problem.

Definition 7. A (directed)hypergraph is a generalization of a directed graph in which
generalized edges, calledyperedges, can have multiple sources, i.e., the source of
an edge is an ordered set of verticestransition dependence graph (TDG)for a
grammarG is a hypergraph whose vertices are the non-terminalg-sofThere is a
hyperedge frontt, - - - ,¢,) tot if G has a production witht on the left-hand side and
ty - - - t,, are the non-terminals that appear (in order) on the rightadaside.

If we construct the TDG of the grammar

N,
shown in Fig. 3 when the underlying PDS is ob- (pwa 16 i
tained from an ICFG, and the initial set of con- (p, n;, p) (p. N7, P)
figurations is{(p,¢) | p € P} (or —o= 0), then w1 w |
the TDG is identical to the ICFG (with edges re- (P, N p) (p: Ng, P)
versed). Fig. 4 shows an example. This can be ob- w, | w, ! W

in Fig. 3, the transition dependences are almost *“%! o Wl
identical to the dependences encoded in the push- ® N« P) (P. Ny, P)
down rules, which in turn come from ICFG edges;

served from the fact that except for the PDS states (N P) < (p: No, P)

e.g., the ICFG edgén,,n2) corresponds to the (pv’v e P) (p’wlil’ P)
transition dependendét.), t1) in Fig. 4, and the st (®. Ny, P)
call-return pair(ns, ng) and(ni2, n4) in the ICFG . Wy

corresponds to the hypereddéy, ¢s), t3).

For such pushdown systems, constructin ,
TDGs might seem unnecessary but it allows (g9-4- TPG for the PDS shown in
to choose an initial set of configurations, which'9 1- A WPDS is obtained from the
defines a region of interest in the program. Moré&.2S bY supplementing rule number
over, PDSs can encode much stronger propert\’é’g1 weight w;. Let ti stand for the
than an ICFG, such as setjmp/longjmp in C prd\°d€ (.). The thick bold arrows
grams. However, it is still convenient to think of 4°'™ @ hyperedge. Nodeds, ands
TDG as an ICFG. In the rest of this paper, we if"€ S0urce nodes, and the dashed arrow
lustrate the issues using the TDG of the gramm§2 SUmmary edge. These, along with
in Fig. 3. We reduce the meet-over-all-derivatiof19€ 1abels, are explained latefi2.
problem on the grammar to a meet-over-all-paths problentsofDG.

t52

Intraprocedural Iteration. We first consider TDGs of a special form: consider the
intraprocedural case, i.e., there are no hyperedges india& (&nd correspondingly no
push rules in the PDS). As an example, assume that the TD@ i fhias only the part
corresponding to proceduf@o() without any hyperedges. In such a TDG, if an edge
((t1),t) was inserted because of the production g(¢1) for g = A\z.z ® w for some
weightw, then label this edge witlv. Next, insert a special nodg into the TDG and
for each production of the form— g(e) with ¢ = w, insert the edgé(¢;), t) and label

it with weightw. t, is called a source node. This gives us a graph with weightaoh e
edge. Define the weight of a path in this graph in the standardréversed) way: the
weight of a path is the extend of weights on its constituegiesdn the reverse order.
It is easy to see that MO®) = @{v(n) | n € path(ts,t)}, wherepath(ts,t) is the
set of all paths front, to ¢ in the TDG andv(n) is the weight of the path. To solve
for MOD, we could still use chaotic iteration, but instead wi# make use of Tarjan’s
path-expression algorithm [19].

Problem 1. Given a directed grap&' and a fixed vertex, thesingle-source path ex-
pression(SSPE) problem is to compute a regular expression thatsept®ath(s, v)
for all verticesv in the graph. The syntax of regular expressions is as follows=) |
elelriUre | rire | r*, wheree stands for an edge i@.

