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CFLOBDDs:
Context-Free-Language Ordered Binary Decision Diagrams
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This paper presents a new compressed representation of Boolean functions, called CFLOBDDs (for Context-

Free-Language Ordered Binary Decision Diagrams). They are essentially a plug-compatible alternative to

BDDs (Binary Decision Diagrams), and hence useful for representing certain classes of functions, matrices,

graphs, relations, etc. in a highly compressed fashion. CFLOBDDs share many of the good properties of BDDs,

but—in the best case—the CFLOBDD for a Boolean function can be exponentially smaller than any BDD for that

function. Compared with the size of the decision tree for a function, a CFLOBDD—again, in the best case—can

give a double-exponential reduction in size. They have the potential to permit applications to (i) execute much

faster, and (ii) handle much larger problem instances than has been possible heretofore.

We applied CFLOBDDs in quantum-circuit simulation, and found that for several standard problems the

improvement in scalability, compared to BDDs, is quite dramatic. With a 15-minute timeout, the number of

qubits that CFLOBDDs can handle are 65,536 for GHZ, 524,288 for BV; 4,194,304 for DJ; and 4,096 for Grover’s

Algorithm, besting BDDs by factors of 128×, 1,024×, 8,192×, and 128×, respectively.
Additional Key Words and Phrases: Decision diagram, matched paths, best-case double-exponential compres-

sion, quantum simulation

1 INTRODUCTION
Many areas of computer science—such as hardware and software verification, logic synthesis, and

equivalence checking of combinatorial circuits—require a space-efficient representation of data, as

well as space- and time-efficient operations on data stored in such a representation. Many of the

tasks in the aforementioned areas involve operations on either (i) Boolean functions, or (ii) non-

Boolean-valued functions over Boolean arguments. In some cases, a level of encoding is involved: the

data of interest could be decision trees, graphs, relations, matrices, circuits, signals, etc., which are

encoded as functions of type (i) or (ii). Binary Decision Diagrams (BDDs) [11] are one data structure

that is widely used for such purposes. A Boolean function in 𝐵𝑛 = {0, 1}𝑛 → {0, 1} is represented
in a compressed form as an ROBDD (Reduced Ordered BDD) data structure. All manipulations of

these Boolean functions are carried out using algorithms that operate on ROBDDs. ROBDDs are

BDDs in which the same variable ordering is imposed on the Boolean variables (“Ordered”), and

so-called don’t-care nodes are removed (“Reduced”). ROBDDs with non-binary-valued terminals

are called Multi-Terminal BDDs (MTBDDs) [13, 15] or Algebraic Decision Diagrams (ADDs) [3].

We will refer to ROBDDs/MTBDDs/ADDs generically as BDDs from hereon.

In the programming-languages community, BDDs are widely used for program analysis and

have been used in Datalog interpreters.
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• The SLAM system (later called Static Driver Verifier) was a Microsoft tool for checking

temporal properties of device drivers (e.g., that drivers correctly follow API-usage rules) [5].

BDDs were used in SLAM to represent the abstract transformers of Boolean programs that

were abstractions of a driver’s source code. BDDs allowed the SLAM developers to increase

the capabilities of the IFDS framework for interprocedural dataflow analysis [54] to handle

relations over valuations over a Boolean program’s Boolean variables [6].

• The Datalog solver bddbddb, which uses BDDs as the backing representation of relations,

was developed by Whaley and Lam to support a variety of program analyses [65, 66].

• Lhoták used BDDs in interprocedural program analyses to represent and manipulate collec-

tions of large sets, allowing him to use larger programs than previous studies of the factors

that affect analysis precision [37].

In some applications of BDDs, the initial and final BDD structures are of a reasonable size, but

there is an “intermediate swell” during the computation. Such a blow-up can cause operations to

take a long time, or cause an application to run out of memory. The size-explosion issue generally

limits the use of BDDs to problems involving at most a few hundred Boolean variables.

In this paper, we introduce a new data structure, called Context-Free-Language Ordered Binary

Decision Diagrams (CFLOBDDs), which are essentially a plug-compatible replacement for BDDs.

CFLOBDDs share many of the good properties of BDDs, but—in the best case—the CFLOBDD

for a Boolean function can be exponentially smaller than any ROBDD for that function. Compared

with the size of the decision tree for a function, a CFLOBDD—again, in the best case—can give

a double-exponential reduction in size. Obviously, not every Boolean function has such a highly

compressed representation, but for the ones that do, CFLOBDDs offer much better compression

than BDDs, and thus have the potential to permit applications to (ii) execute much faster, and (ii)

handle much larger problem instances than has been possible heretofore.

CFLOBDDs can represent functions, matrices, graphs, relations, etc. (using binary- or multi-

valued terminals, as appropriate). Even for objects for which double-exponential compression is

not achieved, CFLOBDDs may provide better compression than BDDs. Like BDDs, CFLOBDDs are

canonical (§4), and operations are performed on them directly (§6): they are never unfolded to the

full decision tree. Moreover, an implementation can ensure that only a single representative is ever

constructed for a given function; consequently, the test of whether two CFLOBDDs represent equal

functions can be performed merely by comparing the values of two pointers.

CFLOBDDs are based on the following insight:

A BDD can be considered to be a special form of bounded-size, branching, but non-looping

program. From that viewpoint, a CFLOBDD can be considered to be a bounded-size, branching,

but non-looping program in which a certain form of procedure call is permitted.

The advantages of this idea are two-fold. First, whereas a BDD of size 𝑛 can have at most 2
𝑛
paths,

the “procedure-call” mechanism in CFLOBDDs allows a CFLOBDD of size 𝑛 to have 2
2
𝑛

paths

(§3.5.1). This difference is what lies behind the potential compression advantage of CFLOBDDs.

Second, even when best-case compression is not possible, such “procedure calls” allow there to

be additional sharing of structure beyond what is possible in BDDs: a BDD can share sub-DAGs,

whereas a procedure call in a CFLOBDD shares the “middle of a DAG.” (See Figs. 3 and 6.)

We evaluated CFLOBDDs and BDDs on synthetic benchmarks and for quantum simulation.

We compared the performance in terms of size and execution time: on problem sizes for which

both approaches ran successfully, CFLOBDDs were generally smaller and had lower execution

times, particularly at the upper end of the capabilities of BDDs. Moreover, the improvement that

CFLOBDDs bring in scalability is quite dramatic, both for the synthetic benchmarks (§10.2.1) and

for quantum simulation (§10.2.2).
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Our work makes the following contributions:

• We introduce a new data structure, called CFLOBDDs, for representing functions, matrices,

graphs, relations, and other discrete structures in a highly compressed fashion (§3). In the

best case, a CFLOBDD obtains double-exponential compression in space: i.e., the CFLOBDD

for a Boolean function 𝑓 is double-exponentially smaller than the decision tree for 𝑓 .

• We present algorithms for creating CFLOBDDs and performing operations on them (§6). Most

operations have low cost: For many of the functions of 2
𝑘
variables for which the CFLOBDD

representation is double-exponentially smaller than a decision tree of size 2
2
𝑘

, the CFLOBDD

can be constructed in time 𝑂 (𝑘) and space 𝑂 (𝑘). Most unary operations on CFLOBDDs are

either constant-time or linear in the size of the argument CFLOBDD. The cost of most binary

operations is bounded by the product of (i) the sizes of the two argument CFLOBDDs, and

(ii) the size of the answer CFLOBDD.

• We show an exponential gap between CFLOBDDs and BDDs (§8).

• We describe how CFLOBDDs can be used to simulate quantum circuits (§9.4).

• We measured the performance of CFLOBDDs and BDDs on synthetic and quantum-

simulation benchmarks (§10). For several problems, the improvement in scalability enabled

by CFLOBDDs is quite dramatic. In particular, in the quantum-simulation benchmarks, the

number of qubits that could be handled using CFLOBDDs was larger, compared to BDDs, by

a factor of 128× for GHZ; 1,024× for BV; 8,192× for DJ; and 128× for Grover’s algorithm.

Organization. §2 reviews decision trees and BDDs. §3 introduces the basic principles underlying

CFLOBDDs. §4 introduces some additional structural invariants that allow us to establish that each

Boolean function has a unique, canonical representation as a CFLOBDD. §5 discusses how some

standard techniques—hash-consing [23] and function-caching (or memo functions [45]) —apply to

CFLOBDDs. §6 presents algorithms for a variety of CFLOBDD operations. §7 discusses how to

represent matrices and vectors using CFLOBDDs, and how to perform some important operations

on them. §8 demonstrates an exponential gap between CFLOBDDs and BDDs: the CFLOBDD for

a function 𝑓 can be exponentially smaller than any BDD for 𝑓 . §9 discusses the application of

CFLOBDDs to simulating quantum circuits. §10 poses two experimental questions and presents the

results of experiments on synthetic and quantum-simulation benchmarks. §11 discusses related

work. §12 concludes.

In consultation with the EIC, we have limited the presentation to about sixty pages. Additional

material is available in reference [59]; citations of the form “[59, §X.Y]” indicate where omitted

details can be found. The three most relevant appendices from [59] are included in this paper (see

§A–§C). §D concerns the time complexity of a key subroutine used in several of the CFLOBDD

operations.

2 PRELIMINARIES: A FAMILY OF EXAMPLES, BOOLEAN FUNCTIONS, DECISION
TREES, AND BDDS

This section presents the set of Hadamard matricesH , which recur in §3 and §8–§10. It also reviews

Boolean functions, decision trees, and BDDs, and shows how decision trees and BDDs can encode

the members ofH .

Hadamard Matrices. The family of Hadamard matrices, H = {𝐻
2
𝑖 | 𝑖 ≥ 1}, can be defined

recursively: for 𝑖 ≥ 1, 𝐻
2
𝑖+1 = 𝐻

2
𝑖 ⊗𝐻

2
𝑖 , with 𝐻2 from Fig. 1 as the base case. where ⊗ denotes

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.
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𝐻2 =

𝑦0

𝑥0

[0 1

0 1 1

1 1 −1

] 𝐻4 = 𝐻2 ⊗𝐻2 =

𝑦0

𝑥0

[ 0 1

0 𝐻2 𝐻2

1 𝐻2 −𝐻2

] =

𝑦0𝑦1

𝑥0𝑥1


00 01 10 11

00 1 1 1 1

01 1 −1 1 −1

10 1 1 −1 −1

11 1 −1 −1 1


Fig. 1. 𝐻2 and 𝐻4, the first two members of the family of Hadamard matricesH = {𝐻

2
𝑖 | 𝑖 ≥ 1}.

Kronecker product.
1
Fig. 1 shows 𝐻2 and 𝐻4, the first two matrices inH . The Kronecker product of

two matrices is defined as

𝐴 ⊗ 𝐵 =


𝑎1,1 · · · 𝑎1,𝑚

...
. . .

...

𝑎𝑛,1 · · · 𝑎𝑛,𝑚

 ⊗ 𝐵 =


𝑎1,1𝐵 · · · 𝑎1,𝑚𝐵
...

. . .
...

𝑎𝑛,1𝐵 · · · 𝑎𝑛,𝑚𝐵


Equivalently, (𝐴 ⊗ 𝐵)𝑖𝑖′, 𝑗 𝑗 ′ = 𝐴𝑖, 𝑗 × 𝐵𝑖′, 𝑗 ′ . If 𝐴 is 𝑛 ×𝑚 and 𝐵 is 𝑛′ ×𝑚′, then 𝐴 ⊗ 𝐵 is 𝑛𝑛′ ×𝑚𝑚′.
For 𝑖 ≥ 1, 𝐻

2
𝑖 is a square matrix of size 2

2
𝑖−1 × 2

2
𝑖−1

. Thus, the number of rows/columns/entries

in 𝐻
2
𝑖+1 is the square of the number of rows/columns/entries in 𝐻

2
𝑖 . For example, 𝐻4 is 4 × 4

(16 entries); 𝐻8 is 16 × 16 (256 entries). An indexing scheme for 𝐻
2
𝑖 can be defined that uses

2
𝑖−1 + 2

𝑖−1 = 2 ∗ 2
𝑖−1 = 2

𝑖
Boolean variables. As shown in Fig. 1, 𝐻2 requires 2 variables—𝑥0 for the

row index and 𝑦0 for the column index—whereas 𝐻4 requires 4 variables—𝑥0 and 𝑥1 for the row

index, and 𝑦0 and 𝑦1 for the column index. In general, 𝐻
2
𝑖 can be treated as a function of type

{0, 1}2𝑖−1 × {0, 1}2𝑖−1 → {−1, 1}. Our convention is that 𝑥0 and 𝑦0 are the most-significant bits of the

row and column indexes, respectively; 𝑥1 and 𝑦1 are the next-most-significant bits, respectively, etc.

Boolean Functions. A Boolean function over 𝑛 variables is a function in {𝐹,𝑇 }𝑛 → {𝐹,𝑇 }. This
paper is also concerned with pseudo-Boolean functions: a pseudo-Boolean function over 𝑛 variables

and value domain𝑊 is a function in {𝐹,𝑇 }𝑛 → 𝑊 . Because there is little chance of confusion,

for brevity, we typically refer to such a function as a “Boolean function.” We also use 0 and 1 as

synonyms for 𝐹 and 𝑇 , respectively.

Hadamard matrix 𝐻
2
𝑖 can be considered to be a (pseudo-)Boolean function in {0, 1}2𝑖 → {−1, 1},

with some convention about how the 2
𝑖
input variables correspond to bits of the row-index and the

column-index of the matrix.

Decision Trees. A decision tree is a tree representation of a Boolean function. For a Boolean

function 𝐵 in {𝐹,𝑇 }𝑛 →𝑊 , the decision tree 𝑇𝐵 for 𝐵 is a complete binary tree with 𝑛 plies and a

value from𝑊 at each leaf. 𝑇𝐵 comes with a specific ordering on the 𝑛 Boolean inputs of 𝐵: each

ply of 𝑇𝐵 corresponds to some specific Boolean variable 𝑣 among 𝐵’s 𝑛 Boolean input variables.

𝑇𝐵—and hence 𝐵—can be evaluated with respect to an input assignment [𝑣1 ↦→ 𝑏1, . . . , 𝑣𝑛 ↦→ 𝑏𝑛]

(where 𝑏1, . . . , 𝑏𝑛 ∈ {𝐹,𝑇 }) by following a root-to-leaf path in 𝑇𝐵 , returning the value that labels

the leaf. (Note that 𝑣1 is not necessarily associated with the ply at the root. The order used by 𝑇𝐵 is

fixed, but can be any of the permutations of the sequence ⟨𝑣1, . . . , 𝑣𝑛⟩.)
1
Others use a different indexing scheme: 𝐻2 is the same as with our scheme (as is 𝐻4), but the recursive definition is

𝐻
2
𝑖+1 = 𝐻2 ⊗𝐻2

𝑖 , for 𝑖 ≥ 1. Thus, for 𝑖 ≥ 0, 𝐻
2
𝑖 is a 2

𝑖 × 2
𝑖
matrix (and thus has 2

2𝑖
entries). In contrast, with our indexing

scheme, the matrix we call 𝐻
2
𝑖 is a 2

2
𝑖−1 × 2

2
𝑖−1

matrix, for 𝑖 ≥ 1 (and thus has 2
2
𝑖
entries).

Put another way, what we call 𝐻
2
𝑖 would conventionally be known as 𝐻

2
2
𝑖−1 . Not only do we avoid having to write a

doubly superscripted subscript, we will see in §3.4 that the recursive rule “𝐻
2
𝑖+1 = 𝐻

2
𝑖 ⊗𝐻

2
𝑖 ” fits particularly well with the

internal structure of CFLOBDDs.
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1 -1

x0

y0

A

B

1 1

(a) Decision tree for 𝐻2

1 -1

x0

y0

A

(b) BDD for 𝐻2

1 1

x0

y0

x1

y1

1 -1 1 1 1 -1 1 1 1 -1 -1 -1 -1 1

(c) Decision tree for 𝐻4

x0

y0

1 -1

x1

y1

(d) BDD for 𝐻4

x0

y0

1 -1

x1

y1

(e) Occurrences of𝐻2 in the
BDD for 𝐻4

Fig. 2. Decision trees and BDDs for 𝐻2 and 𝐻4, with plies in interleaved most-significant-bit order—⟨𝑥0, 𝑦0⟩
and ⟨𝑥0, 𝑦0, 𝑥1, 𝑦1⟩, respectively. The bold paths show the assignments [𝑥0 ↦→ 𝐹,𝑦0 ↦→ 𝑇 ] (for 𝐻2 [0, 1]) and
[𝑥0 ↦→ 𝐹,𝑦0 ↦→ 𝑇, 𝑥1 ↦→ 𝐹,𝑦1 ↦→ 𝑇 ] (for 𝐻4 [0, 3]), respectively.

Figs. 2a and 2c show two decision trees, with the convention that will be used throughout the

paper that at each interior node, the left branch is taken when the current Boolean variable in the

assignment has the value 𝐹 (or 0); the right branch is taken for the value 𝑇 (or 1). Fig. 2a shows

the decision tree for 𝐻2, which has 2 plies, 3 interior nodes, and 4 leaf nodes, using the variable

ordering ⟨𝑥0, 𝑦0⟩. In Fig. 2a, the path highlighted in bold is for the assignment [𝑥0 ↦→ 𝐹,𝑦0 ↦→ 𝑇 ],
which corresponds to 𝐻2 [0, 1] whose value is 1. Fig. 2c shows the decision tree for 𝐻4, which has 4

plies and 15 interior nodes, using the interleaved-variable ordering ⟨𝑥0, 𝑦0, 𝑥1, 𝑦1⟩. The path in bold

is for [𝑥0 ↦→ 𝐹,𝑦0 ↦→ 𝑇, 𝑥1 ↦→ 𝐹,𝑦1 ↦→ 𝑇 ], which corresponds to 𝐻4 [0, 3], whose value is 1.

In Fig. 2c, the Kronecker product in the expression 𝐻4 = 𝐻2 ⊗𝐻2 corresponds to stacking decision

trees. In essence, the ⟨𝑥0, 𝑦0⟩ plies correspond to the left occurrence of𝐻2 in“𝐻2 ⊗𝐻2.” At each “leaf”

(the four interior nodes after the 𝑦0 ply), there is another copy of 𝐻2 in the ⟨𝑥1, 𝑦1⟩ plies, with the

terminal values labeled with the product of the left 𝐻2’s value and the right 𝐻2’s value. We can

construct a decision tree for each member ofH by repeated stacking, doubling the number of plies

each time in accordance with the definition 𝐻
2
𝑖+1 = 𝐻

2
𝑖 ⊗𝐻

2
𝑖 .

Boolean functions and decision trees are related by the following fact:

Observation 2.1. Consider the sets of (i) Boolean functions in {0, 1}𝑛 →𝑊 , and (ii) 𝑛-ply decision

trees with leaves labeled by values in𝑊 , using a variable ordering that is some fixed permutation of

⟨𝑣1, . . . , 𝑣𝑛⟩. These sets can be put into one-to-one correspondence. □

For each Boolean function 𝐵 : {0, 1}𝑛 →𝑊 , create the 𝑛-ply decision tree 𝑇𝐵 in which the value

𝐵(𝑏1, . . . , 𝑏𝑛) is placed at the end of the path in 𝑇𝐵 for the assignment [𝑣1 ↦→ 𝑏1, . . . , 𝑣𝑛 ↦→ 𝑏𝑛].
Conversely, for each decision tree 𝑇𝐵 , let 𝐵 be the function in {0, 1}𝑛 →𝑊 for which 𝐵(𝑏1, . . . , 𝑏𝑛)
equals the value𝑤 at the end of the path in𝑇𝐵 for the assignment [𝑣1 ↦→ 𝑏1, . . . , 𝑣𝑛 ↦→ 𝑏𝑛]. Finally, if
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two decision trees 𝑇1 and 𝑇2 represent the same Boolean function 𝐵, then the sequence of leaves in

left-to-right order from each tree are equal, and thus𝑇1 and𝑇2 are the same tree (as a mathematical

object). Thus, the 𝑛-ply decision trees that use a given variable ordering represent the Boolean

functions in {0, 1}𝑛 →𝑊 uniquely.

BDDs. A BDD is a compressed representation of a decision tree. Fig. 2b shows the BDD for 𝐻2,

using the variable ordering ⟨𝑥0, 𝑦0⟩. Again, left branches are for 𝐹 (or 0); right branches are for 𝑇

(or 1). In the 𝐻2 matrix, rows 0 and 1 are different, and hence the BDD node for 𝑥0 is a fork_node,

which forks to two different substructures. In row 0 of the matrix, columns 0 and 1 are identical,

and hence the 𝑦0 ply is skipped in the 𝐹 branch of 𝑥0, with the 𝐹 branch of 𝑥0 leading directly to

the terminal value 1. Conversely, in row 1 of the matrix, the columns differ, and hence the BDD

node for 𝑦0 in the 𝑇 branch of 𝑥0 is a fork_node. In Fig. 2b, the bold path is for the assignment

[𝑥0 ↦→ 𝐹,𝑦0 ↦→ 𝑇 ] for 𝐻2 [0, 1]. (Only the edge for 𝑥0 ↦→ 𝐹 is highlighted because the ply for 𝑦0 is

skipped when 𝑥0 ↦→ 𝐹 .)

Fig. 2d shows the BDD for 𝐻4 under the interleaved-variable ordering ⟨𝑥0, 𝑦0, 𝑥1, 𝑦1⟩. The bold
path is for the assignment [𝑥0 ↦→ 𝐹,𝑦0 ↦→ 𝑇, 𝑥1 ↦→ 𝐹,𝑦1 ↦→ 𝑇 ], which corresponds to 𝐻4 [0, 3]. (The
path in the BDD only shows 𝑥0 ↦→ 𝐹, 𝑥1 ↦→ 𝐹 because the plies for 𝑦0 when 𝑥0 ↦→ 𝐹 , and 𝑦1 when

𝑥0 ↦→ 𝐹 and 𝑥1 ↦→ 𝐹 are skipped.)

Fig. 2e shows that the Kronecker product𝐻4 = 𝐻2 ⊗𝐻2 corresponds to stacking BDDs—in essence,

each terminal of the BDD for the left occurrence of 𝐻2 in “𝐻2 ⊗𝐻2” is replaced by a copy of 𝐻2. The

BDD for 𝐻4 contains three occurrences of 𝐻2: one in the ⟨𝑥0, 𝑦0⟩ plies, and two in the ⟨𝑥1, 𝑦1⟩ plies.
The leftmost ⟨𝑥1, 𝑦1⟩ occurrence (blue-dashed outline) accounts for the three occurrences of matrix

𝐻2 in the 𝐻4 matrix; the rightmost occurrence (green dashed-double-dotted outline) corresponds to

the negated matrix −𝐻2 in the lower-right corner of 𝐻4 (cf. Fig. 1). Consequently, one can construct

a BDD for each member ofH by repeated stacking, doubling the number of plies each time, per

𝐻
2
𝑖+1 = 𝐻

2
𝑖 ⊗𝐻

2
𝑖 , but only tripling the size with each such stacking operation (e.g., 𝐻8 = 𝐻4 ⊗𝐻4

has three copies of 𝐻4, etc.). Consequently, the size of the BDD for 𝐻
2
𝑖 is 𝑂 (3𝑖 ).

Discussion. The decision tree for 𝐻
2
𝑖 has height 2

𝑖
, 2

2
𝑖

leaves, and 2
2
𝑖 −1 internal nodes. Thus,

the size of the tree is double exponential in 𝑖 . As observed above, the size of the BDD for 𝐻
2
𝑖 is

𝑂 (3𝑖 ), and hence, compared to decision trees, BDDs achieve exponential compression onH .

In contrast, CFLOBDDs employ a different principle than stacking to account for Kronecker

product. Looking ahead, this principle is explained in §3.4, and as we will see when we get to

Fig. 6b, there is a CFLOBDD of size 𝑂 (𝑖) that encodes 𝐻
2
𝑖 . Consequently, CFLOBDDs achieve

double-exponential compression onH . Moreover, in §8, we show that this exponential separation

is inherent: for every variable ordering, a BDD that represents 𝐻
2
𝑖 requires Ω(2𝑖 ) nodes (Thm. 8.1).

In the remainder of the paper, detailed knowledge about BDDs is not essential. The primary

purpose of the material that discusses BDDs is to show that CFLOBDDs offer something new, but

that material is tangential to being able to understand the CFLOBDD algorithms that we give. The

paper gives what is essentially a complete account of CFLOBDD operations and invariants, and

we hope that it could be read by someone who knows little about BDDs. Nevertheless, additional

knowledge about BDD internals could help readers appreciate the material in the paper. For

background about how BDDs are implemented, the reader is referred to Brace et al. [10].

3 CFLOBDDS
CFLOBDDs are a binary decision diagram inspired by BDDs, but the two data structures are based

on different principles. A BDD is an acyclic finite-state machine (modulo ply-skipping), whereas

a CFLOBDD is a particular kind of single-entry, multi-exit, non-recursive, hierarchical finite-state
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1 -1

level‐0 groupings

level‐1 grouping

value edges
terminal values

A‐connection edge

B‐connection edges

B‐connection return edges

A‐connection return edges

entry vertex
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exit vertices

middle vertices
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entry vertex

exit vertex

(a) (b)

Fig. 3. (a) CFLOBDD for 𝐻2 using the variable ordering ⟨𝑥0, 𝑦0⟩. The bold path is for the assignment
[𝑥0 ↦→ 𝐹,𝑦0 ↦→ 𝑇 ] for 𝐻2 [0, 1]. (b) Guide to the terminology introduced in Defn. 3.1.

machine (HFSM) [1]. This section describes the basic principles of CFLOBDDs, illustrating them

via encodings of 𝐻2 and 𝐻4 with the variable orderings ⟨𝑥0, 𝑦0⟩ and ⟨𝑥0, 𝑦0, 𝑥1, 𝑦1⟩, respectively.

Intuition. Before discussing the CFLOBDD data structure in detail, we give some intuition about

the decomposition principle used in CFLOBDDs.

Consider a function 𝑓 : {0, 1}𝑛 → [1 . . .𝑚] over variables 𝑥0, . . . , 𝑥𝑛−1. In the classical Shannon

decomposition of 𝑓 , one looks at the value of 𝑥0 and then derives two co-factors 𝑔0 = 𝑓 |𝑥0=0 and

𝑔1 = 𝑓 |𝑥0=1, both of which are functions over variables 𝑥1, . . . , 𝑥𝑛−1. Functions 𝑔0 and 𝑔1 can be

combined to yield 𝑓 by the identity 𝑓 = 𝑥0 · 𝑔0 + 𝑥0 · 𝑔1 (where 𝑥0 denotes the complement of 𝑥0,

“·” denotes logical-and, and “+” denotes logical-or). (See [16, §4.2] for a precise definition of the

generalization of the Shannon decomposition for MTBDDs.) The same decomposition can be carried

out recursively on 𝑔0 and 𝑔1, and OBDDs—whether reduced or not—exploit this decomposition by

sharing common co-factors that arise in the different plies of the recursive decomposition.

The decomposition used in CFLOBDDs is different. The number of variables 𝑛 is assumed to be a

power of 2, and at each decomposition level the variables are divided into two halves: 𝑥0, . . . , 𝑥𝑛/2−1

and 𝑥𝑛/2, . . . , 𝑥𝑛−1.
2
Let𝑔0 be the function of the first𝑛/2 variables that maps them to [1 . . . 𝑘], where

𝑘 is the number of equivalence classes of residual functions one has after the first 𝑛/2 variables of

𝑓 are read. (𝑘 equals the number of nodes in the corresponding BDD for 𝑓 at ply 𝑛/2.) For each
𝑖 ∈ [1 . . . 𝑘], 𝑔𝑖 is the appropriate function over the remaining 𝑛/2 variables, which combined with

𝑔0 (based on index 𝑖), and an appropriate matching of returned values, yields 𝑓 .3 The representation

allows sharing across all the functions 𝑔0, 𝑔1, . . . , 𝑔𝑘 . Moreover, the divide-the-variables-in-half

decomposition is carried out recursively on 𝑔0, 𝑔1, . . . , 𝑔𝑘 , with mutual sharing of the decomposed

functions that arise at all levels.

Rather than producing a DAG-structured data structure, as one has with BDDs, the divide-the-

variables-in-half decomposition leads to a structure that resembles an HFSM (or, alternatively, the

interprocedural control-flow graph for a non-recursive, multi-procedure program).

2
For a Boolean function of𝑚 variables that is not a power of 2, one can pad the function with dummy Boolean variables

to reach the next higher power of 2. Depending on the function, the user may choose to interleave the dummy variables

among the “legitimate” variables or place them all at the end (or some combination of both). By this device, every Boolean

function can be represented as a CFLOBDD. (See also the discussion in §4.2 of property (2).)

3
We are being deliberately vague about how 𝑔0, 𝑔1, . . . , 𝑔𝑘 are combined, because the details are somewhat complicated.

See Defns. 3.1 and 4.1 for the precise definition.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Meghana Aparna Sistla, Swarat Chaudhuri, and Thomas Reps

3.1 Matched Paths
The CFLOBDD representation of 𝐻2 consists of three groupings, shown as three ovals in Fig. 3a.

4

Each CFLOBDD grouping is associated with a given level. The two small ovals are at level 0 (labeled

𝐿0), and the large oval is at level 1 (labeled 𝐿1). There is an implicit hierarchical structure to the

levels, and level-0 groupings are said to be leaves of the CFLOBDD. There are only two possible

types of level-0 groupings:

• A level-0 grouping like the one at the upper right in Fig. 3a is called a fork grouping.

• A level-0 grouping like the one at the lower right in Fig. 3a is called a don’t-care grouping.

The vertex at the top of each grouping is the grouping’s entry vertex. The entry vertex of a level-0

grouping corresponds to a decision point: left branches are for 𝐹 (or 0); right branches are for 𝑇 (or

1). The vertices at the bottom of each grouping are called exit vertices; those in the middle of the

level-1 grouping are called middle vertices.

In matrix 𝐻2, each entry is either 1 or −1. Each assignment over ⟨𝑥0, 𝑦0⟩ corresponds to a special

kind of path in Fig. 3a that leads to either 1 or −1. Each such path starts from the entry vertex of the

level-1 grouping, making “decisions” for the next variable in sequence each time the entry vertex

of a level-0 grouping is encountered.

Fig. 3a illustrates the key principle behind CFLOBDDs—namely, the use of a matching condition

on paths. The bold path is for the assignment [𝑥0 ↦→ 𝐹,𝑦0 ↦→ 𝑇 ], which corresponds to 𝐻2 [0, 1].
The path starts at the level-1 grouping’s entry vertex and goes to the entry vertex of the level-0

fork grouping via a solid edge (—); takes the left branch of the fork grouping (corresponding to

𝑥0 ↦→ 𝐹 ); and leaves the fork grouping via a solid edge (—), reaching the leftmost of the middle

vertices of the level-1 grouping. The path then goes to the entry vertex of the level-0 don’t-care

grouping via a dashed-double-dotted edge (− · · −); takes the right branch of the don’t-care grouping
(corresponding to 𝑦0 ↦→ 𝑇 ); and leaves via a dashed-double-dotted edge (− · · −), reaching the

leftmost exit vertex of the level-1 grouping, which is connected to the terminal value 1 (the value

of 𝐻2 [0, 1]). A pair of incoming/outgoing edges of a grouping, such as the pairs of (i) black solid

edges, and (ii) green dashed-double-dotted edges in the bold path in Fig. 3a, are said to be matched.

The bold path itself is called a matched path. This example illustrates the following principle:

Matched-Path Principle.When a path follows an edge that returns to level 𝑖 from level 𝑖 − 1, it

must follow an edge that matches the closest preceding edge from level 𝑖 to level 𝑖 − 1.

Formally, the matched-path principle can be expressed as a condition that—for a path to be

matched—the word spelled out by the labels on the edges of the path must be a word in a certain

context-free language [69]. (This idea is the origin of “CFL” in “CFLOBDD”.) One way to formalize

the condition is to label each edge from level 𝑖 to level 𝑖 − 1 with an open-parenthesis symbol of

the form “(𝑏”, where 𝑏 is an index that distinguishes the edge from all other edges to any entry

vertex of any grouping of the CFLOBDD. (In particular, suppose that there are NumConnections

such edges, and that the value of 𝑏 runs from 1 to NumConnections.) Each return edge that runs

from an exit vertex of the level 𝑖 − 1 grouping back to level 𝑖 , and corresponds to the edge labeled

“(𝑏”, is labeled “)𝑏”. Each path in a CFLOBDD then generates a string of parenthesis symbols formed

by concatenating, in order, the labels of the edges on the path. (Unlabeled edges in the level-0

groupings are ignored in forming this string.) A path in a CFLOBDD is called a matched-path iff

the path’s word is in the language 𝐿(matched) of balanced-parenthesis strings generated by

matched → 𝜖 | matched matched | (𝑏 matched )𝑏 1 ≤ 𝑏 ≤ NumConnections (1)

4
Groupings are represented in memory as a kind of node structure, but we will use “nodes” solely for decision trees and

BDDs. Groupings are depicted as ovals, and the dots inside will be referred to as “vertices.”
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Only matched-paths that start at the entry vertex of the CFLOBDD’s highest-level grouping and

end at a terminal value are considered in interpreting a CFLOBDD.

In figures in the paper, we use black solid (—), blue dashed (– – –), red short-dashed (- - - -), purple
dashed-dotted (− · −), and green dashed-double-dotted (− · · −) edges, in the indicated colors, rather

than attaching explicit labels to edges. To reduce the number of colors used, we sometimes re-use

colors in a given figure; however, it should still be clear which pairs of edges match.

The matched-path principle allows a given grouping to play multiple roles during the evaluation

of a Boolean function. In particular, the level-0 groupings are shared, and thus are used to interpret

different variables at different places in a matched path through a CFLOBDD. For example, the level-0

fork grouping in Fig. 3a is used to interpret (i) 𝑥0 (when “called” via the black solid edge), and (ii)

𝑦0 (when “called” via the blue dashed edge, which happens when 𝑥0 ↦→ 𝑇 ).5 The edge-matching

condition is important because the black solid return edges lead to the level-1 grouping’s middle

vertices, whereas the blue dashed return edges lead to the level-1 grouping’s exit vertices.

In Fig. 3a, the fork grouping is labeled with 𝑥0 and 𝑦0, and the don’t-care grouping with 𝑦0. In

general, however, the level-0 groupings interpret different variables at different places in a matched

path, in accordance with the following principle:

Contextual-Interpretation Principle.A level-0 grouping is not associated with a specific Boolean

variable. Instead, the variable that a level-0 grouping refers to is determined by context: the 𝑛th level-0

grouping visited along a matched path is used to interpret the 𝑛th Boolean variable.

