CFLOBDDs:
Context-Free-Language Ordered Binary Decision Diagrams

MEGHANA APARNA SISTLA, The University of Texas at Austin, USA
SWARAT CHAUDHURI, The University of Texas at Austin, USA
THOMAS REPS, University of Wisconsin-Madison, USA

This paper presents a new compressed representation of Boolean functions, called CFLOBDDs (for Context-Free-Language Ordered Binary Decision Diagrams). They are essentially a plug-compatible alternative to BDDs (Binary Decision Diagrams), and hence useful for representing certain classes of functions, matrices, graphs, relations, etc. in a highly compressed fashion. CFLOBDDs share many of the good properties of BDDs, but—in the best case—the CFLOBDD for a Boolean function can be exponentially smaller than any BDD for that function. Compared with the size of the decision tree for a function, a CFLOBDD—again, in the best case—can give a double-exponential reduction in size. They have the potential to permit applications to (i) execute much faster, and (ii) handle much larger problem instances than has been possible heretofore.

We applied CFLOBDDs in quantum-circuit simulation, and found that for several standard problems the improvement in scalability, compared to BDDs, is quite dramatic. With a 15-minute timeout, the number of qubits that CFLOBDDs can handle are 65,536 for GHZ, 524,288 for BV; 4,194,304 for DJ; and 4,096 for Grover’s Algorithm, besting BDDs by factors of 128×, 1,024×, 8,192×, and 128×, respectively.

Additional Key Words and Phrases: Decision diagram, matched paths, best-case double-exponential compression, quantum simulation

1 INTRODUCTION

Many areas of computer science—such as hardware and software verification, logic synthesis, and equivalence checking of combinatorial circuits—require a space-efficient representation of data, as well as space- and time-efficient operations on data stored in such a representation. Many of the tasks in the aforementioned areas involve operations on either (i) Boolean functions, or (ii) non-Boolean-valued functions over Boolean arguments. In some cases, a level of encoding is involved: the data of interest could be decision trees, graphs, relations, matrices, circuits, signals, etc., which are encoded as functions of type (i) or (ii). Binary Decision Diagrams (BDDs) [11] are one data structure that is widely used for such purposes. A Boolean function in $B_n = \{0, 1\}^n \rightarrow \{0, 1\}$ is represented in a compressed form as an ROBDD (Reduced Ordered BDD) data structure. All manipulations of these Boolean functions are carried out using algorithms that operate on ROBDDs. ROBDDs are BDDs in which the same variable ordering is imposed on the Boolean variables (“Ordered”), and so-called don’t-care nodes are removed (“Reduced”). ROBDDs with non-binary-valued terminals are called Multi-Terminal BDDs (MTBDDs) [13, 15] or Algebraic Decision Diagrams (ADDs) [3]. We will refer to ROBDDs/MTBDDs/ADDs generically as BDDs from hereon.
In the programming-languages community, BDDs are widely used for program analysis and have been used in Datalog interpreters.

- The SLAM system (later called Static Driver Verifier) was a Microsoft tool for checking temporal properties of device drivers (e.g., that drivers correctly follow API-usage rules) [5]. BDDs were used in SLAM to represent the abstract transformers of Boolean programs that were abstractions of a driver’s source code. BDDs allowed the SLAM developers to increase the capabilities of the IFDS framework for interprocedural dataflow analysis [54] to handle relations over valuations over a Boolean program’s Boolean variables [6].

- The Datalog solver bddbddb, which uses BDDs as the backing representation of relations, was developed by Whaley and Lam to support a variety of program analyses [65, 66].

- Lhoták used BDDs in interprocedural program analyses to represent and manipulate collections of large sets, allowing him to use larger programs than previous studies of the factors that affect analysis precision [37].

In some applications of BDDs, the initial and final BDD structures are of a reasonable size, but there is an “intermediate swell” during the computation. Such a blow-up can cause operations to take a long time, or cause an application to run out of memory. The size-explosion issue generally limits the use of BDDs to problems involving at most a few hundred Boolean variables.

In this paper, we introduce a new data structure, called Context-Free-Language Ordered Binary Decision Diagrams (CFLOBDDs), which are essentially a plug-compatible replacement for BDDs. CFLOBDDs share many of the good properties of BDDs, but—in the best case—the CFLOBDD for a Boolean function can be exponentially smaller than any ROBDD for that function. Compared with the size of the decision tree for a function, a CFLOBDD—again, in the best case—can give a double-exponential reduction in size. Obviously, not every Boolean function has such a highly compressed representation, but for the ones that do, CFLOBDDs offer much better compression than BDDs, and thus have the potential to permit applications to (ii) execute much faster, and (ii) handle much larger problem instances than has been possible heretofore.

CFLOBDDs can represent functions, matrices, graphs, relations, etc. (using binary- or multi-valued terminals, as appropriate). Even for objects for which double-exponential compression is not achieved, CFLOBDDs may provide better compression than BDDs. Like BDDs, CFLOBDDs are canonical (§4), and operations are performed on them directly (§6): they are never unfolded to the full decision tree. Moreover, an implementation can ensure that only a single representative is ever constructed for a given function; consequently, the test of whether two CFLOBDDs represent equal functions can be performed merely by comparing the values of two pointers.

CFLOBDDs are based on the following insight:

A BDD can be considered to be a special form of bounded-size, branching, but non-looping program. From that viewpoint, a CFLOBDD can be considered to be a bounded-size, branching, but non-looping program in which a certain form of procedure call is permitted.

The advantages of this idea are two-fold. First, whereas a BDD of size \(n \) can have at most \(2^n \) paths, the “procedure-call” mechanism in CFLOBDDs allows a CFLOBDD of size \(n \) to have \(2^{2^n} \) paths (§3.5.1). This difference is what lies behind the potential compression advantage of CFLOBDDs. Second, even when best-case compression is not possible, such “procedure calls” allow there to be additional sharing of structure beyond what is possible in BDDs: a BDD can share sub-DAGs, whereas a procedure call in a CFLOBDD shares the “middle of a DAG.” (See Figs. 3 and 6.)

We evaluated CFLOBDDs and BDDs on synthetic benchmarks and for quantum simulation. We compared the performance in terms of size and execution time: on problem sizes for which both approaches ran successfully, CFLOBDDs were generally smaller and had lower execution
times, particularly at the upper end of the capabilities of BDDs. Moreover, the improvement that CFLOBDDs bring in scalability is quite dramatic, both for the synthetic benchmarks (§10.2.1) and for quantum simulation (§10.2.2).

Our work makes the following contributions:

- We introduce a new data structure, called CFLOBDDs, for representing functions, matrices, graphs, relations, and other discrete structures in a highly compressed fashion (§3). In the best case, a CFLOBDD obtains double-exponential compression in space: i.e., the CFLOBDD for a Boolean function f is double-exponentially smaller than the decision tree for f.

- We present algorithms for creating CFLOBDDs and performing operations on them (§6). Most operations have low cost: For many of the functions of 2^k variables for which the CFLOBDD representation is double-exponentially smaller than a decision tree of size 2^{2^k}, the CFLOBDD can be constructed in time $O(k)$ and space $O(k)$. Most unary operations on CFLOBDDs are either constant-time or linear in the size of the argument CFLOBDD. The cost of most binary operations is bounded by the product of (i) the sizes of the two argument CFLOBDDs, and (ii) the size of the answer CFLOBDD.

- We show an exponential gap between CFLOBDDs and BDDs (§8).

- We describe how CFLOBDDs can be used to simulate quantum circuits (§9.4).

- We measured the performance of CFLOBDDs and BDDs on synthetic and quantum-simulation benchmarks (§10). For several problems, the improvement in scalability enabled by CFLOBDDs is quite dramatic. In particular, in the quantum-simulation benchmarks, the number of qubits that could be handled using CFLOBDDs was larger, compared to BDDs, by a factor of $128 \times$ for GHZ; $1,024 \times$ for BV; $8,192 \times$ for DJ; and $128 \times$ for Grover’s algorithm.

Organisation. §2 reviews decision trees and BDDs. §3 introduces the basic principles underlying CFLOBDDs. §4 introduces some additional structural invariants that allow us to establish that each Boolean function has a unique, canonical representation as a CFLOBDD. §5 discusses how some standard techniques—hash-consing [23] and function-caching (or memo functions [45]) —apply to CFLOBDDs. §6 presents algorithms for a variety of CFLOBDD operations. §7 discusses how to represent matrices and vectors using CFLOBDDs, and how to perform some important operations on them. §8 demonstrates an exponential gap between CFLOBDDs and BDDs: the CFLOBDD for a function f can be exponentially smaller than any BDD for f. §9 discusses the application of CFLOBDDs to simulating quantum circuits. §10 poses two experimental questions and presents the results of experiments on synthetic and quantum-simulation benchmarks. §11 discusses related work. §12 concludes.

In consultation with the EIC, we have limited the presentation to about sixty pages. Additional material is available in reference [59]; citations of the form “[59, §XY]” indicate where omitted details can be found. The three most relevant appendices from [59] are included in this paper (see §A–§C). §D concerns the time complexity of a key subroutine used in several of the CFLOBDD operations.

2 PRELIMINARIES: A FAMILY OF EXAMPLES, BOOLEAN FUNCTIONS, DECISION TREES, AND BDDS

This section presents the set of Hadamard matrices \mathcal{H}, which recur in §3 and §8–§10. It also reviews Boolean functions, decision trees, and BDDs, and shows how decision trees and BDDs can encode the members of \mathcal{H}.

Hadamard Matrices. The family of Hadamard matrices, $\mathcal{H} = \{ H_{2^i} \mid i \geq 1 \}$, can be defined recursively: for $i \geq 1$, $H_{2i+1} = H_{2i} \otimes H_{2i}$, with H_2 from Fig. 1 as the base case, where \otimes denotes
\[H_2 = \begin{bmatrix} 0 & 1 \\ x_0 & 1 \\ 1 & -1 \end{bmatrix} \quad H_4 = H_2 \otimes H_2 = \begin{bmatrix} 0 & 1 \\ x_0 & H_2 \\ x_0 & -H_2 \end{bmatrix} \]

Fig. 1. \(H_2 \) and \(H_4 \), the first two members of the family of Hadamard matrices \(\mathcal{H} = \{ H_{2^i} \mid i \geq 1 \} \).

Kronecker product.\(^1\) Fig. 1 shows \(H_2 \) and \(H_4 \), the first two matrices in \(\mathcal{H} \). The Kronecker product of two matrices is defined as

\[A \otimes B = \begin{bmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,m} \end{bmatrix} \otimes B = \begin{bmatrix} a_{1,1}B & \cdots & a_{1,m}B \\ \vdots & \ddots & \vdots \\ a_{n,1}B & \cdots & a_{n,m}B \end{bmatrix} \]

Equivalently, \((A \otimes B)_{i',j'} = A_{i,j} \times B_{i',j'}\). If \(A \) is \(n \times m \) and \(B \) is \(n' \times m' \), then \(A \otimes B \) is \(nn' \times mm' \).

For \(i \geq 1 \), \(H_{2^i} \) is a square matrix of size \(2^{2i-1} \times 2^{2i-1} \). Thus, the number of rows/columns/entries in \(H_{2^{i+1}} \) is the square of the number of rows/columns/entries in \(H_{2^i} \). For example, \(H_4 \) is \(4 \times 4 \) (16 entries); \(H_8 \) is \(16 \times 16 \) (256 entries). An indexing scheme for \(H_{2^i} \) can be defined that uses \(2^{i-1} + 2^{i-1} = 2 \times 2^{i-1} = 2^i \) Boolean variables. As shown in Fig. 1, \(H_2 \) requires 2 variables—\(x_0 \) for the row index and \(y_0 \) for the column index—whereas \(H_4 \) requires 4 variables—\(x_0 \) and \(x_1 \) for the row index, and \(y_0 \) and \(y_1 \) for the column index. In general, \(H_{2^i} \) can be treated as a function of type \(\{0,1\}^{2^{i-1}} \times \{0,1\}^{2^{i-1}} \rightarrow \{-1,1\} \). Our convention is that \(x_0 \) and \(y_0 \) are the most-significant bits of the row and column indexes, respectively; \(x_1 \) and \(y_1 \) are the next-most-significant bits, respectively, etc.

Boolean Functions. A Boolean function over \(n \) variables is a function in \(\{ F, T \}^n \rightarrow \{ F, T \} \). This paper is also concerned with pseudo-Boolean functions: a pseudo-Boolean function over \(n \) variables and value domain \(W \) is a function in \(\{ F, T \}^n \rightarrow W \). Because there is little chance of confusion, for brevity, we typically refer to such a function as a "Boolean function." We also use \(0 \) and \(1 \) as synonyms for \(F \) and \(T \), respectively.

Hadamard matrix \(H_{2^i} \) can be considered to be a (pseudo-)Boolean function in \(\{0,1\}^{2^i} \rightarrow \{-1,1\} \), with some convention about how the \(2^i \) input variables correspond to bits of the row-index and the column-index of the matrix.

Decision Trees. A decision tree is a tree representation of a Boolean function. For a Boolean function \(B \) in \(\{ F, T \}^n \rightarrow W \), the decision tree \(T_B \) for \(B \) is a complete binary tree with \(n \) plies and a value from \(W \) at each leaf. \(T_B \) comes with a specific ordering on the \(n \) Boolean inputs of \(B \); each ply of \(T_B \) corresponds to some specific Boolean variable \(v \) among \(B \)'s \(n \) Boolean input variables. \(T_B \)—and hence \(B \)—can be evaluated with respect to an input assignment \(\{ v_1 \mapsto b_1, \ldots, v_n \mapsto b_n \} \) (where \(b_1, \ldots, b_n \in \{ F, T \} \)) by following a root-to-leaf path in \(T_B \), returning the value that labels the leaf. (Note that \(v_1 \) is not necessarily associated with the ply at the root. The order used by \(T_B \) is fixed, but can be any of the permutations of the sequence \(\{ v_1, \ldots, v_n \} \).)

\(^1\) Others use a different indexing scheme: \(H_2 \) is the same as with our scheme (as is \(H_4 \)), but the recursive definition is \(H_{2i+1} = H_2 \otimes H_{2^i} \), for \(i \geq 1 \). Thus, for \(i \geq 0, H_{2^i} \) is a \(2^i \times 2^i \) matrix (and thus has \(2^{2i} \) entries). In contrast, with our indexing scheme, the matrix we call \(H_{2^i} \) is a \(2^{2i-1} \times 2^{2i-1} \) matrix, for \(i \geq 1 \) (and thus has \(2^{2i} \) entries).

Put another way, what we call \(H_{2^i} \) would conventionally be known as \(H_{2^{i+1}} \). Not only do we avoid having to write a doubly superscripted subscript, we will see in §3.4 that the recursive rule \(H_{2^{i+1}} = H_{2^i} \otimes H_{2^i} \) fits particularly well with the internal structure of CFLOBDDs.

\[, \text{Vol. 1, No. 1, Article } , \text{Publication date: January 2024.} \]
Fig. 2. Decision trees and BDDs for H_2 and H_4, with plies in interleaved most-significant-bit order—(x_0, y_0) and (x_0, y_0, x_1, y_1), respectively. The bold paths show the assignments $[x_0 \mapsto F, y_0 \mapsto T]$ (for $H_2[0, 1]$) and $[x_0 \mapsto F, y_0 \mapsto T, x_1 \mapsto F, y_1 \mapsto T]$ (for $H_4[0, 3]$), respectively.

Figs. 2a and 2c show two decision trees, with the convention that will be used throughout the paper that at each interior node, the left branch is taken when the current Boolean variable in the assignment has the value F (or 0); the right branch is taken for the value T (or 1). Fig. 2a shows the decision tree for H_2, which has 2 plies, 3 interior nodes, and 4 leaf nodes, using the variable ordering (x_0, y_0). In Fig. 2a, the path highlighted in bold is for the assignment $[x_0 \mapsto F, y_0 \mapsto T]$, which corresponds to $H_2[0, 1]$ whose value is 1. Fig. 2c shows the decision tree for H_4, which has 4 plies and 15 interior nodes, using the interleaved-variable ordering (x_0, y_0, x_1, y_1). The path in bold is for $[x_0 \mapsto F, y_0 \mapsto T, x_1 \mapsto F, y_1 \mapsto T]$, which corresponds to $H_4[0, 3]$, whose value is 1.

In Fig. 2c, the Kronecker product in the expression $H_4 = H_2 \otimes H_2$ corresponds to stacking decision trees. In essence, the (x_0, y_0) plies correspond to the left occurrence of H_2 in “$H_2 \otimes H_2$.” At each “leaf” (the four interior nodes after the y_0 ply), there is another copy of H_2 in the (x_1, y_1) plies, with the terminal values labeled with the product of the left H_2’s value and the right H_2’s value. We can construct a decision tree for each member of \mathcal{H} by repeated stacking, doubling the number of plies each time in accordance with the definition $H_{2^i+1} = H_{2^i} \otimes H_{2^i}$.

Boolean functions and decision trees are related by the following fact:

Observation 2.1. Consider the sets of (i) Boolean functions in $\{0, 1\}^n \rightarrow W$, and (ii) n-ply decision trees with leaves labeled by values in W, using a variable ordering that is some fixed permutation of (v_1, \ldots, v_n). These sets can be put into one-to-one correspondence. □

For each Boolean function $B : \{0, 1\}^n \rightarrow W$, create the n-ply decision tree T_B in which the value $B(b_1, \ldots, b_n)$ is placed at the end of the path in T_B for the assignment $[v_1 \mapsto b_1, \ldots, v_n \mapsto b_n]$. Conversely, for each decision tree T_B, let B be the function in $\{0, 1\}^n \rightarrow W$ for which $B(b_1, \ldots, b_n)$ equals the value w at the end of the path in T_B for the assignment $[v_1 \mapsto b_1, \ldots, v_n \mapsto b_n]$. Finally, if
two decision trees T_1 and T_2 represent the same Boolean function B, then the sequence of leaves in left-to-right order from each tree are equal, and thus T_1 and T_2 are the same tree (as a mathematical object). Thus, the n-ply decision trees that use a given variable ordering represent the Boolean functions in $\{0, 1\}^n \rightarrow W$ uniquely.

BDDs. A BDD is a compressed representation of a decision tree. Fig. 2b shows the BDD for H_2, using the variable ordering $\langle x_0, y_0 \rangle$. Again, left branches are for F (or 0); right branches are for T (or 1). In the H_2 matrix, rows 0 and 1 are different, and hence the BDD node for x_0 is a fork_node, which forks to two different substructures. In row 0 of the matrix, columns 0 and 1 are identical, and hence the y_0 ply is skipped in the F branch of x_0, with the F branch of x_0 leading directly to the terminal value 1. Conversely, in row 1 of the matrix, the columns differ, and hence the BDD node for y_0 in the T branch of x_0 is a fork_node. In Fig. 2b, the bold path is for the assignment $[x_0 \mapsto F, y_0 \mapsto T]$ for $H_2[0, 1]$. (Only the edge for $x_0 \mapsto F$ is highlighted because the ply for y_0 is skipped when $x_0 \mapsto F$.)

Fig. 2d shows the BDD for H_4 under the interleaved-variable-ordering $\langle x_0, y_0, x_1, y_1 \rangle$. The bold path is for the assignment $[x_0 \mapsto F, y_0 \mapsto T, x_1 \mapsto F, y_1 \mapsto T]$, which corresponds to $H_4[0, 3]$. (The path in the BDD only shows $x_0 \mapsto F, x_1 \mapsto F$ because the plies for y_0 when $x_0 \mapsto F$, and y_1 when $x_0 \mapsto F$ and $x_1 \mapsto F$ are skipped.)

Fig. 2e shows that the Kronecker product $H_4 = H_2 \otimes H_2$ corresponds to stacking BDDs—in essence, each terminal of the BDD for the left occurrence of H_2 in “$H_2 \otimes H_2$” is replaced by a copy of H_2. The BDD for H_4 contains three occurrences of H_2: one in the $\langle x_0, y_0 \rangle$ plies, and two in the $\langle x_1, y_1 \rangle$ plies. The leftmost $\langle x_1, y_1 \rangle$ occurrence (blue-dashed outline) accounts for the three occurrences of matrix H_2 in the H_4 matrix; the rightmost occurrence (green dashed-double-dotted outline) corresponds to the negated matrix $-H_2$ in the lower-right corner of H_4 (cf. Fig. 1). Consequently, one can construct a BDD for each member of \mathcal{H} by repeated stacking, doubling the number of plies each time, per $H_{2^{i+1}} = H_{2^i} \otimes H_{2^i}$, but only tripling the size with each such stacking operation (e.g., $H_8 = H_4 \otimes H_4$ has three copies of H_4, etc.). Consequently, the size of the BDD for H_{2^i} is $O(3^i)$.

Discussion. The decision tree for H_{2^i} has height 2^i, 2^i leaves, and $2^i - 1$ internal nodes. Thus, the size of the tree is double exponential in i. As observed above, the size of the BDD for H_{2^i} is $O(3^i)$, and hence, compared to decision trees, BDDs achieve exponential compression on \mathcal{H}.

In contrast, CFLOBDDs employ a different principle than stacking to account for Kronecker product. Looking ahead, this principle is explained in §3.4, and as we will see when we get to Fig. 6b, there is a CFLOBDD of size $O(i)$ that encodes H_{2^i}. Consequently, CFLOBDDs achieve double-exponential compression on \mathcal{H}. Moreover, in §8, we show that this exponential separation is inherent: for every variable ordering, a BDD that represents H_{2^i} requires $\Omega(2^i)$ nodes (Thm. 8.1).

In the remainder of the paper, detailed knowledge about BDDs is not essential. The primary purpose of the material that discusses BDDs is to show that CFLOBDDs offer something new, but that material is tangential to being able to understand the CFLOBDD algorithms that we give. The paper gives what is essentially a complete account of CFLOBDD operations and invariants, and we hope that it could be read by someone who knows little about BDDs. Nevertheless, additional knowledge about BDD internals could help readers appreciate the material in the paper. For background about how BDDs are implemented, the reader is referred to Brace et al. [10].

3 CFLOBDDs

CFLOBDDs are a binary decision diagram inspired by BDDs, but the two data structures are based on different principles. A BDD is an acyclic finite-state machine (modulo ply-skipping), whereas a CFLOBDD is a particular kind of single-entry, multi-exit, non-recursive, hierarchical finite-state
machine (HFSM) [1]. This section describes the basic principles of CFLOBDDs, illustrating them via encodings of H_2 and H_4 with the variable orderings (x_0, y_0) and (x_0, y_0, x_1, y_1), respectively.

Intuition. Before discussing the CFLOBDD data structure in detail, we give some intuition about the decomposition principle used in CFLOBDDs.

Consider a function $f : \{0, 1\}^n \rightarrow [1 \ldots m]$ over variables x_0, \ldots, x_{n-1}. In the classical Shannon decomposition of f, one looks at the value of x_0 and then derives two co-factors $g_0 = f|_{x_0=0}$ and $g_1 = f|_{x_0=1}$, both of which are functions over variables x_1, \ldots, x_{n-1}. Functions g_0 and g_1 can be combined to yield f by the identity $f = \overline{x_0} \cdot g_0 + x_0 \cdot g_1$ (where $\overline{x_0}$ denotes the complement of x_0, “·” denotes logical-and, and “+” denotes logical-or). (See [16, §4.2] for a precise definition of the generalization of the Shannon decomposition for MTBDDs.) The same decomposition can be carried out recursively on g_0 and g_1, and OBDDs—whether reduced or not—exploit this decomposition by sharing common co-factors that arise in the different plies of the recursive decomposition.

The decomposition used in CFLOBDDs is different. The number of variables n is assumed to be a power of 2, and at each decomposition level the variables are divided into two halves: $x_0, \ldots, x_{n/2-1}$ and $x_{n/2}, \ldots, x_{n-1}$. Let g_0 be the function of the first $n/2$ variables that maps them to $[1 \ldots k]$, where k is the number of equivalence classes of residual functions one has after the first $n/2$ variables of f are read. (k equals the number of nodes in the corresponding BDD for f at ply $n/2$.) For each $i \in [1 \ldots k]$, g_i is the appropriate function over the remaining $n/2$ variables, which combined with g_0 (based on index i), and an appropriate matching of returned values, yields f. The representation allows sharing across all the functions g_0, g_1, \ldots, g_k. Moreover, the divide-the-variables-in-half decomposition is carried out recursively on g_0, g_1, \ldots, g_k, with mutual sharing of the decomposed functions that arise at all levels.

Rather than producing a DAG-structured data structure, as one has with BDDs, the divide-the-variables-in-half decomposition leads to a structure that resembles an HFSM (or, alternatively, the interprocedural-control-flow graph for a non-recursive, multi-procedure program).

2 For a Boolean function of m variables that is not a power of 2, one can pad the function with dummy Boolean variables to reach the next higher power of 2. Depending on the function, the user may choose to interleave the dummy variables among the “legitimate” variables or place them all at the end (or some combination of both). By this device, every Boolean function can be represented as a CFLOBDD. (See also the discussion in §4.2 of property (2).)

3 We are being deliberately vague about how g_0, g_1, \ldots, g_k are combined, because the details are somewhat complicated.

The representation allows sharing across all the functions g_0, g_1, \ldots, g_k. Moreover, the divide-the-variables-in-half decomposition is carried out recursively on g_0, g_1, \ldots, g_k, with mutual sharing of the decomposed functions that arise at all levels.

Rather than producing a DAG-structured data structure, as one has with BDDs, the divide-the-variables-in-half decomposition leads to a structure that resembles an HFSM (or, alternatively, the interprocedural-control-flow graph for a non-recursive, multi-procedure program).
3.1 Matched Paths

The CFLOBDD representation of H_2 consists of three groupings, shown as three ovals in Fig. 3a.\footnote{Groupings are represented in memory as a kind of node structure, but we will use “nodes” solely for decision trees and BDDs. Groupings are depicted as ovals, and the dots inside will be referred to as “vertices.”} Each CFLOBDD grouping is associated with a given level. The two small ovals are at level 0 (labeled L_0), and the large oval is at level 1 (labeled L_1). There is an implicit hierarchical structure to the levels, and level-0 groupings are said to be leaves of the CFLOBDD. There are only two possible types of level-0 groupings:

- A level-0 grouping like the one at the upper right in Fig. 3a is called a fork grouping.
- A level-0 grouping like the one at the lower right in Fig. 3a is called a don’t-care grouping.

The vertex at the top of each grouping is the grouping’s entry vertex. The entry vertex of a level-0 grouping corresponds to a decision point: left branches are for F (or 0); right branches are for T (or 1). The vertices at the bottom of each grouping are called exit vertices; those in the middle of the level-1 grouping are called middle vertices.

In matrix H_2, each entry is either 1 or -1. Each assignment over (x_0, y_0) corresponds to a special kind of path in Fig. 3a that leads to either 1 or -1. Each such path starts from the entry vertex of the level-1 grouping, making “decisions” for the next variable in sequence each time the entry vertex of a level-0 grouping is encountered.

Fig. 3a illustrates the key principle behind CFLOBDDs—namely, the use of a matching condition on paths. The bold path is for the assignment $[x_0 \mapsto F, y_0 \mapsto T]$, which corresponds to $H_2[0, 1]$. The path starts at the level-1 grouping’s entry vertex and goes to the entry vertex of the level-0 fork grouping via a solid edge ($-$); takes the left branch of the fork grouping (corresponding to $x_0 \mapsto F$); and leaves the fork grouping via a solid edge ($-$), reaching the leftmost of the middle vertices of the level-1 grouping. The path then goes to the entry vertex of the level-0 don’t-care grouping via a dashed-double-dotted edge (\cdots); takes the right branch of the don’t-care grouping (corresponding to $y_0 \mapsto T$); and leaves via a dashed-double-dotted edge (\cdots), reaching the leftmost exit vertex of the level-1 grouping, which is connected to the terminal value 1 (the value of $H_2[0, 1]$). A pair of incoming/outgoing edges of a grouping, such as the pairs of (i) black solid edges, and (ii) green dashed-double-dotted edges in the bold path in Fig. 3a, are said to be matched. The bold path itself is called a matched path. This example illustrates the following principle:

\textbf{Matched-Path Principle.} When a path follows an edge that returns to level i from level $i-1$, it must follow an edge that matches the closest preceding edge from level i to level $i-1$.

Formally, the matched-path principle can be expressed as a condition that—for a path to be matched—the word spelled out by the labels on the edges of the path must be a word in a certain context-free language \cite{Hartmanis70}. (This idea is the origin of “CFL” in “CFLOBDD.”) One way to formalize the condition is to label each edge from level i to level $i-1$ with an open-parenthesis symbol of the form “(b), where b is an index that distinguishes the edge from all other edges to any entry vertex of any grouping of the CFLOBDD. (In particular, suppose that there are NumConnections such edges, and that the value of b runs from 1 to NumConnections.) Each return edge that runs from an exit vertex of the level $i-1$ grouping back to level i, and corresponds to the edge labeled “(b", is labeled “$)$b”. Each path in a CFLOBDD then generates a string of parenthesis symbols formed by concatenating, in order, the labels of the edges on the path. (Unlabeled edges in the level-0 groupings are ignored in forming this string.) A path in a CFLOBDD is called a matched-path iff the path’s word is in the language $L(\text{matched})$ of balanced-parenthesis strings generated by

$$\text{matched } \rightarrow \epsilon | \text{matched matched } | (b \text{ matched })_b \quad 1 \leq b \leq \text{NumConnections} \quad (1)$$
393 Only \textit{matched}-paths that start at the entry vertex of the CFLOBDD’s highest-level grouping and
394 end at a terminal value are considered in interpreting a CFLOBDD.
395
396 In figures in the paper, we use black solid (—), blue dashed (— — —), red short-dashed (— — — —), purple
dashed-dotted (— · · ·), and green dashed-double-dotted (— · · —) edges, in the indicated colors, rather
397 than attaching explicit labels to edges. To reduce the number of colors used, we sometimes re-use
398 colors in a given figure; however, it should still be clear which pairs of edges match.
399
400 The matched-path principle allows a given grouping to play multiple roles during the evaluation
401 of a Boolean function. In particular, the level-0 groupings are shared, and thus are used to interpret
different variables at different places in a matched path through a CFLOBDD. For example, the level-0
402 fork grouping in Fig. 3a is used to interpret (i) \(x_0\) (when “called” via the black solid edge), and (ii)
403 \(y_0\) (when “called” via the blue dashed edge, which happens when \(x_0 \mapsto T\)).\(^5\) The edge-matching
404 condition is important because the black solid return edges lead to the level-1 grouping’s middle
405 vertices, whereas the blue dashed return edges lead to the level-1 grouping’s exit vertices.
406
407 In Fig. 3a, the fork grouping is labeled with \(x_0\) and \(y_0\), and the don’t-care grouping with \(y_0\). In
general, however, the level-0 groupings interpret different variables at different places in a matched
408 path, in accordance with the following principle:

409 \textbf{Contextual-Interpretation Principle.} A level-0 grouping is not associated with a specific Boolean
410 variable. Instead, the variable that a level-0 grouping refers to is determined by context: the \(n^{th}\) level-0
411 grouping visited along a matched path is used to interpret the \(n^{th}\) Boolean variable.

412 The reader might be worried by the fact that Fig. 3a contains cycles. That is, if one ignores the
413 ovals in Fig. 3a, as well as the distinctions among solid, dashed, and dashed-double-dotted edges,
one is left with a cyclic graph: there is a cycle that starts at the rightmost middle vertex of the level-1
grouping, follows the blue dashed edge (— — —) to the entry vertex of the level-0 fork-grouping,
takes the right branch, and returns along the black solid edge (—) to the rightmost middle vertex of
the level-1 grouping. However, that path is not a matched path, and is excluded from consideration.