We can use the SSPE algorithm to compute regular expresiionsith(ts,t),
which gives us a compact description of the set of paths we teeonsider. Also,
the Kleene-star operator identifies loops in the TDG. &étbe the reverse o,
i.e., w; ®° wy = we ® wy. To compute MOMt), we take the regular expression for
path(ts,t) and replace each edgavith its weight,(with 0, e with T, U with @, . with
®¢, and solve the expression. The weigltis computed a$ S w ® (wR@w) @ - - -; be-
cause of the bounded-height property of the semiring, thiation converges. The two
main advantages of using regular expressions to compute {Cie: First, loops are
identified in the expression, and the evaluation strategyages a loop before exiting
it. Second, we can comput€ faster than normal iteration could. For this, observe that

Aow)"=Towdw? - - ouw"
where exponentiation is defined usiggi.e.,w’ = T andw’ = w @ w1, Thenw*
can be computed by repeatedly squariihgy w) until it converges. lfw* =1 & w &
.-+ @ w™ then it can be computed ifi(log n) operations. A chaotic-iteration strategy
would takeO(n) steps to compute the same value. In other words, having adlos
representation of loops provides an exponential spegdup.

Tarjan’s algorithm usedominatorsto construct the regular expressions for SSPE.
This has the effect of computing the weight on the dominaibasnode before comput-
ing the weight on the node itself. This avoids unnecessanyamation of partial weights
to the node (which is the case when you exit a loop too earlierGa graph withn
edges (om grammar productions in our case) amdiodes (or non-terminals), regular
expressions fopath(ts, t) can be computed for all nodes time O (m log n) when the
graph iseducible Evaluating these expressions will take an additiéh@k log n log k)
semiring operations, whete is the height of the semirinhBecause most high-level
languages are well-structured, their ICFGs are mostlyaibder When the graph is not
reducible, the running time degrades@j(m logn + k)logh) semiring operations,
wherefk is the sum of the cubes of the sizesdafminator-strong components the
graph. In the worst casé, can beO(n?3). In our experiments, we seldom found irre-
ducibility to be a problemk/n was a small constant. A pure chaotic-iteration strategy
would takeO(m h) semiring operations in the worst case. Comparing these leomp
ities, we can expect the algorithm that uses path expresstmobe much faster than
chaotic iteration, and the benefit will be greater as thehtaifithe semiring increases.

Interprocedural Iteration. We now generalize our algorithm to any TDG. For each
hyperedg€(t1,t2),t), delete it from the graph and replace it with the edfe), t).

% This assumes that each semiring operation takes the sammaofitime. In the absence of any
assumption on the semiring being used, we aim to decreaseihiger of semiring operations.
In some cases, e.g., BDD-based weight domains, repeatadragjmay not reduce the overall
running time. However, the user can supply a procedure fampetingw™ whenever there is
a more efficient way of computing it than by using simple itiera[13].

4 The combined sizes of the regular expressions are boundétebynning time of the SSPE
algorithm.

This new edge is calledsummary edgend node; is called arout-node For example,
in Fig. 4 we would delete the hypered@es, ts), t3) and replace it with{(¢4), ¢3). The
new edge is called a summary edge because it crosses atedfrsm a return node
to a call node) and will be used to summarize the effect of aqutare call. Nodeg

is an out-node and will supply the procedure summary weitjine. resultant TDG is a
collection of connected graphs, with each graph roughlyesponding to a procedure.
In Fig. 4, the transitions that correspond to procedumeisn andf oo get split. Each
connected graph is called amragraph For each intragraph, we introduce a source
node as before and add edges from the source node to all madésve-productions.
The weight labels are also added as before. For a summary @dge) obtained from
a hyperedgé(t1,t2),t) with associated production functign= Az \y.w ® z ® y,
label it withw ® ¢, Orts ®° w.

