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1. INTRODUCTION

Program slicing [Weiser 1984] provides a useful tool for many semantics-based
program-manipulation operations. In particular, slicing produces semantically
meaningful static decompositions of programs [Giacobazzi and Mastroeni 2003],
consisting of program elements that are not textually contiguous.! Slicing is a fun-
damental operation that can aid in solving many software-engineering problems,
including program understanding, maintenance, debugging, testing, differencing,
specialization, and merging. (See §10 for references.) The term “program slicing”
has been used to describe a number of different but related operations, but for
purposes of introducing the specialization-slicing problem, we can start with the
original definition due to Weiser [1984]: the (static backward) slice of a program P
from element q with respect to a set of variables V is any (executable) program P’
such that

—P’ can be obtained from P by deleting zero or more statements.

—Whenever P halts on input I, P’ also halts on input I, and the two programs
produce the same sequences of values for all variables in set V' at element ¢ if it
is in the slice, and otherwise at the nearest successor to ¢ that is in the slice.

The pair (g, V) is called the slicing criterion.

Most research on slicing adopts from Weiser the idea that slices should retain
a close syntactic connection to the original program—roughly, algorithms for such
approaches remove all program elements that cannot affect the slicing criterion.
Such algorithms are called syntax-preserving [Harman and Danicic 1997].

In this paper, we investigate the opportunities to be gained from broadening
the definition of slicing and abandoning the restriction to syntax-preserving algo-
rithms. A major inspiration for our work comes from the field of partial evaluation
[Jones et al. 1993], in which a wide repertoire of techniques have been developed
for specializing programs.

While slicing can also be harnessed for specializing programs [Reps and Turnidge
1996], due to the emphasis on syntax-preserving algorithms, the kind of specializa-
tion obtainable via slicing has heretofore been quite restricted, compared to the kind
of specialization allowed in partial evaluation. In particular, a syntax-preserving
slicing algorithm corresponds to what the partial-evaluation community calls a
monovariant algorithm: each program element of the original program generates
at most one element in the answer. In contrast, partial-evaluation algorithms can
be polyvariant, i.e., one program element in the original program may correspond
to more than one element in the specialized program [Jones et al. 1993, p. 370].

In this paper, we investigate polyvariant program slicing—which we call spe-
cialization slicing—and present an algorithm that solves the specialization-slicing
problem. For a given procedure p, a specialization-slicing algorithm may create mul-
tiple specialized copies of p. For example, consider the program shown in Fig. 1(a),
and the specialization slice of the program with respect to the actual parameters

IThroughout the paper, we use the term “program elements” to mean items that one typically has
in a relatively fine-grained intermediate representation, such as individual assignment statements,
branch conditions, formal parameters, actual parameters, etc. We do not mean coarser-granularity
program fragments, such as basic blocks or procedures.
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(a) Backward closure slicd w.r.t. (b) Specialized slice
printf’s parameters on line (17) with two versions of p
1) , ggm int gl, g2;
(2)
(3) [void p(int a, int b) { void p_1(int b) {
(4 g2 = b;
(5) [EZ=5j }
(6) g3 = g2;
 [{ void p_2(int a, int b) {
(® gl = a;
(9 g2 = b;
(10) }
an
(12) [int mainQ {] int main() {
(13) g2 = 100;
14) P2, p_1(2);
(15) [p(g2, 3)j p_2(g2, 3);
(16) fpla, p_1(gl+g2);
17)  [printf("kd", g2)5) printf ("%4", g2);
(18) } }

Fig. 1. (a) Example program and (in boxes) the elements of the backward closure slice with
respect to the actual parameters of the call to printf on line (17). (b) Specialization slice with
respect to the same slicing criterion. Note that procedure p is specialized into two variants: p-1
and p_2.

of the call to printf on line (17), shown in Fig. 1(b). Because g2 is used on line
(17) and g1 is not, just after line (16) g2 is relevant to the slice and gl is irrele-
vant. Therefore, the first actual parameter on line (16), which determines the value
assigned to g1, is also irrelevant. Similarly, just after line (15) both g1 and g2 are
relevant, and just after line (14) only g2 is relevant. Because of these differences,
the calls to p on lines (14) and (16) of Fig. 1(a) are converted in Fig. 1(b) into calls
to the one-parameter procedure p_1, which assigns to g2 but not g1, while the call
to p on line (15) is converted into a call to the two-parameter procedure p_2, which
assigns to both g1 and g2.

The specialization-slicing algorithm still has the main characteristics of a slicing
algorithm—that is, the elements of the output slice are all elements from the input
program: no evaluation or simplification is performed. Stated another way, our
work adopts just one feature from the partial-evaluation literature—polyvariance—
and studies how that extension changes the slicing problem.

The specialization-slicing algorithm can be thought of as starting with informa-
tion similar to what is obtained from what has been called “closure slicing,” and
then modifying the closure-slice result. Closure slicing and other relevant back-
ground material will be reviewed in §2. For the purposes of the discussion here, the
relevant issue is that a closure slice can have multiple calls to the same procedure,
with different subsets of actual parameters at different call-sites. A closure slice
contains just a single version of each called procedure P. P’s formal-parameter
set is the union of the formal parameters that correspond to the actual parame-
ters (at call-sites that call P) in the closure slice. Consequently, a closure slice
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can have mismatches between the actual parameters at a call-site and the proce-
dure’s formal parameters [Horwitz et al. 1990, §1]. For instance, in lines (14) and
(16) of Fig. 1(a), the second actual parameter is in the closure slice, but the first
actual parameter is not; in line (15), both actual parameters are in the closure
slice; and in line (3), both formal parameters are in the closure slice. Thus, there
are mismatches between lines (14) and (3), and between lines (16) and (3). In
contrast, the specialization-slicing algorithm can create specialized versions of a
called procedure—one for each different subset of the actual parameters occurring
at different call-sites—so that each call-site calls a specialized version whose formal
parameters match the call-site’s actual parameters (cf. lines (14), (16), and (3) and
lines (15) and (7) of Fig. 1(b)).

Specialization slicing represents a new point in the “design space” of slicing prob-
lems: (i) the specialization-slicing algorithm is not syntax-preserving because a slice
can contain multiple versions of a procedure; however, (ii) the specialization-slicing
algorithm never introduces program elements that are not also in the closure slice
(albeit the specialization slice may contain multiple copies of such elements, such
as the two copies of “g2 = b” in lines (4) and (9) of Fig. 1(b)).

In creating specialized procedures, a specialization-slicing algorithm must decide
for which subsets of the formal parameters a given procedure should be specialized,
and which program elements should be included in each specialized procedure. As
we show in §3.2 and §5.3, there can be cascade effects: when a specialized copy of
p is created, it may be necessary to create specialized copies of procedures called
by p and so on. The process cannot go on forever, because there are only a finite
number of combinations of actuals that are possible; however, the cascade effect
can be exponential in the worst case (§5.3).

If exponential explosion was the usual outcome, our algorithm would not be use-
ful. However, our experiments indicate that exponential explosion does not arise
in practice: no procedure had more than four specialized versions, and the vast
majority of procedures (90.8%) had just a single version (see §9). Moreover, the
experiments showed that the overall size increase is also modest. Normalized to
“|closure slice] = 100,” on average (computed as the geometric mean) specializa-
tion slices are 105.5. That is, 5.5% worth of closure-slice elements are replicated.
However, there is a sense in which our specialization-slicing algorithm returns an
answer that is optimal: (i) the result is minimal in a sense defined precisely in §3.1,
and (ii) each element replicated by the specialization-slicing algorithm is necessary
for the slice to capture one of the program’s specialized patterns of behavior.?

Fig. 1 is an example of specialization slicing applied to a non-recursive program.
To see the outcome of specialization slicing on a recursive program, consider the
program shown in Fig. 2(a) and the specialization slice with respect to line (28),
shown in Fig. 2(b). This example shows what happens when some program ele-
ments are relevant in one recursive invocation, but not relevant in another recursive
invocation of the same procedure. Note that just after line (27), g1 is relevant to
the slice, but g2 is not. However, just after line (16), in some calling contexts gl
is relevant, but not g2, while in other calling contexts g2 is relevant, but not gi.

21t will become clearer in later sections that—as with much past work on program slicing—the
informal notion of “patterns of behavior” will be formalized as “patterns of dependences.”
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(a) Recursive program (b) Specialization slice
(1) int gl, g2; int g1, g2;
(2)
(3) void s(int a, void s_1(int b) {
(4) int b){ gl = b;
(5) }
(6) gl = b; void s_2(int a) {
(@8] g2 = a; g2 = a;
3| 1} }
9)
(10) void r_1(int k) {
(11) if (k > 0) {
(12) int r(int k) { s_2(gl);
(13) r_2(k-1);
(14) if (k > 0) { s_1(g2);
(15) s(gl, g2); }
(16) r(k-1); }
an) s(gl, g2); void r_2(int k) {
(18) } if (k > 0) {
(19) s_1(g2);
(20) r_1(k-1);
(21) s_2(gl);
(22) }
(23) }
(24) int main() {
(25) gl = 1; int main() {
(26) g2 = 2; gl = 1;
(27) r(3); r_1(3);
(28) printf ("%d\n", gi); printf("%d\n", gi);
(29) 1} }

Fig. 2. (a) A program with recursive procedure r. All elements of the program are in the closure
slice with respect to line (28). (b) The specialization slice of the program with respect to line
(28).

These differences produce two kinds of effects:

(1) Procedure s is specialized into two versions (s_1 with parameter b and s_2 with
parameter a).

(2) Procedure r, which has a single parameter in the original program and still
has a single parameter in the output slice, is also specialized into two versions,
which have two different patterns of behavior in their bodies:

—r_1 makes the calls “s_2(gl); r-2(k-1); s_1(g2);”
—1r_2 makes the calls “s_1(g2); r_1(k-1); s_2(gl);.”

As a consequence of item (2), the pattern of recursion in the specialization slice
shown in Fig. 2(b) is different from the pattern of recursion in Fig. 2(a). The pro-
gram in Fig. 2(a) uses direct recursion: r calls r calls ... In contrast, in Fig. 2(b),
r_1 and r_2 are mutually recursive. That is, specialization slicing caused a use
of direct recursion to be converted into mutual recursion. As we will show, the
specialization-slicing algorithm that we give in §4 automatically identifies the cor-
rect procedure variant to call, even when specialization slicing introduces mutual
recursion among specialized procedures.
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1.1 Two Strawman Algorithms

Given the level of sophistication of the machinery that will be introduced in the
paper, it is natural to wonder whether a simpler method suffices. At the beginning
of our work on specialization slicing, we considered numerous candidate algorithms,
including the two discussed in §1.1.1 and §1.1.2. We present these here because the
first provides some insight on the correct specification of the specialization-slicing
problem, while the second is representative of several plausible-sounding attempts
that all turned out to be flawed.

The flaws in such attempts motivated us to back up and reconsider the problem
from first principles. The ideas that we came up with are presented in §3, and
used to define the goals of a specialization-slicing algorithm in terms of soundness,
completeness, and minimality conditions. We then give an algorithm that is sound
and complete, and returns a minimal specialization slice (§4).

1.1.1  Procedure Cloning. One approach to specialization slicing is based on ex-
haustive procedure cloning (performed in a manner similar to exhaustive in-line
expansion):

(1) Starting with the call-sites in the main procedure, give each call-site that calls
procedure p its own copy of p, which itself is recursively unfolded in the same
manner.

(2) Perform closure slicing on the unfolded program.

(3) Repeatedly merge copies of procedures that, in the closure slice, have identical
sets of formal parameters and identical sets of elements in the procedure body.

For instance, in Fig. 1(a), step (1) would create three copies of procedure p, corre-
sponding to the calls on lines (14), (15), and (16), respectively. The closure slice
would involve elements in all three copies of p. The slices of the copies from lines
(14) and (16) would be identical, and would be folded together by step (3) to create
the one-parameter procedure p_1 given on lines (3)—(5) of Fig. 1(b).

The cloning-based algorithm partially satisfies our requirements; however, it has
two drawbacks:

—Cloning step (1) would not terminate for a program that uses recursion.

—For a non-recursive program, step (1) can lead to a program that is exponentially
larger than the original program.?

However, the cloning-based algorithm does provide intuition about what a
specialization-slicing algorithm should achieve, and thus helps with understanding
the specification of the specialization-slicing problem. For instance, if you imagine
performing a closure slice of the infinite program that would result from applying
the cloning step to Fig. 2(a), it is not hard to convince yourself that the slice has
only two variants of procedure s, and two variants of procedure r—where the latter
call each other mutually recursively.

3Consider a non-recursive program in which procedure pj, contains two calls to py_1; pr_1 contains
two calls to px_o; etc. The program obtained via cloning step (1) will be exponentially larger
than the original program.
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The steps of the specialization-slicing algorithm that we present in §4 can be
viewed as harnessing symbolic techniques to perform steps (1)—(3) of the cloning-
based approach—but without explicit exhaustive procedure cloning, thereby
sidestepping the two problems identified above.

An algorithm is said to be output-sensitive if “[its] running time depends on the
size of the output, instead of or in addition to the size of the input” [Wikipedia:
Output-Sensitive Algorithm 2014]. Our algorithm is an output-sensitive algorithm
for specialization slicing. An algorithm that performs explicit cloning eagerly ac-
cepts an exponential cost up-front, whereas it may not actually be necessary to
do that much work. Our algorithm shows that one can do better than cloning
eagerly. For examples with the calling structure described in footnote 3, our algo-
rithm exhibits exponential behavior if each of the leaf procedure instances needs to
be specialized differently. (The family of examples discussed in the paper in §5.3
is exactly such a case—see Figs. 14 and 15.) For instance, the algorithm uses an
exponential amount of time just to print out the answer. However, our algorithm
does not exhibit exponential behavior if the leaf procedures do not all need to be
specialized differently. Our algorithm is “lazy” in the sense that it ends up consid-
ering only the specialized procedures that are actually needed in the answer. While
there are many lazy algorithms in computer science, the way laziness is achieved in
our algorithm is somewhat unusual (see §4).

1.1.2  Remowving Extra Vertices. A forward slice with respect to a slicing crite-
rion C' is the set of all program elements that might be affected by the computations
performed at members of C [Horwitz et al. 1990, §4.5]. Another approach to spe-
cialization slicing might be to create the specialized version of a callee by removing
vertices that are in the forward slice from “extra” formal parameters in the closure
slice. That is, to specialize procedure p for call-sites like the ones on lines (14) and
(16) of Fig. 1(a), where the second actual parameter is in the closure slice but the
first actual parameter is not, the proposed algorithm would

—make a copy of the closure slice of p, and

—remove from the copy of p all vertices in the forward slice with respect to the
first formal-parameter.

It would be necessary to iterate this process until there are no further parameter
mismatches; however, tabulation can be used to avoid re-analyzing a method that
has already been specialized.

Unfortunately, the (non-recursive) example shown in Fig. 3 shows that this ap-
proach can leave in unneeded program elements in some cases. In Fig. 3(b), the
assignment z = 3 in specialized procedure p-2 is needed because variable z is used
in the very next statement, g2 = b + z. In contrast, in specialized procedure p-1,
the assignment z = 3 is an extra statement; in compiler parlance, z is a dead vari-
able there, and z = 3 is a useless assignment. The statement z = 3 is retained in
p-1 by the candidate algorithm because z = 3 is in the closure slice, but is not in
the forward slice from the unneeded formal-in b (which corresponds to the unneeded
actual-in 2 in the call p(g2,2) in main).
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(a) Program and a [closure slic¢ (b) Candidate specialization slice
int gl, g2;

[void p(int a, int b) {] void p_1(int a) {

gl = a;

int z = 3; // EXTRA!
[E }

void p_2(int b) {
int z = 3; // OK

g2 =b + z;
}
int main() {
P11,@Y5] /7 g2 = 4 + 3; p_2(4); // g2 =4 + 3;
P2, 2051 // g1 = g2; p-1(g2); // gl = g2;
[Erintf "%d",g1)5] // slice pt. ) printf("%d",gl);

Fig. 3. Non-recursive program that demonstrates that the specialization-slicing method discussed
in §1.1.2 can leave in unneeded program elements. (a) Example program and (in boxes) the
elements of the closure slice with respect to line (17). (b) The specialization slice returned by the
proposed method.

1.2 Contributions

This paper defines specialization slicing, describes an elegant algorithm for solving
the problem, and presents results from studying specialization slicing from a number
of angles.

—We formalize the problem of specialization slicing as a partitioning problem on
the elements of the (possibly infinite) unrolled program (§3.1). We give definitions
of soundness, completeness, and minimality for specialization slicing (§3.1).

—To solve the partitioning problem, we bring to bear techniques that are quite
different from what have been used in most other work on program slicing. In
particular, to represent finitely the infinite sets of objects that we need to ma-
nipulate to solve the partitioning problem, we make use of symbolic techniques
originally developed in the model-checking community [Bouajjani et al. 1997;
Finkel et al. 1997]. Using this machinery, we give an algorithm in §4 that with
just a few simple automata-theoretic operations identifies
—the minimal set of specialized procedures that capture each of the different

patterns of behavior for a given procedure, as well as
—the minimal set of program elements required in each specialized procedure.

—We prove that our specialization-slicing algorithm is sound and complete, and
returns a minimal specialization slice (§4.4 and Appendix A); consequently, the
algorithm always creates an optimal output slice (§5.1).

—We characterize the running time and space used by the algorithm (§5).

—We present a family of examples for which the running time and space of the
specialization-slicing algorithm can be exponential in certain parameters of the
input program (§5.3).
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—Our experience to date has been that neither such examples, nor the worst-
case exponential behavior of operations like automaton determinization, arise
in practice (see below). Hence, we believe it is fair to say that, for the observed
cost, both the running time and space of the algorithm are bounded by the
sum of two terms: one is polynomial in the size of the input program; the other
is linear in the size of the output slice.

—The specialization-slicing algorithm provides a new way to create executable
slices—in particular, it creates polyvariant executable slices (§6).

—We describe several extensions of the basic specialization-slicing algorithm:

—We describe how to extend the algorithm to handle programs that (i) make
calls to library procedures, and (ii) use calls via pointers to procedures. (§7.1
and §7.2, respectively).

—We show that the algorithm possesses a kind of idempotence property (§7.3).

—We show how to speed up one of the key steps of the algorithm (§7.4).

—We describe a method for removing unwanted program features (§8). The method
uses specialization slicing in conjunction with forward slicing. While it was pre-
viously known how to solve the feature-removal problem for single-procedure
programs, no algorithm was known for multi-procedure programs.

—In §9, we present the results of experiments using C programs to evaluate (i)
our specialization-slicing algorithm (for polyvariant executable slicing), and (ii)
an algorithm for monovariant executable slicing [Binkley 1993]. To the best of
our knowledge—confirmed by Binkley [2012]—these results represent the first
published data on the performance of the monovariant algorithm for executable
slicing.

§10 discusses related work. §11 concludes. Proofs are given in Appendix A.

2. BACKGROUND
2.1 System Dependence Graphs

In some slicing algorithms, a slicing criterion (g, V') is restricted so that V' can only
include variables used at program element gq. Ottenstein and Ottenstein [1984]
observed that with such slicing criteria, slicing can be performed efficiently using
program dependence graphs. Our specialization-slicing algorithm adopts this re-
striction on slicing criteria. (In the remainder of the paper, we also assume that
slices are with respect to all variables used at q. However, the slicing criteria that
we consider can consist of sets of program elements, not just a single element g.)

Horwitz et al. [1990] presented a context-sensitive algorithm for interprocedural
slicing that uses a data structure they defined, called a system dependence graph
(SDG). An SDG is a graph used to represent multi-procedure programs ( “systems”).
The system dependence graph is similar to other dependence-graph representations
of programs (e.g., [Kuck et al. 1981; Ottenstein and Ottenstein 1984]), but repre-
sents collections of procedures rather than just monolithic programs.

DEFINITION 2.1. (System Dependence Graph (SDG)) A program’s system de-
pendence graph (SDG) is a collection of procedure dependence graphs (PDGSs),
one for each procedure. Each PDG has an entry vertex, plus vertices that rep-
resent the procedure’s statements and conditions [Ottenstein and Ottenstein 1984].
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A call statement is represented by a call vertex and a collection of actual-in and
actual-out vertices. There is an actual-in vertex for each actual parameter as
well as for the non-local locations—e.q., global variables and locations accessible via
pointers—in the procedure’s MayRef and (MayMod — MustMod) sets [Cooper and
Kennedy 1988]. There is an actual-out vertex for the return value and for each
non-local location in the procedure’s MayMod set. Similarly, in the PDG of a called
procedure, the parameter-passing actions in the procedure’s prologue and epilogue
are represented by a collection of formal-in and formal-out vertices.