3.2 CFLOBDD Requirements

In designing CFLOBDDs, the goal is to meet the following five requirements:

(1) \textbf{Soundness:} Every level-\(k\) CFLOBDD represents a decision tree of height \(2^k\) and size \(2^{2^k}\)
(2) \textbf{Completeness:} each decision tree of height \(2^k\) and size \(2^{2^k}\) can be encoded as a level-\(k\) CFLOBDD
(3) \textbf{Best-case double-exponential compression:} in the best case, a decision tree of height \(2^k\) and size
\(2^{2^k}\) can be encoded as a level-\(k\) CFLOBDD of size \(k\)
(4) \textbf{Canonicity:} CFLOBDDs are a canonical representation of Boolean functions
(5) \textbf{Computational efficiency:} most operations run in time polynomial in the sizes of (i) the input
CFLOBDDs, or (ii) the input CFLOBDDs and the output CFLOBDD

These requirements are similar to those for BDDs, but with double-exponential parameters—rather
than single-exponential parameters—in Requirements (1)–(3). To satisfy these more stringent
requirements, we define a data structure that is quite different from BDDs (see §3.3 and §4.1).
Requirements (1) and (3) are established in §3.3.4 and §3.5.2, respectively. Requirements (2) and
(4) are established in §4 and Appendix §C. Requirement (5) is addressed in §5, §6, and §D; in
particular, Tab. 1 at the beginning of §6 lists the fourteen main operations on CFLOBDDs and the
asymptotic running times of the algorithms that we give for the operations. BDDs enjoy the
more desirable property that most operations run in time polynomial in the sizes of the input
BDDs, but the same property does not seem possible for CFLOBDDs. §D establishes that the time

\(^5\)The term “call” is by analogy with how matched paths model the actions of procedure calls in graphs used for interprocedural
dataflow analysis [55, 58], interprocedural slicing [30], and model checking hierarchical state machines [9, §5].
complexity of a key subroutine used in several of the CFLOBDD operations to maintain canonicity is polynomial in the sizes of the input and output CFLOBDDs.

3.3 CFLOBDDs Defined, Part I: Basic Structure

Our formal definition of CFLOBDDs is given in two parts: Defn. 3.1 (below) and Defn. 4.1 (§4.1). Defn. 3.1 defines the basic structure of CFLOBDDs, whose various elements are depicted in Fig. 3b. Defn. 4.1 imposes some additional structural invariants to ensure that CFLOBDDs provide a canonical representation of Boolean functions. Much about CFLOBDDs can be understood just from Defn. 3.1, so we postpone introducing the structural invariants until we address canonicity in §4. Where necessary, we distinguish between mock-CFLOBDDs (Defn. 3.1) and CFLOBDDs (Defn. 4.1), although we typically drop the qualifier “mock-” when there is little danger of confusion.

Fig. 3b illustrates Defn. 3.1 using the CFLOBDD that represents Hadamard matrix H_2.

Definition 3.1 (Mock-CFLOBDD; see Fig. 3b). A mock-CFLOBDD at level k is a hierarchical structure made up of some number of groupings, of which there is one grouping at level k, and at least one at each level $0, 1, \ldots, k - 1$. The grouping at level k is the head of the mock-CFLOBDD. A grouping is a collection of vertices and edges (to other groupings), with the structure described below.

Each grouping g_i at level $0 \leq i \leq k$ has a unique entry vertex, which is disjoint from g_i’s non-empty set of exit vertices.

If $i = 0$, g_i is either a fork grouping or a don’t-care grouping, as depicted in the upper right and lower right of Fig. 3b, respectively. The entry vertex of a level-0 grouping corresponds to a decision point: left branches are for F (or 0); right branches are for T (or 1). A don’t-care grouping has a single exit vertex, and the edges for the left and right branches both connect the entry vertex to the exit vertex. A fork grouping has two exit vertices: the entry vertex’s left and right branches connect the entry vertex to the first and second exit vertices, respectively.

If $i \geq 1$, g_i has a further disjoint set of middle vertices. We assume that both the middle vertices and the exit vertices are associated with some fixed, known total order (i.e., the sets of middle vertices and exit vertices could each be stored in an array). Moreover, g_i has an A-connection edge that, from g_i’s entry vertex, “calls” a level-$i-1$ grouping a_{i-1}, along with a set of matching return edges; each return edge from a_{i-1} connects one of the exit vertices of a_{i-1} to one of the middle vertices of g_i. In addition, for each middle vertex m_j, g_i has a B-connection edge that “calls” a level-$i-1$ grouping b_j, along with a set of matching return edges; each return edge from b_j connects one of the exit vertices of b_j to one of the exit vertices of g_i.

If $i = k$, g_k has a set of value edges that connect each exit vertex of g_k to a terminal value.

3.3.1 An Object-Oriented Pseudo-Code. In later parts of the paper, we state algorithms using an object-oriented pseudo-code. In accordance with the terminology introduced above, the basic classes that are used for representing multi-terminal CFLOBDDs are defined in Fig. 4a: Grouping, InternalGrouping, DontCareGrouping, ForkGrouping, and CFLOBDD. More details about the notation used in our pseudo-code can be found in Appendix §A.

Fig. 4c shows how the CFLOBDD from Fig. 3a is represented as an instance of class CFLOBDD. There are no entry, middle, and exit vertices as such. Instead, a pointer to a Grouping object serves as the object’s entry vertex. Numbers in the range $[1..\text{numberOfBConnections}]$ serve as middle vertices, and numbers in the range $[1..\text{numberOfExits}]$ serve as exit vertices. In the level-1 InternalGrouping in Fig. 4c, one can see that a ReturnTuple—which holds a sequence of return-edge targets—is associated with each outgoing AConnection or BConnection edge. This organization facilitates implementing the matched-path principle: when a level-$l+1$ grouping g_i “calls” level-l grouping g_2, there is an associated ReturnTuple rt_1 (stored in g_i); a matched path
abstract class Grouping {
 level: int
 numberOfExits: int
}
class InternalGrouping extends Grouping {
 AConnection: Grouping
 AReturnTuple: ReturnTuple
 numberOfBConnections: int
 BConnections:
 array[1..numberOfBConnections] of Grouping
 BReturnTuples:
 array[1..numberOfBConnections] of ReturnTuple
}
class DontCareGrouping extends Grouping {
 level = 0
 numberOfExits = 1
}
class ForkGrouping extends Grouping {
 level = 0
 numberOfExits = 2
}
class CFLOBDD {
 // Multi-terminal CFLOBDD
 grouping: Grouping
 valueTuple: ValueTuple
}

Fig. 4. (a) Datatypes for Grouping, InternalGrouping, DontCareGrouping, ForkGrouping, and CFLOBDD. (b) The CFLOBDD for H_2 (repeated from Fig. 3a). (c) An instance of class CFLOBDD that represents H_2.

starting at the entry of g_2 leads to some exit-vertex index i of g_2; and $rt_1[i]$ holds the target in g_1 of the matching return edge.

Similarly, there are no explicit edges in DontCareGrouping and ForkGrouping objects. Instead, the decision taken at the level-0 grouping’s entry vertex selects the appropriate exit-vertex index, which is used to index into a ReturnTuple of the “calling” level-1 InternalGrouping.

3.3.2 Rationale. The rationale behind the terminology introduced in Defn. 3.1, Fig. 3b, and Fig. 4a goes back to the Matched-Path Principle. In particular, each InternalGrouping object g at level $i > 0$ represents a family of matched paths. A traversal of a matched path from g’s entry vertex to an exit vertex of g uses the fields of g (Fig. 4a) in the following order, which mimics the form of the grammar for matched paths from Eqn. (1):

\[
\text{matched(at level } i \text{)} = \text{AConnection } \text{matched(at level } i-1 \text{)} \text{ AReturnTuple[.]}
\]
\[
\text{BConnections } \text{matched(at level } i-1 \text{)} \text{ BReturnTuples[.]} \quad (2)
\]

3.3.3 Inductive Arguments about CFLOBDDs. To be able to make inductive arguments about CFLOBDDs, it is convenient to introduce one additional bit of terminology:
Definition 3.2 (Mock-proto-CFLOBDD). A mock-proto-CFLOBDD at level \(i\) is a grouping at level \(i\), together with the lower-level groupings to which it is connected (and the connecting edges). In other words, a mock-proto-CFLOBDD has the following recursive structure:

- a mock-proto-CFLOBDD at level 0 is either a fork grouping or a don’t-care grouping
- a mock-proto-CFLOBDD at level \(i\) is headed by a grouping at level \(i\) whose
 - A-connection edge and associated return edges “call” a level-(\(i-1\)) mock-proto-CFLOBDD, and
 - B-connection edges and their associated return edges “call” some number of level-(\(i-1\)) mock-proto-CFLOBDDs.

The difference between a proto-CFLOBDD and a CFLOBDD is that the exit vertices of a proto-CFLOBDD have not been associated with specific values. One cannot argue inductively in terms of CFLOBDDs because its constituents are proto-CFLOBDDs, not full-fledged CFLOBDDs. Thus, to prove that some property holds for a CFLOBDD, there will typically be an inductive argument to establish a property of the proto-CFLOBDD headed by the outermost grouping of the CFLOBDD, with an additional argument about the CFLOBDD’s value edges and terminal values.

One example of an inductive argument allows us to establish the number of times \(D(i)\) that each matched path in a level-\(i\) proto-CFLOBDD reaches a decision vertex—i.e., the entry vertex of a level-0 grouping. In particular, \(D(i)\) is described by the following recurrence relation:

\[
D(0) = 1 \quad D(i) = D(i-1) + D(i-1),
\]

which has the solution \(D(i) = 2^i\).

3.3.4 Soundness and an Operational Semantics. Eqn. (3) allows us to establish Requirement (1) from §3.2. Eqn. (3) has the solution \(D(i) = 2^i\), so each matched path from the entry vertex of a level-\(k\) CFLOBDD passes through the entry vertex of a level-0 grouping exactly \(2^k\) times before reaching a terminal value \(v \in V\), for some value domain \(V\). Consequently, each (multi-terminal) CFLOBDD represents a function in \(\{T, F\}^{2^k} \rightarrow V\)—i.e., the same set of functions that decision trees represent.

We can also use the Contextual-Interpretation Principle to obtain an operational semantics for (mock-)CFLOBDDs, given as Alg. 1. This algorithm is a divide-order-and-conquer algorithm that specifies how to interpret a given CFLOBDD \(n\) with respect to a given Assignment \(a\) to the Boolean variables. (We assume that an Assignment is given as an array of Booleans, whose entries—starting at index-position 1—are the values of the successive variables.)

Subroutine \texttt{InterpretGrouping} performs a recursive traversal over \(n\), following AConnections, BConnections, and return edges. When a level-0 grouping is reached, the value of the current Boolean variable is consulted (line [8], in the case of a ForkGrouping), or ignored (line [9], in the case of a Don’tCareGrouping). (Line [10] can be ignored for now; it is an optimization that is discussed in §3.5.2.) In lines [13] and [14], Assignment \(a\) is split in half: the Boolean values in the first half are interpreted during the traversal of \(g\)’s AConnection (line [13]); the values in the second half are interpreted during the traversal of one of \(g\)’s BConnections (line [14]), selected according to the value \(i\) obtained in line [13] from the call on \texttt{InterpretGrouping()} with \(g\)’s AConnection.

3.3.5 Multiple Middle Vertices and Exit Vertices. In a Boolean-valued CFLOBDD, the outermost grouping has at most two exit vertices, and these are mapped to \{\(F, T\}\}. In a multi-terminal CFLOBDD, there can be an arbitrary number of exit vertices, which are mapped to values drawn from some finite set of values \(V\). Fig. 3a is a multi-terminal CFLOBDD; the level-1 grouping has two exit vertices that are mapped to 1 and -1.
Algorithm 1: An operational semantics of CFLOBDDs

1 Algorithm InterpretCFLOBDD(n, a)
 Input: CFLOBDD n, Assignment a[1..2^n.grouping.level]
 Output: A value in the range of the function represented by n
 begin
 2 begin
 3 | return valueTuple[InterpretGrouping(n.grouping, a)];
 4 end
 5 end

SubRoutine InterpretGrouping(g, a)
 Input: Grouping g, Assignment a[1..2^g.level]
 Output: An unsigned integer in the range [1..g.numberOfExits]
 begin
 7 begin
 8 | if g == ForkGrouping then return 1 + a[1] // F→1; T→2;
 9 | if g == Don’tCareGrouping then return 1 // F, T→1;
 10 | if g == NoDistinctionProtoCFLOBDD(g.level) then return 1 // F, T→1;
 11 Assignment a_A = a[1, 2^{g.level−1}];
 12 Assignment a_B = a[2^{g.level−1} + 1, 2^{g.level}];
 13 unsigned int i = InterpretGrouping(g.AConnection, a_A);
 14 unsigned int k = InterpretGrouping(g.BConnections[i], a_B);
 15 return g.BReturnTuples[i](k);
 16 end
 17 end

Fig. 5. CFLOBDD for the Boolean function $\lambda x_0 x_1 x_2 x_3. (x_0 \oplus x_1) \lor (x_0 \land x_1 \land x_2)$. (For clarity, some of the level-0 groupings have been duplicated.)

Groupings that have more than two exit vertices naturally arise in the interior groupings of CFLOBDDs—even in Boolean-valued CFLOBDDs. For instance, a level-$i−1$ grouping used as an
3.4 Encoding H_4 and Other Members of \mathcal{H} with a CFLOBDD

Fig. 6a shows the CFLOBDD representation of Hadamard matrix H_4 with the variable ordering $\langle x_0, y_0, x_1, y_1 \rangle$. In H_4, the level-1 proto-CFLOBDD is identical to the level-1 proto-CFLOBDD in H_2 (cf. Fig. 3a and Fig. 6a). Moreover, in H_4 the A-connection call and both B-connection calls are to the level-1 H_2 lookalike.

Consider how Fig. 6a encodes $H_4[0, 3] = 1$. The value is obtained by evaluating the assignment $[x_0 \mapsto F, y_0 \mapsto T, x_1 \mapsto F, y_1 \mapsto T]$, following the matched path highlighted in bold. The path starts from the level-2 grouping’s entry vertex. It goes to the level-1 grouping’s entry vertex, where $[x_0 \mapsto F, y_0 \mapsto T]$ is interpreted as for H_2—i.e., the first occurrence of H_2 in “$H_2 \otimes H_2$”—in this case, returning to the leftmost middle vertex of the level-2 grouping. At this point, the path follows the red dashed edge back to the level-1 grouping’s entry vertex, where $[x_1 \mapsto F, y_1 \mapsto T]$ is interpreted as for H_2—the second occurrence of H_2 in “$H_2 \otimes H_2$”. The path then follows the matching red dashed return edge to the leftmost exit vertex of the level-2 grouping, and reaches terminal value 1.

To create H_4 using H_2, we introduced a level-2 grouping that makes one A-connection and two B-connection “calls” to the level-1 H_2 lookalike, and thus each matched path makes two sequential invocations of H_2. This pattern produces the same effect as the stacking of plies in decision trees and BDDs. However, rather than tripling the size of the data structure (as with BDDs—see Fig. 2e), the ability of CFLOBDDs to reuse parts of a data structure via a “call” means that there is only a constant-size increase in going from from H_2 to H_4: one grouping with five vertices and nine edges (one A-connection, two B-connections, and six return edges).

The continuation of this pattern gives an inductive construction of the CFLOBDDs for the other members of \mathcal{H}. Given the level-i CFLOBDD for H_{2^i}, $i \geq 2$, $H_{2^{i+1}} = H_{2^i} \otimes H_{2^i}$ is created by introducing a new outermost grouping at level $i + 1$, again with five vertices and nine edges. (See Fig. 6b.) The same pattern of “calls” is used for the A- and B-connections and their return edges: each matched path makes two sequential invocations of the level-i grouping for H_{2^i}. In other words,

Sequential-Invocation Principle. A Kronecker product $P \otimes Q$ can be represented economically in a CFLOBDD by a grouping at level $i+1$ whose A-connection “calls” the level-i proto-CFLOBDD for P and all of whose B-connection “calls” are to the level-i CFLOBDD for Q.

3.5 Reuse of Groupings and Compression of Boolean Functions

The reason CFLOBDDs can represent certain Boolean functions in a highly compressed fashion is the reuse of groupings that the matched-path and sequential-invocation principles enable.

3.5.1 Growth of Number of Paths with Level. Let $P(i)$ be the number of matched paths in a proto-CFLOBDD at level i. Each level-0 grouping has two paths, so $P(0) = 2$. In a grouping g at level $i \geq 1$, each matched path through the A-connection’s level-$(i-1)$ proto-CFLOBDD reaches a middle vertex of g, where it is routed through the level-$(i-1)$ proto-CFLOBDD of the vertex’s B-connection. Let $A_j(i-1)$ be the number of matched paths through g’s A-connection proto-CFLOBDD to the jth middle vertex of g. Thus, $P(i)$ satisfies the following recurrence equation:

$$P(0) = 2 \quad P(i) = \sum_j A_j(i-1) \cdot P(i-1).$$

(4)
(a) The CFLOBDD representation of H_4 with the interleaved-variable ordering $\langle x_0, y_0, x_1, y_1 \rangle$. The matched path for $[x_0 \mapsto F, y_0 \mapsto T, x_1 \mapsto F, y_1 \mapsto T]$, which corresponds to $H_4[0, 3]$, is shown in bold.

(b) Diagram supporting the inductive argument that, with the interleaved-variable ordering, the members of $\mathcal{H} = \{H_{2^i} \mid i \geq 1\}$ can be constructed by successively introducing a new outermost grouping at one greater level. At each step, the same pattern of "calls" is used for the A- and B-connections, and their return edges.

Fig. 6. Construction of successively larger members of $\mathcal{H} = \{H_{2^i} \mid i \geq 1\}$. At level $i+1$, each matched path makes two sequential invocations of the level-i grouping (for H_{2^i}), thereby creating $H_{2^{i+1}} = H_{2^i} \otimes H_{2^i}$.

The total number of matched paths through g’s A-connection proto-CFLOBDD is $P(i - 1)$, so $\sum_j A_j(i - 1) = P(i - 1)$, and hence Eqn. (4) can be rewritten as $P(i) = P(i - 1) \cdot P(i - 1)$, which has the solution $P(i) = 2^{2^i}$.

Growth in Paths. The number of matched paths in a CFLOBDD is squared with each increase in level by 1. Consequently, a CFLOBDD at level i has 2^{2^i} matched paths.

3.5.2 Best-Case Compression: No-Distinction Proto-CFLOBDDS. Fig. 7a, 7b, and 7c show the first three members of a family of proto-CFLOBDDS that often arise as sub-structures of CFLOBDDS: the single-entry/single-exit proto-CFLOBDDS of levels 0, 1, and 2, respectively. Because every matched path through each of these structures ends up at the unique exit vertex of the highest-level grouping, there is no “decision” to be made during each visit to a level-0 grouping. In essence, as
we work our way through such a structure during the interpretation of an assignment, the value assigned to each argument variable makes no difference.

We call this family the no-distinction proto-CFLOBDDs. Fig. 7d illustrates the structure of a no-distinction proto-CFLOBDD at an arbitrary level $k > 0$, which continues the pattern that one sees in the level-1 and level-2 structures: the level-k grouping has a single middle vertex, and both its A-connection and its one B-connection are to the no-distinction proto-CFLOBDD for level $k - 1$. Moreover, because the no-distinction proto-CFLOBDD at level k shares all but one constant-sized grouping with the no-distinction proto-CFLOBDD at level $k - 1$, each additional level costs only a constant amount of additional space. Thus, the no-distinction proto-CFLOBDD at level k is of size $O(k)$, and hence the no-distinction proto-CFLOBDDs exhibit double-exponential compression.

The Boolean-valued CFLOBDD for the constant function $\lambda x_0, x_1, \ldots, x_{2^k-1}. F$ is merely the CFLOBDD in which a value edge connects the (one) exit vertex of the no-distinction proto-CFLOBDD at level k to F. Likewise, in the constant function $\lambda x_0, x_1, \ldots, x_{2^k-1}. T$, the value edge connects the exit vertex of the no-distinction proto-CFLOBDD at level-k to T. Thus, as the number of Boolean variables increases, the best-case growth of CFLOBDDs compares with the growth of decision trees as follows:

<table>
<thead>
<tr>
<th>Boolean vars.</th>
<th>Number of paths</th>
<th>Decision trees</th>
<th>CFLOBDDs (best case)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>height</td>
<td>#nodes</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>4</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>8</td>
<td>511</td>
</tr>
<tr>
<td>2^k</td>
<td>2^{2^k}</td>
<td>2^k</td>
<td>$2 \cdot 2^{2^k} - 1$</td>
</tr>
</tbody>
</table>

The height of a CFLOBDD is the level of the outermost grouping.

The best-case CFLOBDD size—whether measured in the number of groupings, vertices, or edges—grows linearly with the level of the outermost grouping, which is logarithmic in the number of Boolean variables. In contrast, decision trees grow exponentially in the number of Boolean variables. These observations show that Requirement (3) from §3.2 is met: in the best case, a decision tree of height 2^k and size 2^{2^k} can be encoded as a level-k CFLOBDD of size k.

Remark. Because the family of no-distinction proto-CFLOBDDs is so compact, in designing CFLOBDDs we did not feel the need to mimic the “ply-skipping transformation” of Reduced OBDDs (ROBDDs) [10, 11], in which “don’t-care” nodes are removed from the representation. In ROBDDs, in addition to reducing the size of the data structure, the chief benefit of ply-skipping is that operations can skip over levels in portions of the data structure in which no distinctions among variables are made. Essentially the same benefit is obtained by having the algorithms that process CFLOBDDs carry out appropriate special-case processing when no-distinction proto-CFLOBDDs are encountered. Such processing is carried out, for instance, in line [10] of Alg. 1: in InterpretCFLOBDD(), when Grouping g is the head of a NoDistinctionProtoCFLOBDD, both g and the entire Assignment a can be ignored because g has only a single exit vertex.

Whereas in the best case, the CFLOBDD for a function f can be double-exponentially smaller than the decision tree for f, ROBDDs are incapable of such a degree of compression. Quasi-reduced BDDs are the version of BDDs in which don’t-care nodes are not removed (i.e., plies are not skipped), and thus all paths from the root to a terminal value have length n, where n is the number of variables. The size of a quasi-reduced BDD is at most a factor of $n + 1$ larger than the size of the corresponding ROBDD [64, Thm. 3.2.3]. Thus, although ROBDDs can give better-than-exponential compression...
3.5.3 Asymptotic Best-Case Compression. Consider a family of functions \(F = \{ f_j \mid j \geq 0 \} \), where the \(j^{th} \) member has \(2^j \) Boolean arguments. The following property is a sufficient condition for the sizes of the CFLOBDDs for members of \(F \) to grow linearly in the level \(i \), and therefore exhibit double-exponential compression compared to decision trees:

1. There exists a family of functions \(G = \{ g_j \mid j \geq 0 \} \) that grows linearly in the level \(i \).\(^6\)
2. There exists a level \(m \) such that, for all levels \(i \geq m \),
 a. the number of vertices in the level-\(i \) grouping of \(f_i \) is a constant independent of \(i \)
 b. the level-\(i \) grouping of \(f_i \) makes “procedure calls” only to (i) the level-(\(i-1 \)) grouping used in the CFLOBDD for \(f_{i-1} \), and (ii) level-(\(i-1 \)) groupings used in the CFLOBDD for \(g_{i-1} \).\(^7\)

In such a case, the CFLOBDD for each \(f_i \) is double-exponentially smaller than the decision tree for \(f_{i-1} \), i.e., of size \(O(i) \) rather than \(O(2^i) \). As shown in Fig. 6b, the family of Hadamard matrices \(\mathcal{H} \) meets the above conditions.

Moreover, in all cases encountered to date, it is possible to give an explicit algorithm for constructing the \(i^{th} \) member of \(F \), where the algorithm runs in time \(O(i) \) and uses at most \(O(i) \) space.

No information-theoretic limit is being violated here. Not all families of functions can be represented with CFLOBDDs in which each level has a constant number of groupings, each of constant size—and thus, not every function over Boolean-valued arguments can be represented in such a compressed fashion. However, the potential benefit of CFLOBDDs is that, just as with BDDs, there may turn out to be enough regularity in problems that arise in practice that CFLOBDDs stay of manageable size. Moreover, double-exponential compression (or any kind of super-exponential compression) could allow problems to be completed much faster (due to the smaller-sized structures involved), or allow far larger problems to be addressed than has been possible heretofore.

4 CANONICITY

In this section, we impose some further structural restrictions on proto-CFLOBDDs and CFLOBDDs that go beyond the ideas illustrated earlier (§4.1). We then discuss how to establish that CFLOBDDs are a canonical representation of Boolean functions (§4.2 and Appendix §C).

4.1 CFLOBDDs Defined, Part II: Additional Structural Invariants

As described in §3, the structure of a mock-CFLOBDD consists of different groupings organized into levels, which are connected by edges in a particular fashion. In this section, we describe additional structural invariants that are imposed on CFLOBDDs, which go beyond the basic hierarchical structure that is provided by the entry vertex, A-Connection, middle vertices, B-Connections, return edges, and exit vertices of a grouping.

Most of the structural invariants concern the organization of what we call return tuples (following the terminology introduced in Fig. 4). For a given A-connection edge or B-connection edge \(c \) from grouping \(g_l \) to \(g_{l-1} \), the return tuple \(r_c \) associated with \(c \) consists of the sequence of targets of return edges from \(g_{l-1} \) to \(g_l \) that correspond to \(c \) (listed in the order in which the corresponding exit vertices occur in \(g_{l-1} \)). Similarly, the sequence of targets of value edges that emanate from the exit vertices of the highest-level grouping \(g \) (listed in the order in which the corresponding exit vertices occur in \(g \)) is called the CFLOBDD’s value tuple.

\(^6\)The family of no-distinction proto-CFLOBDDs from Fig. 7 is one such family \(G \).

\(^7\)Condition 2b can be generalized so that \(f_i \) can “call” the \((i-1)\) groupings used in the CFLOBDDs for some constant number of function families \(G_1, G_2, \ldots, G_l \) that each grow linearly in the level \(i \).
Return tuples represent mapping functions that map exit vertices at one level to middle vertices or exit vertices at the next greater level. Similarly, value tuples represent mapping functions that map exit vertices of the highest-level grouping to terminal values. In both cases, the i^{th} entry of the tuple indicates the element that the i^{th} exit vertex is mapped to. Because the middle vertices and exit vertices of a grouping are each arranged in some fixed known order, and hence can be stored in an array, it is often convenient to assume that each element of a return tuple is simply an index into such an array. For example, in Fig. 5,

- The return tuple associated with the 1^{st} B-connection of the upper level-1 grouping is $[1, 2]$.
- The return tuple associated with the 2^{nd} B-connection of the upper level-1 grouping is $[2, 3]$.
- The return tuple associated with the A-connection of the level-2 grouping is $[1, 2, 3]$.
- The value tuple associated with the CFLOBDD is the 2-tuple $[F, T]$.

Rationale. The structural invariants are designed to ensure that—for a given order on the Boolean variables—each Boolean function has a unique, canonical representation as a CFLOBDD. In reading Defn. 4.1 below, it will help to keep in mind that the goal of the invariants is to force there to be a unique way to fold a given decision tree into a CFLOBDD that represents the same Boolean function. The decision-tree folding method is discussed in §4.2 and Appendix §C, but the main characteristic of the folding method is that it works greedily, left to right. This directional bias shows up in structural invariants 1, 2a, and 2b.

We can now complete the formal definition of a CFLOBDD.

Definition 4.1 (Proto-CFLOBDD and CFLOBDD). A proto-CFLOBDD n is a mock,proto-CFLOBDD (Defs. 3.1 and 3.2) in which every grouping/proto-CFLOBDD in n satisfies the **structural invariants** given below. In particular, let c be an A-connection edge or B-connection edge from grouping g_i to g_{i-1}, with associated return tuple r_t_c.

1. If c is an A-connection, then r_t_c must map the exit vertices of g_{i-1} one-to-one, and in order, onto the middle vertices of g_i: Given that g_{i-1} has k exit vertices, there must also be k middle vertices in g_i, and r_t_c must be the k-tuple $[1, 2, \ldots, k]$. (That is, when r_t_c is considered as a map on indices of exit vertices of g_{i-1}, r_t_c is the identity map.)

2. If c is the B-connection edge whose source is middle vertex $j+1$ of g_i and whose target is g_{i-1}, then r_t_c must meet two conditions:
 a. It must map the exit vertices of g_{i-1} one-to-one (but not necessarily onto) the exit vertices of g_i. (That is, there are no repetitions in r_t_c.)
 b. It must “compactly extend” the set of exit vertices in g_i defined by the return tuples for the previous j B-connections: Let $r_t_{c_1}, r_t_{c_2}, \ldots, r_t_{c_j}$ be the return tuples for the first j B-connection edges out of g_i. Let S be the set of indices of exit vertices of g_i that occur in return tuples $r_t_{c_1}, r_t_{c_2}, \ldots, r_t_{c_j}$, and let n be the largest value in S. (That is, n is the index of the rightmost exit vertex of g_i that is a target of any of the return tuples $r_t_{c_1}, r_t_{c_2}, \ldots, r_t_{c_j}$.) If S is empty, then let $n = 0$.

 Now consider $r_t_c := r_t_{c_{j+1}}$. Let R be the (not necessarily contiguous) sub-sequence of r_t_c whose values are strictly greater than n. Let m be the size of R. Then R must be exactly the sequence $[n+1, n+2, \ldots, n+m]$.

3. While a proto-CFLOBDD may be used as a substructure more than once (i.e., a proto-CFLOBDD may be pointed to multiple times), a proto-CFLOBDD never contains two separate instances of equal proto-CFLOBDDs.\(^8\)

\(^8\) Equality on proto-CFLOBDDs is defined inductively on their hierarchical structure in the obvious manner. Two CFLOBDDs are equal when (i) their proto-CFLOBDDs are equal, and (ii) their value tuples are equal. §5.1 discusses how hash-consing [23] can be used to enforce the invariant that only a single representative CFLOBDD/proto-CFLOBDD exists for each
(4) For every pair of B-connections c and c' of grouping g_i, with associated return tuples rt_c and $rt_{c'}$, if c and c' lead to level $i-1$ proto-CFLOBDDs, say p_{i-1} and p'_{i-1}, such that $p_{i-1} = p'_{i-1}$, then the associated return tuples must be different (i.e., $rt_c \neq rt_{c'}$).

A CFLOBDD at level k is a mock-CFLOBDD at level k for which

(5) The grouping at level k heads a proto-CFLOBDD.

(6) The value tuple associated with the grouping at level k maps each exit vertex to a distinct value.

Fig. 8 illustrates structural invariants 1, 2a, 2b, 3, 4, and 6. In each case, a mock-proto-CFLOBDD that violates one of the structural invariants is shown on the left, and an equivalent proto-CFLOBDD that satisfies the structural invariants is shown on the right.

The CFLOBDD from Fig. 5 also illustrates the structural invariants.

- The level-1 grouping pointed to by the A-connection of the level-2 grouping has three exit vertices. These are the targets of two return tuples from the uppermost level-0 fork grouping. Note that the blue dashed lines in this proto-CFLOBDD correspond to B-connection 1 and rt_1, whereas the red short-dashed lines correspond to B-connection 2 and rt_2.

In the case of rt_1, the set S mentioned in structural invariant 2b is empty; therefore, $n = 0$ and rt_1 is constrained by structural invariant 2b to be $[1, 2]$.