The reader might be worried by the fact that Fig. 3a contains cycles. That is, if one ignores the

ovals in Fig. 3a, as well as the distinctions among solid, dashed, and dashed-double-dotted edges,

one is left with a cyclic graph: there is a cycle that starts at the rightmost middle vertex of the level-1

grouping, follows the blue dashed edge (– – –) to the entry vertex of the level-0 fork-grouping,

takes the right branch, and returns along the black solid edge (—) to the rightmost middle vertex of

the level-1 grouping. However, that path is not a matched path, and is excluded from consideration.

3.2 CFLOBDD Requirements
In designing CFLOBDDs, the goal is to meet the following five requirements:

(1) Soundness: Every level-𝑘 CFLOBDD represents a decision tree of height 2
𝑘
and size 2

2
𝑘

(2) Completeness: each decision tree of height 2
𝑘
and size 2

2
𝑘

can be encoded as a level-𝑘 CFLOBDD

(3) Best-case double-exponential compression: in the best case, a decision tree of height 2
𝑘
and size

2
2
𝑘

can be encoded as a level-𝑘 CFLOBDD of size 𝑘

(4) Canonicity: CFLOBDDs are a canonical representation of Boolean functions

(5) Computational efficiency: most operations run in time polynomial in the sizes of (i) the input

CFLOBDDs, or (ii) the input CFLOBDDs and the output CFLOBDD

These requirements are similar to those for BDDs, but with double-exponential parameters—rather

than single-exponential parameters—in Requirements (1)–(3). To satisfy these more stringent

requirements, we define a data structure that is quite different from BDDs (see §3.3 and §4.1).

Requirements (1) and (3) are established in §3.3.4 and §3.5.2, respectively. Requirements (2) and

(4) are established in §4 and Appendix §C. Requirement (5) is addressed in §5, §6, and §D; in

particular, Tab. 1 at the beginning of §6 lists the fourteen main operations on CFLOBDDs and the

asymptotic running times of the algorithms that we give for the operations. BDDs enjoy the

more desirable property that most operations run in time polynomial in the sizes of the input

BDDs, but the same property does not seem possible for CFLOBDDs. §D establishes that the time

5
The term “call” is by analogywith howmatched paths model the actions of procedure calls in graphs used for interprocedural

dataflow analysis [55, 58], interprocedural slicing [30], and model checking hierarchical state machines [9, §5].
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complexity of a key subroutine used in several of the CFLOBDD operations to maintain canonicity

is polynomial in the sizes of the input and output CFLOBDDs.

3.3 CFLOBDDs Defined, Part I: Basic Structure
Our formal definition of CFLOBDDs is given in two parts: Defn. 3.1 (below) and Defn. 4.1 (§4.1).

Defn. 3.1 defines the basic structure of CFLOBDDs, whose various elements are depicted in Fig. 3b.

Defn. 4.1 imposes some additional structural invariants to ensure that CFLOBDDs provide a

canonical representation of Boolean functions. Much about CFLOBDDs can be understood just

from Defn. 3.1, so we postpone introducing the structural invariants until we address canonicity

in §4. Where necessary, we distinguish between mock-CFLOBDDs (Defn. 3.1) and CFLOBDDs

(Defn. 4.1), although we typically drop the qualifier “mock-” when there is little danger of confusion.

Fig. 3b illustrates Defn. 3.1 using the CFLOBDD that represents Hadamard matrix 𝐻2.

Definition 3.1 (Mock-CFLOBDD; see Fig. 3b). Amock-CFLOBDD at level𝑘 is a hierarchical structure

made up of some number of groupings, of which there is one grouping at level 𝑘 , and at least one at

each level 0, 1, . . . , 𝑘 − 1. The grouping at level 𝑘 is the head of the mock-CFLOBDD. A grouping is

a collection of vertices and edges (to other groupings), with the structure described below.

Each grouping 𝑔𝑖 at level 0 ≤ 𝑖 ≤ 𝑘 has a unique entry vertex, which is disjoint from 𝑔𝑖 ’s

non-empty set of exit vertices.

If 𝑖 = 0, 𝑔𝑖 is either a fork grouping or a don’t-care grouping, as depicted in the upper right and

lower right of Fig. 3b, respectively. The entry vertex of a level-0 grouping corresponds to a decision

point: left branches are for 𝐹 (or 0); right branches are for 𝑇 (or 1). A don’t-care grouping has a

single exit vertex, and the edges for the left and right branches both connect the entry vertex to

the exit vertex. A fork grouping has two exit vertices: the entry vertex’s left and right branches

connect the entry vertex to the first and second exit vertices, respectively.

If 𝑖 ≥ 1, 𝑔𝑖 has a further disjoint set of middle vertices. We assume that both the middle vertices

and the exit vertices are associated with some fixed, known total order (i.e., the sets of middle

vertices and exit vertices could each be stored in an array). Moreover, 𝑔𝑖 has an A-connection edge

that, from 𝑔𝑖 ’s entry vertex, “calls” a level-𝑖-1 grouping 𝑎𝑖−1, along with a set of matching return

edges; each return edge from 𝑎𝑖−1 connects one of the exit vertices of 𝑎𝑖−1 to one of the middle

vertices of𝑔𝑖 . In addition, for each middle vertex𝑚 𝑗 ,𝑔𝑖 has a B-connection edge that “calls” a level-𝑖-1

grouping 𝑏 𝑗 , along with a set of matching return edges; each return edge from 𝑏 𝑗 connects one of

the exit vertices of 𝑏 𝑗 to one of the exit vertices of 𝑔𝑖 .

If 𝑖 = 𝑘 , 𝑔𝑘 has a set of value edges that connect each exit vertex of 𝑔𝑘 to a terminal value.

3.3.1 An Object-Oriented Pseudo-Code. In later parts of the paper, we state algorithms using an

object-oriented pseudo-code. In accordance with the terminology introduced above, the basic

classes that are used for representing multi-terminal CFLOBDDs are defined in Fig. 4a: Grouping,
InternalGrouping, DontCareGrouping, ForkGrouping, and CFLOBDD. More details about the no-

tation used in our pseudo-code can be found in Appendix §A.

Fig. 4c shows how the CFLOBDD from Fig. 3a is represented as an instance of class CFLOBDD.
There are no entry, middle, and exit vertices as such. Instead, a pointer to a Grouping object

serves as the object’s entry vertex. Numbers in the range [1..numberOfBConnections] serve as
middle vertices, and numbers in the range [1..numberOfExits] serve as exit vertices. In the level-

1 InternalGrouping in Fig. 4c, one can see that a ReturnTuple—which holds a sequence of

return-edge targets—is associated with each outgoing AConnection or BConnection edge. This

organization facilitates implementing the matched-path principle: when a level-𝑙+1 grouping 𝑔1

“calls” level-𝑙 grouping 𝑔2, there is an associated ReturnTuple rt1 (stored in 𝑔1); a matched path
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abstract class Grouping {

level: int

numberOfExits: int

}

class InternalGrouping extends Grouping {

AConnection: Grouping

AReturnTuple: ReturnTuple

numberOfBConnections: int

BConnections:

array[1..numberOfBConnections] of Grouping

BReturnTuples:

array[1..numberOfBConnections] of ReturnTuple

}

class DontCareGrouping extends Grouping {

level = 0

numberOfExits = 1

}

class ForkGrouping extends Grouping {

level = 0

numberOfExits = 2

}

class CFLOBDD { // Multi-terminal CFLOBDD

grouping: Grouping

valueTuple: ValueTuple

}

1 -1

(b)

CFLOBDD
grouping:
valueTuple: [1,-1]

ForkGrouping
level: 0
numberOfExits: 2

DontCareGrouping
level: 0
numberOfExits: 1

InternalGrouping
level: 1
AConnection:
AReturnTuple: [1,2]
numberOfBConnections: 2
BConnections:

BReturnTuples:
numberOfExits: 2

[1,2][1]

(c)

(a)

Fig. 4. (a) Datatypes for Grouping, InternalGrouping, DontCareGrouping, ForkGrouping, and CFLOBDD. (b)
The CFLOBDD for 𝐻2 (repeated from Fig. 3a). (c) An instance of class CFLOBDD that represents 𝐻2.

starting at the entry of 𝑔2 leads to some exit-vertex index 𝑖 of 𝑔2; and rt1 [𝑖] holds the target in 𝑔1 of

the matching return edge.

Similarly, there are no explicit edges in DontCareGrouping and ForkGrouping objects. Instead,

the decision taken at the level-0 grouping’s entry vertex selects the appropriate exit-vertex index,

which is used to index into a ReturnTuple of the “calling” level-1 InternalGrouping.

3.3.2 Rationale. The rationale behind the terminology introduced in Defn. 3.1, Fig. 3b, and Fig. 4a

goes back to the Matched-Path Principle. In particular, each InternalGrouping object 𝑔 at level
𝑖 > 0 represents a family of matched paths. A traversal of a matched path from 𝑔’s entry vertex to

an exit vertex of 𝑔 uses the fields of 𝑔 (Fig. 4a) in the following order, which mimics the form of the

grammar for matched paths from Eqn. (1):

matched (at level 𝑖) = AConnection matched (at level 𝑖-1) AReturnTuple[·]
BConnections matched (at level 𝑖-1) BReturnTuples[·] (2)

3.3.3 Inductive Arguments about CFLOBDDs. To be able to make inductive arguments about

CFLOBDDs, it is convenient to introduce one additional bit of terminology:
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Definition 3.2 (Mock-proto-CFLOBDD). A mock-proto-CFLOBDD at level 𝑖 is a grouping at level 𝑖 ,

together with the lower-level groupings to which it is connected (and the connecting edges). In

other words, a mock-proto-CFLOBDD has the following recursive structure:

• a mock-proto-CFLOBDD at level 0 is either a fork grouping or a don’t-care grouping

• a mock-proto-CFLOBDD at level 𝑖 is headed by a grouping at level 𝑖 whose

– A-connection edge and associated return edges “call” a level-(𝑖-1) mock-proto-CFLOBDD,

and

– B-connection edges and their associated return edges “call” some number of level-(𝑖-1)

mock-proto-CFLOBDDs.

The difference between a proto-CFLOBDD and a CFLOBDD is that the exit vertices of a proto-

CFLOBDD have not been associated with specific values. One cannot argue inductively in terms of

CFLOBDDs because its constituents are proto-CFLOBDDs, not full-fledged CFLOBDDs. Thus, to

prove that some property holds for a CFLOBDD, there will typically be an inductive argument to

establish a property of the proto-CFLOBDD headed by the outermost grouping of the CFLOBDD,

with an additional argument about the CFLOBDD’s value edges and terminal values.

One example of an inductive argument allows us to establish the number of times 𝐷 (𝑖) that each
matched path in a level-𝑖 proto-CFLOBDD reaches a decision vertex—i.e., the entry vertex of a

level-0 grouping. In particular, 𝐷 (𝑖) is described by the following recurrence relation:

𝐷 (0) = 1 𝐷 (𝑖) = 𝐷 (𝑖 − 1) + 𝐷 (𝑖 − 1), (3)

which has the solution 𝐷 (𝑖) = 2
𝑖
.

3.3.4 Soundness and an Operational Semantics. Eqn. (3) allows us to establish Requirement (1)

from §3.2. Eqn. (3) has the solution 𝐷 (𝑖) = 2
𝑖
, so each matched path from the entry vertex of a

level-𝑘 CFLOBDD passes through the entry vertex of a level-0 grouping exactly 2
𝑘
times before

reaching a terminal value 𝑣 ∈ 𝑉 , for some value domain 𝑉 . Consequently, each (multi-terminal)

CFLOBDD represents a function in {𝑇, 𝐹 }2𝑘 → 𝑉—i.e., the same set of functions that decision trees

represent.

We can also use the Contextual-Interpretation Principle to obtain an operational semantics for

(mock-)CFLOBDDs, given as Alg. 1. This algorithm is a divide-order-and-conquer algorithm that

specifies how to interpret a given CFLOBDD n with respect to a given Assignment a to the Boolean
variables. (We assume that an Assignment is given as an array of Booleans, whose entries—starting

at index-position 1—are the values of the successive variables.)

Subroutine InterpretGrouping performs a recursive traversal over n, following AConnections,

BConnections, and return edges. When a level-0 grouping is reached, the value of the current

Boolean variable is consulted (line [8], in the case of a ForkGrouping), or ignored (line [9], in

the case of a DontCareGrouping). (Line [10] can be ignored for now; it is an optimization that is

discussed in §3.5.2.) In lines [13] and [14], Assignment a is split in half: the Boolean values in the

first half are interpreted during the traversal of g’s AConnection (line [13]); the values in the second

half are interpreted during the traversal of one of g’s BConnections (line [14]), selected according

to the value i obtained in line [13] from the call on InterpretGrouping() with g’s AConnection.

3.3.5 Multiple Middle Vertices and Exit Vertices. In a Boolean-valued CFLOBDD, the outermost

grouping has at most two exit vertices, and these are mapped to {𝐹,𝑇 }. In a multi-terminal

CFLOBDD, there can be an arbitrary number of exit vertices, which are mapped to values drawn

from some finite set of values 𝑉 . Fig. 3a is a multi-terminal CFLOBDD; the level-1 grouping has

two exit vertices that are mapped to 1 and −1.
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Algorithm 1: An operational semantics of CFLOBDDs

1 Algorithm InterpretCFLOBDD(n, a)

Input: CFLOBDD n, Assignment a[1..2
n.grouping.level

]

Output: A value in the range of the function represented by n

2 begin
3 return valueTuple[InterpretGrouping(n.grouping, a)];

4 end
5 end
6 SubRoutine InterpretGrouping(g, a)

Input: Grouping g, Assignment a[1..2
g.level

]

Output: An unsigned integer in the range [1..𝑔.numberOfExits]

7 begin
8 if g == ForkGrouping then return 1 + a[1] // F ↦→1; T ↦→2;

9 if g == DontCareGrouping) then return 1 // F,T↦→1;

10 if g == NoDistinctionProtoCFLOBDD(g.level) then return 1 // F,T↦→1;

11 Assignment aA = a[1, 2
g.level−1

];

12 Assignment aB = a[2
g.level−1

+ 1, 2
g.level

];

13 unsigned int i = InterpretGrouping(g.AConnection, aA);

14 unsigned int k = InterpretGrouping(g.BConnections[i], aB);

15 return g.BReturnTuples[i](k);

16 end
17 end

x0,x1

F T

x2

x3

x2,x3

Fig. 5. CFLOBDD for the Boolean function 𝜆𝑥0𝑥1𝑥2𝑥3 .(𝑥0 ⊕ 𝑥1) ∨ (𝑥0 ∧ 𝑥1 ∧ 𝑥2). (For clarity, some of the
level-0 groupings have been duplicated.)

Groupings that have more than two exit vertices naturally arise in the interior groupings of

CFLOBDDs—even in Boolean-valued CFLOBDDs. For instance, a level-𝑖–1 grouping used as an
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𝐴-connection can have more than two exit vertices, in which case the “calling” level-𝑖 grouping

would have more than two middle vertices. Such multi-terminal groupings can arise in both 𝐴-

connections and 𝐵-connections. Fig. 5 shows a Boolean-valued CFLOBDD that contains a level-1

grouping that has three exit vertices. The grouping is the A-connection of the outermost grouping

(at level 2), which thus has three middle vertices.

3.4 Encoding 𝐻4 and Other Members ofH with a CFLOBDD
Fig. 6a shows the CFLOBDD representation of Hadamard matrix 𝐻4 with the variable ordering

⟨𝑥0, 𝑦0, 𝑥1, 𝑦1⟩. In 𝐻4, the level-1 proto-CFLOBDD is identical to the level-1 proto-CFLOBDD in 𝐻2

(cf. Fig. 3a and Fig. 6a). Moreover, in 𝐻4 the A-connection call and both B-connection calls are to

the level-1 𝐻2 lookalike.

Consider how Fig. 6a encodes 𝐻4 [0, 3] = 1. The value is obtained by evaluating the assignment

[𝑥0 ↦→ 𝐹,𝑦0 ↦→ 𝑇, 𝑥1 ↦→ 𝐹,𝑦1 ↦→ 𝑇 ], following the matched path highlighted in bold. The path

starts from the level-2 grouping’s entry vertex. It goes to the level-1 grouping’s entry vertex, where

[𝑥0 ↦→ 𝐹,𝑦0 ↦→ 𝑇 ] is interpreted as for 𝐻2—i.e., the first occurrence of 𝐻2 in “𝐻2 ⊗𝐻2”—in this case,

returning to the leftmost middle vertex of the level-2 grouping. At this point, the path follows the

red dashed edge back to the level-1 grouping’s entry vertex, where [𝑥1 ↦→ 𝐹,𝑦1 ↦→ 𝑇 ] is interpreted
as for𝐻2—the second occurrence of𝐻2 in “𝐻2 ⊗𝐻2.” The path then follows the matching red dashed

return edge to the leftmost exit vertex of the level-2 grouping, and reaches terminal value 1.

To create 𝐻4 using 𝐻2, we introduced a level-2 grouping that makes one A-connection and two

B-connection “calls” to the level-1 𝐻2 lookalike, and thus each matched path makes two sequential

invocations of 𝐻2. This pattern produces the same effect as the stacking of plies in decision trees

and BDDs. However, rather than tripling the size of the data structure (as with BDDs—see Fig. 2e),

the ability of CFLOBDDs to reuse parts of a data structure via a “call” means that there is only a

constant-size increase in going from from 𝐻2 to 𝐻4: one grouping with five vertices and nine edges

(one A-connection, two B-connections, and six return edges).

The continuation of this pattern gives an inductive construction of the CFLOBDDs for the

other members of H . Given the level-𝑖 CFLOBDD for 𝐻
2
𝑖 , 𝑖 ≥ 2, 𝐻

2
𝑖+1 = 𝐻

2
𝑖 ⊗𝐻

2
𝑖 is created by

introducing a new outermost grouping at level 𝑖 + 1, again with five vertices and nine edges. (See

Fig. 6b.) The same pattern of “calls” is used for the A- and B-connections and their return edges:

each matched path makes two sequential invocations of the level-𝑖 grouping for𝐻
2
𝑖 . In other words,

Sequential-Invocation Principle. A Kronecker product 𝑃 ⊗𝑄 can be represented economically

in a CFLOBDD by a grouping at level 𝑖 + 1 whose A-connection “calls” the level-𝑖 proto-CFLOBDD

for 𝑃 and all of whose B-connection “calls” are to the level-𝑖 CFLOBDD for 𝑄 .

3.5 Reuse of Groupings and Compression of Boolean Functions
The reason CFLOBDDs can represent certain Boolean functions in a highly compressed fashion is

the reuse of groupings that the matched-path and sequential-invocation principles enable.

3.5.1 Growth of Number of Paths with Level. Let 𝑃 (𝑖) be the number of matched paths in a proto-

CFLOBDD at level 𝑖 . Each level-0 grouping has two paths, so 𝑃 (0) = 2. In a grouping 𝑔 at level

𝑖 ≥ 1, each matched path through the A-connection’s level-(𝑖–1) proto-CFLOBDD reaches a middle

vertex of 𝑔, where it is routed through the level-(𝑖–1) proto-CFLOBDD of the vertex’s 𝐵-connection.

Let 𝐴 𝑗 (𝑖 − 1) be the number of matched paths through 𝑔’s A-connection proto-CFLOBDD to the 𝑗 th

middle vertex of 𝑔. Thus, 𝑃 (𝑖) satisfies the following recurrence equation:

𝑃 (0) = 2 𝑃 (𝑖) = ∑
𝑗 𝐴 𝑗 (𝑖 − 1) · 𝑃 (𝑖 − 1). (4)
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1 -1

(a) The CFLOBDD representation of 𝐻4 with the
interleaved-variable ordering ⟨𝑥0, 𝑦0, 𝑥1, 𝑦1⟩. The
matched path for
[𝑥0 ↦→ 𝐹,𝑦0 ↦→ 𝑇, 𝑥1 ↦→ 𝐹,𝑦1 ↦→ 𝑇 ], which
corresponds to 𝐻4 [0, 3], is shown in bold.

Level-
proto-CFLOBDD
for 

1 -1

(b) Diagram supporting the inductive argument
that, with the interleaved-variable ordering, the
members ofH = {𝐻

2
𝑖 | 𝑖 ≥ 1} can be

constructed by successively introducing a new
outermost grouping at one greater level. At each
step, the same pattern of “calls” is used for the A-
and B-connections, and their return edges.

Fig. 6. Construction of successively larger members ofH = {𝐻
2
𝑖 | 𝑖 ≥ 1}. At level 𝑖+1, each matched path

makes two sequential invocations of the level-𝑖 grouping (for 𝐻
2
𝑖 ), thereby creating 𝐻

2
𝑖+1 = 𝐻

2
𝑖 ⊗𝐻

2
𝑖 .

(a) Member at level 0

(b) Member at level 1

(c) Member at level 2

No-distinction
proto-CFLOBDD
at level –1

(d) Member at level 𝑘

Fig. 7. The family of no-distinction proto-CFLOBDDs.

The total number of matched paths through 𝑔’s A-connection proto-CFLOBDD is 𝑃 (𝑖 − 1), so∑
𝑗 𝐴 𝑗 (𝑖 − 1) = 𝑃 (𝑖 − 1), and hence Eqn. (4) can be rewritten as 𝑃 (𝑖) = 𝑃 (𝑖 − 1) · 𝑃 (𝑖 − 1), which has

the solution 𝑃 (𝑖) = 2
2
𝑖

.

Growth in Paths. The number of matched paths in a CFLOBDD is squared with each increase in

level by 1. Consequently, a CFLOBDD at level 𝑖 has 2
2
𝑖

matched paths.

3.5.2 Best-Case Compression: No-Distinction Proto-CFLOBDDs. Fig. 7a, 7b, and 7c show the first

three members of a family of proto-CFLOBDDs that often arise as sub-structures of CFLOBDDs:

the single-entry/single-exit proto-CFLOBDDs of levels 0, 1, and 2, respectively. Because every

matched path through each of these structures ends up at the unique exit vertex of the highest-level

grouping, there is no “decision” to be made during each visit to a level-0 grouping. In essence, as
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we work our way through such a structure during the interpretation of an assignment, the value

assigned to each argument variable makes no difference.

We call this family the no-distinction proto-CFLOBDDs. Fig. 7d illustrates the structure of a

no-distinction proto-CFLOBDD at an arbitrary level 𝑘 > 0, which continues the pattern that one

sees in the level-1 and level-2 structures: the level-𝑘 grouping has a single middle vertex, and both

its 𝐴-connection and its one 𝐵-connection are to the no-distinction proto-CFLOBDD for level 𝑘 − 1.

Moreover, because the no-distinction proto-CFLOBDD at level 𝑘 shares all but one constant-sized

grouping with the no-distinction proto-CFLOBDD at level 𝑘 − 1, each additional level costs only a

constant amount of additional space. Thus, the no-distinction proto-CFLOBDD at level 𝑘 is of size

𝑂 (𝑘), and hence the no-distinction proto-CFLOBDDs exhibit double-exponential compression.

The Boolean-valued CFLOBDD for the constant function 𝜆𝑥0, 𝑥1, . . . , 𝑥2
𝑘−1

.𝐹 is merely the

CFLOBDD in which a value edge connects the (one) exit vertex of the no-distinction proto-

CFLOBDD at level 𝑘 to 𝐹 . Likewise, in the constant function 𝜆𝑥0, 𝑥1, . . . , 𝑥2
𝑘−1

.𝑇 , the value edge

connects the exit vertex of the no-distinction proto-CFLOBDD at level-𝑘 to 𝑇 . Thus, as the number

of Boolean variables increases, the best-case growth of CFLOBDDs compares with the growth of

decision trees as follows:

Boolean Number Decision trees CFLOBDDs (best case)

vars. of paths height #nodes #edges height
a

#groupings #vertices #edges

1 2 1 3 2 0 1 2 3

2 4 2 7 6 1 2 5 7

4 16 4 31 30 2 3 8 11

8 256 8 511 510 3 4 11 15

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

2
𝑘

2
2
𝑘

2
𝑘

2 · 22
𝑘 − 1 2 · 22

𝑘 − 2 𝑘 𝑘 + 1 3𝑘 + 2 4𝑘 + 3

a
The height of a CFLOBDD is the level of the outermost grouping.

The best-case CFLOBDD size—whether measured in the number of groupings, vertices, or edges—

grows linearly with the level of the outermost grouping, which is logarithmic in the number of

Boolean variables. In contrast, decision trees grow exponentially in the number of Boolean variables.

These observations show that Requirement (3) from §3.2 is met: in the best case, a decision tree of

height 2
𝑘
and size 2

2
𝑘

can be encoded as a level-𝑘 CFLOBDD of size 𝑘 .

Remark. Because the family of no-distinction proto-CFLOBDDs is so compact, in designing

CFLOBDDs we did not feel the need to mimic the “ply-skipping transformation” of Reduced

OBDDs (ROBDDs) [10, 11], in which “don’t-care” nodes are removed from the representation. In

ROBDDs, in addition to reducing the size of the data structure, the chief benefit of ply-skipping

is that operations can skip over levels in portions of the data structure in which no distinctions

among variables are made. Essentially the same benefit is obtained by having the algorithms

that process CFLOBDDs carry out appropriate special-case processing when no-distinction proto-

CFLOBDDs are encountered. Such processing is carried out, for instance, in line [10] of Alg. 1: in

InterpretCFLOBDD(), when Grouping g is the head of a NoDistinctionProtoCFLOBDD, both g

and the entire Assignment a can be ignored because g has only a single exit vertex.

Whereas in the best case, the CFLOBDD for a function 𝑓 can be double-exponentially smaller

than the decision tree for 𝑓 , ROBDDs are incapable of such a degree of compression. Quasi-reduced

BDDs are the version of BDDs in which don’t-care nodes are not removed (i.e., plies are not skipped),

and thus all paths from the root to a terminal value have length 𝑛, where 𝑛 is the number of variables.

The size of a quasi-reduced BDD is at most a factor of 𝑛 + 1 larger than the size of the corresponding

ROBDD [64, Thm. 3.2.3]. Thus, although ROBDDs can give better-than-exponential compression
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compared to decision trees, what one has is not double-exponential compression: at best, it is

linear compression of exponential compression. Moreover, in §8 we show that the CFLOBDD for a

function 𝑔 can be exponentially smaller than any ROBDD for 𝑔.

3.5.3 Asymptotic Best-Case Compression. Consider a family of functions 𝐹 = {𝑓𝑗 | 𝑗 ≥ 0}, where
the 𝑗 th member has 2

𝑗
Boolean arguments. The following property is a sufficient condition for

the sizes of the CFLOBDDs for members of 𝐹 to grow linearly in the level 𝑖 , and therefore exhibit

double-exponential compression compared to decision trees:

(1) There exists a family of functions 𝐺 = {𝑔 𝑗 | 𝑗 ≥ 0} that grows linearly in the level 𝑖 .6

(2) There exists a level𝑚 such that, for all levels 𝑖 ≥ 𝑚,

(a) the number of vertices in the level-𝑖 grouping of 𝑓𝑖 is a constant independent of 𝑖

(b) the level-𝑖 grouping of 𝑓𝑖 makes “procedure calls” only to (i) the level-(𝑖-1) grouping used

in the CFLOBDD for 𝑓𝑖-1, and (ii) level-(𝑖-1) groupings used in the CFLOBDD for 𝑔𝑖-1.
7

In such a case, the CFLOBDD for each 𝑓𝑖 is double-exponentially smaller than the decision tree for

𝑓𝑖—i.e., of size 𝑂 (𝑖) rather than 𝑂 (22
𝑖 ). As shown in Fig. 6b, the family of Hadamard matricesH

meets the above conditions.

Moreover, in all cases encountered to date, it is possible to give an explicit algorithm for con-

structing the 𝑖 th member of 𝐹 , where the algorithm runs in time 𝑂 (𝑖) and uses at most 𝑂 (𝑖) space.
No information-theoretic limit is being violated here. Not all families of functions can be repre-

sented with CFLOBDDs in which each level has a constant number of groupings, each of constant

size—and thus, not every function over Boolean-valued arguments can be represented in such a

compressed fashion. However, the potential benefit of CFLOBDDs is that, just as with BDDs, there

may turn out to be enough regularity in problems that arise in practice that CFLOBDDs stay of

manageable size. Moreover, double-exponential compression (or any kind of super-exponential

compression) could allow problems to be completed much faster (due to the smaller-sized structures

involved), or allow far larger problems to be addressed than has been possible heretofore.

4 CANONICITY
In this section, we impose some further structural restrictions on proto-CFLOBDDs and CFLOBDDs

that go beyond the ideas illustrated earlier (§4.1). We then discuss how to establish that CFLOBDDs

are a canonical representation of Boolean functions (§4.2 and Appendix §C).

4.1 CFLOBDDs Defined, Part II: Additional Structural Invariants
As described in §3, the structure of a mock-CFLOBDD consists of different groupings organized into

levels, which are connected by edges in a particular fashion. In this section, we describe additional

structural invariants that are imposed on CFLOBDDs, which go beyond the basic hierarchical

structure that is provided by the entry vertex, A-Connection, middle vertices, B-Connections,

return edges, and exit vertices of a grouping.

Most of the structural invariants concern the organization of what we call return tuples (following

the terminology introduced in Fig. 4). For a given 𝐴-connection edge or 𝐵-connection edge 𝑐 from

grouping 𝑔𝑖 to 𝑔𝑖−1, the return tuple 𝑟𝑡𝑐 associated with 𝑐 consists of the sequence of targets of

return edges from 𝑔𝑖−1 to 𝑔𝑖 that correspond to 𝑐 (listed in the order in which the corresponding

exit vertices occur in 𝑔𝑖−1). Similarly, the sequence of targets of value edges that emanate from the

exit vertices of the highest-level grouping 𝑔 (listed in the order in which the corresponding exit

vertices occur in 𝑔) is called the CFLOBDD’s value tuple.

6
The family of no-distinction proto-CFLOBDDs from Fig. 7 is one such family𝐺 .

7
Condition 2b can be generalized so that 𝑓𝑖 can “call” the (𝑖-1) groupings used in the CFLOBDDs for some constant number

of function families𝐺1,𝐺2, . . .,𝐺𝑙 that each grow linearly in the level 𝑖 .
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Return tuples represent mapping functions that map exit vertices at one level to middle vertices

or exit vertices at the next greater level. Similarly, value tuples represent mapping functions that

map exit vertices of the highest-level grouping to terminal values. In both cases, the 𝑖 th entry of the

tuple indicates the element that the 𝑖 th exit vertex is mapped to. Because the middle vertices and

exit vertices of a grouping are each arranged in some fixed known order, and hence can be stored

in an array, it is often convenient to assume that each element of a return tuple is simply an index

into such an array. For example, in Fig. 5,

• The return tuple associated with the 1
st 𝐵-connection of the upper level-1 grouping is [1, 2].

• The return tuple associated with the 2
nd 𝐵-connection of the upper level-1 grouping is [2, 3].

• The return tuple associated with the 𝐴-connection of the level-2 grouping is [1, 2, 3].
• The value tuple associated with the CFLOBDD is the 2-tuple [𝐹,𝑇 ].

Rationale. The structural invariants are designed to ensure that—for a given order on the Boolean

variables—each Boolean function has a unique, canonical representation as a CFLOBDD. In reading

Defn. 4.1 below, it will help to keep in mind that the goal of the invariants is to force there to

be a unique way to fold a given decision tree into a CFLOBDD that represents the same Boolean

function. The decision-tree folding method is discussed in §4.2 and Appendix §C, but the main

characteristic of the folding method is that it works greedily, left to right. This directional bias

shows up in structural invariants 1, 2a, and 2b.

We can now complete the formal definition of a CFLOBDD.

Definition 4.1 (Proto-CFLOBDD and CFLOBDD). A proto-CFLOBDD 𝑛 is a mock-proto-CFLOBDD

(Defns. 3.1 and 3.2) in which every grouping/proto-CFLOBDD in 𝑛 satisfies the structural invariants

given below. In particular, let 𝑐 be an 𝐴-connection edge or 𝐵-connection edge from grouping 𝑔𝑖 to

𝑔𝑖−1, with associated return tuple 𝑟𝑡𝑐 .

(1) If 𝑐 is an 𝐴-connection, then 𝑟𝑡𝑐 must map the exit vertices of 𝑔𝑖−1 one-to-one, and in order,

onto the middle vertices of 𝑔𝑖 : Given that 𝑔𝑖−1 has 𝑘 exit vertices, there must also be 𝑘 middle

vertices in 𝑔𝑖 , and 𝑟𝑡𝑐 must be the 𝑘-tuple [1, 2, . . . , 𝑘]. (That is, when 𝑟𝑡𝑐 is considered as a

map on indices of exit vertices of 𝑔𝑖−1, 𝑟𝑡𝑐 is the identity map.)

(2) If 𝑐 is the 𝐵-connection edge whose source is middle vertex 𝑗 + 1 of 𝑔𝑖 and whose target is

𝑔𝑖−1, then 𝑟𝑡𝑐 must meet two conditions:

(a) It must map the exit vertices of 𝑔𝑖−1 one-to-one (but not necessarily onto) the exit vertices

of 𝑔𝑖 . (That is, there are no repetitions in 𝑟𝑡𝑐 .)

(b) It must “compactly extend” the set of exit vertices in 𝑔𝑖 defined by the return tuples for

the previous 𝑗 𝐵-connections: Let 𝑟𝑡𝑐1
, 𝑟𝑡𝑐2

, . . ., 𝑟𝑡𝑐 𝑗 be the return tuples for the first 𝑗

𝐵-connection edges out of 𝑔𝑖 . Let 𝑆 be the set of indices of exit vertices of 𝑔𝑖 that occur in

return tuples 𝑟𝑡𝑐1
, 𝑟𝑡𝑐2

, . . ., 𝑟𝑡𝑐 𝑗 , and let 𝑛 be the largest value in 𝑆 . (That is, 𝑛 is the index of

the rightmost exit vertex of 𝑔𝑖 that is a target of any of the return tuples 𝑟𝑡𝑐1
, 𝑟𝑡𝑐2

, . . ., 𝑟𝑡𝑐 𝑗 .)

If 𝑆 is empty, then let 𝑛 be 0.

Now consider 𝑟𝑡𝑐 (= 𝑟𝑡𝑐 𝑗+1 ). Let 𝑅 be the (not necessarily contiguous) sub-sequence of 𝑟𝑡𝑐
whose values are strictly greater than 𝑛. Let𝑚 be the size of 𝑅. Then 𝑅 must be exactly the

sequence [𝑛 + 1, 𝑛 + 2, . . . , 𝑛 +𝑚].
(3) While a proto-CFLOBDD may be used as a substructure more than once (i.e., a proto-

CFLOBDD may be pointed to multiple times), a proto-CFLOBDD never contains two separate

instances of equal proto-CFLOBDDs.
8

8
Equality on proto-CFLOBDDs is defined inductively on their hierarchical structure in the obvious manner. Two CFLOBDDs

are equal when (i) their proto-CFLOBDDs are equal, and (ii) their value tuples are equal. §5.1 discusses how hash-consing

[23] can be used to enforce the invariant that only a single representative CFLOBDD/proto-CFLOBDD exists for each
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(4) For every pair of 𝐵-connections 𝑐 and 𝑐 ′ of grouping 𝑔𝑖 , with associated return tuples 𝑟𝑡𝑐 and

𝑟𝑡𝑐′ , if 𝑐 and 𝑐
′
lead to level 𝑖 − 1 proto-CFLOBDDs, say 𝑝𝑖−1 and 𝑝

′
𝑖−1

, such that 𝑝𝑖−1 = 𝑝
′
𝑖−1

,

then the associated return tuples must be different (i.e., 𝑟𝑡𝑐 ≠ 𝑟𝑡𝑐′).