A PDG’s edges represent the control and flow dependences among the procedure’s
statements and conditions.* The PDGs are connected together to form the SDG
by call edges (which represent procedure calls, and run from a call vertex to an
entry vertex) and by parameter-in and parameter-out edges (which run from
an actual-in vertex to the corresponding formal-in vertex, and from a formal-out
vertex to all corresponding actual-out vertices, respectively).® O

The size of the SDG is polynomial in various parameters that characterize the
size of the original program (see [Horwitz et al. 1990, §5.1] for details).

EXAMPLE 2.2. Fig. 4 shows the SDG for the program given in Fig. 1(a). Each
PDG vertex in the SDG is labeled (e.g., m1), and each call-site has an additional
label of the form C1, C2, etc. We later refer to the vertices and call-sites using
those labels.

Because the call to printf is a library call, the SDG shown in Fig. 4 does not
include the PDG for printf. We discuss how we handle library calls in §7.1. O

2.2 Closure Slicing

Horwitz et al. [1990] presented a context-sensitive algorithm for interprocedural
slicing that produces more precise (smaller) slices than Weiser’s algorithm. How-
ever, while Weiser’s slices are executable, the algorithm given by Horwitz et al.
produces a closure slice: the slice of a program with respect to criterion (g, {z})
consists of all statements and conditions of the program that might affect the value
of  at program element gq.

EXAMPLE 2.3. The elements of Fig. 4 shown with bold font and darker borders,
lines, and dashed lines are the ones identified by the context-sensitive, interproce-
dural closure-slice algorithm of Horwitz et al. [1990] when the SDG is sliced with
respect to {m22,m23}. This example corresponds to slicing Fig. 1(a) with respect
to the actual parameters of the call to printf on line (17). O

4As defined by Horwitz et al. [1990], PDGs include four kinds of dependence edges: control,
loop-independent flow, loop-carried flow, and def-order. However, for the purposes of this paper
the distinction between loop-independent and loop-carried flow edges is irrelevant, and def-order
edges are not used. Therefore, in this paper we assume that PDGs include only control-dependence
edges and a single kind of flow-dependence edge.

5The SDGs defined by Horwitz et al. [1990] also include summary edges, which run from actual-
in to actual-out vertices. Summary edges are not needed for defining the goal of specialization
slicing, nor for presenting our initial specialization-slicing algorithm (Alg. 1). Summary edges are
introduced in §7.4, where we give an improved algorithm for one of the key steps of specialization
slicing (Alg. 2).
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A closure slice can have multiple calls to the same procedure, with different
subsets of actual parameters at different call-sites. However, the slice contains
the union of the corresponding formal-parameter sets, which causes a mismatch
between the actual parameters at a call-site and the procedure’s formal parameters
[Horwitz et al. 1990, §1] (e.g., compare the boxes on lines (14) and (16) of Fig. 1(a)
with the box on line (3)).

EXAMPLE 2.4. The parameter-mismatch problem is illustrated in Fig. 4 by the
mismatch between actual-ins m4 and m16 from call-sites C'l and C3, respectively,
which are mot in the slice, and formal-in p2, which is in the slice. O

For most programming languages, a program with a parameter mismatch would
trigger a compile-time error, or at least a warning. (The main use of closure slicing
per se is in tools for code understanding, such as CodeSurfer® [Anderson et al. 2003],
which lets the user navigate along the dependence edges in the closure slice.) In
contrast, slices produced by our specialization-slicing algorithm never exhibit such
parameter mismatches, and thus specialization slices are executable.

We will have more to say about executable slicing in §6, and a different kind of
parameter-mismatch problem in §7.2.

2.3 Pushdown Systems, SDGs, and Unrolled SDGs

In §3.1, we use a family of infinite graphs to define the specialization-slicing problem,
and in §4 we use symbolic techniques for working with such infinite graphs. This
section defines the infinite graphs that we use—mnamely, the transition relations of
pushdown systems (PDSs) [Bouajjani et al. 1997; Finkel et al. 1997].

DEFINITION 2.5. A pushdown system (PDS) is a triple P = (P,T',A), where
P is a finite set of control locations; T' is a finite set of stack symbols; and
A CPxT xPxT* is a finite set of rules. A P-configuration is a pair (p,u)
where p € P and w € T*. A rule r € A is written as (p,y) < (p’,u), where
p,p € PyeET, and u € T'*.6

The rules in A define a transition relation = on P-configurations as follows:
Ifr = (p,y) = P,y , then (p,yu) = (p',u'u) for each u € T*. The reflexive
transitive closure of = is denoted by =*. For a set of P-configurations C, we define
pre”(C)={c |Ic e C: =* ¢} and post™ (C) = {¢' | 3c € C : ¢ =* '}, which
are just backward and forward reachability under transition relation =. O

Without loss of generality, we restrict a PDS’s rules to have at most two stack
symbols on the right-hand side. A rule r = (p,v) — (p’,u), u € T'*, is called a pop
rule if |u| = 0, an internal rule if |u| = 1, and a push rule if |u| = 2.

Because the size of the stack component of a P-configuration is not bounded,
in general, the number of P-configurations of a PDS—and hence its transition
relation—is infinite.

6We use € to denote an empty sequence. We use the juxtaposition of symbols, separated by spaces,
to denote a non-empty sequence. For emphasis, we sometimes enclose a sequence in parentheses.
Following the conventions of the literature on pushdown systems, if the sequence (A B C') denotes
a stack or portion of a stack, the symbol A is the top-of-stack symbol—i.e., the top of the stack
is at the left.
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Rule [Dependence edge modeled

(p,u) = (p,v) Flow-dependence or control-dependence edge u — v

(p,c) < {p,e C) |Call edge ¢ — e from call vertex c to entry vertex e at call-site C
(p, at) — (p, fi C) |Parameter-in edge ai — fi from actual-in vertex as to

formal-in vertex fi at call-site C

(p, fo) — (pfo,€) |Parameter-out edge fo — ao from formal-out vertex fo to

(pfo, C) — (p, ao)|actual-out vertex ao at call-site C

Fig. 5. A schema for encoding an SDG’s edges using PDS rules.

DEFINITION 2.6. We encode an SDG as a PDS using the schema given in
Fig. 5. The five kinds of edges that occur in SDGs are each encoded using one
or two PDS rules:

—a flow-dependence or control-dependence edge is encoded with an internal rule
—a call edge or parameter-in edge is encoded with a push rule

—a parameter-out edge is encoded with a pop rule and an internal rule.

A common control location p is used in all of the PDS rules Fig. 5, except in the
rules that encode parameter-out edges.

The principle behind the rules that encode a parameter-out edge fo — ao at call-
site C' is as follows. Reading the rules in the forward direction,

—the next-to-last rule of Fig. 5, the pop rule (p, fo) — (pyo, €), uses control location
Dfo to record that formal-out vertex fo was popped from the stack, so that fo is
available when call-site symbol C' is exposed at the top of the stack.

—the last rule of Fig. 5, the internal rule {ps,C) — (p, ao), replaces C' on the
stack with the actual-out vertex ao that matches fo at call-site C.

In other words, a parameter-out edge fo — ao at call-site C' causes the PDS’s
transition relation to contain, for each u € I'*, a path of length two of the form

(p, foC u) = (pfo, Cu) = (p, aou).

Given SDG G, the unrolling of G is the transition relation of the PDS that
encodes G via the schema given in Fig. 5. O

ExXAMPLE 2.7. Consider again the SDG from Fig. 4 and program from Fig. 1(a).
The three call-sites on procedure p are labeled with C'1, C2, and C3.

Tab. I shows the PDS rules that encode the SDG from Fig. 4. Fig. 6 shows
the unrolled SDG (i.e., the transition relation generated by Tab. I, which encodes
Fig. 4).7 Note that the unrolled SDG is quite similar to the SDG that would be
obtained by repeatedly performing PDG cloning (similar to the procedure-cloning
idea discussed in §1.1.1): starting with the call-sites in the PDG for main, give each
call-site that calls PDG p its own copy of p, which itself is recursively unfolded in
the same manner.

"Technically, Fig. 6 shows just the part of the transition relation that is reachable from P-
configuration (p, m1).
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(p,m21)

(em22)] ((@m23)

(p.p4C2)

Fig. 6. Transition relation of the PDS encoding of the SDG shown in Fig. 4. Each vertex is labeled with a P-configuration of the
form (p, PDG-vertex call-stack). The closure slice with respect to the P-configuration set {(p, m22), (p,m23)} is shown with bold
font and darker borders, lines, and dashed lines, and corresponds to the boxed elements in Fig. 1(a).
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Control-dependence and flow-dependence edges in main

1. (p,ml) — (p,m2) 2. (p,m1) — (p,m3)
3. (p,ml) < (p,m9) 4. (p,m1) < (p, m15)
5. (p,m1) — (p, m21) 6. (p,m2) — (p, m4)
18 rules omitted ...
25. (p,m19) — (p, m23) 26. (p,m21) — (p, m22)

27. (p,m21) — (p,m23)
Control-dependence and flow-dependence edges in p
28. (p,pl) <= (p,p2) 29. (p,pl) <= (p,p3)
30. {(p,pl) <= (p,p4) 31. {p,pl) < (p,p5)
... 8rules omitted ...
40. (p, p5) <= (p, p8) 41. (p, p6) = (p,p7)
Call edges
42. (p,m3) < (p,pl C1) 43. (p,m9) — (p,pl C2)
44. (p,m15) — (p,pl C3)
Parameter-in edges
45. (p,m4) < (p,p2 C1) 46. (p,m5) < (p,p3 C1)
47. (p,m10) — (p,p2 C2) 48. (p,m1l) — (p,p3 C2)
49. (p,m16) — (p,p2 C3) 50. (p,m17) < (p,p3 C3)
Parameter-out edges

51. (p,pT) — (pp7,€) 52. (pp7, C1) — (p, m6)
53. (pp7,C2) — (p,m12) 54. (pp7,C3) — (p, m18)
55. (p,p8) — (pps, €) 56. (pps, C1) — (p,m7)
57. (pps, C2) — (p,m13) 58. (pps, C3) — (p,m19)
59. (p,p9) — (ppo9,€) 60. (pp9, C1) — (p, m8)
61. (ppo, C2) — (p,m14) 62. (ppg, C3) — (p, m20)

Table I. The PDS rules that encode the SDG shown in Fig. 4, using the schema given in Fig. 5.

The one place where there is a slight difference between the PDS’s transition
system and the result of exhaustive PDG cloning is in the treatment of parameter-
out edges. For instance, under the schema given in Fig. 5, the three parameter-out
edges p9 — m8, p9 — m14, and p9 — m20 in Fig. 4, at call-sites C1, C2, and C3,
respectively, are encoded in Tab. I by (i) rules 59 and 60, (ii) rules 59 and 61, and
(iii) rules 59 and 62, respectively. Consequently, the unrolled SDG contains the
following three paths of length two:

(P, p9 C1) = (ppo, C1) = (p, m8)
(P, p9C2) = (ppo, C2) = (p,m14)

Henceforth, to reduce clutter in diagrams, we will not show intermediate P-
configurations like (pp9,C1) in Fig. 6; instead, we will just show a single edge
(p,p9C1) = (p,m8). Moreover, because each P-configuration (p,vw) in such dia-
grams has the same control-location p, we will typically drop the control location,
and denote the remainder as (v, u). (Note that v corresponds to an SDG vertex,
and u is a sequence of call-sites in the SDG.) For instance, the leftmost PDG in
Fig. 6 would be shown as follows:
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d

DEFINITION 2.8. (Configuration and Stack Configuration) In an unrolled SDG,
each call-site invokes a unique instance of the called PDG. Consequently, each vertex
c in an unrolled SDG is associated with a unique sequence of call-sites in the SDG,
and thus ¢ can be labeled uniquely with a pair (v,u), where v is a PDG vertex
from the original SDG, and u is a sequence of call-sites that represents the calling
context in which ¢ arises. We say that (v, u) is a configuration that has the stack
configuration u. The sequence u represents the stack of calls that are pending in
configuration (v, u)).

Given a set of configurations C, Elems(C) denotes the set of PDG wvertices

Elems(C) = {v | (v,u)) € C},
and Stacks(C) denotes the set of stack configurations

Stacks(C) = {u | (v,u) € C}.
O

Note that with our nomenclature, a configuration such as (p9,C1) has stack
configuration C1, and corresponds to P-configuration (p,p9 C1). Throughout, we
are careful to use the qualifying terms “stack configuration” and “P-configuration,”
so there should be no confusion.

3. PROBLEM STATEMENT

As we explored the concept of specialization slicing, we considered numerous can-
didate algorithms, such as the one discussed in §1. The flaws in such attempts
motivated us to find foundational principles that we could use to define the objec-
tive that specialization slicing should achieve. This section presents these principles,
building up to a three-part definition of the specialization-slicing problem that we
wish to solve (Eqn. (3), Defn. 3.5, and Defn. 3.6). In §3.1, we use a non-recursive
program to motivate and illustrate these definitions. In §3.2, we double-check the
problem definition by considering a specialization slice of a recursive program.
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3.1

Insight 1:  Symbolic Techniques for Infinite Graphs. We formalize the
specialization-slicing problem in terms of the (conceptual) unrolled SDG (Defn. 2.6),
which for recursive programs has an infinite number of vertices and edges. To rep-
resent finitely the possibly infinite sets of objects that we will use to solve the
specialization-slicing problem, we adopt symbolic techniques that were originally
developed in the model-checking community. As explained in §2.3, we use a push-
down system (PDS) to encode the SDG. This approach immediately provides us
with an algorithm to perform a generalized kind of program slicing: the pre* op-
eration [Bouajjani et al. 1997; Finkel et al. 1997] on a PDS performs a closure
slice on the unrolled SDG. We call this operation stack-configuration slicing to
distinguish it from the other kinds of slicing operations that were mentioned earlier.

Insights and Definitions

ExaMPLE 3.1. Each vertex in Fig. 6 is labeled with a configuration of the form
(PDG-vertex, call-stack]). Because Fig. 1(a) is not recursive, the set of configura-
tions in the unrolled SDG is a finite set, namely,

(ml,€), (m10,€), (m19,¢€), (p1,C1), (p1,C2), (pl,C3),
(m2,¢€), (m1l,¢), (m20,¢), (p2,C1), (p2,C2), (p2,C3),
(m3,¢€), (Mm12,¢), (m21,¢), (p3,C1), (p3,C2), (p3,C3),
(m4,€), (m13,€), (m22,¢€), (p4,C1), (p4,C2), (p4,C3),
(m5,¢€), (m14,€), (m23,¢), (p5,C1), (p5,C2), (p5,C3), (1)
(m6,€), (m1b,¢), (p6, C1), (p6,C2), (p6,C3),
(m7,€), (m16,e€), (p7,C1), (p7,C2), (p7,C3),
(m8,¢€), (m17,¢), (p8, C1), (p8,C2), (p8,C3),
(m9,¢€), (Mm18,¢), (p9, C1), (p9,C2), (p9,C3)

For the program shown in Fig. 1(a), the stack-configuration slice from line (17)
corresponds to the closure slice of the unrolled SDG shown in Fig. 6 from configu-
ration set {(m22, €), (m23,¢)}. The items in the slice are shown in Fig. 6 with bold
font and darker borders, lines, and dashed lines. In this case, the set of configura-
tions in the slice is the finite set

(m1,¢€), (m10,¢), (m19,¢), (pl,C1), (p1,C2), (p1,C3),
(m3,¢€), (ml1l,¢€), (m21,¢), (p3,C1), (p2,C2), (p3,C3),
(m5,¢€), (m13,¢), (m22,¢), (p5,C1), (p3,C2), (p5,C3),
(m7,¢€), (m14,¢), (m23,¢), (p8,C1), (p4,C2), (p8,C3), (2)
(m9,€), (ml1b,€), (p5,C2),
(m17,¢€), (p8,C2),
(p9, C2)

Stack-configuration slicing finds all (PDG-vertex, call-stack]) configurations on

which a given language of (PDG-vertex, call-stack]) configurations depend. As is
well-known in the literature on PDSs, for PDSs of recursive programs, the answer
to such a query can be an infinite set. Nevertheless, an answer can be computed
and stored in a finite amount of memory by using a finite-state automaton (FSA)
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to represent an answer set symbolically.® (This material will be reviewed in §4.1.)

DEFINITION 3.2. The unrolled SDG may contain many instances of a procedure
P; each instance of procedure P is a set C, of configurations of the form (v,u),
where all the u are the same—i.e., C,, = {(v,u) € wunrolled SDG | v € P}. If
C., is an instance of procedure P, and T 1is the set of configurations of a stack-
configuration slice, then P, = C, NT is the u-variant of P in T.

A specialization of P with respect to T is the set of PDG vertices Elems(P,,) (for
some u-variant P, in the slice). Because Elems(P,) drops all stack-configuration
components from u-variant P,, multiple variants P,, and P,, can result in the
same specialization, consisting of Elems(P,,) = Elems(P,,). O

ExaMPLE 3.3. In Fig. 6 and Eqn. (1), there are three instances of procedure p,
consisting of the configurations

(1) Cer = {(]pla Cll)v (]p27 C]‘Dﬂ (]p37 Cle ) (]p87 CID7 (]pga ClD}
(2) Co2 = {(]p17 02[)7 (]p27 02[)’ (]p37 02D7 ] (]p& 02D7 qu, CQD}
(3) Ceos = {(]p]-a CSDv (]p27 C3D, (]p?)’ C3D’ ) (]p& C'?’D’ quv C'?’D}

In the slice shown in Fig. 6, there are three variants of procedure p:

) Pc1 = {(]pla C]-Da (]p?’v ClD? qp57 C]-Dv (]}78, C]-D}

_ [p1,02), (p2,C2), (p3,C2), (p4, C2), (p5, C2),
) Poa = {Qp8702|)7 (p9, C2) }
) Pes = {(]pla 03[)’ (]pg, 03[)’ qp57 CSD7 (]p8a C3D}

However, because the C'l-variant and the C3-variant have the same Elems com-
ponents, there are only two specializations of p—mnamely, those for vertex sets
{p1, p3, p5,p8} and {pl,p2,p3, p4, 5, p8, p9}. Consequently, Fig. 1(b) has two spe-
cialized versions of p (named p_1 and p_2). O

Problem Statement (Part I): Definition of Specialization Slicing. With these con-
cepts, we can formulate the problem of specialization slicing as follows. The core

problem is to identify, for each procedure P, each of the different sets of program
elements that make up the variants of P. These sets can be characterized as follows:

(1
2
3

Specializations(P) = (3)
{Elems(V) | V a variant of P in the stack-configuration slice}.

For instance, in Fig. 6, Specializations(p) is

{{p17p37p5’p8}7 {Pl,P2ap3»P4,P5,p87P9}}-

In general, in a closure slice of the unrolled SDG for a recursive program, the
number of variants V' of a procedure P can be infinite. However, because stack-
configuration components are ignored in Elems(V'), there are only a finite number

8For instance, consider the PDS that consists of the single pop rule (p, A) < (p,e). The PDS’s
transition relation is
= (p, AAA) = (p,AA) = (p,A) = (pre)

The result of the query Prestar((p, A)) is the infinite set {(p, A), (p, A A), (p, A A A),...}, which is
the regular language of configurations (p, A A*). Such a language can also be represented by an
FSA.
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of different Elems(V) sets. Therefore, Specializations(P) is a finite set, each of
whose members is a finite set of program elements.

To create the SDG for the answer program, a specialized version of procedure
P’s PDG is instantiated for each different Elems(V') set in Specializations(P). The
specialized PDGs are connected together to form the specialized SDG.