In the case of rt_2, the set S is $[1, 2]$, and therefore $n = 2$. The first entry of rt_2, namely 2, falls within the range $[1..2]$; the second entry of rt_2 lies outside that range and is thus constrained to be 3. Consequently, $rt_2 = [2, 3]$.

Also in Fig. 5, because the level-1 grouping pointed to by the A-connection of the level-2 grouping has three exit vertices, these are constrained by structural invariant 1 to map in order over to the three middle vertices of the level-2 grouping; i.e., the corresponding return tuple is $[1, 2, 3]$.

- The B-connections for the first and second middle vertices of the level-2 grouping are to the same level-1 grouping; however, the two return tuples are different, and thus are consistent with structural invariant 4.

One artifact of the greedy, left-to-right decision-tree folding method used in §4.2 and Appendix §C is that matched paths through proto-CFLOBDDs (and hence through CFLOBDDs) have a left-to-right bias in the ordering of paths with respect to Boolean-variable-to-Boolean-value assignments. This bias is captured in the following proposition.

Proposition 4.1 (Lexicographic-Order Proposition). Let ex_C be the sequence of exit vertices of proto-CFLOBDD C. Let ex_L be the sequence of exit vertices reached by traversing C on each possible Boolean-variable-to-Boolean-value assignment, generated in lexicographic order of assignments. Let s be the subsequence of ex_L that retains just the leftmost occurrences of members of ex_L (arranged in order as they first appear in ex_L). Then $ex_C = s$.

The proof of Prop. 4.1 is provided in Appendix §B.

Earlier in this section, the “Rationale” paragraph motivated the structural invariants as enforcing an implicit “greedy left-to-right folding” of the corresponding decision tree to create the CFLOBDD, equivalence class of CFLOBDD/proto-CFLOBDD values. However, when we wish to consider the possibility that multiple data-structure instances exist that are equal—as we do shortly in §4.2—we say that such structures are “isomorphic” or “equal (up to isomorphism).”

To reduce clutter, our diagrams often show multiple instances of the two kinds of level-0 groupings; in fact, a CFLOBDD can contain at most one copy of each.
Fig. 8. To the left of each arrow, a mock-proto-CFLOBDD that violates the indicated structural invariant; to the right, a corrected proto-CFLOBDD. Invariant violations and their rectifications are shown in red.
and Figure 8 illustrates the structural invariants from a syntactic/operational viewpoint. In contrast, Prop. 4.1 elucidates a semantic consequence of the structural invariants.

Example 4.2. Prop. 4.1 can be illustrated using Fig. 5. If we use numbers to identify exit vertices, ex_C for any grouping g is the sequence $[1..g\.\text{NumberOfExits}]$. In the upper level-1 grouping in Fig. 5, ex_L is [1, 2, 2, 3], so s is [1, 2, 3]. In the level-1 grouping at the lower right, ex_L is [1, 1, 2, 2], so s is [1, 2]. In the level-2 grouping, ex_L is [1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2], so s is [1, 2].

4.2 Canonicity of CFLOBDDs

CFLOBDDs are a canonical representation of functions over Boolean arguments, i.e., each decision tree with 2^{2^k} leaves is represented by exactly one isomorphism class of level-k CFLOBDDs. (The notion of isomorphism of CFLOBDDs was introduced in footnote 8.)

Theorem 4.3 (Canonicity). If C_1 and C_2 are level-k CFLOBDDs for the same Boolean function over 2^k Boolean variables, and C_1 and C_2 use the same variable ordering, then C_1 and C_2 are isomorphic.

To prove this theorem, we make use of Obs. 2.1, and argue not in terms of Boolean functions but in terms of representations of Boolean functions—specifically, we relate two kinds of Boolean-function representations

- the decision tree T_B for a Boolean function B, using some fixed, but otherwise unspecified, variable ordering Ord, and
- the CFLOBD for B, again using variable ordering Ord.

By Obs. 2.1, we use T_B as a stand-in for B, thereby avoiding having to talk about B itself. In particular, we must establish that three properties hold:

1. Every level-k CFLOBD represents a decision tree with 2^{2^k} leaves.
2. Every decision tree with 2^{2^k} leaves is represented by some level-k CFLOBD.
3. No decision tree with 2^{2^k} leaves is represented by more than one level-k CFLOBD (up to isomorphism).

The proof that CFLOBDDs are a canonical representation of Boolean functions is in Appendix §C. We already showed that Obligation 1 is satisfied in §3.3.4.

Obligation 2 is established by showing that there is a recursive procedure for constructing a level-k CFLOBD from an arbitrary decision tree with 2^{2^k} leaves (i.e., of height 2^k)—see Construction 1 in Appendix §C. In essence, the construction shows how such a decision tree can be folded together to form a CFLOBD that represents the same Boolean function. The construction ensures that the structural invariants are obeyed.

Obligation 3 is established by showing that (i) unfolding a CFLOBD C into a decision tree T and then (ii) folding T back to a CFLOBDD yields a CFLOBDD that is isomorphic to C. In particular, the folding-back step applies the same algorithm we use to establish Obligation 2, namely, Construction 1 from Appendix §C. Construction 1 is a deterministic algorithm, and thus the proof establishes that T can only be mapped to a CFLOBDD C' that is isomorphic to C. (See Prop. C.1.)

Note that Obligation 1 and 2 are exactly Requirements (1) and (2) from §3.2, respectively. Moreover, Obligations 1–3 together show that Requirement (4) from §3.2 is met.

5 PRAGMATICS

The structure of the groupings in a CFLOBDD is acyclic: a level-k grouping has calls exclusively to groupings at level $k-1$; conversely, a given grouping at level $k-1$ can be called from multiple
groupings, but only ones at level \(k \). This property allows CFLOBDDs to be implemented in a functional style without side-effects. Moreover, because groupings are acyclic, storage can be managed via smart-pointer-based reference counting.

The remainder of this section discusses pragmatics—namely, how some of the standard techniques for working with a functional data structure apply to CFLOBDDs. All three of the techniques discussed contribute to an implementation being able to satisfy Requirement (5) that operations on a CFLOBDD run in time polynomial in the sizes of (i) the input CFLOBDDs, or (ii) the input CFLOBDDs and the output CFLOBDD.

5.1 Hash-Consing of Groupings and CFLOBDDs to Create Unique Representatives

Hash-consing [23] enforces the invariant that only a single representative exists for each value constructed from some datatype. Hash-consing should not be confused with canonicity (§4.2 and Appendix §C). Canonicity is a semantic property: if two CFLOBDDs \(C_1 \) and \(C_2 \) represent the same function, then \(C_1 \) and \(C_2 \) are isomorphic. Hash-consing concerns concrete memory representations: for a given data-structure construction pattern, only a single representative exists in memory, no matter how many times that value arises in a computation.

However, because canonicity holds for CFLOBDDs, an implementation that uses hash-consing satisfies an even stronger form of equivalence. In particular, Thm. 4.3 can be restated to read \(\ldots \) then \(C_1 \) and \(C_2 \) are identical. ”

Because the operations that construct Groupings and CFLOBDDs involve a certain amount of processing before the object being constructed is finally complete, we will assume that two operations, named RepresentativeGrouping and RepresentativeCFLOBDD, are available for explicitly maintaining the tables of representative Groupings and CFLOBDDs, respectively. For instance, a call \(\text{RepresentativeGrouping}(g) \) checks to see whether a representative for \(g \) is already in the table of representative Groupings; if there is such a representative, say \(h \), then \(g \) is discarded and \(h \) is returned as the result; if there is no such representative, then \(g \) is installed in the table and returned as the result. The operations RepresentativeForkGrouping and RepresentativeDontCareGrouping return the unique representatives of types ForkGrouping and DontCareGrouping, respectively.

Operations discussed in §6 that create InternalGroupings, such as \(\text{PairProduct} \) (Alg. 9) and \(\text{Reduce} \) (Alg. 10), have the following form:

\[
\text{Operation()} \{
\begin{align*}
 &\ldots \\
 &\text{InternalGrouping } g = \text{new InternalGrouping}(k); \\
 &\ldots \\
 &\text{// Operations to fill in the members of } g, \text{ including } g.AConnection \text{ and the } \\
 &\text{// elements of array } g.BConnections, \text{ with level-} (k-1) \text{ Groupings} \\
 &\ldots \\
 &\text{return RepresentativeGrouping}(g);
\end{align*}
\}
\]

The operation \(\text{NoDistinctionProtoCFLOBDD} \) (Alg. 3), which constructs the members of the family of no-distinction proto-CFLOBDDs depicted in Fig. 7, also has this form.

RepresentativeCFLOBDD is similar to RepresentativeGrouping, but in addition to a Grouping argument, it also has a value-tuple argument. The operation \(\text{ConstantCFLOBDD} \) (Alg. 2) illustrates the use of RepresentativeCFLOBDD: \(\text{ConstantCFLOBDD}(k,v) \) returns a hash-consed CFLOBDD that represents a constant function of the form \(\lambda x_0, x_1, \ldots, x_{2^k-1}. v \).

In our implementation, we maintain the invariant that the Groupings that appear in the hash-consing tables are the heads of fully-fledged proto-CFLOBDDs, not mock-proto-CFLOBDDs—i.e.,

\[10\text{It can also be useful to use hash-consing for the objects of classes ReturnTuple, PairTuple, and ValueTuple.}\]
structural invariants (1)–(4) of Defn. 4.1 hold. When a proto-CFLOBDD \(p \) is associated with terminal values to create a CFLOBDD \(c \), it is necessary to ensure that structural invariant (6) holds. In particular, if there are any duplicate terminal values, a “reduction” step is applied (see Alg. 10 of §6.3), which may cause smaller versions of some of the groupings in \(p \) to be constructed. The original groupings would be collected if their reference counts go to 0. However, there is never any issue of the hash-cons tables being polluted by mock-proto-CFLOBDDs that violate the proto-CFLOBDD structural invariants.

5.2 Equality Testing for CFLOBDDs and proto-CFLOBDDs

As discussed in §5.1, the combined effect of hash-consing and canonicity is that an implementation can maintain the invariant that, at any given time, there is a unique concrete memory representation of a given Boolean function. Consequently, it is possible to test in unit time—by comparing two pointers—whether two variables of type CFLOBDD represent the same Boolean function. This property is important in user-level applications in which various kinds of data are implemented using class CFLOBDD. For example, in applications structured as fixed-point-finding loops, this property provides a unit-cost test of whether the fixed-point has been reached.

Again, because of the use of hash-consing, it is also possible to test whether two variables of type Grouping are equal via a single pointer comparison. Because each grouping is always the highest-level grouping of some proto-CFLOBDD, the equality test on Groupings is really a test of whether two proto-CFLOBDDs are equal. The property of being able to test two proto-CFLOBDDs for equality quickly is important because proto-CFLOBDD equality tests are used during the various operations on CFLOBDDs to maintain the structural invariants from Defn. 4.1.

Finally, the ability to test two proto-CFLOBDDs for equality quickly also allows some functions—typically near the beginning of the function—to identify important special-case values of parameters, which can lead to faster performance. For instance, in Alg. 1, line [10], we saw how testing whether the argument \(g \) is a NoDistinctionProtoCFLOBDD allows further recursive calls to InterpretGrouping() to be short-circuited.

5.3 Function Caching

A function cache (or memo function [45]) for a function \(F \) is an associative-lookup table—typically a hash table—of pairs of the form \([x, F(x)]\), keyed on the value of \(x \). The table is consulted each time \(F \) is applied to some argument, and updated after a return value is computed for a never-before-seen argument. The technique saves the cost of re-performing the computation of \(F \) for an argument on which \(F \) has previously been called, at the expense of performing a lookup on \(F \)’s argument at the beginning of each call. Our implementation of CFLOBDDs uses function caching for a number of the operations described in the remainder of the paper, such as PairProduct (Alg. 9) and Reduce (Alg. 10). To reduce clutter in the pseudo-code that we give, we elide the lines for querying and updating the cache. The full statement of such a function would have the following form:

```plaintext
F(x) {
    if cache_F(x) ≠ NULL return cache_F(x);
    ... cache_F(x) = retVal; // Update the cache with the return value
    return retVal;
}
```

Function caching involves hashing, and it is necessary to perform equality tests to resolve hash collisions. Thus, the ability to test two proto-CFLOBDDs for equality in unit time (§5.2) also improves the performance of function caching.

, Vol. 1, No. 1, Article . Publication date: January 2024.
Algorithm 2: ConstantCFLOBDD

1 Algorithm ConstantCFLOBDD(k, v)
2 Input: int k, Value v
3 Output: CFLOBDD representation of the constant function $\lambda x_0, x_1, \ldots, x_{2^k-1}.v$
4 begin
5 return RepresentativeCFLOBDD(NoDistinctionProtoCFLOBDD(k), [v]);
6 end

Algorithm FalseCFLOBDD(k)

7 begin
8 return ConstantCFLOBDD(k, F);
9 end

Algorithm TrueCFLOBDD(k)

10 begin
11 return ConstantCFLOBDD(k, T);
12 end

6 ALGORITHMS ON CFLOBDDS

In this section and §7, we describe operations to construct or combine CFLOBDDs. To aid the reader, Tab. 1 lists the fourteen main operations on CFLOBDDs, together with references to where the algorithm for each operation is presented (and where it is discussed), along with each operation’s asymptotic running time and the asymptotic running time of the analogous BDD operation. Readers familiar with BDDs will find that the algorithms for operations on CFLOBDDs are somewhat more complicated than their BDD counterparts, mainly due to the need to maintain the CFLOBDD structural invariants (Defn. 4.1).

6.1 Primitive CFLOBDD-Creation Operations

6.1.1 Constant Functions. The CFLOBDD-creation operation ConstantCFLOBDD, given as lines [1]–[5] of Alg. 2, produces the family of CFLOBDDs that represent functions of the form $\lambda x_0, x_1, \ldots, x_{2^k-1}.v$, where v is some constant value. ConstantCFLOBDD(k, v) uses as a subroutine NoDistinctionProtoCFLOBDD (Alg. 3), which constructs the no-distinction proto-CFLOBDD for a given level k (see also Fig. 7). ConstantCFLOBDD can be used to construct CFLOBDDs for the constant functions $\lambda x_0, x_1, \ldots, x_{2^k-1}.F$ and $\lambda x_0, x_1, \ldots, x_{2^k-1}.T$ (lines [6]–[10] and [11]–[15] of Alg. 2, respectively). ConstantCFLOBDD(k, v) runs in time $O(k)$ and uses at most $O(k)$ space.

6.1.2 Projection Functions. A second family of CFLOBDD-creation operations produces the Boolean-valued (single-variable) projection functions of the form $\lambda x_0, x_1, \ldots, x_{2^k-1}.x_i$, where i ranges from 0 to $2^k - 1$. Fig. 9 illustrates the structure of the CFLOBDDs that represent these functions. Alg. 4 gives pseudo-code for ProjectionCFLOBDD(k, i), which constructs the i^{th} such function. ProjectionCFLOBDD(k, i) runs in time $O(k)$ and uses at most $O(k)$ space.
<table>
<thead>
<tr>
<th>Operation</th>
<th>Type Signature</th>
<th>Description</th>
<th>Time Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equal</td>
<td>CFLOBDD × CFLOBDD → Boolean</td>
<td>Checks if two CFLOBDDs are equal</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>ConstantCFLOBDD</td>
<td>Int$(k) \times$ Value(v) → CFLOBDD</td>
<td>Creates a CFLOBDD for a constant function $\lambda \ldots x_{k-1},0$</td>
<td>$O(k)$</td>
</tr>
<tr>
<td>FalseCFLOBDD</td>
<td>Int (k) → CFLOBDD</td>
<td>Creates a CFLOBDD for the function $\lambda \ldots x_{k-1},F$</td>
<td>$O(k)$</td>
</tr>
<tr>
<td>TrueCFLOBDD</td>
<td>Int (k) → CFLOBDD</td>
<td>Creates a CFLOBDD for the function $\lambda \ldots x_{k-1},T$</td>
<td>$O(k)$</td>
</tr>
<tr>
<td>NoDistinctionProtoCFLOBDD</td>
<td>Int (k) → Proto-CFLOBDD</td>
<td>Creates a NoDistinctionProtoCFLOBDD for 2^k variables</td>
<td>$O(k)$</td>
</tr>
<tr>
<td>ProjectionCFLOBDD</td>
<td>Int$(k) \times$ Int(i) → CFLOBDD</td>
<td>Creates a CFLOBDD for the function $\lambda \ldots x_{k-1},x_i$</td>
<td>$O(k)$</td>
</tr>
<tr>
<td>FlipValueTupleCFLOBDD</td>
<td>CFLOBDD(c) → CFLOBDD</td>
<td>Creates a CFLOBDD such that the output values are flipped</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>ComplementCFLOBDD</td>
<td>CFLOBDD(c) → CFLOBDD</td>
<td>Creates a CFLOBDD such that the output values are complemented</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>ScalarMultiplyCFLOBDD</td>
<td>CFLOBDD $(c) \times$ Value(v) → CFLOBDD</td>
<td>Performs $c' = c \times v$</td>
<td>$O(</td>
</tr>
<tr>
<td>BinaryApplyAndReduce</td>
<td>CFLOBDD $(c_1) \times$ CFLOBDD (c_2) × Operation op → CFLOBDD</td>
<td>Performs $c' = c_1 \ op \ c_2$</td>
<td>$O(</td>
</tr>
<tr>
<td>PathCounting</td>
<td>CFLOBDD(c) → CFLOBDD</td>
<td>Computes the number of paths to every exit vertex of every grouping</td>
<td>$O(</td>
</tr>
<tr>
<td>Sampling</td>
<td>CFLOBDD(c) → String</td>
<td>Samples a path from c</td>
<td>$O(\max(\text{vars},</td>
</tr>
<tr>
<td>KroneckerProduct</td>
<td>CFLOBDD$(c_1) \times$ CFLOBDD(c_2) → CFLOBDD</td>
<td>Performs $c' = c_1 \otimes c_2$</td>
<td>$O((</td>
</tr>
<tr>
<td>MatrixMultiply</td>
<td>CFLOBDD$(c_1) \times$ CFLOBDD(c_2) → CFLOBDD</td>
<td>Performs $c' = c_1 \times c_2$ for matrices of size $N \times N$</td>
<td>$O(\max(\text{vars},</td>
</tr>
</tbody>
</table>

Table 1. List of operations on CFLOBDDs; vars denotes the number of Boolean variables ($= 2^k$, where k is the number of levels of the CFLOBDD). The size measure $|\cdot|$ counts the number of groupings, vertices, and edges—with no double-counting of shared groupings due to hash-consing. In the column for the time complexities of BDD operations, an occurrence of c refers to a BDD argument of the operation, and $|c|_B$ denotes the size of BDD c (the number of nodes and edges). For quasi-reduced BDDs, the time to construct the analog of NoDistinctionProtoCFLOBDD is $O(2^k)$. Note that the complexity of MatrixMultiply is in terms of the sizes of matrices represented by c_1 and c_2 and not the sizes of c_1 and c_2.

Algorithm 3: NoDistinctionProtoCFLOBDD

<table>
<thead>
<tr>
<th>Input:</th>
<th>int k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output:</td>
<td>Proto-CFLOBDD representation of a function with 2^k variables</td>
</tr>
</tbody>
</table>

begin
if $k == 0$ then
 return RepresentativeDontCareGrouping;
end
InternalGrouping $g = \text{new InternalGrouping}(k)$;
g.AConnection = NoDistinctionProtoCFLOBDD($k-1$);
g.AReturnTuple = [1];
g.numberOfBConnections = 1;
g.BConnections[1] = g.AConnection;
g.BReturnTuples[1] = [1];
g.numberOfExits = 1;
return RepresentativeGrouping(g);
end

Fig. 9. (a) CFLOBDD for $\lambda x_0, x_1$; (b) CFLOBDD for $\lambda x_0, x_1$; (c) schematic drawing of CFLOBDDs that represent projection functions of the form $\lambda x_0, x_1, \ldots, x_{2^k-1}, x_i$, when $0 \leq i < 2^{k-1}$; (d) schematic drawing of CFLOBDDs that represent projection functions of the form $\lambda x_0, x_1, \ldots, x_{2^k-1}, x_i$, when $2^{k-1} \leq i < 2^k$.

6.2 Unary Operations on CFLOBDDs

This section discusses how to perform certain unary operations on CFLOBDDs:

6.2.1 FlipValueTuple Function. The function FlipValueTupleCFLOBDD applies in the special situation in which a CFLOBDD maps Boolean-variable-to-Boolean-value assignments to just two possible values; FlipValueTupleCFLOBDD flips the two values in the CFLOBDD’s valueTuple field and returns the resulting CFLOBDD. In the case of Boolean-valued CFLOBDDs, this operation can be used to implement the operation ComplementCFLOBDD, which forms the Boolean complement of its argument, in an efficient manner. The pseudo-code for these functions is given in Alg. 5. FlipValueTupleCFLOBDD and ComplementCFLOBDD are constant-time operations.

6.2.2 Scalar Multiplication. Function ScalarMultiplyCFLOBDD of Alg. 6 applies to any CFLOBDD that maps Boolean-variable-to-Boolean-value assignments to values on which multiplication by a scalar value of type Value is defined. ScalarMultiplyCFLOBDD constructs a CFLOBDD for the constant function $\lambda x_0, x_1, \ldots, x_{2^k-1}, \cdot$, which is multiplied by CFLOBDD c using

Vol. 1, No. 1, Article . Publication date: January 2024.
Algorithm 4: ProjectionProtoCFLOBDD

Algorithm ProjectionProtoCFLOBDD(k, i)

Input: int k (level), int i (index)

Output: CFLOBDD representing function \(\lambda x_0, x_1, \ldots, x_{2^k-1}.x_i \)

begin
assert(0 <= i < 2^k);
return RepresentativeCFLOBDD(ProjectionProtoCFLOBDD(k, i), [F,T]);
end

SubRoutine ProjectionProtoCFLOBDD(k, i)

Input: int k (level), int i (index)

Output: Grouping g representing function \(\lambda x_0, x_1, \ldots, x_{2^k-1}.x_i \)

begin
if k == 0 then
// i must also be 0
return RepresentativeForkGrouping;
else
InternalGrouping g = new InternalGrouping(k);
if i < 2**(k-1) then
// i falls in AConnection range
 g.AConnection = ProjectionProtoCFLOBDD(k-1, i);
 g.AReturnTuple = [1,2];
 g.numBConnections = 2;
 g.BConnection[1] = NoDistinctionProtoCFLOBDD(k-1);
 g.BReturnTuples[2] = [1];
 g.BConnections[2] = g.BConnection[1];
 g.BReturnTuples[2] = [2];
 g.numberOfExits = 2;
else
// i falls in BConnection range
 g.AConnection = NoDistinctionProtoCFLOBDD(k-1);
 g.AReturnTuple = [1];
 g.numBConnections = 1;
 i = i - 2**(k-1);
 // Remove high-order bit for recursive call
 g.BConnections[1] = ProjectionProtoCFLOBDD(k-1, i);
 g.BReturnTuples[1] = [1,2];
 g.BConnections[2] = g.BConnection[1];
 g.BReturnTuples[2] = [2];
 g.numberOfExits = 2;
end
return RepresentativeGrouping(g);
end
end

BinaryApplyAndReduce—the generic operation for binary CFLOBDD operations (discussed in §6.3)—with the multiplication operator Times passed as the third argument.

6.3 Binary Operations on CFLOBDDs

This section presents an algorithm for performing binary operations on CFLOBDDs. The algorithm is parameterized in terms of a binary operation op that is to be applied pointwise to the range values of two CFLOBDDs. That is, given the CFLOBDDs for two functions \(n_1 \) and \(n_2 \) and binary operation
Algorithm 5: ComplementCFLOBDD

1 Algorithm FlipValueTupleCFLOBDD(c)

 Input: CFLOBDD c
 Output: CFLOBDD c' such that the output values are flipped

2 begin
3 assert(|c.valueTuple| == 2);
4 return RepresentativeCFLOBDD(c.grouping, [c.valueTuple[2], c.valueTuple[1]]);
5 end

6 Algorithm ComplementCFLOBDD(c)

 Input: CFLOBDD c
 Output: CFLOBDD c' such that the output values are complemented

8 begin
9 if c == FalseCFLOBDD(c.grouping.level) then
10 return TrueCFLOBDD(c.grouping.level);
11 end
12 if c == TrueCFLOBDD(c.grouping.level) then
13 return FalseCFLOBDD(c.grouping.level);
14 end
15 return FlipValueTupleCFLOBDD(c);
16 end

Algorithm 6: ScalarMultiplyCFLOBDD

 Input: CFLOBDD c, Value v
 Output: CFLOBDD c' = c * v

1 begin
2 // Multiply CFLOBDD c by the CFLOBDD for the constant function \(\lambda x_0, x_1, \ldots, x_{2^k-1}.v\)
3 return BinaryApplyAndReduce(c, ConstantCFLOBDD(c.level, v), (op)Times); // (See §6.3)
4 end

op, the goal of the algorithm is to create the CFLOBDD for \(n_1 \text{ op } n_2\) where, for each assignment
\(a, (n_1 \text{ op } n_2)(a) = n_1(a) \text{ op } n_2(a)\). Operation \text{ op } could be \(+, -, \ast, /\), etc., or—if the functions are
Boolean-valued—\(\lor, \land, \oplus\), etc. As with BDDs, such operations on CFLOBDDs can be implemented
via a two-step process

11 The two-step process is conceptual for BDDs: the two steps can be combined in an implementation (e.g., see [19, §3.3]).
For CFLOBDDs, it does not appear possible to combine the two steps, at least not easily. For more details, see the Remark
just after Ex. 6.1.
Fig. 10. Illustration of how \((\lambda x_0, x_1. x_0 \oplus x_1) \lor (\lambda x_0, x_1. x_0 \Rightarrow x_1)\) results in \(\lambda x_0, x_1. T\).

by the product of the sizes of the two argument CFLOBDDs—i.e., \(O(|n_1| \times |n_2|)\).\(^\text{12}\) §D shows that

\(^{12}\) More precisely, let \(n\uparrow \text{gr}[k]\) denote the set of groupings at level \(k \in [0..l]\) in CFLOBDD \(n\). The time to construct the product of \(n_1\) and \(n_2\) is asymptotically bounded by \(\sum_{k=0}^{l} \sum \left| g_1 \times g_2 \mid g_1 \in n_1 \uparrow \text{gr}[k] \text{ and } g_2 \in n_2 \uparrow \text{gr}[k] \right|\).
Algorithm 7: CollapseClassesLeftmost

Input: Tuple equivClasses
Output: Tuple×Tuple [projectedClasses, renumberedClasses]

1 begin
 // Project the tuple equivClasses, preserving left-to-right order, retaining
 // the leftmost instance of each class
 2 Tuple projectedClasses = [equivClasses(i) : i ∈ [1..|equivClasses|] | i = min{j ∈ [1..|equivClasses|] | equivClasses(j) = equivClasses(i)}];
 // Create tuple in which classes in equivClasses are renumbered according to
 // their ordinal position in projectedClasses
 3 Map orderOfProjectedClasses = {
 [x,i]: i ∈ [1..|projectedClasses|] | x = projectedClasses(i);
 }
 4 Tuple renumberedClasses = [orderOfProjectedClasses(v) : v ∈ equiv Classes];
 5 return [projectedClasses, renumberedClasses];
end

Algorithm 8: BinaryApplyAndReduce

Input: CFLOBDDs n1, n2 and Operation op
Output: CFLOBDD n = n1 op n2

1 begin
 // Perform cross product
 2 Grouping×PairTuple [g,pt] = PairProduct(n1.grouping,n2.grouping);
 // Create tuple of “leaf” values
 3 ValueTuple deducedValueTuple = [op(n1.valueTuple[i1],n2.valueTuple[i2]) : [i1,i2] ∈ pt];
 // Collapse duplicate leaf values, folding to the left
 4 Tuple×Tuple [inducedValueTuple,inducedReductionTuple] =
 CollapseClassesLeftmost(deducedValueTuple) ;
 // Perform corresponding reduction on g, folding g’s exit vertices w.r.t.
 // inducedReductionTuple
 5 Grouping g’ = Reduce(g, inducedReductionTuple);
 6 CFLOBDD n = RepresentativeCFLOBDD(g’, inducedValueTuple);
 7 return n;
end

the time for the reduction step is \(O(|n_1| \times |n_2| \times |n'|)\), where \(n'\) denotes the CFLOBDD that is
the result of \(n_1 \text{op} n_2\). Consequently, binary operations satisfy Requirement (5); i.e., they run in
(expected) time that is polynomial in the sizes of the input and output CFLOBDDs.

Fig. 10 illustrates this method by showing how the CFLOBDD for \(\lambda x_0.x_1.T\) is obtained as the
result of a Boolean-\(\lor\): \((\lambda x_0,x_1.x_0 \oplus x_1) \lor (\lambda x_0,x_1.x_0 \Leftrightarrow x_1)\). Fig. 10c shows the result of the product
construction (PairProduct, Alg. 9). Figs. 10d, e, f, and g illustrate some of the steps of the reduction
algorithm (Reduce, Alg. 10). Fig. 10 is discussed in more detail in Ex. 6.1.

The algorithms involved are given as Algs. 7–11. (In Algs. 8 and 9, we assume that the CFLOBDD
or Grouping arguments are objects whose highest-level groupings are all at the same level.)

- The operation BinaryApplyAndReduce, given as Alg. 8, starts with a call on PairProduct
line [2]]. PairProduct, given as Alg. 9, performs a recursive traversal of the two Grouping
arguments, g1 and g2, to create a proto-CFLOBDD that represents a kind of cross product.
PairProduct returns g, the proto-CFLOBDD formed in this way, as well as pt, a descriptor
Algorithm 9: PairProduct

Input: Groupings g_1, g_2
Output: Grouping g: product of g_1 and g_2; PairTuple ptAns: tuple of pairs of exit vertices

begin
if g_1 and g_2 are both no-distinction proto-CFLOBDDs then return $[g_1, [[1,1]]]$;
if g_1 is a no-distinction proto-CFLOBDD then return $[g_2, [[1,k] : k \in [1..g_2.numberOfExits]]]$;
if g_2 is a no-distinction proto-CFLOBDD then return $[g_1, [[k,1] : k \in [1..g_1.numberOfExits]]]$;
if g_1 and g_2 are both fork groupings then return $[g_1, [[1,1],[2,2]]]$;

// Pair the A-connections

Grouping \times PairTuple $[gA,ptA] = \text{PairProduct}(g1.AConnection, g2.AConnection)$;
InternalGrouping $g = \text{new InternalGrouping}(g1.level)$;
g.$AConnection = gA$;
g.$AReturnTuple = [1..|ptA|]$; // Represents the middle vertices
g.numberOfBConnections = $|ptA|$; // Pair the B-connections, but only for pairs in ptA
// Descriptor of pairings of exit vertices
Tuple ptAns = $[]$;
// Create a B-connection for each middle vertex
for $j \leftarrow 1$ to $|ptA|$ do
 Grouping \times PairTuple $[gB,ptB] = \text{PairProduct}(g1.BConnections[ptA(j)(1)],$
 $g2.BConnections[ptA(j)(2)])$;
g.$BConnections[j] = gB$;
 // Now create $g.BReturnTuples[j]$, and augment $ptAns$ as necessary
g.$BReturnTuples[j] = [1]$;
 for $i \leftarrow 1$ to $|ptB|$ do
 c1 = $g1.BReturnTuples[ptA(j)(1)](ptB(i)(1))$; // an exit vertex of g_1
c2 = $g2.BReturnTuples[ptA(j)(2)](ptB(i)(2))$; // an exit vertex of g_2
 if $[c1,c2] \in ptAns$ then // Not a new exit vertex of g
 index = the k such that $ptAns(k) = [c1,c2]$;
g.$BReturnTuples[j] = g.BReturnTuples[j] \parallel index$;
 else // Identified a new exit vertex of g
 g.numberOfExits = g.numberOfExits + 1;
g.$BReturnTuples[j] = g.BReturnTuples[j] \parallel g.numberOfExits$
 ptAns = ptAns \parallel $[c1,c2]$;
 end
end
return $[\text{RepresentativeGrouping}(g), ptAns]$;
end

of the exit vertices of g in terms of pairs of exit vertices of the highest-level groupings of g_1 and g_2. (See Alg. 9, lines [2]–[5] and lines [11]–[29].)