A CFLOBDD at level 𝑘 is a mock-CFLOBDD at level 𝑘 for which

(5) The grouping at level 𝑘 heads a proto-CFLOBDD.

(6) The value tuple associated with the grouping at level 𝑘 maps each exit vertex to a distinct

value.

Fig. 8 illustrates structural invariants 1, 2a, 2b, 3, 4, and 6. In each case, a mock-proto-CFLOBDD

that violates one of the structural invariants is shown on the left, and an equivalent proto-CFLOBDD

that satisfies the structural invariants is shown on the right.

The CFLOBDD from Fig. 5 also illustrates the structural invariants.

• The level-1 grouping pointed to by the 𝐴-connection of the level-2 grouping has three exit

vertices. These are the targets of two return tuples from the uppermost level-0 fork grouping.

Note that the blue dashed lines in this proto-CFLOBDD correspond to 𝐵-connection 1 and

𝑟𝑡1, whereas the red short-dashed lines correspond to 𝐵-connection 2 and 𝑟𝑡2.

In the case of 𝑟𝑡1, the set 𝑆 mentioned in structural invariant 2b is empty; therefore, 𝑛 = 0

and 𝑟𝑡1 is constrained by structural invariant 2b to be [1, 2].
In the case of 𝑟𝑡2, the set 𝑆 is {1, 2}, and therefore 𝑛 = 2. The first entry of 𝑟𝑡2, namely

2, falls within the range [1..2]; the second entry of 𝑟𝑡2 lies outside that range and is thus

constrained to be 3. Consequently, 𝑟𝑡2 = [2, 3].
Also in Fig. 5, because the level-1 grouping pointed to by the 𝐴-connection of the level-2

grouping has three exit vertices, these are constrained by structural invariant 1 to map in

order over to the three middle vertices of the level-2 grouping; i.e., the corresponding return

tuple is [1, 2, 3].
• The 𝐵-connections for the first and second middle vertices of the level-2 grouping are to the

same level-1 grouping; however, the two return tuples are different, and thus are consistent

with structural invariant 4.

One artifact of the greedy, left-to-right decision-tree foldingmethod used in §4.2 and Appendix §C

is that matched paths through proto-CFLOBDDs (and hence through CFLOBDDs) have a left-to-

right bias in the ordering of paths with respect to Boolean-variable-to-Boolean-value assignments.

This bias is captured in the following proposition.

Proposition 4.1 (Lexicographic-Order Proposition). Let 𝑒𝑥𝐶 be the sequence of exit vertices

of proto-CFLOBDD 𝐶 . Let 𝑒𝑥𝐿 be the sequence of exit vertices reached by traversing 𝐶 on each possible

Boolean-variable-to-Boolean-value assignment, generated in lexicographic order of assignments. Let 𝑠

be the subsequence of 𝑒𝑥𝐿 that retains just the leftmost occurrences of members of 𝑒𝑥𝐿 (arranged in

order as they first appear in 𝑒𝑥𝐿). Then 𝑒𝑥𝐶 = 𝑠 .

The proof of Prop. 4.1 is provided in Appendix §B.

Earlier in this section, the “Rationale” paragraph motivated the structural invariants as enforcing

an implicit “greedy left-to-right folding” of the corresponding decision tree to create the CFLOBDD,

equivalence class of CFLOBDD/proto-CFLOBDD values. However, when we wish to consider the possibility that multiple

data-structure instances exist that are equal—as we do shortly in §4.2—we say that such structures are “isomorphic” or

“equal (up to isomorphism).”

To reduce clutter, our diagrams often show multiple instances of the two kinds of level-0 groupings; in fact, a CFLOBDD

can contain at most one copy of each.
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(a) Structural invariant 1 (b) Structural invariant 2a

(c) Structural invariant 2b (d) Another case of structural invariant 2b

not

shared

(e) Another case of structural invariant 2b (f) Structural invariant 3

F T F T

(g) Structural invariant 4 (h) Structural invariant 6

Fig. 8. To the left of each arrow, a mock-proto-CFLOBDD that violates the indicated structural invariant; to
the right, a corrected proto-CFLOBDD. Invariant violations and their rectifications are shown in red.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

CFLOBDDs 1:21

and Figure 8 illustrates the structural invariants from a syntactic/operational viewpoint. In contrast,

Prop. 4.1 elucidates a semantic consequence of the structural invariants.
9

Example 4.2. Prop. 4.1 can be illustrated using Fig. 5. If we use numbers to identify exit vertices,

𝑒𝑥𝐶 for any grouping 𝑔 is the sequence [1..𝑔.numberOfExits]. In the upper level-1 grouping in

Fig. 5, 𝑒𝑥𝐿 is [1, 2, 2, 3], so 𝑠 is [1, 2, 3]. In the level-1 grouping at the lower right, 𝑒𝑥𝐿 is [1, 1, 2, 2],
so 𝑠 is [1, 2]. In the level-2 grouping, 𝑒𝑥𝐿 is [1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2], so 𝑠 is [1, 2].

4.2 Canonicity of CFLOBDDs
CFLOBDDs are a canonical representation of functions over Boolean arguments, i.e., each decision

tree with 2
2
𝑘

leaves is represented by exactly one isomorphism class of level-𝑘 CFLOBDDs. (The

notion of isomorphism of CFLOBDDs was introduced in footnote 8.)

Theorem 4.3 (Canonicity). If𝐶1 and𝐶2 are level-𝑘 CFLOBDDs for the same Boolean function over

2
𝑘
Boolean variables, and 𝐶1 and 𝐶2 use the same variable ordering, then 𝐶1 and 𝐶2 are isomorphic.

To prove this theorem, wemake use of Obs. 2.1, and argue not in terms of Boolean functions but in

terms of representations of Boolean functions—specifically, we relate two kinds of Boolean-function

representations

• the decision tree 𝑇𝐵 for a Boolean function 𝐵, using some fixed, but otherwise unspecified,

variable ordering Ord, and

• the CFLOBDD for 𝐵, again using variable ordering Ord.

By Obs. 2.1, we use𝑇𝐵 as a stand-in for 𝐵, thereby avoiding having to talk about 𝐵 itself. In particular,

we must establish that three properties hold:

(1) Every level-𝑘 CFLOBDD represents a decision tree with 2
2
𝑘

leaves.

(2) Every decision tree with 2
2
𝑘

leaves is represented by some level-𝑘 CFLOBDD.

(3) No decision tree with 2
2
𝑘

leaves is represented by more than one level-𝑘 CFLOBDD (up to

isomorphism).

The proof that CFLOBDDs are a canonical representation of Boolean functions is in Appendix §C.

We already showed that Obligation 1 is satisfied in §3.3.4.

Obligation 2 is established by showing that there is a recursive procedure for constructing a level-

𝑘 CFLOBDD from an arbitrary decision tree with 2
2
𝑘

leaves (i.e., of height 2
𝑘
)—see Construction 1

in Appendix §C. In essence, the construction shows how such a decision tree can be folded together

to form a CFLOBDD that represents the same Boolean function. The construction ensures that the

structural invariants are obeyed.

Obligation 3 is established by showing that (i) unfolding a CFLOBDD𝐶 into a decision tree𝑇 and

then (ii) folding𝑇 back to a CFLOBDD yields a CFLOBDD that is isomorphic to𝐶 . In particular, the

folding-back step applies the same algorithm we use to establish Obligation 2, namely, Construction

1 from Appendix §C. Construction 1 is a deterministic algorithm, and thus the proof establishes that

𝑇 can only be mapped to a CFLOBDD 𝐶 ′ that is isomorphic to 𝐶 . (See Prop. C.1.)

Note that Obligation 1 and 2 are exactly Requirements (1) and (2) from §3.2, respectively. Moreover,

Obligations 1–3 together show that Requirement (4) from §3.2 is met.

5 PRAGMATICS
The structure of the groupings in a CFLOBDD is acyclic: a level-𝑘 grouping has calls exclusively

to groupings at level 𝑘-1; conversely, a given grouping at level 𝑘-1 can be called from multiple

9
§4.2 gives a high-level overview of the proof that CFLOBDDs are a canonical representation of Boolean functions. In the

proof of canonicity in §C, Prop. 4.1 is used in the proof of Prop. C.1, which establishes property (3) from §4.2.
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groupings, but only ones at level 𝑘 . This property allows CFLOBDDs to be implemented in a

functional style without side-effects. Moreover, because groupings are acyclic, storage can be

managed via smart-pointer-based reference counting.

The remainder of this section discusses pragmatics—namely, how some of the standard techniques

for working with a functional data structure apply to CFLOBDDs. All three of the techniques

discussed contribute to an implementation being able to satisfy Requirement (5) that operations

on a CFLOBDD run in time polynomial in the sizes of (i) the input CFLOBDDs, or (ii) the input

CFLOBDDs and the output CFLOBDD.

5.1 Hash-Consing of Groupings and CFLOBDDs to Create Unique Representatives
Hash-consing [23] enforces the invariant that only a single representative exists for each value

constructed from some datatype. Hash-consing should not be confused with canonicity (§4.2 and

Appendix §C). Canonicity is a semantic property: if two CFLOBDDs 𝐶1 and 𝐶2 represent the same

function, then𝐶1 and𝐶2 are isomorphic. Hash-consing concerns concrete memory representations:

for a given data-structure construction pattern, only a single representative exists in memory, no

matter how many times that value arises in a computation.

However, because canonicity holds for CFLOBDDs, an implementation that uses hash-consing
10

satisfies an even stronger form of equivalence. In particular, Thm. 4.3 can be restated to read “. . .

then 𝐶1 and 𝐶2 are identical.”

Because the operations that construct Groupings and CFLOBDDs involve a certain amount of

processing before the object being constructed is finally complete, we will assume that two opera-

tions, named RepresentativeGrouping and RepresentativeCFLOBDD, are available for explicitly
maintaining the tables of representative Groupings and CFLOBDDs, respectively. For instance, a call
RepresentativeGrouping(g) checks to see whether a representative for g is already in the table of
representative Groupings; if there is such a representative, say h, then g is discarded and h is returned
as the result; if there is no such representative, then g is installed in the table and returned as the

result. The operations RepresentativeForkGrouping and RepresentativeDontCareGrouping
return the unique representatives of types ForkGrouping and DontCareGrouping, respectively.
Operations discussed in §6 that create InternalGroupings, such as PairProduct (Alg. 9) and

Reduce (Alg. 10), have the following form:

Operation() {
. . .

InternalGrouping g = new InternalGrouping(k);
. . .

// Operations to fill in the members of g, including g.AConnection and the
// elements of array g.BConnections, with level-(k-1) Groupings
. . .

return RepresentativeGrouping(g);
}

The operation NoDistinctionProtoCFLOBDD (Alg. 3), which constructs the members of the family

of no-distinction proto-CFLOBDDs depicted in Fig. 7, also has this form.

RepresentativeCFLOBDD is similar to RepresentativeGrouping, but in addition to a Grouping
argument, it also has a value-tuple argument. The operation ConstantCFLOBDD (Alg. 2) illustrates

the use of RepresentativeCFLOBDD: ConstantCFLOBDD(k,v) returns a hash-consed CFLOBDD

that represents a constant function of the form 𝜆𝑥0, 𝑥1, . . . , 𝑥2
𝑖−1
.𝑣 .

In our implementation, we maintain the invariant that the Groupings that appear in the hash-

consing tables are the heads of fully-fledged proto-CFLOBDDs, not mock-proto-CFLOBDDs—i.e.,

10
It can also be useful to use hash-consing for the objects of classes ReturnTuple, PairTuple, and ValueTuple.
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structural invariants (1)–(4) of Defn. 4.1 hold. When a proto-CFLOBDD 𝑝 is associated with

terminal values to create a CFLOBDD 𝑐 , it is necessary to ensure that structural invariant (6)

holds. In particular, if there are any duplicate terminal values, a “reduction” step is applied (see

Alg. 10 of §6.3), which may cause smaller versions of some of the groupings in 𝑝 to be constructed.

The original groupings would be collected if their reference counts go to 0. However, there is

never any issue of the hash-cons tables being polluted by mock-proto-CFLOBDDs that violate the

proto-CFLOBDD structural invariants.

5.2 Equality Testing for CFLOBDDs and proto-CFLOBDDs
As discussed in §5.1, the combined effect of hash-consing and canonicity is that an implementation

can maintain the invariant that, at any given time, there is a unique concrete memory representation

of a given Boolean function. Consequently, it is possible to test in unit time—by comparing two

pointers—whether two variables of type CFLOBDD represent the same Boolean function. This

property is important in user-level applications in which various kinds of data are implemented

using class CFLOBDD. For example, in applications structured as fixed-point-finding loops, this

property provides a unit-cost test of whether the fixed-point has been reached.

Again, because of the use of hash-consing, it is also possible to test whether two variables of

type Grouping are equal via a single pointer comparision. Because each grouping is always the

highest-level grouping of some proto-CFLOBDD, the equality test on Groupings is really a test of

whether two proto-CFLOBDDs are equal. The property of being able to test two proto-CFLOBDDs

for equality quickly is important because proto-CFLOBDD equality tests are used during the various

operations on CFLOBDDs to maintain the structural invariants from Defn. 4.1.

Finally, the ability to test two proto-CFLOBDDs for equality quickly also allows some functions—

typically near the beginning of the function—to identify important special-case values of pa-

rameters, which can lead to faster performance. For instance, in Alg. 1, line [10], we saw how

testing whether the argument g is a NoDistinctionProtoCFLOBDD allows further recursive calls to

InterpretGrouping() to be short-circuited.

5.3 Function Caching
A function cache (ormemo function [45]) for a function 𝐹 is an associative-lookup table—typically a

hash table—of pairs of the form [𝑥, 𝐹 (𝑥)], keyed on the value of 𝑥 . The table is consulted each time

𝐹 is applied to some argument, and updated after a return value is computed for a never-before-seen

argument. The technique saves the cost of re-performing the computation of 𝐹 for an argument on

which 𝐹 has previously been called, at the expense of performing a lookup on 𝐹 ’s argument at the

beginning of each call. Our implementation of CFLOBDDs uses function caching for a number of

the operations described in the remainder of the paper, such as PairProduct (Alg. 9) and Reduce
(Alg. 10). To reduce clutter in the pseudo-code that we give, we elide the lines for querying and

updating the cache. The full statement of such a function would have the following form:

F(x) {
if cache𝐹 (𝑥) ≠ NULL return cache𝐹 (𝑥);
. . .

cache𝐹 (𝑥) = retVal; // Update the cache with the return value
return retVal;

}

Function caching involves hashing, and it is necessary to perform equality tests to resolve

hash collisions. Thus, the ability to test two proto-CFLOBDDs for equality in unit time (§5.2) also

improves the performance of function caching.
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Algorithm 2: ConstantCFLOBDD
1 Algorithm ConstantCFLOBDD(k,v)

Input: int k, Value v
Output: CFLOBDD representation of the constant function 𝜆𝑥0, 𝑥1, . . . , 𝑥2

𝑘−1
.𝑣

2 begin
3 return RepresentativeCFLOBDD(NoDistinctionProtoCFLOBDD(k), [v]);

4 end
5 end
6 Algorithm FalseCFLOBDD(k)

Input: int k
Output: CFLOBDD representation of the constant function 𝜆𝑥0, 𝑥1, . . . , 𝑥2

𝑘−1
.𝐹

7 begin
8 return ConstantCFLOBDD(k, 𝐹 );

9 end
10 end
11 Algorithm TrueCFLOBDD(k)

Input: int k
Output: CFLOBDD representation of the constant function 𝜆𝑥0, 𝑥1, . . . , 𝑥2

𝑘−1
.𝑇

12 begin
13 return ConstantCFLOBDD(k, 𝑇 );

14 end
15 end

6 ALGORITHMS ON CFLOBDDS
In this section and §7, we describe operations to construct or combine CFLOBDDs. To aid the reader,

Tab. 1 lists the fourteen main operations on CFLOBDDs, together with references to where the

algorithm for each operation is presented (and where it is discussed), along with each operation’s

asymptotic running time and the asymptotic running time of the analogous BDD operation. Readers

familiar with BDDs will find that the algorithms for operations on CFLOBDDs are somewhat more

complicated than their BDD counterparts, mainly due to the need to maintain the CFLOBDD

structural invariants (Defn. 4.1).

6.1 Primitive CFLOBDD-Creation Operations
6.1.1 Constant Functions. The CFLOBDD-creation operation ConstantCFLOBDD, given as lines [1]–
[5] of Alg. 2, produces the family of CFLOBDDs that represent functions of the form

𝜆𝑥0, 𝑥1, . . . , 𝑥2
𝑘−1

.𝑣 , where 𝑣 is some constant value. ConstantCFLOBDD(𝑘, 𝑣) uses as a subroutine
NoDistinctionProtoCFLOBDD (Alg. 3), which constructs the no-distinction proto-CFLOBDD for

a given level 𝑘 (see also Fig. 7). ConstantCFLOBDD can be used to construct CFLOBDDs for the

constant functions 𝜆𝑥0, 𝑥1, . . . , 𝑥2
𝑘−1

.𝐹 and 𝜆𝑥0, 𝑥1, . . . , 𝑥2
𝑘−1

.𝑇 (lines [6]–[10] and [11]–[15] of Alg. 2,

respectively). ConstantCFLOBDD(𝑘, 𝑣) runs in time 𝑂 (𝑘) and uses at most 𝑂 (𝑘) space.

6.1.2 Projection Functions. A second family of CFLOBDD-creation operations produces the

Boolean-valued (single-variable) projection functions of the form 𝜆𝑥0, 𝑥1, . . . , 𝑥2
𝑘−1

.𝑥𝑖 , where 𝑖 ranges

from 0 to 2
𝑘 − 1. Fig. 9 illustrates the structure of the CFLOBDDs that represent these functions.

Alg. 4 gives pseudo-code for ProjectionCFLOBDD(𝑘, 𝑖), which constructs the 𝑖 th such function.

ProjectionCFLOBDD(𝑘, 𝑖) runs in time 𝑂 (𝑘) and uses at most 𝑂 (𝑘) space.
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Algorithm 3: NoDistinctionProtoCFLOBDD
Input: int k
Output: Proto-CFLOBDD representation of a function with 2

𝑘
variables

1 begin
2 if k == 0 then
3 return RepresentativeDontCareGrouping;

4 end
5 InternalGrouping g = new InternalGrouping(k);

6 g.AConnection = NoDistinctionProtoCFLOBDD(k-1);

7 g.AReturnTuple = [1];

8 g.numberOfBConnections = 1;

9 g.BConnections[1] = g.AConnection;

10 g.BReturnTuples[1] = [1];

11 g.numberOfExits = 1;

12 return RepresentativeGrouping(g);

13 end

F T

x0

x1

F T

x0

x1

F T

Level k-1 projection
proto-CFLOBDD
for i

No-distinction
proto-CFLOBDD
at level k-1

F T

No-distinction
proto-CFLOBDD
at level k-1

Level k-1 projection
proto-CFLOBDD
for i – 2k–1

(a) (b) (c) (d)

Fig. 9. (a) CFLOBDD for 𝜆𝑥0𝑥1 .𝑥0; (b) CFLOBDD for 𝜆𝑥0𝑥1 .𝑥1; (c) schematic drawing of CFLOBDDs that
represent projection functions of the form 𝜆𝑥0, 𝑥1, . . . , 𝑥2

𝑘−1
.𝑥𝑖 , when 0 ≤ 𝑖 < 2

𝑘−1; (d) schematic drawing of
CFLOBDDs that represent projection functions of the form 𝜆𝑥0, 𝑥1, . . . , 𝑥2

𝑘−1
.𝑥𝑖 , when 2

𝑘−1 ≤ 𝑖 < 2
𝑘 .

6.2 Unary Operations on CFLOBDDs
This section discusses how to perform certain unary operations on CFLOBDDs:

6.2.1 FlipValueTuple Function. The function FlipValueTupleCFLOBDD applies in the special sit-

uation in which a CFLOBDD maps Boolean-variable-to-Boolean-value assignments to just two

possible values; FlipValueTupleCFLOBDD flips the two values in the CFLOBDD’s valueTuple field
and returns the resulting CFLOBDD. In the case of Boolean-valued CFLOBDDs, this operation can

be used to implement the operation ComplementCFLOBDD, which forms the Boolean complement

of its argument, in an efficient manner. The pseudo-code for these functions is given in Alg. 5.

FlipValueTupleCFLOBDD and ComplementCFLOBDD are constant-time operations.

6.2.2 Scalar Multiplication. Function ScalarMultiplyCFLOBDD of Alg. 6 applies to any CFLOBDD
that maps Boolean-variable-to-Boolean-value assignments to values on which multiplication

by a scalar value of type Value is defined. ScalarMultiplyCFLOBDD constructs a CFLOBDD

for the constant function 𝜆𝑥0, 𝑥1, . . . , 𝑥2
𝑘−1

.𝑣 , which is multiplied by CFLOBDD 𝑐 using

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

CFLOBDDs 1:27

Algorithm 4: ProjectionProtoCFLOBDD
1 Algorithm ProjectionCFLOBDD(k, i)

Input: int k (level), int i (index)

Output: CFLOBDD representing function 𝜆𝑥0, 𝑥1, . . . , 𝑥2
𝑘−1

.𝑥𝑖

2 begin
3 assert(0 <= i < 2**k);

4 return RepresentativeCFLOBDD(ProjectionProtoCFLOBDD(k,i), [F,T]);

5 end
6 end
7 SubRoutine ProjectionProtoCFLOBDD(k, i)

Input: int k (level), int i (index)

Output: Grouping g representing function 𝜆𝑥0, 𝑥1, . . . , 𝑥2
𝑘−1

.𝑥𝑖

8 begin
9 if k == 0 then // i must also be 0
10 return RepresentativeForkGrouping;

11 else
12 InternalGrouping g = new InternalGrouping(k);

13 if i < 2∗∗(k-1) then // i falls in AConnection range
14 g.AConnection = ProjectionProtoCFLOBDD(k-1,i);

15 g.AReturnTuple = [1,2];

16 g.numBConnections = 2;

17 g.BConnection[1] = NoDistinctionProtoCFLOBDD(k-1);

18 g.BReturnTuples[2] = [1];

19 g.BConnections[2] = g.BConnection[1];

20 g.BReturnTuples[2] = [2];

21 g.numberOfExits = 2;

22 else // i falls in BConnection range
23 g.AConnection = NoDistinctionProtoCFLOBDD(k-1);

24 g.AReturnTuple = [1];

25 g.numBConnections = 1;

26 i = i - 2∗∗(k-1); // Remove high-order bit for recursive call

27 g.BConnections[1] = ProjectionProtoCFLOBDD(k-1,i);

28 g.BReturnTuples[1] = [1,2];

29 g.numberOfExits = 2;

30 end
31 return RepresentativeGrouping(g);

32 end
33 end
34 end

BinaryApplyAndReduce—the generic operation for binary CFLOBDD operations (discussed in

§6.3)—with the multiplication operator Times passed as the third argument.

6.3 Binary Operations on CFLOBDDs
This section presents an algorithm for performing binary operations on CFLOBDDs. The algorithm

is parameterized in terms of a binary operation op that is to be applied pointwise to the range values
of two CFLOBDDs. That is, given the CFLOBDDs for two functions 𝑛1 and 𝑛2 and binary operation
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Algorithm 5: ComplementCFLOBDD

1 Algorithm FlipValueTupleCFLOBDD(c)
Input: CFLOBDD 𝑐
Output: CFLOBDD 𝑐 ′ such that the output values are flipped

2 begin
3 assert(|𝑐 .valueTuple| == 2);

4 return RepresentativeCFLOBDD(𝑐 .grouping, [𝑐 .valueTuple[2], 𝑐 .valueTuple[1]]);

5 end
6 end
7 Algorithm ComplementCFLOBDD(c)

Input: CFLOBDD 𝑐
Output: CFLOBDD 𝑐 ′ such that the output values are complemented

8 begin
9 if c == FalseCFLOBDD(c.grouping.level) then
10 return TrueCFLOBDD(c.grouping.level);

11 end
12 if c == TrueCFLOBDD(c.grouping.level) then
13 return FalseCFLOBDD(c.grouping.level);

14 end
15 return FlipValueTupleCFLOBDD(𝑐);

16 end
17 end

Algorithm 6: ScalarMultiplyCFLOBDD

Input: CFLOBDD 𝑐 , Value 𝑣
Output: CFLOBDD 𝑐 ′ = 𝑐 ∗ 𝑣

1 begin
// Multiply CFLOBDD 𝑐 by the CFLOBDD for the constant function 𝜆𝑥0, 𝑥1, . . . , 𝑥2

𝑘−1
.𝑣

2 return BinaryApplyAndReduce(𝑐 , ConstantCFLOBDD(𝑐 .level, 𝑣), (op)Times); // (See §6.3)

3 end

op, the goal of the algorithm is to create the CFLOBDD for 𝑛1 op𝑛2 where, for each assignment

𝑎, (𝑛1 op𝑛2) (𝑎) = 𝑛1 (𝑎) op𝑛2 (𝑎). Operation op could be +,−, ∗, /, etc., or—if the functions are

Boolean-valued—∨,∧, ⊕, etc. As with BDDs, such operations on CFLOBDDs can be implemented

via a two-step process
11

(1) perform a product construction

(2) perform a reduction step on the result of step one.

Just as there can be multiple occurrences of a given node in a BDD, there can be multiple occurrences

of a given grouping in a CFLOBDD. To avoid a blow-up in costs, binary operations need to avoid

making repeated calls on a given pair of groupings 𝑔1 ∈ 𝑛1 and 𝑔2 ∈ 𝑛2. Assuming that the hash-

table lookup and insertion methods used for hash-consing (§5.1) and function caching (§5.3) run in

(expected) unit-cost time, the time to perform the product construction is asymptotically bounded

11
The two-step process is conceptual for BDDs: the two steps can be combined in an implementation (e.g., see [19, §3.3]).

For CFLOBDDs, it does not appear possible to combine the two steps, at least not easily. For more details, see the Remark

just after Ex. 6.1.
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F T

1

2 3

4

5 6

7 8

T F

a

b c

d

e f

g h

[F,T]

[1,a]

[2,b] [3,c]

[4,d]

[5,e] [6,f]

[7,g] [8,h]

[T,F]

(a) 𝜆𝑥0, 𝑥1 .𝑥0 ⊕ 𝑥1 (b) 𝜆𝑥0, 𝑥1 .𝑥0 ⇔ 𝑥1 (c) Result of calling PairProduct on (a) and (b)

T

[1,a]

[2,b] [3,c]

[4,d]

[5,e] [6,f]

[7,g] [8,h]

T

[1,a]

[2,b] [3,c]

[4,d]

[5,e] [6,f]

[7,g] [8,h]

T

(d) Result of applying ∨ to the values in each of

the terminal-value pairs [𝐹,𝑇 ] and [𝑇, 𝐹 ]. At this
point, it is necessary to perform a reduction that

folds together the two exit vertices.

(e) Result of calling Reduce on the first B-connection

with reductionTuple [1, 1].

T

[1,a]

[2,b] [3,c]

[4,d]

[5,e] [6,f]

[7,g] [8,h]

T T

(f) Result of calling Reduce on the second B-

connection with reductionTuple [1, 1]. The two

calls on Reduce produce the same B-connection

proto-CFLOBDDs with identical return edges—

indicated by the coincidence of the blue and red

dashed edges in the structure on the right. At this

point, it is necessary to perform a reduction that

folds together the two middle vertices.

(g) After calling Reduce on the A-connection

with reductionTuple [1, 1], the final result is the
CFLOBDD for 𝜆𝑥0, 𝑥1 .𝑇 .

Fig. 10. Illustration of how (𝜆𝑥0, 𝑥1 .𝑥0 ⊕ 𝑥1) ∨ (𝜆𝑥0, 𝑥1 .𝑥0 ⇔ 𝑥1) results in 𝜆𝑥0, 𝑥1 .𝑇 .

by the product of the sizes of the two argument CFLOBDDs—i.e., 𝑂 ( |𝑛1 | × |𝑛2 |).12 §D shows that

12
More precisely, let 𝑛↑gr[𝑘 ] denote the set of groupings at level 𝑘∈[0..𝑙 ] in CFLOBDD 𝑛. The time to construct the

product of 𝑛1 and 𝑛2 is asymptotically bounded by

∑𝑙
𝑘=0

∑ {
|𝑔1 |× |𝑔2 | | 𝑔1∈𝑛1↑gr[𝑘 ] and 𝑔2∈𝑛2↑gr[𝑘 ]

}
.
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Algorithm 7: CollapseClassesLeftmost

Input: Tuple equivClasses
Output: Tuple×Tuple [projectedClasses, renumberedClasses]

1 begin
// Project the tuple equivClasses, preserving left-to-right order, retaining

the leftmost instance of each class

2 Tuple projectedClasses = [equivClasses(i) : i ∈ [1..|equivClasses|] | i = min{j ∈ [1..|equivClasses|] |
equivClasses(j) = equivClasses(i)}];

// Create tuple in which classes in equivClasses are renumbered according to

their ordinal position in projectedClasses

3 Map orderOfProjectedClasses = {[x,i]: i ∈ [1..|projectedClasses|] | x = projectedClasses(i)};

4 Tuple renumberedClasses = [orderOfProjectedClasses(v) : v ∈ equivClasses];
5 return [projectedClasses, renumberedClasses];

6 end

Algorithm 8: BinaryApplyAndReduce
Input: CFLOBDDs n1, n2 and Operation op

Output: CFLOBDD n = n1 op n2

1 begin
// Perform cross product

2 Grouping×PairTuple [g,pt] = PairProduct(n1.grouping,n2.grouping);

// Create tuple of “leaf” values

3 ValueTuple deducedValueTuple = [ op(n1.valueTuple[i1],n2.valueTuple[i2]) : [i1,i2] ∈ pt ];
// Collapse duplicate leaf values, folding to the left

4 Tuple×Tuple [inducedValueTuple,inducedReductionTuple] =
CollapseClassesLeftmost(deducedValueTuple) ;

// Perform corresponding reduction on g, folding g’s exit vertices w.r.t.

inducedReductionTuple

5 Grouping g’ = Reduce(g, inducedReductionTuple) ;

6 CFLOBDD n = RepresentativeCFLOBDD(g’, inducedValueTuple) ;

7 return n;

8 end

the time for the reduction step is 𝑂 ( |𝑛1 | × |𝑛2 | × |𝑛′ |), where 𝑛′ denotes the CFLOBDD that is

the result of 𝑛1 op𝑛2. Consequently, binary operations satisfy Requirement (5); i.e., they run in

(expected) time that is polynomial in the sizes of the input and output CFLOBDDs.

Fig. 10 illustrates this method by showing how the CFLOBDD for 𝜆𝑥0, 𝑥1 .𝑇 is obtained as the

result of a Boolean-∨: (𝜆𝑥0, 𝑥1 .𝑥0 ⊕ 𝑥1) ∨ (𝜆𝑥0, 𝑥1.𝑥0 ⇔ 𝑥1). Fig. 10c shows the result of the product
construction (PairProduct, Alg. 9). Figs. 10d, e, f, and g illustrate some of the steps of the reduction

algorithm (Reduce, Alg. 10). Fig. 10 is discussed in more detail in Ex. 6.1.

The algorithms involved are given as Algs. 7–11. (In Algs. 8 and 9, we assume that the CFLOBDD
or Grouping arguments are objects whose highest-level groupings are all at the same level.)

• The operation BinaryApplyAndReduce, given as Alg. 8, starts with a call on PairProduct
(line [2]). PairProduct, given as Alg. 9, performs a recursive traversal of the two Grouping
arguments, g1 and g2, to create a proto-CFLOBDD that represents a kind of cross product.

PairProduct returns g, the proto-CFLOBDD formed in this way, as well as pt, a descriptor
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Algorithm 9: PairProduct
Input: Groupings g1, g2
Output: Grouping g: product of g1 and g2; PairTuple ptAns: tuple of pairs of exit vertices

1 begin
2 if g1 and g2 are both no-distinction proto-CFLOBDDs then return [ g1, [[1,1]] ];

3 if g1 is a no-distinction proto-CFLOBDD then return [ g2, [[1,k] : k ∈ [1..g2.numberOfExits]] ];

4 if g2 is a no-distinction proto-CFLOBDD then return [ g1, [[k,1] : k ∈ [1..g1.numberOfExits]] ];

5 if g1 and g2 are both fork groupings then return [ g1, [[1,1],[2,2]] ];

// Pair the A-connections

6 Grouping×PairTuple [gA,ptA] = PairProduct(g1.AConnection, g2.AConnection);

7 InternalGrouping g = new InternalGrouping(g1.level);

8 g.AConnection = gA ;

9 g.AReturnTuple = [1..|ptA|]; // Represents the middle vertices

10 g.numberOfBConnections = |ptA| ;

// Pair the B-connections, but only for pairs in ptA

// Descriptor of pairings of exit vertices

11 Tuple ptAns = [];

// Create a B-connection for each middle vertex

12 for 𝑗 ← 1 to |𝑝𝑡𝐴| do
13 Grouping×PairTuple [gB,ptB] = PairProduct(g1.BConnections[ptA(j)(1)],

g2.BConnections[ptA(j)(2)]);

14 g.BConnections[j] = gB ;

// Now create g.BReturnTuples[j], and augment ptAns as necessary

15 g.BReturnTuples[j] = [] ;

16 for 𝑖 ← 1 to |𝑝𝑡𝐵 | do
17 c1 = g1.BReturnTuples[ptA(j)(1)](ptB(i)(1)); // an exit vertex of g1

18 c2 = g2.BReturnTuples[ptA(j)(2)](ptB(i)(2)) ; // an exit vertex of g2

19 if [c1,c2] ∈ ptAns then // Not a new exit vertex of g
20 index = the k such that ptAns(k) == [c1,c2] ;

21 g.BReturnTuples[j] = g.BReturnTuples[j] || index ;

22 else // Identified a new exit vertex of g
23 g.numberOfExits = g.numberOfExits + 1 ;

24 g.BReturnTuples[j] = g.BReturnTuples[j] || g.numberOfExits ;

25 ptAns = ptAns || [c1,c2] ;

26 end
27 end
28 end
29 return [RepresentativeGrouping(g), ptAns];

30 end

of the exit vertices of g in terms of pairs of exit vertices of the highest-level groupings of g1
and g2. (See Alg. 9, lines [2]–[5] and lines [11]–[29].)