ExAMPLE 3.4. Fig. 7 shows the specialized SDG that corresponds to the closure
slice shown in Fig. 6. The two specialized PDGs for p in Fig. 7 correspond to the
two specializations of p discussed in Ex. 3.3. The SDG in Fig. 7 corresponds to the
program shown in Fig. 1(b). O

The final step is to pretty-print source-code text from the specialized SDG. This
step is straightforward, but lies outside the scope of the paper. The one point that
we will note here is how the issue of vertex ordering [Horwitz et al. 1989] is handled.
Specialization slicing introduces new procedures, each of which corresponds to a
unique procedure in the original program. When applied to a procedure ¢ that is
a specialization of original procedure @), the pretty-printer makes use of the order
in which ¢’s program elements appear in Q.

Problem Statement (Part II): Soundness and Completeness. Suppose that for
SDG S and slicing criterion C|, a specialization slice of S with respect to C' produces
SDG R. (That is, R satisfies the conditions described in “Problem Statement (Part
I).”) Ideally, the unrolling of R should be identical to the closure slice with respect
to C' of the unrolling of S; that is, the unrolling of R should have two properties:

(1) It should contain only configurations that are in the closure slice with respect
to C of the unrolling of S (soundness).

(2) It should contain all of the configurations in the closure slice with respect to
C of the unrolling of S (completeness).

However, because the vertices and call-site labels in R and S are different, the
above two properties do not hold (in the form stated above). The naming differ-
ences between R and S create a problem because the vertices and call-site labels are
alphabet symbols in the configurations of the unrollings of R and S. Consequently,
the notions of soundness and completeness cannot be based on pure equality; in-
stead, the comparison of configurations in the unrollings of R and S must account
for the changes in the alphabet symbols.

Fortunately, each procedure introduced in R by specialization slicing corresponds
to a unique procedure in the original program, so it is easy to identify each vertex or
call-site in R as the specialization of some vertex or call-site in S. Thus, there is a
mapping M¢ that maps SDG vertices and call-sites in R one-to-one into the vertices
and call-sites in S. M can be extended in the obvious way to map configurations
in the unrolling of R to configurations in the unrolling of S. Using M¢, we can
state the concepts of soundness and completeness formally as follows:

DEFINITION 3.5. Let A be a specialization-slicing algorithm, and consider an
input pair consisting of SDG S and slicing criterion C, and the corresponding
output SDG R and mapping Mc (as described above) computed by A. Let Gr be
the unrolling of R.
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(1) R is sound if each Mc(GR) contains only configurations that are in the closure
slice with respect to C' of the unrolling of S.

(2) R is complete if each Mc(GR) contains all of the configurations in the closure
slice with respect to C' of the unrolling of S.

Algorithm A is sound (respectively, complete) if, for all slicing problems, A com-
putes a sound (respectively, complete) slice. O

The algorithm presented in this paper is both sound and complete (see
Thm. 4.14). In contrast, both Weiser’s algorithm [Weiser 1984] and the candidate
algorithm discussed in §1 are complete, but can include extra program elements—
and thus extra configurations in the unrolled slice—and hence are not sound. Bink-
ley’s algorithm for monovariant executable slicing [Binkley 1993], discussed in §6,
is also complete but not sound.

Remark. Our terminology is inspired by the use of the terms in logic:

—A proof system S is sound when its set of inference rules prove only valid formulas
with respect to its semantics. (However, S may not have a proof for every valid
formula.)

—A proof system T is complete when every valid formula has a proof in T. (How-
ever, 1"s set of inference rules may also allow “proofs” to be given for formulas
that are not valid.)

The analogy adopted in Defn. 3.5 is that (i) the specialization-slicing algorithm
plays the role of the set of inference rules, and (ii) configurations that are in the
closure slice with respect to C' of the unrolling of S plays the role of the set of valid
formulas.

Our terminology is also similar to the way “sound” and “complete” are used to
describe the properties of bug-finding tools [Godefroid et al. 2005]: “sound” means
that every bug reported by a tool is an actual bug, and “complete” means that
every bug (possibly along with some false positives) will be reported by the tool.

However, the reader should be aware that such terminology is the opposite of
another common usage of “sound” in the program-analysis community to mean “a
conservative over-approximation.” (With the latter definition of soundness, one
would say that Weiser’s and Binkley’s algorithms generate a sound slice, but not
necessarily a most-precise one.) O

Insight 3: Formulation as a Partitioning Problem. Because an unrolled SDG can
be infinite—and even when not infinite, can be exponentially larger than the original
SDG—the search for the sets Specializations(P), which make up the different PDGs
of the answer SDG, must be carried out symbolically. We formulate this search as
the partitioning problem defined below in Defn. 3.6. (To avoid ambiguity, we use
the term “partition” for a collection of non-overlapping sets that subdivide a given
set, and use “partition-element” for an individual set that is part of the partition.)

The intuition behind Defn. 3.6 is as follows:

—For each configuration (v,u) in the stack-configuration slice of the program,
there needs to be some specialized procedure that can be called with the stack-
configuration u. Each partition-element corresponds to a specialization of some
procedure.
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—The partition-elements should only include configurations that are in the stack-
configuration slice.

—We can find the PDGs of the specialization slice given in Fig. 1(b) and Fig. 7 by
partitioning the set given as Eqn. (2) as follows:

pl, C2),
p2,C2),
p3, C2),
p4, C2), (4)
p5, C2),
p8, C2),
p9, C2)

(e

( ( ) (

m3, ), (mll,e), (m21, €, ( ) (
(m22, ), (p8, C1), (

q (]pl,C3[), ’ q

( ) (

( ) (

The configurations in the first partition-element correspond to the PDG for main
in the specialized SDG. The configurations in the second partition-element consist
of those from variants p; and p4 of procedure p; they form a single partition-
element that corresponds to the specialized version of p named p_1 in Fig. 1(b).
The configurations in the third partition-element consist of those in variant pq,,
and correspond to the second specialized version of p, named p_2 in Fig. 1(b).

—Configurations that are not in the stack-configuration slice, such as (m8, ¢€|), are
not part of any variant, and hence do not contribute vertices to the specialized

SDG.

—Some elements of the original SDG, e.g., p5, occur in more than one partition-
element. Hence pb is specialized into two program elements, one in procedure
p-1 and one in p_2.

DEFINITION 3.6. (Configuration-Partitioning  Problem)  Given a  stack-
configuration slice, the configuration-partitioning problem is to find a
finite partition of the slice’s configurations such that

(1) For each variant V' of some procedure P, all configurations in V are in the
same partition-element.

(2) For each pair of procedures P and Q, P # @Q, no partition-element contains
configurations from a variant of P and a variant of Q.

(3) Let P be a procedure and A and B be a pair of different variants of P. Let
E be the partition-element that contains the configurations in A (i.e., AC E).
Then B C E iff Elems(A) = Elems(B).

Note that the partition is finite, although each partition-element may consist of
configurations from an infinite number of variants. O

Returning to Eqn. (4), the configurations in the second partition-element—
consisting of those from variants p,, and p.5—satisfy rules (1) and (3) of Defn. 3.6,
and so form a single partition-element.

Defn. 3.6 implicitly defines a minimality condition for specialization slicing.
As stated, because of the “iff” in item (3), Defn. 3.6 defines a unique parti-
tion. An alternative would have been to state item (3) as “... B C E implies
Elems(A) = Elems(B).” In that case, we would want the coarsest partition among
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all candidates, so that the specialized program consisted of as few specialized pro-
cedures as possible. By stating item (3) as “... B C E iff Elems(A) = Elems(B),”
the unique partition specified by Defn. 3.6 is the coarsest of the (hypothetical)
candidates.”

DEFINITION 3.7. A specialization slice is optimal if it is sound, complete, and
minimal. A specialization-slicing algorithm A is optimal if for all slicing problems,
A computes an optimal slice. O

Defn. 3.6 is a declarative specification of the partitioning problem, but does not
provide a method to construct the desired finite partition. In §4, we show how to
identify the desired partition by performing just a few simple automata-theoretic
operations. After these steps, the answer is available in the form of an automaton,
from which we are able to read off the SDG of the desired specialized program.
As shown in Cor. 4.15, the SDG obtained via our algorithm avoids the parameter-
mismatch problem.

Discussion. In the partition given in Eqn. (4), the set of languages defined by
{Stacks(E) | E a partition-element} partitions the set of stack-configurations as
follows: {{e},{C1,C3},{C2}}. These correspond to a partition of the variants ac-
cording to their stack-configurations, namely, {{main.}, {pc1,Pc3}, {Pca}} More
generally, we have

OBSERVATION 3.8. Fach partition-element E in the partition defined in
Defn. 3.6 is associated with a language of stack-configurations: Stacks(E). The
collection of such languages is pairwise disjoint—i.e., the set of languages
{Stacks(E)} partitions the set of stack-configurations in the stack-configuration
slice. O

Thus, an alternative formulation of the search for the sets Specializations(P)
could have been given as a (different) partitioning problem on the variants in the
stack-configuration slice (or on their stack-configurations). However, the technique
used in §4 to identify the partition manipulates descriptions of sets of configurations,
not variants; consequently, Defn. 3.6 more closely matches the concepts needed to
understand our presentation of the algorithm.

3.2 A Recursive Example

The partitioning problem in the example discussed in §3.1 is quite simple, because
the program from Fig. 1(a) is non-recursive, and thus the unrolled SDG in Fig. 6 is
finite. In contrast, for a program that uses recursion, the unrolled SDG is infinite.
Moreover, for some slicing criteria of the unrolled SDG, the set of configurations
that we need to partition can be of infinite cardinality. Fortunately, as illustrated
by the example shown in Fig. 2, the partition that satisfies Defn. 3.6 is still finite.

As already mentioned in §1, one issue that can arise with recursion is that the
pattern of recursion can change. For instance, as illustrated in Fig. 2, if the pro-
gram uses direct recursion (r calls r calls ...), a specialization slice of the program

90ur notion of minimality should not be confused with Weiser’s notion of a statement-minimal
slice: a slice S of program P with respect to criterion C is statement-minimal if no other slice
of P with respect to C' has fewer statements than S. Weiser showed that the problem of finding
statement-minimal slices is, in general, unsolvable [Weiser 1984, p. 353].



M. Aung et al.

24

m11: “%d\n”

Fig. 8.

The SDG of the recursive program shown in Fig. 2(a).
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may need mutual recursion (r-1 calls r_2 calls r_1 calls ...). Fortunately, the
specialization-slicing algorithm that we give in §4 automatically identifies the cor-
rect procedure version to call, even when specialization slicing introduces mutual
recursion among specialized procedures.

Consider the recursive program shown in Fig. 2(a) and the slice of the program
with respect to line (28). The SDG of the program is shown in Fig. 8. The
slicing criterion that corresponds to line (28) of Fig. 2(a) is the configuration set
{(m10,¢€)), (m11,¢€), (m12,€)}.

Fig. 9 shows the structure of the unrolled SDG for 2-3 levels of unrolling.
As in Fig. 6, bold font and darker borders, lines, and dashed lines are used
to indicate the vertices that are in the stack-configuration slice with respect to
{(m10,€), (m11,€), (m12,¢€)}.

Fig. 9 includes two variants of procedure r, whose configurations have stack-
configurations (C1) and (C3C1), respectively. For instance, the complete set of
PDG vertices in the (C1) variant is {rl, r2, r4, r5, r6, r7, r9, r1l, r13, rl4,
rl5, r17, r19, r21, r23}. In fact, the infinite set of variants of r whose configu-
rations have stack-configurations of the form (C3 C3)* Cl—i.e., an even number
of recursive calls via call-site C'3—all correspond to that same specialized version.
Therefore, those configurations make up one partition-element, which gives rise to
one specialized version of r, namely r_1 in Fig. 2(b).

Similarly, all variants of r whose configurations have call-stacks of the form
(C3 C3)* C3 Cl—i.e., an odd number of recursive calls on C'3—make up another
partition-element, and give rise to a second specialized version of r, namely r_2 in
Fig. 2(b). Note that specialized procedures r_1 and r_2 are mutually recursive.

The use of the regular languages (C3 C3)* C1 and (C3 C3)* C3 C1 in the
discussion above provides a clue as to how the specialization-slicing algorithm can
represent finitely the infinite sets of configurations that it needs to manipulate to
solve the partitioning problem. As described in §4, the algorithm actually makes
use of automata, rather than regular expressions, to represent such languages.

4. AN AUTOMATON-BASED ALGORITHM FOR SPECIALIZATION SLICING

The specialization conditions given in Eqn. (3) and Defn. 3.6 are not constructive;
they provide a specification of the desired sets of SDG configurations and the de-
sired SDG, but cannot be used directly as an algorithm. In this section, we take
advantage of the fact that the model-checking community has developed powerful
and concise machinery for working with infinite-state transition systems [Bouajjani
et al. 1997; Finkel et al. 1997]. In particular, the encoding of an SDG as a PDS
allows us to represent finitely the infinite sets of configurations that are part of
Defn. 3.6. Moreover, with this powerful machinery at our disposal, we can obtain
an algorithm for specialization slicing that involves just a few simple automata-
theoretic operations.
The algorithm for specialization slicing involves the following five steps:

(1) encode the program’s SDG as a PDS (§2.3),

(2) perform stack-configuration slicing by applying the PDS Prestar algorithm
(§4.1),
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(3) carry out several transformations of the result of Prestar to construct an au-
tomaton of a special form (§4.2),

create the specialize rom the automaton created in the previous step
4 te th ialized SDG from the automat ted in th i t
(84.3), and

(5) pretty-print the specialized SDG as source-code text.

This section presents the details of items (2), (3), and (4). As mentioned earlier,
item (5) is straightforward, but lies outside the scope of the paper.

The theorems that demonstrate the correctness of the algorithm are stated in
§4.4. The proofs are given in Appendix A. Bounds on the time and space used
during the steps of the algorithm are presented in §5.

4.1 Symbolic Stack-Configuration Slicing

This section reviews the symbolic techniques for working with PDSs upon which
our specialization-slicing algorithm is based.

When an SDG G is encoded as a PDS P, a pre* operation on P is, by definition,
equivalent to performing a closure slice on the unrolling of G—what we called
stack-configuration slicing in §3.1. Moreover, the symbolic method for finding the
answer to a pre* query immediately provides an algorithm for stack-configuration
slicing. Because each control location can be associated with an infinite number
of stack-components, the symbolic method is based on using finite automata to
describe regular sets of configurations. More precisely, one finite automaton will
be used to specify the set of configurations that make up the slicing criterion; the
pre* algorithm returns another finite automaton whose language specifies the set
of configurations in the stack-configuration slice.

DEeFINITION 4.1. If P = (P,T,A) is a PDS, a P-automaton is a finite au-
tomaton (Q,I',—, P, F), where Q D P is a finite set of states, - C Q x ' x Q is
the transition relation, P is the set of initial states, and F is the set of final states.

The — relation is extended to a word u € T'* in the natural way, denoted by ~=*.
(Le., %* CQ xT* x Q.) A P-configuration (p,u) is accepted by a P-automaton
if the automaton can accept u when it is started in the state p (i.e., p —* q, where
q € F). A set of P-configurations is regular if it is accepted by some P-automaton.
O

For a regular set of P-configurations C, both post*(C') and pre*(C) (the forward
and backward reachable sets of configurations, respectively) are also regular sets
of P-configurations [Bouajjani et al. 1997; Finkel et al. 1997]. The algorithms
for computing post™ and pre*, called Poststar and Prestar, respectively, take a
‘P-automaton A as input, and if C' is the set of P-configurations accepted by A,
they produce P-automata Apys¢« and Apre- that accept the sets of P-configurations
post*(C) and pre*(C), respectively. Both Poststar and Prestar can be implemented
as saturation procedures—i.e., Apost= and Ay~ are initially empty; transitions are
added to them according to an appropriate augmentation rule until no more can
be added.

The saturation procedure for Prestar can be stated as follows:

DEFINITION 4.2. (Algorithm Prestar) Aprex is constructed from query automa-
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( ) m22, m23 @
p Z

Fig. 10. The query automaton, which accepts the configurations (p, m22) and (p, m23).

ton A by augmenting Apre= according to the following rules, until Apre« is saturated:

y
—q€eA
% PrE1
p — q € Apre" (5)
<p57> — <p/7w> S A p/ i>* q S -Apre* PRE2
p - q € Apre* (6)

Esparza et al. [2000] present an efficient implementation of Prestar, which uses
O(|Q)?|A|) time and O(|Q||A| + |—.4l) space, where — 4 denotes the transition
relation of A. O

The saturation procedure for Poststar can be stated as follows:

DEFINITION 4.3. (Algorithm Poststar) Apesi« is constructed from query automa-
ton A by performing Phase I, and then saturating via the rules given in Phase II:

—Phase I. For each pair (p',~') such that P contains at least one rule of the form
(p,7) = ®',7"7"), add a new state p.,.

— Phase II (saturation phase). (The symbol~5 denotes the relation (<)* = (<5)*.)

pLge A

—=—— PosTl
5
p—4q € Apost*

<pa 7> — <p/7 €> € A p& q € Apost*
p/ é q € Apost*

Post2

<p7 ’7> — <p/a’7/> € A p ’17 q € Apost*

- PosT3
p/ L> q € Apost*

p.7) = @AYy eA P 5 q € Apost-

, m Post4
2 2
p/ — pfy' S -Apost* Ply —rqc Apost*

Aposix can be constructed in time and space O(npna(ni + ng) + npng), where
np = |P|, na =|A|, ng =|Q|, no = |—=4l, n1 =|Q — P|, and ny is the number of
different pairs (p',~') such that there is a rule of the form {p,~v) — (p’,¥'~") in A
[Schwoon 2002]. O

ExXAMPLE 4.4. Consider how the Prestar algorithm from Defn. 4.2 identifies the
configurations in the stack-configuration slice shown in Fig. 6. The SDG from Fig. 4
is encoded as the PDS whose rules are given in Tab. I. The query automaton .4
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m1, m3, m5 m7, m9, mi10,m11, m13,
ml4,m15 m17, m19, m21, m22, m23

m1l, m3, m5 m7, m9, m10,m11, m13,
m14, m15 m17, m19, m21, m22, m23

p3, p4,
p5, p8, p9

Fig. 11. (a) An automaton that accepts the configurations of the stack-configuration slice of
Fig. 1(a) with respect to line (17). (b) A minimal reverse-deterministic (MRD) automaton for
the same language. As discussed in Ex. 4.6, one can immediately read off the answer to the
configuration-partitioning problem (Defn. 3.6)—and hence to the specialization-slicing problem—
from the MRD automaton: the outgoing transitions from initial state p capture exactly the desired
partition—see Eqn. (4).

that specifies the slicing criterion has transitions from initial state p to final state
z on the symbols m22 and m23—see Fig. 10.

Technically, a P-automaton has an initial state for each control location of PDS P
(Defn. 4.1). In our application, the control locations of the form py, are introduced
solely for technical reasons. For stack-configuration slicing, we are only interested in
‘P-configurations in which the control location is p, and hence the query automaton
that we use has just one initial state, labeled p (see Fig. 10). (Also, because P-
automata have just the one initial state p, we will typically ignore p in the accepted
words, and concentrate on the (SDG) configuration that a P-configuration models.
For instance, technically A in Fig. 10 accepts the language of P-configurations
{(p,m22), (p,m23)}, which model the following configurations of the unrolled SDG:
{(m22,€), (m23,€)}.)

Prestar produces the automaton A’ shown in Fig. 11(a). For instance, according
to Eqn. (6), the transition (p, m19, z) can be added to A" using PDS rule 25 and
transition (p,m23,z); the transition (pps,C3,z) can be added using PDS rule 58
and transition (p,m19,z); and so on. Each new state ps, added to A’ during
Prestar—in this example, p,s and pp,g—corresponds to a formal-out vertex fo of
some variant V' that is in the slice. Transitions from the initial state p to ps, are
labeled by program elements in V' in the backward slice from fo.

The significance of last two rule-schemas in Fig. 5, (p,fo) — (pj.,€) and
(Pfo, C) — (p,ao), is that if (i) the SDG has a parameter-out edge from fo to
actual-out vertex ao at call-site C, and (ii) \A" has a transition (p, ao,q), then A’
will have the transitions (p, fo, ps,) and (pyo, C, q). For instance, in our example, let
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ml, m2, m4, m5, m7,

m9, m10,m11, m12

Fig. 12. An automaton that accepts the configurations of the stack-configuration slice of Fig. 2(a)
from line (28).

fo be p8, ao be m19, and ¢ be z. Because (i) the SDG has a parameter-out edge
p8 — m19 at call-site C3, and (ii) Fig. 11(a) has a transition (p, m19, z), Fig. 11(a)
also has the transitions (p, p8, pps) and (pps, C3, 2).