From the semantic perspective, each exit vertex e_1 of g_1 represents a (non-empty) set A_1 of variable-to-Boolean-value assignments that lead to e_1 along a matched path in g_1; similarly, each exit vertex e_2 of g_2 represents a (non-empty) set of variable-to-Boolean-value assignments A_2 that lead to e_2 along a matched path in g_2. If pt, the descriptor of g’s exit
Algorithm 10: Reduce

Input: Grouping g, ReductionTuple reductionTuple

Output: Grouping g’ that is "reduced"

1 begin

// Test whether any reduction actually needs to be carried out
2 if reductionTuple == [1..|reductionTuple|] then
3 return g;
4 end

// If only one exit vertex, then collapse to no-distinction proto-CFLOBDD
5 if |{x : x ∈ reductionTuple}| == 1 then
6 return NoDistinctionProtoCFLOBDD(g.level);
7 end

8 InternalGrouping g’ = new InternalGrouping(g.level);
9 g’.numberOfExits = |{ x : x ∈ reductionTuple }|;
10 Tuple reductionTupleA = [];
11 for 𝑖 ← 1 to g.numberOfBConnections do
12 Tuple deducedReturnClasses = [reductionTuple(v) : v ∈ g.BReturnTuples[i]];
13 Tuple×Tuple [inducedReturnTuple, inducedReductionTuple] =
 CollapseClassesLeftmost(deducedReturnClasses);
14 Grouping h = Reduce(g.BConnection[i], inducedReturnTuple);
15 int position = InsertBConnection(g’, h, inducedReturnTuple);
16 reductionTupleA = reductionTupleA || position;
17 end
18 Tuple×Tuple [inducedReturnTuple, inducedReductionTuple] =
 CollapseClassesLeftmost(reductionTupleA);
19 Grouping h’ = Reduce(g.AConnection, inducedReductionTuple);
20 g’.AConnection = h’;
21 g’.AReturnTuple = inducedReturnTuple;
22 return RepresentativeGrouping(g’);
23 end

Algorithm 11: InsertBConnection

Input: InternalGrouping g, Grouping h, ReturnTuple returnTuple

Output: int – Insert (h, ReturnTuple) as the next B-connection of g, if they are a new combination;
otherwise return the index of the existing occurrence of (h, ReturnTuple)

1 begin

2 if there exists 𝑖 ∈ [1..g.numberOfBConnections] such that g.BConnection[i] == h &&
 g.BReturnTuples[i] == returnTuple then return 𝑖;
3 g.numberOfBConnections = g.numberOfBConnections + 1;
4 g.BConnections[g.numberOfBConnections] = h;
5 g.BReturnTuples[g.numberOfBConnections] = returnTuple;
6 return g.numberOfBConnections;
7 end
Function caching (§5.3) is performed for PairProduct. Consequently, for a given invocation of BinaryApplyAndReduce on CFLOBDDs n_1 and n_2, for each level k, the number of calls on PairProduct for level k is bounded by the product of the numbers of level-k groupings in n_1 and n_2. Moreover, for each call on PairProduct(g_1, g_2), the number of exit vertices in grouping g is bounded by the product of the numbers of exit vertices in g_1 and g_2 (see line [25]). Similarly, the number of middle vertices in g is bounded by the product of the numbers of middle vertices in g_1 and g_2 (see line [10]). Thus, the size of g is bounded by the product of the sizes of g_1 and g_2. Consequently, the cost of the call on PairProduct in line [2] of Alg. 8 is bounded by the sum over $k \in [0, \ldots, l]$ of the products of the sizes of the level-k groupings in n_1 and n_2, and hence polynomial in the sizes of n_1 and n_2 (see footnote 12).

Lines [2]–[4] of PairProduct perform special-case processing when either argument to PairProduct is a NoDistinctionProtoCFLOBDD. At level 0, these checks—along with line [5]—implement the base case of PairProduct. However, at levels greater than 0, they allow PairProduct to return immediately, without making any recursive calls to traverse g_1 or g_2, potentially saving considerable work.

• BinaryApplyAndReduce then uses pt, together with op and the value tuples from CFLOBDDs n_1 and n_2, to create the tuple inducedValueTuple of leaf values that should be associated with the exit vertices (see Alg. 8, line [3]).

However, inducedValueTuple is a tentative value tuple for the constructed CFLOBDD; because of structural invariant 6 of Defn. 4.1, this tuple needs to be collapsed if it contains duplicate values.

• BinaryApplyAndReduce obtains two tuples, inducedValueTuple and inducedReductionTuple, which describe the collapsing of duplicate leaf values, by calling the subroutine CollapseClassesLeftmost (Alg. 7):
 – Tuple inducedValueTuple serves as the final value tuple for the CFLOBDD constructed by BinaryApplyAndReduce. In inducedValueTuple, the leftmost occurrence of a value in inducedValueTuple is retained as the representative for that equivalence class of values. For example, if inducedValueTuple is $[2, 2, 1, 1, 4, 1, 1]$, then inducedValueTuple is $[2, 1, 4]$.

 The use of leftward folding is dictated by structural invariant 2b of Defn. 4.1.

 – Tuple inducedReductionTuple describes the collapsing of duplicate values that took place in creating inducedValueTuple from inducedValueTuple: inducedReductionTuple is the same length as inducedValueTuple, but each entry inducedReductionTuple(i) gives the ordinal position of inducedValueTuple(i) in inducedValueTuple. For example, if inducedValueTuple is $[2, 2, 1, 1, 4, 1, 1]$ (and thus inducedValueTuple is $[2, 1, 4]$), then inducedReductionTuple is $[1, 1, 2, 3, 2, 2]$—meaning that positions 1 and 2 in inducedValueTuple were folded to position 1 in inducedValueTuple, positions 3, 4, 6, and 7 were folded to position 2 in inducedValueTuple, and position 5 was folded to position 3 in inducedValueTuple. (See Alg. 8, line [4], as well as Alg. 7.)

• Finally, BinaryApplyAndReduce performs a corresponding reduction on Grouping g, by calling the subroutine Reduce, which creates a new Grouping in which g’s exit vertices are folded together with respect to tuple inducedReductionTuple (Alg. 8, line [5]).

Procedure Reduce, given as Alg. 10, recursively traverses Grouping g, working in the backwards direction, first processing each of g’s B-connections in turn, and then processing g’s A-connection. In both cases, the processing is similar to the (leftward) collapsing of duplicate leaf values that is carried out by BinaryApplyAndReduce:
In our implementation, \(\text{InsertBConnection} \) performs a left-to-right search of \(g \). \(\text{BConnection} \) and \(g.\text{BReturnTuples} \), but it could be implemented as an (expected) unit-time operation using a hashed dictionary, keyed on \((\text{Grouping}, \text{ReturnTuple})\) pairs.

In Alg. 10, line [12], the value of \(\text{reductionTuple} \) is used to create a tuple that indicates the equivalence classes of targets of return edges for the \(B \)-connection under consideration (in terms of the new exit vertices in the \(\text{Grouping} \) that will be created to replace \(g \)).

Then, by calling the subroutine \(\text{CollapseClassesLeftmost} \), \(\text{Reduce} \) obtains two tuples, \(\text{inducedReturnTuple} \) and \(\text{inducedReductionTuple} \), that describe the collapsing that needs to be carried out on the exit vertices of the \(B \)-connection under consideration (Alg. 10, line [13]).

\(\text{PairProduct} \) is used to make a recursive call on \(\text{Reduce} \) to process the \(B \)-connection; \(\text{inducedReturnTuple} \) is used as the return tuple for the \(\text{Grouping} \) returned from that call. Note how the call on \(\text{InsertBConnection} \) (Alg. 11) in line [15] of \(\text{Reduce} \) enforces structural invariant 4 of Defn. 4.1.

As the \(B \)-connections are processed, \(\text{Reduce} \) uses the position information returned from \(\text{InsertBConnection} \) to build up the tuple \(\text{reductionTupleA} \) (Alg. 10, line [16]). This tuple indicates how to reduce the \(A \)-connection of \(g \).

Finally, via processing similar to what was done for each \(B \)-connection, two tuples are obtained that describe the collapsing that needs to be carried out on the exit vertices of the \(A \)-connection, and an additional call on \(\text{Reduce} \) is carried out. (See Alg. 10, lines [18]–[21].)

Function caching (§5.3) is performed for \(\text{Reduce} \), with respect to both arguments \(g \) and \(\text{reductionTuple} \). §D shows that the time for a call to \(\text{Reduce}(n, rt) \) with output CFLOBDD \(n' \) is asymptotically bounded by \(O(|n| \times |n'|) \). Because the time for \(\text{PairProduct} \) to perform the product construction of two CFLOBDDs \(n_1 \) and \(n_2 \) is asymptotically bounded by the product of their sizes (i.e., \(O(|n_1| \times |n_2|) \)), the overall time to perform \(\text{BinaryApplyAndReduce}(n_1, n_2) \) is \(O(|n_1| \times |n_2| \times |n'|) \), which is polynomial in the sizes of the input and output CFLOBDDs.

Recall that a call on \(\text{RepresentativeGrouping}(g) \) may have the side effect of installing \(g \) into the table of memoized Groupings. We do not want this table to ever be polluted by non-well-formed proto-CFLOBDDs. Thus, there is a subtle point as to why the grouping \(g \) constructed during a call on \(\text{PairProduct} \) meets structural invariant 4 of Defn. 4.1—and hence why it is permissible to call \(\text{RepresentativeGrouping}(g) \) in line [29] of Alg. 9. The proof can be found in [59, Appendix D].

Lastly, in the case of Boolean-valued CFLOBDDs, there are 16 possible binary operations, corresponding to the 16 possible two-argument truth tables (\(2 \times 2 \) matrices with Boolean entries). All 16 binary operations are special cases of \(\text{BinaryApplyAndReduce} \); these can be performed by passing \(\text{BinaryApplyAndReduce} \) an appropriate value for argument \(\text{op} \) (i.e., some \(2 \times 2 \) Boolean matrix).

Example 6.1. Fig. 10 illustrates how the CFLOBDD for \(\lambda x_0, x_1. T \) is created from the “or” (\(\lor \)) of the CFLOBDDs for \(\lambda x_0, x_1. x_0 \otimes x_1 \) and \(\lambda x_0, x_1. x_0 \Leftrightarrow x_1 \). Fig. 10c is the result of calling \(\text{PairProduct} \) on the CFLOBDDs for \(\lambda x_0, x_1. x_0 \oplus x_1 \) and \(\lambda x_0, x_1. x_0 \Leftrightarrow x_1 \). After \(\lor \) is applied to the values in each of the terminal-value pairs \([F, T] \) and \([T, F] \), we obtain a mock-CFLOBDD that has two exit vertices associated with terminal value \(T \). To restore the structural invariants and create a

\[13\] In our implementation, \(\text{InsertBConnection} \) performs a left-to-right search of \(g.\text{BConnection} \) and \(g.\text{BReturnTuples} \), but it could be implemented as an (expected) unit-time operation using a hashed dictionary, keyed on \((\text{Grouping}, \text{ReturnTuple})\) pairs.
For another example that illustrates Reduce, see Ex. D.1.

Remark. For BDDs, the two-step process of “pair-product-followed-by-reduction” need only be conceptual. Binary operations on BDDs can be implemented during a single recursive pass by performing the appropriate value-reduction operation on terminal values, and then, as the recursion unwinds, having the BDD-node constructor perform hash-consing (suppressing the construction of don’t-care nodes) so that non-reduced structures are never created [19, §3.3]. Such an approach does not seem to be possible with CFLOBDDs because reduction is not obtained as a side-effect of hash-consing. The flow of control in Reduce (Alg. 10) follows the sequence of elements of a matched path backwards. Reduce makes recursive calls for the B-connection proto-CFLOBDDs and then a recursive call for the A-connection proto-CFLOBDD (rather than working bottom-up from level-0 groupings to level-k groupings, which would be the analogue of the bottom-up construction performed with BDDs.) Consequently, our CFLOBDD implementation maintains the weaker invariant that the Groupings that appear in the hash-consing tables are the heads of fully-fledged proto-CFLOBDDs, not mock-proto-CFLOBDDs—i.e., structural invariants 1–4 of Defn. 4.1 hold. While such Groupings may have to be reduced later, there is never any issue of the hash-cons tables being polluted by mock-proto-CFLOBDDs that violate the proto-CFLOBDD structural invariants.

Some unary operations on CFLOBDDs may also need to apply Reduce. For example, if the terminal values of a CFLOBDD are numeric values, the unary function that squares all terminal values could initially result in a mock-CFLOBDD that has duplicate terminal values. Reduce, with an appropriate ReductionTuple, would be then applied to create the corresponding CFLOBDD.

In a manner similar to the binary operations on CFLOBDDs, we can perform ternary operations on CFLOBDDs. Details about how to perform ternary operations can be found in [59, Appendix E.1]. Other operations, such as restriction ($f|_{x_i=v}$) and existential quantification ($\exists x_i. f$) can also be performed on a CFLOBDD; the corresponding algorithms can be found in Appendices E.2 and E.3, respectively, of [59].

6.4 Path Counting and Sampling

A CFLOBDD whose terminal values are non-negative numbers can be used to represent a discrete distribution over the set of assignments to the Boolean variables. An assignment—or equivalently, the corresponding matched path in the CFLOBDD—is considered to be an elementary event. The “weight” of the elementary event is the terminal value. The probability of a matched path p is the weight of p divided by the total weight of the CFLOBDD—the sum of the weights obtained by following each of the CFLOBDD’s matched paths. Fortunately, it is possible to compute the aforementioned denominator by computing, for each of the terminal values, the number of matched paths that lead to that terminal value (§6.4.1). With those numbers in hand, it is then possible to sample an assignment/path according to the distribution that the CFLOBDD represents (§6.4.2).

The same approach can be used for CFLOBDDs whose terminal values are complex numbers, except that the weight of a matched path is the square of the terminal value’s absolute value. This approach is used in the application of CFLOBDDs to quantum simulation (§9 and §10.2.2).
176.4.1 Path Counting. Recall that every terminal value is connected to one exit vertex of the
177top-level grouping of the CFLOBDD. Every exit vertex of a grouping is, in turn, connected to
178exit vertices of internal groupings. Therefore, to compute the number of matched paths for every
179terminal value, we need to compute the path-counts from the entry vertex of a grouping to every
180exit vertex of that grouping, for every grouping in the CFLOBDD. For each grouping \(g \), we would
181like to compute a vector of path-counts, in which the \(i \)th element is the number of matched paths
182from \(g \)'s entry vertex to the \(i \)th exit vertex of \(g \). To compute this information, we can break it down
183into (i) computing the number of matched paths from \(g \)'s entry vertex to \(g \)'s middle vertices; (ii)
184computing the number of matched paths from \(g \)'s middle vertices to \(g \)'s exit vertices; and (iii)
185combining this information to obtain the number of matched paths from \(g \)'s entry vertex to \(g \)'s exit
186vertices.

187Consider a Grouping \(g \) at level \(l \) with \(e \) exit vertices. Suppose that \(g.AConnection \) has \(p \) exit
188vertices. \(g.BConnections[j] \) has \(k_j \) exit vertices, and let \(g.BReturnTuples[j] \) be the return edges
189from \(g.BConnections[j] \)'s exit vertices to \(g \)'s exit vertices. For step (i), we recursively compute the
190path-counts for \(g.AConnection \), which yields a vector of path-counts \(v_A \) of size \(1 \times p \). Step (ii) creates
191a matrix \(M_B \) of size \(p \times e \), in which the \(j \)th row is the vector of path-counts from the \(j \)th middle
192vertex of \(g \) to \(g \)'s exit vertices. Step (iii) is the vector-matrix multiplication \(v_A \times M_B \), which yields
193\(g \)'s path-count vector, of size \(1 \times e \). The base-case path-count vectors are \([1, 1] \) for a ForkGrouping
194and \([2]|\) for a Don'tCareGrouping.

195Because the exit vertices of \(g.BConnections[j] \) are connected to \(g \)'s exit vertices via
196\(g.BReturnTuples[j] \), the \(j \)th row of \(M_B \) is the product of the path-count vector for \(g.BConnections[j] \)
197(of size \(1 \times k_j \)) and a "permutation matrix" \(PM_{g.BReturnTuples[j]} \) (of size \(k_j \times e \)). Each entry of \(PM \) is
198either 0 or 1; each row must have exactly one 1; and each column must have at most one 1.

199This definition can be stated equationally, where the expression in large brackets represents \(M_B \).

\[
\text{numPathsToExit}^g_{1 \times e} = \begin{cases}
1 \times 2 & \text{if } g = \text{ForkGrouping} \\
1 \times 1 & \text{if } g = \text{Don'tCareGrouping} \\
\end{cases}
\text{numPathsToExit}^g_{1 \times p} \times \text{numPathsToExit}^{g.BConnections[j]}_{1 \times k_j} \times PM_{g.BReturnTuples[j]}_{k_j \times e} \quad \text{otherwise}
\]

Example 6.2. For the five proto-CFLOBDDs depicted in Fig. 11, the vectors of path-counts are
computed as follows (read top-to-bottom by level):

<table>
<thead>
<tr>
<th>level 2</th>
<th>level 1</th>
<th>level 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>([9 \ 7] = [3 \ 1] \times [3 \ 1])</td>
<td>([3 \ 1] = [1 \ 1] \times [2 \ 0])</td>
<td>([1 \ 1])</td>
</tr>
</tbody>
</table>

Pseudo-code for the path-counting algorithm can be found as [59, Alg. 21].

6.4.2 Sampling an Assignment. Our goal is to sample a matched path from the distribution of
matched paths of a given CFLOBDD, and return the corresponding assignment. As in §3.3.4, we
assume that an assignment is an array of Booleans, whose entries—starting at index-position 1—are
the values of successive variables. Suppose that the CFLOBDD has \(l \) levels. If the distribution were
given as a vector of weights, \(W = [w_1, w_{2^{d}}] \), as one would have in the corresponding decision tree, the probability of selecting the \(p^{th} \) matched path is given by

\[
\text{Prob}(p) = \frac{w_p}{\sum_{i=1}^{2^d} w_i}.
\]

(5)

In a CFLOBDD that represents a distribution, we do not have access to \(W \) directly. Suppose that \(W' = [w'_1, \ldots, w'_K] \) is the vector of terminal values of the CFLOBDD. The \(K \) values of \(W' \) are exactly the \(K \) different values that appear in \(W \); however, many matched paths that start at the top-level entry vertex lead to the same terminal value, say \(w'_m \). Fortunately, the path-counting method from §6.4.1 provides us with part of what is needed via \(\text{NumPathsToExit} \) of the top-level grouping.

\[
\sum_{i=1}^{2^d} w_i = \sum_{j=1}^{K} w'_j \times \text{numPathsToExit}[j]
\]

Thus, while Eqn. (5) becomes \(\text{Prob}(p) = \frac{w_p}{\sum_{j=1}^{K} w'_j \times \text{numPathsToExit}[j]} \) this observation gives us no guidance about how to select a matched path \(p \) with that probability.

Rather than selecting a single matched path immediately, what we can do instead is to select the entire set of matched paths that reach a given terminal value. This selection can be done by sampling from the exit vertices of the top-level grouping according to the probability distribution

\[
\text{Prob}'(\text{Path ends at terminal value } w'_i) = \frac{w'_i \times \text{numPathsToExit}[t]}{\sum_{j=1}^{K} w'_j \times \text{numPathsToExit}[j]}
\]

(6)

The result of this sampling step is the index of an exit vertex of the top-level grouping, which will be used for further sampling among the (indirectly) "retrieved" set of matched paths. What remains to be done is to uniformly sample a matched path from that set, and return the assignment that corresponds to that matched path.

To achieve this goal, we take advantage of the structure of matched paths to break the assignment/path-sampling problem down to a sequence of smaller assignment/path-sampling problems that can be performed recursively. At each grouping \(g \) visited by the algorithm, the goal is to uniformly sample a matched path from the set of matched paths \(P_{g,.i} \) (in the proto-CFLOBDD headed by \(g \)) that lead from \(g \)'s entry vertex to a specific exit vertex \(i \) of \(g \).

Consider a grouping \(g \) and a given exit vertex \(i \). For each middle vertex \(m \) of \(g \), there is some number of matched paths—possibly 0—from the entry vertex of \(g \) that pass through \(m \) and eventually reach exit vertex \(i \). Those numbers of matched paths, when divided by \(|P_{g,.i}| \), represent a distribution \(D_i \) on the set of \(g \)'s middle vertices. Consequently, the first step toward uniformly sampling a matched path from the set \(P_{g,.i} \) is to sample the index of a middle vertex of \(g \) according to distribution \(D_i \). Call the result of that sampling step \(m_{\text{index}} \). Thus, to sample a matched path from the entry vertex of \(g \) to exit vertex \(i \), we (i) sample a middle vertex of \(g \) according to \(D_i \) to obtain \(m_{\text{index}} \); (ii) uniformly sample a matched path from \(g.AConnection \) with respect to the exit vertex of \(g.AConnection \) that returns to \(m_{\text{index}} \); (iii) uniformly sample a matched path from \(g.BConnections[m_{\text{index}}] \) with respect to whichever of its exit vertices is connected to the \(i^{th} \) exit vertex of \(g \); and (iv) concatenate the assignments obtained from steps (ii) and (iii).

Only the B-connections of \(g \) whose exit vertices are connected to \(i \) (the distinguished exit vertex of \(g \)) can contribute to the paths leading to \(i \), and hence we need to select a middle vertex from among those for which the B-connection grouping can lead to \(i \). For such an \(i \)-connected B-connection grouping \(k \), let \((g.BReturnTuples[k])^{-1}[i] \) denote the exit vertex of \(g.BConnections[k] \) that leads to \(i \); i.e., \((j, i) \in g.BReturnTuples[k] \Leftrightarrow (g.BReturnTuples[k])^{-1}[i] = j \).
The path-counts for the number of matched paths of \(g \)'s B-connections (available via the vector \(\text{NumPathsToExit} \)) for each of \(g \)'s B-connections, denoted by, e.g., \(\text{numPathsTo Exit}_{g.BConnections[k]} \) only considers matched paths from \(g \)'s middle vertices to \(g \)'s exit vertices. However, to sample \(m_{\text{index}} \) correctly, we need to consider all of the matched paths from \(g \)'s entry vertex to \(g \)'s exit vertex \(i \). Hence, we multiply the number of matched paths from \(g \)'s entry vertex to a middle vertex of \(g \) (of interest to us because it is connected to a B-connection that is connected to \(i \)), denoted by, e.g., \(\text{numPathsTo Exit}_{g.AConnection} \), to the number of matched paths from that same middle vertex to \(g \)'s exit vertex \(i \). Thus, the probability associated with a given \(m_{\text{index}} \) is as follows (where \(g.A \) denotes \(g.AConnection \), \(g.B[k] \) denotes \(g.BConnections[k] \), and \(g.BRT \) denotes \(g.BReturnTuples \)):

\[
\text{Prob}(m_{\text{index}}) = \frac{\text{numPathsTo Exit}_{g.A}[m_{\text{index}}] \times \text{numPathsTo Exit}_{g.B}[m_{\text{index}}] \times (g.BRT[m_{\text{index}}])^{-1}[i]}{g.\text{numPathsTo Exit}[i]}
\]

(7)

Example 6.3. Consider the CFLOBDD depicted in Fig. 11, and suppose that the goal is to sample a matched path that leads to terminal value \(T \). From Ex. 6.2, we know that (i) the outermost grouping has 7 matched paths that lead to \(T \), and (ii) \(\text{NumPathsTo Exit} \) is \([3, 1, 4]\) for the upper and lower level-1 groupings, respectively. Both of the outermost grouping’s middle vertices have return edges that lead to \(T \); thus, from Eqn. (7), we should sample the middle vertices with probabilities

\[
\text{Prob}(m_{\text{index}} = 1) = \frac{[3][1][1][3][1][2]}{7} = \frac{3 \times 1}{7} = \frac{3}{7} \\
\text{Prob}(m_{\text{index}} = 2) = \frac{[3][1][2][1][4][1]}{7} = \frac{1 \times 4}{7} = \frac{4}{7}
\]

Once \(m_{\text{index}} \) has been selected in accordance with Eqn. (7), we recursively sample a matched path—and its assignment \(a_A \)—from \(g.AConnection \) with respect to exit vertex \(m_{\text{index}} \) (step (ii)). We also recursively sample a matched path—and its assignment \(a_B \)—from \(g.BConnection[m_{\text{index}}] \) with respect to the exit vertex \(g.BReturnTuples[m_{\text{index}}]^{-1}[i] \) that leads to \(g \)'s exit vertex \(i \) (step (iii)). Step (iv) produces the assignment \(a = a_A || a_B \).

As for the base cases of the recursion, for a \(\text{DontCareGrouping} \), we randomly choose one of the paths 0 or 1 with probability 0.5, returning the assignment “0” or “1” accordingly; for a \(\text{ForkGrouping} \), the designated exit vertex—either 1 or 2—specifies a unique assignment: “0” or “1”, respectively.

Pseudo-code for the assignment-sampling algorithm can be found as [59, Alg. 22].

For a CFLOBDD at level \(l \), the sampling operation involves constructing an assignment of size \(2^l \). Hence, the cost of sampling is at least as large as the size of the sampled assignment. However, the size of the argument CFLOBDD also influences the cost of sampling: although not every grouping of the CFLOBDD is necessarily visited when sampling an assignment, we can say that the cost of the sampling operation is bounded by \(O(\max(2^l, \text{size of argument CFLOBDD})) \).

7 CFLOBDD ALGORITHMS FOR MATRICES AND VECTORS

In this section, we discuss how to represent matrices and vectors using CFLOBDDs, and how to perform some important operations on them.

7.1 Representing Matrices and Vectors using CFLOBDDs

Matrix Representation. We represent square matrices using CFLOBDDs by having the Boolean variables correspond to bit positions in the row and column indices. That is, suppose that \(M \) is a \(2^n \times 2^n \) matrix; \(M \) is represented using a CFLOBDD over \(2n \) Boolean variables \(\{x_0, x_1, \ldots, x_{n-1} \} \cup \{y_0, y_1, \ldots, y_{n-1} \} \).
\{y_0, y_1, \ldots, y_{n-1}\}$, where the variables $\{x_0, x_1, \ldots, x_{n-1}\}$ represent the successive bits of x—the first index into M—and the variables $\{y_0, y_1, \ldots, y_{n-1}\}$ represent the successive bits of y—the second index into M, with $\log n + 1$ levels.14 The indices of elements of matrices represented in this way start at 0; for example, the upper-left corner element of a matrix M is $M(0, 0)$. When $n = 2$, $M(0, 0)$ corresponds to the value associated with the assignment $[x_0 \leftrightarrow 0, x_1 \leftrightarrow 0, y_0 \leftrightarrow 0, y_1 \leftrightarrow 0]$.

It is often convenient to use either the \textit{interleaved} ordering—i.e., the order of the Boolean variables is chosen to be $x_0, y_0, x_1, y_1, \ldots, x_{n-1}, y_{n-1}$—or the \textit{reverse-interleaved} ordering—i.e., the order is $y_{n-1}, x_{n-1}, y_{n-2}, x_{n-2}, \ldots, y_0, x_0$. One nice property of the interleaved-variable ordering is that, as we work through each pair of variables in an assignment, the matrix elements that remain “in play” represent a sub-block of the full matrix.

There is an important, non-standard consequence of using a CFLOBDD to represent a matrix that very likely is not apparent from the discussion above, having to do with the sizes of subproblems in a divide-and-conquer algorithm. In fact, the same issue arises in designing a divide-and-conquer algorithm over any data structure represented via a CFLOBDD, as illustrated in Fig. 12. Suppose that a CFLOBDD C represents a decision tree T_C that has $\log_2 P$ variables, and thus P leaves. The A-connection proto-CFLOBDD accounts for half the variables, namely, $\frac{\log_2 P}{2}$, and the B-connection proto-CFLOBDDs account for the remaining half. The natural way to divide C in a divide-and-conquer algorithm is at the middle vertices of the outermost grouping: process the A-connection proto-CFLOBDD, and then the B-connection proto-CFLOBDDs (or vice versa). In T_C, this division corresponds to the tree partitioning shown in the lower-right corner of Fig. 12: C’s A-connection proto-CFLOBDD corresponds to the \textbf{red} tree rooted at the apex of T_C (which has \sqrt{P} leaves); C’s B-connection proto-CFLOBDDs correspond to the \sqrt{P} \textbf{green} trees in the bottom half of T_C (each of which has \sqrt{P} leaves). In contrast with standard divide-and-conquer algorithms, which often divide a problem into two subproblems of half size, this approach divides the original problem into

14Matrices of other sizes, including non-square matrices, can be represented by embedding them within a larger square matrix. For matrices with > 2 dimensions, there would be a set of Boolean variables for the index-bits of each dimension.
\(\sqrt{P} + 1\) subproblems, each of size \(O(\sqrt{P})\). With CFLOBDDs, in contrast to decision trees, there is the potential for subproblems to be shared among the A-connection and B-connections, so one ends up with some number of subproblems \(\gamma (= 1 + \text{the number of middle vertices})\), each of size \(O(\sqrt{P})\).

Whereas with a decision tree it would be easy to take the conventional approach of dividing a problem into two problems of half \(size\)—using the left child and right child of the apex, in essence "peeling off" the topmost ply, such a division is not convenient for CFLOBDDs because the decision variable for the topmost ply is associated with the level-0 grouping found by following the A-connection of the A-connection of the \ldots, etc. For CFLOBDDs, the natural structure of a divide-and-conquer algorithm lies with the A-connection proto-CFLOBDD and the set of B-connection proto-CFLOBDDs—a division based on dividing the number of variables in half.

In certain cases, including matrix multiplication (§7.3), the \(\gamma \times \sqrt{P}\)-decomposition structure forced us to rethink how to perform various algorithms.

Let us now consider how such a decomposition works for an \(N \times N\) matrix \(M\), assuming the interleaved-variable ordering, where \(N = 2^n\). Thus, \(n\) is the number of bits in a row-index (respectively, column-index); there are \(2n\) Boolean variables in total; and \(P = N^2\). \(M\) would be decomposed into \(\sqrt{P} = \sqrt{N^2} = N\) sub-matrices, each of size \(\sqrt{N} \times \sqrt{N}\). At top level, the A-connection of the CFLOBDD for \(M\) captures commonalities in the \(\sqrt{N} \times \sqrt{N}\) block structure of \(M\), and the B-connections represent the blocks: sub-matrices of \(M\) of size \(\sqrt{N} \times \sqrt{N}\).

For instance, when a level-3 CFLOBDD is used to represent a matrix, there are \(2n = 8 = 2^3\) index variables—i.e., \(n = 4\) variables for each dimension—so the matrix is of size \(16 \times 16\). Its natural constituents are level-2 proto-CFLOBDDs, which each have \(2^2 = 4\) index variables. Thus, there are 2 A-connection variables for each dimension of the block structure, and 2 B-connection variables for each dimension of the sub-matrix for a block. Consequently, a matrix of size \(16 \times 16\) is decomposed into \(16 (= 4 \times 4 = \sqrt{16} \times \sqrt{16})\) blocks, each of size \(4 \times 4 = \sqrt{16} \times \sqrt{16}\). With level-4 CFLOBDDs, one has \(n = 8\) variables for each dimension in the full-size matrix. Thus, there are 4 A-connection variables for each dimension of the block structure, and 4 B-connection variables for each dimension of the sub-matrix for a block. Consequently, a matrix of size \(256 \times 256\) is decomposed into \(256 (= 16 \times 16 = \sqrt{256} \times \sqrt{256})\) blocks, each of size \(16 \times 16 = \sqrt{256} \times \sqrt{256}\).