From the semantic perspective, each exit vertex 𝑒1 of g1 represents a (non-empty) set

𝐴1 of variable-to-Boolean-value assignments that lead to 𝑒1 along a matched path in g1;
similarly, each exit vertex 𝑒2 of g2 represents a (non-empty) set of variable-to-Boolean-value

assignments 𝐴2 that lead to 𝑒2 along a matched path in g2. If pt, the descriptor of g’s exit
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Algorithm 10: Reduce
Input: Grouping g, ReductionTuple reductionTuple
Output: Grouping g’ that is "reduced"

1 begin
// Test whether any reduction actually needs to be carried out

2 if reductionTuple == [1..|reductionTuple|] then
3 return g;

4 end
// If only one exit vertex, then collapse to no-distinction proto-CFLOBDD

5 if |{x : x ∈ reductionTuple}| == 1 then
6 return NoDistinctionProtoCFLOBDD(g.level);

7 end
8 InternalGrouping g’ = new InternalGrouping(g.level);

9 g’.numberOfExits = |{ x : x ∈ reductionTuple }|;
10 Tuple reductionTupleA = [];

11 for 𝑖 ← 1 to 𝑔.𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝐵𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 do
12 Tuple deducedReturnClasses = [reductionTuple(v) : v ∈ g.BReturnTuples[i]];
13 Tuple×Tuple [inducedReturnTuple, inducedReductionTuple] =

CollapseClassesLeftmost(deducedReturnClasses);

14 Grouping h = Reduce(g.BConnection[i], inducedReturnTuple);

15 int position = InsertBConnection(g’, h, inducedReturnTuple);

16 reductionTupleA = reductionTupleA || position;

17 end
18 Tuple×Tuple [inducedReturnTuple, inducedReductionTuple] =

CollapseClassesLeftmost(reductionTupleA);

19 Grouping h’ = Reduce(g.AConnection, inducedReductionTuple);

20 g’.AConnection = h’;

21 g’.AReturnTuple = inducedReturnTuple;

22 return RepresentativeGrouping(g’);

23 end

Algorithm 11: InsertBConnection
Input: InternalGrouping g, Grouping h, ReturnTuple returnTuple

Output: int – Insert (h, ReturnTuple) as the next B-connection of g, if they are a new combination;

otherwise return the index of the existing occurence of (h, ReturnTuple)

1 begin
2 if there exists 𝑖 ∈ [1..𝑔.𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝐵𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠] such that g.BConnection[i] == h &&

g.BReturnTuples[i] == returnTuple then return i;

3 g.numberOfBConnections = g.numberOfBConnections + 1;

4 g.BConnections[g.numberOfBConnections] = h;

5 g.BReturnTuples[g.numberOfBConnections] = returnTuple;

6 return g.numberOfBConnections;

7 end

vertices returned by PairProduct, indicates that exit vertex 𝑒 of g corresponds to [𝑒1, 𝑒2],
then 𝑒 represents the (non-empty) set of assignments 𝐴1 ∩𝐴2.
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Function caching (§5.3) is performed for PairProduct. Consequently, for a given invocation
of BinaryApplyAndReduce on CFLOBDDs 𝑛1 and 𝑛2, for each level 𝑘 , the number of calls

on PairProduct for level 𝑘 is bounded by the product of the numbers of level-𝑘 groupings

in 𝑛1 and 𝑛2. Moreover, for each call on PairProduct(𝑔1, 𝑔2), the number of exit vertices

in grouping 𝑔 is bounded by the product of the numbers of exit vertices in 𝑔1 and 𝑔2 (see

line [25]). Similarly, the number of middle vertices in 𝑔 is bounded by the product of the

numbers of middle vertices in 𝑔1 and 𝑔2 (see line [10]). Thus, the size of g is bounded by the

product of the sizes of 𝑔1 and 𝑔2. Consequently, the cost of the call on PairProduct in line [2]

of Alg. 8 is bounded by the sum over 𝑘 ∈ [0..𝑙] of the products of the sizes of the level-𝑘
groupings in 𝑛1 and 𝑛2, and hence polynomial in the sizes of 𝑛1 and 𝑛2 (see footnote 12).

Lines [2]–[4] of PairProduct perform special-case processing when either argument

to PairProduct is a NoDistinctionProtoCFLOBDD. At level 0, these checks—along with

line [5]—implement the base case of PairProduct. However, at levels greater than 0, they

allow PairProduct to return immediately, without making any recursive calls to traverse 𝑔1

or 𝑔2, potentially saving considerable work.

• BinaryApplyAndReduce then uses pt, together with op and the value tuples from CFLOBDDs
n1 and n2, to create the tuple deducedValueTuple of leaf values that should be associated

with the exit vertices (see Alg. 8, line [3]]).

However, deducedValueTuple is a tentative value tuple for the constructed CFLOBDD;
because of structural invariant 6 of Defn. 4.1, this tuple needs to be collapsed if it contains

duplicate values.

• BinaryApplyAndReduce obtains two tuples, inducedValueTuple and

inducedReductionTuple, which describe the collapsing of duplicate leaf values, by

calling the subroutine CollapseClassesLeftmost (Alg. 7):

– Tuple inducedValueTuple serves as the final value tuple for the CFLOBDD constructed

by BinaryApplyAndReduce. In inducedValueTuple, the leftmost occurrence of a value

in deducedValueTuple is retained as the representative for that equivalence class of

values. For example, if deducedValueTuple is [2, 2, 1, 1, 4, 1, 1], then inducedValueTuple
is [2, 1, 4].
The use of leftward folding is dictated by structural invariant 2b of Defn. 4.1.

– Tuple inducedReductionTuple describes the collapsing of duplicate values that took place
in creating inducedValueTuple from deducedValueTuple: inducedReductionTuple is

the same length as deducedValueTuple, but each entry inducedReductionTuple(i)
gives the ordinal position of deducedValueTuple(i) in inducedValueTuple. For exam-

ple, if deducedValueTuple is [2, 2, 1, 1, 4, 1, 1] (and thus inducedValueTuple is [2, 1, 4]),
then inducedReductionTuple is [1, 1, 2, 2, 3, 2, 2]—meaning that positions 1 and 2 in

deducedValueTuple were folded to position 1 in inducedValueTuple, positions 3, 4, 6,
and 7 were folded to position 2 in inducedValueTuple, and position 5 was folded to

position 3 in inducedValueTuple.
(See Alg. 8, line [4], as well as Alg. 7.)

• Finally, BinaryApplyAndReduce performs a corresponding reduction on Grouping g, by
calling the subroutine Reduce, which creates a new Grouping in which g’s exit vertices are
folded together with respect to tuple inducedReductionTuple (Alg. 8, line [5]).

Procedure Reduce, given as Alg. 10, recursively traverses Grouping g, working in the

backwards direction, first processing each of g’s 𝐵-connections in turn, and then processing

g’s 𝐴-connection. In both cases, the processing is similar to the (leftward) collapsing of

duplicate leaf values that is carried out by BinaryApplyAndReduce:
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– In the case of each 𝐵-connection, rather than collapsing with respect to a tuple of duplicate

final values, Reduce’s actions are controlled by its second argument, reductionTuple,
which clients of Reduce—namely, BinaryApplyAndReduce and Reduce itself—use to in-

form Reduce how g’s exit vertices are to be folded together. For instance, the value of

reductionTuple could be [1, 1, 2, 2, 3, 2, 2]—meaning that exit vertices 1 and 2 are to be

folded together to form exit vertex 1, exit vertices 3, 4, 6, and 7 are to be folded together to

form exit vertex 2, and exit vertex 5 by itself is to form exit vertex 3.

In Alg. 10, line [12], the value of reductionTuple is used to create a tuple that indicates

the equivalence classes of targets of return edges for the 𝐵-connection under consideration

(in terms of the new exit vertices in the Grouping that will be created to replace g).
Then, by calling the subroutine CollapseClassesLeftmost, Reduce obtains two tuples,

inducedReturnTuple and inducedReductionTuple, that describe the collapsing that

needs to be carried out on the exit vertices of the 𝐵-connection under consideration

(Alg. 10, line [13]).

Tuple inducedReductionTuple is used to make a recursive call on Reduce to process the
𝐵-connection; inducedReturnTuple is used as the return tuple for the Grouping returned

from that call. Note how the call on InsertBConnection (Alg. 11) in line [15] of Reduce
enforces structural invariant 4 of Defn. 4.1.

13

– As the 𝐵-connections are processed, Reduce uses the position information returned from

InsertBConnection to build up the tuple reductionTupleA (Alg. 10, line [16]). This tuple
indicates how to reduce the 𝐴-connection of g.

– Finally, via processing similar to what was done for each 𝐵-connection, two tuples are

obtained that describe the collapsing that needs to be carried out on the exit vertices of the

𝐴-connection, and an additional call on Reduce is carried out. (See Alg. 10, lines [18]–[21].)

Function caching (§5.3) is performed for Reduce, with respect to both arguments g and

reductionTuple. §D shows that the time for a call to Reduce(𝑛, rt) with output CFLOBDD 𝑛′

is asymptotically bounded by 𝑂 ( |𝑛 | × |𝑛′ |). Because the time for PairProduct to perform the

product construction of two CFLOBDDs 𝑛1 and 𝑛2 is asymptotically bounded by the product

of their sizes (i.e., 𝑂 ( |𝑛1 | × |𝑛2 |)), the overall time to perform BinaryApplyAndReduce(𝑛1, 𝑛2) is
𝑂 ( |𝑛1 | × |𝑛2 | × |𝑛′ |), which is polynomial in the sizes of the input and output CFLOBDDs.

Recall that a call on RepresentativeGrouping(g) may have the side effect of installing g into

the table of memoized Groupings. We do not want this table to ever be polluted by non-well-formed

proto-CFLOBDDs. Thus, there is a subtle point as to why the grouping g constructed during a call

on PairProduct meets structural invariant 4 of Defn. 4.1—and hence why it is permissible to call

RepresentativeGrouping(g) in line [29] of Alg. 9. The proof can be found in [59, Appendix D].

Lastly, in the case of Boolean-valued CFLOBDDs, there are 16 possible binary operations, corre-

sponding to the 16 possible two-argument truth tables (2 × 2 matrices with Boolean entries). All 16

binary operations are special cases of BinaryApplyAndReduce; these can be performed by passing

BinaryApplyAndReduce an appropriate value for argument op (i.e., some 2 × 2 Boolean matrix).

Example 6.1. Fig. 10 illustrates how the CFLOBDD for 𝜆𝑥0, 𝑥1.𝑇 is created from the “or” (∨) of
the CFLOBDDs for 𝜆𝑥0, 𝑥1 .𝑥0 ⊕ 𝑥1 and 𝜆𝑥0, 𝑥1.𝑥0 ⇔ 𝑥1. Fig. 10c is the result of calling PairProduct
on the CFLOBDDs for 𝜆𝑥0, 𝑥1 .𝑥0 ⊕ 𝑥1 and 𝜆𝑥0, 𝑥1.𝑥0 ⇔ 𝑥1. After ∨ is applied to the values in

each of the terminal-value pairs [𝐹,𝑇 ] and [𝑇, 𝐹 ], we obtain a mock-CFLOBDD that has two

exit vertices associated with terminal value 𝑇 . To restore the structural invariants and create a

13
In our implementation, InsertBConnection performs a left-to-right search of g.BConnection and g.BReturnTuples,

but it could be implemented as an (expected) unit-time operation using a hashed dictionary, keyed on (Grouping, ReturnTuple)

pairs.
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CFLOBDD, the two exit vertices must be folded together, and a reduction performed on each of

the two B-connections. In each case, Reduce is called with reductionTuple [1, 1]. Because these
reductions result in the same B-connection proto-CFLOBDDs with identical return edges (Fig. 10e

and Fig. 10f), which would be discovered by InsertBConnection (Alg. 11), it is necessary to fold

together the two middle vertices and perform a reduction on the A-connection: Reduce is called
with reductionTuple [1, 1]. This step produces the CFLOBDD for 𝜆𝑥0, 𝑥1.𝑇 (Fig. 10g).

For another example that illustrates Reduce, see Ex. D.1.

Remark. For BDDs, the two-step process of “pair-product-followed-by-reduction” need only be

conceptual. Binary operations on BDDs can be implemented during a single recursive pass by

performing the appropriate value-reduction operation on terminal values, and then, as the recursion

unwinds, having the BDD-node constructor perform hash-consing (suppressing the construction

of don’t-care nodes) so that non-reduced structures are never created [19, §3.3].

Such an approach does not seem to be possible with CFLOBDDs because reduction is not obtained

as a side-effect of hash-consing. The flow of control in Reduce (Alg. 10) follows the sequence of
elements of a matched path backwards. Reduce makes recursive calls for the B-connection proto-

CFLOBDDs and then a recursive call for the A-connection proto-CFLOBDD (rather than working

bottom-up from level-0 groupings to level-𝑘 groupings, which would be the analogue of the bottom-

up construction performed with BDDs.) Consequently, our CFLOBDD implementation maintains

the weaker invariant that the Groupings that appear in the hash-consing tables are the heads

of fully-fledged proto-CFLOBDDs, not mock-proto-CFLOBDDs—i.e., structural invariants 1–4 of

Defn. 4.1 hold. While such Groupings may have to be reduced later, there is never any issue of

the hash-cons tables being polluted by mock-proto-CFLOBDDs that violate the proto-CFLOBDD

structural invariants.

Some unary operations on CFLOBDDs may also need to apply Reduce. For example, if the

terminal values of a CFLOBDD are numeric values, the unary function that squares all terminal

values could initially result in a mock-CFLOBDD that has duplicate terminal values. Reduce, with
an appropriate ReductionTuple, would be then applied to create the corresponding CFLOBDD.

In a manner similar to the binary operations on CFLOBDDs, we can perform ternary operations

on CFLOBDDs. Details about how to perform ternary operations can be found in [59, Appendix

E.1]. Other operations, such as restriction (𝑓 |𝑥𝑖=𝑣) and existential quantification (∃𝑥𝑖 .𝑓 ) can also be

performed on a CFLOBDD; the corresponding algorithms can be found in Appendices E.2 and E.3,

respectively, of [59].

6.4 Path Counting and Sampling
A CFLOBDD whose terminal values are non-negative numbers can be used to represent a discrete

distribution over the set of assignments to the Boolean variables. An assignment—or equivalently,

the corresponding matched path in the CFLOBDD—is considered to be an elementary event. The

“weight” of the elementary event is the terminal value. The probability of a matched path 𝑝 is

the weight of 𝑝 divided by the total weight of the CFLOBDD—the sum of the weights obtained

by following each of the CFLOBDD’s matched paths. Fortunately, it is possible to compute the

aforementioned denominator by computing, for each of the terminal values, the number of matched

paths that lead to that terminal value (§6.4.1). With those numbers in hand, it is then possible to

sample an assignment/path according to the distribution that the CFLOBDD represents (§6.4.2).

The same approach can be used for CFLOBDDs whose terminal values are complex numbers,

except that the weight of a matched path is the square of the terminal value’s absolute value. This

approach is used in the application of CFLOBDDs to quantum simulation (§9 and §10.2.2).
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6.4.1 Path Counting. Recall that every terminal value is connected to one exit vertex of the

top-level grouping of the CFLOBDD. Every exit vertex of a grouping is, in turn, connected to

exit vertices of internal groupings. Therefore, to compute the number of matched paths for every

terminal value, we need to compute the path-counts from the entry vertex of a grouping to every

exit vertex of that grouping, for every grouping in the CFLOBDD. For each grouping 𝑔, we would

like to compute a vector of path-counts, in which the 𝑖 th element is the number of matched paths

from 𝑔’s entry vertex to the 𝑖 th exit vertex of 𝑔. To compute this information, we can break it down

into (i) computing the number of matched paths from 𝑔’s entry vertex to 𝑔’s middle vertices; (ii)

computing the number of matched paths from 𝑔’s middle vertices to 𝑔’s exit vertices; and (iii)

combining this information to obtain the number of matched paths from 𝑔’s entry vertex to 𝑔’s exit

vertices.

Consider a Grouping 𝑔 at level 𝑙 with 𝑒 exit vertices. Suppose that 𝑔.AConnection has 𝑝 exit

vertices, 𝑔.BConnections[ 𝑗] has 𝑘 𝑗 exit vertices, and let 𝑔.BReturnTuples[ 𝑗] be the return edges

from 𝑔.BConnections[ 𝑗]’s exit vertices to 𝑔’s exit vertices. For step (i), we recursively compute the

path-counts for 𝑔.AConnection, which yields a vector of path-counts 𝑣𝐴 of size 1×𝑝 . Step (ii) creates
a matrix 𝑀𝐵 of size 𝑝 × 𝑒 , in which the 𝑗 th row is the vector of path-counts from the 𝑗 th middle

vertex of 𝑔 to 𝑔’s exit vertices. Step (iii) is the vector-matrix multiplication 𝑣𝐴 ×𝑀𝐵 , which yields

𝑔’s path-count vector, of size 1 × 𝑒 . The base-case path-count vectors are [1, 1] for a ForkGrouping
and [2] for a DontCareGrouping.
Because the exit vertices of 𝑔.BConnections[ 𝑗] are connected to 𝑔’s exit vertices via

𝑔.BReturnTuples[ 𝑗], the 𝑗 th row of𝑀𝐵 is the product of the path-count vector for 𝑔.BConnections[ 𝑗]
(of size 1 × 𝑘 𝑗 ) and a “permutation matrix” PM

𝑔.BReturnTuples[ 𝑗 ]
(of size 𝑘 𝑗 × 𝑒). Each entry of PM is

either 0 or 1; each row must have exactly one 1; and each column must have at most one 1.

This definition can be stated equationally, where the expression in large brackets represents𝑀𝐵 .

numPathsToExit
𝑔

1×𝑒 =

[1, 1]1×2 if g = ForkGrouping

[2]1×1 if g = DontCareGrouping

numPathsToExit
𝑔.AConnection

1×𝑝 ×
...

numPathsToExit
𝑔.BConnections[ 𝑗 ]
1×𝑘 𝑗 × PM 𝑔.BReturnTuples[ 𝑗 ]

𝑘 𝑗×𝑒
...

𝑝 × 𝑒
𝑗 ∈ {1..𝑝 }

otherwise

Example 6.2. For the five proto-CFLOBDDs depicted in Fig. 11, the vectors of path-counts are

computed as follows (read top-to-bottom by level):

level 2 level 1 level 0[
9 7

]
=
[
3 1

]
×
[
3 1

0 4

] [
3 1

]
=
[
1 1

]
×
[
2 0

1 1

] [
1 1

]
[4] = [2] × [2] [2]

Pseudo-code for the path-counting algorithm can be found as [59, Alg. 21].

6.4.2 Sampling an Assignment. Our goal is to sample a matched path from the distribution of

matched paths of a given CFLOBDD, and return the corresponding assignment. As in §3.3.4, we

assume that an assignment is an array of Booleans, whose entries—starting at index-position 1—are

the values of successive variables. Suppose that the CFLOBDD has 𝑙 levels. If the distribution were
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given as a vector of weights,𝑊 = [𝑤1 ..𝑤
2

2
𝑙 ], as one would have in the corresponding decision tree,

the probability of selecting the 𝑝 th matched path is given by

Prob(𝑝) =
𝑤𝑝∑
2

2
𝑙

𝑖=1
𝑤𝑖

. (5)

In a CFLOBDD that represents a distribution, we do not have access to𝑊 directly. Suppose that

𝑊 ′ = [𝑤 ′
1
, . . . ,𝑤 ′

𝐾
] is the vector of terminal values of the CFLOBDD. The 𝐾 values of𝑊 ′ are exactly

the 𝐾 different values that appear in𝑊 ; however, many matched paths that start at the top-level

entry vertex lead to the same terminal value, say𝑤 ′𝑚 . Fortunately, the path-counting method from

§6.4.1 provides us with part of what is needed via NumPathsToExit of the top-level grouping.

2
2
𝑙∑

𝑖=1

𝑤𝑖 =

𝐾∑
𝑗=1

𝑤 ′𝑗 × numPathsToExit[ 𝑗]

Thus, while Eqn. (5) becomes Prob(𝑝) =
𝑤𝑝∑𝐾

𝑗=1
𝑤 ′
𝑗
× numPathsToExit[ 𝑗]

this observation gives us

no guidance about how to select a matched path 𝑝 with that probability.

Rather than selecting a single matched path immediately, what we can do instead is to select

the entire set of matched paths that reach a given terminal value. This selection can be done by

sampling from the exit vertices of the top-level grouping according to the probability distribution

Prob
′(Path ends at terminal value𝑤 ′𝑡 ) =

𝑤 ′𝑡 × numPathsToExit[𝑡]∑𝐾
𝑗=1
𝑤 ′
𝑗
× numPathsToExit[ 𝑗]

(6)

The result of this sampling step is the index of an exit vertex of the top-level grouping, which will

be used for further sampling among the (indirectly) “retrieved” set of matched paths. What remains

to be done is to uniformly sample a matched path from that set, and return the assignment that

corresponds to that matched path.

To achieve this goal, we take advantage of the structure of matched paths to break the

assignment/path-sampling problem down to a sequence of smaller assignment/path-sampling

problems that can be performed recursively. At each grouping 𝑔 visited by the algorithm, the goal

is to uniformly sample a matched path from the set of matched paths 𝑃𝑔,𝑖 (in the proto-CFLOBDD

headed by 𝑔) that lead from 𝑔’s entry vertex to a specific exit vertex 𝑖 of 𝑔.

Consider a grouping 𝑔 and a given exit vertex 𝑖 . For each middle vertex𝑚 of 𝑔, there is some

number of matched paths—possibly 0—from the entry vertex of𝑔 that pass through𝑚 and eventually

reach exit vertex 𝑖 . Those numbers of matched paths, when divided by |𝑃𝑔,𝑖 |, represent a distribution
𝐷𝑖 on the set of 𝑔’s middle vertices. Consequently, the first step toward uniformly sampling a

matched path from the set 𝑃𝑔,𝑖 is to sample the index of a middle vertex of 𝑔 according to distribution

𝐷𝑖 . Call the result of that sampling step𝑚index. Thus, to sample a matched path from the entry vertex

of 𝑔 to exit vertex 𝑖 , we (i) sample a middle vertex of 𝑔 according to 𝐷𝑖 to obtain𝑚index; (ii) uniformly

sample a matched path from 𝑔.AConnection with respect to the exit vertex of 𝑔.AConnection that

returns to𝑚index; (iii) uniformly sample a matched path from 𝑔.BConnections[𝑚index] with respect

to whichever of its exit vertices is connected to the 𝑖 th exit vertex of 𝑔; and (iv) concatenate the

assignments obtained from steps (ii) and (iii).

Only the B-connections of𝑔whose exit vertices are connected to 𝑖 (the distinguished exit vertex of

𝑔) can contribute to the paths leading to 𝑖 , and hence we need to select a middle vertex from among

those for which the B-connection grouping can lead to 𝑖 . For such an 𝑖-connected B-connection

grouping 𝑘 , let (𝑔.BReturnTuples[𝑘])−1 [𝑖] denote the exit vertex of 𝑔.BConnections[𝑘] that leads to
𝑖; i.e., ⟨ 𝑗, 𝑖⟩ ∈ 𝑔.BReturnTuples[𝑘] ⇔ (𝑔.BReturnTuples[𝑘])−1 [𝑖] = 𝑗 .
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F T

Fig. 11. CFLOBDD for
𝜆𝑤, 𝑥,𝑦, 𝑧.(𝑤∧𝑥)∨ (𝑦∧𝑧),
with variable ordering
⟨𝑤, 𝑥,𝑦, 𝑧⟩.

The path-counts for the number of matched paths of 𝑔’s B-connections

(available via the vector NumPathsToExit for each of 𝑔’s B-connections,

denoted by, e.g., numPathsToExit
𝑔.BConnections[𝑘 ]

) only considers matched

paths from 𝑔’s middle vertices to 𝑔’s exit vertices. However, to sample

𝑚index correctly, we need to consider all of the matched paths from 𝑔’s en-

try vertex to 𝑔’s exit vertex 𝑖 . Hence, we multiply the number of matched

paths from 𝑔’s entry vertex to a middle vertex of 𝑔 (of interest to us be-

cause it is connected to a B-connection that is connected to 𝑖), denoted by,

e.g., numPathsToExit
𝑔.AConnection [𝑘], to the number of matched paths from

that same middle vertex to 𝑔’s exit vertex 𝑖 . Thus, the probability associ-

ated with a given𝑚index is as follows (where 𝑔.𝐴 denotes 𝑔.AConnection,

𝑔.𝐵 [𝑘] denotes 𝑔.BConnections[𝑘], and 𝑔.BRT denotes 𝑔.BReturnTuples):

Prob(𝑚index) =
numPathsToExit

𝑔.𝐴 [𝑚index] × numPathsToExit
𝑔.𝐵 [𝑚index ] [(𝑔.BRT[𝑚index])−1 [𝑖]]

𝑔.numPathsToExit[𝑖]
(7)

Example 6.3. Consider the CFLOBDD depicted in Fig. 11, and suppose

that the goal is to sample a matched path that leads to terminal value

𝑇 . From Ex. 6.2, we know that (i) the outermost grouping has 7 matched

paths that lead to 𝑇 , and (ii) NumPathsToExit is [3, 1] and [4] for the
upper and lower level-1 groupings, respectively. Both of the outermost grouping’s middle vertices

have return edges that lead to 𝑇 ; thus, from Eqn. (7), we should sample the middle vertices with

probabilities

Prob(𝑚index = 1) = [3,1] [1]×[3,1] [2]
7

= 3×1

7
= 3

7
Prob(𝑚index = 2) = [3,1] [2]×[4] [1]

7
= 1×4

7
= 4

7

Once𝑚index has been selected in accordance with Eqn. (7), we recursively sample a matched

path—and its assignment 𝑎𝐴—from 𝑔.AConnection with respect to exit vertex𝑚index (step (ii)). We

also recursively sample a matched path—and its assignment 𝑎𝐵—from 𝑔.BConnection[𝑚index] with
respect to the exit vertex (𝑔.BReturnTuples[𝑚index])−1 [𝑖] that leads to 𝑔’s exit vertex 𝑖 (step (iii)).

Step (iv) produces the assignment 𝑎 = 𝑎𝐴 | |𝑎𝐵 .
As for the base cases of the recursion, for a DontCareGrouping, we randomly choose one of the

paths 0 or 1 with probability 0.5, returning the assignment “0” or “1” accordingly; for a ForkGrouping,

the designated exit vertex—either 1 or 2—specifies a unique assignment: “0” or “1,” respectively.

Pseudo-code for the assignment-sampling algorithm can be found as [59, Alg. 22].

For a CFLOBDD at level 𝑙 , the sampling operation involves constructing an assignment of size 2
𝑙
.

Hence, the cost of sampling is at least as large as the size of the sampled assignment. However, the

size of the argument CFLOBDD also influences the cost of sampling; although not every grouping

of the CFLOBDD is necessarily visited when sampling an assignment, we can say that the cost of

the sampling operation is bounded by O(max(2𝑙 , size of argument CFLOBDD)).

7 CFLOBDD ALGORITHMS FOR MATRICES AND VECTORS
In this section, we discuss how to represent matrices and vectors using CFLOBDDs, and how to

perform some important operations on them.

7.1 Representing Matrices and Vectors using CFLOBDDs
Matrix Representation. We represent square matrices using CFLOBDDs by having the Boolean

variables correspond to bit positions in the row and column indices. That is, suppose that𝑀 is a

2
𝑛 × 2

𝑛
matrix;𝑀 is represented using a CFLOBDD over 2𝑛 Boolean variables {𝑥0, 𝑥1, . . . , 𝑥𝑛−1} ∪
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� leaves

� leaves

� leaves � leaves � leaves � leaves

Some number of subproblems �, each
corresponding to a decision tree of size �

Standard divide-and-conquer:
2 problems of half size

CFLOBDD divide-and-conquer:� problems with half the variables

�

�஼

Fig. 12. Why a
√
𝑃 ×
√
𝑃-decomposition is the natural problem decomposition for divide-and-conquer

algorithms on structures represented as CFLOBDDs.

{𝑦0, 𝑦1, . . . , 𝑦𝑛−1}, where the variables {𝑥0, 𝑥1, . . . , 𝑥𝑛−1} represent the successive bits of 𝑥—the first
index into 𝑀—and the variables {𝑦0, 𝑦1, . . . , 𝑦𝑛−1} represent the successive bits of 𝑦—the second
index into 𝑀 , with log𝑛 + 1 levels.

14
The indices of elements of matrices represented in this way

start at 0; for example, the upper-left corner element of a matrix𝑀 is𝑀 (0, 0). When 𝑛 = 2,𝑀 (0, 0)
corresponds to the value associated with the assignment [𝑥0 ↦→ 0, 𝑥1 ↦→ 0, 𝑦0 ↦→ 0, 𝑦1 ↦→ 0].
It is often convenient to use either the interleaved ordering—i.e., the order of the Boolean

variables is chosen to be 𝑥0, 𝑦0, 𝑥1, 𝑦1, . . . , 𝑥𝑛−1, 𝑦𝑛−1—or the reverse-interleaved ordering—i.e., the

order is 𝑦𝑛−1, 𝑥𝑛−1, 𝑦𝑛−2, 𝑦𝑛−2, . . . , 𝑦0, 𝑥0. One nice property of the interleaved-variable ordering is

that, as we work through each pair of variables in an assignment, the matrix elements that remain

“in play” represent a sub-block of the full matrix.

There is an important, non-standard consequence of using a CFLOBDD to represent a matrix that

very likely is not apparent from the discussion above, having to do with the sizes of subproblems

in a divide-and-conquer algorithm. In fact, the same issue arises in designing a divide-and-conquer

algorithm over any data structure represented via a CFLOBDD, as illustrated in Fig. 12. Suppose

that a CFLOBDD 𝐶 represents a decision tree 𝑇𝐶 that has log
2
𝑃 variables, and thus 𝑃 leaves. The

A-connection proto-CFLOBDD accounts for half the variables, namely,
log

2
𝑃

2
, and the B-connection

proto-CFLOBDDs account for the remaining half. The natural way to divide 𝐶 in a divide-and-

conquer algorithm is at the middle vertices of the outermost grouping: process the A-connection

proto-CFLOBDD, and then the B-connection proto-CFLOBDDs (or vice versa). In 𝑇𝐶 , this division

corresponds to the tree partitioning shown in the lower-right corner of Fig. 12: 𝐶’s A-connection

proto-CFLOBDD corresponds to the red tree rooted at the apex of 𝑇𝐶 (which has

√
𝑃 leaves); 𝐶’s

B-connection proto-CFLOBDDs correspond to the

√
𝑃 green trees in the bottom half of 𝑇𝐶 (each

of which has

√
𝑃 leaves). In contrast with standard divide-and-conquer algorithms, which often

divide a problem into two subproblems of half size, this approach divides the original problem into

14
Matrices of other sizes, including non-square matrices, can be represented by embedding them within a larger square

matrix. For matrices with > 2 dimensions, there would be a set of Boolean variables for the index-bits of each dimension.
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√
𝑃 + 1 subproblems, each of size𝑂 (

√
𝑃). With CFLOBDDs, in contrast to decision trees, there is the

potential for subproblems to be shared among the A-connection and B-connections, so one ends up

with some number of subproblems 𝛾 (= 1 + the number of middle vertices), each of size 𝑂 (
√
𝑃).

Whereas with a decision tree it would be easy to take the conventional approach of dividing

a problem into two problems of half size—using the left child and right child of the apex, in

essence “peeling off” the topmost ply, such a division is not convenient for CFLOBDDs because the

decision variable for the topmost ply is associated with the level-0 grouping found by following the

A-connection of the A-connection of the . . ., etc. For CFLOBDDs, the natural structure of a divide-

and-conquer algorithm lies with the A-connection proto-CFLOBDD and the set of B-connection

proto-CFLOBDDs—a division based on dividing the number of variables in half.

In certain cases, including matrix multiplication (§7.3), the 𝛾 ×
√
𝑃-decomposition structure forced

us to rethink how to perform various algorithms.

Let us now consider how such a decomposition works for an 𝑁 × 𝑁 matrix 𝑀 , assuming

the interleaved-variable ordering, where 𝑁 = 2
𝑛
. Thus, 𝑛 is the number of bits in a row-index

(respectively, column-index); there are 2𝑛 Boolean variables in total; and 𝑃 = 𝑁 2
. 𝑀 would be

decomposed into

√
𝑃 =
√
𝑁 2 = 𝑁 sub-matrices, each of size

√
𝑁×
√
𝑁 . At top level, the A-connection

of the CFLOBDD for 𝑀 captures commonalities in the

√
𝑁 ×
√
𝑁 block structure of 𝑀 , and the

B-connections represent the blocks: sub-matrices of𝑀 of size

√
𝑁 ×
√
𝑁 .

For instance, when a level-3 CFLOBDD is used to represent a matrix, there are 2𝑛 = 8 = 2
3

index variables—i.e., 𝑛 = 4 variables for each dimension—so the matrix is of size 16 × 16. Its natural

constituents are level-2 proto-CFLOBDDs, which each have 2
2 = 4 index variables. Thus, there are 2

A-connection variables for each dimension of the block structure, and 2 B-connection variables for

each dimension of the sub-matrix for a block. Consequently, a matrix of size 16 × 16 is decomposed

into 16 (= 4 × 4 =
√

16 ×
√

16) blocks, each of size 4 × 4 =
√

16 ×
√

16. With level-4 CFLOBDDs,

one has 𝑛 = 8 variables for each dimension in the full-size matrix. Thus, there are 4 A-connection

variables for each dimension of the block structure, and 4 B-connection variables for each dimension

of the sub-matrix for a block. Consequently, a matrix of size 256 × 256 is decomposed into 256

(= 16 × 16 =
√

256 ×
√

256) blocks, each of size 16 × 16 =
√

256 ×
√

256.

In general, an 𝑁 ×𝑁 matrix is decomposed according to its

√
𝑁 ×
√
𝑁 block structure, where each

block is of size

√
𝑁 ×
√
𝑁 . With CFLOBDDs, one hopes that many of the blocks are shared among

the B-connections (and possibly some blocks are even structurally similar to the block structure

itself, represented by the A-connection), so that one ends up with some—hopefully small—number

of subproblems 𝛾 , each of size

√
𝑁 ×
√
𝑁 .

The CFLOBDD decomposition discussed above is different from (i) the natural decomposition

of a matrix represented via a BDD, and (ii) the decomposition used in most divide-and-conquer

algorithms on matrices. Both (i) and (ii) use
𝑛
2
× 𝑛

2
-decompositions (and thus decompose a matrix

of size 16 × 16 into 4 sub-matrices, each of size 8 × 8, and decompose a matrix of size 256 × 256 into

4 sub-matrices, each of size 128 × 128).