After saturation has quiesced, the fact that, e.g., configuration (p5,C1) is ac-
cepted by A’ means that (p5, C1) is in the stack-configuration slice with respect to
the set of configurations {(m22,¢), (m23,¢)}. O

Let us now consider stack-configuration slicing for a program with a recursive
procedure.

ExaMPLE 4.5. Consider the example discussed in §3.2, where we want to create
a specialization slice with respect to line (28) of the program shown in Fig. 2.
We first encode the program’s SDG (Fig. 8) as a PDS similar to the previous
example. We then construct a query automaton A, that accepts the language of
configurations {(m10,¢€), (m1l,€), (m12,¢)}. A, is provided as an input to the
Prestar algorithm. The automaton created by the Prestar algorithm is shown in
Fig. 12.

The transitions (p,o2,C3, pro3) and (pra3, C3,praz) cover the recursive nature of
the procedure call at call-site C'3. Because of these transitions, the output automa-
ton from Prestar (Fig. 12) accepts configurations for program element 723 that
have the form of (r23,(C3 C3)* C'1). This language defines an infinite language of
configurations in which the stack has an even number of C3 symbols, followed by
a single C'1 at the bottom.

Note the order of the stack symbols in such words: call-site C'l of main appears
last (i.e., as the rightmost symbol). O
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4.2  An Automaton-Based Solution to Partitioning

We now describe how to identify the desired finite partitioning by performing just
a few simple automata-theoretic operations on the saturated automaton A’. Each
such operation manipulates indirectly the possibly infinite sets of configurations
that are part of Defn. 3.6.

EXAMPLE 4.6. As discussed in Ex. 4.4, given Tab. I and Fig. 10 as input, the
Prestar saturation technique given in Defn. 4.2 constructs Fig. 11(a), which accepts
exactly the configurations in the stack-configuration slice shown in Fig. 6. However,
Fig. 11(a) does not immediately provide a solution to the configuration-partitioning
problem (Defn. 3.6) in the sense that the three sets of the partition given in Eqn. (4)
are not immediately apparent from Fig. 11(a).

Fortunately, Fig. 11(a) is not the only automaton that accepts the language of
configurations in the stack-configuration slice. In particular, the automaton shown
in Fig. 11(b) also accepts the language of configurations in the stack-configuration
slice. Moreover, from Fig. 11(b) we can immediately read off the main aspects of
the desired specialization-slice answer.

—The label sets on the three transitions emanating from the initial state p represent
the three sets of the partition given in Eqn. (4), and thus correspond to the
program elements of the specialized procedures p-1, p_2, and main of Fig. 1(b).

—The non-initial states (1, 2, and 3) that are the targets of the three transitions
emanating from state p represent, respectively, procedures p-1, p_2, and main of
Fig. 1(b).

—The transitions (1,C1,3), (1,C3,3) and (2,C2, 3) represent the two calls on p_1
and the call on p_2, respectively, in the specialized version of main. (That is,
these edges correspond to the call multi-graph of the specialized program.)

O
‘We now seek

(1) a condition that characterizes the essential property of Fig. 11(b), and
(2) an algorithm that lets us construct Fig. 11(b) from Fig. 11(a).

OBSERVATION 4.7. The property possessed by Fig. 11(b) is that it is minimal
reverse-deterministic (MRD)—i.e., it is a minimal deterministic FSA when con-
sitdered as an automaton that accepts reversed strings via a backward traversal along
transitions, starting from the accepting state. O

Because we are interested in partitioning the language of represented configu-
rations, we will exploit the fact that each state of an FSA can be thought of as
defining two languages. For instance, consider the FSA A depicted in Fig. 13(a).
Each state g defines (i) the prefix language P(q) of strings accepted by considering
g as the (only) final state, and (ii) the suffix language L(q) of strings accepted by
considering g as the initial state.

To see why the MRD property is the one we seek, suppose that A in Fig. 13(a)
is deterministic. In this case, the set of languages {P(q) | ¢ a state of A} partition
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Fig. 13. (a) Depiction of the prefix and suffix languages associated with state ¢ in automaton
A. (b) Reversal of (a) (denoted by R(A)). PE(q) and LT (q) denote the respective languages of
reversed strings.

the prefix closure L (A) of L(A).1% That is, for each string s € L™ (A), there is
exactly one state g for which there is an s-path from the initial state to q.

As pointed out in Obs. 3.8, each specialized procedure is associated with a
partition-element of a partition of the stack-configurations. Recall that in a config-
uration (v, u|), u represents the stack of pending calls. If we determinized Fig. 11(a),
the resulting P(q) languages, where ¢ is a state, would not be satisfactory: each
word in one of the P(q) languages starts with the symbol v for a PDG vertez,
whereas the partition needed to identify specialized procedures should be based
on the u part of a configuration. Moreover, because Fig. 11(a) recognizes a stack-
configuration from top-of-stack to bottom-of-stack (i.e., main), its P(q) languages
recognize (PDG-vertex, partial-stack]) pairs, where a “partial-stack” runs from top-
of-stack to middle-of-stack. Such partial-stacks do not correspond to the languages
of calling contexts for specialized procedures.

We are able to use determinization as a partitioning tool by observing that when
we reverse an automaton A-—see Fig. 13(b)—a prefix-language Pr(4)(¢) in the re-
versed automaton R(A) is the reversal of the suffix-language L(q) of the original
automaton; i.e., Pr(a)(q) = LT(q). Consequently, by determinizing the reversed
automaton, the prefix languages identify a partition on stack-configurations. More-
over, the Pp(4)(q) languages recognize a different kind of partial-stack: for a re-
versed automaton, a partial-stack runs from bottom-of-stack (main) to middle-of-
stack. Such partial-stacks capture the languages of calling contexts for specialized
procedures.

By minimizing the determinized reversed automaton (and then reversing the au-
tomaton that results), we find the desired MRD automaton. As shown in Thm. 4.13,
the automaton obtained in this manner solves the configuration-partitioning prob-
lem (Defn. 3.6).

ExaMPLE 4.8. Consider again the recursive example discussed in §3.2. Fig. 12
shows an MRD automaton for the stack-configuration slice of Fig. 8 with respect
to {(m10,€), (m1l,¢), (m12,€)}. A comparison of Fig. 12 with Fig. 2(b) shows that
the sets that label the five transitions that emanate from initial state p correspond
to the five procedures of Fig. 2(b), namely, s_1, s 2, r 1, r 2, and main.

101f [ is a language, the prefix closure L* is {a | 3b such that ab € L}.
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In particular, procedure s is specialized into two versions (s_1 with parameter
b and s_2 with parameter a). Procedure r, which has a single parameter in the
original program and still has a single parameter in the output slice, is also special-
ized into two versions. These specializations are read off of the automaton shown
in Fig. 12 as follows:

—transitions of the form (p, %, ps7) correspond to elements of procedure s_1
—transitions of the form (p, %, psg) correspond to elements of procedure s_2
—transitions of the form (p, *, pro3) correspond to elements of procedure r_1

—transitions of the form (p, *, pr22) correspond to elements of procedure r_2

The transitions among states z, p,23, pro2, Ps7, and psg correspond to the call graph
of Fig. 2(b). In particular, the languages L(2), L(pr23), L(pr22), L(ps7), and L(pse)
in the automaton shown in Fig. 12 are exactly the stack-configuration languages for
the different configuration partitions; i.e., each language equals Stacks(E), where
E is one of the five partitions in the solution to the configuration-partitioning
problem (Defn. 3.6) for the stack-configuration slice of Fig. 8 with respect to
{(m10,¢€), (m11,€), (m12,¢€)}.

Because of these properties, the specialization-slicing algorithm automatically
identifies the correct procedure version to call, even when specialization slicing
introduces mutual recursion among specialized procedures. O

4.3  The Algorithm for Specialization Slicing

The SDG for the specialization slice is created by the method given in Alg. 1.
Automaton Al created in line 3 accepts the language of configurations of the stack-
configuration slice (i.e., the configurations of the closure slice of the unrolled SDG).
In lines 4-8, Alg. 1 applies automaton operations to Al—reverse, determinize,
minimize, reverse, and removeEpsilonTransitions—to obtain A6, from which the
algorithm reads out the required specialized procedures and their program elements
(lines 9-24).

Note that from the perspective of the languages accepted by Al and A6, the
five operations have no net effect: the operations determinize and minimize do not
change the language that an automaton accepts, and thus the two calls to reverse
in lines 4 and 7 cancel. That is, L(A6) = L(Al), and so A6 accepts exactly the
language of configurations of the stack-configuration slice. The sole purpose of the
five operations is to transform A6 into the minimal reverse-deterministic FSA for
the language L(A1l).

Remark. The step “A6 = removeEpsilonTransitions(A5)” in line 8 is only needed
for certain implementations of reverse. In any call on reverse(A), the only condition
that necessitates the introduction of an e-transition is if A has multiple accepting
states (because one needs to have a single start state in A’ = reverse(A)).

As shown in the proof of Thm. 4.12 (see Appendix A), the minimized automaton
A4 has a single accepting state. Moreover, because A4 is deterministic, it has no e-
transitions. Consequently, the statement “A5 = reverse(A4)” could be implemented
by making Ab5’s initial state be the unique final state of A4, and A5’s final state
be the initial state of A4. Because A4 has no e-transitions, A5 would have no e-
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Input: SDG S and slicing criterion C
Output: An SDG R for the specialization slice of S with respect to C'

// Create A6, a minimal reverse-deterministic automaton for the stack-configuration slice
// of S with respect to C

Ps = the PDS for S, encoded according to Defn. 2.6

A0 = a Pg-automaton that accepts C

Al = Prestar[Ps](A0)

A2 = reverse(Al)

A3 = determinize(A2)

A4 = minimize(A3)

A5 = reverse(A4)

A6 = removeEpsilonTransitions(A5)

// Read out SDG R from A6
9 R = the empty SDG
10 go = InitialState(A6)
11 StateToPDGMap = empty map
// Identify PDGs
12 foreach g € (States(A6) — {qo}) do

N0 Wk WwN

13 V = {v | (qo, v, q) € Transitions(A6)}

14 Gorig = the PDG of S that contains the vertices in V'

15 Gy = a new PDG consisting of copies of V, plus copies of the edges from Gy induced by V'
16 Add PDG Gy to SDG R

17 StateToPDGMap = StateToPDGMap|q — Gv]

18 end

// Connect PDGs
19 foreach transition (q1,C, q2) € Transitions(A6) such that C is a call-site label do

20 Let C’ be the call-site of PDG StateToPDGMap(qz) that corresponds to C

21 Add to R a call edge from the call vertex at C’ to the entry vertex of State ToPDGMap(q1)

22 Add to R a parameter-in edge from each actual-in vertex at C’ to the corresponding formal-in
vertex of StateToPDGMap(q1)

23 Add to R a parameter-out edge from each formal-out vertex of State ToPDGMap(q1) to the

corresponding actual-out vertex at C’
24 end
25 return R

Algorithm 1: The algorithm to create an SDG R for the specialization slice of S
with respect to C.

transitions, and thus removeEpsilonTransitions would have no effect (i.e., A6 = A5).
Because A4 is a minimal deterministic FSA, A5 and A6 would both be MRD.

In our implementation, lines 4-8 are implemented with OpenFST FSAs [OpenFST
2012], and the reverse operation in OpenFST introduces a dummy initial state with
an e-transition. Alg. 1 follows our implementation, which creates MRD automaton
A6 by calling removeEpsilonTransitions in line 8 to remove the single, initial e-
transition from A5. O

Constructing the Specialized SDG. Lines 9-24 read out SDG R from automaton
A6. The basic idea is to find an appropriate set of vertices, and then include the
edges induced by the vertex set.

Line 15 uses the edge-induction operation defined as follows:

DEFINITION 4.9. Given a graph G = (V, E) and a vertez set V' C 'V, the set of
edges induced by V' is the set of edges of the subgraph of G with vertices restricted
toV':{s>teE|steV'}. O

The read-out method to construct the specialized SDG relies on the special nature
of automaton A6.

—Each word in L(A6) has the form (vertex-symbol call-site™). A word (v u) denotes
the configuration (v, u).
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—A6 is a minimal reverse-deterministic (MRD) automaton.

—Each non-initial state ¢ represents a set of variants of some PDG G4y (for some
procedure P). More precisely, ¢ represents the set of all u-variants for which
u € L(q). Consequently, each non-initial state ¢ in A6 represents a specialized
PDG, and the transitions between non-initial states of A6 tell us about the in-
terprocedural edges in the answer SDG.

—Let V be the set of vertex symbols on transitions from the initial state of A6
to q. For each variant W associated with ¢, Elems(W) = V. Consequently, the
transitions from the initial state to ¢ say what vertices populate the specialized
PDG for gq.

Lines 12-18 construct the specialized PDGs as follows: in line 13, the set V—
a set of vertex symbols on transitions from the initial state to a given non-initial
state—identifies the set of vertices in a specialized PDG; the edges in the specialized
PDG are copies of the edges induced by V in the original PDG (line 15). Lines 12—
18 create one PDG for each non-initial state q. StateToPDGMap records, for each
such g, which specialized PDG corresponds to q.

Lines 19-24 introduce call, parameter-in, and parameter-out edges to connect the
specialized PDGs together. In essence, these steps put in induced interprocedural
edges between the specialized PDGs for non-initial state g; and non-initial state
g2. Note that the alphabet symbol C' on each transition (q1,C,q2) is a call-site
label. Sequences of such transitions in A6 spell out, from top-of-stack to bottom-
of-stack, the stack-configurations that are in the stack-configuration slice. Because
each stack-configuration word is recognized from top-of-stack to bottom-of-stack,
in line 19 g5 represents the caller and g; represents the callee.

ExAMPLE 4.10. Consider how Alg. 1 works when S is the SDG shown in Fig. 4
and C' = {(m22,¢),(m23,¢)}. The rules of PDS Pg are given in Tab. I. Au-
tomaton A0, which accepts the language C, is shown in Fig. 10. Automaton
Al = Prestar[Ps](A0) is shown in Fig. 11(a). Automaton A6 is shown in Fig. 11(b);
note that A6 is MRD.

The second half of Ex. 4.6 already hinted at how the SDG shown in Fig. 7 is
constructed by lines 9-24 of Alg. 1. In Fig. 11(b), each of the non-initial states 1, 2,
and 3 represents a specialized PDG. For instance, the vertices of the specialized
PDG for procedure p that corresponds to state 1 are the labels on transitions
from p to 1: {v | (p,v,1) € Transitions(A6)} = {pl,p3,p5,p8}. The edges of
the specialized PDG are those induced by {pl,p3,p5, p8} in the original PDG for
procedure p.

A6 has a transition (1,C1,3), where states 1 and 3 correspond to procedures
p-1 and main, respectively. The stack symbol C'1 corresponds to the call-site on p
at line (14) of Fig. 1(a). Hence, lines 20-23 of Alg. 1 introduce a call edge, plus
parameter-in and parameter-out edges to connect the specialized PDG for main to
the specialized PDG for p_1. (In Fig. 1(b), the corresponding call site is the call to
procedure p-1 on line (14) of main.)

The SDG formed from the resulting specialized PDGs is the one shown in Fig. 7.
O

EXAMPLE 4.11. Consider the example in §3.2, where we want to create a spe-
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cialization slice with respect to line (28) of the recursive program shown in Fig. 2.
Automaton A6 is shown in Fig. 12.11 The PDG vertices in the five specialized
PDGs are the respective label sets on the five transitions emanating from initial-
state p. The edges of the five specialized PDGs are the edges induced from the
original PDGs by the specialized sets of PDG vertices.

To complete the specialized SDG, Alg. 1 introduces call edges, parameter-in
edges, and parameter-out edges among the specialized PDGs according to the tran-
sitions among states z, pro3, Proz, Ps7, and Pgg.

The program for the specialized SDG is shown in Fig. 2(b). Note how the tran-
sitions among states z, pro3, Pro2, Ps7, and pgg correspond to the call graph of
Fig. 2(b). O

4.4 Correctness Issues

The correctness of the specialization-slicing algorithm is established via the propo-
sitions listed below. Their proofs can be found in Appendix A.

THEOREM 4.12. Automaton A6 created in line 8 of Alg. 1 is a minimal reverse-
deterministic automaton. O

THEOREM 4.13. A solution to the configuration-partitioning problem (Defn. 3.6)
is encoded in the structure of automaton A6 created in line 8 of Alg. 1. O

THEOREM 4.14. Alg. 1is a sound and complete algorithm for stack-configuration
slicing. O

COROLLARY 4.15. Let R be the SDG created via Alg. 1 for SDG S and slicing
criterion C. R has no parameter mismatches. O

5. COST OF ALG. 1

In this section, we establish that output slices created by Alg. 1 are optimal, and
characterize the running time and space used by the algorithm in terms of the
size of the original SDG. (Recall that the size of the SDG is polynomial in various
parameters that characterize the size of the original program [Horwitz et al. 1990,

§5.1].)
5.1 Minimality and Optimality

As discussed in §3.1, the configuration-partitioning problem (Defn. 3.6) implicitly
defines a notion of minimality for specialization slicing. By Thm. 4.13, a solution to

HFor this example, Fig. 12 represents both A1 and A6. That is, the net result of applying the five
automaton operations in lines 4-8 of Alg. 1 to Fig. 12 is that we get back an automaton identical
to Al. The reason why A6 is the same as Al is that, in this example, the stack-configuration slice
does not have a procedure that has multiple variants that both (i) consist of different sets of PDG
vertices, and (ii) include the same formal-out vertex.

In contrast, consider formal-out vertex p8 in Fig. 6. There are three occurrences of p8 in
different variants: (p8, C1), (p8,C2), and (p8, C3). The variants with stack-configurations C'1 and
C3 consist of the same set of PDG vertices, but the variant with stack-configuration C2 has a
different set of PDG vertices. In this example, the output automaton Al obtained after applying
Prestar to query automaton Fig. 10 is the automaton shown in Fig. 11(a), which has the transition
(p, P8, ppg). The MRD automaton A6 obtained after performing lines 4-8 of Alg. 1 is the different
automaton shown in Fig. 11(b). It has two transitions (p,p8,1) and (p,p8,2), which correspond
to the two occurrences of p8 in Fig. 7.
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the configuration-partitioning problem is encoded in the structure of automaton A6
from Alg. 1, which, by Thm. 4.12, is a minimal reverse-deterministic automaton.
Moreover, from lines 12-18 of Alg. 1, it is clear that the number of vertices in the
answer SDG R is proportional to the size of A6. Consequently, SDG R is a minimal
specialization slice.

COROLLARY 5.1. Alg. 1 is an optimal specialization-slicing algorithm in the
sense of Defn. 3.7: i.e., for every specialization-slicing problem, Alg. 1 creates
a minimal, sound and complete output slice. O

PrROOF. By Thm. 4.14, Alg. 1 is a sound and complete algorithm for stack-
configuration slicing. By the argument made above, the output slice created by
Alg. 1 is minimal. [J

5.2 Running Time

Alg. 1 has four operations that can be expensive:

(1) Al = Prestar|Ps](A0) (line 3),

(2) A3 = determinize(A2) (line 5),

(3) A4 = minimize(A3) (line 6), and

(4) reading out SDG R from automaton A6 (lines 9-24).

—As mentioned in Defn. 4.2, Prestar’s worst-case running time is O(|Q|*|A|). Here
|Q| is 1+ #actual-out vertices, and A is the number of dependence edges in input
SDG S. Consequently, the running time of item (1) is bounded by a polynomial
in the size of the input program.

—Determinization is performed by the subset construction. In the worst case,
item (2) can be exponential in the number of states of A2.

—Minimization can be performed in time O(nlogn) [Hopcroft 1971]. In the worst
case, item (3) can be exponential in the number of states of A2.

—The number of vertices in the answer SDG R is proportional to the size of A6.
In addition, the read-out code adds copies of dependence edges from the original
PDGs. Such work in any PDG is bounded by the square of the number of vertices,
but is usually much lower. In any case, the time for item (4) is linear in the size
of the output SDG R. Thus, the running time of Alg. 1 is output-sensitive
[Wikipedia: Output-Sensitive Algorithm 2014].

Our experiments indicate that for the automata that arise from Prestar, the size of
automaton A3 created by determinize is significantly smaller—by 4.4%—34%—than
the size of A2, given as input to determinize.