In general, an \(N \times N\) matrix is decomposed according to its \(\sqrt{N} \times \sqrt{N}\) block structure, where each block is of size \(\sqrt{N} \times \sqrt{N}\). With CFLOBDDs, one hopes that many of the blocks are shared among the B-connections (and possibly some blocks are even structurally similar to the block structure itself, represented by the A-connection), so that one ends up with some—hopefully small—number of subproblems \(\gamma\), each of size \(\sqrt{N} \times \sqrt{N}\).

The CFLOBDD decomposition discussed above is different from (i) the natural decomposition of a matrix represented via a BDD, and (ii) the decomposition used in most divide-and-conquer algorithms on matrices. Both (i) and (ii) use \(n \times \frac{n}{2}\)-decompositions (and thus decompose a matrix of size \(16 \times 16\) into 4 sub-matrices, each of size \(8 \times 8\), and decompose a matrix of size \(256 \times 256\) into 4 sub-matrices, each of size \(128 \times 128\)).

Vector Representation. A vector can be represented via a CFLOBDD in a manner that is similar to, but simpler, than the way matrices are represented. A vector of size \(2^n \times 1\) can be represented by a CFLOBDD whose highest level is \(\log n\). Suppose that \(V\) is a \(2^n \times 1\) vector; a CFLOBDD representing \(V\) would have \(n\) Boolean variables \(\{x_0, x_1, \ldots, x_{n-1}\}\) with the variables \(\{x_0, x_1, \ldots, x_{n-1}\}\) representing the successive bits of \(x\)—the index into \(V\). We typically use either the increasing variable ordering or decreasing variable ordering to represent vectors. (Similar to matrices, vectors of other sizes can be embedded within a larger vector of the form \(2^n \times 1\).)
7.2 Kronecker Product

When using CFLOBDDs to represent matrices on which Kronecker products are performed, we typically use the interleaved-variable ordering. Below, we describe two variants of Kronecker product that result in different interleavings of the index variables of the argument matrices.

Variant 1. Suppose that matrices W and V are represented by level-k CFLOBDDs with value tuples $[w_0, \ldots, w_m]$ and $[v_0, \ldots, v_n]$, respectively. To create the CFLOBDD for $W \otimes V$,

1. Create a level $k + 1$ grouping that has $m + 1$ middle vertices, corresponding to the values $[w_0, \ldots, w_m]$, and $(m + 1)(n + 1)$ exit vertices, corresponding to the terminal values $[w_i v_j : i \in [0..m], j \in [0..n]]$, where the terminal values are ordered lexicographically by their (i, j) indexes; i.e., $w_0v_0, w_0v_1, \ldots, w_mv_{n-1}, w_mv_n$. The grouping’s A-connection is the proto-CFLOBDD of W, with return edges that map the i^{th} exit vertex to middle vertex w_i.

2. For each middle vertex, which corresponds to some value w_i, $0 \leq i \leq m$, create a B-connection to the proto-CFLOBDD of V, with return edges that map the j^{th} exit vertex to the exit vertex of the level $k + 1$ grouping that corresponds to the value $w_i v_j$.

3. If any of the values in the sequence $[w_i v_j : i \in [0..m], j \in [0..n]]$ are duplicates, make an appropriate call on Reduce to fold together the classes of exit vertices that are associated with the same value, thereby creating a canonical multi-terminal CFLOBDD.

The construction through step (2) is illustrated in Fig. 13. Pseudo-code for the algorithm can be found in [59, App. G].

With this algorithm, if $x \preceq y$ represents the variable ordering of W and $w \preceq z$ represents the variable ordering of V (where \preceq denotes the operation to interleave two variable orderings), then $W \otimes V$ has the variable ordering $(x||w) \preceq (y||z)$ (where $||$ denotes the concatenation of two sequences of variables).

Variant 2. There is a second way to perform a Kronecker product of W and V, which results in a representation of $W \otimes V$ that has the variable ordering $(x \preceq w) \preceq (y \preceq z)$. Pseudo-code for that algorithm can be found as [59, Alg. 17].

7.3 Matrix Multiplication

The multiplication algorithm for CFLOBDDs presented here is similar to the standard $O(N^3)$ algorithm for multiplying two $N \times N$ matrices. There is a potential for savings because each of the argument CFLOBDDs may have a large number of shared substructures, and function caching can be used to detect when a sub-problem has already been performed, in which case the proto-CFLOBDD for the answer can be returned immediately.

Our starting point is the observation that when the interleaved-variable ordering is used, at top level the A-connection of a CFLOBDD-represented matrix M captures commonalities in the $\sqrt{N} \times \sqrt{N}$ block structure of M, and the B-connections represent sub-matrices of M of size $\sqrt{N} \times \sqrt{N}$. By analogy with other kinds of multi-terminal CFLOBDDs, at top-level one can think of the A-connection as a multi-terminal CFLOBDD whose value tuple is the sequence of B-connections—roughly, the A-connection is a $\sqrt{N} \times \sqrt{N}$ matrix with $\sqrt{N} \times \sqrt{N}$-matrix-valued leaves.

Suppose that P and Q are two $N \times N$ matrices represented by CFLOBDDs CP and CQ, respectively. The respective top-level A-connections, AP and AQ, are matrices of size $\sqrt{N} \times \sqrt{N}$ with matrix-valued cells of size $\sqrt{N} \times \sqrt{N}$. To multiply P and Q, we first recursively multiply AP and AQ. This
operation defines which cells of A_P and A_Q get multiplied and added—and the answer is returned as a collection of symbolic expressions (of a form that will be described shortly). Using this information, we recursively call matrix multiplication and matrix addition on the B-connections, as appropriate.

For the base case of the recursion—namely, level 1, which represents matrices of size 2×2—we can enumerate all the individual cases of possible matrix structures (i.e., the patterns of which cells hold equal values), and build the CFLOBDDs that result from a matrix multiplication in each case.

We now describe how the symbolic information mentioned above is organized, and how operations of addition and multiplication are performed on the data type in which the symbolic information is represented. The challenge that we face is that at all levels below top-level, we do not have access to a value for any cell in a matrix. However, we can use the exit vertices as variables.

Example 7.1. Suppose that we are multiplying two level-1 groupings that, when considered as 2×2 matrices over their respective exit vertices $[ev_1, ev_2]$ and $[ev'_1, ev'_2, ev'_3]$, have the forms shown on the left

\[
\begin{bmatrix}
 ev_1 & ev_2 \\
 ev'_1 & ev'_2
\end{bmatrix} \times \begin{bmatrix}
 ev'_1 & ev'_2 \\
 ev'_3 & ev'_4
\end{bmatrix} = \begin{bmatrix}
 ev_1ev'_1 + ev_1ev'_3 & ev_1ev'_2 + ev_1ev'_4 \\
 ev_2ev'_1 + ev_2ev'_3 & ev_2ev'_2 + ev_2ev'_4
\end{bmatrix} = 2ev_1ev'_1 + ev_1ev'_2 + ev_1ev'_3
\]

Each entry in the right-hand-side matrix can be represented by a set of triples, e.g.,

\[
\begin{align*}
&\{(1, 1), 2\}, \{(2, 1), 1\}, \{(1, 3), 1\}, \{(1, 2), 1\}, \{(2, 3), 1\}.
\end{align*}
\]

and when listed in exit-vertex order for the interleaved-variable order, we have

\[
\{(1, 1), 2\}, \{(1, 2), 1\}, \{(1, 3), 1\}, \{(1, 2), 1\}, \{(2, 3), 1\}.
\]

Now suppose that the two matrices are sub-matrices of level-2 groupings connected by ReturnTuples $rt = [5, 2]$ and $rt' = [6, 1, 2]$, respectively. Then applying $\langle rt, rt' \rangle$ to Eqn. (9) results in

\[
\{(5, 6), 2\}, \{(5, 1), 1\}, \{(5, 2), 1\}, \{(2, 6), 2\}, \{(2, 1), 1\}, \{(2, 2), 1\}.
\]

We call the objects shown in Eqsns. (9) and (10) MatMultTuples. By this device, the answer to a matrix-multiplication sub-problem (whether from A-connections or B-connections, and at any level ≥ 1) can be treated as a multi-terminal CFLOBDD whose value tuple is a MatMultTuple.

Semantics of MatMultTuples. An alternative view of MatMultTuples comes from the right-hand matrix in Eqn. (8): a MatMultTuple is a sequence of bilinear polynomials over the exit vertices of two groupings. We will represent a bilinear polynomial p as a map from exit-vertex pairs to the corresponding coefficient. (The pairs for which the coefficient is nonzero are called the support of p. In examples, we show only map entries that are in the support.) In particular, suppose that g_1 and g_2 are two groupings at the same level, with exit-vertex sets EV and EV'. Each entry of a MatMultTuple is of type $BP_{EV,EV'} \overset{\text{def}}{=} (EV \times EV') \rightarrow N$. (We will drop the subscripts on BP if the exit-vertex sets are understood.)

To perform linear arithmetic on bilinear polynomials, we define

\[
\begin{align*}
0_{BP} & : BP \\
+ & : BP \times BP \rightarrow BP \\
& \quad \overset{\text{def}}{=} \lambda(\langle ev, ev' \rangle, 0) \\
* & : \mathbb{N} \times BP \rightarrow BP \\
& \quad \overset{\text{def}}{=} \lambda(\langle ev, ev' \rangle, \langle bp_1, ev, ev' \rangle + \langle bp_2, ev, ev' \rangle) \\
& \quad \overset{\text{def}}{=} \lambda(\langle ev, ev' \rangle, n \times bp(\langle ev, ev' \rangle))
\end{align*}
\]

By considering a ReturnTuple to be a map from one exit-vertex set to another, this notation allows us to give a second account of the transformation from Eqn. (9) to Eqn. (10). For instance, let $rt = [1 \leftrightarrow 5, 2 \leftrightarrow 2]$ and $rt' = [1 \leftrightarrow 6, 2 \leftrightarrow 1, 3 \leftrightarrow 2]$. Consider the second element of Eqn. (9):
The transformation of bp induced by rt and rt' can be expressed as follows (where Eqn. (11) expresses the general case):

$$\langle rt, rt' \rangle (bp) \overset{\text{def}}{=} \{(rt(ev), rt'(ev')) \mapsto bp(ev, ev') \mid ev \in EV, ev' \in EV'\}$$

(11)

where a value tuple is treated as a map of type $EV \to \mathbb{V}$ for a value space \mathbb{V} that supports $+$ and \ast.

Example 7.2. We illustrate the steps of the algorithm using the following example: Consider the vector $V = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$ and matrix $M = \begin{bmatrix} 2 & 0 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. The goal is to convert V to M. The algorithm constructs intermediate matrices M_1 and M_2 defined as follows: $M_1 = \begin{bmatrix} 2 & 2 & 2 \\ 3 & 3 & 3 \\ 5 & 5 & 5 \end{bmatrix}$ and $M_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$. Finally, the result of converting vector V to a matrix is $M = M_1 \ast M_2 = \begin{bmatrix} 2 & 2 & 2 \\ 3 & 3 & 3 \\ 0 & 0 & 0 \end{bmatrix} \ast \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, where \ast denotes pointwise matrix multiplication. (Pseudo-code for the algorithm can be found as [59, Alg. 18].)

8 RELATIONS EFFICIENTLY REPRESENTED BY CFLOBDDs

In this section, we prove that there exists an inherently exponential separation between CFLOBDDs and BDDs by showing that there is a family of functions f_n for which, for all $n = 2^l$, the CFLOBDD for f_n can be exponentially smaller than any BDD for f_n. Note that we do not assume any specific variable ordering when discussing the sizes of BDDs for the functions used to prove the separation. Moreover, our result applies to ROBDDs (in which “don’t-care” nodes are removed, and plies are skipped). As a proxy for memory, we use node counts in BDDs, and vertex counts and edge counts in CFLOBDDs. (Recall from footnote 4 that we use “node” solely for BDDs, whereas “groupings” and “vertices”—depicted as the dots inside groupings—refer to CFLOBDDs.)

We show this separation using the family of Hadamard relations, which represent the family H of Hadamard matrices discussed in §2 and §3.4. The Hadamard matrices play a role in many quantum algorithms, including the seven that are used in §10.2.2 to evaluate the effectiveness of CFLOBDDs for simulating quantum circuits (namely, GHZ, BV, DJ, Simon’s algorithm, QFT, Shor’s algorithm, and Grover’s algorithm). See §9.2, §10.2.2, and [59, §9.3].

15 Matrix-vector multiplication is performed similarly.
Theorem 8.1 (Exponential separation for the Hadamard relations). The Hadamard relation $H_n : \{0, 1\}^{n/2} \times \{0, 1\}^{n/2} \rightarrow \{1, -1\}$ between variable sets $(x_0 \cdots x_{n/2})$ and $(y_0 \cdots y_{n/2})$, where $n = 2^l$, can be represented by a CFLOBDD with $O(\log n)$ vertices and edges. In contrast, a BDD that represents H_n requires $\Omega(n)$ nodes.

Proof. CFLOBDD Claim. As shown in §3, each matrix $H_n \in \mathcal{H}$, where $n = 2^l$ can be represented by a CFLOBDD with $O(l)$ vertices and edges—i.e., with $O(\log(n))$ space.

BDD Claim. We claim that regardless of the variable ordering, the BDD representation for H_n requires at least n nodes, one node for each variable in the argument. We prove the claim by contradiction. Suppose that there is some BDD B for H_n that does not need at least one node for each variable. In that case, the H_n function represented by B does not depend on that particular variable. Let T denote the “all-true” assignment of variables; i.e., $T \overset{\text{def}}{=} \forall k \in \{0..n/2 - 1\}, x_k \mapsto T, y_k \mapsto T$. There are three possible situations:

- Case 1: B does not depend on variable y_k, for some $k \in \{0..n/2 - 1\}$. Consider two variable assignments: $A_1 \overset{\text{def}}{=} T$ and $A_2 \overset{\text{def}}{=} T[y_k \mapsto F]$ (i.e., A_2 is A_1 with y_k updated to F). A_1 and A_2 yield the same value for the function represented by B, but they yield different values for the Hadamard relation. That is, if $H_n[A_1] = v$ (where v is either 1 or -1), then $H_n[A_2] = -v$. We prove this claim by induction on level.

Proof. Base Case:
- $n = 2$. $H_2[A_1]$ is the lower-right corner of Fig. 2a, which is -1, and $H_2[A_2]$ is the value of the path $[x_0 \mapsto T, y_0 \mapsto F]$, which yields 1.
- $n = 4$. A_1 is the path to the rightmost (16^{th}) leaf in Fig. 2c, which yields a value of 1. For $k = 0$, A_2 ends up at the 12^{th} leaf, which is -1; if $k = 1$, A_2 ends up at the 15^{th} leaf, which is also -1.

Induction Step: Let us extend the notation for A_1 and A_2 by adding level information. A_1^m denotes the “all-true” assignment for 2^m variables, and $A_2^m = A_1^m[y_k \mapsto F]$. Let us assume that the claim is true for H_{2m}, i.e., $H_{2m}[A_1] = v$ (could be 1 or -1) and $H_{2m}[A_2] = -v$. We must show that the claim holds true for H_{2m+1}.

We know that $H_{2m+1} = H_{2m} \otimes H_{2m}$. Thus, $H_{2m+1}[A_1^{m+1}] = H_{2m}[A_1^m] \star H_{2m}[A_1^m]$, where $A_1^{m+1} = A_1^m \oplus A_1^m$. Thus, $H_{2m+1}[A_1^{m+1}]$ must have the value $-v^2 = -v \ast v$. A recursive relation can similarly be written for assignment A_2, depending on where the bit-flip for y occurs. There are two possible cases:

1. k occurs in the first half; $A_2^{m+1} = A_2^m \oplus A_1^m$ and therefore, $H_{2m+1}[A_2^{m+1}] = H_{2m}[A_2^m] \ast H_{2m}[A_1^m]$, which leads to a value of $-v^2 = -v \ast v$.
2. k occurs in the second half; $A_2^{m+1} = A_2^m \oplus A_2^m$ and therefore, $H_{2m+1}[A_2^{m+1}] = H_{2m}[A_2^m] \ast H_{2m}[A_2^m]$, which leads to a value of $-v^2 = -v \ast v$.

In both cases, the values obtained with a bit-flip do not match the value for an “all-true” assignment.

We conclude that none of the y_k variables can be dropped individually.

- Case 2: None of the x variables can be dropped individually, using a completely analogous argument to Case 1.

- Case 3: B does not depend on either x_k or y_k. The assignments $A_1 = T = [..., x_k \mapsto T, y_k \mapsto T, ...]$, $A_2 = T[y_k \mapsto F] = [..., x_k \mapsto T, y_k \mapsto F, ...]$, $A_3 = T[x_k \mapsto F] = [..., x_k \mapsto F, y_k \mapsto T, ...]$, and $A_4 = T[x_k \mapsto F, y_k \mapsto F] = [..., x_k \mapsto F, y_k \mapsto F, ...]$ must all be mapped to the same value by the function represented by B, which violates the definitions of the Hadamard relation H_n. (More precisely, $H_n[A_1] = v$, where v is either 1 or -1, but
To make the paper self-contained, we briefly summarize the quantum-computing model. (vectors are \(e \) state space would be encoded as follows: encodings [28]: a bit is either zero, encoded as state of a set of \(n \) qubits.

Unfortunately, we do not have a characterization of relative sizes in the opposite direction (i.e., a bound on CFLOBDD size as a function of BDD size, for all BDDs). It could be that there are families of functions for which BDDs are exponentially more succinct than any corresponding CFLOBDD; however, it could also be that for every BDD there is a corresponding CFLOBDD no more than, say, a polynomial factor larger.

9 APPLICATIONS TO QUANTUM-CIRCUIT SIMULATION

For certain problems, algorithms run on quantum computers achieve polynomial to exponential speed-ups over their classical counterparts. In this section, we give background on quantum computing (§9.1), summarize the problems used in the experiments in §10.2.2 (§9.2), articulate some advantages of quantum-circuit simulation (§9.3), and discuss the potential of CFLOBDDs (§9.4).

9.1 Background on Quantum Computing

Quantum circuits. A quantum circuit takes as input an initial quantum-state vector, and applies a sequence of quantum gates, which are each length-preserving transformations, and can be expressed as unitary matrices. Thus, quantum-circuit simulation requires a way to perform linear algebra
with vectors of size 2^n and matrices of size $2^n \times 2^n$, where n is the number of qubits involved.

Examples of gates that operate on single qubits are $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, and $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. I leaves a quantum state as is; the Hadamard gate H sends a basis state to a state in “superposition” (i.e., a state that is a non-trivial linear combination of basis states); X complements the indices of a qubit’s basis states, and thus flips the positions of the amplitudes, sending $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ to $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Let k occurrences of M denote the k-fold Kronecker product of M with itself: $M^{\otimes k} = M \otimes M \otimes \ldots \otimes M$. The quantum gate that, e.g., applies H to the j^{th} qubit of an n-qubit quantum state is $I^{\otimes (j-1)} \otimes H \otimes I^{\otimes (n-j)}$.

Measurement and Entanglement. A measurement operation samples a basis vector based on the distribution given by the squares of the absolute values of the amplitudes. Qubits are said to be entangled if the measurement of one qubit can influence the result obtained by measuring a different qubit. A Controlled-NOT (CNOT) gate operates on two index bits: one bit is the control-bit and the other is the controlled-bit; in the output, the value of the controlled-bit is flipped if the control-bit is ‘1’. For two qubits, with the first qubit as the control-bit, the gate’s matrix is $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$. For instance, $\text{CNOT} \times \left(\begin{bmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \text{CNOT} \times \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$. The latter state is entangled: measuring either (or both) qubits yields either the state e_{00} or e_{11}, each with probability $\frac{1}{2}$. In other words, after measuring either qubit and obtaining a value $v \in \{0, 1\}$, the value of the other qubit must also be v.

9.2 Quantum Algorithms

This section describes the quantum-computation problems that are used in the experiments in §10.2.2. More details about the algorithms for these problems can be found in [59, §9.3]

The Greenberger–Horne–Zeilinger (GHZ) state. The GHZ state is the following entangled state vector over 3 qubits (i.e., a unit vector of size 8): $\text{GHZ}_3 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. We extend the concept to n qubits by defining $\text{GHZ}_n = \frac{1}{\sqrt{n}} \begin{bmatrix} 1 \\ 0 \ldots 0 \\ 0 \\ 1 \ldots 0 \\ 0 \\ 0 \ldots 1 \\ 0 \\ 0 \ldots 0 \end{bmatrix}$, which is a unit vector of size 2^n.

The Bernstein–Vazirani (BV) problem. Given an oracle that implements a function $f : \{0, 1\}^n \to \{0, 1\}$ in which $f(x)$ is promised to be the dot product, mod 2, between x and a secret string $s \in \{0, 1\}^n$—i.e., $f(x) = x_1 \cdot s_1 \oplus x_2 \cdot s_2 \oplus \cdots \oplus x_n \cdot s_n$—find s.

The Deutsch–Jozsa (DJ) problem. Given an oracle that implements a function $f : \{0, 1\}^n \to \{0, 1\}$, where f is promised to be either a constant function (0 on all inputs or 1 on all inputs) or a balanced function (returns 1 for half of the input domain and 0 for the other half), determine if f is balanced or constant.

Simon’s problem. Given a function $f : \{0, 1\}^n \to \{0, 1\}^n$, where f is promised to satisfy the property that there is a “hidden vector” $s \in \{0, 1\}^n$ such that, for all x and y, $f(x) = f(y)$ if and only if $x = y \oplus s$, find the hidden vector s.

Quantum Fourier Transform (QFT). The QFT is a linear transformation that, in matrix form, has the following form: $\begin{bmatrix} 1 & 1 & 1 & 1 & \ldots & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \ldots & \omega^{N-1} \\ 1 & \omega^2 & \omega^3 & \omega^4 & \ldots & \omega^{2(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \omega^{3(N-1)} & \ldots & \omega^{(N-1)(N-1)} \end{bmatrix}$, where $N = 2^n$ and $\omega = e^{2\pi i/N}$. The problem to be solved is to apply the QFT matrix to a given quantum-state vector.

\[16\] A Hadamard gate that operates on a single qubit is the Hadamard matrix H_2 from Fig. 1 (§2), scaled by $\frac{1}{\sqrt{2}}$ so that it is a unitary matrix.
Shor’s algorithm. The problem is to find prime factors of a given integer K, where $0 \leq K \leq 2^n - 1$.

Grover’s algorithm. The problem to be solved is the following search problem: given a function $f : \{0, 1, \ldots, 2^n - 1\} \rightarrow \{0, 1\}$ such that there is a unique x for which $f(x) = 1$, find x.

9.3 Advantages of Simulation

Simulation of a quantum circuit can have advantages compared to actually running a circuit on a quantum computer. Quantum simulation has a role in testing quantum computers. In particular, simulation can be used to create test suites for checking the correctness of the output states and measurements obtained from physical hardware. However, current quantum computers are error-prone, due to noise, and hence bad for confirming the correctness of a quantum algorithm. In contrast, a simulation never produces incorrect results (modulo floating-point round-off error and bugs in the implementation of the simulator).

Moreover, a simulation can deviate from certain requirements of the quantum-computation model and perform the simulation in a way that no quantum device could.

(1) Some quantum algorithms perform multiple iterations of a particular quantum operator O (e.g., k iterations, where k is some power of 2). A simulation can operate on O itself [72, Ch. 6], using repeated squaring to create the sequence of derived operators O^2, O^4, O^8, \ldots, $O^{2\log k} = O^k$, which can be accomplished in $\log k$ iterations. The final answer is then obtained using O^k. A physical quantum computer can only apply O sequentially, and thus must perform k applications of O. This approach is particularly useful in simulating Grover’s algorithm.

(2) The quantum-computation model requires the use of a limited repertoire of operations: every operation is a multiplication by a unitary matrix, and all results (and all intermediate values) must be produced in this way. In contrast, it is acceptable for a simulation to create some intermediate results by alternative pathways. In some cases, our simulation of a quantum algorithm directly creates a CFLOBDD that represents an intermediate value, thereby avoiding a sequence of potentially more costly computational steps that stay within the quantum model. (See “A Special-Case Construction” in [59, §9.2.5], which is used in Grover’s algorithm.)

(3) In many quantum algorithms, the final state needs to be measured multiple times. When running on a physical quantum computer, part or all of the quantum state is destroyed after each measurement of the state, and thus the quantum steps must be re-performed before each successive measurement. In contrast, in a simulation the quantum steps need only be performed once. At that point, there are two possibilities:

- Once we have the final quantum state produced by the simulation in hand, one can inspect the amplitudes and thereby avoid doing any measurement at all.

- If the goal of the simulation is to confirm that a given measurement protocol is correct, then because a simulated measurement does not cause any part of the simulated quantum state to be lost, multiple measurements can be made—e.g., using the sampling algorithm given in §6.4.2—without having to re-perform the steps of the quantum computation before each successive measurement.

Quantum supremacy refers to a computing problem and a problem size beyond which the problem can be solved efficiently on a quantum computer, but not on a classical computer. Quantum simulation is at one of the borders between classical computing and quantum computing: in a simulation, a classical computer performs the computation in roughly the same manner as a quantum computer, but can take advantage of shortcuts of the kind listed above. In principle, a more efficient simulation technique has the potential to change the threshold for quantum supremacy.
9.4 The Potential of CFLOBDDs for Quantum-Circuit Simulation

A quantum state \(\sum_{w \in \{0,1\}^n} \alpha_w e_w \) is a function of type \(\{0,1\}^n \rightarrow \mathbb{C} \), and thus could be encoded with a decision tree of height \(n \). Such a representation would be inefficient. The potential of CFLOBDDs is for providing (up to) double-exponential compression in the sizes of the vectors and matrices that arise during quantum simulation using \(\log n \) and \(\log n + 1 \) levels, respectively. Because many quantum gates can be described using Kronecker products, there is great potential for them to have a compact representation as a CFLOBDD.

The following table indicates where to find details about the CFLOBDD operations needed to simulate a quantum circuit:

<table>
<thead>
<tr>
<th>State construction</th>
<th>This paper</th>
<th>Reference [59]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard-basis vector</td>
<td>—</td>
<td>§9.2.4 Alg. 25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gate construction</th>
<th>This paper</th>
<th>Reference [59]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity gate</td>
<td>—</td>
<td>§9.2.2 Alg. 24</td>
</tr>
<tr>
<td>Hadamard gate</td>
<td>Fig. 6b</td>
<td>§9.2.1 Alg. 23</td>
</tr>
<tr>
<td>Not gate</td>
<td>—</td>
<td>§9.2.3 Variant of Alg. 24</td>
</tr>
<tr>
<td>CNOT gate</td>
<td>—</td>
<td>§9.2.5 Appendix I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operations</th>
<th>This paper</th>
<th>Reference [59]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kronecker product</td>
<td>§7.2</td>
<td>§7.5 Alg. 17</td>
</tr>
<tr>
<td>Matrix-matrix multiplication</td>
<td>§7.3</td>
<td>§7.7 Alg. 19</td>
</tr>
<tr>
<td>Vector-matrix and matrix-vector multiplication</td>
<td>§7.4 and §7.3</td>
<td>§7.6 + §7.7 Algs. 18 and 19</td>
</tr>
<tr>
<td>Application of QFT</td>
<td>—</td>
<td>§9.2.6 Appendix J</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement</th>
<th>This paper</th>
<th>Reference [59]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$$6.4</td>
<td>§7.8 Alg. 22</td>
<td></td>
</tr>
</tbody>
</table>

10 EVALUATION

In this section, we explain our experimental setup and describe the experiments we carried out, which were designed to address the following research questions:

RQ1: Do theoretical guarantees of double-exponential compression by CFLOBDDs allow them to represent substantially larger Boolean functions than BDDs?

RQ2: Do CFLOBDDs outperform BDDs when used for quantum simulation (in terms of time and space)?

10.1 Experimental Setup

We compared our implementation of CFLOBDDs against a widely used BDD package, CUDD [60] (version 3.0.0), using CUDD’s C++ interface. The metrics are (i) execution time, and (ii) space (node counts in the case of BDDs; vertex counts + edge counts in the case of CFLOBDDs). We ran all experiments on AWS machines: t2.xlarge machines with 4 vCPUs, 16GB of memory, and a stack size of 8192KB, running on Ubuntu OS. For RQ1 (§10.2.1), we used a collection of synthetic benchmarks, and compared the performance of CFLOBDDs against (i) CUDD with a static variable ordering (similar to the one used in the CFLOBDDs), (ii) CUDD with dynamic variable reordering, and (iii) Sentential Decision Diagrams (SDDs) [18] (which can also be exponentially more succinct than BDDs), using Python package PySDD [41] (version 0.1). For RQ2 (§10.2.2), we used a set of quantum-simulation benchmarks, and again compared the performance of CFLOBDDs against CUDD. For the quantum benchmarks, we did not enable dynamic variable reordering for BDDs because we could not retrieve the correct order of the output bits for a sampled string.

Five of the quantum benchmarks—BV, DJ, Simon’s algorithm, Shor’s algorithm, and Grover’s algorithm—use oracles that either directly or indirectly incorporate the answer sought. Our methodology is standard for quantum-simulation experiments. Each benchmark uses a pre-processing step to create the CFLOBDD/BDD that represents the oracle. In each run, an answer is first generated randomly, and then the CFLOBDD/BDD that represents the oracle is constructed. Knowledge about the answer is used only during oracle construction. Thereafter, the quantum algorithm proper is simulated; these steps have no access to the pre-chosen answer.

The implementation is available at https://github.com/trishullab/cflobdd.
(other than the ability to perform operations on the oracle, treated as a unitary matrix). The final step of running the benchmark is to check that the quantum algorithm obtained the correct answer. We could not run the quantum benchmarks with SDDs because SDDs do not support multi-terminal values. However, we ran the quantum benchmarks using Quimb [24], a quantum-simulation library that uses tensor networks.

For the RQ2 experiments, we had to extend CUDD in two ways (for details, see [59, §10.1]):

1. CUDD supports algebraic decision diagrams (ADDs), which are multi-terminal BDDs with a value from a semiring at each terminal node. To support functions of type $\{0,1\}^n \rightarrow \mathbb{C}$, we needed a semiring that was not part of the standard CUDD distribution. We implemented a semiring of multi-precision-floating-point [20] complex numbers. For the corresponding experiments with CFLOBDDs, we used the same semiring for the terminal values of CFLOBDDs.

2. To allow quantum measurements to be carried out, we extended ADDs to support path sampling (i.e., selection of a path, where the probability of returning a given path is proportional to a function of the path’s terminal value).

10.2 Benchmarks and Experimental Results

10.2.1 RQ1: Do theoretical guarantees of double-exponential compression by CFLOBDDs allow them to represent substantially larger Boolean functions than BDDs?

We used the following three benchmarks to compare the execution time and memory usage (as vertex count + edge count) of CFLOBDDs against BDDs and SDDs.