This gives us a collection of intragraphs with edges lab&léd either a weight
or a simple expression with an out-node. To solve for the MQ@lIu®, we construct a
set ofregular equationswhich we call as out-node equations. For an intragi@plet
te be its unique source node. Then, for each out-ngde G, construct the regular
expression for all paths it¥ from ¢ to t,, i.e., for path(ts,t,). In this expression,
replace each edge with its corresponding label. If the tieguéxpression is and it
contains out-nodes, to ¢,, add the equation, = r(¢t1,--- ,t,) to the set of out-
node equations. Repeat this for all intragraphs. The liaguet of out-node equations
describe all hyperpaths in the TDG to an out-node from théectibn of all source
nodes. The MOD value of the out-nodes is the greatest fixtmdithese equations
(with respect ta_ of Defn. 3(4)). For example, for the TDG shown in Fig. 4, asgign
thatt, is also an out-node, we would obtain the following out-nogeations>

tg = ’LU14.(U)9 D w13.’LU11.(wlg.wlo)*.w8).w7.w6

tl = w5.w4.(t6.w3).w2.w1
Here we have usedas a shorthand fop©. One way to solve these equations is by
using chaotic iteration: start by initializing each outdleawith 0 (the greatest element
in the semiring) and update the values of out-nodes by reghlagolving the equations
until they converge. We can give direction to this iteratigrconstructing a dependence
graph of these equation, where an equatios r(t1, - - - , t,,) gives rise to dependences
t; — to, 1 < i < n. We take astrongly connected compong®CC) decomposition of
this graph and solve all equations in one component beforéngdo equations in next
component (in a topological order). We could also use re@x{pressions to define an
evaluation order on these equations (details are givenli]),[hut we chose a simpler
implementation because SCCs in this dependence graph etiicespond to mutually
recursive procedures, tend to be quite small in practice.

Each regular expression in the out-node equations sumesaait paths in an in-
tragraph and can be quite large. Therefore, we want to awa@lligting them repeat-
edly while solving the equations. To this end, we incremigntvaluate the regular
expressions: only that part of an expression is reevaluhi@idcontains a modified
out-node. (In the algorithm given in Fig. 5, the entire exgsien may be traversed,
but reevaluations are performed selectively.) A regulgression is represented us-

5 The equations might be different depending on how the SS@Ei#im was implemented, but
all such equations would have the same solution.

ing its abstract-syntax tree, where leaves are weights Bnades, and internal nodes
correspond t@p, ®, or *. As a further optimization, all regular expressions sham-c
mon subtrees, and are represented as DAGs instead of tteemcFemental algorithm
we use takes care of this sharing and also identifies modifieth@des in an expres-
sion automatically. At each DAG node we maintain two integkeast _change and
| ast _seen, as well as the weightei ght of the subdag rooted at the node. We as-
sume that all regular expressions share the same leavestfopdes. We keep a global
counterupdat e_count that is incremented each time the weight of some out-node
is updated. For a node, the countaast _change records the last update count at
which the weight of its subdag changed, and the codrdsit _seen records the up-
date count at which the subdag was reevaluated. The evalugtorithm is shown in
Fig. 5. When the weight of an out-node is changed, its coarding leaf node is up-
dated with that weightypdat e_count is incremented, and the out-node’s counters
are set taipdat e_count .

1 procedureevaluatér)

2 begin

3 if r. | ast _seen == updat e_count then return
4 caser = w, r = t,return

5 caser = op(ri,ra)

6 evaluateq(1), evaluate(2)

7 m = mex{ri.| ast change, r..|ast_change}
8 ifm> r.last _seenthen

9 w = op(ri.weight, ra. weight)

10 if r. wei ght # wthen

11 r.last_change = m

12 r.weight = w

13 r.l ast _seen = updat e_count

14 end

Fig. 5. Incremental evaluation algorithm for regular expressidtereop is the prefix version of
®, @, or*. Whenop is *, r 2 can be ignored.

Once we solve for the values of the out-nodes, we can chaegeutinode labels
on summary edges in the intragraphs and replace them wittctireesponding weight.
Then the MOD values for other nodes in the TDG can be obtaiséuthe intraproce-
dural version by considering each intragraph in isolation.