5.3 Space

The space needs of Alg. 1 are dominated by the same four operations discussed
under “Running Time.”

—As mentioned in Defn. 4.2, the space for Prestaris bounded by O(|Q] |A|+]— 4l),
where |— 4] is the size of the transition relation for the automaton A for the slicing
criterion.
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—Determinize and minimize are standard automaton operations, with space cost
similar to their time cost.

—The space for the read-out task is linear in the size of the result SDG R.

Number of Specialized PDGs. The number of specialized PDGs in R depends on
both the query automaton A¢, which specifies slicing criterion C, and the input
SDG S. The specialized PDGs that appear in R can be placed in two categories:

(1) PDGs associated with calling contexts in the suffix-closure of the stack-
configurations defined by Ac.'2

(2) PDGs associated with calling contexts other than those in item (1).

—The number of specialized PDGs in R from item (1) is bounded by the number
of states in the query automaton.

—The number of specialized PDGs in R from item (2) is bounded by a function of
the number of actual-outs in each PDG of SDG S. In particular, for a PDG p
that has n, actual-outs, the maximum number of specialized PDGs possible for
p is 2", Consequently, the number of specialized PDGs in R from item (2) is
bounded by ¥,eppas(s)2"”-

Achieving Exponential Ezplosion. The bound ¥,eppas(s)2™” give above is ex-
ponential in the number of actual-outs. In the worst case, exponential explosion
is achievable, as demonstrated by the family of (non-recursive) programs whose
k'™ member is presented schematically in Fig. 14. The k'™ member of the family
consists of k£ 4+ 1 procedures: PO, P1, ..., Pk. Each of the k procedures P1, ..., Pk
has an if-then-else statement with a procedure call in each branch—in particular,
procedure Pi has two calls to P{i-1}. After the first call to P{i-1}, Pi has an as-
signment gi = 0 (see line (25)). This assignment breaks the dependence between
the actual-out for gi at the call to P{i-1} on line (24) and Pi’s formal-out for gi.
In contrast, the SDG has a dependence edge from the actual-out for gi at the call
to P{i-1} on line (27) to Pi’s formal-out for gi.

As we progress down from Pk to PO, the different dependence patterns at the pairs
of call-sites at each level cause the specialization slice with respect to the expression
“gl + ... + gk” on line (43) to generate a slice of procedure PO for each subset of
the formal-outs for g1, ..., gk. Because PO “sliced” with respect to the empty set
of formal-outs consists of the empty set of vertices, it does not contribute a variant
of PO to the pretty-printed result; consequently, the total number of variants of PO
created by specialization slicing is 2¥ — 1.

Fig. 15 shows how the slice of the unrolled SDG for the 2" representative of the
family of programs from Fig. 14 has four different combinations of formal-outs in
the four different instances of PO.

Explosion in Practice. As discussed in more detail in §9, our experiments indicate
that exponential explosion does not arise in practice: no procedure had more than
four specialized versions, and the vast majority of procedures (90.8%) had just a
single version (see Fig. 20). Moreover, worst-case exponential behavior of operations

121f [ is a language, the suffiz closure L™ is {b | Ja such that ab € L}.
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(12) v = scanf("%d\n", &v);
(13) if (v > 0) {

(14) POQ);
(15) gl = 0;
(16) }

(17) else POQ);
(18) }

(19)

(20) void Pi() {

(21)  int v;

(22) v = scanf ("%d\n", &v);
(23) if (v > 0) {

(24) P{i-1}Q;

(25) gi=0;

(26) }

(27) else P{i-1}Q);
(28) }

(29)

(30) void Pk() {

(31) int v;

(32) v = scanf ("%d\n", &v);
(33) if (v > 0) {

(34) P{k-1}Q);

(35) gk = 0;

(36) }

(37) else P{k-1}Q);

(38) }

(39)

(40) int main() {

(41) gl =1; ... gk = k;
(42) PkQ;

(44) return O;
(45) }

/* Use all globals */
/* Kill all globals */

(1) unsigned int gil, ..., gk;
(2)

(3) void POO) {

(4) unsigned int t1, ... tk;
(5) tl =gl; ... tk = gk;
(6) gl = tl; ... gk = tk;
7) return;

@ }

9)

(10) void P1(Q) {

(11) int v;

(43) printf("%d\n", gl + ... + gk); /* SLICE HERE #*/

39

Fig. 14. The k' representative of a family of programs for which a specialization slice is expo-

nentially larger than the program.

like automaton determinization also does not seem to arise in practice. Thus, based

on our experience to date, we believe it is fair to say that, for the observed cost,

Both the running time and space of Alg. 1 are bounded by the sum of
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cally,

Fig. 15. Closure slice of the unrolled SDG of the 2" representative of the family of programs from Fig. 14, showing how the
slice has four different combinations of formal-outs in procedure PO. (Only dependence edges that connect formal-ins, formal-outs,

actual-ins, and actual-outs are shown.)
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(a) Backward closure slice] w.r.t. (b) Polyvariant slice (c) Monovariant slice
printf’s parameters on line (17) with two versions of p with matched actuals

(1) [Ent gI, g2, g3;] int g1, g2; int g1, g2;

(2)

(3) woid p(int a, int B int void p_1(int b) { void p(int a, int b) {

(4 g2 = b; gl = a;

(5) [EZ=5j] } g2 = b;

(6) g3 = c;

M [H void p_2(int a, int b) {| }

(8) gl = a;

9 g2 = b;

(10) }

(11)

(12) int main( {] int main() { int main() {

(13) g2 = 100; g2 = 100;

(18 b2, @, 43 p-1(2); p(g2, 2);

(15) (g2, 3, 3l p_2(g2, 3); p(g2, 3);

16) [, e, &) p_1(gl+g2); p(4, gi+g2);

(17) [printf("7d", g2);] printf("%d", g2); printf("%d", g2);

(18) } } }

Fig. 16. (a) Variant of the program from Fig. 1, and (in boxes) the elements of the closure slice with
respect to the actual parameters of the call to printf on line (17). (b) Polyvariant executable slice
with respect to the same slicing criterion. (c) Monovariant executable slice created by Binkley’s
algorithm.

two terms: one is polynomial in the size of the input program; the other
is linear in the size of the output slice.

6. EXECUTABLE SLICING

As mentioned in §2.2, the issue that prevents closure slices from being executable
is the parameter-mismatch problem ([Horwitz et al. 1990, §1] and [Binkley 1993]).
A closure slice can have multiple calls to the same procedure, with different subsets
of actual parameters at different call-sites. However, the slice contains the union
of the corresponding formal-parameter sets, which can cause a mismatch between
the actual parameters at a call-site and the procedure’s formal parameters (e.g.,
compare lines (14) and (16) of Fig. 16(a) with line (3)). For most programming
languages, a program with such a mismatch would trigger a compile-time error.

In contrast, the output slices created via Alg. 1 never contain such parameter
mismatches (Cor. 4.15), and thus Alg. 1 represents a new approach to executable
slicing; namely, it provides an algorithm for polyvariant executable slicing.'> The
algorithm for executable slicing due to Binkley [1993] is an algorithm for monovari-
ant executable slicing.

An example that illustrates the difference between a closure slice and the two
kinds of executable slices is shown in Fig. 16. Fig. 16(a) shows the original program

13Throughout the remainder of the paper, we use the terms “specialization slicing” and “polyvari-
ant executable slicing” interchangeably. We generally use the latter when we want to emphasize
how the properties of Alg. 1 differ from those of the algorithm for monovariant executable slicing.
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and its closure slice with respect to the actual parameters of the call to printf
on line (17). Fig. 16(b) shows the polyvariant executable slice produced by the
algorithm of §4. Fig. 16(c) shows the monovariant executable slice that would be
created by Binkley’s algorithm.

While a closure slice can be useful—e.g., for program understanding—there are
some contexts in which an executable slice is preferable. For example, in general,
the smaller a program is, the easier it is to debug. Given a program that fails
(throws an exception or prints a bad value) at an element g, if the executable slice
from g is substantially smaller than the original program, then debugging the slice
is likely to be easier than debugging the whole program. While it may be helpful
for the programmer to examine the closure slice from ¢, being able to actually run
the slice on different inputs may give the programmer much more leverage.

Other applications of executable slicing include (i) extracting specialized compo-
nents from application programs (e.g., creating versions of the word-count utility
wc that count just characters, just words, or just lines), and (ii) creating versions of
libraries specialized to an application. Such specialized components can run faster
than the original program. In general, there is no a priori bound on the speed-up
achievable: for some programs and some slicing criteria, a slice can be arbitrarily
faster than the original program. For instance, an experiment with wc showed that
on average—computed as the geometric mean—its executable slices with respect
to its calls to printf took 32.5% of the time used by the original wc.

According to Binkley [1993, p. 32], Weiser’s slicing algorithm avoids the
parameter-mismatch problem because “call sites are treated as indivisible com-
ponents: if a slice includes one parameter, it must include all parameters.” While
this approach ensures that Weiser’s slices are executable, they can include many ir-
relevant components. For instance, Weiser’s algorithm applied to Fig. 16(a) would
produce a program in which procedure p has all three formal parameters, a, b,
and c, and all three actual parameters at each of the call-sites on lines (14)—(16).
Another disadvantage of Weiser’s algorithm is that it is context-insensitive. That
is, if a slice includes one call-site on procedure p, then it includes all call-sites on
p, which is clearly undesirable.

Binkley [1993] addressed the parameter-mismatch problem by expanding the clo-
sure slice of Horwitz et al. [1990] to include missing actual parameters, together
with everything in the backward slice from the missing actuals. The latter slices can
themselves introduce new parameter mismatches, so the process is repeated until
there are no further parameter mismatches. For instance, as shown in Fig. 16(c),
Binkley’s algorithm would include the missing first parameters in the two calls to
p on lines (14) and (16), as well as the assignment to g2 on line (13). The latter is
added back into the slice so that g2 is initialized properly by the time it is used on
line (14).

Binkley’s algorithm is never worse than Weiser’s, and can lead to smaller ex-
ecutable slices. However, both of their algorithms have the undesirable property
that they can cause arbitrarily many program elements that were not in the closure
slice to be included in the final answer. In the worst case, they could include all of
the elements in the input program, even when the closure slice contains just a few
program elements. In contrast, Alg. 1 never introduces program elements that are
not already in the closure slice (albeit the output specialization slice may contain
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multiple copies of such elements). Thus, Alg. 1 represents a different point in the
“design space” of slicing algorithms than previous work on executable slicing.

As discussed in §9, our experiments showed that, for both monovariant executable
slicing and polyvariant executable slicing, the size increase is modest. Normalized to
“|closure slice| = 100,” on average (computed as the geometric mean) monovariant
executable slices are 104.6 and polyvariant executable slices are 105.5. However,
one should bear in mind that in the first case 104.6 means that 4.6% worth of
extraneous elements are added (i.e., elements not in the closure slice), whereas in
the second case 105.5 means that 5.5% worth of closure-slice elements are replicated.
While the extraneous elements from Binkley’s algorithm are “noise,” the replicated
elements from specialization slicing provide information about specialized patterns
of dependences.

Why Not Just Color a Monovariant Ezecutable Slice?. One might ask, “Why
not just highlight with a different color the extraneous program elements (not in
the closure slice) that are added back by Binkley’s algorithm?” This feature would
be desirable to have in the user interface of a system that supports monovariant
executable slicing. However, it is not a full substitute for the information obtained
via polyvariant executable slicing. In particular, the closure slice of an SDG folds
together in callees information from different calling contexts, and thus different
patterns of dependences through a procedure would not be highlighted by the col-
oring scheme. In contrast, these patterns are made explicit through the specialized
procedures created via Alg. 1.

For instance, the boxes in Fig. 16(a) show the elements in the closure slice with
respect to the actual parameters of the call to printf on line (17). The two boxed
statements in the body of procedure p in the closure slice are the same as the two
statements in the body of procedure p in the Binkley slice (Fig. 16(c)). Thus, even
though the first actual parameters at the call sites on lines (14) and (16) of main
would be colored, it would not be immediately apparent in procedure p itself that
the slice really has two different patterns of dependences in the body of p (cf. the
bodies of procedures p_1 and p_2 in Fig. 16(b)). Moreover, such different patterns
of dependences can occur many levels down the call chain (cf. Fig. 2).

7. EXTENSIONS AND IMPROVEMENTS
7.1 Calls to Library Procedures

Assuming that source code for library procedures is not available, and therefore
those procedures cannot be specialized, we need to ensure that their signatures
do not change: i.e., whenever a library procedure is included in a slice, all of its
actual parameters must be included as well. We accomplish this by adding extra
dependence edges to the SDG for library-procedure calls: for every vertex v that
represents a library-procedure call, for every vertex a that represents an actual
parameter associated with that call, we add an edge a — v.

ExXAMPLE 7.1. In C, calls to exit cause program termination. This behavior is
modeled in the SDG by making all vertices that represent program elements that
follow a call to exit control-dependent on that call. However, the value of exit’s
argument does not affect its behavior, and so there are no dependence edges out
of the vertex that represents the actual parameter. Consequently, the closure-slice
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(1)  int f(int a, int b) {
2) return a+b;

@) }

(4

(8) int g(int a, int b) {
(6) return a;

™}

(8

(9)  int main() {

(10) int (*p) (int, int);
(11) int x;

(12)

(13)  if (...) p = £;
(14) else p = g;

(15) x = p(1,2);

(16) printf ("%d", x);
an 3

Fig. 17. Example illustrating some of the problems that arise in the presence of procedure pointers
and indirect calls.

back from a program element that follows a call to exit includes the call but not
the actual. For the purposes of specialization slicing, adding a dependence edge
from the actual to the call solves the problem. O

7.2 Pointers to Procedures and Indirect Calls

Pointers to procedures and calls via those pointers also require special handling.
Consider slicing the program shown in Fig. 17 with respect to x at line (16). The
slice must include the call via procedure-pointer p on line (15), and the code in
procedures f and g (the procedures that p may point to) that sets the return values
of those procedures. For procedure f, that means the whole procedure (including
both of its formals), while for procedure g that means just its first formal. However,
the resulting code would not compile: the declared type of procedure-pointer p
needs to match the types of both £ and g, so those types must themselves match.

This issue involves a new kind of parameter-mismatch problem that was not
considered by Binkley [1993]. Like the original parameter-mismatch problem, this
one can be solved either using a monovariant approach, a la Binkley, or using a
polyvariant approach, a la §4. The monovariant approach involves computing the
closure slice, then finding all procedures in each procedure-pointer’s points-to set,
and adding back any mismatched formals (those in the closure slice for some but
not all procedures in the points-to set).

The polyvariant approach involves adding a new procedure for each indirect call
in the program, then performing specialization slicing as usual. The new proce-
dure makes explicit the fact that the choice of which procedure to call depends on
which procedure the procedure-pointer currently points to. For example, the new
procedure added to the program in Fig. 17 is shown below.
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int indirect(int (*p)(int, int), int a, int b) {
if (p == £) f(a, b);
else g(a, b);

}

The indirect call in the original program (x = p(1, 2) in our example) is changed
to call the new procedure, passing the procedure-pointer in addition to the original
actuals: x = indirect(p, 1, 2). After this transformation has been applied, the
specialization-slicing algorithm will automatically create the appropriate specialized
versions of all of the procedures in the slice from line (15), including a specialized
version of procedure indirect named indirect_1.

Note that the if-condition in indirect_1 still tests whether p points to the original
procedures £ or g, but the calls themselves are changed to target the specialized
versions £_1 and g-1. In essence, the original procedures are retained because their
addresses define the space of values V that pointer p can hold. p’s value is used
to dispatch to the appropriate specialized version of a procedure in V. Here is the
specialization slice with respect to line (15):

int £(int a, int b) { int indirect_1(int (*p)(int, int), int a, int b) {

} if (p == £) f_1(a, b);

else g_1(a);

int f_1(int a, int b) {|}
return a+b;

} int main() {

int (*p) (int, int);
int g(int a, int b) { int x;
}

if (...) p = f;
int g 1(int a) { else p = g;

return a; x = indirect_1(p,1,2);
} printf ("%d", x);
}

A Caveat. In our implementation, which is based on CodeSurfer/C, there is one
limitation on the transformation of indirect calls to explicit PDGs. The transfor-
mation described above assumes that the points-to set of the procedure-pointer is
exhaustive. However, the pointer-analysis algorithms supported by CodeSurfer/C
are all variants of Andersen’s analysis [Andersen 1993], which does not account for
uninitialized pointer variables. For example, suppose that there are three paths
to an indirect-call site through p, and that p is initialized to £ on one path, g on
another path, and not initialized on the third path. The indirect-call procedure will
dispatch just to £ and g. Assuming that £ and g are two-parameter procedures,
the indirect-call PDG will still have the form
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int indirect(int (*p)(int, int), int a, int b) {
if (p == £) f(a, b);
else g(a, b);

}

and thus the transformed program would call g whenever p is uninitialized (and
thus the specialized-slice would call g_1). Note, however, that a program that makes
a call via an uninitialized pointer variable is not a “strictly conforming program”
according to the ANSI C standard.'*

7.3 Reslicing and Idempotence

Ordinary slicing algorithms are idempotent: let S/C denote the closure slice of
SDG S with respect to slicing criterion C; then (G/C)/C = G/C. In this sec-
tion, we show that specialization slicing also has such an idempotence property,
modulo some name changes. Our implementation of specialization slicing (§9.1)
supports the option to perform the “reslicing” check described below, which serves
to demonstrate the near-idempotence property of specialization slicing. (It also
provides a way to detect bugs in the implementation: if the reslicing check fails,
the implementation has a bug.)

Suppose that for SDG S and slicing criterion C, the SDG that results from
specialization slicing is R. Now suppose that we perform a specialization slice of R
with respect to C to obtain R’, and compare R’ to R. If specialization slicing were
idempotent, R’ and R would be identical. However, similar to the issues raised
in the discussion of soundness and completeness in §3.1, because the PDG vertices
and call-site labels in S and R are named differently, R’ and R will not be identical,
in general.

The differences in the names of PDG vertices and call-site labels in S and R
create a problem for reslicing because the PDG vertices and call-site labels are
alphabet symbols in the FSAs used by the algorithm described in §4. The reslicing
check must compensate in two places for changes in the alphabet symbols.

(1) The slice of R must be taken with respect to a suitably adjusted slicing criterion
C’, rather than with respect to C itself.

(2) The comparison of R’ to R is not a pure equality test; the comparison must
account for the changes in the alphabet symbols.

As in §3.1, it is possible to identify each vertex or call-site in R as the specializa-
tion of some vertex or call-site in .S, and this information can be used to define a
mapping that maps vertices and call-sites in R back to the original alphabet of S.
In particular, to account for the changes in the alphabet from S to R, we create
a finite-state transducer T, which maps a vertex or label of an R call-site to the
corresponding vertex or label of an .S call-site.

M According to the ANSI C standard [ANSI C 2005, p. 7], “A strictly conforming program shall
use only those features of the language and library specified in this International Standard. It
shall not produce output dependent on any unspecified, undefined, or implementation-defined
behavior, and shall not exceed any minimum implementation limit.”
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To implement the reslicing check, in addition to T, six other data objects come
into play.

—two SDGs, S and R
—two automata for slicing criteria, C' and C’, and

—two automata that hold slice results, A6s and A6zr—i.e., the automata A6 of
Alg. 1 arising in the slices of S and R, respectively.

To reslice R, we need to map slicing criterion C' to an appropriate reslicing
criterion C' (item (1) above). Transducer T¢ can be combined with automaton
C to create an automaton for the inverse transduction T, L(C). However, because
transduction T is many-to-one, the inverse transduction T, !is, in general, one-to-
many. In such cases, the language of T, ! (C) contains strings that do not correspond
to any configuration of R. Fortunately, we can rectify this problem by intersecting
Ts 1(C) with an automaton for the language of all possible configurations of R. Let
Pr be the PDS for R, encoded according to Defn. 2.6; the language of configurations
of R can be obtained by the PDS query Poststar[Pr](entry,,.;,) [Bouajjani et al.
1997; Finkel et al. 1997].