- $XOR_n = \bigoplus_{i=1}^n x_i$
- $MatMult_n = (H_n I_n + X_n H_n + I_n X_n)$, where H_n is the Hadamard matrix, I_n is the Identity matrix, and X_n is the NOT matrix of size $2^{n-1} \times 2^{n-1}$. (The aim of the benchmark is to test the performance of the matrix-multiplication and addition operations.)
- $ADD_n(X, Y, Z) \overset{\text{def}}{=} Z = (X + Y \mod 2^n/4)$, where $X, Y,$ and Z are $n/4$-bit integers.

Tab. 2 shows the performance of CFLOBDDs, BDDs (both with and without dynamic variable-reordering enabled), and SDDs within the 15-minute timeout threshold. For the two kinds of BDD experiments and the SDD experiments, we used a stack size of 1GB. For the ADD benchmark, BDDs (both with and without dynamic reordering) and SDDs ran out of memory within the 15-minute timeout threshold for problems with sufficiently many variables, even with such a large stack. (BDDs with dynamic reordering produced out-of-memory errors for $n \geq 2^{24}$; the first step in the computation is to allocate the variables, which by itself leads to memory exhaustion for 2^{24} variables and beyond.) Note that, for SDDs, benchmark $MatMult_n$ is not applicable because SDDs do not handle non-Boolean values.

Because of a slightly technical alignment issue, our CFLOBDD representations of ADD_n deliberately waste one-quarter of the Boolean variables (as dummy variables). To make a fair comparison, our BDD and SDD encodings of ADD_n use only three-quarters of the Boolean variables indicated in column two of Tab. 2.

To understand how large a Boolean function could be created using CFLOBDDs (as a function of the number of Boolean variables), we also measured the performance of the CFLOBD implementation on the micro-benchmarks using a timeout of ninety minutes. Fig. 15 shows graphs of size (#vertices + #edges) and time versus the number of Boolean variables for the three benchmarks. Fig. 15a shows the graphs for XOR_n. In these graphs, time is in seconds, and the number of Boolean variables is on a log scale. We were able to construct XOR_n with up to $2^{22} = 4,194,304$ variables. Fig. 15b and Fig. 15c show the graphs for $MatMult_n$ and ADD_n, respectively. In these graphs, time is in milliseconds, and the number of Boolean variables is on a log scale for $MatMult_n$ and a log log scale for ADD_n. We were able to construct $MatMult_n$ with up to $2^{27} = 134,217,728$ variables and ADD_n with up to $2^{23} = 8,388,608 \approx 4.27 \times 10^{2.525.222}$ variables, which comes to $0.75 \times 2^{8.388.608} \approx 3.12 \times 10^{2.525.222}$ after removing dummy variables.

18 The stack size was increased to 1GB for the runs with more than 2^{315} Boolean variables.
19 Tab. 2 shows the comparison of CFLOBDDs, BDDs, and SDDs for examples with a 15-minute timeout. In contrast, Fig. 15 shows the results of the stress test that we performed, where we gave the CFLOBDD implementation a 90-minute timeout.
<table>
<thead>
<tr>
<th>Benchmark</th>
<th>#Boolean Variables (n)</th>
<th>#Vertices</th>
<th>#Edges</th>
<th>Total</th>
<th>Time (sec)</th>
<th>#Nodes</th>
<th>BDD</th>
<th>BDD (reorder)</th>
<th>SDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>XOR</td>
<td>2^13</td>
<td>16</td>
<td>96</td>
<td>112</td>
<td>0.99</td>
<td>32769</td>
<td>551.27</td>
<td>32769</td>
<td>587.11</td>
</tr>
<tr>
<td></td>
<td>2^14</td>
<td>17</td>
<td>102</td>
<td>119</td>
<td>2.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^15</td>
<td>18</td>
<td>108</td>
<td>126</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^16</td>
<td>19</td>
<td>114</td>
<td>133</td>
<td>12.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^17</td>
<td>20</td>
<td>120</td>
<td>140</td>
<td>36.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^18</td>
<td>21</td>
<td>126</td>
<td>147</td>
<td>122.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MatMult</td>
<td>2^19</td>
<td>84</td>
<td>1053</td>
<td>1137</td>
<td>0.002</td>
<td>294890</td>
<td>57.33</td>
<td>294890</td>
<td>156.42</td>
</tr>
<tr>
<td></td>
<td>2^20</td>
<td>90</td>
<td>1125</td>
<td>1137</td>
<td>0.004</td>
<td>589802</td>
<td>186.27</td>
<td>593122</td>
<td>346.19</td>
</tr>
<tr>
<td></td>
<td>2^21</td>
<td>96</td>
<td>1197</td>
<td>1293</td>
<td>0.007</td>
<td>1179626</td>
<td>739.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^22</td>
<td>102</td>
<td>1269</td>
<td>1371</td>
<td>0.017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^23</td>
<td>108</td>
<td>1341</td>
<td>1449</td>
<td>0.043</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^24</td>
<td>114</td>
<td>1413</td>
<td>1527</td>
<td>0.118</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^25</td>
<td>120</td>
<td>1485</td>
<td>1605</td>
<td>0.343</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^26</td>
<td>126</td>
<td>1557</td>
<td>1683</td>
<td>1.238</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^27</td>
<td>132</td>
<td>1629</td>
<td>1761</td>
<td>4.936</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^28</td>
<td>138</td>
<td>1701</td>
<td>1839</td>
<td>19.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^29</td>
<td>144</td>
<td>1773</td>
<td>1917</td>
<td>78.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^30</td>
<td>150</td>
<td>1845</td>
<td>1995</td>
<td>317.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^31</td>
<td>80</td>
<td>574</td>
<td>654</td>
<td><0.001</td>
<td>131075</td>
<td>0.035</td>
<td>132405</td>
<td>80.24</td>
</tr>
<tr>
<td></td>
<td>2^32</td>
<td>85</td>
<td>610</td>
<td>695</td>
<td>0.001</td>
<td>262145</td>
<td>0.065</td>
<td>263477</td>
<td>280.79</td>
</tr>
<tr>
<td></td>
<td>2^33</td>
<td>90</td>
<td>646</td>
<td>736</td>
<td>0.001</td>
<td>524289</td>
<td>0.148</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^34</td>
<td>95</td>
<td>682</td>
<td>777</td>
<td>0.001</td>
<td>1048577</td>
<td>0.295</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^35</td>
<td>100</td>
<td>718</td>
<td>818</td>
<td>0.001</td>
<td>2097146</td>
<td>1.368</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^36</td>
<td>105</td>
<td>754</td>
<td>859</td>
<td>0.001</td>
<td>4194298</td>
<td>1.155</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^37</td>
<td>110</td>
<td>790</td>
<td>900</td>
<td>0.002</td>
<td>8388609</td>
<td>3.316</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^38</td>
<td>115</td>
<td>826</td>
<td>941</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^39</td>
<td>120</td>
<td>862</td>
<td>982</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^41</td>
<td>1048575</td>
<td>75497434</td>
<td>85983189</td>
<td>113.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^42</td>
<td>20971515</td>
<td>150994906</td>
<td>171966421</td>
<td>385.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2^43</td>
<td>Timeout (15min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Performance of CFLOBDDs against BDDs, BDDs with dynamic reordering, and SDDs on the synthetic benchmarks for different numbers of Boolean variables. (For the two kinds of BDD experiments and the SDD experiments, we used a stack size of 1GB.)

Findings. CFLOBDDs performed better than BDDs and SDDs, both in terms of time and memory. For the benchmarks with more than 2^18 Boolean variables, BDDs had memory issues. Using CFLOBDDs, it was also possible to construct representations of the benchmark functions with astounding numbers of Boolean variables: 2^22 = 4,194,304 for XOR_n; 2^27 = 134,217,728 for MatMult_n; and 0.75 x 2^8,388,608 ≈ 3.12 x 10^2,325,222 for ADD_n. These results support the claim that CFLOBDDs can provide substantially better compression of Boolean functions than BDDs.

10.2.2 **RQ2:** Do CFLOBDDs outperform BDDs when used for quantum simulation (in terms of time and space)?

Tabs. 3 and 4 show the performance of CFLOBDDs and BDDs when simulating several well-known quantum algorithms. In each case, for both CFLOBDDs and BDDs, we used the interleaved-variable ordering.

For GHZ, the algorithms do not depend on an input; the output is solely a function of the number of qubits used. We used the quantum circuit given by Yu and Palsberg [70, §2] for obtaining the GHZ state for n qubits; see also [59, §9.3.1]. For BV, DJ, QFT, Simon’s algorithm, Shor’s algorithm, and Grover’s algorithm, we ran each algorithm with 50 different randomly selected inputs, for each of the indicated number of qubits. Tabs. 3 and 4 report the average vertex and average edge counts (for CFLOBDDs), average node count (for BDDs), and average time taken. In the case of Simon’s algorithm, CFLOBDDs timed-out on 9 of the 50 test cases, whereas BDDs timed-out on 28 of the 50 test cases; we report the average counts and average times for the test cases that did not time out. BV, DJ, Simon’s algorithm, Shor’s algorithm, and Grover’s algorithm make use of oracles
created during a pre-processing step (see also §10.1); we do not include the time for oracle construction in the execution time, but we do include it as part of the 15-minute/90-minute timeout threshold. For the case of QFT, the input is one of the basis vectors selected randomly. For 16 qubits and a timeout threshold of 15 minutes, QFT ran to completion in 11 of the 50 runs. The numbers reported in Tab. 4 are the averages for the 11 successful runs. In the entries for Shor’s algorithm, \(N \) is the number being factored, and \(a \) is the value used in the associated “order-finding problem.”

Given \(a \), such that \(1 < a < N \), the order-finding problem is to find the smallest positive integer \(r \) such that \(a^r \equiv 1 (mod N) \).
<table>
<thead>
<tr>
<th>Benchmark</th>
<th>#Qubits</th>
<th>#Boolean Variables</th>
<th>CFLOBDD</th>
<th>BDD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>#Vertices</td>
<td>#Edges</td>
</tr>
<tr>
<td>GHZ</td>
<td>16</td>
<td>32</td>
<td>35</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>64</td>
<td>51</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>128</td>
<td>52</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>256</td>
<td>59</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>256</td>
<td>512</td>
<td>67</td>
<td>399</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>1024</td>
<td>75</td>
<td>447</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>2048</td>
<td>83</td>
<td>495</td>
</tr>
<tr>
<td></td>
<td>2048</td>
<td>4096</td>
<td>91</td>
<td>543</td>
</tr>
<tr>
<td></td>
<td>4096</td>
<td>8192</td>
<td>99</td>
<td>591</td>
</tr>
<tr>
<td></td>
<td>8192</td>
<td>16384</td>
<td>107</td>
<td>639</td>
</tr>
<tr>
<td></td>
<td>16384</td>
<td>32768</td>
<td>115</td>
<td>687</td>
</tr>
<tr>
<td></td>
<td>32768</td>
<td>65536</td>
<td>123</td>
<td>735</td>
</tr>
<tr>
<td></td>
<td>65536</td>
<td>131072</td>
<td>131</td>
<td>783</td>
</tr>
<tr>
<td></td>
<td>131072</td>
<td>262144</td>
<td>Timeout (15 min)</td>
<td></td>
</tr>
<tr>
<td>BV</td>
<td>16</td>
<td>32</td>
<td>29</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>64</td>
<td>39</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>128</td>
<td>54</td>
<td>322</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>256</td>
<td>76</td>
<td>456</td>
</tr>
<tr>
<td></td>
<td>256</td>
<td>512</td>
<td>111</td>
<td>668</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>1024</td>
<td>173</td>
<td>1039</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>2048</td>
<td>283</td>
<td>1701</td>
</tr>
<tr>
<td></td>
<td>2048</td>
<td>4096</td>
<td>476</td>
<td>2854</td>
</tr>
<tr>
<td></td>
<td>4096</td>
<td>8192</td>
<td>794</td>
<td>4762</td>
</tr>
<tr>
<td></td>
<td>8192</td>
<td>16384</td>
<td>1337</td>
<td>8024</td>
</tr>
<tr>
<td></td>
<td>16384</td>
<td>32768</td>
<td>2363</td>
<td>14177</td>
</tr>
<tr>
<td></td>
<td>32768</td>
<td>65536</td>
<td>4391</td>
<td>26346</td>
</tr>
<tr>
<td></td>
<td>65536</td>
<td>131072</td>
<td>8395</td>
<td>50372</td>
</tr>
<tr>
<td></td>
<td>131072</td>
<td>262144</td>
<td>16220</td>
<td>97318</td>
</tr>
<tr>
<td></td>
<td>262144</td>
<td>524288</td>
<td>31209</td>
<td>187251</td>
</tr>
<tr>
<td></td>
<td>524288</td>
<td>1048576</td>
<td>58901</td>
<td>353404</td>
</tr>
<tr>
<td></td>
<td>1048576</td>
<td>2097152</td>
<td>Timeout (15 min)</td>
<td></td>
</tr>
<tr>
<td>DJ</td>
<td>16</td>
<td>32</td>
<td>18</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>64</td>
<td>21</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>128</td>
<td>24</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>256</td>
<td>27</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>256</td>
<td>512</td>
<td>30</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>1024</td>
<td>33</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>2048</td>
<td>36</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>2048</td>
<td>4096</td>
<td>39</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>4096</td>
<td>8192</td>
<td>42</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>8192</td>
<td>16384</td>
<td>45</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>16384</td>
<td>32768</td>
<td>48</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>32768</td>
<td>65536</td>
<td>51</td>
<td>266</td>
</tr>
<tr>
<td></td>
<td>65536</td>
<td>131072</td>
<td>54</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>131072</td>
<td>262144</td>
<td>57</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>262144</td>
<td>524288</td>
<td>60</td>
<td>314</td>
</tr>
<tr>
<td></td>
<td>524288</td>
<td>1048576</td>
<td>63</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>1048576</td>
<td>2097152</td>
<td>66</td>
<td>346</td>
</tr>
<tr>
<td></td>
<td>2097152</td>
<td>4194304</td>
<td>69</td>
<td>362</td>
</tr>
<tr>
<td></td>
<td>4194304</td>
<td>8388608</td>
<td>72</td>
<td>378</td>
</tr>
<tr>
<td></td>
<td>8388608</td>
<td>16777216</td>
<td>Timeout (15 min)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. The performance of CFLOBDDs against BDDs for increasing numbers of qubits.
In several cases, the problem sizes that completed successfully using CFLOBDDs were dramatically larger than the sizes that completed successfully using BDDs. With a 15-minute timeout, the number of qubits that CFLOBDDs can handle are 65,536 for GHZ, 524,288 for BV; 4,194,304 for DJ; and 4,096 for Grover’s Algorithm, besting BDDs by factors of $2^{11} \times$, $1,024 \times$, $8,192 \times$, and $128 \times$, respectively.

We also ran the CFLOBDD simulations with a 90-minute timeout, both to understand how execution time scales, as a function of number of qubits, and to see how large a problem instance can be handled. Fig. 16 shows the time taken (in seconds), with increasing numbers of qubits, for BV, GHZ, and DJ. With a 90-minute timeout, the BV and GHZ algorithms ran to completion with $2^{20} = 1,048,576$ qubits, and the DJ algorithm ran to completion with $2^{21} = 2,097,152$ qubits.

For both CFLOBDDs and BDDs, the transition from a problem size that completes successfully to a problem size that fails is rather abrupt. For all of the problems, the time reported for the CFLOBDD run with the largest number of qubits that completes successfully is well under 15 minutes. Unfortunately, for the next larger run, oracle construction timed out after 15 minutes for the BV and DJ algorithms, and as a result we terminated the entire algorithm.

For Grover’s algorithm, the number of bits for the floating-point representation is 100 for all runs, except for those with 2,048, 4,096, and 8,192 qubits, for which we used 500, 750, and 1,000 bits, respectively. The increased cost of floating-point operations slows down matrix multiplications in Grover’s algorithm, causing the 8,192-qubit run to exceed 15 minutes.

Table 4. Table (cont.) of the performance of CFLOBDDs against BDDs for increasing numbers of qubits.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>#Qubits</th>
<th>#Boolean Variables</th>
<th>#Vertices</th>
<th>#Edges</th>
<th>Total</th>
<th>Time (sec)</th>
<th>#Nodes</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simon’s Alg.</td>
<td>16</td>
<td>64</td>
<td>583</td>
<td>16335</td>
<td>16918</td>
<td>0.71</td>
<td>5512</td>
<td>0.275</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>128</td>
<td>123611</td>
<td>14096110</td>
<td>14219721</td>
<td>443.09</td>
<td>80243</td>
<td>3.31</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>256</td>
<td>Timeout (90 min)</td>
<td>Timeout (90 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QFT</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>73</td>
<td>80</td>
<td>0.001</td>
<td>31</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>16</td>
<td>9</td>
<td>572</td>
<td>581</td>
<td>0.034</td>
<td>253</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>32</td>
<td>15</td>
<td>17868</td>
<td>17883</td>
<td>0.128</td>
<td>65535</td>
<td>0.098</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>64</td>
<td>Timeout (15 min)</td>
<td>Timeout (15 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>16</td>
<td>38</td>
<td>338</td>
<td>376</td>
<td>0.09</td>
<td>69</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>16</td>
<td>111</td>
<td>2443</td>
<td>2554</td>
<td>12.6</td>
<td>187</td>
<td>12.96</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>176</td>
<td>4331</td>
<td>4487</td>
<td>53.47</td>
<td>605</td>
<td>30.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>64</td>
<td>Timeout (15 min)</td>
<td>Timeout (15 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>32</td>
<td>17</td>
<td>91</td>
<td>108</td>
<td>0.009</td>
<td>47</td>
<td>0.214</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>64</td>
<td>25</td>
<td>138</td>
<td>163</td>
<td>0.012</td>
<td>66</td>
<td>4.84</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>128</td>
<td>38</td>
<td>212</td>
<td>250</td>
<td>0.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>256</td>
<td>256</td>
<td>58</td>
<td>333</td>
<td>391</td>
<td>0.030</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>512</td>
<td>91</td>
<td>531</td>
<td>622</td>
<td>0.080</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>1024</td>
<td>151</td>
<td>886</td>
<td>1037</td>
<td>0.292</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2048</td>
<td>2048</td>
<td>259</td>
<td>1535</td>
<td>1794</td>
<td>14.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4096</td>
<td>4096</td>
<td>450</td>
<td>2674</td>
<td>3124</td>
<td>64.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8192</td>
<td>8192</td>
<td>766</td>
<td>4569</td>
<td>5335</td>
<td>909.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8192</td>
<td>16384</td>
<td>Timeout (15 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Findings. For smaller numbers of qubits, the more-complex nature of the data structures used in CFLOBDDs resulted in slower execution times than with BDDs. However, CFLOBDDs scaled much better than BDDs as the number of qubits increased, both in terms of memory (i.e., vertices + edges for CFLOBDDs, nodes for BDDs) and execution time. In some cases, the problem sizes that completed successfully using CFLOBDDs were dramatically larger than the sizes that completed successfully using BDDs. In particular, the number of qubits that could be handled using CFLOBDDs was larger—compared to BDDs—by a factor of $128 \times$ for GHZ; $1,024 \times$ for BV; $8,192 \times$ for DJ; and $128 \times$ for Grover’s algorithm.
Fig. 16. Execution time (in seconds) vs. number of qubits (on a log scale) for three of the benchmarks.

Intermediate swell. For many of the algorithms, the initial and final CFLOBDD and BDD structures are of reasonable size, but there is an intermediate swell as the algorithm runs. Figs. 17 and 18 show how size evolves in the various steps of five of the algorithms during the CFLOBDD-based and BDD-based simulations. The figures show how size evolves for all 50 runs, along with the average value at every step (highlighted in black). Fig. 18 shows that the CFLOBDD simulation of Grover’s algorithm uses constant space from steps 3 to 15. The explanation is that, although the state vector changes at each step, the size of the CFLOBDD representation of the state vector does not change.

Comparison with Tensor Networks. We also compared the performance of CFLOBDDs with Quimb [24], a state-of-the-art quantum simulator. Tab. 5 shows the performance of our CFLOBDD implementation and Quimb on the previously discussed quantum benchmarks. For the Quimb-based simulations of GHZ, BV, DJ, and Grover’s algorithm, we used Matrix Product States (MPSs) [7, 63] and Matrix Product Operators (MPOs) [62] in algorithms modeled after the ones described in [68]. For Simon’s algorithm, we noticed that directly creating a circuit and performing contraction using Quimb led to better scalability than using MPS/MPOs. For QFT, we tried both the standard circuit [49] and the nearest-neighbor circuit mentioned in [21]. We found that the Quimb-based simulation results for both circuits are very similar, and only the former are reported here. For Shor’s algorithm, we use the $2n + 3$ circuit from [8], but the internal gates are created directly, as mentioned in [68] (and hence the circuit only has $2n + 1$ qubits). For Grover’s algorithm, we found that the maximum number of qubits that can be simulated using Quimb with a 15-minute timeout is 29 qubits.\(^{21}\)

These experiments show that, on some of the benchmarks, CFLOBDDs scale to much larger problem sizes than the Quimb tensor-network package, but on other benchmarks Quimb performs much better than CFLOBDDs.

\(^{21}\) With 32 qubits, Quimb takes $1496.6\text{sec} \approx 25\text{min.}$
Fig. 17. Evolution of size during the indicated algorithms. (Left: CFLOBDDs; right: BDDs.)

What allows CFLOBDDs to perform so well on Grover’s algorithm? In each run of the CFLOBDD simulation of Grover’s algorithm, a random 4096-bit string s is chosen, then the Grover oracle matrix is constructed, along with the Grover diffusion operation, which are then multiplied together. A version of Grover’s algorithm based on repeated squaring of the product matrix is carried out (via operations that use the cumulative-product
matrix—which depends on s—but the operations are oblivious to the value of s itself; the algorithm’s answer s' is retrieved; and finally s and s' are compared to make sure that the computed result is correct.

The reason that this process is space-efficient is that the Grover oracle is basically a "1 hot encoding" of s, and thus can be constructed by an algorithm that is a mixture of the principles used in the algorithms for constructing the representations of (i) projection functions (§6.1.2), and (ii) the identity matrix ([59, §9.2.2 and Alg. 24]). In the largest cases of Grover’s algorithm that completed successfully within 15 minutes, the matrix has dimensions $2^{4096} \times 2^{4096}$; all off-diagonal entries are 0; and all diagonal entries are 1 except for the (s, s) entry, which is -1. To represent this matrix, one needs $8,192 = 2^{13}$ Boolean variables: 4,096 for the row-index and 4,096 for the column-index. There is a CFLOBDD representation of this matrix whose highest-level grouping is at level 13—thus, there are 14 levels in total, counting level 0. Moreover, the CFLOBDD has only a constant number of groupings at each of the 14 levels, so the matrix is one for which the CFLOBDD representation exhibits double-exponential compression.

Although multiplication of matrices represented by CFLOBDDs is not particularly efficient (see the last row of Tab. 1), there is little or no infill caused by the repeated-squaring operations, and so the matrix representation has only a limited amount of intermediate swell. (See the left-hand graph in Fig. 18(a) for a plot of memory usage for the CFLOBDD implementation of Grover’s algorithm for 16 qubits.)

Fig. 18. Evolution of size through the steps of the indicated algorithms. (Left: CFLOBDD-based simulation; right: BDD-based simulation.)
<table>
<thead>
<tr>
<th>Benchmark</th>
<th>#Qubits</th>
<th>CFLOBDD (Time in sec)</th>
<th>Quimb (Time in sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHZ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.005</td>
<td>0.222</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>0.007</td>
<td>0.644</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>0.010</td>
<td>2.29</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>0.015</td>
<td>9.23</td>
</tr>
<tr>
<td></td>
<td>256</td>
<td>0.027</td>
<td>40.31</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>0.051</td>
<td>191.77</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>0.107</td>
<td>Timeout (15 min)</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65536</td>
<td>6.49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>131072</td>
<td>Timeout (15 min)</td>
<td></td>
</tr>
<tr>
<td>BV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.005</td>
<td>0.264</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>0.006</td>
<td>0.773</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>0.007</td>
<td>2.73</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>0.010</td>
<td>11.08</td>
</tr>
<tr>
<td></td>
<td>256</td>
<td>0.014</td>
<td>49.49</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>0.025</td>
<td>243.09</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>0.038</td>
<td>Timeout (15 min)</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>524288</td>
<td>75.80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1048576</td>
<td>Timeout (15 min)</td>
<td></td>
</tr>
<tr>
<td>DJ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.006</td>
<td>0.256</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>0.008</td>
<td>0.761</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>0.008</td>
<td>2.75</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>0.009</td>
<td>11.18</td>
</tr>
<tr>
<td></td>
<td>256</td>
<td>0.010</td>
<td>49.33</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>0.011</td>
<td>243.01</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>0.014</td>
<td>Timeout (15 min)</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4194304</td>
<td>180.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8388608</td>
<td>Timeout (15 min)</td>
<td></td>
</tr>
<tr>
<td>Simon’s Alg.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.71</td>
<td>2.56</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>443.69</td>
<td>17.34</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>Time out (15 min)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>Time out (15 min)</td>
<td></td>
</tr>
<tr>
<td>QFT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.001</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.034</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.128</td>
<td>0.074</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td></td>
<td>0.231</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td></td>
<td>1.64</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td></td>
<td>10.32</td>
</tr>
<tr>
<td></td>
<td>256</td>
<td></td>
<td>103.65</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>Time out (15 min)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shor’s Alg. (N, a) = (15, 2)</td>
<td>4</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>Shor’s Alg. (N, a) = (21, 2)</td>
<td>5</td>
<td>2.13</td>
</tr>
<tr>
<td></td>
<td>Shor’s Alg. (N, a) = (39, 2)</td>
<td>6</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>Shor’s Alg. (N, a) = (69, 4)</td>
<td>7</td>
<td>53.47</td>
</tr>
<tr>
<td></td>
<td>Shor’s Alg. (N, a) = (95, 8)</td>
<td>7</td>
<td>42.8</td>
</tr>
<tr>
<td></td>
<td>Shor’s Alg. (N, a) = (119, 2)</td>
<td>7</td>
<td>64.8</td>
</tr>
<tr>
<td></td>
<td>Shor’s Alg. (N, a) = (323, 2)</td>
<td>9</td>
<td>Time out (15 min)</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shor’s Alg. (N, a) = (6085, 8)</td>
<td>12</td>
<td>107.28</td>
</tr>
<tr>
<td></td>
<td>Shor’s Alg. (N, a) = (11611, 2)</td>
<td>13</td>
<td>Out of Memory</td>
</tr>
<tr>
<td>Grover’s Alg.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.009</td>
<td>3.26</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>0.012</td>
<td>3.26</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4096</td>
<td>909.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8192</td>
<td>Timeout (15 min)</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Performance of CFLOBDDs against Quimb on quantum benchmarks for different numbers of qubits.
11 RELATED WORK

CFLOBDDs were devised in the late 1990s; however, except for a rejected US patent application posted on the USPTO site in 2002 [56], nothing about them has ever been published. Work on them was abandoned in 2002 due to not having found an application on which CFLOBDDs performed better than BDDs—other than some of the recursively defined spectral transforms, such as the Reed-Muller, inverse Reed-Muller, Hadamard, and Boolean Haar wavelet transforms [32]. In a 2009 blog post [38], Lipton sketched a proposal for Pushdown BDDs, a BDD-like structure based on NPDAs. CFLOBDDs are closely related—they are based on DPDAs, rather than NPDDAs—which caused us to re-examine what relations CFLOBDDs could represent efficiently, and to discover that ADD was such a relation [59, §8.3]. This paper combines the material from the patent application with our recent results on quantum simulation.

The idea behind CFLOBDDs was inspired by an obstacle encountered in interprocedural path profiling [44]. In generalizing the Ball and Larus intraprocedural path-profiling scheme [4] to allow profiling of path fragments that cross procedure boundaries, Melski and Reps found that an acyclic, non-recursive, interprocedural control-flow graph of size \(k \) could have \(2^{2^k} \) matched paths. For instance, Melski [42] found that one 20,000-line program had \(2^{400,000} \) such paths—which would require the instrumentation code to manipulate 400,000-bit numbers!

From here, it was only a short distance to CFLOBDDs—how to interpret such graphs as representations of Boolean functions; how to implement the operations of a BDD-like API; how to maintain canonicity; etc. The feature that threatened to sink the path-profiling scheme—double-exponential explosion—became the linchpin of a double-exponentially compressed representation of Boolean functions.

Over the years, many variants of BDDs have been proposed [57]. These data structures can be broadly divided into three families: ones that make use of weights on edges, ones that do not use edge weights, and ones that allow the underlying graph to have cycles.

Examples of (acyclic) edge-weighted BDD variants include EVBDDs [36] and FEVBDDs [61]. If the weights are allowed to be unboundedly large, a polynomial-sized data structure of this sort can be used to encode a decision tree that is double-exponentially larger. However, to the best of our knowledge, such double-exponential compression is impossible when the weights are required to use a constant number of bits.

Unweighted BDD variants include Multi-Terminal BDDs [13, 15], Algebraic Decision Diagrams [3], Free Binary Decision Diagrams (FBDDs) [64, §6], Binary Moment Diagrams (BMDs) [12], Hybrid Decision Diagrams (HDDs) [14], Differential BDDs [2], and Indexed BDDs (IBDDs) [33]. Several of these BDD variants offer exponential compression over classical BDDs. However, because FBDDs, BMDs, HDDs, and IBDDs that encode, e.g., the identity function, need to examine each variable, the exponential-separation argument for CFLOBDDs from §8 carries over for all of these variants.

Cyclic BDD variants include Linear/Exponentially Inductive Functions (LIFs/EIFs) [26, 27] and Cyclic BDDs (CBDDs) [52].

The differences between CFLOBDDs and these representations can be characterized as follows:

- The aforementioned representations all make use of numeric/arithmetic annotations on the edges of the graphs used to represent functions over Boolean arguments, rather than the matched-path principle that is the basis of CFLOBDDs. Matched paths can be characterized in terms of a context-free language of matched parentheses, rather than in terms of numbers and arithmetic (see Eqn. (1)).
- An essential part of the design of LIFs and EIFs is that the BDD-like subgraphs in them are connected in very restricted ways. In contrast, in CFLOBDDs, different groupings at the same level (or different levels) can have very different kinds of connections in them.
- Similarly, CBDDs require that there be some fixed BDD pattern that is repeated over and over in the structure; a given function uses only a few such patterns. With CFLOBDDs, there can be many reused patterns (i.e., in the lower-level groupings in CFLOBDDs).
- CBDDs are not canonical representations of Boolean functions, which complicates the algorithms for performing certain operations on them, such as the operation to determine whether two CBDDs represent the same function.
- The layering in CFLOBDDs serves a different purpose than the layering found in LIFs/EIFs and CBDDs. In the latter representations, a connection from one layer to another serves as a jump from one BDD-like fragment to another BDD-like fragment. In CFLOBDDs, only the lowest layer (i.e., the collection of
level-0 groupings) consists of BDD-like fragments (and just two very simple ones at that); it is only at level 0 that the values of variables are interpreted. As one follows a matched path through a CFLOBDD, the connections between the groupings at levels above level 0 serve to encode which variable is to be interpreted next.

LIFs/ELIFs/CBDDs could be generalized by replacing BDD-like subgraphs in them with CFLOBDDs.

Other data structures that generalize BDDs are Sentential Decision Diagrams (SDDs) [18] and Variable Shift SDDs (VS-SDDs) [47]. These data structures generalize BDDs by assuming a tree-shaped ordering over variables, and there are functions for which these data structures offer double-exponential compression over decision trees and an exponential compression over BDDs. In CFLOBDDs, a grouping can have multiple middle vertices that reuse the same B-connection grouping b, as long as the return edges for the different invocations of b use different mappings to g’s exit vertices. This “contextual rewiring” gives CFLOBDDs greater ability to reuse substructures than SDDs and VS-SDDs. (Moreover, b can also be used as the A-connection grouping of g.) SDDs and VS-SDDs (and their quantitative generalizations, such as Probabilistic SDDs [34]) have not, so far, been used in matrix computations, and implementations of operations such as Kronecker product and matrix multiplication based on these structures are unknown, which meant that we could not use them in our quantum-simulation experiments. We did compare CFLOBDDs against SDDs for two of the micro-benchmarks, and found that CFLOBDDs were much faster (Tab. 2). However, the relationship between these representations and CFLOBDDs merits future study.