The time required for solving this system of equations ddpem reducibility of
the intragraphs. Lef be the time required to solve SSPE on intragraphe., S =
O(mlogn + k) wherek is O(n?) in the worst-case, but is ignorable in practice. If the
equations do not have any mutual dependences (corresgptadito recursion) then
the running time i), S log h, where the sum ranges over all intragraphs, because
each equation has to be solved exactly once. In the presémeeussion, we use the
observation that the weight of each subdag in a regular egjme can change at mdst
times while the equations are being solved because it cgrdectease monotonically.
Because the size of a regular expression obtained from sagnaphG is bounded
by Sc, the worst-case time for solving the equation is, S¢ h. This bound is very
pessimistic and is actually worse than that of chaotic fikena Here we did not make
use of the fact that incrementally computing regular exgiogs is much faster than
reevaluating them. For a regular expression with one mabiifig-node, we only need

to perform semiring operations for each node from the owterieaf to the root of the
expression. For a nearly balanced regular expressiontlrisepath to the root can be
as small asog Si. Empirically, we found that incrementally computing thgeassion
required many fewer operations than recomputing the ezjmes

Unlike the chaotic-iteration scheme, where the weightdIofaG nodes are com-
puted, we only need to compute the weights on out-nodes. Highis for the rest of
the nodes can be computed lazily by evaluating their coomdipg regular expression
only when needed. For applications that just require thgktdor a few TDG nodes,
this gives us additional savings. We also limit the compaitedf weights of out-nodes
to only those intragraphs that contain a TDG node whose wéglequired. This cor-
responds to slicing the out-node equations with respedtdaiser query, which rules
out computation in procedures that are irrelevant to theyque

Handling Local Variables. WPDSs were recently extended to Extended-WPDSs to
provide a more convenient mechanism for handling localaldeis [12]. Reachability
problems in EWPDS are also based on abstract grammars simithe ones for a
WPDS. Thus, we can easily adapt our algorithm to EWPDSs dsethils are given

in [11]. We use EWPDSs in our experiments.

4 Solving other PDS Problems

In this section, we give algorithms for some important PD&bpems: witness tracing
and incremental analysis. Our technical report [11] alsegan algorithm for differen-
tial weight propagation. Of these three, only witness trgeind differential propagation
have been discussed before for WPDSs [16].

4.1 Witness Tracing

For program-analysis tools, if a program does not satisfyopgrty, it is often useful
to provide a justification of why the property was not satafie terms of WPDSs, it
amounts to reporting a set of paths, or rule sequencesgipetiter justify the reported
weight for a configuration. Formally, using the notation a&fB. 5, the witness tracing
problem for GPP is to find, for each configurationa setw(c) C |J path(c, <)
ceC
such that @ wv(o) = d(c¢). This definition of witness tracing does not impose any
occw(c)
restrictions o(n the size of the reported witness set becauseompact representation
of the set suffices for most applications. The algorithm faness tracing for GPP
[16] requiresO(|Q|? | I"| k) memory. Our algorithm only requirgs(|ON| h) memory,
where|ON | is the number of out-nodes, which is expected to be much entatn|I"|.

In our new GPP algorithm, we already have a head start beeeei$mve regular
expressions that describe all paths in an intragraph. Inntinggraphs, we label each
edge with not just a weight, but also the rule that justifiese¢tdge. Push rules will be
associated with summary edges and pop rules with edgesrigatate from a source
node. Edges from the source node that were inserted becguselaction(1) in Fig. 3
are not associated with any rule (or with an empty rule secgierfter solving SSPE
on the intragraphs, we can replace each edge with the comdsm rule label. This
gives us, for each out-node, a regular expression in termshef out-nodes that cap-
tures the set of all rule sequences that can reach that al&-iNext, while solving the
regular equations, we record the weights on out-nodeswileen we solve the equa-

10

tiont, = r(t1,--- ,t,), we record the weights oy, - - - , ¢, — sayws, -+ ,w, —
whenever the weight of), changes to, say,,. Then the set of rule sequences to create
transitiont,, with weightw, is given by the expressian(where we replace TDG edges
with their rule labels) by replacing each out-nagevith the regular expression for all
rule sequences used to cregtevith weightw; (obtained recursively). This gives a reg-
ular expression for the witness set of each out-node. Witeets for other transitions
can be obtained by solving SSPE on the intragraphs by regjacit-node labels with
their witness-set expression.