Vector Representation. A vector can be represented via a CFLOBDD in a manner that is similar to,

but simpler, than the way matrices are represented. A vector of size 2
𝑛 × 1 can be represented by a

CFLOBDDwhose highest level is log𝑛. Suppose that𝑉 is a 2
𝑛×1 vector; a CFLOBDD representing𝑉

would have 𝑛 Boolean variables {𝑥0, 𝑥1, . . . , 𝑥𝑛−1} with the variables {𝑥0, 𝑥1, . . . , 𝑥𝑛−1} representing
the successive bits of 𝑥—the index into 𝑉 . We typically use either the increasing variable ordering

or decreasing variable ordering to represent vectors. (Similar to matrices, vectors of other sizes can

be embedded within a larger vector of the form 2
𝑛 × 1.)
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7.2 Kronecker Product
When using CFLOBDDs to represent matrices on which Kronecker products are performed, we

typically use the interleaved-variable ordering. Below, we describe two variants of Kronecker

product that result in different interleavings of the index variables of the argument matrices.

Variant 1. Suppose that matrices𝑊 and 𝑉 are represented by level-𝑘 CFLOBDDs with value

tuples [𝑤0, . . . ,𝑤𝑚] and [𝑣0, . . . , 𝑣𝑛], respectively. To create the CFLOBDD for𝑊 ⊗𝑉 ,
(1) Create a level 𝑘 + 1 grouping that has𝑚 + 1 middle vertices, corresponding to the values

[𝑤0, . . . ,𝑤𝑚], and (𝑚 + 1) (𝑛 + 1) exit vertices, corresponding to the terminal values [𝑤𝑖𝑣 𝑗 :

𝑖 ∈ [0..𝑚], 𝑗 ∈ [0..𝑛]], where the terminal values are ordered lexicographically by their

(𝑖, 𝑗) indexes; i.e.,𝑤0𝑣0,𝑤0, 𝑣1, . . .,𝑤𝑚𝑣𝑛−1,𝑤𝑚, 𝑣𝑛 . The grouping’s 𝐴-connection is the proto-

CFLOBDD of𝑊 , with return edges that map the 𝑖 th exit vertex to middle vertex𝑤𝑖 .

(2) For each middle vertex, which corresponds to some value𝑤𝑖 , 0 ≤ 𝑖 ≤ 𝑚, create a 𝐵-connection

to the proto-CFLOBDD of 𝑉 , with return edges that map the 𝑗 th exit vertex to the exit vertex

of the level 𝑘 + 1 grouping that corresponds to the value𝑤𝑖𝑣 𝑗 .

(3) If any of the values in the sequence [𝑤𝑖𝑣 𝑗 : 𝑖 ∈ [0..𝑚], 𝑗 ∈ [0..𝑛]] are duplicates, make an

appropriate call on Reduce to fold together the classes of exit vertices that are associated

with the same value, thereby creating a canonical multi-terminal CFLOBDD.

w0

W

w1w2

v0

V

v1 v2 �଴�0 �଴�1 �଴�2 �ଵ�0 �ଵ�1 �ଵ�2 �ଶ�0 �ଶ�1 �ଶ�2

W

V

Fig. 13. Level-𝑘 CFLOBDDs for matrices
𝑊 and 𝑉 , and the level-(𝑘 + 1)
CFLOBDD for𝑊 ⊗𝑉 .

The construction through step (2) is illustrated in Fig. 13.

Pseudo-code for the algorithm can be found in [59, App.

G].

With this algorithm, if 𝑥 ⊲⊳ 𝑦 represents the variable

ordering of𝑊 and𝑤 ⊲⊳ 𝑧 represents the variable ordering

of 𝑉 (where ⊲⊳ denotes the operation to interleave two

variable orderings), then𝑊 ⊗𝑉 has the variable ordering

(𝑥 | |𝑤) ⊲⊳ (𝑦 | |𝑧) (where | | denotes the concatenation of two

sequences of variables).

Variant 2. There is a second way to perform a Kronecker

product of𝑊 and 𝑉 , which results in a representation of

𝑊 ⊗𝑉 that has the variable ordering (𝑥 ⊲⊳ 𝑤) ⊲⊳ (𝑦 ⊲⊳ 𝑧).
Pseudo-code for that algorithm can be found as [59, Alg.

17].

7.3 Matrix Multiplication
The multiplication algorithm for CFLOBDDs presented here is similar to the standard 𝑂 (𝑁 3)
algorithm for multiplying two 𝑁 × 𝑁 matrices. There is a potential for savings because each of the

argument CFLOBDDsmay have a large number of shared substructures, and function caching can be

used to detect when a sub-problem has already been performed, in which case the proto-CFLOBDD

for the answer can be returned immediately.

Our starting point is the observation that when the interleaved-variable ordering is used, at

top level the A-connection of a CFLOBDD-represented matrix𝑀 captures commonalities in the√
𝑁 ×
√
𝑁 block structure of𝑀 , and the B-connections represent sub-matrices of𝑀 of size

√
𝑁 ×
√
𝑁 .

By analogy with other kinds of multi-terminal CFLOBDDs, at top-level one can think of the A-

connection as a multi-terminal CFLOBDD whose value tuple is the sequence of B-connections—

roughly, the A-connection is a

√
𝑁 ×
√
𝑁 matrix with

√
𝑁 ×
√
𝑁 -matrix-valued leaves.

Suppose that 𝑃 and𝑄 are two 𝑁 ×𝑁 matrices represented by CFLOBDDs𝐶𝑃 and𝐶𝑄 , respectively.

The respective top-level A-connections, 𝐴𝑃 and 𝐴𝑄 , are matrices of size

√
𝑁 ×
√
𝑁 with matrix-

valued cells of size

√
𝑁 ×
√
𝑁 . To multiply 𝑃 and 𝑄 , we first recursively multiply 𝐴𝑃 and 𝐴𝑄 . This
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operation defines which cells of𝐴𝑃 and𝐴𝑄 get multiplied and added—and the answer is returned as

a collection of symbolic expressions (of a form that will be described shortly). Using this information,

we recursively call matrix multiplication and matrix addition on the B-connections, as appropriate.

For the base case of the recursion—namely, level 1, which represents matrices of size 2 × 2—we can

enumerate all the individual cases of possible matrix structures (i.e., the patterns of which cells

hold equal values), and build the CFLOBDDs that result from a matrix multiplication in each case.

We now describe how the symbolic information mentioned above is organized, and how op-

erations of addition and multiplication are performed on the data type in which the symbolic

information is represented. The challenge that we face is that at all levels below top-level, we do not

have access to a value for any cell in a matrix. However, we can use the exit vertices as variables.

Example 7.1. Suppose that we are multiplying two level-1 groupings that, when considered as

2 × 2 matrices over their respective exit vertices [ev1, ev2] and [ev′1, ev′2, ev′3], have the forms shown

on the left[
ev1 ev1

ev2 ev2

]
×
[
ev
′
1

ev
′
2

ev
′
1

ev
′
3

]
=

[
ev1ev

′
1
+ ev1ev

′
1

ev1ev
′
2
+ ev1ev

′
3

ev2ev
′
1
+ ev2ev

′
1

ev2ev
′
2
+ ev2ev

′
3

]
=

[
2ev1ev

′
1

ev1ev
′
2
+ ev1ev

′
3

2ev2ev
′
1

ev2ev
′
2
+ ev2ev

′
3

]
(8)

Each entry in the right-hand-side matrix can be represented by a set of triples, e.g.,[
{[(1, 1), 2]} {[(1, 2), 1], [(1, 3), 1]}
{[(2, 1), 2]} {[(2, 2), 1], [(2, 3), 1]}

]
and when listed in exit-vertex order for the interleaved-variable order, we have

[{[(1, 1), 2]}, {[(1, 2), 1], [(1, 3), 1]}, {[(2, 1), 2]}, {[(2, 2), 1], [(2, 3), 1]}] . (9)

Now suppose that the twomatrices are sub-matrices of level-2 groupings connected by ReturnTuples

rt = [5, 2] and rt
′ = [6, 1, 2], respectively. Then applying ⟨rt, rt′⟩ to Eqn. (9) results in

[{[(5, 6), 2]}, {[(5, 1), 1], [(5, 2), 1]}, {[(2, 6), 2]}, {[(2, 1), 1], [(2, 2), 1]}] . (10)

We call the objects shown in Eqns. (9) and (10) MatMultTuples. By this device, the answer to

a matrix-multiplication sub-problem (whether from A-connections or B-connections, and at any

level ≥ 1) can be treated as a multi-terminal CFLOBDD whose value tuple is a MatMultTuple.

Semantics of MatMultTuples. An alternative view of MatMultTuples comes from the right-hand

matrix in Eqn. (8): a MatMultTuple is a sequence of bilinear polynomials over the exit vertices of

two groupings. We will represent a bilinear polynomial 𝑝 as a map from exit-vertex pairs to the

corresponding coefficient. (The pairs for which the coefficient is nonzero are called the support

of 𝑝 . In examples, we show only map entries that are in the support.) In particular, suppose that

𝑔1 and 𝑔2 are two groupings at the same level, with exit-vertex sets EV and EV
′
. Each entry of a

MatMultTuple is of type BPEV,EV′
def

= (EV × EV
′) → N. (We will drop the subscripts on BP if the

exit-vertex sets are understood.)

To perform linear arithmetic on bilinear polynomials, we define

0BP : BP 0BP

def

= 𝜆(ev, ev′).0
+ : BP × BP→ BP bp

1
+ bp

2

def

= 𝜆(ev, ev′).bp
1
(ev, ev′) + bp

2
(ev, ev′)

∗ :N × BP→ BP 𝑛 ∗ bp def

= 𝜆(ev, ev′).𝑛 ∗ bp(ev, ev′)

By considering a ReturnTuple to be a map from one exit-vertex set to another, this notation allows

us to give a second account of the transformation from Eqn. (9) to Eqn. (10). For instance, let

rt = [1 ↦→ 5, 2 ↦→ 2] and rt
′ = [1 ↦→ 6, 2 ↦→ 1, 3 ↦→ 2]. Consider the second element of Eqn. (9):
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bp = {[(1, 2), 1], [(1, 3), 1]} = [(1, 2) ↦→ 1, (1, 3) ↦→ 1]. Then the transformation of bp induced by rt

and rt
′
can be expressed as follows (where Eqn. (11) expresses the general case):

⟨rt, rt′⟩(bp) def

= {(rt(ev), rt′(ev′)) ↦→ bp(ev, ev′) | ev ∈ EV, ev′ ∈ EV′} (11)

= {(rt(1), rt′(2)) ↦→ bp(1, 2), (rt(1), rt′(3)) ↦→ bp(1, 3)}
= {(5, 1) ↦→ 1, (5, 2) ↦→ 1}

At top level, we need a similar operation for the value induced by a pair of value tuples ⟨vt, vt′⟩
(where a value tuple is treated as a map of type EV→ V for a value space V that supports + and *):

⟨vt, vt′⟩(bp) def

=
∑
{bp(ev, ev′) ∗ vt(ev) ∗ vt′(ev′) | ev ∈ EV, ev′ ∈ EV′}

Pseudo-code for the matrix-multiplication algorithm can be found as [59, Algs. 19 and 20].

7.4 Vector-to-Matrix Conversion
Our approach to vector-matrix multiplication is to convert a vector 𝑉 of size 2

𝑛 × 1 into a matrix

𝑀 of size 2
𝑛 × 2

𝑛
, where 𝑉 occupies the first column, and all other entries of 𝑀 are 0. We can

then use the matrix-matrix multiplication algorithm presented in §7.3.
15
Note that the CFLOBDD

representation of 𝑉 has 𝑛 variables and its highest level is log𝑛, whereas the CFLOBDD for matrix

𝑀 has 2𝑛 variables and its highest level is log𝑛 + 1.

Let 𝑥 = ⟨𝑥0, 𝑥1, · · · , 𝑥𝑛−1⟩ denote the variables in the CFLOBDD representation of𝑉 . The rows of

𝑀 use the same 𝑥 variables; the columns of𝑀 use a second set of 𝑛 variables: 𝑦 = ⟨𝑦0, 𝑦1, · · · , 𝑦𝑛−1⟩.
𝑀 uses the interleaved ordering 𝑥 ⊲⊳ 𝑦.

Example 7.2. We illustrate the steps of the algorithm using the following example: Consider the

vector 𝑉 =

[
2

3

5

0

]
and matrix𝑀 =

[
2 0 0 0

3 0 0 0

5 0 0 0

0 0 0 0

]
. The goal is to convert 𝑉 to𝑀 . The algorithm constructs

intermediate matrices𝑀1 and𝑀2 defined as follows:𝑀1 =

[
2 2 2 2

3 3 3 3

5 5 5 5

0 0 0 0

]
and𝑀2 =

[
1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

]
. Finally, the

result of converting vector 𝑉 to a matrix is𝑀 = 𝑀1 ∗𝑀2 =

[
2 2 2 2

3 3 3 3

5 5 5 5

0 0 0 0

]
∗
[

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

]
=

[
2 0 0 0

3 0 0 0

5 0 0 0

0 0 0 0

]
, where

“*” denotes pointwise matrix multiplication. (Pseudo-code for the algorithm can be found as [59,

Alg. 18].)

8 RELATIONS EFFICIENTLY REPRESENTED BY CFLOBDDS
In this section, we prove that there exists an inherently exponential separation between CFLOBDDs

and BDDs by showing that there is a family of functions 𝑓𝑛 for which, for all 𝑛 = 2
𝑙
, the CFLOBDD

for 𝑓𝑛 can be exponentially smaller than any BDD for 𝑓𝑛 . Note that we do not assume any specific

variable ordering when discussing the sizes of BDDs for the functions used to prove the separation.

Moreover, our result applies to ROBDDs (in which “don’t-care” nodes are removed, and plies are

skipped). As a proxy for memory, we use node counts in BDDs, and vertex counts and edge counts

in CFLOBDDs. (Recall from footnote 4 that we use “node” solely for BDDs, whereas “groupings”

and “vertices”—depicted as the dots inside groupings—refer to CFLOBDDs.)

We show this separation using the family of Hadamard relations, which represent the family

H of Hadamard matrices discussed in §2 and §3.4. The Hadamard matrices play a role in many

quantum algorithms, including the seven that are used in §10.2.2 to evaluate the effectiveness of

CFLOBDDs for simulating quantum circuits (namely, GHZ, BV, DJ, Simon’s algorithm, QFT, Shor’s

algorithm, and Grover’s algorithm). See §9.2, §10.2.2, and [59, §9.3].

15
Matrix-vector multiplication is performed similarly.
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Theorem 8.1 (Exponential separation for the Hadamard relations). The Hadamard re-

lation 𝐻𝑛 : {0, 1}𝑛/2 × {0, 1}𝑛/2 → {1,−1} between variable sets (𝑥0 · · · 𝑥𝑛/2) and (𝑦0 · · ·𝑦𝑛/2), where
𝑛 = 2

𝑙
, can be represented by a CFLOBDD with O(log𝑛) vertices and edges. In contrast, a BDD that

represents 𝐻𝑛 requires Ω(𝑛) nodes.

Proof. CFLOBDD Claim. As shown in §3, each matrix 𝐻𝑛 ∈ H , where 𝑛 = 2
𝑙
can be represented

by a CFLOBDD with O(𝑙) vertices and edges—i.e., with O(log𝑛) space.
BDDClaim.We claim that regardless of the variable ordering, the BDD representation for𝐻𝑛 requires

at least 𝑛 nodes, one node for each variable in the argument. We prove the claim by contradiction.

Suppose that there is some BDD 𝐵 for 𝐻𝑛 that does not need at least one node for each variable.

In that case, the 𝐻𝑛 function represented by 𝐵 does not depend on that particular variable. Let T
denote the “all-true” assignment of variables; i.e., T def

= ∀𝑘 ∈ {0..𝑛/2 − 1}, 𝑥𝑘 ↦→ 𝑇,𝑦𝑘 ↦→ 𝑇 . There

are three possible situations:

• Case 1: 𝐵 does not depend on variable 𝑦𝑘 , for some 𝑘 ∈ {0..𝑛/2 − 1}. Consider two variable

assignments: 𝐴1

def

= T and 𝐴2

def

= T [𝑦𝑘 ↦→ 𝐹 ] (i.e., 𝐴2 is 𝐴1 with 𝑦𝑘 updated to 𝐹 ).

𝐴1 and 𝐴2 yield the same value for the function represented by 𝐵, but they yield different

values for the Hadamard relation. That is, if 𝐻𝑛 [𝐴1] = 𝑣 (where 𝑣 is either 1 or -1), then

𝐻𝑛 [𝐴2] = −𝑣 . We prove this claim by induction on level.

Proof. Base Case:

– 𝑛 = 2. 𝐻2 [𝐴1] is the lower-right corner of Fig. 2a, which is -1, and 𝐻2 [𝐴2] is the value of
the path [𝑥0 ↦→ 𝑇,𝑦0 ↦→ 𝐹 ], which yields 1.

– 𝑛 = 4. 𝐴1 is the path to the rightmost (16
th
) leaf in Fig. 2c, which yields a value of 1. For

𝑘 = 0, 𝐴2 ends up at the 12
th
leaf, which is -1; if 𝑘 = 1, 𝐴2 ends up at the 15

th
leaf, which is

also -1.

Induction Step: Let us extend the notation for 𝐴1 and 𝐴2 by adding level information. 𝐴𝑚
1

denotes the “all-true” assignment for 2
𝑚
variables, and 𝐴𝑚

2
= 𝐴𝑚

1
[𝑦𝑘 ↦→ 𝐹 ]. Let us assume

that the claim is true for 𝐻2
𝑚 , i.e., 𝐻2

𝑚 [𝐴1] = 𝑣 (could be 1 or -1) and 𝐻2
𝑚 [𝐴2] = −𝑣 . We must

show that the claim holds true for 𝐻
2
𝑚+1 .

We know that 𝐻
2
𝑚+1 = 𝐻2

𝑚 ⊗𝐻2
𝑚 . Thus, 𝐻

2
𝑚+1 [𝐴𝑚+1

1
] = 𝐻2

𝑚 [𝐴𝑚
1
] ∗𝐻2

𝑚 [𝐴𝑚
1
], where𝐴𝑚+1

1
=

𝐴𝑚
1
| |𝐴𝑚

1
. Thus,𝐻

2
𝑚+1 [𝐴𝑚+1

1
] must have the value 𝑣2

(= 𝑣 ∗𝑣). A recursive relation can similarly

be written for assignment 𝐴2, depending on where the bit-flip for 𝑦 occurs. There are two

possible cases:

(1) 𝑘 occurs in the first half;𝐴𝑚+1
2

= 𝐴𝑚
2
| |𝐴𝑚

1
and therefore,𝐻

2
𝑚+1 [𝐴𝑚+1

2
] = 𝐻2

𝑚 [𝐴𝑚
2
]∗𝐻2

𝑚 [𝐴𝑚
1
],

which leads to a value of −𝑣2
(= −𝑣 ∗ 𝑣).

(2) 𝑘 occurs in the second half; 𝐴𝑚+1
2

= 𝐴𝑚
1
| |𝐴𝑚

2
and therefore, 𝐻

2
𝑚+1 [𝐴𝑚+1

2
] = 𝐻2

𝑚 [𝐴𝑚
1
] ∗

𝐻2
𝑚 [𝐴𝑚

2
] which leads to a value of −𝑣2

(= 𝑣 ∗ −𝑣).
In both cases, the values obtained with a bit-flip do not match the value for an “all-true”

assignment. □

We conclude that none of the 𝑦𝑘 variables can be dropped individually.

• Case 2: None of the 𝑥 variables can be dropped individually, using a completely analogous

argument to Case 1.

• Case 3: 𝐵 does not depend on either 𝑥𝑘 or 𝑦𝑘 . The assignments 𝐴1 = T = [..., 𝑥𝑘 ↦→ 𝑇,𝑦𝑘 ↦→
𝑇, ...], 𝐴2 = T [𝑦𝑘 ↦→ 𝐹 ] = [..., 𝑥𝑘 ↦→ 𝑇,𝑦𝑘 ↦→ 𝐹, ...], 𝐴3 = T [𝑥𝑘 ↦→ 𝐹 ] = [..., 𝑥𝑘 ↦→
𝐹,𝑦𝑘 ↦→ 𝑇, ...] and 𝐴4 = T [𝑥𝑘 ↦→ 𝐹,𝑦𝑘 ↦→ 𝐹 ] = [..., 𝑥𝑘 ↦→ 𝐹,𝑦𝑘 ↦→ 𝐹, ...] must all be

mapped to the same value by the function represented by 𝐵, which violates the definition

of the Hadamard relation 𝐻𝑛 . (More precisely, 𝐻𝑛 [𝐴1] = 𝑣 , where 𝑣 is either 1 or -1, but

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

CFLOBDDs 1:45

0 0 1 0 0Position �

Path for �’s
representation

in binary

2௡ positions

�

Fig. 14. One-hot encoding of the basis vector 𝑒𝑖 as a decision tree. The single occurrence of 1 is at the leaf
indexed by 𝑖—i.e., at the end of the path from the root that follows the bits of 𝑖’s representation in binary.

𝐻𝑛 [𝐴2] = 𝐻𝑛 [𝐴3] = 𝐻𝑛 [𝐴4] = −𝑣2
, which can be proved using an inductive argument similar

to Case 1.) Consequently, (𝑥𝑘 , 𝑦𝑘 ) cannot be dropped as a pair.

Because (i) no 𝑦𝑘 can be dropped individually, (ii) no 𝑥𝑘 can be dropped individually, and (iii) no

(𝑥𝑘 , 𝑦𝑘 ) pair can be dropped, 𝐵—and hence any BDD that represents 𝐻𝑛—requires Ω(𝑛) nodes. □

Unfortunately, we do not have a characterization of relative sizes in the opposite direction (i.e., a

bound on CFLOBDD size as a function of BDD size, for all BDDs). It could be that there are families

of functions for which BDDs are exponentially more succinct than any corresponding CFLOBDD;

however, it could also be that for every BDD there is a corresponding CFLOBDD no more than, say,

a polynomial factor larger.

9 APPLICATIONS TO QUANTUM-CIRCUIT SIMULATION
For certain problems, algorithms run on quantum computers achieve polynomial to exponential

speed-ups over their classical counterparts. In this section, we give background on quantum

computing (§9.1), summarize the problems used in the experiments in §10.2.2 (§9.2), articulate some

advantages of quantum-circuit simulation (§9.3), and discuss the potential of CFLOBDDs (§9.4).

9.1 Background onQuantum Computing
To make the paper self-contained, we briefly summarize the quantum-computing model.

Qubits. In classical computing, a bit is usually thought of as having the value 0 or 1, and the

state of a set of 𝑛 bits 𝑥0, . . . , 𝑥𝑛−1 is a string in {0, 1}𝑛 . A different approach is based on 1-hot

encodings [28]: a bit is either zero, encoded as 𝑒0 =
[

0 1

1 0

]
, or one, 𝑒1 =

[
0 0

1 1

]
. The states of a two-bit

state space would be encoded as follows: 𝑒00 =

[
00 1

01 0

10 0

11 0

]
, 𝑒01 =

[
00 0

01 1

10 0

11 0

]
, 𝑒10 =

[
00 0

01 0

10 1

11 0

]
, and 𝑒11 =

[
00 0

01 0

10 0

11 1

]
.

Quantum-computing generalizes the second approach: a qubit can have a value such as

[
0 𝛼0

1 𝛼1

]
,

where 𝛼0 and 𝛼1 are complex numbers, called amplitudes, such that |𝛼0 |2 + |𝛼1 |2 = 1; that is, a qubit

is a complex unit vector in a vector space with basis vectors 𝑒0 and 𝑒1. For two qubits, the basis

vectors are 𝑒00, 𝑒01, 𝑒10, and 𝑒11, and the state space consists of the complex unit vectors of the form[
00 𝛼00

01 𝛼01

10 𝛼10

11 𝛼11

]
, where |𝛼00 |2 + |𝛼01 |2 + |𝛼10 |2 + |𝛼11 |2 = 1. In general, an 𝑛-qubit space consists of the complex

unit vectors in a 2
𝑛
-dimensional space, and a quantum state can have non-zero amplitudes for all

2
𝑛
basis vectors. The decision tree for the one-hot encoding of a basis vector 𝑒𝑖 , 0 ≤ 𝑖 ≤ 2

𝑛 − 1, of

such a 2
𝑛
-dimensional space is depicted in Fig. 14.

Quantum circuits. A quantum circuit takes as input an initial quantum-state vector, and applies a

sequence of quantum gates, which are each length-preserving transformations, and can be expressed

as unitary matrices. Thus, quantum-circuit simulation requires a way to perform linear algebra

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

1:46 Meghana Aparna Sistla, Swarat Chaudhuri, and Thomas Reps

with vectors of size 2
𝑛
and matrices of size 2

𝑛 × 2
𝑛
, where 𝑛 is the number of qubits involved.

Examples of gates that operate on single qubits are 𝐼 =
[

1 0

0 1

]
, 𝐻 = 1√

2

[
1 1

1 −1

]
, and 𝑋 =

[
0 1

1 0

]
. 𝐼

leaves a quantum state as is; the Hadamard gate 𝐻 sends a basis state to a state in “superposition”

(i.e., a state that is a non-trivial linear combination of basis states);
16 𝑋 complements the indices of

a qubit’s basis states, and thus flips the positions of the amplitudes, sending

[
0 𝛼0

1 𝛼1

]
to

[
0 𝛼1

1 𝛼0

]
. Let

𝑀 ⊗ 𝑘 denote the 𝑘-fold Kronecker product of𝑀 with itself:𝑀 ⊗ 𝑘 =

𝑘 occurrences of 𝑀︷               ︸︸               ︷
𝑀 ⊗𝑀 ⊗ . . . ⊗𝑀 . The quantum

gate that, e.g., applies 𝐻 to the 𝑗 th qubit of an 𝑛-qubit quantum state is 𝐼 ⊗( 𝑗−1) ⊗𝐻 ⊗ 𝐼 ⊗(𝑛−𝑗) .
Measurement and Entanglement. A measurement operation samples a basis vector based on the

distribution given by the squares of the absolute values of the amplitudes. Qubits are said to be

entangled if the measurement of one qubit can influence the result obtained by measuring a different

qubit. A Controlled-NOT (CNOT) gate operates on two index bits: one bit is the control-bit and the

other is the controlled-bit; in the output, the value of the controlled-bit is flipped if the control-

bit is ‘1.’ For two qubits, with the first qubit as the control-bit, the gate’s matrix is

[00 01 10 11

00 1 0 0 0

01 0 1 0 0

10 0 0 0 1

11 0 0 1 0

]
.

For instance, CNOT × (
[

0
1√
2

1
1√
2

]
⊗

[
0 1

1 0

]
) = CNOT ×


00

1√
2

01 0

10
1√
2

11 0

 =


00
1√
2

01 0

10 0

11
1√
2

 . The latter state is entangled:
measuring either (or both) qubits yields either the state 𝑒00 or 𝑒11, each with probability

1

2
. In other

words, after measuring either qubit and obtaining a value 𝑣 ∈ {0, 1}, the value of the other qubit
must also be 𝑣 .

9.2 Quantum Algorithms
This section describes the quantum-computation problems that are used in the experiments in

§10.2.2. More details about the algorithms for these problems can be found in [59, §9.3]

The Greenberger–Horne–Zeilinger (GHZ) state. The GHZ state is the following entangled state

vector over 3 qubits (i.e., a unit vector of size 8): GHZ3 =
1√
2

[10000001]𝑇 . We extend the concept to

𝑛 qubits by defining GHZ𝑛 = 1√
2

[100. . .001]𝑇 , which is a unit vector of size 2
𝑛
.

The Bernstein-Vazirani (BV) problem. Given an oracle that implements a function 𝑓 : {0, 1}𝑛 →
{0, 1} in which 𝑓 (𝑥) is promised to be the dot product, mod 2, between 𝑥 and a secret string

𝑠 ∈ {0, 1}𝑛—i.e., 𝑓 (𝑥) = 𝑥1 · 𝑠1 ⊕ 𝑥2 · 𝑠2 ⊕ · · · ⊕ 𝑥𝑛 · 𝑠𝑛—find 𝑠 .
The Deutsch-Jozsa (DJ) problem. Given an oracle that implements a function 𝑓 : {0, 1}𝑛 → {0, 1},

where 𝑓 is promised to be either a constant function (0 on all inputs or 1 on all inputs) or a balanced

function (returns 1 for half of the input domain and 0 for the other half), determine if 𝑓 is balanced

or constant.

Simon’s problem. Given a function 𝑓 : {0, 1}𝑛 → {0, 1}𝑛 , where 𝑓 is promised to satisfy the

property that there is a “hidden vector” 𝑠 ∈ {0, 1}𝑛 such that, for all 𝑥 and 𝑦, 𝑓 (𝑥) = 𝑓 (𝑦) if and
only if 𝑥 = 𝑦 ⊕ 𝑠 , find the hidden vector 𝑠 .

Quantum Fourier Transform (QFT). The QFT is a linear transformation that, in matrix form,

has the following form:


1 1 1 1 ... 1

1 𝜔 𝜔2 𝜔3 ... 𝜔𝑁−1

1 𝜔2 𝜔4 𝜔6 ... 𝜔2(𝑁−1)

...
...

...
...

...
1 𝜔𝑁−1 𝜔2(𝑁−1) 𝜔3(𝑁−1) ... 𝜔 (𝑁−1) (𝑁−1)

 , where 𝑁 = 2
𝑛
and 𝜔 = 𝑒2𝜋𝑖/𝑁

. The

problem to be solved is to apply the QFT matrix to a given quantum-state vector.

16
A Hadamard gate that operates on a single qubit is the Hadamard matrix 𝐻2 from Fig. 1 (§2), scaled by

1√
2

so that it is a

unitary matrix.
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Shor’s algorithm. The problem is to find prime factors of a given integer 𝐾 , where 0 ≤ 𝐾 ≤ 2
𝑛 − 1.

Grover’s algorithm. The problem to be solved is the following search problem: given a function

𝑓 : {0, 1, . . . , 2𝑛 − 1} → {0, 1} such that there is a unique 𝑥 for which 𝑓 (𝑥) = 1, find 𝑥 .

9.3 Advantages of Simulation
Simulation of a quantum circuit can have advantages compared to actually running a circuit on a

quantum computer. Quantum simulation has a role in testing quantum computers. In particular,

simulation can be used to create test suites for checking the correctness of the output states and

measurements obtained from physical hardware. However, current quantum computers are error-

prone, due to noise, and hence bad for confirming the correctness of a quantum algorithm. In

contrast, a simulation never produces incorrect results (modulo floating-point round-off error and

bugs in the implementation of the simulator).

Moreover, a simulation can deviate from certain requirements of the quantum-computation

model and perform the simulation in a way that no quantum device could.

(1) Some quantum algorithms perform multiple iterations of a particular quantum operator

Op (e.g., 𝑘 iterations, where 𝑘 is some power of 2). A simulation can operate on Op itself

[72, Ch. 6], using repeated squaring to create the sequence of derived operators Op
2
, Op

4
,

Op
8
, . . ., Op2

log𝑘

= Op
𝑘
, which can be accomplished in log𝑘 iterations. The final answer is

then obtained using Op
𝑘
. A physical quantum computer can only apply Op sequentially, and

thus must perform 𝑘 applications of Op. This approach is particularly useful in simulating

Grover’s algorithm.

(2) The quantum-computation model requires the use of a limited repertoire of operations: every

operation is a multiplication by a unitary matrix, and all results (and all intermediate values)

must be produced in this way. In contrast, it is acceptable for a simulation to create some

intermediate results by alternative pathways. In some cases, our simulation of a quantum

algorithm directly creates a CFLOBDD that represents an intermediate value, thereby avoiding

a sequence of potentially more costly computational steps that stay within the quantummodel.

(See “A Special-Case Construction” in [59, §9.2.5], which is used in Grover’s algorithm.)

(3) In many quantum algorithms, the final state needs to be measured multiple times. When

running on a physical quantum computer, part or all of the quantum state is destroyed after

each measurement of the state, and thus the quantum steps must be re-performed before

each successive measurement. In contrast, in a simulation the quantum steps need only be

performed once. At that point, there are two possibilities:

• Once we have the final quantum state produced by the simulation in hand, one can inspect

the amplitudes and thereby avoid doing any measurement at all.

• If the goal of the simulation is to confirm that a given measurement protocol is correct,

then because a simulated measurement does not cause any part of the simulated quantum

state to be lost, multiple measurements can be made—e.g., using the sampling algorithm

given in §6.4.2—without having to re-perform the steps of the quantum computation before

each successive measurement.

Quantum supremacy refers to a computing problem and a problem size beyond which the problem

can be solved efficiently on a quantum computer, but not on a classical computer. Quantum

simulation is at one of the borders between classical computing and quantum computing: in

a simulation, a classical computer performs the computation in roughly the same manner as a

quantum computer, but can take advantage of shortcuts of the kind listed above. In principle, a more

efficient simulation technique has the potential to change the threshold for quantum supremacy.
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9.4 The Potential of CFLOBDDs forQuantum-Circuit Simulation
A quantum state

∑
𝑤∈{0,1}2𝑛 𝛼𝑤 ·𝑒𝑤 is a function of type {0, 1}𝑛 → C, and thus could be encoded with

a decision tree of height 𝑛. Such a representation would be inefficient. The potential of CFLOBDDs

is for providing (up to) double-exponential compression in the sizes of the vectors and matrices

that arise during quantum simulation using log𝑛 and log𝑛 + 1 levels, respectively. Because many

quantum gates can be described using Kronecker products, there is great potential for them to have

a compact representation as a CFLOBDD.

The following table indicates where to find details about the CFLOBDD operations needed to

simulate a quantum circuit:

This paper Reference [59]

State construction

Standard-basis vector — §9.2.4 Alg. 25

Gate construction

Identity gate — §9.2.2 Alg. 24

Hadamard gate Fig. 6b §9.2.1 Alg. 23

Not gate — §9.2.3 Variant of Alg. 24

CNOT gate — §9.2.5 Appendix I

Operations

Kronecker product §7.2 §7.5 Alg. 17

Matrix-matrix multiplication §7.3 §7.7 Alg. 19

Vector-matrix and matrix-vector multiplication §7.4 and §7.3 §7.6 + §7.7 Algs. 18 and 19

Application of QFT — §9.2.6 Appendix J

Measurement §6.4 §7.8 Alg. 22

10 EVALUATION
In this section, we explain our experimental setup and describe the experiments we carried out, which were

designed to address the following research questions:

RQ1: Do theoretical guarantees of double-exponential compression by CFLOBDDs allow them to represent

substantially larger Boolean functions than BDDs?