To recap, to handle item (1) above, the automaton C’ for the reslicing criterion
is created by performing the following PDS/transducer/automaton computation:

C" = T;'(C) N Poststar[Pg)(entry,,;in)-

To handle item (2), it is convenient to compare the automata A6s and A6,
rather than to compare the SDGs R and R’. In particular, we perform the language-
equality check

L(A6s) = L(Tc(A6g)). (7)

Note that A6g represents the configurations of the closure slice of the (possibly
infinite) unrolling of SDG S. Similarly, A6r represents the configurations of the
closure slice of the unrolling of R. Consequently, Eqn. (7) tests whether the two
closure slices have identical configurations after T is used to map each R configu-
ration back to a configuration in the alphabet of S. The comparison performed in
Eqn. (7) is equivalent to testing whether SDGs R and R’ are equal because R and
R’ are constructed merely by reading out information contained in the automata
Ab6s and A6g, respectively.

7.4 Speeding Up Prestar

The interprocedural-slicing algorithm of Horwitz et al. [1990, §4.1] performs
context-sensitive closure slicing on an SDG in three phases:

(1) Construct summary edges, which represent transitive dependences due to proce-
dure calls. Each summary edge connects an actual-in vertex ai to an actual-out
vertex ao at the same call-site when the SDG contains a path that has matched
calls and returns (see below).

(2) Find all vertices reachable from the slicing criterion in a version of the SDG
(with summary edges), but without parameter-out edges.

(3) Find all vertices reachable from the result of step (2) in a version of the SDG
(with summary edges), but without parameter-in edges.
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In each of the last two phases, the presence of summary edges permits the graph
traversal to move “across” a call without having to descend into it.

For context-sensitive, interprocedural closure slicing, the advantages of the three-
phase approach can be phrased in terms of language reachability [Reps 1998, §4.2
and §5].

DEFINITION 7.2. L-reachability [Yannakakis 1990] is the wvariant of graph
reachability in which a path from vertex s to vertex t only counts as a valid s—t
connection if the path’s labels (in the sequence encountered along the path) form a
word in a given formal language L. In particular,

—An L-reachability problem is a context-free-language (CFL) reachability
problem if L is a context-free language.

—An L-reachability problem is a regular-language reachability problem if L is
a regqular language.

d

Note that ordinary graph reachability is the regular-language reachability problem
in which each edge is labeled with “e” and L is e*. Regular-language reachability
problems are less expensive to solve than CFL-reachability problems [Yannakakis
1990; Chaudhuri 2008].

In interprocedural slicing, CFL-reachability is used to create a context-sensitive
algorithm by restricting attention to paths in which parameter-in, call-edges, and
parameter-out edges along the path form a word in a certain language of (partially)
balanced parentheses. Such paths respects the fact that a procedure always returns
to the site of the most recent call.

Let each call vertex in the SDG be given a unique index from 1 to CallSites,
where CallSites is the total number of call sites in the SDG. For each call site ¢;,
label each parameter-in edge and call edge with the symbol “(;,” and label each
parameter-out edge with );.” Label all other edges of the SDG with the symbol e.
Each path in the SDG defines a word, obtained by concatenating—in order—the
labels of the edges on the path.

A path is a slice path iff the path’s word is in the language L(slice) generated
by the context-free grammar shown below. A path is a matched path iff the path’s
word is in the language L(matched) of balanced-parenthesis strings (interspersed
with strings of zero or more e’s) generated by the context-free grammar shown
below on the right. The language L(unbalR) is a language of partially balanced
parentheses: every left parenthesis “(;” is balanced by a later right parenthesis “);,”
but the converse need not hold. Similarly, in L(unbalL) every right parenthesis “);”
is balanced by a preceding left parenthesis “(;,” but the converse need not hold.
(In each grammar, ¢ ranges from 1 to CallSites.)

slice — unbalR unbalL matched — matched matched
| (; matched );
| e
| €
unbalR — unbalR matched unball, — matched unball
| unbalR ); | (; unbalL

| € |
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Input: SDG S and slicing criterion C'
Output: An SDG R for the specialization slice of S with respect to C

1 Augment S with summary edges, constructed via the algorithm of Reps et al. [1994]
/* Phase 1 */

2 Pé = the PDS for S, encoded according to Defn. 2.6+, but with all pop rules removed

3 Pg = the PDS for S, encoded according to Defn. 2.6+, but with all push rules removed

4 A0 = a Pg-automaton that accepts C

5 Al' = Prestar[PL](A0) /* Phase 2 */
6 Al = Prestar[P%](A1") /* Phase 3 */

// continue at line 4 of Alg. 1

Algorithm 2: A three-phase algorithm to create automaton Al, replacing lines 1—
3 of Alg. 1.

The advantage of the three-phase approach for context-sensitive, interprocedural
closure slicing is that only item (1) involves solving a true CFL-reachability problem
(with respect to language L(matched)). The L(matched)-reachability results are
used to add summary edges, labeled with “summary,” to the SDG. Thereafter,
items (2) and (3) are each regular-language reachability problems over the languages
L(unball’) and L(unbalR'), respectively:

unbalR' — unbalR' summary unball’ — summary unbalL’
| unbalR' ); | (; unball
| € | €

(The grammar for unbalR' is left-recursive; the grammar for unball’ is right-
recursive; hence L(unbalR') and L(unbalR') are both regular languages.) In other
words, the interprocedural-slicing algorithm of Horwitz et al. [1990] performs a
staging transformation, using a pre-processing step involving CFL-reachability to
compute summary edges, followed by two subsequent lower-cost steps that involve
only regular-language reachability.

It turns out that a similar idea can be applied in specialization slicing. Alg. 2
shows a three-phase algorithm to replace lines 1-3 of Alg. 1, where the phrase
“encoded according to Defn. 2.6+” in lines 2 and 3 means the PDS-encoding method
of Defn. 2.6 extended with the following additional rule:

Rule [Dependence edge modeled} )

{p, ai) = (p, ao)[Summary edge ai — ao

Automaton A1 computed in line 6 of Alg. 2 is computed in three phases, rather
than with a single call to Prestar, as in line 3 of Alg. 1. As argued below in Thm. 7.3,
the A1 automata computed by the two algorithms are identical.

The advantage of computing Al via the three-phase approach is somewhat similar
to the advantage of the three-phase approach for context-sensitive, interprocedural
closure slicing:

(1) Alg. 2 and the three-phase algorithm for context-sensitive, interprocedural clo-
sure slicing both involve a staging transformation, in which the first stage solves
a CFL-reachability problem to compute summary edges.

(2) The second and third phases of each algorithm makes use of only a limited
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version of the respective underlying formalism:

(a) In the three-phase algorithm for context-sensitive, interprocedural closure
slicing, phases two and three involve regular-language reachability over
L(unball’) and L(unbalR'), rather than full CFL-reachability.

(b) The PDSs PJ and P2 used in lines 5 and 6 of Alg. 2 have no pop rules

o

and push rules, respectively. Now suppose that we put the label “);” on

all transitions generated by a pop rule associated with call-site 7, “(;” on

all transitions generated by a push rule associated with ¢, “summary” on

all transitions generated by rule (8), and “e” on all other transitions. We

then have

—ZEach (finite) path in the infinite transition relation of P{ that starts
at a P-configuration in L(A0) generates a word in the regular language
L(unball').

—TEach (finite) path in the infinite transition relation of P2 that starts at
a P-configuration in L(Al’) generates a word in the regular language
L(unbalR').

THEOREM 7.3. Automaton Al computed in line 6 of Alg. 2 is identical to au-
tomaton Al computed in line 3 of Alg. 1. O

PRrROOF. The proof follows from the observations made in item (2b) above.

Recall that automata A1 and A6 computed by Alg. 1 accept the same languages.
By Thm. 4.14, it follows that L(A1) computed by Alg. 1 consists of exactly the
P-configurations in the closure slice, with respect to L(A0), of the infinite tran-
sition relation of Pg. Those P-configurations are reached along L(slice)-paths, or
equivalently, along L(unbalR') - L(unbalL') paths (where “” denotes language con-
catenation). However, the latter is exactly the set of P-configurations accepted by
automaton Al computed by Alg. 2. [

In our experiments (§9), we found that using Alg. 2 in place of the one-phase
method of computing A1 was 1.5-4.6 times faster (geometric mean: 2.9) on gzip,
flex, and go—the only examples for which Prestar represented a non-negligible
portion of the overall time for specialization slicing (cf. column 7/(column 2 +
column 8) in Fig. 23).

8. FEATURE REMOVAL

If a program consists of only a single procedure, a forward closure slice of the
procedure’s PDG defines a kind of “feature” consisting of all elements possibly
influenced by the slicing criterion. Moreover, it is possible to use a conventional
PDG slicing algorithm to remove such a feature. The key property is the following:

OBSERVATION 8.1. The complement of a (single-procedure) forward closure slice
is a backward slice with respect to a different slicing criterion (namely, the vertices
of the complement). O

Thus, by removing the elements in the forward closure slice, one is left with a PDG
without the feature identified by the forward closure slice. An executable program
can be created from the latter PDG.

It is unclear how to implement feature removal for multi-procedure programs via
standard SDG-based slicing techniques [Horwitz et al. 1990]. In particular, Obs. 8.1



Specialization Slicing 51
(a) Program to compute sum and prod- | (b) Summation program (before
uct useless-code elimination)
[int add(int a,int b) {] int add(int a,int b) {
q: return atb;
[ }
int mult@Ent a,lint b) { int mult( int b) {
int i = 0; int i = 0;
int ans = 0; int ans = 0;
while(i < a) {]
[c5: ans = add(ans,b) ;]
[c6: 1 = add(d,1);]
return [ans|; return;
} }
void tally void tally
(intt sun,EEEE PFOdling ) { intt sun, int W) {
int i = 1; int i = 1;

while(i <= M) {
c2: sum = add(sum,i);
c3: prod = puitProdsli);
c4: i = add(i,1);
}
}

int main() {

while(i <= N) {
c2: sum = add(sum,i);
c3: mult( i);
c4: i = add(i,1);
}
}

int main() {

int sum = 0; int sum = O;

cl: tally(sum,pProd,}10); cl: tally(sum, 10);

printf("%d ",sum); printf("%d ",sum);

printf("%d ",prod);]

Fig. 18. (a) A program to compute the sum and product of the integers from 1 to N. The boxed
code indicates the forward closure slice with respect to “prod = 1” in main. (b) The program
obtained by using specialization slicing to remove the forward slice with respect to configuration
(prod = 1,€) in main.

does not hold, in general, for the forward closure slice of an SDG. Consider the
program shown in Fig. 18, which uses procedure tally to compute both the sum
and product of the numbers from 1 to 10. Additions are performed using procedure
add, which is also invoked repeatedly to perform multiplication. Suppose that we
want to remove the computation of the product. That “feature” includes all of
the code in the forward closure slice from “prod = 1” (i.e., the boxed code in
Fig. 18(a)). However, we cannot just remove all elements of the forward closure
slice: that approach would remove procedure add, but we must keep add because
add is needed to compute the sum.

The cause of the problem is that the standard SDG closure-slicing algorithm
merges different configurations of the unrolled SDG. When the standard SDG-
based algorithm for context-sensitive closure slicing [Horwitz et al. 1990] is applied
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Input: SDG S and slicing criterion C'
Output: A specialization-slice SDG R for S with the forward stack-configuration slice with
respect to C' removed

Ps = the PDS for S, encoded according to Defn. 2.6
Ap = a Pg-automaton that accepts {(entermain, €)}
Ac = a Pg-automaton that accepts C

A0 = Poststar[Ps](Ac)

Al = Poststar[Pg](Ag) N complement(determinize(A0))
// continue at line 4 of Alg. 1

oo WN =

Algorithm 3: An algorithm to remove a “feature” defined by the forward stack-
configuration slice with respect to C.

to a multi-procedure program, the complement of the forward closure slice of an
SDG is not necessarily a backward closure slice of the SDG, and thus it may not
be possible to create an executable program from the complement.

We now explain how specialization slicing, in conjunction with forward stack-
configuration slicing, can be employed to solve the feature-removal problem for
multi-procedure programs. In particular, because the PDS-based machinery devel-
oped in §4 explicitly manipulates the possibly infinite set of configurations of the
unrolled SDG, we regain the property stated in Obs. 8.1, and have the machinery
needed to create a feature-removal algorithm.

In the PDS-based approach to feature removal (Alg. 3), the algorithm
(i) subtracts the set of configurations of the forward stack-configuration slice
with respect to criterion C' from the set of configurations that are reach-
able from (entermain,€) (line 5), and (ii) creates an executable program
from the result. For instance, for the program from Fig. 18(a), Ps—
defined in line 1 of Alg. 3—contains the following configurations for q in
add: {(q,c2 cl), (g, c5 3 cl), (g, cb €3 cl), (g, c4 c1)}. When slicing criterion C' is
{(prod = 1,¢)}, A0’s g-configurations are {(g,c5 ¢3 cl)), (g, c6 ¢3 1)}, and hence
Al’s g-configurations are {(g,c2 cl)), (¢, c4 c1)}. By this means, Alg. 3 correctly
keeps statement q (and all of procedure add) in the feature-removal result shown
in Fig. 18(b).

The key property of automaton A1l in Alg. 3 is that it represents a set of config-
urations that is backwards-closed with respect to the transitions in Pg’s possibly
infinite transition relation.

Note how tally is specialized from three parameters in Fig. 18(a) to two in
Fig. 18(b). This specialization happens automatically because the core of Alg. 3
is the specialization-slicing algorithm (Alg. 1). Fig. 18 also illustrates how the
feature-removal algorithm operates at a fine-grained level: it leaves in all elements
that are not in the forward stack-configuration slice from (prod = 1,¢), including
some “extraneous” elements, namely, the specialization of mult and the specialized
call to mult at c¢3. These elements are useless, and the program could be cleaned
up by performing an interprocedural useless-code-elimination pass.
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9. EXPERIMENTS
9.1 Structure of the Implementation

Our implementation was created using GrammaTech’s CodeSurfer/C code-
understanding tool [Anderson et al. 2003], which supports closure slicing of SDGs
of C and C++ programs, and provides a scripting language to provide access to a
program’s SDG. The implementation supports specialization slicing (§4), a variant
of the reslicing check (§7.3), and feature removal (§8).

CodeSurfer/C is used to build the input SDG, which is then translated into a PDS
implemented using the Weighted Automaton Library (WALi) [Kidd et al. 2007].
WAL is used to perform the Prestar operation, and the resulting automaton is
converted into an OpenFST “recognizer” (FSA) [OpenFST 2012]. OpenFST is used
for the reverse, determinize, minimize, reverse, and removeEpsilonTransitions se-
quence to create an MRD automaton. The output SDG R is created from the MRD
automaton, and the source text for the specialized program is pretty-printed from
R.

Calls to library procedures are handled by the technique described in §7.1. De-
pendences through calls to library procedures are specified by supplying library
models: procedure stubs and variable declarations (in source-code form) that char-
acterize the dependences through the user-facing procedures of the library. The
library models used in the experiments are a variant of the standard library models
distributed with CodeSurfer/C. I/O procedures are handled conservatively by the
so-called “monolithic” strategy: a single object, -INPUT_QUTPUT, is used to represent
the entire file system and all sockets [Codesurfer ].

—Any flow of information from the file system or any socket is modeled by a read
from _INPUT_OUTPUT.

—Any flow of information to the file system or a socket is modeled by a write to
_INPUT_OUTPUT.

This conservative approach causes the SDG to contain flow dependences between
separate calls to I/O procedures—such as a call on fprintf () and a subsequent
call on getchar(), even if the two procedures would actually always operate on
different file-system objects.

Memory-allocation procedures, such as malloc(), free(), etc., are handled by
the so-called “discrete” strategy. This approach introduces no dependences be-
tween two calls to malloc (), for example, even though both would read and write
variables associated with the runtime free-storage package. The rationale for using
the discrete approach is that it is consistent with the idealized semantics that the
free-storage package is attempting to implement—mamely, “separate allocations are
independent, drawn from an inexhaustible supply of memory.”

All experiments were run on a 64-bit, 8-core Dell Latitude E6520 laptop with
8GB memory, running Ubuntu 12.04. (However, the specialization-slicing tool is a
single-threaded application.)

9.2 Specialization-Slicing Experiments

Our experiments were designed to answer five questions:
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Avg. # | Avg. # | Aveg. # | Avg. #

# source of Pro- PDG of Call | # Slices
Program Versions lines | cedures | vertices sites taken
tcas 37 564 9 478 38 37
schedule2 2 717 16 979 47 6
schedule 6 725 18 864 44 11
print_tokens 4 889 18 1261 89 4
replace 26 931 21 1330 65 58
print_tokens2 8 957 19 1080 84 42
tot_info 19 1414 7 675 37 23
wce 1 802 11 2048 170 13
gzip 4 5314 94 24826 556 26
space 20 7429 136 18799 1016 69
flex 5 10082 154 39816 1308 79
go 1 29246 372 102859 2084 10

Fig. 19. Information about the test programs. (Averages are rounded to the nearest whole
number.)

(1) Blow-up of polyvariant (§9.2.1): Does Alg. 1 suffer from its potential worst-case,
exponential blow-up in practice?

(2) Polyvariant vs. closure (§9.2.2): Are polyvariant executable slices created via
Alg. 1 substantially larger than closure slices in practice?

(3) Monovariant vs. closure (§9.2.2): Are monovariant executable slices substan-
tially larger than closure slices in practice?

(4) Polyvariant vs. monovariant (§9.2.2): How do polyvariant and monovariant
executable slicing compare?

(5) Specialization slicing of recursive programs in practice (§9.2.3): What kinds of
slices arise in practice when specialization slicing is applied to programs that
use recursion?

Information about the test programs is given in Fig. 19. The first seven programs
are the Siemens suite—a set of small programs originally collected by Hutchins et al.
[1994]. The others are open-source applications.

—We picked the Siemens suite, gzip, space, and flex, because they were available
from the Software-artifact Infrastructure Repository [Do et al. 2005; SIR |, which
provides multiple versions of each program, together with supporting artifacts
such as test suites and fault data.

—We picked the word-count program wc because it is a nice example of how slicing
can be used to create specialized versions of a program.'®

—We picked go because it was three times larger than any of the other examples.

15In particular, slices taken from a certain output statement in wc with respect to the variables
total_ccount, total_wcount, total_lcount specialize wc into programs that count just characters,
just words, and just lines, respectively. We used such slices to perform an experiment to measure
the execution speed-up of specialized components extracted from wc (see §6). For that experiment,
we used one of the two standard sets of library models distributed with CodeSurfer/C—namely, the
one that adopts a “discrete” strategy for both I/O procedures and memory-allocation procedures.
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Moreover, for the Siemens suite, gzip, space, and flex, the debugging tools de-
veloped by Horwitz et al. [2010, §2.3 and §3] provided information about points of
failure (i.e., unexpected output or crashes) and the call-stacks at those points. Our
reasons for using such slicing criteria were two-fold:

—A slicing criterion of the form (PDG-vertex,call-stack]) exercises stack-
configuration slicing at the granularity of an individual configuration.

—Slicing with respect to a configuration at which the symptom of a runtime error
has been observed provides a rational method for generating slices that would be
of interest to a programmer, at least in the context of program debugging.

For some program versions, the program’s test suite has multiple test inputs that
generate a runtime error; thus, some program versions had multiple slicing criteria.
For each program, columns 2 and 7 of Fig. 19 show the number of program versions
and the number of slicing criteria, respectively, that were available to us.

For wc and go, a slice was taken from each call-site on printf or fprintf, with
respect to all calling contexts (by using an automaton that expressed this slicing
criterion).

In the case of the Siemens suite, gzip, space, and flex, the algorithm for poly-
variant executable slicing begins by performing a stack-configuration slice with re-
spect to a singleton set of call-stack configurations. For these examples, by “mono-
variant executable slicing,” we mean a generalization of Binkley’s algorithm [1993]
that (i) performs a calling-context slice [Binkley 1997; Krinke 2004] (i.e., a context-
sensitive closure slice of the SDG with respect to a given call-stack configuration!),
and then (ii) performs additional backward-slicing operations to address any pa-
rameter mismatches and to make the answer executable. (Call-stack information
is not used during phase (ii).) The motivation for this choice is to be able to
isolate the cost of finding polyvariant versus monovariant answers by, to the ex-
tent possible, controlling for the effect of using stack-configuration slicing in the
algorithm for polyvariant executable slicing. Consequently, our implementations of
both algorithms use call-stack-sensitive slicing methods when call-stack information
is available.