Here we only requiré(|ON| h) space for recording witnesses because we just
have to remember the history of weights on out-nodes. ForsRib&ined from ICFGs
and empty initial automatonQ) N| is the number of procedures in the ICFG, which is
very small compared ti|.

4.2 Incremental Analysis

The first incremental algorithm for verifying finite-stateperties on ICFGs was given
by Conway et al. [4]. We can use the methods presented indipisro generalize their
algorithm to WPDSs. An incremental approach to model cherhas the advantage of
amortizing the verification time across program developroedebugging time.

We consider two cases: addition of new rules and deletioxisfieg ones. In each
case we work at the granularity of intragraphs. When a nesvisuhdded, the fix-point
solution of the out-node equations monotonically decreasel we can reuse all of the
existing computation. We first identify the intragraphstttldanged (have more edges)
because of the new rule. Next, we recompute the regular ssipres for out-nodes in
those intragraphs and add them to the set of out-node egsétithen we solve the
equations as before, but set the initial weights of out-sddde their existing value. If
new out-nodes were added, then set their initial value to

Deletion of a rule requires more work. Again, we identify tteanged intragraphs
and recompute the out-node equations for them. We call odésin these intragraphs
asmodifiedout-nodes. Next, we look at the dependence graph of theaig-equations
as constructed i§3.2. We perform an SCC decomposition of this graph and tagpolo
cally sort the SCCs. Then the weights for all out-nodes thpear before the first SCC
that has a modified out-node need not be changed. We recothpigelution for other
out-nodes in topological order, and stop as soon as the nkwes/agree with previ-
ous values. We start with out-nodes in the first SCC that haedified out-node and
solve for their weights. If the new weight of an out-node atent from its previously
computed weight, all out-nodes in later SCCs that are degpgrzh it are marked as
modified. We repeat this procedure until there are no morefreddut-nodes.

The advantage of doing incremental analysis in our framkwsthat very little
information has to be stored between analysis runs: We czdyl ho store weights on
out-nodes.

5 Experiments

We are aware of two implementations of WPDSs: WPDS++ [8] arelused by nMoped
[9]. We call the implementation of our algorithm as FWPDS t@nsls for “fast”). It can

8 There are incremental algorithms for SSPE as well, but we havused them because solving
SSPE for a single intragraph is usually very fast.

11

be plugged-in as a back-end for each of the WPDS librarieD®#R also supports an
optimized iteration strategy where the user can supplyaipriordering on stack sym-
bols, which is used by chaotic iteration to choose the ttammswith least priority first.
We refer to this version as BFS-WPDS++ and supply it with aabtie-first ordering
on the ICFG obtained by treating it as a graph. BFS-WPDS+-bsimlways performs
better than WPDS++.

To measure end-to-end performance, FWPDS only computasdight on transi-
tions required by the application. We also report the tinkemato compute the weight
on all transitions and refer to this as FWPDS-Full. A comgamiwith FWPDS-Full will
give an indication of “application-independent” improvent provided by our approach
because it computes the same amount of information as thipsaVPDS algorithms.
However, we measure speedups using FWPDS running timesvothkle potential of
using lazy-evaluation in real settings. FWPDS-Full usestadssociative evaluation or-
der for computing weights of regular expressions. It is asoth noting that repeated
squaring for computingv* did not cause any appreciable difference compared with
using a simple iterative method.

We tested FWPDS on three applications that use WPDSs. Inwaqgterform GPS
on the WPDS with the entry point of the program as the init@ifeguration. The first
application performs affine-relation analysis (ARA) on x@#6grams [12]. An x86 pro-
gram is translated into a WPDS to find affine relationshipg/bet machine registers.
The application only requires affine relationships at éertaanch points [1]. Some
of the results are shown in Table 1. Over all the experimewrtparformed, FWPDS
provided an average speeduplof times (i.e., reduced running time [33%) over
BFS-WPDS++.