RQ2: Do CFLOBDDs outperform BDDs when used for quantum simulation (in terms of time and space)?

10.1 Experimental Setup
We compared our implementation of CFLOBDDs

17
against a widely used BDD package, CUDD [60] (version

3.0.0), using CUDD’s C++ interface. The metrics are (i) execution time, and (ii) space (node counts in the case

of BDDs; vertex counts + edge counts in the case of CFLOBDDs). We ran all experiments on AWS machines:

t2.xlarge machines with 4 vCPUs, 16GB of memory, and a stack size of 8192KB, running on Ubuntu OS. For RQ1

(§10.2.1), we used a collection of synthetic benchmarks, and compared the performance of CFLOBDDs against

(i) CUDD with a static variable ordering (similar to the one used in the CFLOBDDs), (ii) CUDD with dynamic

variable reordering, and (iii) Sentential Decision Diagrams (SDDs) [18] (which can also be exponentially more

succinct than BDDs), using Python package PySDD [41] (version 0.1). For RQ2 (§10.2.2), we used a set of

quantum-simulation benchmarks, and again compared the performance of CFLOBDDs against CUDD. For the

quantum benchmarks, we did not enable dynamic variable reordering for BDDs because we could not retrieve

the correct order of the output bits for a sampled string.

Five of the quantum benchmarks—BV, DJ, Simon’s algorithm, Shor’s algorithm, and Grover’s algorithm—use

oracles that either directly or indirectly incorporate the answer sought. Our methodology is standard for

quantum-simulation experiments. Each benchmark uses a pre-processing step to create the CFLOBDD/BDD

that represents the oracle. In each run, an answer is first generated randomly, and then the CFLOBDD/BDD

that represents the oracle is constructed. Knowledge about the answer is used only during oracle construction.

Thereafter, the quantum algorithm proper is simulated; these steps have no access to the pre-chosen answer

17
The implementation is available at https://github.com/trishullab/cflobdd.
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(other than the ability to perform operations on the oracle, treated as a unitary matrix). The final step of

running the benchmark is to check that the quantum algorithm obtained the correct answer.

We could not run the quantum benchmarks with SDDs because SDDs do not support multi-terminal values.

However, we ran the quantum benchmarks using Quimb [24], a quantum-simulation library that uses tensor

networks.

For the RQ2 experiments, we had to extend CUDD in two ways (for details, see [59, §10.1]):

(1) CUDD supports algebraic decision diagrams (ADDs), which are multi-terminal BDDs with a value from

a semiring at each terminal node. To support functions of type {0, 1}𝑛 → C, we needed a semiring

that was not part of the standard CUDD distribution. We implemented a semiring of multi-precision-

floating-point [20] complex numbers. For the corresponding experiments with CFLOBDDs, we used

the same semiring for the terminal values of CFLOBDDs.

(2) To allow quantum measurements to be carried out, we extended ADDs to support path sampling (i.e.,

selection of a path, where the probability of returning a given path is proportional to a function of the

path’s terminal value).

10.2 Benchmarks and Experimental Results
10.2.1 RQ1: Do theoretical guarantees of double-exponential compression by CFLOBDDs allow them to
represent substantially larger Boolean functions than BDDs? We used the following three benchmarks to

compare the execution time and memory usage (as vertex count + edge count) of CFLOBDDs against BDDs

and SDDs.

• XOR𝑛 =
⊕𝑛

𝑖=1
𝑥𝑖

• MatMult𝑛 = (𝐻𝑛𝐼𝑛 + 𝑋𝑛𝐻𝑛 + 𝐼𝑛𝑋𝑛), where 𝐻𝑛 is the Hadamard matrix, 𝐼𝑛 is the Identity matrix, and

𝑋𝑛 is the NOT matrix of size 2
𝑛−1

x 2
𝑛−1

. (The aim of the benchmark is to test the performance of the

matrix-multiplication and addition operations.)

• ADD𝑛 (𝑋,𝑌, 𝑍 )
def

= 𝑍 = (𝑋 + 𝑌 mod 2
𝑛/4), where 𝑋 , 𝑌 , and 𝑍 are 𝑛/4-bit integers.

Tab. 2 shows the performance of CFLOBDDs, BDDs (both with and without dynamic variable-reordering

enabled), and SDDs within the 15-minute timeout threshold. For the two kinds of BDD experiments and

the SDD experiments, we used a stack size of 1GB. For the ADD benchmark, BDDs (both with and without

dynamic reordering) and SDDs ran out of memory within the 15-minute timeout threshold for problems

with sufficiently many variables, even with such a large stack. (BDDs with dynamic reordering produced

out-of-memory errors for #variables ≥ 2
24
: the first step in the computation is to allocate the variables, which

by itself leads to memory exhaustion for 2
24

variables and beyond.) Note that, for SDDs, benchmarkMatMult𝑛

is not applicable because SDDs do not handle non-Boolean values.

Because of a slightly technical alignment issue, our CFLOBDD representations of ADD𝑛 deliberately waste

one-quarter of the Boolean variables (as dummy variables). To make a fair comparison, our BDD and SDD

encodings of ADD𝑛 use only three-quarters of the Boolean variables indicated in column two of Tab. 2.

To understand how large a Boolean function could be created using CFLOBDDs (as a function of the

number of Boolean variables),
18

we also measured the performance of the CFLOBDD implementation on

the micro-benchmarks using a timeout of ninety minutes. Fig. 15 shows graphs of size (#vertices + #edges)

and time versus the number of Boolean variables for the three benchmarks.
19

Fig. 15a shows the graphs for

XOR𝑛 . In these graphs, time is in seconds, and the number of Boolean variables is on a log scale. We were able

to construct XOR𝑛 with up to 2
22 = 4,194,304 variables. Fig. 15b and Fig. 15c show the graphs for MatMult𝑛

and ADD𝑛 , respectively. In these graphs, time is in milliseconds, and the number of Boolean variables is

on a log scale for MatMult𝑛 and a log log scale for ADD𝑛 . We were able to construct MatMult𝑛 with up to

2
27 = 134,217,728 variables and ADD𝑛 with up to 2

2
23

= 2
8,388,608 � 4.27 × 10

2,525,222
variables, which comes

to 0.75 × 2
8,388,608 � 3.12 × 10

2,525,222
after removing dummy variables.

18
The stack size was increased to 1GB for the runs with more than 2

2
15

Boolean variables.

19
Tab. 2 shows the comparison of CFLOBDDs, BDDs, and SDDs for examples with a 15-minute timeout. In contrast, Fig. 15

shows the results of the stress test that we performed, where we gave the CFLOBDD implementation a 90-minute timeout.
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Benchmark

#Boolean

Variables (𝑛)

CFLOBDD BDD BDD (reorder) SDD

#Vertices #Edges Total

Time

#Nodes

Time

#Nodes

Time

#Nodes

Time

(sec) (sec) (sec) (sec)

XOR𝑛

2
15

16 96 112 0.99 32769 551.27 32769 587.11 131066 3.91

2
16

17 102 119 2.18

Timeout (15min)

262138 8.57

2
17

18 108 126 5 524282 18.71

2
18

19 114 133 12.75 1048570 38.63

2
19

20 120 140 36.06 2097146 82.03

2
20

21 126 147 122.97 4194298 191.68

MatMult𝑛

2
15

84 1053 1137 0.002 294890 57.33 294890 156.42

Not Applicable

2
16

90 1125 1137 0.004 589802 186.27 593122 446.19

2
17

96 1197 1293 0.007 1179626 739.66 Timeout (15min)

2
18

102 1269 1371 0.017

Timeout (15min)

2
19

108 1341 1449 0.043
2

20
114 1413 1527 0.118

2
21

120 1485 1605 0.343
2

22
126 1557 1683 1.238

2
23

132 1629 1761 4.936
2

24
138 1701 1839 19.37

2
25

144 1773 1917 78.98
2

26
150 1845 1995 317.27

2
27

Timeout (15min)

ADD𝑛

2
17

80 574 654 <0.001 131073 0.035 132405 80.24 393152 7.72

2
18

85 610 695 0.001 262145 0.065 263477 280.79 786364 13.82

2
19

90 646 736 0.001 524289 0.148

Timeout (15min)

1572792 29.72

2
20

95 682 777 0.001 1048577 0.293 3145652 66.26

2
21

100 718 818 0.001 2097153 1.368 6291376 138.40

2
22

105 754 859 0.001 4194305 1.155 12582828 359.26

2
23

110 790 900 0.002 8388609 3.316

Out of Memory2
24

115 826 941 0.003
Out of Memory

2
25

120 862 982 0.003
...

...
...

...
...

Out of Memory
2

2
21

10485755 75497434 85983189 113.99
2

2
22

20971515 150994906 171966421 385.75
2

2
23

Timeout (15min)

Table 2. Performance of CFLOBDDs against BDDs, BDDswith dynamic reordering, and SDDs on the synthetic
benchmarks for different numbers of Boolean variables. (For the two kinds of BDD experiments and the
SDD experiments, we used a stack size of 1GB.)

Findings. CFLOBDDs performed better than BDDs and SDDs, both in terms of time and memory. For the

benchmarks with more than 2
18

Boolean variables, BDDs had memory issues. Using CFLOBDDs, it was

also possible to construct representations of the benchmark functions with astounding numbers of Boolean

variables: 2
22 = 4,194,304 for XOR𝑛 ; 2

27 = 134,217,728 forMatMult𝑛 ; and 0.75× 2
8,388,608 � 3.12× 10

2,525,222

for ADD𝑛 . These results support the claim that CFLOBDDs can provide substantially better compression of

Boolean functions than BDDs.

10.2.2 RQ2: Do CFLOBDDs outperform BDDs when used for quantum simulation (in terms of time and space)?
Tabs. 3 and 4 show the performance of CFLOBDDs and BDDs when simulating several well-known quantum

algorithms. In each case, for both CFLOBDDs and BDDs, we used the interleaved-variable ordering.

For GHZ, the algorithms do not depend on an input; the output is solely a function of the number of qubits

used. We used the quantum circuit given by Yu and Palsberg [70, §2] for obtaining the GHZ state for 𝑛 qubits;

see also [59, §9.3.1]. For BV, DJ, QFT, Simon’s algorithm, Shor’s algorithm, and Grover’s algorithm, we ran

each algorithm with 50 different randomly selected inputs, for each of the indicated number of qubits. Tabs. 3

and 4 report the average vertex and average edge counts (for CFLOBDDs), average node count (for BDDs), and

average time taken. In the case of Simon’s algorithm, CFLOBDDs timed-out on 9 of the 50 test cases, whereas

BDDs timed-out on 28 of the 50 test cases; we report the average counts and average times for the test cases

that did not time out. BV, DJ, Simon’s algorithm, Shor’s algorithm, and Grover’s algorithm make use of oracles

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.
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Fig. 15. CFLOBDD performance with a timeout of ninety minutes. Note that in (c) the number of Boolean
variables is on a log log scale.

created during a pre-processing step (see also §10.1); we do not include the time for oracle construction in

the execution time, but we do include it as part of the 15-minute/90-minute timeout threshold. For the case

of QFT, the input is one of the basis vectors selected randomly. For 16 qubits and a timeout threshold of 15

minutes, QFT ran to completion in 11 of the 50 runs. The numbers reported in Tab. 4 are the averages for the

11 successful runs. In the entries for Shor’s algorithm, 𝑁 is the number being factored, and 𝑎 is the value used

in the associated “order-finding problem.”
20

20
Given 𝑎, such that 1 < 𝑎 < 𝑁 , the order-finding problem is to find the smallest positive integer 𝑟 such that 𝑎𝑟 ≡ 1(𝑚𝑜𝑑𝑁 ) .
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Benchmark #Qubits

#Boolean

Variables

CFLOBDD BDD

#Vertices #Edges Total Time (sec) #Nodes Time (sec)

GHZ

16 32 35 207 242 0.005 36 0.003
32 64 43 255 298 0.007 68 0.008

64 128 51 303 354 0.010 131 0.031

128 256 59 351 410 0.015 259 0.143

256 512 67 399 466 0.027 515 4.9

512 1024 75 447 522 0.051 1028 44

1024 2048 83 495 578 0.107

Timeout (15 min)

2048 4096 91 543 638 0.216
4096 8192 99 591 690 0.442
8192 16384 107 639 746 0.631
16384 32768 115 687 802 1.35
32768 65536 123 735 858 2.92
65536 131072 131 783 914 6.49
131072 262144 Timeout (15 min)

BV

16 32 29 172 201 0.005 31 0.002
32 64 39 233 272 0.006 63 0.004
64 128 54 322 376 0.007 127 0.011

128 256 76 456 532 0.010 255 0.040

256 512 111 668 779 0.014 799 0.757

512 1024 173 1039 1212 0.025 1027 39

1024 2048 283 1701 1984 0.038

Timeout (15 min)

2048 4096 476 2854 3330 0.067
4096 8192 794 4762 5556 0.120
8192 16384 1337 8024 9361 0.335
16384 32768 2363 14177 16540 0.673
32768 65536 4391 26346 30737 1.42
65536 131072 8395 50372 58767 3.23
131072 262144 16220 97318 113538 8.46
262144 524288 31209 187251 218460 24.44
524288 1048576 58901 353404 412305 75.80
1048576 2097152 Timeout (15 min)

DJ

16 32 18 90 108 0.006 18 0.001
32 64 21 107 128 0.008 34 0.002
64 128 24 123 147 0.008 66 0.038

128 256 27 139 166 0.009 130 0.272

256 512 30 154 184 0.01 258 2.1

512 1024 33 170 203 0.011 516 795.5

1024 2048 36 186 222 0.014

Timeout (15 min)

2048 4096 39 202 241 0.019
4096 8192 42 218 260 0.028
8192 16384 45 234 279 0.048
16384 32768 48 250 298 0.09
32768 65536 51 266 317 0.182
65536 131072 54 282 336 0.418
131072 262144 57 298 355 0.956
262144 524288 60 314 374 2.57
524288 1048576 63 330 393 7.8
1048576 2097152 66 346 412 26.15
2097152 4194304 69 362 431 95.57
4194304 8388608 72 378 450 180.33
8388608 16777216 Timeout (15 min)

Table 3. The performance of CFLOBDDs against BDDs for increasing numbers of qubits.
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Benchmark #Qubits

#Boolean

Variables

CFLOBDD BDD

#Vertices #Edges Total Time (sec) #Nodes Time (sec)

Simon’s Alg.

16 64 583 16335 16918 0.71 5512 0.275
32 128 123611 14096110 14219721 443.09 80243 3.31
64 256 Timeout (90 min) Timeout (90 min)

QFT

4 8 7 73 80 0.001 31 0.0001
8 16 9 572 581 0.034 255 0.001
16 32 15 17868 17883 0.128 65535 0.098
32 64 Timeout (15 min) Timeout (15 min)

Shor’s Alg. (𝑁, 𝑎) = (15, 2) 4 16 38 338 376 0.09 69 0.04
Shor’s Alg. (𝑁, 𝑎) = (21, 2) 5 16 72 877 949 2.13 136 0.72
Shor’s Alg. (𝑁, 𝑎) = (39, 2) 6 16 111 2443 2554 12.6 187 12.96

Shor’s Alg. (𝑁, 𝑎) = (69, 4) 7 16 176 4331 4487 53.47 605 30.38
Shor’s Alg. (𝑁, 𝑎) = (95, 8) 7 16 216 4928 5144 53.47 974 41.47
Shor’s Alg. (𝑁, 𝑎) = (119, 2) 7 16 220 7533 7753 53.47 3606 44.95
Shor’s Alg. (𝑁, 𝑎) = (323, 2) 9 32 Timeout (15min) Timeout (15min)

Grover’s Alg.

16 32 17 91 108 0.009 47 0.214

32 64 25 138 163 0.012 66 4.84

64 128 38 212 250 0.018

Timeout (15 min)

128 256 58 333 391 0.030
256 512 91 531 622 0.080
512 1024 151 886 1037 0.292
1024 2048 259 1535 1794 14.11
2048 4096 450 2674 3124 64.85
4096 8192 766 4569 5335 909.86
8192 16384 Timeout (15 min)

Table 4. Table (cont.) of the performance of CFLOBDDs against BDDs for increasing numbers of qubits.

In several cases, the problem sizes that completed successfully using CFLOBDDs were dramatically larger

than the sizes that completed successfully using BDDs. With a 15-minute timeout, the number of qubits that

CFLOBDDs can handle are 65,536 for GHZ, 524,288 for BV; 4,194,304 for DJ; and 4,096 for Grover’s Algorithm,

besting BDDs by factors of 128×, 1,024×, 8,192×, and 128×, respectively.
We also ran the CFLOBDD simulations with a 90-minute timeout, both to understand how execution time

scales, as a function of number of qubits, and to see how large a problem instance can be handled. Fig. 16

shows the time taken (in seconds), with increasing numbers of qubits, for BV, GHZ, and DJ. With a 90-minute

timeout, the BV and GHZ algorithms ran to completion with 2
20 = 1,048,576 qubits, and the DJ algorithm ran

to completion with 2
21 = 2,097,152 qubits.

For both CFLOBDDs and BDDs, the transition from a problem size that completes successfully to a problem

size that fails is rather abrupt. For all of the problems, the time reported for the CFLOBDD run with the largest

number of qubits that completes successfully is well under 15 minutes. Unfortunately, for the next larger run,

oracle construction timed out after 15 minutes for the BV and DJ algorithms, and as a result we terminated

the entire algorithm. For Grover’s algorithm, the number of bits for the floating-point representation is 100

for all runs, except for those with 2,048, 4,096, and 8,192 qubits, for which we used 500, 750, and 1,000 bits,

respectively. The increased cost of floating-point operations slows down matrix multiplications in Grover’s

algorithm, causing the 8,192-qubit run to exceed 15 minutes.

Findings. For smaller numbers of qubits, the more-complex nature of the data structures used in CFLOBDDs

resulted in slower execution times than with BDDs. However, CFLOBDDs scaled much better than BDDs as

the number of qubits increased, both in terms of memory (i.e., vertices + edges for CFLOBDDs, nodes for

BDDs) and execution time. In some cases, the problem sizes that completed successfully using CFLOBDDs

were dramatically larger than the sizes that completed successfully using BDDs. In particular, the number

of qubits that could be handled using CFLOBDDs was larger—compared to BDDs—by a factor of 128× for

GHZ; 1,024× for BV; 8,192× for DJ; and 128× for Grover’s algorithm.
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Fig. 16. Execution time (in seconds) vs. number of qubits (on a log scale) for three of the benchmarks.

Intermediate swell. For many of the algorithms, the initial and final CFLOBDD and BDD structures are

of reasonable size, but there is an intermediate swell as the algorithm runs. Figs. 17 and 18 show how size

evolves in the various steps of five of the algorithms during the CFLOBDD-based and BDD-based simulations.

The figures show how size evolves for all 50 runs, along with the average value at every step (highlighted

in black). Fig. 18 shows that the CFLOBDD simulation of Grover’s algorithm uses constant space from steps

3 to 15. The explanation is that, although the state vector changes at each step, the size of the CFLOBDD

representation of the state vector does not change.

Comparison with Tensor Networks. We also compared the performance of CFLOBDDs with Quimb [24],

a state-of-the-art quantum simulator. Tab. 5 shows the performance of our CFLOBDD implementation and

Quimb on the previously discussed quantum benchmarks. For the Quimb-based simulations of GHZ, BV, DJ,

and Grover’s algorithm, we used Matrix Product States (MPSs) [7, 63] and Matrix Product Operators (MPOs)

[62] in algorithms modeled after the ones described in [68]. For Simon’s algorithm, we noticed that directly

creating a circuit and performing contraction using Quimb led to better scalability than using MPS/MPOs. For

QFT, we tried both the standard circuit [49] and the nearest-neighbor circuit mentioned in [21]. We found

that the Quimb-based simulation results for both circuits are very similar, and only the former are reported

here. For Shor’s algorithm, we use the 2𝑛 + 3 circuit from [8], but the internal gates are created directly, as

mentioned in [68] (and hence the circuit only has 2𝑛 + 1 qubits). For Grover’s algorithm, we found that the

maximum number of qubits that can be simulated using Quimb with a 15-minute timeout is 29 qubits.
21

These experiments show that, on some of the benchmarks, CFLOBDDs scale to much larger problem

sizes than the Quimb tensor-network package, but on other benchmarks Quimb performs much better than

CFLOBDDs.

21
With 32 qubits, Quimb takes 1496.6sec ≈ 25min.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

CFLOBDDs 1:55

1 2 3 4
Step Number

200

300

400

500

600

700

800

900

M
em

or
y 

Us
ag

e 
(V

er
te

x 
Co

un
t +

 E
dg

e 
Co

un
t)

Memory Usage for every step of bv algorithm for 256 bits

1 2 3 4
Step Number

0

10000

20000

30000

40000

50000

60000

M
em

or
y 

Us
ag

e 
(N

od
e 

Co
un

t)

Memory Usage (#Nodes) for every step of BV algorithm for 256 bits

(a) BV algorithm 256 qubits

1 2 3 4
Step Number

200

250

300

350

400

450

M
em

or
y 

Us
ag

e 
(V

er
te

x 
Co

un
t +

 E
dg

e 
Co

un
t)

Memory Usage for every step of ghz algorithm for 256 bits

1 2 3 4
Step Number

0

100

200

300

400

500

M
em

or
y 

Us
ag

e 
(N

od
e 

Co
un

t)
Memory Usage (#Nodes) for every step of GHZ algorithm for 256 bits

(b) GHZ algorithm 256 qubits

1 2 3 4
Step Number

180

190

200

210

220

230

240

250

260

M
em

or
y 

Us
ag

e 
(V

er
te

x 
Co

un
t +

 E
dg

e 
Co

un
t)

Memory Usage for every step of dj algorithm for 256 bits

1 2 3 4
Step Number

0

100

200

300

400

500

M
em

or
y 

Us
ag

e 
(N

od
e 

Co
un

t)

Memory Usage (#Nodes) for every step of DJ algorithm for 256 bits

(c) DJ algorithm 256 qubits

Fig. 17. Evolution of size during the indicated algorithms. (Left: CFLOBDDs; right: BDDs.)

What allows CFLOBDDs to perform so well on Grover’s algorithm? In each run of the CFLOBDD simulation

of Grover’s algorithm, a random 4096-bit string 𝑠 is chosen, then the Grover oracle matrix is constructed, along

with the Grover diffusion operation, which are then multiplied together. A version of Grover’s algorithm based

on repeated squaring of the product matrix is carried out (via operations that use the cumulative-product
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2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

1:56 Meghana Aparna Sistla, Swarat Chaudhuri, and Thomas Reps

2 4 6 8 10 12 14 16
Step Number

50

100

150

200

250

300

350

M
em

or
y 

Us
ag

e 
(V

er
te

x 
Co

un
t +

 E
dg

e 
Co

un
t)

Memory Usage for every step of grover algorithm for 16 bits

2 4 6 8 10 12 14 16
Step Number

0

1000

2000

3000

4000

5000

6000

M
em

or
y 

Us
ag

e 
(N

od
e 

Co
un

t)

Memory Usage (#Nodes) for every step of grover algorithm for 16 bits

(a) Grover’s algorithm 16 qubits

1 2 3 4
Step Number

0

25000

50000

75000

100000

125000

150000

175000

200000

M
em

or
y 

Us
ag

e 
(V

er
te

x 
Co

un
t +

 E
dg

e 
Co

un
t)

Memory Usage for every step of simons algorithm for 16 bits

1 2 3 4
Step Number

0

20000

40000

60000

80000

M
em

or
y 

Us
ag

e 
(N

od
e 

Co
un

t)

Memory Usage (#Nodes) for every step of simons algorithm for 16 bits

(b) Simon’s algorithm 16 qubits

Fig. 18. Evolution of size through the steps of the indicated algorithms. (Left: CFLOBDD-based simulation;
right: BDD-based simulation.)

matrix—which depends on 𝑠—but the operations are oblivious to the value of 𝑠 itself); the algorithm’s answer

𝑠 ′ is retrieved; and finally 𝑠 and 𝑠 ′ are compared to make sure that the computed result is correct.

The reason that this process is space-efficient is that the Grover oracle is basically a “-1 hot encoding” of 𝑠 ,

and thus can be constructed by an algorithm that is a mixture of the principles used in the algorithms for

constructing the representations of (i) projection functions (§6.1.2), and (ii) the identity matrix ([59, §9.2.2 and

Alg. 24]). In the largest cases of Grover’s algorithm that completed successfully within 15 minutes, the matrix

has dimensions 2
4096 × 2

4096
; all off-diagonal entries are 0; and all diagonal entries are 1 except for the (𝑠, 𝑠)

entry, which is -1. To represent this matrix, one needs 8,192 = 2
13

Boolean variables: 4,096 for the row-index and

4,096 for the column-index. There is a CFLOBDD representation of this matrix whose highest-level grouping

is at level 13—thus, there are 14 levels in total, counting level 0. Moreover, the CFLOBDD has only a constant

number of groupings at each of the 14 levels, so the matrix is one for which the CFLOBDD representation

exhibits double-exponential compression.

Although multiplication of matrices represented by CFLOBDDs is not particularly efficient (see the last row

of Tab. 1), there is little or no infill caused by the repeated-squaring operations, and so the matrix representation

has only a limited amount of intermediate swell. (See the left-hand graph in Fig. 18(a) for a plot of memory

usage for the CFLOBDD implementation of Grover’s algorithm for 16 qubits.)
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Benchmark #Qubits CFLOBDD (Time in sec) Quimb (Time in sec)

GHZ

16 0.005 0.222

32 0.007 0.644

64 0.010 2.29

128 0.015 9.23

256 0.027 40.31

512 0.051 191.77

1024 0.107

Timeout (15 min)

...
...

65536 6.49
131072 Timeout (15 min)

BV

16 0.005 0.264

32 0.006 0.773

64 0.007 2.75

128 0.010 11.08

256 0.014 49.49

512 0.025 243.69

1024 0.038

Timeout (15 min)

...
...

524288 75.80
1048576 Timeout (15 min)

DJ

16 0.006 0.256

32 0.008 0.761

64 0.008 2.75

128 0.009 11.18

256 0.010 49.33

512 0.011 243.01

1024 0.014

Timeout (15 min)

...
...

4194304 180.33
8388608 Timeout (15 min)

Simon’s Alg.

16 0.71 2.56

32 443.09 17.34
64

Timeout (15 min)

267
128 Timeout (15min)

QFT

4 0.001 0.023

8 0.034 0.035

16 0.128 0.074
32

Timeout (15 min)

0.231
64 1.64
128 10.32
256 103.65
512 Timeout (15min)

Shor’s Alg. (𝑁, 𝑎) = (15, 2) 4 0.09 0.08
Shor’s Alg. (𝑁, 𝑎) = (21, 2) 5 2.13 0.1
Shor’s Alg. (𝑁, 𝑎) = (39, 2) 6 12.6 0.11
Shor’s Alg. (𝑁, 𝑎) = (69, 4) 7 53.47 0.12
Shor’s Alg. (𝑁, 𝑎) = (95, 8) 7 42.8 0.12
Shor’s Alg. (𝑁, 𝑎) = (119, 2) 7 64.8 0.12
Shor’s Alg. (𝑁, 𝑎) = (323, 2) 9

Timeout (15 min)

0.27
...

...
...

Shor’s Alg. (𝑁, 𝑎) = (6085, 8) 12 107.28
Shor’s Alg. (𝑁, 𝑎) = (11611, 2) 13 Out of Memory

Grover’s Alg.

16 0.009 3.26

32 0.012

Timeout (15 min)

...
...

4096 909.86
8192 Timeout (15 min)

Table 5. Performance of CFLOBDDs againstQuimb on quantum benchmarks for different numbers of qubits.
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11 RELATEDWORK
CFLOBDDs were devised in the late 1990s; however, except for a rejected US patent application posted on the

USPTO site in 2002 [56], nothing about them has ever been published. Work on them was abandoned in 2002

due to not having found an application on which CFLOBDDs performed better than BDDs—other than some

of the recursively defined spectral transforms, such as the Reed-Muller, inverse Reed-Muller, Hadamard, and

Boolean Haar wavelet transforms [32]. In a 2009 blog post [38], Lipton sketched a proposal for Pushdown BDDs,

a BDD-like structure based on NPDAs. CFLOBDDs are closely related—they are based on DPDAs, rather than

NPDAs—which caused us to re-examine what relations CFLOBDDs could represent efficiently, and to discover

that ADD𝑛 was such a relation [59, §8.3]. This paper combines the material from the patent application with

our recent results on quantum simulation.

The idea behind CFLOBDDs was inspired by an obstacle encountered in interprocedural path profiling [44].

In generalizing the Ball and Larus intraprocedural path-profiling scheme [4] to allow profiling of path fragments

that cross procedure boundaries, Melski and Reps found that an acyclic, non-recursive, interprocedural control-

flow graph of size 𝑘 could have 2
2
𝑘
matched paths. For instance, Melski [42] found that one 20,000-line program

had 2
400,000

such paths—which would require the instrumentation code to manipulate 400,000-bit numbers!

From here, it was only a short distance to CFLOBDDs—how to interpret such graphs as representations of

Boolean functions; how to implement the operations of a BDD-like API; how to maintain canonicity; etc. The

feature that threatened to sink the path-profiling scheme—double-exponential explosion—became the linchpin

of a double-exponentially compressed representation of Boolean functions.

Over the years, many variants of BDDs have been proposed [57]. These data structures can be broadly

divided into three families: ones that make use of weights on edges, ones that do not use edge weights, and

ones that allow the underlying graph to have cycles.

Examples of (acyclic) edge-weighted BDD variants include EVBDDs [36] and FEVBDDs [61]. If the weights

are allowed to be unboundedly large, a polynomial-sized data structure of this sort can be used to encode

a decision tree that is double-exponentially larger. However, to the best of our knowledge, such double-

exponential compression is impossible when the weights are required to use a constant number of bits.

Unweighted BDD variants include Multi-Terminal BDDs [13, 15], Algebraic Decision Diagrams [3], Free

Binary Decision Diagrams (FBDDs) [64, §6], Binary Moment Diagrams (BMDs) [12], Hybrid Decision Diagrams

(HDDs) [14], Differential BDDs [2], and Indexed BDDs (IBDDs) [33]. Several of these BDD variants offers

exponential compression over classical BDDs. However, because FBDDs, BMDs, HDDs, and IBDDs that encode,

e.g., the identity function, need to examine each variable, the exponential-separation argument for CFLOBDDs

from §8 carries over for all of these variants.

Cyclic BDD variants include Linear/Exponentially Inductive Functions (LIFs/EIFs) [26, 27] and Cyclic BDDs

(CBDDs) [52].

The differences between CFLOBDDs and these representations can be characterized as follows:

• The aforementioned representations all make use of numeric/arithmetic annotations on the edges of

the graphs used to represent functions over Boolean arguments, rather than the matched-path principle

that is the basis of CFLOBDDs. Matched paths can be characterized in terms of a context-free language

of matched parentheses, rather than in terms of numbers and arithmetic (see Eqn. (1)).

• An essential part of the design of LIFs and EIFs is that the BDD-like subgraphs in them are connected

in very restricted ways. In contrast, in CFLOBDDs, different groupings at the same level (or different

levels) can have very different kinds of connections in them.

• Similarly, CBDDs require that there be some fixed BDD pattern that is repeated over and over in the

structure; a given function uses only a few such patterns. With CFLOBDDs, there can be many reused

patterns (i.e., in the lower-level groupings in CFLOBDDs).

• CBDDs are not canonical representations of Boolean functions, which complicates the algorithms

for performing certain operations on them, such as the operation to determine whether two CBDDs

represent the same function.

• The layering in CFLOBDDs serves a different purpose than the layering found in LIFs/EIFs and CBDDs.

In the latter representations, a connection from one layer to another serves as a jump from one BDD-like

fragment to another BDD-like fragment. In CFLOBDDs, only the lowest layer (i.e., the collection of

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.
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level-0 groupings) consists of BDD-like fragments (and just two very simple ones at that); it is only at

level 0 that the values of variables are interpreted. As one follows a matched path through a CFLOBDD,

the connections between the groupings at levels above level 0 serve to encode which variable is to be

interpreted next.

LIFs/EIFs/CBDDs could be generalized by replacing BDD-like subgraphs in them with CFLOBDDs.

Other data structures that generalize BDDs are Sentential Decision Diagrams (SDDs) [18] and Variable

Shift SDDs (VS-SDDs) [47]. These data structures generalize BDDs by assuming a tree-shaped ordering over

variables, and there are functions for which these data structures offer double-exponential compression over

decision trees and an exponential compression over BDDs. In CFLOBDDs, a grouping 𝑔 can have multiple

middle vertices that reuse the same B-connection grouping 𝑏, as long as the return edges for the different

invocations of 𝑏 use different mappings to 𝑔’s exit vertices. This “contextual rewiring” gives CFLOBDDs greater

ability to reuse substructures than SDDs and VS-SDDs. (Moreover, 𝑏 can also be used as the A-connection

grouping of 𝑔.) SDDs and VS-SDDs (and their quantitative generalizations, such as Probabilistic SDDs [34])

have not, so far, been used in matrix computations, and implementations of operations such as Kronecker

product and matrix multiplication based on these structures are unknown, which meant that we could not

use them in our quantum-simulation experiments. We did compare CFLOBDDs against SDDs for two of the

micro-benchmarks, and found that CFLOBDDs were much faster (Tab. 2). However, the relationship between

these representations and CFLOBDDs merits future study.

Also related are prior methods for quantum simulation. Such simulation can be exact or approximate; our

focus here is on exact simulation (modulo floating-point round-off error). Decision diagrams used for such

simulation include QMDDs [46, 71] and TDDs [29]. Both of these are weighted BDD representations, and hence

cannot be compared in an apples-to-apples way with CFLOBDDs, which are unweighted representations (i.e.,

the edges of a CFLOBDD do not have associated weights). However, to understand the potential of CFLOBDDs,

we mention here how our experimental results with CFLOBDDs compare with the published data for QMDDs:

CFLOBDDs perform better than the best published numbers on some algorithms (GHZ, BV, DJ, Grover) and

worse on others (QFT, Shor) [72, Tab. 5.1].
22

We also compared our approach to tensor networks, a widely

used approach to quantum simulation that is not based on decision diagrams. As shown in Tab. 5, CFLOBDDs

perform better than tensor networks on some algorithms (GHZ, BV, DJ, Grover) and worse on others (Simon,

QFT, Shor).

Similar to the well-known quantum algorithms discussed in this paper, variational quantum algorithms,

which include a noise channel, can also be simulated using CFLOBDDs. Huang et al. [31] simulate variational

quantum algorithms using knowledge-compilation techniques. In their approach, the noise component is

modeled as an additional operator whose action is represented as a matrix. The noise matrix can be represented

as a CFLOBDD, and hence CFLOBDDs can also be used for simulating variational quantum algorithms.