For wc and go, “monovariant executable slicing” means Binkley’s algorithm as
originally stated.

In summary, the experiments were based on twelve different program families.
In total, they involved 133 different program versions, on which we performed 378
different invocations of specialization slicing. (133 and 378 are the sums of the
numbers in columns 2 and 7 of Fig. 19, respectively.) In the program versions used
for the 378 slices, there were a total of 30,773 procedures, of which only 20,424
procedures appeared in the slice results. (30,773 is the sum of the products of
columns 4 and 7 of Fig. 19; the number 20,424 is discussed below.)

9.2.1 Blow-Up of Polyvariant. Figs. 20-24 provide evidence that polyvariant
executable slicing does not exhibit its worst-case exponential behavior in practice.
The figures show that neither (i) the exponential blow-up that occurs for the fam-
ily of examples discussed in §5.3, nor (ii) the worst-case exponential behavior of

16See §10 for more discussion of calling-context slicing.
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Fig. 20. Distribution of the number of specialized versions of procedures in executable slices
created via polyvariant executable slicing.

operations like automaton determinization, arose in the programs and slices used
in our experiments. (In fact, as mentioned in §5.2, for the automata that arise
from Prestar, the result of determinize is significantly smaller than the input to
determinize by 4.4%-34%.)

Fig. 20 shows the distribution of the number of specialized versions of procedures
in all tested programs. From Fig. 20, we see that the closure slices from all tests
consisted of 20,424 procedures (= 18,555 + 1,698 + 156 + 15). That is, 33% of the
30,773 procedures in all of our tests were eliminated by closure slicing. Out of the
20,424 procedures in the closure slices, multiple versions were created by Alg. 1 for
1,869 of the procedures (= 1,698 + 156 + 15); i.e., multiple versions were created
for only 1,869/20,424 = 9.2% of the procedures in the closure slices.

Put another way, approximately 90.8% of the procedures in the closure slices
have a single specialized version, and the count decreases rapidly as the number of
specialized procedures increases. The largest number of specialized versions of a
procedure that we saw in our experiments with specialization slicing is four. Fig. 20
shows that Alg. 1 produced a total of 22,479 procedures (= 18,555 + 2 x 1,698 +
3 x 156 + 4 x 15) of which 2,055 (= 1,698 + 2 x 156 + 3 x 15) were “extra” copies.

9.2.2  Polyvariant vs. Monovariant vs. Closure. Both Alg. 1 and the algorithm
for monovariant executable slicing perform closure slices as their first step—
although the monovariant slicing algorithm performs a closure slice of the SDG,
whereas Alg. 1 performs a closure slice of the unrolled SDG. Nevertheless, if the
stack configurations of the closure slice used in Alg. 1 are discarded, and we con-
sider just the set of program elements involved, both algorithms identify the same
set of program elements in their first step. Thus, we can normalize measurements
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Average % increase in #PDG vertices relative to closure slice
# Slices Monovariant slicing Polyvariant slicing

Program taken || % increase | Std. dev. || % increase Std. dev.
tcas 37 5.3 0.1 0.2 0.0
schedule2 6 6.3 0.0 28.1 0.1
schedule 11 4.8 0.7 5.6 1.8
print_tokens 4 5.1 0.0 0.4 0.0
replace 58 7.1 0.7 5.6 5.4
print_tokens2 42 5.8 0.4 0.7 2.1
tot_info 23 2.8 0.1 0.0 0.0
we 13 5.1 1.5 38.5 20.0
ezip 26 6.1 2.1 7.6 6.6
space 69 4.2 1.4 4.3 2.3
flex 79 2.1 0.1 6.7 2.4
go 10 4.4 7.6 7.9 3.9
geometric mean N/A 4.6 N/A 5.5 N/A

Fig. 21. Comparison of the percentage of “extra” vertices, relative to the size of the closure
slice, produced via monovariant executable slicing with those produced via polyvariant executable
slicing.

relative to the size of the set of program elements in the closure slice of the SDG.
Figs. 21-24 provide four ways to compare polyvariant/monovariant executable
slicing and closure slicing.

Blow-Up in Overall Slice Size. One way to compare polyvariant and monovariant
executable slicing is to compare the overall sizes of the resulting slices. Columns 3
and 5 of Fig. 21 provide data about the percentage of “extra” vertices that are in
the two kinds of executable slices, compared with the corresponding closure slices.
Based on these results, it appears that in practice, blow-up in slice size is neither a
problem for monovariant executable slicing nor for polyvariant executable slicing.
Normalized to “|closure slice| = 100,” on average (computed as the geometric mean)
monovariant executable slices are 104.6 and polyvariant executable slices are 105.5.
While polyvariant executable slicing had the largest average increases in size (e.g.,
38.5% for wc), on the three largest programs size increases were very modest, and
were similar for monovariant and polyvariant executable slicing. However, one
should bear in mind that in the first case 104.6 means that 4.6% worth of extraneous
elements are added (i.e., elements not in the closure slice), whereas in the second
case 105.5 means that 5.5% worth of closure-slice elements are replicated. While the
extraneous elements from monovariant executable slicing are “noise,” the replicated
elements from polyvariant executable slicing provide information about specialized
patterns of dependences.

Sizes of Individual PDGs. Another way to compare polyvariant and monovariant
executable slicing is to compare procedure sizes, as opposed to the overall sizes of
slices, as we did above. As we saw from Fig. 21, the monovariant slicing algorithm
introduces 4.6% worth of elements that are not in the closure slice. In contrast,
Alg. 1 never introduces any program elements that are not in the closure slice.

Fig. 22 is a scatter-plot that compares the sizes of the PDGs produced via mono-
variant executable slicing with those produced via polyvariant executable slicing.
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Fig. 22. Scatter-plot of procedure sizes. Each dot represents the relative size of a procedure pro-
duced via monovariant executable slicing against the size of a corresponding procedure produced
via polyvariant executable slicing. Both axes are in terms of the percentage of vertices in the
original procedure.

PDG sizes are reported as the percentage of a PDG’s vertices in the original pro-
gram that occur in a PDG of an executable slice. Each point in the plot represents
one PDG in one polyvariant slice; i.e., for each PDG p_k in each polyvariant slice,
there is one point in the plot at position (x, y), where x is the percentage of vertices
of the original PDG that are in p_k and y is the percentage that are in PDG p in
the monovariant slice. If there are two specialized versions of PDG p, there will be
two points in the plot, all with the same y coordinate.

Fig. 22 shows that many polyvariant-slice PDGs are close in size to the original
PDGs (the points clustered in the upper right-hand corner); that monovariant-
slice PDGs are often close in size to the corresponding polyvariant-slice PDGs
(the points clustered along the 45-degree line); but that there are also cases where
a monovariant-slice PDG is much larger than the corresponding polyvariant-slice
PDG (the points along the top). For each point, including all “extra” procedures, we
computed (%vertices in polyvariant PDG)/(%vertices in monovariant PDG); the
geometric mean of these values is 92.9%.

Running Time. Fig. 23 provides information about slicing times when creating
executable slices via monovariant and polyvariant executable slicing. Columns 5
and 10 of Fig. 23 report end-to-end slicing times—i.e., times for starting with the
SDG, slicing via the respective algorithms, creating the output SDG, and generating
the program text for the output slice. In the case of polyvariant executable slicing,
column 9 of Fig. 23 reports the amount of time that was used for all FSA operations.
(Column 9 times are included in column 10.)
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Average SDG

construction Average slicing time (secs.)

time (secs.) Monovariant slicing Polyvariant slicing

Sum. All Slice All Std. Prestar Autom. All Std.
Program edges | steps time | steps dev. 1-phase | 3-phase ops. steps dev.
tcas 0.001 0.16 0.02 0.58 0.014 0.000 0.004 0.004 0.75 0.011
schedule2 0.000 0.55 0.05 0.69 0.009 0.008 0.008 0.009 1.05 0.009
schedule 0.004 0.30 0.04 0.66 0.050 0.009 0.012 0.005 0.95 0.065
print_tokens || 0.005 0.17 0.05 0.88 0.015 0.007 0.009 0.011 1.25 0.022
replace 0.014 0.59 0.06 0.95 0.102 0.009 0.009 0.010 1.37 0.153
print_tokens2|| 0.006 1.67 0.04 0.85 0.037 0.004 0.006 0.008 1.16 0.052
tot_info 0.003 0.25 0.04 0.71 0.014 0.004 0.006 0.005 0.93 0.016
we 0.000 3.25 0.05 0.94 0.314 0.024 0.027 0.010 1.59 0.639
gzip 0.383 1.14 0.53 | *0.90 0.398 17.826 4.806 0.280 | *11.43 2.284
space 0.238 5.55 0.81 4.67 1.035 0.219 0.240 0.108 7.33 1.476
flex 4.739 | 10.24 4.62 | 14.31 4.974 35.690 18.978 2.428 61.93 | 21.292
go 7.700 | 34.80 2.06 | 26.70 | 11.306 115.118 17.587 5.654 | 107.17 | 34.260

Fig. 23. Average times (in seconds) to build SDGs and create monovariant and polyvariant
executable slices. Column 2 reports the time to construct summary edges. Column 3 reports the
overall time to construct the SDG. (Column 2 times are included in Column 3.) Column 4 reports
the time to perform the original closure slice of the SDG, as well as the time for the additional slices
needed to resolve parameter mismatches for monovariant executable slicing. Column 5 reports
the time for all steps of monovariant executable slicing (including pretty-printing). Columns 7
and 8, respectively, show the times used for Prestar by the one-phase method, and for phases 2
and 3 of the three-phase method. (Column 2 corresponds to phase 1 of the three-phase method.)
Column 9 reports the amount of time that was used for all FSA operations during polyvariant
executable slicing. Column 10 reports the time for all steps of polyvariant executable slicing
(including pretty-printing). (The times reported in columns 8 and 9—but not column 7—are
included in column 10.) Columns 6 and 11 show the standard deviations in the overall times for
the two methods. “*” indicates that the time for pretty-printing is not included (due to the lack
of pretty-printing support for a feature used in the program).

Overall, our implementation of polyvariant executable slicing is about 1.4x slower
than our implementation of monovariant executable slicing (geometric mean) on the
seven examples above the line in Fig. 23, and 3.6x slower (geometric mean) on the
five examples below the line in Fig. 23.

Remark. In considering the times reported in Fig. 23, one should bear in mind
that our implementation of polyvariant executable slicing is an experimental im-
plementation that makes use of WALi and OpenFST, in addition to CodeSurfer/C.
There are several copies made of data structures that are O(size of program). The
implementation of monovariant executable slicing makes use of the slicing algorithm
used internally by the CodeSurfer/C product, as well as some fix-ups that we were
able to implement entirely within CodeSurfer/C, using the scripting language that
CodeSurfer/C supports.

For both implementations, the times should be taken with a grain of salt. Both
implementations used two experimental additions to CodeSurfer/C: (i) operations for
rewriting SDGs—in this case, removing vertices and edges—and (ii) a pretty-printer
for generating program text from an SDG. Neither extension can be considered to
be a first-class part of the APT of CodeSurfer/C’s scripting language. O

The differences between the times in the “All-steps” columns and the times for
the individual steps shown in Fig. 23—i.e., column 5 vs. column 4, and column 10
vs. column 8 + column 9—are due to the costs of (i) serializing the SDG to and
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Average maximum memory usage (MB)
Monovariant slicing Polyvariant slicing
Automaton
Program CodeSurfer/C | Std. dev. || CodeSurfer/C | Std. dev. operations | Std. dev.
tcas 150.40 72.89 129.02 0.49 21.49 0.05
schedule2 160.48 77.12 138.83 0.33 23.69 0.09
schedule 155.67 74.94 133.77 1.12 22.98 0.06
print_tokens 164.27 77.30 143.32 0.12 23.72 0.03
replace 163.27 76.11 142.61 2.54 23.81 0.01
print_tokens2 161.00 75.71 137.71 0.74 23.34 0.07
tot_info 161.63 77.32 137.40 0.39 23.99 0.02
wcC 193.14 91.65 169.27 8.85 28.14 0.00
gzip 376.87 193.07 1087.35 86.71 362.45 28.90
space 361.70 155.52 358.41 79.85 54.51 0.19
flex 876.11 347.88 2124.43 427.11 708.14 142.37
go 1804.05 639.88 4025.09 65.02 1341.70 21.67

Fig. 24. The space (in MB) used when creating executable slices via monovariant and polyvariant
executable slicing. Column 6 reports the amount of space that was used for all PDS and FSA
operations during polyvariant executable slicing. (The space reported in column 6 is in addition
to that reported in column 4 for the CodeSurfer/C process.)

from the C++ data structures used by WALIi and OpenFST, (ii) rewriting SDGs,
and (iii) pretty-printing.

We can also compare monovariant executable slicing and Alg. 2 based just on
the operations performed up until SDG rewriting.

—Monovariant executable slicing performs SDG construction (column 3) and slicing
(column 4).

—Alg. 2 performs SDG construction (column 3), phases 2 and 3 of the three-phase
slicing method (column 8), and automaton operations (column 9). (Alg. 2 needs
summary edges, but the computation of summary edges is included in SDG
construction time (column 3).)

For the three examples for which Prestar represents a non-negligible portion of
the overall time for specialization slicing—i.e., gzip, flex, and go, see column
8—the geometric mean of the polyvariant/monovariant slicing ratios, computed
as (column 3 + column 4)/(column 3 + column 8 + column 9), is 2.32. For the
Siemens suite, the geometric mean of the polyvariant /monovariant slicing ratios is
0.93 (i.e., polyvariant slicing is 7% faster).

As already mentioned in §7.4, we found that using Alg. 2 in place of the one-
phase method of computing Al was 1.5-4.6 times faster (geometric mean: 2.9) on
gzip, flex, and go (cf. column 7/(column 2 + column 8)). One difference that
could account for the improved running time is how summary edges are computed
in Alg. 2. Our implementation of Alg. 2 uses CodeSurfer/C to compute summary
edges (column 2). Although the computation of summary edges is similar to the
computation of pre* and post* for a PDS, CodeSurfer/C uses an implementation
written in C, which has been extensively optimized, whereas WAL supports more
straightforward implementations of pre* and post™, written in C++.

Space Used. Fig. 24 provides information about the amount of space used when
creating executable slices via monovariant and polyvariant executable slicing. The
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> 2 versions of Direct rec.
Direct Mutual a specialized transformed
recursion recursion recursive to mutual
Program in source? | in source? procedure? recursion?
Fig. 2 v v v
print_tokens v
replace v v
tot_info v
gzip v v
flex v v v
go v

Fig. 25. Characteristics of specialization slicing applied to Fig. 2 and the six families of recursive
programs in our suite of benchmarks. v indicates that the indicated feature was observed in the
original source code (columns 2 and 3), or in at least one program created via specialization slicing
(columns 4 and 5).

space reported is the average, over all slices of a given example, of the maximum
memory used during each slice (in MB). The two algorithms used roughly compa-
rable amounts of space in their respective CodeSurfer/C processes.

In the case of polyvariant executable slicing, the additional amount of space used
during PDS and FSA operations is reported separately from the space used by the
CodeSurfer/C process (see column 6). In all cases, the peak memory usage for PDS
and FSA operations occurred during Prestar; after Prestar, memory usage always
dropped by 30-80%. These observations are consistent with the fact that slicing
was performed with respect to slicing criteria expressed using non-trivial FSAs.
That is, for the Siemens suite, gzip, space, and flex, the Prestar operations are
with respect to FSAs that capture languages of the form {(PDG-vertex, call-stack]) },
representing the configuration of a bug site. For wc and go, the slicing criterion for
each call-site on printf or fprintf was expressed using an FSA that captured all
of the call-site’s calling contexts in the unrolled SDG. The significance of using a
non-trivial FSA for the slicing criterion is that the number of states in the query
FSA contributes multiplicatively to the space cost of Prestar. That is, using the
algorithm of Esparza et al. [2000] (which is implemented in WALI) the space used
during Prestar is bounded by O(|Qa||Al + |—=.4]), where |Q 4] is the number of
states in the FSA A for the slicing criterion.

Given our earlier observations that (i) the sizes of the output slices created via
Alg. 1 were only modestly larger than the corresponding closure slices, namely 5.5%
(see column 5 of Fig. 21), and (ii) determinize never blew up, we believe it is fair
to say that, for the observed cost, both the running time and space of Alg. 1 are
bounded by the sum of two terms: one polynomial in the size of the input program,
the other linear in the size of the output slice. (See the non-exponential costs of
Alg. 1 discussed in §5.2 and §5.3.)

9.2.3 Specialization Slicing of Recursive Programs in Practice. This section
presents our experience with applying specialization slicing to programs that use
recursion. Fig. 25 summarizes our observations. Although the transformation of a
directly recursive procedure into two mutually recursive procedures, as illustrated
in Fig. 2, was not observed in the slices in our test suite, we did encounter several



62 : M. Aung et al.

(b) Specialization of

(a) Program containing r resulting from
recursive procedure r slicing at line 23

(1) int g = 0; int g = 0;

(2)

(3) int r(int k) { int r_1(int k)

(4) int v = 0; int v = 0;

(&) if (k> 0) { if (& > 0) {

(6) v = r(k-1); v=r_1k - 1);

" } }

(8) +tg; t+g;

(9) return v; return v;

(10) } }

(11)

(12) int r_2(int k)

(13) int v = 0;

(14) if (k > 0) {

(15) v=r2(k-1);

(16) }

(17) return v;

(18) }

(19)

(20) int main() { int main() {

(21) int a = r(2); int a = r_1(2);

(22) int b = r(g); int b = r_2(g);

(23) printf("%d", a + b); printf ("%d", a + b);

(24) } }

Fig. 26. (a) Example program with recursive procedure r. (b) Specialization slice with respect
to the call to printf on line (23), which causes r to be specialized based on different patterns of
formal-out vertices at different call-sites. Global variable g is not used after the second top-level
call to r on line (22); thus, the increment of g during the second call does not contribute to any
value used in the slicing criterion.

instances where a recursive procedure was specialized into two or more versions. In
each case, the stack-configuration slice contained different patterns of formal-out
vertices in different calling contexts.

Fig. 26 provides a simple example in which a directly recursive procedure r is
specialized into two versions. Global variable g is not used after the second top-
level call to r on line (22) of Fig. 26(a); thus, the increment of g during the second
call does not contribute to any value used in the slicing criterion. Consequently,
specialized procedure r_1 retains the statement that increments g (see line (8) of
Fig. 26(b)), whereas the increment of g is absent in procedure r_2. This example
is representative of the majority of cases in which a specialization slice in our test
suite caused a recursive procedure to be specialized into two or more versions.

We also observed cases in which a group of mutually recursive procedures was
specialized into two or more groups of mutually recursive procedures. By a group
of mutually recursive procedures, we mean a strongly-connected component of the
program’s call graph that contains more than one node. Such specializations were
caused by different usage patterns of formal-out vertices in different calling contexts
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(b) Specialized slice with
(a) Program with two calling two syntactically equal
contexts for procedure p specializations of p
(1) int g; int g;
(2)
(3) void pO { void p_10 {
(4)  gt++; gt+;
(5) printf("%d", g); printf ("%d", g);
6 } }
€p)
(8) void p_20) {
(9 gt+t;
(10) printf ("%d", g);
(11) }
(12)
(13) int main() { int main() {
(14) g = 0; g =0;
(15) pO; p-10;
(16) pO; p-20;
an '} }

Fig. 27. (a) Example program for which a specialization slice creates two specializations of proce-
dure p that are syntactically equal. (b) Specialization slice with respect to the call to printf on
line (5): procedure p is specialized into two syntactically identical procedures, p-1 and p_2.

from which the mutually recursive group could be entered. The largest blow-up of
source code incurred by this kind of example occurred in £flex (which contains 147
procedures overall); it caused a mutually recursive group of three procedures in the
original flex to become three mutually recursive groups of three procedures each
in the specialization slice.

Thus, although small amounts of blow-up do occur when specialization slicing
is performed on programs that use recursion, our experience to date supports the
assertion that the potential exponential blow-up of specialization slicing is not ob-
served in practice.