Time (s) Speedu
Prog InstgProcsWPDS++BFS-WPDS+{FWPDS-Ful|FWPDS
print 75539 697 1.23 1.02 0.77 0.41 2.48
finger 96123 893 11.14 7.94 7.13 4.44 1.79
winhlp321576346491 25.51 19.61 17.32 11.00 1.78
regsvr32/2258579625 58.70 38.83 37.13 24.64 1.57
cmd 2304812317 69.19 46.33 52.38 34.891 1.33
notepad 2394082911 54.08 40.8 41.85 26.50 1.54

Table 1. Comparison of ARA results. The last column show the speertjp(of run-
ning times) of FWPDS versus BFS-WPDS++. The programs areraamiVindows
executables, and the experiments were ruf.arGhz P4 machine withGB RAM.

The second application, BIACE, is for debugging [10]. It performs path optimiza-
tion on C programs: given a set of ICFG nodes, called criticales, it tries to find a
shortest ICFG path that touches the maximum number of thedesn The path starts at
the entry point of the program and stops at a given failuratpoithe program. FWPDS
only computes the weight at the failure point. As shown inlgday FWPDS performs
much better than BFS-WPDS++ for this application, and theral speedup was$.3
times. Some experimental results on incremental analgsi8TRACE are presented
in [11]: We observed a roughli0-fold improvement by incrementally computing the
solution after a deleted procedure was reinserted in thgrano.

The third application is nMoped [9], which is a model checta@rBoolean pro-
grams. It uses a WPDS library for performing reachabilitgigges. Weights are binary

12

Time (s) Speedup
Prog |ICFG nodefrocsBFS-WPDS+#WPDS-Ful|[FWPDS
make 40667 204 15.1 7.7 58 25
indent 28158 104 19.4 282 159 1.2
less 33006 359 22.4 8.6 53 41
patch 27389 133 70.2 232 171 40
gawk 866171 401 72.7 64.5 45.1 1.6
wget 44578 399 3184 589 27.0 117

Table 2. Comparison of BRACE results. The last column shows speedup of FWPDS
over BFS-WPDS++. The critical nodes were chosen at random fCFG nodes and
the failure site was set as the exit point of the program. Thgnams are common Unix
utilities, and the experiments were run 24 GHz P4 machine witiGB RAM.

relations on valuations of Boolean variables, and are sgmted using BDDs. We mea-
sure the performance of FWPDS against this library usingt @fsprograms (and an
error configuration for each program) supplied by S. Schw¥ds compute the set of
all variable valuations that can hold at the error configuraby computing its meet-
over-all-paths weight. As shown in Table 3, FWPDS& ts 5 times faster than nMoped.
Our technical report [11] gives some other set of experisidnit they were on much
smaller programs and led to inconclusive results.

nMoped can also be asked to stop as soon as it finds out thattheenfiguration
is reachable (instead of exploring all paths leading to tinereonfiguration). In that
case, when the error configuration was reachable, nMopéorperd much better than
FWPDS, often completing in less than a second. This is eggdmcause the evalua-
tion strategy used by FWPDS is oriented towards finding thepdete weight (MOD
value) on a transition. For example, it might be better tadgaturating a loop com-
pletely and propagate partially computed weights in theshaffinding out if the error
configuration is reachable. However, when the error corditom is unreachable, or
when the abstraction-refinement mode in nMoped is turned erplores all paths in
the program and computes the MOD value of all transitionsulech situations, it may
be better to use FWPDS.

Prog nMopedFWPDS-Ful|FWPDSSpeedu
bugs5 13.11 13.03 7.25 1.81
slam-fixed 32.67 19.23 13.3 2.46
slam 6.32 5.2]4 3.277 1.93
unified-serigl 37.10 19.65 12.46 2.98
iscsil 29.15 27.12 14.08 2.07
iscsil0 178.22 59.63 31.29 5.7Q

Table 3. nMoped results. The last column shows speedup of FWPDS dveped.
The programs were provided by S. Schwoon, and are not yeigailplavailable.