Also related are prior methods for quantum simulation. Such simulation can be exact or approximate; our focus here is on exact simulation (modulo floating-point round-off error). Decision diagrams used for such simulation include QMDDs [46, 71] and TDDs [29]. Both of these are weighted BDD representations, and hence cannot be compared in an apples-to-apples way with CFLOBDDs, which are unweighted representations (i.e., the edges of a CFLOBBD do not have associated weights). However, to understand the potential of CFLOBDDs, we mention here how our experimental results with CFLOBDDs compare with the published data for QMDDs: CFLOBDDs perform better than the best published numbers on some algorithms (GHZ, BV, DJ, Grover) and worse on others (QFT, Shor) [72, Tab. 5.1].22 We also compared our approach to tensor networks, a widely used approach to quantum simulation that is not based on decision diagrams. As shown in Tab. 5, CFLOBDDs perform better than tensor networks on some algorithms (GHZ, BV, DJ, Grover) and worse on others (Simon, QFT, Shor).

Similar to the well-known quantum algorithms discussed in this paper, variational quantum algorithms, which include a noise channel, can also be simulated using CFLOBDDs. Huang et al. [31] simulate variational quantum algorithms using knowledge-compilation techniques. In their approach, the noise component is modeled as an additional operator whose action is represented as a matrix. The noise matrix can be represented as a CFLOBDD, and hence CFLOBDDs can also be used for simulating variational quantum algorithms.

Compression of Programs and Compression Principles. A CFLOBDD can compactly represent many finite paths. This property is akin to a statement that the use of nonrecursive procedures in programs can enable small programs to have many execution paths, and is the essence of the aforementioned observation by Melski and Reps that an acyclic, non-recursive, interprocedural control-flow graph of size \(k \) could have \(2^k \) matched paths. Although not formulated as a theorem, this observation was stated in Melski’s Ph.D. thesis [43, §3.5.4]. Melski uses Yannakakis’s notion of \(L \)-reachability [69] (i.e., a path from node \(s \) to node \(t \) only counts as a valid \(s-t \) connection if the path’s labels form a word in \(L \)), and defines the notion of a “finite-path graph” with respect to some language \(L \): there are only a finite number of \(L \)-paths from, e.g., program entry to program exit [43, §3.4]. He then defines an interprocedural control-flow graph, denoted by \(G^*_\text{fin} \). One of the languages of interest is the language of unbalanced-left paths [44, §2.1], in which each return-edge is matched with the closest preceding unmatched call-edge, but there can be zero or more unmatched call-edges. (The unbalanced-left language is typically the language of interest for context-sensitive interprocedural dataflow analysis [53, 55].)

22Note that the number of qubits for Shor’s algorithm reported in [72, Tab. 5.1] is the number of qubits of the circuit, whereas in Tabs. 4 and 5, \(\# \text{Qubits} \) is the number of bits of the number \(N \) being factored, where \(\# \text{bits-of-circuit} = 2 \times \# \text{bits-of-}N \).
Melski observes, "... the number of [unbalanced-left] paths through G^*_fin can be doubly exponential in the size of G^*_fin."

These results are tantamount to the statement (proposed by one of the referees) that "there is a family of programs P_n, written with non-recursive procedures, that each would be exponentially larger if written without non-recursive procedures." In the 1970s, the literature on program schematology [50] explored the relative power of various programming constructs, beginning with results showing that recursive procedure calls are more expressive than iteration (in particular, there are recursive program schemes such that, for some interpretation of the function and predicate symbols, any flowchart scheme will produce results that are different from those obtained with the recursive scheme [39, 50]). Thus, it would have been natural for the schematology literature to contain a result of the form stated above. However, we were unable to find a paper with such a result; when procedures are allowed, the main interest seems to be in recursive procedures and how such programs compare with programs written in a language without procedure calls, but other features, such as arrays, stacks, or counters [17, 22].

The compression abilities of CFLOBDDs are based what might be called "multiplicative amplification":
calls to procedures P and Q, when performed in sequence, result in a structure in which the number of L (matched)-paths is equal to the product of the numbers of L (matched)-paths through P and Q. Multiplicative amplification leads to the repeated squaring we see in counting the number of paths from the entry vertex to the (one) exit vertex of a no-distinction proto-CFLOBDD with k levels:

$$P(0) = 1 \quad P(n + 1) = P(n)^2.$$

A more powerful compression principle—again based on an "amplification" step repeated some number of times—is found in Mairson’s rational reconstruction of a proof of Statman’s [40]. As with CFLOBDDs, there are a finite number of stratification levels and no recursion, but instead of "multiplicative amplification," Mairson uses "powerset amplification." He is interested in representing all values of the stratified types defined by

$$D_0 = \{ \text{true}, \text{false} \} \quad D_n = \text{powerset}(D_{n-1}).$$

Mairson observes that one can use linked lists to represent the elements of each of the D_l. To represent them concisely, he defines a powerset-combinator powerset that takes a list l_1 as input, and returns a list l_2 that contains the powerset of the elements of l_1 (a simple exercise in functional programming). He can then represent D_n with a λ-calculus term D_n that applies powerset n times to the list $\{ \text{true}, \text{false} \}$. Considered as a member of the family of terms $D_0, D_1 = \text{powerset}(D_0), \ldots, D_n = \text{powerset}^n(D_0), \ldots$, the size of the term D_n is $\Omega(n)$. In contrast, the size of the set that is represented by D_n is described by the following recurrence relation:

$$S(0) = 1 \quad S(n + 1) = 2^{S(n)},$$

whose solution is non-elementary: $S(n)$ is an exponential tower of $2s, 2^{2^{\ldots}}$, of height n.

12 CONCLUSIONS

This paper described a new data structure—CFLOBDDs—for representing functions, matrices, relations, and other discrete structures. CFLOBDDs are a plug-compatible replacement for BDDs, and can represent Boolean functions in a more compressed fashion than BDDs—exponentially smaller in the best case—and, again in the best case, double-exponentially smaller than the size of a Boolean function’s decision tree. Moreover, we

Unfortunately, the aforementioned work with the 20,000-line program that had $2^{400,000}$ paths (which is what prompted Melski and Reps to realize that they were facing double-exponential explosion) was carried out after their CC ‘99 paper had been published [44]. The latter paper states, incorrectly, "in the worst case, the number of paths through a program is exponential in the number of branch statements b ..." [44, §5]. (This kind of mistake seems to be common among authors working with structures that are DAG-like, but are really based on acyclic hyper-graphs: they erroneously think that they are dealing with DAGs and conclude that there is exponential explosion/compression, whereas the true state of affairs is that they have double-exponential explosion/compression. Examples are found in the literature on E-graphs [48, 67] and version-space algebras [25, 35, 51].)
showed an inherently exponential separation between CFLOBDDs and ROBDDs: the CFLOBDD for a function \(g \) can be exponentially smaller than any ROBDD for \(g \).

Our experiments compared the time and space usage of CFLOBDDs and BDDs on two types of benchmarks: (i) micro-benchmarks, and (ii) quantum-simulation benchmarks. We found that the improvement in scalability with CFLOBDDs can be quite dramatic. These results support the conclusion that, for at least some applications, CFLOBDDs provide a much more compressed representation of discrete structures than is possible with BDDs, thereby permitting much larger problem instances to be handled than heretofore.

13 ACKNOWLEDGMENTS

We thank Richard Lipton for the suggestion to apply CFLOBDDs to quantum simulation, Patrick Emonts for advice about the proper way to perform quantum-circuit simulation with tensor networks, and the referees for suggestions of how to clarify several items in the presentation. We are indebted to Alfons Laarman for helping us realize that the local-reduction property of Reduce (Lem. D.2) does not imply that a global-reduction property holds (footnote 27), and for suggesting that we look for a polynomial-time bound in terms of the sizes of Reduce’s input and output proto-CFLOBDDs (§D).

The work was supported, in part, by a gift from Rajiv and Ritu Batra; by the John Simon Guggenheim Memorial Foundation; by Facebook under a Probability and Programming Research Award; by NSF under grants CCR-9986308 and CCF-2212559; by ONR under contracts N00014-00-1-0607 and N00014-19-1-2318; by the MDA under SBIR contract DASG60-01-P-0048 to GrammaTech, Inc., and by an S.N. Bose Scholarship to Meghana Aparna Sistla. Thomas Reps has an ownership interest in GrammaTech, Inc., which has licensed elements of the technology reported in this publication.

REFERENCES

A DETAILS OF NOTATION FOR CFLOBDDS AND THEIR COMPONENTS

A few words are in order about the notation used in the pseudo-code:

- A Java-like semantics is assumed. For example, an object or field that is declared to be of type InternalGrouping is really a pointer to a piece of heap-allocated storage. A variable of type InternalGrouping is declared and initialized to a new InternalGrouping object of level \(k \) by the declaration

\[
\text{InternalGrouping } g = \text{new InternalGrouping}(k)
\]

- Procedures can return multiple objects by returning tuples of objects, where tupling is denoted by square brackets. For instance, if \(f \) is a procedure that returns a pair of ints—and, in particular, if \(f(3) \) returns a pair consisting of the values 4 and 5—then int variables \(a \) and \(b \) would be assigned 4 and 5 by the following initialized declaration:

\[
\text{int} \times \text{int} [a, b] = f(3)
\]

- The indices of array elements start at 1.
- Arrays are allocated with an initial length (which is allowed to be 0); however, arrays are assumed to lengthen automatically to accommodate assignments at index positions beyond the current length.
- We assume that a call on the constructor InternalGrouping\((k)\) returns an InternalGrouping in which the members have been initialized as follows:

\[
\begin{align*}
\text{level} &= k \\
A\text{Connection} &= \text{NULL} \\
A\text{ReturnTuple} &= \text{NULL} \\
\text{numberOfBConnections} &= 0 \\
B\text{Connections} &= \text{new array}[0]\text{ of Grouping} \\
B\text{ReturnTuples} &= \text{new array}[0]\text{ of ReturnTuple} \\
\text{numberOfExits} &= 0
\end{align*}
\]

Similarly, we assume that a call on the constructor CFLOBDD\((g, vt)\) returns a CFLOBDD in which the members have been initialized as follows:

\[
\begin{align*}
\text{grouping} &= g \\
\text{valueTuple} &= vt
\end{align*}
\]

The class definitions of Alg. 4, as well as the algorithms for the core CFLOBDD operations make use of the following auxiliary classes:

- A ReturnTuple is a finite tuple of positive integers.
- A PairTuple is a sequence of ordered pairs.
- A TripleTuple is a sequence of ordered triples.
- A ValueTuple is a finite tuple of whatever values the multi-terminal CFLOBDD is defined over.

B PROOF OF THE LEXICOGRAPHIC-ORDER PROPOSITION

Proposition 4.1 (Lexicographic-Order Proposition). Let \(ex_C \) be the sequence of exit vertices of proto-CFLOBDD \(C \). Let \(ex_L \) be the sequence of exit vertices reached by traversing \(C \) on each possible Boolean-variable-to-Boolean-value assignment, generated in lexicographic order of assignments. Let \(s \) be the subsequence of \(ex_L \) that retains just the leftmost occurrences of members of \(ex_L \) (arranged in order as they first appear in \(ex_L \)). Then \(ex_C = s \).

Proof: We argue by induction over levels:

Base case: The proposition follows immediately for level-0 proto-CFLOBDDs.

Induction step: The induction hypothesis is that the proposition holds for every level-\(k \) proto-CFLOBDD. Let \(C \) be an arbitrary level-\(k+1 \) proto-CFLOBDD, with \(s \) and \(ex_C \) as defined above. Without loss of generality, we will refer to the exit vertices by ordinal position; i.e., we will consider \(ex_C \) to be the sequence \([1, 2, \ldots, |ex_C|]\). Let \(C_A \) denote the A-connection of \(C \), and let \(C_{B_n} \) denote \(C \)'s \(n \)th B-connection. Note that \(C_A \) and each of the \(C_{B_n} \)s are level-\(k \) proto-CFLOBDDs, and hence, by the induction hypothesis, the proposition holds for them.
We argue by contradiction: Suppose, for the sake of argument, that the proposition does not hold for C, and that j is the leftmost exit vertex in exc_C for which the proposition is violated (i.e., $s(j) \neq j$). Let i be the exit vertex that appears in the j^{th} position of s (i.e., $s(j) = i$). It must be that $j < i$.

Let α_j and α_i be the earliest assignments in lexicographic order (denoted by $<$) that lead to exit vertices j and i, respectively. Because i comes before j in s, it must be that $\alpha_i < \alpha_j$.

Let α^1_j and α^2_j denote the first and second halves of α_j, respectively; let α^1_i and α^2_i denote the first and second halves of α_i, respectively. Let $+$ denote the concatenation of assignments (e.g., $\alpha_j = \alpha^1_j + \alpha^2_j$).

There are two cases to consider:

Case 1: $\alpha^1_i = \alpha^1_j$ and $\alpha^2_i < \alpha^2_j$.

Because $\alpha^1_i = \alpha^1_j$, the first halves of the matched path followed during the interpretations of assignments α_i and α_j through C_A are identical, and bring us to some middle vertex, say m, of C; both paths then proceed through C_{Bm}. Let e_i and e_j be the two exit vertices of C_{Bm} reached by following matched paths during the interpretations of α^2_i and α^2_j, respectively. There are now two cases to consider:

Case 1.A: Suppose that $e_i < e_j$ in C_{Bm} (see Fig. 19a). In this case, the return edges $e_i \rightarrow i$ and $e_j \rightarrow j$ “cross”. By structural invariant 2b of Defn. 4.1, this situation can only happen if

- There is a matched path corresponding to some assignment β^1 through C_A that leads to a middle vertex ℓ, where $\ell < m$.
- There is a matched path from ℓ corresponding to some assignment β^2 through C_{Bm} (where C_{Bm} could be C_{Bm}).
- There is a return edge from the exit vertex reached by β^2 in C_{Bm} to exit vertex j of C.

In this case, by the induction hypothesis applied to C_A, and the fact that $\ell < m$, it must be the case that we can choose β^1 so that $\beta^1 < \alpha^1_j$.

Consequently, $\beta^1 + \beta^2 < \alpha^2_j + \alpha^2_j$, which contradicts the assumption that $\alpha_j = \alpha^1_j + \alpha^2_j$ is the least assignment in lexicographic order that leads to j.

Case 1.B: Suppose that $e_i \geq e_j$ in C_{Bm} (see Fig. 19b). Because $\alpha^2_i < \alpha^2_j$, the induction hypothesis applied to C_{Bm} implies that there must exist an assignment $\gamma < \alpha^2_i < \alpha^2_j$ that leads to e_j. In this case, we have that $\alpha^1_i + \gamma < \alpha^1_j + \alpha^2_j$, which again contradicts the assumption that $\alpha_j = \alpha^1_j + \alpha^2_j$ is the least assignment in lexicographic order that leads to j.

Case 2: $\alpha^2_i < \alpha^2_j$.

Because $\alpha^2_i < \alpha^2_j$, the first halves of the matched paths followed during the interpretations of assignments α_i and α_j through C_A bring us to two different middle vertices of C, say m and n, respectively. The two paths then proceed through C_{Bm} and C_{Bn} (where it could be the case that $C_{Bm} = C_{Bn}$), and return to i and j, respectively, where $j < i$. Again, there are two cases to consider:

Case 2.A: Suppose that $n < m$ (see Fig. 19c.) The argument is similar to Case 1.B above: By structural invariant 1 of Defn. 4.1, $n < m$ means that the exit vertex reached by α^2_j in C_A comes before the exit vertex reached by α^2_i in C_A. By the induction hypothesis applied to C_A, there must exist an assignment $\gamma < \alpha^1_i < \alpha^1_j$ that leads to the exit vertex reached by α^1_j in C_A. In this case, we have that $\gamma + \alpha^2_j < \alpha^1_j + \alpha^2_j$, which contradicts the assumption that $\alpha_j = \alpha^1_j + \alpha^2_j$ is the least assignment in lexicographic order that leads to j.

Case 2.B: Suppose that $m < n$ (see Fig. 19d.) The argument is similar to Case 1.A above: By structural invariant 2 of Defn. 4.1, we can only have $m < n$ and $j < i$ if

- There is a matched path corresponding to some assignment β^1 through C_A that leads to a middle vertex ℓ, where $\ell < m$.
- There is a matched path from ℓ corresponding to some assignment β^2 through C_{Bn} (where C_{Bn} could be C_{Bm} or C_{Bn}).
- There is a return edge from the exit vertex reached by β^2 in C_{Bn} to exit vertex j of C.

In this case, by the induction hypothesis applied to C_A, and the fact that $\ell < m < n$, it must be the case that we can choose β^1 so that $\beta^1 < \alpha^1_j$.
(a) Case 1.A of Proposition 4.1

(b) Case 1.B of Proposition 4.1.

(c) Case 2.A of Proposition 4.1.

(d) Case 2.B of Proposition 4.1.

Fig. 19
Consequently, $\beta^1 + \beta^2 < \alpha^1 + \alpha^2$, which contradicts the assumption that $\alpha_j = \alpha^1 + \alpha^2$ is the least assignment in lexicographic order that leads to j.

In each of the cases above, we are able to derive a contradiction to the assumption that α_j is the least assignment in lexicographic order that leads to j. Thus, the supposition that the proposition does not hold for C cannot be true. □

C PROOF OF THE CANONICITY OF CFLOBDDS

To show that CFLOBDDs are a canonical representation of functions over Boolean arguments, we must establish that three properties hold:

1. Every level-k CFLOBDD represents a decision tree with 2^k leaves.
2. Every decision tree with 2^k leaves is represented by some level-k CFLOBDD.
3. No decision tree with 2^k leaves is represented by more than one level-k CFLOBDD (up to isomorphism).

As described earlier, following a matched path (of length $O(2^k)$) from the level-k entry vertex of a level-k CFLOBDD to a final value provides an interpretation of a Boolean assignment on 2^k variables. Thus, the CFLOBDD represents a decision tree with 2^k leaves (and Obligation 1 is satisfied).

To show that Obligation 2 holds, we describe a recursive procedure for constructing a level-k CFLOBDD from an arbitrary decision tree with 2^k leaves (i.e., of height 2^k). In essence, the construction shows how such a decision tree can be folded together to form a multi-terminal CFLOBDD.

The construction makes use of a set of auxiliary tables, one for each level, in which a unique representative of each class is retained, and the others discarded. Each of the 2^k leaves (i.e., of height 2^k) is the least assignment in lexicographic order that leads to j. Thus, the supposition that the proposition does not hold for C cannot be true. □

Construction 1. [Decision Tree to Multi-Terminal CFLOBDD]

1. The leaves of the decision tree are partitioned into some number of equivalence classes e according to the values that label the leaves. The equivalence classes are numbered 1 to e according to the relative position of the first occurrence of a value in a left-to-right sweep over the leaves of the decision tree.

 For Boolean-valued CFLOBDDs, when the procedure is applied at topmost level, there are at most two equivalence classes of leaves, for the values F and T. However, in general, when the procedure is applied recursively, more than two equivalence classes can arise.

 For the general case of multi-terminal CFLOBDDs, the number of equivalence classes corresponds to the number of different values that label leaves of the decision tree.

2. (Base cases) If $k = 0$ and $e = 1$, construct a CFLOBDD consisting of the representative don’t-care grouping, with a value tuple that binds the exit vertex to the value that labels both leaves of the decision tree.

 If $k = 0$ and $e = 2$, construct a CFLOBDD consisting of the representative fork grouping, with a value tuple that binds the two exit vertices to the first and second values, respectively, that label the leaves of the decision tree.

 If either condition applies, return the CFLOBDD so constructed as the result of this invocation; otherwise, continue on to the next step.

3. Construct—via recursive applications of the procedure—$2^{2^{k-1}}$ level-$k-1$ multi-terminal CFLOBDDs for the $2^{2^{k-1}}$ decision trees of height 2^{k-1} in the lower half of the decision tree.

 These are then partitioned into some number e' of equivalence classes of equal multi-terminal CFLOBDDs; a representative of each class is retained, and the others discarded. Each of the $2^{2^{k-1}}$ “leaves” of the upper half of the decision tree is labeled with the appropriate equivalence-class representative for the subtree of the lower half that begins there. These representatives serve as the “values” on the leaves of the upper half of the decision tree when the construction process is applied recursively to the upper half in step 4.

 The equivalence-class representatives are also numbered 1 to e' according to the relative position of their first occurrence in a left-to-right sweep over the leaves of the upper half of the decision tree.

4. Construct—via a recursive application of the procedure—a level-$k-1$ multi-terminal CFLOBDD for the upper half of the decision tree.
(5) Construct a level-\(k\) multi-terminal proto-CFLOBDD from the level-\(k-1\) multi-terminal CFLOBDDs created in steps 3 and 4. The level-\(k\) grouping is constructed as follows:

(a) The \(A\)-connection points to the proto-CFLOBDD of the object constructed in step 4.

(b) The middle vertices correspond to the equivalence classes formed in step 3, in the order \(1…e'\).

(c) The \(A\)-connection return tuple is the identity map back to the middle vertices (i.e., the tuple \([1…e']\)).

(d) The \(B\)-connections point to the proto-CFLOBDDs of the \(e'\) equivalence-class representatives constructed in step 3, in the order \(1…e'\).

(e) The exit vertices correspond to the initial equivalence classes described in step 1, in the order \(1…e\).

(f) The \(B\)-connection return tuples connect the exit vertices of the highest-level groupings of the equivalence-class representatives retained from step 3 to the exit vertices created in step 5e. In each of the equivalence-class representatives retained from step 3, the value tuple associates each exit vertex \(x\) with some value \(v\), where \(1 \leq v \leq e; x\) is now connected to the exit vertex created in step 5e that is associated with the same value \(v\).

(g) Consult a table of all previously constructed level-\(k\) groupings to determine whether the grouping constructed by steps 5a–5f duplicate a previously constructed grouping. If so, discard the present grouping and switch to the previously constructed one; if not, enter the present grouping into the table.

(6) Return a multi-terminal CFLOBDD created from the proto-CFLOBDD constructed in step 5 by attaching a value tuple that connects (in order) the exit vertices of the proto-CFLOBDD to the \(e\) values from step 1.

\(\square\)

Fig. 20a shows the decision tree for the function \(\lambda x_0x_1x_2x_3, (x_0 \oplus x_1) \lor (x_0 \land x_1 \land x_2)\). Fig. 20b shows the state of things after step 3 of Construction 1. Note that even though the level-1 CFLOBDDs for the first three leaves of the top half of the decision tree have equal proto-CFLOBDDs, the leftmost proto-CFLOBDD maps its exit vertex to \(F\), whereas the exit vertex is mapped to \(T\) in the second and third proto-CFLOBDDs. Thus, in this case, the recursive call for the upper half of the decision tree (step 4) involves three equivalence classes of values.

It is not hard to see that the structures created by Construction 1 obey the structural invariants that are required of CFLOBDDs by Defn. 4.1:

- Structural invariant 1 holds because the \(A\)-connection return tuple created in step 5c of Construction 1 is the identity map.

- Structural invariant 2 holds because in steps 1 and 3 of Construction 1, the equivalence classes are numbered in increasing order according to the relative position of a value’s first occurrence in a left-to-right sweep. In particular, this order is preserved in the exit vertices of each grouping constructed during an invocation of Construction 1 (cf. step 5f), which ensures that the “compact extension” property of Structural invariant 2b holds at each level of recursion in Construction 1.

- Structural invariant 3 holds because Construction 1 reuses the representative don’t-care grouping and the representative fork grouping in step 2, and checks for the construction of duplicate groupings—and hence duplicate proto-CFLOBDDs—in step 5g.

- Structural invariant 4 holds because of steps 3, 5d, and 5f. On recursive calls to Construction 1, step 3 partitions the CFLOBDDs constructed for the lower half of the decision tree into equivalence classes of CFLOBDD values (i.e., taking into account both the proto-CFLOBDDs and the value tuples associated with their exit vertices). Therefore, in steps 5d and 5f, duplicate \(B\)-connection/return-tuple pairs can never arise.

- Structural invariant 5 holds because step 6 uses the proto-CFLOBDD constructed in step 5.

- Structural invariant 6 holds because step 1 of Construction 1 constructs equivalence classes of values (ordered in increasing order according to the relative position of a value’s first occurrence in a left-to-right sweep over the leaves of the decision tree).

Moreover, Construction 1 preserves interpretation under assignments: Suppose that \(C_T\) is the level-\(k\) CFLOBDD constructed by Construction 1 for decision tree \(T\); it is easy to show by induction on \(k\) that for every assignment \(a\) on the \(2^k\) Boolean variables \(x_0, \ldots, x_{2^k-1}\), the value obtained from \(C_T\) by following the

\[24\] The equality of the proto-CFLOBDDs is detected in step 5g.
Fig. 20. Representations of the Boolean function $\lambda x_0 x_1 x_2 x_3 (x_0 \oplus x_1) \lor (x_0 \land x_1 \land x_2)$. For clarity, some of the level-0 groupings have been duplicated.

(a) Decision tree

(b) Hybrid of decision tree for x_0 and x_1, and CFLOBDDs for x_2 and x_3. The solid, dashed, and dashed-double-dotted edges from the four vertices labeled 1, 2, 2, and 3, respectively, correspond to the solid, dashed, and dashed-double-dotted trapezoids in (a).

(c) CFLOBDD (repeated from Fig. 5).
corresponding matched path from the entry vertex of C_T’s highest-level grouping is the same as the value obtained for a from T. (The first half of a is used to follow a path through the A-connection of C_T, which was constructed from the top half of T. The second half of a is used to follow a path through one of the B-connections of C_T, which was constructed from an equivalence class of bottom-half subtrees of T; that equivalence class includes the subtree rooted at the vertex of T that is reached by following the first half of a.) Thus, every decision tree with 2^k leaves is represented by some level-k CFLOBDD in which meaning (interpretation under assignments) has been preserved; consequently, Obligation 2 is satisfied.

We now come to Obligation 3 (no decision tree with 2^k leaves is represented by more than one level-k CFLOBDD). The way we prove this property is to define an unfolding process, called $Unfold$, that starts with a multi-terminal CFLOBDD and works in the opposite direction to Construction 1 to construct a decision tree; that is, $Unfold$ (recursively) unfolds the A-connection, and then (recursively) unfolds each of the B-connections. For instance, for the example shown in Fig. 20, $Unfold$ would proceed from Fig. 20c, to Fig. 20b, and then to the decision tree for the function $\lambda x_0 x_1 x_2. (x_0 \oplus x_1) \lor (x_0 \land x_1 \land x_2)$ shown in Fig. 20a.

$Unfold$ also preserves interpretation under assignments: Suppose that T_C is the decision tree constructed by $Unfold$ for level-k CFLOBDD C; it is easy to show by induction on k that for every assignment a on the 2^k Boolean variables x_0, \ldots, x_{2^k-1}, the value obtained from C by following the corresponding matched path from the entry vertex of C’s highest-level grouping is the same as the value obtained for a from T_C. (The first half of a is used to follow a path through the A-connection of C, which $Unfold$ unfolds into the top half of T_C. The second half of a is used to follow a path through one of the B-connections of C, which $Unfold$ unfolds into one or more instances of bottom-half subtrees of T_C; that set of bottom-half subtrees includes the subtree rooted at the vertex of T that is reached by following the first half of a.)

Obligation 3 is satisfied if we can show that, for every CFLOBDD C, Construction 1 applied to the decision tree produced by $Unfold(C)$ yields a CFLOBDD that is isomorphic to C. To establish that this property holds, we will define two kinds of traces:

- A Fold trace records the steps of Construction 1:
 - At step 1 of Construction 1, the decision tree is appended to the trace.
 - At the end of step 2 (if either of the conditions listed in step 2 holds), the level-0 CFLOBDD being returned is appended to the trace (and Construction 1 returns).
 - During step 3, the trace is extended according to the actions carried out by the folding process as it is applied recursively to each of the lower-half decision trees. (For purposes of settling Obligation 3, we will assume that the lower-half decision trees are processed by Construction 1 in left-to-right order.)
 - At the end of step 3, a hybrid decision-tree/CFLOBDD object (à la Fig. 20b) is appended to the trace.
 - During step 4, the trace is extended according to the actions carried out by the folding process as it is applied recursively to the upper half of the decision tree.

Fig. 21. (a) Decision tree for $\lambda x_0 x_1 . x_0$; (b) fully expanded form of the CFLOBDD; (c) CFLOBDD.
Fig. 22. The *Fold* trace generated by the application of Construction 1 to the decision tree shown in Fig. 21a to create the CFLOBDD shown in Fig. 21c.

Fig. 23. The *Unfold* trace generated by the application of *Unfold* to the CFLOBDD shown in Fig. 21c to create the decision tree shown in Fig. 21a.

- At the end of step 6, the CFLOBDD being returned is appended to the trace.
- For instance, Fig. 22 shows the *Fold* trace generated by the application of Construction 1 to the decision tree shown in Fig. 21a to create the CFLOBDD shown in Fig. 21c.
- An *Unfold* trace records the steps of *Unfold*(C):
 - CFLOBDD C is appended to the trace.
 - If C is a level-0 CFLOBDD, then a binary tree of height 1—with the leaves labeled according to C’s value tuple—is appended to the trace (and the *Unfold* algorithm returns).
 - The trace is extended according to the actions carried out by *Unfold* as it is applied recursively to the A-connection of C.
 - A hybrid decision-tree/CFLOBDD object (à la Fig. 20b) is appended to the trace.
 - The trace is extended according to the actions carried out by *Unfold* as it is applied recursively to instances of B-connections of C. (For purposes of settling Obligation 3, we will assume that *Unfold* processes a separate instance of a B-connection for each leaf of the hybrid object’s upper-half decision tree, and that the B-connections are processed in right-to-left order of the upper-half decision tree’s leaves.)
 - Finally, the decision tree returned by *Unfold* is appended to the trace.
For instance, Fig. 23 shows the Unfold trace generated by the application of Unfold to the CFLOBDD shown in Fig. 21c to create the decision tree shown in Fig. 21a.

Note how the Unfold trace shown in Fig. 23 is the reversal of the Fold trace shown in Fig. 22. We now argue that this property holds generally. (Technically, the argument given below in Proposition C.1 shows that each element of an Unfold trace is isomorphic to the corresponding object in the Fold trace, which suffices to imply that Obligation 3 is satisfied, in the sense that a decision tree is represented by exactly one isomorphism class of CFLOBDDs.)

Proposition C.1. Suppose that C is a multi-terminal CFLOBDD, and that Unfold(C) results in Unfold trace $\mathcal{U}T$ and decision tree T_0. Let C' be the multi-terminal CFLOBDD produced by applying Construction 1 to T_0, and FT be the Fold trace produced during this process. Then

- (i) FT is the reversal of $\mathcal{U}T$.
- (ii) C and C' are isomorphic.