Compression of Programs and Compression Principles. A CFLOBDD can compactly represent many finite

paths. This property is akin to a statement that the use of nonrecursive procedures in programs can enable

small programs to have many execution paths, and is the essence of the aforementioned observation by Melski

and Reps that an acyclic, non-recursive, interprocedural control-flow graph of size 𝑘 could have 2
2
𝑘
matched

paths. Although not formulated as a theorem, this observation was stated in Melski’s Ph.D. thesis [43, §3.5.4].

Melski uses Yannakakis’s notion of 𝐿-reachability [69] (i.e., a path from node 𝑠 to node 𝑡 only counts as a valid

𝑠-𝑡 connection if the path’s labels form a word in 𝐿), and defines the notion of a “finite-path graph” with respect

to some language 𝐿: there are only a finite number of 𝐿-paths from, e.g., program entry to program exit [43,

§3.4]. He then defines an interprocedural control-flow graph, denoted by𝐺∗
fin
. One of the languages of interest

is the language of unbalanced-left paths [44, §2.1], in which each return-edge is matched with the closest

preceding unmatched call-edge, but there can be zero or more umatched call-edges. (The unbalanced-left

language is typically the language of interest for context-sensitive interprocedural dataflow analysis [53, 55].)

22
Note that the number of qubits for Shor’s algorithm reported in [72, Tab. 5.1] is the number of qubits of the circuit, whereas

in Tabs. 4 and 5, #Qubits is the number of bits of the number 𝑁 being factored, where #Qubits-of-circuit = 2 ∗ #bits-of-𝑁 .
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Melski observes, “... the number of [unbalanced-left] paths through 𝐺∗
fin

can be doubly exponential in the size

of 𝐺∗
fin
.”
23

These results are tantamount to the statement (proposed by one of the referees) that “there is a family

of programs 𝑃𝑛 , written with non-recursive procedures, that each would be exponentially larger if written

without non-recursive procedures.” In the 1970s, the literature on program schematology [50] explored the

relative power of various programming constructs, beginning with results showing that recursive procedure

calls are more expressive than iteration (in particular, there are recursive program schemes such that, for

some interpretation of the function and predicate symbols, any flowchart scheme will produce results that are

different from those obtained with the recursive scheme [39, 50]). Thus, it would have been natural for the

schematology literature to contain a result of the form stated above. However, we were unable to find a paper

with such a result; when procedures are allowed, the main interest seems to be in recursive procedures and

how such programs compare with programs written in a language without procedure calls, but other features,

such as arrays, stacks, or counters [17, 22].

The compression abilities of CFLOBDDs are based what might be called “multiplicative amplification”:

calls to procedures 𝑃 and 𝑄 , when performed in sequence, result in a structure in which the number of

𝐿(matched)-paths is equal to the product of the numbers of 𝐿(matched)-paths through 𝑃 and𝑄 . Multiplicative

amplification leads to the repeated squaring we see in counting the number of paths from the entry vertex to

the (one) exit vertex of a no-distinction proto-CFLOBDD with 𝑘 levels:

𝑃 (0) = 1 𝑃 (𝑛 + 1) = 𝑃 (𝑛)2 .

A more powerful compression principle—again based on an “amplification” step repeated some number

of times—is found in Mairson’s rational reconstruction of a proof of Statman’s [40]. As with CFLOBDDs,

there are a finite number of stratification levels and no recursion, but instead of “multiplicative amplification,”

Mairson uses “powerset amplification.” He is interested in representing all values of the stratified types defined

by

D0 = {true, false} D𝑛 = powerset(𝐷𝑛−1) .
Mairson observes that one can use linked lists to represent the elements of each of the D𝑖 . To represent

them concisely, he defines a powerset-combinator powerset that takes a list 𝑙1 as input, and returns a list 𝑙2
that contains the powerset of the elements of 𝑙1 (a simple exercise in functional programming). He can then

represent D𝑛 with a 𝜆-calculus term 𝐷𝑛 that applies powerset 𝑛 times to the list {true, false}. Considered as

a member of the family of terms 𝐷0, 𝐷1 = powerset(𝐷0), . . ., 𝐷𝑛 = powerset𝑛 (𝐷0), . . ., the size of the term
𝐷𝑛 is Ω(𝑛). In contrast, the size of the set that is represented by 𝐷𝑛 is described by the following recurrence

relation:

𝑆 (0) = 1 𝑆 (𝑛 + 1) = 2
𝑆 (𝑛) ,

whose solution is non-elementary: 𝑆 (𝑛) is an exponential tower of 2s, 2
2

2
...

2

︸     ︷︷     ︸
𝑛
, of height 𝑛.

12 CONCLUSIONS
This paper described a new data structure—CFLOBDDs—for representing functions, matrices, relations, and

other discrete structures. CFLOBDDs are a plug-compatible replacement for BDDs, and can represent Boolean

functions in a more compressed fashion than BDDs—exponentially smaller in the best case—and, again in

the best case, double-exponentially smaller than the size of a Boolean function’s decision tree. Moreover, we

23
Unfortunately, the aforementioned work with the 20,000-line program that had 2

400,000
paths (which is what prompted

Melski and Reps to realize that they were facing double-exponential explosion) was carried out after their CC ’99 paper

had been published [44]. The latter paper states, incorrectly, “In the worst case, the number of paths through a program is

exponential in the number of branch statements 𝑏 . . .” [44, §5]. (This kind of mistake seems to be common among authors

working with structures that are DAG-like, but are really based on acyclic hyper-graphs: they erroneously think that they

are dealing with DAGs and conclude that there is exponential explosion/compression, whereas the true state of affairs is

that they have double-exponential explosion/compression. Examples are found in the literature on E-graphs [48, 67] and

version-space algebras [25, 35, 51].)
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showed an inherently exponential separation between CFLOBDDs and ROBDDs: the CFLOBDD for a function

𝑔 can be exponentially smaller than any ROBDD for 𝑔.

Our experiments compared the time and space usage of CFLOBDDs and BDDs on two types of benchmarks:

(i) micro-benchmarks, and (ii) quantum-simulation benchmarks. We found that the improvement in scalability

with CFLOBDDs can be quite dramatic. These results support the conclusion that, for at least some applications,

CFLOBDDs provide a much more compressed representation of discrete structures than is possible with BDDs,

thereby permitting much larger problem instances to be handled than heretofore.
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A DETAILS OF NOTATION FOR CFLOBDDS AND THEIR COMPONENTS
A few words are in order about the notation used in the pseudo-code:

• A Java-like semantics is assumed. For example, an object or field that is declared to be of type

InternalGrouping is really a pointer to a piece of heap-allocated storage. A variable of type

InternalGrouping is declared and initialized to a new InternalGrouping object of level 𝑘 by the

declaration

InternalGrouping g = new InternalGrouping(k)

• Procedures can return multiple objects by returning tuples of objects, where tupling is denoted by

square brackets. For instance, if f is a procedure that returns a pair of ints—and, in particular, if f(3)
returns a pair consisting of the values 4 and 5—then int variables a and b would be assigned 4 and 5 by
the following initialized declaration:

int×int [a,b] = f(3)

• The indices of array elements start at 1.

• Arrays are allocated with an initial length (which is allowed to be 0); however, arrays are assumed to

lengthen automatically to accommodate assignments at index positions beyond the current length.

• We assume that a call on the constructor InternalGrouping(k) returns an InternalGrouping in

which the members have been initialized as follows:

level = k
AConnection = NULL
AReturnTuple = NULL
numberOfBConnections = 0
BConnections = new array[0] of Grouping
BReturnTuples = new array[0] of ReturnTuple
numberOfExits = 0

Similarly, we assume that a call on the constructor CFLOBDD(g,vt) returns a CFLOBDD in which the

members have been initialized as follows:

grouping = g
valueTuple = vt

The class definitions of Alg. 4, as well as the algorithms for the core CFLOBDD operations make use of the

following auxiliary classes:

• A ReturnTuple is a finite tuple of positive integers.
• A PairTuple is a sequence of ordered pairs.

• A TripleTuple is a sequence of ordered triples.

• A ValueTuple is a finite tuple of whatever values the multi-terminal CFLOBDD is defined over.

B PROOF OF THE LEXICOGRAPHIC-ORDER PROPOSITION
Proposition 4.1 (Lexicographic-Order Proposition). Let 𝑒𝑥𝐶 be the sequence of exit vertices of proto-CFLOBDD

𝐶 . Let 𝑒𝑥𝐿 be the sequence of exit vertices reached by traversing 𝐶 on each possible Boolean-variable-to-

Boolean-value assignment, generated in lexicographic order of assignments. Let 𝑠 be the subsequence of 𝑒𝑥𝐿 that

retains just the leftmost occurrences of members of 𝑒𝑥𝐿 (arranged in order as they first appear in 𝑒𝑥𝐿). Then 𝑒𝑥𝐶 = 𝑠 .

Proof: We argue by induction over levels:

Base case: The proposition follows immediately for level-0 proto-CFLOBDDs.

Induction step: The induction hypothesis is that that the proposition holds for every level-𝑘 proto-CFLOBDD.

Let𝐶 be an arbitrary level-𝑘+1 proto-CFLOBDD, with 𝑠 and 𝑒𝑥𝐶 as defined above. Without loss of generality,

we will refer to the exit vertices by ordinal position; i.e., we will consider 𝑒𝑥𝐶 to be the sequence [1, 2, . . . , |𝑒𝑥𝐶 |].
Let 𝐶𝐴 denote the 𝐴-connection of 𝐶 , and let 𝐶𝐵𝑛 denote 𝐶’s 𝑛𝑡ℎ 𝐵-connection. Note that 𝐶𝐴 and each of the

𝐶𝐵𝑛 are level-𝑘 proto-CFLOBDDs, and hence, by the induction hypothesis, the proposition holds for them.
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We argue by contradiction: Suppose, for the sake of argument, that the proposition does not hold for 𝐶 ,

and that 𝑗 is the leftmost exit vertex in 𝑒𝑥𝐶 for which the proposition is violated (i.e., 𝑠 ( 𝑗) ≠ 𝑗 ). Let 𝑖 be the

exit vertex that appears in the 𝑗𝑡ℎ position of 𝑠 (i.e., 𝑠 ( 𝑗) = 𝑖). It must be that 𝑗 < 𝑖 .

Let 𝛼 𝑗 and 𝛼𝑖 be the earliest assignments in lexicographic order (denoted by ≺) that lead to exit vertices 𝑗

and 𝑖 , respectively. Because 𝑖 comes before 𝑗 in 𝑠 , it must be that 𝛼𝑖 ≺ 𝛼 𝑗 .
Let 𝛼1

𝑗
and 𝛼2

𝑗
denote the first and second halves of 𝛼 𝑗 , respectively; let 𝛼

1

𝑖
and 𝛼2

𝑖
denote the first and

second halves of 𝛼𝑖 , respectively. Let + denote the concatentation of assignments (e.g., 𝛼 𝑗 = 𝛼
1

𝑗
+ 𝛼2

𝑗
).

There are two cases to consider.

Case 1: 𝛼1

𝑖
= 𝛼1

𝑗
and 𝛼2

𝑖
≺ 𝛼2

𝑗
.

Because 𝛼1

𝑖
= 𝛼1

𝑗
, the first halves of the matched path followed during the interpretations of assignments 𝛼𝑖

and 𝛼 𝑗 through 𝐶𝐴 are identical, and bring us to some middle vertex, say𝑚, of 𝐶; both paths then proceed

through 𝐶𝐵𝑚 . Let 𝑒𝑖 and 𝑒 𝑗 be the two exit vertices of 𝐶𝐵𝑚 reached by following matched paths during the

interpretations of 𝛼2

𝑖
and 𝛼2

𝑗
, respectively. There are now two cases to consider:

Case 1.A: Suppose that 𝑒𝑖 < 𝑒 𝑗 in𝐶𝐵𝑚 (see Fig. 19a). In this case, the return edges 𝑒𝑖 → 𝑖 and 𝑒 𝑗 → 𝑗 “cross”.

By structural invariant 2b of Defn. 4.1, this situation can only happen if

• There is a matched path corresponding to some assignment 𝛽1
through𝐶𝐴 that leads to a middle vertex

ℎ, where ℎ < 𝑚.

• There is a matched path from ℎ corresponding to some assignment 𝛽2
through 𝐶𝐵ℎ (where 𝐶𝐵ℎ could

be 𝐶𝐵𝑚 ).

• There is a return edge from the exit vertex reached by 𝛽2
in 𝐶𝐵ℎ to exit vertex 𝑗 of 𝐶 .

In this case, by the induction hypothesis applied to 𝐶𝐴 , and the fact that ℎ < 𝑚, it must be the case that we

can choose 𝛽1
so that 𝛽1 ≺ 𝛼1

𝑗
.

Consequently, 𝛽1 +𝛽2 ≺ 𝛼1

𝑗
+𝛼2

𝑗
, which contradicts the assumption that 𝛼 𝑗 = 𝛼

1

𝑗
+𝛼2

𝑗
is the least assignment

in lexicographic order that leads to 𝑗 .

Case 1.B: Suppose that 𝑒 𝑗 < 𝑒𝑖 in 𝐶𝐵𝑚 (see Fig. 19b). Because 𝛼2

𝑖
≺ 𝛼2

𝑗
, the induction hypothesis applied

to 𝐶𝐵𝑚 implies that there must exist an assignment 𝛾 ≺ 𝛼2

𝑖
≺ 𝛼2

𝑗
that leads to 𝑒 𝑗 . In this case, we have

that 𝛼1

𝑗
+ 𝛾 ≺ 𝛼1

𝑗
+ 𝛼2

𝑗
, which again contradicts the assumption that 𝛼 𝑗 = 𝛼

1

𝑗
+ 𝛼2

𝑗
is the least assignment in

lexicographic order that leads to 𝑗 .

Case 2: 𝛼1

𝑖
≺ 𝛼1

𝑗
.

Because 𝛼1

𝑖
≺ 𝛼1

𝑗
, the first halves of the matched paths followed during the interpretations of assignments

𝛼𝑖 and 𝛼 𝑗 through 𝐶𝐴 bring us to two different middle vertices of 𝐶 , say 𝑚 and 𝑛, respectively. The two

paths then proceed through 𝐶𝐵𝑚 and 𝐶𝐵𝑛 (where it could be the case that 𝐶𝐵𝑚 = 𝐶𝐵𝑛 ), and return to 𝑖 and 𝑗 ,

respectively, where 𝑗 < 𝑖 . Again, there are two cases to consider:

Case 2.A: Suppose that 𝑛 < 𝑚 (see Fig. 19c.) The argument is similar to Case 1.B above: By structural

invariant 1 of Defn. 4.1, 𝑛 < 𝑚 means that the exit vertex reached by 𝛼1

𝑗
in 𝐶𝐴 comes before the exit vertex

reached by 𝛼1

𝑖
in 𝐶𝐴 . By the induction hypothesis applied to 𝐶𝐴 , there must exist an assignment 𝛾 ≺ 𝛼1

𝑖
≺ 𝛼1

𝑗

that leads to the exit vertex reached by 𝛼1

𝑗
in𝐶𝐴 . In this case, we have that 𝛾 +𝛼2

𝑗
≺ 𝛼1

𝑗
+𝛼2

𝑗
, which contradicts

the assumption that 𝛼 𝑗 = 𝛼
1

𝑗
+ 𝛼2

𝑗
is the least assignment in lexicographic order that leads to 𝑗 .

Case 2.B: Suppose that 𝑚 < 𝑛 (see Fig. 19d.) The argument is similar to Case 1.A above: By structural

invariant 2 of Defn. 4.1, we can only have𝑚 < 𝑛 and 𝑗 < 𝑖 if

• There is a matched path corresponding to some assignment 𝛽1
through𝐶𝐴 that leads to a middle vertex

ℎ, where ℎ < 𝑚.

• There is a matched path from ℎ corresponding to some assignment 𝛽2
through 𝐶𝐵ℎ (where 𝐶𝐵ℎ could

be 𝐶𝐵𝑚 or 𝐶𝐵𝑛 ).

• There is a return edge from the exit vertex reached by 𝛽2
in 𝐶𝐵ℎ to exit vertex 𝑗 of 𝐶 .

In this case, by the induction hypothesis applied to 𝐶𝐴 , and the fact that ℎ < 𝑚 < 𝑛, it must be the case that

we can choose 𝛽1
so that 𝛽1 ≺ 𝛼1

𝑗
.
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Consequently, 𝛽1 +𝛽2 ≺ 𝛼1

𝑗
+𝛼2

𝑗
, which contradicts the assumption that 𝛼 𝑗 = 𝛼

1

𝑗
+𝛼2

𝑗
is the least assignment

in lexicographic order that leads to 𝑗 .

In each of the cases above, we are able to derive a contradiction to the assumption that 𝛼 𝑗 is the least

assignment in lexicographic order that leads to 𝑗 . Thus, the supposition that the proposition does not hold for

𝐶 cannot be true. □

C PROOF OF THE CANONICITY OF CFLOBDDS
To show that CFLOBDDs are a canonical representation of functions over Boolean arguments, we must

establish that three properties hold:

(1) Every level-𝑘 CFLOBDD represents a decision tree with 2
2
𝑘
leaves.

(2) Every decision tree with 2
2
𝑘
leaves is represented by some level-𝑘 CFLOBDD.

(3) No decision tree with 2
2
𝑘
leaves is represented by more than one level-𝑘 CFLOBDD (up to isomorphism).

As described earlier, following a matched path (of length 𝑂 (2𝑘 )) from the level-𝑘 entry vertex of a level-𝑘

CFLOBDD to a final value provides an interpretation of a Boolean assignment on 2
𝑘
variables. Thus, the

CFLOBDD represents a decision tree with 2
2
𝑘
leaves (and Obligation 1 is satisfied).

To show that Obligation 2 holds, we describe a recursive procedure for constructing a level-𝑘 CFLOBDD

from an arbitrary decision tree with 2
2
𝑘
leaves (i.e., of height 2

𝑘
). In essence, the construction shows how

such a decision tree can be folded together to form a multi-terminal CFLOBDD.

The construction makes use of a set of auxiliary tables, one for each level, in which a unique representative

for each class of equal proto-CFLOBDDs that arises is tabulated. We assume that the level-0 table is already

seeded with a representative fork grouping and a representative don’t-care grouping.

Construction 1. [Decision Tree to Multi-Terminal CFLOBDD]

(1) The leaves of the decision tree are partitioned into some number of equivalence classes 𝑒 according to the

values that label the leaves. The equivalence classes are numbered 1 to 𝑒 according to the relative position

of the first occurrence of a value in a left-to-right sweep over the leaves of the decision tree.

For Boolean-valued CFLOBDDs, when the procedure is applied at topmost level, there are at most two

equivalence classes of leaves, for the values 𝐹 and 𝑇 . However, in general, when the procedure is applied

recursively, more than two equivalence classes can arise.

For the general case of multi-terminal CFLOBDDs, the number of equivalence classes corresponds to the

number of different values that label leaves of the decision tree.

(2) (Base cases) If 𝑘 = 0 and 𝑒 = 1, construct a CFLOBDD consisting of the representative don’t-care grouping,

with a value tuple that binds the exit vertex to the value that labels both leaves of the decision tree.

If 𝑘 = 0 and 𝑒 = 2, construct a CFLOBDD consisting of the representative fork grouping, with a value

tuple that binds the two exit vertices to the first and second values, respectively, that label the leaves of the

decision tree.

If either condition applies, return the CFLOBDD so constructed as the result of this invocation; otherwise,

continue on to the next step.

(3) Construct—via recursive applications of the procedure—2
2
𝑘−1

level-𝑘–1 multi-terminal CFLOBDDs for the

2
2
𝑘−1

decision trees of height 2
𝑘−1

in the lower half of the decision tree.

These are then partitioned into some number 𝑒 ′ of equivalence classes of equal multi-terminal CFLOBDDs;

a representative of each class is retained, and the others discarded. Each of the 2
2
𝑘−1

“leaves” of the upper

half of the decision tree is labeled with the appropriate equivalence-class representative for the subtree of

the lower half that begins there. These representatives serve as the “values” on the leaves of the upper half

of the decision tree when the construction process is applied recursively to the upper half in step 4.

The equivalence-class representatives are also numbered 1 to 𝑒 ′ according to the relative position of their

first occurrence in a left-to-right sweep over the leaves of the upper half of the decision tree.

(4) Construct—via a recursive application of the procedure—a level-𝑘–1 multi-terminal CFLOBDD for the

upper half of the decision tree.
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(5) Construct a level-𝑘 multi-terminal proto-CFLOBDD from the level-𝑘–1 multi-terminal CFLOBDDs created

in steps 3 and 4. The level-𝑘 grouping is constructed as follows:

(a) The 𝐴-connection points to the proto-CFLOBDD of the object constructed in step 4.

(b) The middle vertices correspond to the equivalence classes formed in step 3, in the order 1 . . . 𝑒 ′.
(c) The 𝐴-connection return tuple is the identity map back to the middle vertices (i.e., the tuple [1..𝑒 ′]).
(d) The 𝐵-connections point to the proto-CFLOBDDs of the 𝑒 ′ equivalence-class representatives constructed

in step 3, in the order 1 . . . 𝑒 ′.
(e) The exit vertices correspond to the initial equivalence classes described in step 1, in the order 1 . . . 𝑒 .

(f) The 𝐵-connection return tuples connect the exit vertices of the highest-level groupings of the equivalence-

class representatives retained from step 3 to the exit vertices created in step 5e. In each of the equivalence-

class representatives retained from step 3, the value tuple associates each exit vertex 𝑥 with some value 𝑣 ,

where 1 ≤ 𝑣 ≤ 𝑒 ; 𝑥 is now connected to the exit vertex created in step 5e that is associated with the same

value 𝑣 .

(g) Consult a table of all previously constructed level-𝑘 groupings to determine whether the grouping

constructed by steps 5a–5f duplicate a previously constructed grouping. If so, discard the present grouping

and switch to the previously constructed one; if not, enter the present grouping into the table.

(6) Return a multi-terminal CFLOBDD created from the proto-CFLOBDD constructed in step 5 by attaching a

value tuple that connects (in order) the exit vertices of the proto-CFLOBDD to the 𝑒 values from step 1.

□

Fig. 20a shows the decision tree for the function 𝜆𝑥0𝑥1𝑥2𝑥3 .(𝑥0 ⊕ 𝑥1) ∨ (𝑥0 ∧ 𝑥1 ∧ 𝑥2). Fig. 20b shows the
state of things after step 3 of Construction 1. Note that even though the level-1 CFLOBDDs for the first three

leaves of the top half of the decision tree have equal proto-CFLOBDDs,
24

the leftmost proto-CFLOBDD maps

its exit vertex to 𝐹 , whereas the exit vertex is mapped to 𝑇 in the second and third proto-CFLOBDDs. Thus, in

this case, the recursive call for the upper half of the decision tree (step 4) involves three equivalence classes of

values.

It is not hard to see that the structures created by Construction 1 obey the structural invariants that are

required of CFLOBDDs by Defn. 4.1:

• Structural invariant 1 holds because the 𝐴-connection return tuple created in step 5c of Construction 1

is the identity map.

• Structural invariant 2 holds because in steps 1 and 3 of Construction 1, the equivalence classes are

numbered in increasing order according to the relative position of a value’s first occurrence in a left-to-

right sweep. In particular, this order is preserved in the exit vertices of each grouping constructed during

an invocation of Construction 1 (cf. step 5f), which ensures that the “compact extension” property of

Structural invariant 2b holds at each level of recursion in Construction 1.

• Structural invariant 3 holds because Construction 1 reuses the representative don’t-care grouping and

the representative fork grouping in step 2, and checks for the construction of duplicate groupings—and

hence duplicate proto-CFLOBDDs—in step 5g.

• Structural invariant 4 holds because of steps 3, 5d, and 5f. On recursive calls to Construction 1, step 3

partitions the CFLOBDDs constructed for the lower half of the decision tree into equivalence classes of

CFLOBDD values (i.e., taking into account both the proto-CFLOBDDs and the value tuples associated

with their exit vertices). Therefore, in steps 5d and 5f, duplicate 𝐵-connection/return-tuple pairs can

never arise.

• Structural invariant 5 holds because step 6 uses the proto-CFLOBDD constructed in step 5.

• Structural invariant 6 holds because step 1 of Construction 1 constructs equivalence classes of values

(ordered in increasing order according to the relative position of a value’s first occurrence in a left-to-

right sweep over the leaves of the decision tree).

Moreover, Construction 1 preserves interpretation under assignments: Suppose that 𝐶𝑇 is the level-𝑘

CFLOBDD constructed by Construction 1 for decision tree 𝑇 ; it is easy to show by induction on 𝑘 that for

every assignment 𝛼 on the 2
𝑘
Boolean variables 𝑥0, . . . , 𝑥2

𝑘−1
, the value obtained from 𝐶𝑇 by following the

24
The equality of the proto-CFLOBDDs is detected in step 5g.
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(a) Decision tree

F T
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x2,x3

x0

x1

1 2 2 3

(b) Hybrid of decision tree for 𝑥0 and 𝑥1, and
CFLOBDDs for 𝑥2 and 𝑥3. The solid, dashed, and
dashed-double-dotted edges from the four vertices
labeled 1, 2, 2, and 3, respectively, correspond to the
solid, dashed, and dashed-double-dotted trapezoids in
(a).

x0,x1

F T

x2

x3

x2,x3

(c) CFLOBDD (repeated from Fig. 5). For clarity, some of the level-0 groupings have been duplicated.

Fig. 20. Representations of the Boolean function 𝜆𝑥0𝑥1𝑥2𝑥3 .(𝑥0 ⊕ 𝑥1) ∨ (𝑥0 ∧ 𝑥1 ∧ 𝑥2).
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Fig. 21. (a) Decision tree for 𝜆𝑥0𝑥1 .𝑥0; (b) fully expanded form of the CFLOBDD; (c) CFLOBDD.

corresponding matched path from the entry vertex of 𝐶𝑇 ’s highest-level grouping is the same as the value

obtained for 𝛼 from 𝑇 . (The first half of 𝛼 is used to follow a path through the 𝐴-connection of 𝐶𝑇 , which

was constructed from the top half of 𝑇 . The second half of 𝛼 is used to follow a path through one of the

𝐵-connections of 𝐶𝑇 , which was constructed from an equivalence class of bottom-half subtrees of 𝑇 ; that

equivalence class includes the subtree rooted at the vertex of 𝑇 that is reached by following the first half of

𝛼 .) Thus, every decision tree with 2
2
𝑘
leaves is represented by some level-𝑘 CFLOBDD in which meaning

(interpretation under assignments) has been preserved; consequently, Obligation 2 is satisfied.

We now come to Obligation 3 (no decision tree with 2
2
𝑘
leaves is represented by more than one level-𝑘

CFLOBDD). The way we prove this property is to define an unfolding process, called Unfold, that starts with a

multi-terminal CFLOBDD and works in the opposite direction to Construction 1 to construct a decision tree;

that is, Unfold (recursively) unfolds the𝐴-connection, and then (recursively) unfolds each of the 𝐵-connections.

For instance, for the example shown in Fig. 20, Unfold would proceed from Fig. 20c, to Fig. 20b, and then to

the decision tree for the function 𝜆𝑥0𝑥1𝑥2𝑥3 .(𝑥0 ⊕ 𝑥1) ∨ (𝑥0 ∧ 𝑥1 ∧ 𝑥2) shown in Fig. 20a.

Unfold also preserves interpretation under assignments: Suppose that 𝑇𝐶 is the decision tree constructed

by Unfold for level-𝑘 CFLOBDD 𝐶 ; it is easy to show by induction on 𝑘 that for every assignment 𝛼 on the 2
𝑘

Boolean variables 𝑥0, . . . , 𝑥2
𝑘−1

, the value obtained from𝐶 by following the corresponding matched path from

the entry vertex of 𝐶’s highest-level grouping is the same as the value obtained for 𝛼 from 𝑇𝐶 . (The first half

of 𝛼 is used to follow a path through the 𝐴-connection of 𝐶 , which Unfold unfolds into the top half of 𝑇𝐶 . The

second half of 𝛼 is used to follow a path through one of the 𝐵-connections of 𝐶 , which Unfold unfolds into

one or more instances of bottom-half subtrees of 𝑇𝐶 ; that set of bottom-half subtrees includes the subtree

rooted at the vertex of 𝑇 that is reached by following the first half of 𝛼 .)

Obligation 3 is satisfied if we can show that, for every CFLOBDD 𝐶 , Construction 1 applied to the decision

tree produced by Unfold (𝐶) yields a CFLOBDD that is isomorphic to 𝐶 . To establish that this property holds,

we will define two kinds of traces:

• A Fold trace records the steps of Construction 1:

– At step 1 of Construction 1, the decision tree is appended to the trace.

– At the end of step 2 (if either of the conditions listed in step 2 holds), the level-0 CFLOBDD being

returned is appended to the trace (and Construction 1 returns).

– During step 3, the trace is extended according to the actions carried out by the folding process as it is

applied recursively to each of the lower-half decision trees. (For purposes of settling Obligation 3, we

will assume that the lower-half decision trees are processed by Construction 1 in left-to-right order.)

– At the end of step 3, a hybrid decision-tree/CFLOBDD object (à la Fig. 20b) is appended to the trace.

– During step 4, the trace is extended according to the actions carried out by the folding process as it is

applied recursively to the upper half of the decision tree.
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Trace for entire tree

Tree The lower-half trees Hybrid Upper-half tree CFLOBDD

F TF T

1 1 1 2 2 2
1(F) 2(T)

1 2

1 2 1 2

F T

x0

x1

Fig. 22. The Fold trace generated by the application of Construction 1 to the decision tree shown in Fig. 21a
to create the CFLOBDD shown in Fig. 21c.

Trace for entire CFLOBDD

CFLOBDD 𝐴-connection Hybrid Traces for the 𝐵-connections Tree

F T

x0

x1
1 2 1 2

1(F) 2(T)

1 2

2 2 2 1 1 1

F TF T

Fig. 23. The Unfold trace generated by the application of Unfold to the CFLOBDD shown in Fig. 21c to create
the decision tree shown in Fig. 21a.

– At the end of step 6, the CFLOBDD being returned is appended to the trace.

For instance, Fig. 22 shows the Fold trace generated by the application of Construction 1 to the decision

tree shown in Fig. 21a to create the CFLOBDD shown in Fig. 21c.

• An Unfold trace records the steps of Unfold (𝐶):
– CFLOBDD 𝐶 is appended to the trace.

– If 𝐶 is a level-0 CFLOBDD, then a binary tree of height 1—with the leaves labeled according to 𝐶’s

value tuple—is appended to the trace (and the Unfold algorithm returns).

– The trace is extended according to the actions carried out by Unfold as it is applied recursively to the

𝐴-connection of 𝐶 .

– A hybrid decision-tree/CFLOBDD object (à la Fig. 20b) is appended to the trace.

– The trace is extended according to the actions carried out by Unfold as it is applied recursively to

instances of 𝐵-connections of 𝐶 . (For purposes of settling Obligation 3, we will assume that Unfold

processes a separate instance of a 𝐵-connection for each leaf of the hybrid object’s upper-half decision

tree, and that the 𝐵-connections are processed in right-to-left order of the upper-half decision tree’s

leaves.)

– Finally, the decision tree returned by Unfold is appended to the trace.
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For instance, Fig. 23 shows the Unfold trace generated by the application of Unfold to the CFLOBDD

shown in Fig. 21c to create the decision tree shown in Fig. 21a.

Note how the Unfold trace shown in Fig. 23 is the reversal of the Fold trace shown in Fig. 22. We now argue

that this property holds generally. (Technically, the argument given below in Proposition C.1 shows that each

element of an Unfold trace is isomorphic to the corresponding object in the Fold trace, which suffices to imply

that that Obligation 3 is satisfied, in the sense that a decision tree is represented by exactly one isomorphism

class of CFLOBDDs.)

Proposition C.1. Suppose that 𝐶 is a multi-terminal CFLOBDD, and that Unfold (𝐶) results in Unfold trace

𝑈𝑇 and decision tree 𝑇0. Let 𝐶
′
be the multi-terminal CFLOBDD produced by applying Construction 1 to 𝑇0, and

𝐹𝑇 be the Fold trace produced during this process. Then

(i) 𝐹𝑇 is the reversal of𝑈𝑇 .

(ii) 𝐶 and 𝐶 ′ are isomorphic.

Proof: Because 𝐶 ′ appears at the end of 𝐹𝑇 , and 𝐶 appears at the beginning of𝑈𝑇 , clause (i) implies (ii). We

show clause (i) by the following inductive argument:

Base case: The proposition is trivially true of level-0 CFLOBDDs. Given any pair of values 𝑣1 and 𝑣2 (such as 𝐹

and 𝑇 ), there are exactly four possible level-0 CFLOBDDs: two constructed using a don’t-care grouping—one

in which the exit vertex is mapped to 𝑣1, and one in which it is mapped to 𝑣2—and two constructed using a

fork grouping—one in which the two exit vertices are mapped to 𝑣1 and 𝑣2, respectively, and one in which

they are mapped to 𝑣2 and 𝑣1, respectively. These unfold to the four decision trees that have 2
2

0

= 2 leaves

and leaf-labels drawn from {𝑣1, 𝑣2}, and the application of Construction 1 to these decision trees yields the

same level-0 CFLOBDD that we started with. (See step 2 of Construction 1.) Consequently, the Fold trace 𝐹𝑇

and the Unfold trace𝑈𝑇 are reversals of each other.

Induction step: The induction hypothesis is that the proposition holds for every level-𝑘 multi-terminal

CFLOBDD. We need to argue that the proposition extends to level-𝑘+1 multi-terminal CFLOBDDs.

First, note that the induction hypothesis implies that each decision tree with 2
2
𝑘
leaves is represented

by exactly one level-𝑘 CFLOBDD isomorphism class. We will refer to this as the corollary to the induction

hypothesis.

Unfold trace𝑈𝑇 can be divided into five segments:

(u1) 𝐶 itself

(u2) the Unfold trace for 𝐶’s 𝐴-connection

(u3) a hybrid decision-tree/CFLOBDD object (call this object 𝐷)

(u4) the Unfold trace for 𝐶’s 𝐵-connections

(u5) 𝑇0.

Fold trace 𝐹𝑇 can also be divided into five segments:

(f1) 𝑇0

(f2) the Fold trace for 𝑇0’s lower-half trees

(f3) a hybrid decision-tree/CFLOBDD object (call this object 𝐷 ′)
(f4) the Fold trace for 𝑇0’s upper-half

(f5) 𝐶 ′.

Because both (f1) and (u5) are 𝑇0, (u5) is obviously equal to (f1). Our goal, therefore, is to show that

• (u2) is the reversal of (f4);

• (u3) is equal to (f3);

• (u4) is the reversal of (f2); and

• (u1) is equal to (f5).
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(u3) is equal to (f3) Consider the hybrid decision-tree/CFLOBDD object𝐷 obtained after Unfold has finished

unfolding 𝐶’s 𝐴-connection.25 The upper part of 𝐷 (the decision-tree part) came from the recursive

invocation of Unfold, which produced a decision tree for the first half of the Boolean variables, in which

each leaf is labeled with the index of a middle vertex from the level-𝑘+1 grouping of𝐶 (e.g., see Fig. 20b).