6 Related Work

The basic strategy of using a regular expression to desasie¢ of paths has been used
previously for dataflow analysis [20] of single-proceduregrams. The only work that
we are aware of that uses this technique for multi-procegurgrams is by Rama-
lingam [15]. However, he used regular expressions for dquéar analysis (execution

13

frequency analysis) and the technique was motivated bypheia requirements of ex-
ecution frequency analysis when creating procedure sumamaather than efficiency.
We have generalized the approach to apply to a much broadef ge@blems, namely
anything that can be encoded as a WPDS, and showed how vanbascements (in-
cremental recomputation of regular expressions, comguénily, etc.) contribute to
creating a faster analysis.

There has been a host of previous work on incremental progreatysis as well as
on interprocedural automaton-based analysis [4]. Theemental algorithm we have
presented is similar to the algorithm in [4], but generaiteto WPDSs and is thus
applicable in domains other than finite-state propertyfioation. A key difference with
their algorithm is that they explore the property automato+the-fly as the program is
explored. Our encoding into a WPDS requires the whole autmmtzefore the program
is explored. This difference can be significant when thermaton is large but only a
small part of the automaton needs to be generated.

References

1. G. Balakrishnan and T. Reps. Analyzing memory accessd6iexecutables. I6€C, 2004.
2. A. Bouajjani, J. Esparza, and O. Maler. Reachability gsialof pushdown automata: Appli-
cation to model checking. I6oncurrency Theory (CONCUR)ages 135-150, 1997.
3. A.Bouajjani, J. Esparza, and T. Touili. A generic apphoacthe static analysis of concurrent
programs with procedures. POPL, pages 62-73, 2003.
4. C. L. Conway, K. S. Namjoshi, D. Dams, and S. A. Edwards.rdmental algorithms for
inter-procedural analysis of safety propertiesCIV, pages 449—461, 2005.
5. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwooriegffadgorithms for model check-
ing pushdown systems. DAV, pages 232—-247, 2000.
6. J. Esparza and S. Schwoon. A BDD-based model checkerdorsige programs. €AV,
pages 324-336, 2001.
7. A. Finkel, B. Willems, and P. Wolper. A direct symbolic apach to model checking push-
down systemsElectronic Notes in Theoretical Computer Scierzegl997.
8. N. Kidd, T. Reps, D. Melski, and A. Lal. WPDS++: A C++ libyafior weighted pushdown
systems, 2005. http://www.cs.wisc.edu/wpis/wpds++.
9. S. Kiefer, S. Schwoon, and D. Suwimonteerabuth. nMoped)052
http://www.informatik.uni-stuttgart.de/fmi/szs/t@dioped/nmoped/.
10. A. Lal, J. Lim, M. Polishchuk, and B. Liblit. Path optinaitzon in programs and its applica-
tion to debugging. IfEuropean Symposium On Programmipgges 246-263, 2006.
11. A. Lal and T. Reps. Improving pushdown system model dhgckTechnical Report 1552,
University of Wisconsin-Madison, Jan. 2006.
12. A.Lal, T. Reps, and G. Balakrishnan. Extended weightethgown systems. IBAV, pages
434-448, 2005.
13. Y. Matsunaga, P. C. McGeer, and R. K. Brayton. On comgutie transitive closure of a
state transition relation. IBesign Automation Conference (DA@pges 260-265, 1993.
14. E. W. Myers. A precise interprocedural data flow alganithn POPL, pages 219-230, 1981.
15. G. Ramalingam. Data flow frequency analysisPUDI, pages 267-277, 1996.
16. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted puahdystems and their applica-
tion to interprocedural dataflow analysBcience of Computer Programmirz05.
17. S. SchwoonModel-Checking Pushdown Syster®hD thesis, Technical Univ. of Munich,
Munich, Germany, July 2002.
18. S. Schwoon. Moped, 2002. http://www.fmi.uni-stuttgie/szs/tools/moped/.
19. R. E. Tarjan. Fast algorithms for solving path probleth#\CM 28(3):594—614, 1981.
20. R. E. Tarjan. A unified approach to path problethsACM 28(3):577-593, 1981.

14