Proof: Because C' appears at the end of FT, and C appears at the beginning of $\mathcal{U}T$, clause (i) implies (ii). We show clause (i) by the following inductive argument:

Base case: The proposition is trivially true of level-0 CFLOBDDs. Given any pair of values v_1 and v_2 (such as F and T), there are exactly four possible level-0 CFLOBDDs: two constructed using a don’t-care grouping—one in which the exit vertex is mapped to v_1, and one in which it is mapped to v_2—and two constructed using a fork grouping—one in which the two exit vertices are mapped to v_1 and v_2, respectively, and one in which they are mapped to v_2 and v_1, respectively. These unfold to the four decision trees that have $2^2 = 2$ leaves and leaf-labels drawn from \{v_1, v_2\}, and the application of Construction 1 to these decision trees yields the same level-0 CFLOBDD that we started with. (See step 2 of Construction 1.) Consequently, the Fold trace FT and the Unfold trace $\mathcal{U}T$ are reversals of each other.

Induction step: The induction hypothesis is that the proposition holds for every level-k multi-terminal CFLOBDD. We need to argue that the proposition extends to level-$k+1$ multi-terminal CFLOBDDs.

First, note that the induction hypothesis implies that each decision tree with 2^{2^k} leaves is represented by exactly one level-k CFLOBDD isomorphism class. We will refer to this as the corollary to the induction hypothesis.

Unfold trace $\mathcal{U}T$ can be divided into five segments:
- (u1) C itself
- (u2) the Unfold trace for C’s A-connection
- (u3) a hybrid decision-tree/CFLOBDD object (call this object D)
- (u4) the Unfold trace for C’s B-connections
- (u5) T_0.

Fold trace FT can also be divided into five segments:
- (f1) T_0
- (f2) the Fold trace for T_0’s lower-half trees
- (f3) a hybrid decision-tree/CFLOBDD object (call this object D')
- (f4) the Fold trace for T_0’s upper-half
- (f5) C'.

Because both (f1) and (u5) are T_0, (u5) is obviously equal to (f1). Our goal, therefore, is to show that

- (u2) is the reversal of (f4);
- (u3) is equal to (f3);
- (u4) is the reversal of (f2); and
- (u1) is equal to (f5).
(u3) is equal to (f3) Consider the hybrid decision-tree/CFLOBDD object \(D \) obtained after \(\text{Unfold} \) has finished unfolding \(C \)'s \(A \)-connection.\(^{25}\) The upper part of \(D \) (the decision-tree part) came from the recursive invocation of \(\text{Unfold} \), which produced a decision tree for the first half of the Boolean variables, in which each leaf is labeled with the index of a middle vertex from the level-\(k+1 \) grouping of \(C \) (e.g., see Fig. 20b). As a consequence of Prop. 4.1, together with the fact that \(\text{Unfold} \) preserves interpretation under assignments, the relative position of the first occurrence of a label in a left-to-right sweep over the leaves of this decision tree reflects the order of the level-\(k+1 \) grouping's middle vertices.\(^{26}\) However, each middle vertex has an associated \(B \)-connection, and by structural invariants 2, 4, and 6 of Defn. 4.1, the middle vertices can be thought of as representatives for a set of pairwise non-equal CFLOBDDs (that themselves represent lower-half decision trees).

Fold trace \(FT \) also has a hybrid decision-tree/CFLOBDD object, namely \(D' \). The crucial point is that the action of partitioning \(T_0 \)'s lower-half CFLOBDDs that is carried out in step 3 of Construction 1 also results in a labeling of each leaf of the upper-half’s decision tree with a representative of an equivalence class of CFLOBDDs that represent the lower half of the decision tree starting at that point.

By the corollary to the induction hypothesis, the \(2^{2k} \) bottom-half trees of \(T_0 \) are represented uniquely (up to isomorphism) by the respective CFLOBDDs in \(D' \). Similarly, by the corollary to the induction hypothesis, the \(2^{4k} \) CFLOBDDs used as labels in \(D \) represent uniquely (up to isomorphism) the respective bottom-half trees of \(T_0 \). Thus, the labelings on \(D \) and \(D' \) must be isomorphic.

(u2) is the reversal of (f4); (u4) is the reversal of (f2) Given the observation that \(D \) and \(D' \) are isomorphic, these properties follow in a straightforward fashion from the inductive hypothesis (applied to the \(A \)-connection and the \(B \)-connections of \(C \)).

(u1) is equal to (f5) Because (u2) is the reversal of (f4) and (u4) is the reversal of (f2), we know that the level-\(k \) proto-CFLOBDDs out of which the level-\(k+1 \) grouping of \(C' \) is constructed are isomorphic to the respective level-\(k \) proto-CFLOBDDs that make up the \(A \)-connection and \(B \)-connections of \(C \).

We already argued that steps 5 and 6 of Construction 1 lead to CFLOBDDs that obey the six structural invariants required of CFLOBDDs by Defn. 4.1. Moreover, there is only one way for Construction 1 to construct the level-\(k+1 \) grouping of \(C' \) so that structural invariants 2, 3, and 4 are satisfied. Therefore, \(C \) is isomorphic to \(C' \).

Consequently, \(FT \) is the reversal of \(UT \), as was to be shown. \(\square \)

In summary, we have now shown that Obligations 1, 2, and 3 are all satisfied. These properties imply that, for a given ordering of Boolean variables, if two level-\(k \) CFLOBDDs \(C_1 \) and \(C_2 \) represent the same decision tree with \(2^k \) leaves, then \(C_1 \) and \(C_2 \) are isomorphic—i.e., CFLOBDDs are a canonical representation of functions over Boolean arguments:

Theorem 4.3. (Canonicty). If \(C_1 \) and \(C_2 \) are level-\(k \) CFLOBDDs for the same Boolean function over \(2^k \) Boolean variables, and \(C_1 \) and \(C_2 \) use the same variable ordering, then \(C_1 \) and \(C_2 \) are isomorphic.

D TIME COMPLEXITY OF REDUCE

In this section, we give a bound on the time complexity of the call on \(\text{Reduce} \) (Alg. 10) in line [5] of \(\text{BinaryApplyAndReduce} \) (Alg. 8). Let \(C \) be the level-\(l \) proto-CFLOBDD on which \(\text{Reduce} \) is invoked, and \(C' \) be the level-\(l \) proto-CFLOBDD that is returned. The accounting is somewhat subtle because of three factors

- hash-consing of groupings
- function caching of calls to \(\text{Reduce} \) and other functions

\(^{25}\)The \(A \)-connection is actually a proto-CFLOBDD, whereas \(\text{Unfold} \) works on multi-terminal CFLOBDDs. However, the \(A \)-connection return tuple (with the indices of the middle vertices as the value space) serves as the value tuple whenever we wish to consider the \(A \)-connection as a multi-terminal CFLOBDD.

\(^{26}\)This step is where the argument would break down if we attempt to apply the same argument to Fig. 8a: In that case, the labels on the leaves of \(D \), in left-to-right order, would be 2 and 1—whereas the sequence of middle vertices in Fig. 8a is [1,2].
The size measure reduction property for \(C \)

We refer to the property that \(|g'| \leq |g| \), yet \(|C'| < |C| \), \(|C'| = |C| \) and \(|C'| > |C| \) are all possible.\(^{27}\)

The size measure \(|\cdot| \) counts vertices and edges (and, for proto-CFLOBDDs, groupings—with no double-counting of shared groupings due to hash-consing).

In this section, we show that the time complexity of Reduce is bounded by \(O(|C| \times |C'|) \), where when counting the time for operations, we consider the cost of function-caching operations (lookup and update) to be \(O(1) \).

We illustrate the point about there being no fixed relationship between \(C' \) and \(C \) with the following example, which shows that when Reduce is called on a proto-CFLOBDD, it can lead to both (i) less sharing of proto-CFLOBDDs in the resultant proto-CFLOBDD, and (ii) more sharing of proto-CFLOBDDs than in the input proto-CFLOBDD.

EXAMPLE D.1. Consider the level-2 proto-CFLOBDD \(C \) shown in Fig. 24a, which has four middle vertices \((p, q, r, s) \) and eight exit vertices \((a, b, c, d, e, f, g, h) \). The \(A \)-connection of \(C \) (\(C_A \)) is a proto-CFLOBDD at level 1. \(C_A \) partitions the strings \(\{0,1\}^2 \) into \(P_1 = \{\{00\}, \{01\}, \{10\}, \{11\}\} \), i.e., \(C_A \) has four exit vertices and thus \(C \) has four middle vertices and four \(B \)-connections \((C_{B1}, C_{B2}, C_{B3}, C_{B4}) \). \(C_{B1} \) partitions the strings \(\{0,1\}^2 \) into \(P_2 = \{\{00\}, \{01\}, \{11\}\} \) and its exit vertices are connected to the exit vertices of \(C \) in the order \((a, b, c) \). \(C_{B2} \) and \(C_{B4} \) both equal \(C_{B1} \), but for \(C_{B2} \) and \(C_{B4} \) the three exit vertices are connected to the exit vertices of \(C \) in the orders \((b, d, e), \) and \((g, a, h), \) respectively. Finally, \(C_{B3} \) equals \(C_A \), but for \(C_{B3} \) the four exit vertices are connected to \(C \)'s exit vertices in the order \((b, d, e, f) \). Consequently, \(C \) partitions the strings \(\{0,1\}^4 \) into \(\{\{0000,1101,1110\}, \{0001,0010,0100,1000\}, \{0011\}, \{0101,0110,1001\}, \{0111,1010\}, \{1011\}, \{1100\}, \{1111\} \} \).

Let \(C' = \text{Reduce}(C, [1,2,3,3,3,3,3]) \), i.e., the vertices \(c, d, e, f, g, h \) are all mapped to exit vertex \(c \). \(C' \) is shown in Fig. 24b. \(C' \) has only three exit vertices \((a', b', c') \). Consider how \(C \) is “reduced” to \(C' \), which partitions the strings \(\{0,1\}^3 \) into \(\{\{0000,1101,1110\}, \{0001,0010,0100,1000\}, \{0011,0101,0110,1001\}, \{0111,1010\}, \{1011\}, \{1100\}, \{1111\} \} \).

- \(C_{B1} \)'s exit vertices are mapped to \((a, b, c)\), which leads to the call \(\text{Reduce}(C_{B1}, [1,2,3]) \) and thus \(C_{B1} \) does not change; that is, the first \(B \)-connection of \(C', C_{B1}' \), is equal to \(C_{B1} \). Its exit vertices are connected

\(^{27}\) We refer to the property that \(|g'| \leq |g| \) as the local-reduction property, in contradistinction to the absence of a global-reduction property for \(|C'| > |C| \).
to the exit vertices \((a', b', c')\) of \(C'\). (As we will see below, \(C'_{B1}\) is also equal to \(C'_{A}\), the A-connection of \(C'\).)

- \(C_{B2}\)'s exit vertices are mapped to \((b, c, c)\), which leads to the call \(\text{Reduce}(C_{B2}, [1, 2, 2])\). Therefore, the second and third exit vertices are folded together, and this collapse affects the structure of the level-0 groupings as well, thereby creating a new proto-CFLOBDD, \(C'_{B2}\), which partitions the strings \(\{0, 1\}^2\) into \([[00], \{01, 10, 11\}]\). The exit vertices of \(C'_{B2}\) are mapped to exit vertices \((b', c')\) of \(C'\).

- \(C_{B3}\)'s exit vertices are mapped to \((b, c, c, c)\), which leads to the call \(\text{Reduce}(C_{B3}, [1, 2, 2, 2])\). Thus, the exit vertices of \(C_{B3}\) are collapsed to only two exit vertices, and the resulting proto-CFLOBDD partitions the strings \(\{0, 1\}^2\) into \([[00], \{01, 10, 11\}]\), which are mapped to the exit vertices \((b', c')\). This result is identical to the result from \(\text{Reduce}(C_{B2}, [1, 2, 2])\), and thus \(C'\) has only one copy of \(C'_{B2}\) with its exit vertices mapped to exit vertices \((b', c')\) of \(C'\).

- \(C_{B4}\)'s exit vertices are mapped to \((c, a, c)\), which leads to the call \(\text{Reduce}(C_{B4}, [1, 2, 1])\)—folding together the first and third exit vertices. This call creates yet another new proto-CFLOBDD, \(C'_{B3}\), which partitions the strings \(\{0, 1\}^2\) into \([[01, 11], \{01, 10\}]\). The exit vertices of \(C'_{B3}\) are mapped to exit vertices \((c', a')\) of \(C'\).

- Because the calls \(\text{Reduce}(C_{B2}, [1, 2, 2])\) and \(\text{Reduce}(C_{B3}, [1, 2, 2, 2])\) produce the same proto-CFLOBDD with the same return edges in \(C'\)—and because the calls on \(\text{Reduce}\) arose in the B-connection of the same grouping in \(C\)—middle vertices \((q, r)\) of \(C\) are folded together. This collapsing is propagated to the A-connection of \(C\) by the call \(\text{Reduce}(C_{A}, [1, 2, 2, 3])\). The resulting proto-CFLOBDD has three exit vertices that partition the strings \(\{0, 1\}^2\) into \([[100], \{01, 10, 11\}]\). This proto-CFLOBDD is identical to \(C'_{B1}\)—although their exit vertices are mapped to different vertices of \(C'\); the exit vertices of \(C'_{B1}\) are connected to exit vertices \((a', b', c')\) of \(C'\), whereas the exit vertices of \(C'_{A}\) are connected to middle vertices \((p', q', r')\) of \(C'\).

We see from this example that a call \(C' = \text{Reduce}(C, \text{red})\) can cause entirely new proto-CFLOBDDs to be created in \(C'\); proto-CFLOBDDs that occur in \(C\) to occur in entirely different places in \(C'\); proto-CFLOBDDs that occur in \(C\) to not occur in \(C'\); and two or more proto-CFLOBDDs with identical sets of return edges to be combined into just a single occurrence when they arise in the B-connection of the same enclosing grouping. This example highlights the challenges for establishing a bound on the time complexity of \(\text{Reduce}\)—namely, both expansion and compaction of proto-CFLOBDDs can occur.

Because of the effects illustrated in Ex. D.1, the cost-bound argument we give is slightly indirect. At a high-level, it is structured as follows: we establish a relationship between \(\text{Reduce}(C, \text{red})\) and that of a certain call on \(\text{PairProduct}\) (Thm. D.1). This approach is beneficial because we already know a time bound on \(\text{PairProduct}\) in terms of the product of the sizes of \(\text{PairProduct}\)’s arguments (which is expressed more precisely in footnote 12).

Thm. D.3 uses that bound to give an asymptotic bound on the time to perform \(\text{Reduce}(C, \text{red})\) in terms of the product of the sizes of its input and output CFLOBDDs.

Theorem D.1. Let \(C\) and \(C'\) be two proto-CFLOBDDs such that \(C' = \text{Reduce}(C, \text{red})\) for some reduction tuple \(\text{red}\). Then \(C = \text{PairProduct}(C, C')\).

Proof: We know that each proto-CFLOBDD at level \(k\) with \(m\) exit vertices partitions the space of strings \(\{0, 1\}^2k\) into \(m\) groups (cf. [59, §6]). We make use of the properties of \(\text{Reduce}\) and \(\text{PairProduct}\) with respect to such partitions:

1. For every proto-CFLOBDD \(X\) and reduction tuple \(\text{red}\), \(\text{Reduce}(X, \text{red})\) produces a coarser partition of the exit languages of \(X\) defined by the mapping of \(\text{red}\) to \(X\)’s exit vertices.

2. For every pair of proto-CFLOBDDs \(X\) and \(Y\), \(\text{PairProduct}(X, Y)\) produces the coarsest partition that refines both of the partitions corresponding to \(X\) and \(Y\).

To reduce clutter, we ignore the tuple of pairs of exit vertices that is returned by \(\text{PairProduct}\) (Alg. 9), except for two places in Thm. D.3.
In particular, we consider the two-statement sequence

\[\begin{align*}
C' &= \text{Reduce}(C, \text{red}); \\
\tilde{C} &= \text{PairProduct}(C, C');
\end{align*}\]

(12) (13)

\(C'\) created in Eqn. (12) represents a coarser partition of the strings in \(\{0, 1\}^n\) than \(C\)'s partition. Because \(C'\) represents a coarser partition than \(C\), the proto-CFLOBDD \(\tilde{C}\) created in Eqn. (12) represents the same partition as \(C\), and thus \(\tilde{C}\) and \(C\) are equal by canonicity. \(\square\)

In essence, Thm. D.1 shows that PairProduct \((C, C')\) "undoes" all of the actions taken during Reduce \((C, \text{red})\).

Example D.2. Consider the result \(\tilde{C} = \text{PairProduct}(C, C')\) for \(C\) and \(C'\) from Ex. D.1. PairProduct \((C, C')\) is first called on the A-connections of the respective outermost groupings, followed by calls on B-connections.

- PairProduct \((C_A, C'_A)\) produces a proto-CFLOBDD whose exit vertices represent the coarsest partition of \(\{0, 1\}^2\) that refines both of the partitions corresponding to the exit vertices of \(C_A\) and \(C'_A\) (i.e., \([\{00\}, \{01\}, \{10\}, \{11\}]\) and \([\{00\}, \{01\}, \{10\}, \{11\}]\), respectively). Hence, the new proto-CFLOBDD \(\tilde{C}_A\) is constructed such that the exit vertices of \(\tilde{C}_A\) represent the partition \([\{00\}, \{01\}, \{10\}, \{11\}]\). PairProduct also returns a tuple of index-pairs indicating the B-connections on which PairProduct needs to be called. In this case, the returned tuple is \([1, 1], [2, 2], [3, 2], [4, 3]\). Mapping this result to the middle vertices of \(C\) and \(C'\), we obtain \([\{p, p'\}, \{q, q'\}, \{r, q'\}, \{s, r'\}]\). These pairs are processed left-to-right, generating calls to PairProduct on B-connections.

- PairProduct \((C_B, C'_B)\) (corresponding to the pair \([p, p']\)) creates proto-CFLOBDD \(\tilde{C}_B\) with three exit vertices corresponding to the partition \([\{00\}, \{01\}, \{11\}]\), returning the tuple \([1, 1], [2, 2], [3, 2]\). Mapping this result to the exit vertices of \(C\) and \(C'\), the initial (as-yet incomplete) sequence of exit vertices of \(\tilde{C}\) would be \([\{a, a'\}, \{b, b'\}, \{c, c'\}]\).

- PairProduct \((C_B, C'_B)\) (corresponding to the pair \([q, q']\)) creates proto-CFLOBDD \(\tilde{C}_B\) with three exit vertices corresponding to the partition \([\{00\}, \{01\}, \{11\}]\) (the same as \(\tilde{C}_B\)), returning the tuple \([1, 1], [2, 2], [3, 2]\]. Mapping this result to the exit vertices of \(C\) and \(C'\), the exit vertices of \(\tilde{C}\) would be extended to \([\{a, a'\}, \{b, b'\}, \{c, c'\}, \{d, c'\}, \{e, c'\}]\), and the exit vertices of \(\tilde{C}_B\) would be connected to \([b, b'], [d, c'], [e, c']\).

- PairProduct \((C_B, C'_B)\) (corresponding to the pair \([r, q']\)) creates proto-CFLOBDD \(\tilde{C}_B\) with four exit vertices corresponding to the partition \([\{00\}, \{01\}, \{10\}, \{11\}]\) (the same as \(\tilde{C}_B\)), returning the tuple \([1, 1], [2, 2], [3, 2], [4, 2]\). Mapping this result to the exit vertices of \(C\) and \(C'\), the exit vertices of \(\tilde{C}\) would be extended to \([\{a, a'\}, \{b, b'\}, \{c, c'\}, \{d, c'\}, \{e, c'\}, \{f, c'\}]\), and the exit vertices of \(\tilde{C}_B\) would be connected to \([b, b'], [d, c'], [e, c'], [f, c']\).

- PairProduct \((C_B, C'_B)\) (corresponding to the pair \([s, r']\)) creates proto-CFLOBDD \(\tilde{C}_B\) with three exit vertices corresponding to the partition \([\{00\}, \{01\}, \{11\}]\) (again, the same as \(\tilde{C}_B\)), returning the tuple \([1, 1], [2, 2], [3, 1]\). Mapping this result to the exit vertices of \(C\) and \(C'\), the final sequence of exit vertices of \(\tilde{C}\) would be set to \([\{a, a'\}, \{b, b'\}, \{c, c'\}, \{d, c'\}, \{e, c'\}, \{f, c'\}, \{g, c'\}, \{h, c'\}]\).

\(\tilde{C}\) has eight exit vertices, four middle vertices, and each of the A-connections and B-connections of \(\tilde{C}\) and \(C\) are connected to isomorphic proto-CFLOBDDs. Consequently, \(\tilde{C} = C\) up to isomorphism. Because hash-colliding enforces that the members of each isomorphism class have a unique representation in memory, PairProduct \((C, C')\) would return a pointer to \(C\). \(\square\)

Lemma D.2. (Local-Reduction Property) Let \(C\) and \(C'\) be two proto-CFLOBDDs such that \(C' = \text{Reduce}(C, \text{red})\) for some reduction tuple \(\text{red}\), and let \(g\) and \(g'\) be their respective outermost groupings. Then \(|g'| \leq |g|\).

Proof: The size of a grouping is equal to the number of entry, middle, and exit vertices, plus the number of A-connection and B-connection edges and return edges. Because \(g'\) is obtained by reducing \(g\) with respect to \(\text{red}\), the number of exit vertices in \(g'\) can be no more than the number in \(g\). Moreover, Reduce can never cause there to be more B-connections in \(g'\) than in \(g\), but it can cause some B-connections of \(g\) to be folded together in \(g'\); thus, the number of middle vertices in \(g'\) can be no more than the number in \(g\). Similarly, for
the A-connection of \(g' \) and all the B-connections of \(g' \), the number of return edges can be no more than the number of return edges in the corresponding A-/B-connections in \(g \). Consequently, \(|g'| \leq |g| \). □

Example D.3. Consider the proto-CFOBDDs \(C \) and \(C' \) from Fig. 24. The size of the level-2 grouping \(g \) equals 1 (entry-vertex) + 4 (middle vertices) + (1 + 3) (1st B-connection) + (1 + 3)(2nd B-connection) + (1 + 4) (3rd B-connection) + (1 + 3)(4th B-connection) + 8 (exit vertices) = 30.

The size of \(g' \) equals 1 (entry-vertex) + 3 (middle vertices) + (1 + 3) (1st B-connection) + (1 + 2)(2nd B-connection) + 3 (exit vertices) = 17.

Thus, \(|g'| \leq |g| \), whereas \(68 = |C'| > |C| = 66 \). □

We now turn to the question of bounding the time complexity of Reduce. Whereas Thm. D.1 showed that PairProduct\((C, C')\) "undoes" all of the actions taken during Reduce\((C, \text{red})\), Thm. D.3 shows that for every action in Reduce\((C, \text{red})\), there is an action of at least the same cost in PairProduct\((C, C')\). Consequently, the time to perform Reduce\((C)\) is bounded by the time that it would take to perform PairProduct\((C, C')\), which is \(O(|C| \times |C'|) \).

Theorem D.3. Let \(C \) and \(C' \) be two proto-CFOBDDs such that \(C' = \text{Reduce}(C, \text{red}) \) for some reduction tuple \(\text{red} \). Let \(\text{Cost}(\text{Reduce}(C)) \) and \(\text{Cost}(\text{PairProduct}(C, C')) \) denote the costs of \(\text{Reduce}(C, \text{red}) \) and \(\text{PairProduct}(C, C') \), respectively. Then \(\text{Cost}(\text{Reduce}(C)) \leq \text{Cost}(\text{PairProduct}(C, C')) \).

Proof: The proof is by induction on the level \(k \) of proto-CFOBDDs \(C \) and \(C' \).

Base case: \((k = 0)\) Consider the following table,

<table>
<thead>
<tr>
<th>(C)</th>
<th>(\text{red})</th>
<th>(C' = \text{Reduce}(C, \text{red}))</th>
<th>(\text{PairProduct}(C, C'))</th>
</tr>
</thead>
<tbody>
<tr>
<td>ForkGouping</td>
<td>1, 1</td>
<td>Don't Care Grouping</td>
<td>ForkGouping, ((1, 1), [2, 1]))</td>
</tr>
<tr>
<td>Don't Care Grouping</td>
<td>1</td>
<td>Don't Care Grouping</td>
<td>Don't Care Grouping, ((1, 1))</td>
</tr>
<tr>
<td>ForkGouping</td>
<td>1, 2</td>
<td>Fork Gouping</td>
<td>ForkGouping, ((1, 1), [2, 2]))</td>
</tr>
<tr>
<td>Don't Care Grouping</td>
<td>--</td>
<td>Fork Gouping</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

The last line in the table cannot arise because there is no reduction tuple that can be used to reduce a Don't Care Grouping to a Fork Grouping. In each of the other three cases in the table, PairProduct\((C, C')\) returns a tuple that has \(C \) as the first component.

Moreover, the results produced by Reduce\((C')\) and PairProduct\((C, C')\) are of constant size, and could be implemented by table lookup. The return value from PairProduct\((C, C')\) is larger than the return value from Reduce\((C, \text{red})\), which justifies saying that \(\text{Cost}(\text{Reduce}(C)) \leq \text{Cost}(\text{PairProduct}(C, C')) \).

Induction step:

Induction Hypothesis: Assume that for all level-\(k \) proto-CFOBDDs \(C'_k \) and \(C_k \) for which \(C'_k = \text{Reduce}(C_k, \text{red}) \), for some reduction tuple \(\text{red} \), \(\text{Cost}(\text{Reduce}(C_k)) \leq \text{Cost}(\text{PairProduct}(C_k, C'_k)) \).

Consider two level-\(k+1 \) proto-CFOBDDs, \(C'_{k+1} \) and \(C_{k+1} \), such that \(C'_{k+1} = \text{Reduce}(C_{k+1}, \text{red}) \). The proof breaks down into the following three cases:

(i) **A-connections.** PairProduct is first called recursively on \(C_{k+1}.A \) and \(C'_{k+1}.A \)—i.e., the level-\(k \) A-connections of \(C_{k+1} \) and \(C'_{k+1} \), respectively. By the construction of \(C'_{k+1} \) from \(C_{k+1} \), we know that \(C'_{k+1}.A = \text{Reduce}(C_{k+1}.A, \text{red}A) \) for some reduction tuple \(\text{red}_A \). Thus, by the induction hypothesis,

\[
\text{Cost}(\text{Reduce}(C_{k+1}.A)) \leq \text{Cost}(\text{PairProduct}(C_{k+1}.A, C'_{k+1}.A)).
\]

(ii) **B-connections.** The return value from the call on PairProduct\((C_{k+1}.A, C'_{k+1}.A)\) considered in the previous case is actually a tuple \([\hat{C}_{k+1}.A, \text{midVertexPairs}]\). By the construction of \(C'_{k+1} \) from \(C_{k+1} \), we know that \(C'_{k+1}.A = \text{Reduce}(C_{k+1}.A, \text{red}_A) \) for some reduction tuple \(\text{red}_A \) and thus by Thm. D.1, \(\hat{C}_{k+1}.A = C_{k+1}.A \).

For every \((i, j) \in \text{midVertexPairs}\), PairProduct is called recursively on \(C_{k+1}.B[i] \) and \(C'_{k+1}.B[j] \), which are level-\(k \) proto-CFOBDDs. To be able to invoke the induction hypothesis, we must establish that \(C'_{k+1}.B[j] = \text{Reduce}(C_{k+1}.B[j], \text{red}_B[j]) \), for some \(\text{red}_B[j] \).

We now consider the meaning of the pairs \((i, j) \in \text{midVertexPairs}\) from the standpoint of the language partitions used in Thm. D.1. Because \(C_{k+1} \) represents a finer partition of the strings in \(\{0, 1\}^{2^{k+1}} \) than...
3774 C'_{k+1}, the i^{th} exit vertex of $C_{k+1}.A$ represents a finer partition of the strings in \{0, 1\}2k than the j^{th} exit vertex of $C'_{k+1}.A$. Thus, in general, there can be multiple exit vertices i_1, i_2, \ldots, i_p of $C_{k+1}.A$ whose language partitions were combined to create the language partition of the j^{th} exit vertex of $C'_{k+1}.A$.

Because these vertices are exit vertices of A-connections, we can equivalently refer to the set \{ i_1, i_2, \ldots, i_p \} of middle vertices of C_{k+1} and the j^{th} middle vertex of C'_{k+1}. The reason this combining of languages took place during Reduce(C_{k+1}, red) can only be because there were calls on Reduce($C_{k+1}.B[i_1], \text{red}_1$), Reduce($C_{k+1}.B[i_2], \text{red}_2$), \ldots, Reduce($C_{k+1}.B[i_p], \text{red}_p$), for which the results were all equal to $C'_{k+1}.B[j]$. (The fifth bullet point of Ex. D.1 illustrates how calls to Reduce on two different B-connections in the same grouping yield the same result, which folds together two middle vertices of the grouping—thereby unioning their language partitions in the proto-CFLOBDD returned by Reduce.) Consequently, by the induction hypothesis,

\[
\text{Cost}(\text{Reduce}(C_{k+1}.B[i_1])) \leq \text{Cost}(PP(C_{k+1}.B[i_1], C'_{k+1}.B[j]))
\]

\[
\text{Cost}(\text{Reduce}(C_{k+1}.B[i_2])) \leq \text{Cost}(PP(C_{k+1}.B[i_2], C'_{k+1}.B[j]))
\]

\[
\ldots
\]

\[
\text{Cost}(\text{Reduce}(C_{k+1}.B[i_p])) \leq \text{Cost}(PP(C_{k+1}.B[i_p], C'_{k+1}.B[j]))
\]

Let e_A denote the number of exit vertices of $C_{k+1}.A$ (which is also the number of middle vertices of C_{k+1}). These inequalities can be expressed more succinctly by observing that for each index i, $1 \leq i \leq e_A$ on the left-hand side (corresponding to an A-connection language-partition of $C_{k+1}.A$), there is a unique j to use on the right-hand side of the inequality. (Index j corresponds to the coarsened A-connection language-partition of $C'_{k+1}.A$.) Let reductum denote this index map: i.e., $j = \text{reductum}(i)$. We can now rewrite Eqn. (15) as

\[
\text{Cost}(\text{Reduce}(C_{k+1}.B[i])) \leq \text{Cost}(PP(C_{k+1}.B[i], C'_{k+1}.B[\text{reductum}(i)]))
\]

(iii) **Overall cost.** Let g' and g denote the outermost groupings (at level $k + 1$) of C'_{k+1} and C_{k+1}, respectively. Reduce and PairProduct each make a call on $\text{RepresentativeGrouping}$ at the end of their computations to hash-cons the outermost grouping that has been constructed. The time complexity of a call on $\text{RepresentativeGrouping}$ is dominated by the cost of computing the grouping’s hash value, and thus the costs in Reduce and PairProduct are linear in $|g'|$ and $|g|$, respectively. By Lem. D.2, we know that $|g'| \leq |g|$, and thus the cost of the call on $\text{RepresentativeGrouping}$ in Reduce is no more than the cost of the call in PairProduct.

Finally, using Lem. D.2 and Eqns. (14) and (16), we obtain the desired result:

\[
\text{Cost}(\text{Reduce}(C_{k+1})) = |g'| + \sum_{i=1}^{e_A} \text{Cost}(\text{Reduce}(C_{k+1}.B[i])) + \text{Cost}(\text{Reduce}(C_{k+1}.A))
\]

\[
\leq |g| + \sum_{i=1}^{e_A} \text{Cost}(\text{Reduce}(C_{k+1}.B[i])) + \text{Cost}(\text{Reduce}(C_{k+1}.A))
\]

\[
= |g| + \sum_{i=1}^{e_A} \text{Cost}(PP(C_{k+1}.B[i], C'_{k+1}.B[\text{reductum}(i)])) + \text{Cost}(PP(C_{k+1}.A, C'_{k+1}.A))
\]

\[
= \text{Cost}(PP(C_{k+1}, C'_{k+1})).
\]