As a consequence of Prop. 4.1, together with the fact that Unfold preserves interpretation under

assignments, the relative position of the first occurrence of a label in a left-to-right sweep over the

leaves of this decision tree reflects the order of the level-𝑘+1 grouping’s middle vertices.
26

However,

each middle vertex has an associated 𝐵-connection, and by structural invariants 2, 4, and 6 of Defn. 4.1,

the middle vertices can be thought of as representatives for a set of pairwise non-equal CFLOBDDs

(that themselves represent lower-half decision trees).

Fold trace 𝐹𝑇 also has a hybrid decision-tree/CFLOBDD object, namely 𝐷 ′. The crucial point is that
the action of partitioning 𝑇0’s lower-half CFLOBDDs that is carried out in step 3 of Construction 1 also

results in a labeling of each leaf of the upper-half’s decision tree with a representative of an equivalence

class of CFLOBDDs that represent the lower half of the decision tree starting at that point.

By the corollary to the induction hypothesis, the 2
2
𝑘
bottom-half trees of𝑇0 are represented uniquely

(up to isomorphism) by the respective CFLOBDDs in 𝐷 ′. Similarly, by the corollary to the induction

hypothesis, the 2
2
𝑘
CFLOBDDs used as labels in𝐷 represent uniquely (up to isomorphism) the respective

bottom-half trees of 𝑇0. Thus, the labelings on 𝐷 and 𝐷 ′ must be isomorphic.

(u2) is the reversal of (f4); (u4) is the reversal of (f2) Given the observation that𝐷 and𝐷 ′ are isomorphic,

these properties follow in a straightforward fashion from the inductive hypothesis (applied to the

𝐴-connection and the 𝐵-connections of 𝐶).

(u1) is equal to (f5) Because (u2) is the reversal of (f4) and (u4) is the reversal of (f2), we know that the

level-𝑘 proto-CFLOBDDs out of which the level-𝑘+1 grouping of 𝐶 ′ is constructed are isomorphic to

the respective level-𝑘 proto-CFLOBDDs that make up the 𝐴-connection and 𝐵-connections of 𝐶 .

We already argued that steps 5 and 6 of Construction 1 lead to CFLOBDDs that obey the six structural

invariants required of CFLOBDDs by Defn. 4.1. Moreover, there is only one way for Construction 1 to

construct the level-𝑘+1 grouping of 𝐶 ′ so that structural invariants 2, 3, and 4 are satisfied. Therefore,

𝐶 is isomorphic to 𝐶 ′.

Consequently, 𝐹𝑇 is the reversal of𝑈𝑇 , as was to be shown. □

In summary, we have now shown that Obligations 1, 2, and 3 are all satisifed. These properties imply that,

for a given ordering of Boolean variables, if two level-𝑘 CFLOBDDs𝐶1 and𝐶2 represent the same decision tree

with 2
2
𝑘
leaves, then 𝐶1 and 𝐶2 are isomorphic—i.e., CFLOBDDs are a canonical representation of functions

over Boolean arguments:

Theorem 4.3. (Canonicity). If 𝐶1 and 𝐶2 are level-𝑘 CFLOBDDs for the same Boolean function over 2
𝑘

Boolean variables, and 𝐶1 and 𝐶2 use the same variable ordering, then 𝐶1 and 𝐶2 are isomorphic.

D TIME COMPLEXITY OF REDUCE
In this section, we give a bound on the time complexity of the call on Reduce (Alg. 10) in line [5] of BinaryAp-

plyAndReduce (Alg. 8). Let𝐶 be the level-𝑙 proto-CFLOBDD on which Reduce is invoked, and𝐶 ′ be the level-𝑙
proto-CFLOBDD that is returned. The accounting is somewhat subtle because of three factors

• hash-consing of groupings

• function caching of calls to Reduce and other functions

25
The 𝐴-connection is actually a proto-CFLOBDD, whereas Unfold works on multi-terminal CFLOBDDs. However, the

𝐴-connection return tuple (with the indices of the middle vertices as the value space) serves as the value tuple whenever we

wish to consider the 𝐴-connection as a multi-terminal CFLOBDD.

26
This step is where the argument would break down if we attempt to apply the same argument to Fig. 8a: In that case, the

labels on the leaves of 𝐷 , in left-to-right order, would be 2 and 1—whereas the sequence of middle vertices in Fig. 8a is [1,2].
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(a) Example 𝐶 (b) Example 𝐶 ′

Fig. 24. 𝐶 ′ = Reduce(𝐶, [1, 2, 3, 3, 3, 3, 3, 3]). The colors of the edges to proto-CFLOBDDs in 𝐶 ′ correspond to
the edges to the originating proto-CFLOBDDs in 𝐶 .

• for 𝐶 ′ = Reduce(𝐶, red) (where red is some reduction tuple), for their respective top-level groupings,

𝑔′ and 𝑔, it is always the case that |𝑔′ | ≤ |𝑔|, yet |𝐶 ′ | and |𝐶 | have no fixed relationship: |𝐶 ′ | < |𝐶 |,
|𝐶 ′ | = |𝐶 | and |𝐶 ′ | > |𝐶 | are all possible.27

The size measure | · | counts vertices and edges (and, for proto-CFLOBDDs, groupings—with no double-counting
of shared groupings due to hash-consing).

In this section, we show that the time complexity of Reduce is bounded by 𝑂 ( |𝐶 | × |𝐶 ′ |), where when
counting the time for operations, we consider the cost of function-caching operations (lookup and update) to

be O(1).

We illustrate the point about there being no fixed relationship between 𝐶 ′ and 𝐶 with the following

example, which shows that when Reduce is called on a proto-CFLOBDD, it can lead to both (i) less sharing of

proto-CFLOBDDs in the resultant proto-CFLOBDD, and (ii) more sharing of proto-CFLOBDDs than in the

input proto-CFLOBDD.

Example D.1. Consider the level-2 proto-CFLOBDD 𝐶 shown in Fig. 24a, which has four middle vertices

(𝑝 , 𝑞, 𝑟 , 𝑠) and eight exit vertices (𝑎, 𝑏, 𝑐 , 𝑑 , 𝑒 , 𝑓 , 𝑔, ℎ). The A-connection of 𝐶 (𝐶𝐴) is a proto-CFLOBDD at

level 1. 𝐶𝐴 partitions the strings {0, 1}2 into 𝑃1 = [{00}, {01}, {10}, {11}], i.e., 𝐶𝐴 has four exit vertices and

thus 𝐶 has four middle vertices and four B-connections (𝐶𝐵1, 𝐶𝐵2, 𝐶𝐵3, 𝐶𝐵4). 𝐶𝐵1 partitions the strings {0, 1}2
into 𝑃2 = [{00}, {01, 10}, {11}] and its exit vertices are connected to the exit vertices of 𝐶 in the order (𝑎, 𝑏, 𝑐).

𝐶𝐵2 and 𝐶𝐵4 both equal 𝐶𝐵1, but for 𝐶𝐵2 and 𝐶𝐵4 the three exit vertices are connected to the exit vertices

of 𝐶 in the orders (𝑏, 𝑑, 𝑒), and (𝑔, 𝑎, ℎ), respectively. Finally, 𝐶𝐵3 equals 𝐶𝐴 , but for 𝐶𝐵3 the four exit vertices

are connected to 𝐶’s exit vertices in the order (𝑏, 𝑑, 𝑒, 𝑓 ). Consequently, 𝐶 partitions the strings {0, 1}4 into

[{0000, 1101, 1110}, {0001, 0010, 0100, 1000},{0011},{0101, 0110, 1001},{0111, 1010},{1011},{1100},{1111}].
Let 𝐶 ′ = Reduce(𝐶, [1, 2, 3, 3, 3, 3, 3, 3]), i.e., the vertices 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ are all mapped to

exit vertex 𝑐 . 𝐶 ′ is shown in Fig. 24b. 𝐶 ′ has only three exit vertices (𝑎′, 𝑏 ′, 𝑐 ′). Con-

sider how 𝐶 is “reduced” to 𝐶 ′, which partitions the strings {0, 1}4 into [{0000,1101,1110},
{0001,0010,0100,1000},{0011,0101,0110,1001,0111,1010,1011,1100,1111}].
• 𝐶𝐵1’s exit vertices are mapped to (𝑎, 𝑏, 𝑐), which leads to the call Reduce(𝐶𝐵1, [1, 2, 3]) and thus 𝐶𝐵1

does not change; that is, the first B-connection of𝐶 ′,𝐶 ′
𝐵1
, is equal to𝐶𝐵1. Its exit vertices are connected

27
We refer to the property that |𝑔′ | ≤ |𝑔 | as the local-reduction property, in contradistinction to the absence of a global-

reduction property for |𝐶′ | and |𝐶 |.
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to the exit vertices (𝑎′, 𝑏 ′, 𝑐 ′) of 𝐶 ′. (As we will see below, 𝐶 ′
𝐵1

is also equal to 𝐶 ′
𝐴
, the A-connection of

𝐶 ′.)
• 𝐶𝐵2’s exit vertices are mapped to (𝑏, 𝑐, 𝑐), which leads to the call Reduce(𝐶𝐵2, [1, 2, 2]). Therefore, the
second and third exit vertices are folded together, and this collapse affects the structure of the level-0

groupings as well, thereby creating a new proto-CFLOBDD, 𝐶 ′
𝐵2
, which partitions the strings {0, 1}2

into [{00}, {01, 10, 11}]. The exit vertices of 𝐶 ′
𝐵2

are mapped to exit vertices (𝑏 ′, 𝑐 ′) of 𝐶 ′.
• 𝐶𝐵3’s exit vertices are mapped to (𝑏, 𝑐, 𝑐, 𝑐), which leads to the call Reduce(𝐶𝐵3, [1, 2, 2, 2]). Thus, the
exit vertices of𝐶𝐵3 are collapsed to only two exit vertices, and the resulting proto-CFLOBDD partitions

the strings {0, 1}2 into [{00}, {01, 10, 11}], which are mapped to the exit vertices (𝑏 ′, 𝑐 ′). This result is
identical to the result from Reduce(𝐶𝐵2, [1, 2, 2]), and thus 𝐶 ′ has only one copy of 𝐶 ′

𝐵2
with its exit

vertices mapped to exit vertices (𝑏 ′, 𝑐 ′) of 𝐶 ′.
• 𝐶𝐵4’s exit vertices are mapped to (𝑐, 𝑎, 𝑐), which leads to the call Reduce(𝐶𝐵4, [1, 2, 1])—folding together
the first and third exit vertices. This call creates yet another new proto-CFLOBDD,𝐶 ′

𝐵3
, which partitions

the strings {0, 1}2 into [{00, 11}, {01, 10}]. The exit vertices of𝐶 ′
𝐵3

are mapped to exit vertices (𝑐 ′, 𝑎′) of
𝐶 ′.
• Because the calls Reduce(𝐶𝐵2, [1, 2, 2]) and Reduce(𝐶𝐵3, [1, 2, 2, 2]) produce the same proto-CFLOBDD

with the same return edges in 𝐶 ′—and because the calls on Reduce arose in the B-connection of the

same grouping in 𝐶—middle vertices (𝑞, 𝑟 ) of 𝐶 are folded together. This collapsing is propagated to

the A-connection of 𝐶 by the call Reduce(𝐶𝐴, [1, 2, 2, 3]). The resulting proto-CFLOBDD has three exit

vertices that partition the strings {0, 1}2 into [{00}, {01, 10}, {11}]. This proto-CFLOBDD is identical

to 𝐶 ′
𝐵1
—although their exit vertices are mapped to different vertices of 𝐶 ′: the exit vertices of 𝐶 ′

𝐵1
are

connected to exit vertices (𝑎′, 𝑏 ′, 𝑐 ′) of 𝐶 ′, whereas the exit vertices of 𝐶 ′
𝐴
are connected to middle

vertices (𝑝 ′, 𝑞′, 𝑟 ′) of 𝐶 ′.

We see from this example that a call 𝐶 ′ = Reduce(𝐶, red) can cause entirely new proto-CFLOBDDs to be

created in 𝐶 ′; proto-CFLOBDDs that occur in 𝐶 to occur in entirely different places in 𝐶 ′; proto-CFLOBDDs
that occur in 𝐶 to not occur in 𝐶 ′; and two or more proto-CFLOBDDs with identical sets of return edges to be

combined into just a single occurrence when they arise in the B-connection of the same enclosing grouping.

This example highlights the challenges for establishing a bound on the time complexity of Reduce—namely,

both expansion and compaction of proto-CFLOBDDs can occur. □

Because of the effects illustrated in Ex. D.1, the cost-bound argument we give is slightly indirect. At a high-

level, it is structured as follows: we establish a relationship between Reduce(𝐶, red) and that of a certain call on

PairProduct (Thm. D.1). This approach is beneficial because we already know a time bound on PairProduct in

terms of the product of the sizes of PairProduct’s arguments (which is expressed more precisely in footnote 12).

Thm. D.3 uses that bound to give an asymptotic bound on the time to perform Reduce(𝐶, red) in terms of the

product of the sizes of its input and output CFLOBDDs.

Theorem D.1. Let 𝐶 and 𝐶 ′ be two proto-CFLOBDDs such that 𝐶 ′ = Reduce(𝐶, red) for some reduction tuple

red. Then 𝐶 = PairProduct(𝐶,𝐶 ′).28

Proof: We know that each proto-CFLOBDD at level 𝑘 with𝑚 exit vertices partitions the space of strings

{0, 1}2𝑘 into𝑚 groups (cf. [59, §6]). We make use of the properties of Reduce and PairProduct with respect to

such partitions:

(1) For every proto-CFLOBDD 𝑋 and reduction tuple red, Reduce(X, red) produces a coarser partition of

the exit languages of 𝑋 defined by the mapping of red to 𝑋 ’s exit vertices.

(2) For every pair of proto-CFLOBDDs 𝑋 and 𝑌 , PairProduct(𝑋,𝑌 ) produces the coarsest partition that

refines both of the partitions corresponding to 𝑋 and 𝑌 .

28
To reduce clutter, we ignore the tuple of pairs of exit vertices that is returned by PairProduct (Alg. 9), except for two

places in Thm. D.3.
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In particular, we consider the two-statement sequence

𝐶 ′ = Reduce(𝐶, red); (12)

𝐶 = PairProduct(𝐶,𝐶 ′); (13)

𝐶 ′ created in Eqn. (12) represents a coarser partition of the strings in {0, 1}𝑛 than 𝐶’s partition. Because 𝐶 ′

represents a coarser partition than𝐶 , the proto-CFLOBDD𝐶 created in Eqn. (12) represents the same partition

as 𝐶 , and thus 𝐶 and 𝐶 are equal by canonicity. □

In essence, Thm. D.1 shows that PairProduct(𝐶,𝐶 ′) “undoes” all of the actions taken during Reduce(𝐶, red).

Example D.2. Consider the result 𝐶 = PairProduct(𝐶 , 𝐶 ′) for 𝐶 and 𝐶 ′ from Ex. D.1. PairProduct(𝐶 , 𝐶 ′) is
first called on the A-connections of the respective outermost groupings, followed by calls on B-connections.

• PairProduct(𝐶𝐴 , 𝐶
′
𝐴
) produces a proto-CFLOBDD whose exit vertices represent the coarsest partition

of {0, 1}2 that refines both of the partitions corresponding to the exit vertices of 𝐶𝐴 and 𝐶 ′
𝐴
(i.e.,

[{00}, {01}, {10}, {11}] and [{00}, {01, 10}, {11}], respectively). Hence, the new proto-CFLOBDD 𝐶𝐴 is

constructed such that the exit vertices of𝐶𝐴 represent the partition [{00}, {01}, {10}, {11}]. PairProduct
also returns a tuple of index-pairs indicating the B-connections on which PairProduct needs to be

called. In this case, the returned tuple is [[1, 1], [2, 2], [3, 2], [4, 3]]. Mapping this result to the middle

vertices of 𝐶 and 𝐶 ′, we obtain [[𝑝, 𝑝 ′], [𝑞, 𝑞′], [𝑟, 𝑞′], [𝑠, 𝑟 ′]]. These pairs are processed left-to-right,

generating calls to PairProduct on B-connections.

• PairProduct(𝐶𝐵1, 𝐶
′
𝐵1
) (corresponding to the pair [𝑝, 𝑝 ′]) creates proto-CFLOBDD 𝐶𝐵1 with three exit

vertices corresponding to the partition [{00}, {01, 10}, {11}], returning the tuple [[1, 1], [2, 2], [3, 3]].
Mapping this result to the exit vertices of 𝐶 and 𝐶 ′, the initial (as-yet incomplete) sequence of exit

vertices of 𝐶 would be [[𝑎, 𝑎′], [𝑏,𝑏 ′], [𝑐, 𝑐 ′]].
• PairProduct(𝐶𝐵2, 𝐶

′
𝐵2
) (corresponding to the pair [𝑞, 𝑞′]) creates proto-CFLOBDD 𝐶𝐵2 with three exit

vertices corresponding to the partition [{00}, {01, 10}, {11}] (the same as 𝐶𝐵1), returning the tuple

[[1, 1], [2, 2], [3, 2]]. Mapping this result to the exit vertices of 𝐶 and 𝐶 ′, the exit vertices of 𝐶 would be

extended to be [[𝑎, 𝑎′], [𝑏, 𝑏 ′], [𝑐, 𝑐 ′], [𝑑, 𝑐 ′], [𝑒, 𝑐 ′]], and the exit vertices of 𝐶𝐵2 would be connected to

[𝑏,𝑏 ′], [𝑑, 𝑐 ′], and [𝑒, 𝑐 ′].
• PairProduct(𝐶𝐵3, 𝐶

′
𝐵2
) (corresponding to the pair [𝑟, 𝑞′]) creates proto-CFLOBDD 𝐶𝐵3 with four exit

vertices corresponding to the partition [{00}, {01}, {10}, {11}] (the same as 𝐶𝐴), returning the tuple

[[1, 1], [2, 2], [3, 2], [4, 2]]. Mapping this result to the exit vertices of 𝐶 and 𝐶 ′, the exit vertices of 𝐶
would be extended to be [[𝑎, 𝑎′], [𝑏,𝑏 ′], [𝑐, 𝑐 ′], [𝑑, 𝑐 ′], [𝑒, 𝑐 ′], [𝑓 , 𝑐 ′]], and the exit vertices of𝐶𝐵3 would

be connected to [𝑏, 𝑏 ′], [𝑑, 𝑐 ′], [𝑒, 𝑐 ′], and [𝑓 , 𝑐 ′].
• PairProduct(𝐶𝐵4, 𝐶

′
𝐵3
) (corresponding to the pair [𝑠, 𝑟 ′]) creates proto-CFLOBDD 𝐶𝐵4 with three exit

vertices corresponding to the partition [{00}, {01, 10}, {11}] (again, the same as 𝐶𝐵1), returning the

tuple [[1, 1], [2, 2], [3, 1]]. Mapping this result to the exit vertices of 𝐶 and 𝐶 ′, the final sequence of
exit vertices of𝐶 would be set to [[𝑎, 𝑎′], [𝑏,𝑏 ′], [𝑐, 𝑐 ′], [𝑑, 𝑐 ′], [𝑒, 𝑐 ′], [𝑓 , 𝑐 ′], [𝑔, 𝑐 ′], [ℎ, 𝑐 ′]], and the exit
vertices of 𝐶𝐵4 would be connected to [𝑔, 𝑐 ′], [𝑎, 𝑎′], and [ℎ, 𝑐 ′].

𝐶 has eight exit vertices, four middle vertices, and each of the A-connections and B-connections of 𝐶 and

𝐶 are connected to isomorphic proto-CFLOBDDs. Consequently, 𝐶 = 𝐶 up to isomorphism. Because hash-

consing enforces that the members of each isomorphism class have a unique representation in memory,

PairProduct(𝐶,𝐶 ′) would return a pointer to 𝐶 . □

Lemma D.2. (Local-Reduction Property). Let𝐶 and𝐶 ′ be two proto-CFLOBDDs such that𝐶 ′ = Reduce(𝐶, red)
for some reduction tuple red, and let 𝑔 and 𝑔′ be their respective outermost groupings. Then |𝑔′ | ≤ |𝑔|.

Proof: The size of a grouping is equal to the number of entry, middle, and exit vertices, plus the number of

A-connection and B-connection edges and return edges. Because 𝑔′ is obtained by reducing 𝑔 with respect

to red, the number of exit vertices in 𝑔′ can be no more than the number in 𝑔. Moreover, Reduce can never

cause there to be more B-connections in 𝑔′ than in 𝑔, but it can cause some B-connections of 𝑔 to be folded

together in 𝑔′; thus, the number of middle vertices in 𝑔′ can be no more than the number in 𝑔. Similarly, for
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the A-connection of 𝑔′ and all the B-connections of 𝑔′, the number of return edges can be no more than the

number of return edges in the corresponding A-/B-connections in 𝑔. Consequently, |𝑔′ | ≤ |𝑔|. □

Example D.3. Consider the proto-CFLOBDDs 𝐶 and 𝐶 ′ from Fig. 24. The size of the level-2 grouping 𝑔

equals 1 (entry-vertex) + 4 (middle vertices) + (1 + 3) (1
st
B-connection) + (1 + 3)(2

nd
B-connection) + (1 + 4)

(3
rd
B-connection) + (1 + 3)(4

th
B-connection) + 8 (exit vertices) = 30.

The size of 𝑔′ equals 1 (entry-vertex) + 3 (middle vertices) + (1 + 3) (1
st
B-connection) + (1 + 2)(2

nd

B-connection) + (1 + 2) (3
rd
B-connection) + 3 (exit vertices) = 17.

Thus, |𝑔′ | ≤ |𝑔|, whereas 68 = |𝐶 ′ | > |𝐶 | = 66. □

We now turn to the question of bounding the time complexity of Reduce. Whereas Thm. D.1 showed that

PairProduct(𝐶,𝐶 ′) “undoes” all of the actions taken during Reduce(𝐶, red), Thm. D.3 shows that for every

action in Reduce(𝐶, red), there is an action of at least the same cost in PairProduct(𝐶,𝐶 ′). Consequently, the
time to perform Reduce(𝐶) is bounded by the time that it would take to perform PairProduct(𝐶,𝐶 ′), which is

𝑂 ( |𝐶 | × |𝐶 ′ |).

Theorem D.3. Let 𝐶 and 𝐶 ′ be two proto-CFLOBDDs such that 𝐶 ′ = Reduce(𝐶, red) for some reduction

tuple red. Let Cost(Reduce(𝐶)) and Cost(𝑃𝑃 (𝐶,𝐶 ′)) denote the costs of Reduce(𝐶, red) and PairProduct(𝐶,𝐶 ′),
respectively. Then Cost(𝑅𝑒𝑑𝑢𝑐𝑒 (𝐶)) ≤ Cost(𝑃𝑃 (𝐶,𝐶 ′)).

Proof: The proof is by induction on the level 𝑘 of proto-CFLOBDDs 𝐶 and 𝐶 ′.
Base case: (𝑘 = 0) Consider the following table,

𝐶 red 𝐶 ′ = Reduce(𝐶, red) PairProduct(𝐶,𝐶 ′)
ForkGouping [1, 1] DontCareGrouping [ForkGrouping, ( [1, 1], [2, 1])]

DontCareGrouping [1] DontCareGrouping [DontCareGrouping, ( [1, 1])]
ForkGouping [1, 2] ForkGouping [ForkGouping, ( [1, 1], [2, 2])]

DontCareGrouping −− ForkGouping Not Applicable

The last line in the table cannot arise because there is no reduction tuple that can be used to reduce a

DontCareGrouping to a Fork Grouping. In each of the other three cases in the table, PairProduct(𝐶,𝐶 ′) returns
a tuple that has 𝐶 as the first component.

Moreover, the results produced by Reduce(𝐶) and PairProduct(𝐶,𝐶 ′) are of constant size, and could be

implemented by table lookup. The return value from PairProduct(𝐶,𝐶 ′) is larger than the return value from

Reduce(𝐶, red), which justifies saying that Cost(𝑅𝑒𝑑𝑢𝑐𝑒 (𝐶)) ≤ Cost(𝑃𝑃 (𝐶,𝐶 ′)).
Induction step:

Induction Hypothesis: Assume that for all level-𝑘 proto-CFLOBDDs 𝐶 ′
𝑘

and 𝐶𝑘 for which 𝐶 ′
𝑘

=

Reduce(𝐶𝑘 , red), for some reduction tuple red, Cost(𝑅𝑒𝑑𝑢𝑐𝑒 (𝐶𝑘 )) ≤ Cost(𝑃𝑃 (𝐶𝑘 ,𝐶 ′𝑘 )).
Consider two level-𝑘+1 proto-CFLOBDDs,𝐶 ′

𝑘+1 and𝐶𝑘+1, such that𝐶 ′
𝑘+1 = Reduce(𝐶𝑘+1, red). The proof

breaks down into the following three cases:

(i) A-connections. PairProduct is first called recursively on 𝐶𝑘+1 .𝐴 and 𝐶 ′
𝑘+1 .𝐴—i.e., the level-𝑘 A-

connections of 𝐶𝑘+1 and 𝐶 ′
𝑘+1, respectively. By the construction of 𝐶 ′

𝑘+1 from 𝐶𝑘+1, we know that

𝐶 ′
𝑘+1 .𝐴 = Reduce(𝐶𝑘+1 .𝐴, red𝐴) for some reduction tuple red𝐴 . Thus, by the induction hypothesis,

Cost(𝑅𝑒𝑑𝑢𝑐𝑒 (𝐶𝑘+1 .𝐴)) ≤ Cost(𝑃𝑃 (𝐶𝑘+1 .𝐴,𝐶 ′𝑘+1 .𝐴)) . (14)

(ii) B-connections. The return value from the call on PairProduct(𝐶𝑘+1 .𝐴,𝐶 ′𝑘+1 .𝐴) considered in the previous
case is actually a tuple [𝐶𝑘+1 .𝐴,midVertexPairs]. By the construction of 𝐶 ′

𝑘+1 from 𝐶𝑘+1, we know that

𝐶 ′
𝑘+1 .𝐴 = Reduce(𝐶𝑘+1 .𝐴, red𝐴) for some reduction tuple red𝐴 , and thus by Thm. D.1,𝐶𝑘+1 .𝐴 = 𝐶𝑘+1 .𝐴.
For every (𝑖, 𝑗) ∈ midVertexPairs, PairProduct is called recursively on𝐶𝑘+1 .𝐵 [𝑖] and𝐶 ′𝑘+1 .𝐵 [ 𝑗], which

are level-𝑘 proto-CFLOBDDs. To be able to invoke the induction hypothesis, we must establish that

𝐶 ′
𝑘+1 .𝐵 [ 𝑗] = Reduce(𝐶𝑘+1 .𝐵 [𝑖], red𝐵 [𝑖 ] ), for some red𝐵 [𝑖 ] .
We now consider the meaning of the pairs (𝑖, 𝑗) ∈ midVertexPairs from the standpoint of the language

partitions used in Thm. D.1. Because 𝐶𝑘+1 represents a finer partition of the strings in {0, 1}2𝑘+1 than
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𝐶 ′
𝑘+1, the 𝑖

th
exit vertex of 𝐶𝑘+1 .𝐴 represents a finer partition of the strings in {0, 1}2𝑘 than the 𝑗 th

exit vertex of 𝐶 ′
𝑘+1 .𝐴. Thus, in general, there can be multiple exit vertices 𝑖1, 𝑖2, . . . , 𝑖𝑝 of 𝐶𝑘+1 .𝐴 whose

language partitions were combined to create the language partition of the 𝑗 th exit vertex of 𝐶 ′
𝑘+1 .𝐴.

Because these vertices are exit vertices of A-connections, we can equivalently refer to the set

{𝑖1, 𝑖2, . . . , 𝑖𝑝 } of middle vertices of 𝐶𝑘+1 and the 𝑗 th middle vertex of 𝐶 ′
𝑘+1. The reason this com-

bining of languages took place during Reduce(𝐶𝑘+1, red) can only be because there were calls on

Reduce(𝐶𝑘+1 .𝐵 [𝑖1], red1), Reduce(𝐶𝑘+1 .𝐵 [𝑖2], red2), . . ., Reduce(𝐶𝑘+1 .𝐵 [𝑖𝑝 ], red𝑝 ), for which the re-

sults were all equal to 𝐶 ′
𝑘+1 .𝐵 [ 𝑗]. (The fifth bullet point of Ex. D.1 illustrates how calls to Reduce

on two different B-connections in the same grouping yield the same result, which folds together two

middle vertices of the grouping—thereby unioning their language partitions in the proto-CFLOBDD

returned by Reduce.) Consequently, by the induction hypothesis,

Cost(𝑅𝑒𝑑𝑢𝑐𝑒 (𝐶𝑘+1 .𝐵 [𝑖1])) ≤ Cost(𝑃𝑃 (𝐶𝑘+1 .𝐵 [𝑖1],𝐶 ′𝑘+1 .𝐵 [ 𝑗]))
Cost(𝑅𝑒𝑑𝑢𝑐𝑒 (𝐶𝑘+1 .𝐵 [𝑖2])) ≤ Cost(𝑃𝑃 (𝐶𝑘+1 .𝐵 [𝑖2],𝐶 ′𝑘+1 .𝐵 [ 𝑗]))

. . .

Cost(𝑅𝑒𝑑𝑢𝑐𝑒 (𝐶𝑘+1 .𝐵 [𝑖𝑝 ])) ≤ Cost(𝑃𝑃 (𝐶𝑘+1 .𝐵 [𝑖𝑝 ],𝐶 ′𝑘+1 .𝐵 [ 𝑗]))

(15)

Let 𝑒𝐴 denote the number of exit vertices of𝐶𝑘+1 .𝐴 (which is also the number of middle vertices of𝐶𝑘+1).
These inequalities can be expressed more succinctly by observing that for each index 𝑖 , 1 ≤ 𝑖 ≤ 𝑒𝐴 on

the left-hand side (corresponding to an A-connection language-partition of 𝐶𝑘+1 .𝐴), there is a unique 𝑗
to use on the right-hand side of the inequality. (Index 𝑗 corresponds to the coarsened A-connection

language-partition of 𝐶 ′
𝑘+1 .𝐴.) Let reductum denote this index map: i.e., 𝑗 = reductum(𝑖). We can now

rewrite Eqn. (15) as

Cost(𝑅𝑒𝑑𝑢𝑐𝑒 (𝐶𝑘+1 .𝐵 [𝑖])) ≤ Cost(𝑃𝑃 (𝐶𝑘+1 .𝐵 [𝑖],𝐶 ′𝑘+1 .𝐵 [reductum(𝑖)])) (16)

(iii) Overall cost. Let 𝑔′ and 𝑔 denote the outermost groupings (at level 𝑘 + 1) of𝐶 ′
𝑘+1 and𝐶𝑘+1, respectively.

Reduce and PairProduct each make a call on RepresentativeGrouping at the end of their computations

to hash-cons the outermost grouping that has been constructed. The time complexity of a call on

RepresentativeGrouping is dominated by the cost of computing the grouping’s hash value, and thus

the costs in Reduce and PairProduct are linear in |𝑔′ | and |𝑔|, respectively. By Lem. D.2, we know that

|𝑔′ | ≤ |𝑔|, and thus the cost of the call on RepresentativeGrouping in Reduce is no more than the

cost of the call in PairProduct.

Finally, using Lem. D.2 and Eqns. (14) and (16), we obtain the desired result:

Cost(𝑅𝑒𝑑𝑢𝑐𝑒 (𝐶𝑘+1)) = |𝑔′ | +
𝑒𝐴∑
𝑖=1

Cost(𝑅𝑒𝑑𝑢𝑐𝑒 (𝐶𝑘+1 .𝐵 [𝑖])) + Cost(𝑅𝑒𝑑𝑢𝑐𝑒 (𝐶𝑘+1 .𝐴))

≤ |𝑔 | +
𝑒𝐴∑
𝑖=1

Cost(𝑅𝑒𝑑𝑢𝑐𝑒 (𝐶𝑘+1 .𝐵 [𝑖])) + Cost(𝑅𝑒𝑑𝑢𝑐𝑒 (𝐶𝑘+1 .𝐴))

= |𝑔| +
𝑒𝐴∑
𝑖=1

Cost(𝑃𝑃 (𝐶𝑘+1 .𝐵 [𝑖],𝐶 ′𝑘+1 .𝐵 [reductum(𝑖)])) + Cost(𝑃𝑃 (𝐶𝑘+1 .𝐴,𝐶
′
𝑘+1 .𝐴))

= Cost(𝑃𝑃 (𝐶𝑘+1,𝐶 ′𝑘+1)).
□

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.


	Abstract
	1 Introduction
	2 Preliminaries: A Family of Examples, Boolean functions, Decision Trees, and BDDs
	3 CFLOBDDs
	3.1 Matched Paths
	3.2 CFLOBDD Requirements
	3.3 CFLOBDDs Defined, Part I: Basic Structure
	3.4 Encoding H4 and Other Members of H with a CFLOBDD
	3.5 Reuse of Groupings and Compression of Boolean Functions

	4 Canonicity
	4.1 CFLOBDDs Defined, Part II: Additional Structural Invariants
	4.2 Canonicity of CFLOBDDs

	5 Pragmatics
	5.1 Hash-Consing of Groupings and CFLOBDDs to Create Unique Representatives
	5.2 Equality Testing for CFLOBDDs and proto-CFLOBDDs
	5.3 Function Caching

	6 Algorithms on CFLOBDDs
	6.1 Primitive CFLOBDD-Creation Operations
	6.2 Unary Operations on CFLOBDDs
	6.3 Binary Operations on CFLOBDDs
	6.4 Path Counting and Sampling

	7 CFLOBDD Algorithms for Matrices and Vectors
	7.1 Representing Matrices and Vectors using CFLOBDDs
	7.2 Kronecker Product
	7.3 Matrix Multiplication
	7.4 Vector-to-Matrix Conversion

	8 Relations efficiently represented by CFLOBDDs
	9 Applications to Quantum-Circuit Simulation
	9.1 Background on Quantum Computing
	9.2 Quantum Algorithms
	9.3 Advantages of Simulation
	9.4 The Potential of CFLOBDDs for Quantum-Circuit Simulation

	10 Evaluation
	10.1 Experimental Setup
	10.2 Benchmarks and Experimental Results

	11 Related Work
	12 Conclusions
	13 Acknowledgments
	References
	A Details of Notation for CFLOBDDs and their Components
	B Proof of the Lexicographic-Order Proposition
	C Proof of the Canonicity of CFLOBDDs
	D Time Complexity of Reduce