9.2.4  Specialized Procedures can be Syntactically Fqual. In a few cases, we ob-
served that a specialization slice contained two specializations of a given proce-
dure, with identical pretty-printed source code. An example of this phenomenon
is presented in Fig. 27, where the specialization-slicing algorithm creates two syn-
tactically identical procedures, p_1 and p_2, from the original procedure p. The
stack-configuration slice of the program contains different variants of p that have
different sets of formal-out vertices (where the formal-out vertices are the only dif-
ferences in the two variants). In Fig. 27(a), both calls to procedure p are in the
stack-configuration slice with respect to line (5). The two calling contexts of p differ
in that the slice does not contain the formal-out vertex for g at the second call-site.
(Thus, the underlying cause of the phenomenon is similar to reason behind the
specializations discussed in §9.2.3.) However, no elements of p can be removed in
either calling context because in each call the updated value of g affects the input
to printf.
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Considering all 1,869 (= 1,698 + 156 + 15) procedures that were specialized into
two or more versions in our experiments, 273 of them (or 14.6%) had a pair of
syntactically equal versions. Groups of three or more syntactically equal versions
were not observed, although some procedures were specialized into two syntactically
equal versions (with different sets of formal-out vertices), plus one other distinct
version.

This phenomenon is not a counter-example to the minimality of our
specialization-slicing algorithm (§5.1). In particular, the coarsest partition under
Defn. 3.6 of the stack-configuration slice of Fig. 27(a)’s SDG places the two vari-
ants of procedure p in different partition-elements. Moreover, the transformation
of a procedure into two or more specialized versions can be useful in the context of
program optimization: an absent formal-out vertex represents a variable that is not
live at the exit of the procedure variant, and thus the different sets of live variables
at the different calling contexts for p present different opportunities to optimize the
body of p. For instance, because g is not live at the exit of p_2, an optimizer might
choose to optimize p_2 as follows:

void p20) {
printf ("%d", g+1);

}

However, p_1 could not be modified in the same way because it needs to increment
the value of g.

Forgacs and Gyiméthy [1997] have proposed a version of SDGs in which a formal-
out vertex for a variable v appears in the PDG for a given procedure only if v
is live on exit from the procedure. With their SDG-construction method, even
though p_1 and p_2 are textually identical, the PDGs created for p_1 and p_2 in the
SDG reconstructed from Fig. 27(b) would have different sets of formal-out vertices.
(CodeSurfer/C does not implement that construction method, and thus the PDGs
created by CodeSurfer/C for p_1 and p_2 in the SDG reconstructed from Fig. 27(b)
are identical.)

A final variation on this theme is presented in Fig. 28. The specialization-slice
outcome shown in Fig. 28(b) is again due to different usage patterns of formal-
out vertices in different calling contexts. However, in this example, p_-1 and p_2
are syntactically different because the formal-out in question corresponds to p’s
return statement (line (5)). The first call to p is retained only for the side-effect
of incrementing g, and thus p-1 has return type void (line (8)). The return value
from the second call contributes to the value of b in line (15), and thus p_2 has a
return statement and its return type is int (lines (3) and (5)).

Pairs of such nearly identical specialized versions—i.e., differing solely on return
statements and the return type—occurred in a substantial number of cases in our
test suite. Of the 1,869 (= 1,698 + 156 + 15) procedures that had two or more
versions produced by specialization, 515 (27.6%) had versions that differed in this
way.

10. RELATED WORK

Slicing has been applied to many software-engineering problems [Horwitz and Reps
1992], including program understanding [Jackson and Rollins 1994; Reps and Rosay
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(a) Program with differing
calling contexts for

procedure p

(b) Specialization of
p resulting from
slicing at line 15
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(1) int g = 0; int g = 0;
(2)

(3) int p(O) { int p_20) {
(4) ++g; +t+g;

(5) return g; return g;
6 } }

€p)

(8) void p_10) {
(€)) ++g;

(10) }

(11)

(12) int main() { int main() {
(13) int a = pQ); p-10;

(14) int b = pQ);
(15) printf("b = %d", b);
(16) } }

int b = p_20;
printf("b = %d", b);

Fig. 28. (a) Example program for which a procedure is specialized based on whether its return
value can affect the variables in the slicing criterion. (b) Specialization slice with respect to the
call to printf on line (15): the first call to p is retained only for the side-effect of incrementing g,
and thus p-1 has return type void; the return value from the second call contributes to the value
of b in line (15), and thus p-2 has a return statement and its return type is int.

1995; De Lucia et al. 1996; Field et al. 1995], maintenance [Gallagher and Lyle 1991;
Canfora et al. 1994; Lakhotia and Deprez 1998], debugging [Lyle and Weiser 1986;
1987], testing [Binkley 1992; Bates and Horwitz 1993], differencing [Horwitz 1990;
Horwitz and Reps 1991], specialization [Reps and Turnidge 1996], and merging
[Horwitz et al. 1989]. The literature on program slicing is extensive; literature
surveys include [Tip 1995; Binkley and Gallagher 1996; Mund and Mall 2007].
Some of the related work on slicing has already been summarized in §1 and §3.

Binkley et al. [2004] gave declarative semantic specifications for a number of
different varieties of slices. Their work uses a formal framework of syntactic and
semantic projections [Harman et al. 2003] to unify and relate eight different kinds
of slicing criteria for static and dynamic slicing. Binkley et al. [2006] carry this
approach further, using the same framework to relate slicing techniques to par-
tial evaluation (for single-procedure programs). In contrast, our work is mainly
algorithmic in nature; moreover, because our work shows how automata-theoretic
techniques allow explicit manipulations of representations of unrolled SDGs and
infinite sets of configurations to be performed, our work brings a new collection of
algorithmic techniques to bear on slicing problems. While our experiments used C
programs, the principles on which Alg. 1 is based should apply to interprocedural
slicing for any language.

In the Weiser’s original paper on program slicing [Weiser 1984], he shows that
finding semantically minimal slices is, in general, undecidable. Consequently, re-
search on slicing has studied different notions that side-step the undecidability
problem. A common approach, which is used in this paper and goes back to the
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introduction of PDGs for program slicing [Ottenstein and Ottenstein 1984], is that
no evaluation or simplification is performed, and the elements of the output slice are
all elements from the input program. There has been more recent work by Snelting
et al. [2006], Canfora et al. [1994], Fox et al. [2004], Danicic et al. [2005], and Jaffar
et al. [2012] that combines slicing-like operations with simplification operations or
symbolic execution. Some of that work still uses SDG-like structures.

Conditioned slicing [Canfora et al. 1994; Fox et al. 2004; Danicic et al. 2005]
combines static slicing and program simplification to produce executable program
slices. The simplification phase propagates information forward to remove state-
ments that cannot be executed when a given constraint holds on the initial state.
Some of this work merely applies off-the-shelf slicing algorithms for the static-slicing
component and hence could adopt the specialization-slicing algorithm presented in
this paper: Danicic et al. [2005] use the static-slicing algorithm of Ouarbya et al.
[2002]; Fox et al. [2004] use an implementation of Weiser’s algorithm.

Harman and Danicic [1997] studied what they call amorphous slicing, which
drops the requirement of syntax preservation. What distinguishes an amorphous
slice is merely that the number of vertices in the slice’s control-flow graph (CFG) is
no greater than the number of vertices in the original program’s CFG. We have no
such restriction, and in fact a slice created by Alg. 1 could be larger overall than the
original program. Consequently, a slice returned by Alg. 1 does not always qualify
as an amorphous slice; however, our work is in somewhat the same spirit—especially
the material in §7.2 on procedure pointers and indirect calls.

Binkley [1997] defined the notion of a calling-context slice: in addition to an SDG
vertex v, a slicing criterion for a calling-context slice includes a calling context c,
where c is a single stack configuration. A calling-context slice includes the vertices
on which v depends in calling context ¢, but excludes vertices if they either have
no influence on v or can only influence v in calling contexts other than c¢. Krinke
[2004] identified a small degree of imprecision in Binkley’s algorithm, and gave a
more precise algorithm for calling-context slicing.

The PDS-based slicing algorithm that we use in this paper generalizes calling-
context slicing in two ways:

(1) The use of a PDS allows slicing with respect to a slicing criterion that consists
of a reqular language of configurations, which can be an infinite set.

(2) The answer is reported in the form of an automaton that represents a regular
language of configurations; the answer language can also be an infinite set.

Calling-context slicing addresses only the simpler case in which

—the language of stack configurations in each slicing criterion is restricted to be a
singleton set {(v, ¢)}; and

—the answer is reported as merely a finite set of SDG vertices, rather than as a
possibly infinite set of configurations.

Moreover, Alg. 1 relies on generalization (2) in a crucial way. The core task in
specialization slicing is to find a finite partition of the potentially infinite set of
configurations in a stack-configuration slice (Defn. 3.6). The latter set is captured
exactly by the automaton Al created in line 3 of Alg. 1. The fact that we can
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manipulate Al explicitly allows us to convert Al into automaton A6, from which
we extract a solution to the configuration-partitioning problem (Defn. 3.6).

Our work is not the first to apply ideas and algorithms from the model-checking
community to program slicing. Hong et al. [2005] introduced abstract slicing, which
starts with a program model obtained via predicate abstraction [Graf and Saidi
1997] (and hence is a more precise abstraction of a program than the program’s
control-flow graph). The dependence relations used for abstract slicing are gen-
eralizations of the standard notions of flow dependence and control dependence,
suitable for use with their more refined model. They also find slices by using
NuSMV—a model checker for the branching-time temporal logic CTL—to com-
pute the least fixed point of a CTL formula that encodes the slicing problem. This
approach enables them to avoid having to construct an explicit dependence graph,
which could be very large as more predicates are used. Sun et al. [2010], [2011] use
pushdown systems to perform information-flow-control analysis, a problem that is
closely related to program slicing.

The history of the model-checking problem for PDSs is recounted by Bouajjani
et al. [2000, §6], who credit Biichi with establishing the foundational result ([Biichi
1964] and [Biichi 1988, Ch. 5]), and point out that it was rediscovered several
times (e.g., by Caucal [1992] and Book and Otto [1993]). By encoding SDGs as
PDSs (Defn. 2.6 and Fig. 5), we are able to harness this powerful technology—and
make use of an existing implementation—rather than having to “rediscover” and
reimplement it for SDGs.

Minimal reverse-deterministic FSAs were used by Gupta [1994] as a symbolic
representation for a class of inductive Boolean functions. The state complexity of
a regular language L is the number of states in the minimal deterministic FSA for
L. Sebej [2010] studied the change in state complexity between a regular language
L and its reversal L®. He showed that if L has state complexity n, the state
complexity of L is between logn and 2".

In §1, we discussed how our work was inspired by the notion of polyvariant
specialization in partial evaluation [Jones et al. 1993, p. 370]. In addition to spe-
cialization slicing and feature removal, the automaton-based analysis developed in
this paper also has an application in partial evaluation. So-called “off-line” par-
tial evaluators perform a preliminary phase of binding-time analysis to identify, for
each procedure, the different patterns of “static” (i.e., “supplied”) and “dynamic”
(i.e., “delayed”) parameters that can arise during the second specialization phase
[Jones et al. 1993, p. 84]. Such binding-time information can be obtained using
the techniques developed in this paper. In particular, if one performs a forward
stack-configuration slice of a program P (via Poststar) with respect to P’s dynamic
inputs, and then creates a minimal reverse-deterministic automaton A from the
answer automaton, A contains explicit information about the set of possible pat-
terns of “dynamic” bindings that can arise for different stack configurations—and
hence provides implicit information about the complementary patterns of “static”
bindings. That is, the method just sketched out is an algorithm for polyvariant
binding-time analysis.

What is striking about the automaton-based algorithm is that it is quite differ-
ent from a more standard analysis approach that builds up, for each procedure,
a function from the set of input binding-time patterns to a return binding-time
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[Bulyonkov 1993]. In essence, such an analysis propagates tuples of binding-times.
In contrast, the automaton-based approach propagates binding-time facts indepen-
dently in the potentially infinite unrolled SDG; however, each independent fact is
indexed by a stack-configuration, which—via the construction of a minimal reverse-
deterministic automaton—is used to coalesce related “independent” binding-time
facts.

11. CONCLUSIONS

In this paper, we introduced a new variant of program slicing, called specializa-
tion slicing, and presented an algorithm for the specialization-slicing problem that
creates an optimal output slice (Cor. 5.1). At an intuitive level, the claim that
Alg. 1 produces an optimal answer follows from two properties: (i) the output slice
created by Alg. 1 is minimal in the sense defined by Defn. 3.6, and (ii) each element
replicated by Alg. 1 is necessary for the output slice to capture one of the input
program’s specialized patterns of dependences.

Given the level of sophistication of the pushdown-system machinery used in
Alg. 1, it is natural to wonder whether some simple SDG-based algorithm solves the
specialization-slicing problem. In working on the problem, we considered numerous
such algorithms, one of which is discussed in §1.1.2. The flaws in such attempts mo-
tivated us to investigate the fundamental principles underlying specialization slic-
ing. These principles are presented in §3, where we formalized specialization slicing
in terms of a partitioning problem on the unrolled SDG (Eqn. (3) and Defn. 3.6)
and formulated declarative conditions for soundness and completeness (Defn. 3.5).

Because the unrolled SDG is, in general, an infinite graph, in §4 we encoded the
SDG as a pushdown system. This approach allowed us to represent finitely the
infinite sets of objects that are needed to solve the partitioning problem. Moreover,
it allowed us to bring to bear the repertoire of symbolic techniques that had already
been developed for PDSs in the model-checking community [Bouajjani et al. 1997;
Finkel et al. 1997]. With this powerful machinery at our disposal, we showed how
to obtain the desired answer by performing just a few simple automata-theoretic
operations (cf. lines 3-8 of Alg. 1).

There is a conceptual advantage to using PDS technology to work with the un-
rolled SDG rather than the SDG. Instead of working with vertices in a finite graph
(i.e., the SDG) that are reachable along context-free paths, PDS technology allows
one to work directly with P-configurations that are reachable along paths in an
infinite graph (i.e., the unrolled SDG). With the latter approach, there is a more
direct correspondence between the concepts in the declarative specification of the
desired result—Eqn. (3) and Defn. 3.6—and the operations performed by Alg. 1.

Although Alg. 1 can, in the worst case, exhibit exponential behavior, our ex-
periments suggest that exponential behavior does not arise in practice: no proce-
dure had more than four specialized versions, and the vast majority of procedures
(90.8%) had just a single version (see Fig. 20). Moreover, worst-case exponential
behavior of operations like automaton determinization also does not seem to arise
in practice.

In §8, we showed that specialization slicing, in conjunction with forward stack-
configuration slicing, provides a solution to the feature-removal problem for multi-
procedure programs. While it was previously known how to solve the feature-
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removal problem for single-procedure programs, no algorithm was known for multi-
procedure programs.

The paper by Horwitz et al. [1990] on closure slicing of SDGs is one of the
“standard” papers cited about program slicing, and has served as the jumping-
off point for much subsequent work on slicing in the programming-languages and
software-engineering communities. In §7.4, we presented a PDS-based analogue of
the three-phase algorithm of Horwitz et al., which was 2.9 times faster than the
one-phase PDS-based algorithm on the larger examples. Many researchers have
used SDG-like data structures, as well as algorithms similar to the one given by
Horwitz et al., and thus it may be possible to carry over the principles used in
Algs. 1 and 2 to such work.

Although parts of our implementation are specific to CodeSurfer/C, the principles
can be used to perform specialization slicing on programs written in any language
for which one has an SDG-like intermediate representation.
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A. CORRECTNESS OF ALG. 1

Theorem 4.12. Automaton A6 created in line 8 of Alg. 1 is a minimal reverse-
deterministic automaton. O

PROOF. Because the operations determinize and minimize do not change the
language that an automaton accepts, the two calls on reverse in lines 4 and 7
cancel, and hence L(A6) = L(Al).

Automaton A4 created in line 6 of Alg. 1 is a minimal deterministic automaton
for the reversed language of configurations in the stack-configuration slice. That
is, A4 is a minimal deterministic FSA and L(A44) = L%(Al) = L%(A46). Con-
sequently, we just have to argue that the call on reverse in line 7, followed by
removeEpsilonTransitions in line 8 causes A6 to be MRD.

Words in L(A1) (L(A6)) all have the form (vertex-symbol call-site™); moreover,
the call-site symbols are disjoint from the vertex symbols. Consequently, there
cannot be any loops that allow repetitions of the vertex symbols. Thus, at the
beginning (and end, for the reversed languages), there are no loops or self-loops.
What this means is that the minimized automaton (A4) must have a single accept-
ing state. Moreover, because A4 is deterministic, it has no e-transitions.

As mentioned in the remark in §4.3, in any call on reverse(A), the only condition
that necessitates the introduction of an e-transition is if A has multiple accepting
states (because one needs to have a single start state in A’ = reverse(A)). Conse-
quently, the statement “A5 = reverse(A44)” could be implemented by making A5’s
initial state be the unique final state of A4, and A5’s final state be the initial state
of A4. Because A4 has no e-transitions, A5 would have no e-transitions, and thus
removeEpsilonTransitions would have no effect (i.e., A6 = A5). Because A4 is a
minimal deterministic FSA, A5 and A6 would both be MRD.

In our implementation, lines 4-8 are implemented with OpenFST FSAs [OpenFST
2012]. The reverse operation in OpenFST introduces a dummy initial state with
an e-transition. Thus, the implementation calls removeEpsilonTransitions, which
removes the single, initial e-transition from A5 to create A6, which is MRD. [

Theorem 4.13. A solution to the configuration-partitioning problem (Defn. 3.6)
is encoded in the structure of automaton A6 created in line 8 of Alg. 1. O

PROOF. A6 is the unique MRD automaton for the language L(Al) =
Prestar{Pg](C)—i.e., the stack-configuration slice of S with respect to C.

Instead of A6, consider how a word is accepted by A4 (which is nearly iden-
tical to A6 except for the direction of transitions). Each A4 word has the form
(call-site™ vertex-symbol). Because the call-site symbols are disjoint from the ver-
tex symbols, and because A4 is a minimal deterministic FSA, two properties must
hold: (i) A4 must have a unique final state acc, and (ii) it can have no loops that
involve the final state.

Processing starts in A4’s initial state (A6’s final state), and follows transitions
of the form (g¢;,C,q;), where C is a call-site label. Because A4 is deterministic,
the call-site™ prefix of the word follows a unique path—in effect, transitioning from
one calling-context partition-element to another at each step. Finally, there is a
transition of the form (g, v, ace) to A4’s unique final state acc.

State g represents the set of variants (of some procedure @) associated with the
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calling-contexts given by the languages Pa4(gx). The program-elements in each of
the variants is the set of PDG vertices V,, = {v | (qx,v, acc) € Transitions(A4)}.
The set of configurations in the partition-element associated with ¢y is, therefore,

Vi X (Paa(qr)".

The partition is defined by Part = {PE,, | ¢, € States(44)}. (Note that Part is
truly a partition because |, PE,, = LE(A4) = L(A1) = L(A6).)

The three conditions of Defn. 3.6 follow from the observations that (i) A4 is
a minimal deterministic FSA, and hence a set V,, cannot be associated with
any (Paa(gm))®, for k # m; (ii) PE,, is defined as a cross-product; and (iii)
in an unrolled SDG, different procedure instances always have different stack-
configurations. [

def

PEQk =

Theorem 4.14. Alg. 1 is a sound and complete algorithm for stack-configuration
slicing. O

PROOF. Let M¢c be the mapping that maps PDG vertices and call-sites in R
back to the original alphabet of S. Let G be the unrolling of R. The proof divides
into two cases.

Completeness: L(A6) consists of all configurations in the closure slice with respect
to C of the unrolling of S. Let (v,u) be an arbitrary configuration in L(A6).
Completeness holds because of the steps of the read-out process in lines 9-24:

—Lines 12-18 create, for the procedure variant that has stack-configuration u, an
SDG in R that has a copy v’ of v. Hence, Mo (v') = v.

—Lines 19-24 preserve the language of stack-configurations of L(A6) in the calling
structure of R, which controls the stack-configurations of Gr. Consequently, Gr
has some configuration (v’, ') such that Ma(u') = w.

Thus, there is a configuration (v, ') in Gg such that Mo ((v', ) = (v, u)).

Soundness: Let (v',u') be an arbitrary configuration in Gg. Soundness holds
because of the steps of the read-out process in lines 9-24:

—The PDG in R that has vertex v’ was created in lines 12-18 from some transition
(g0, v,q) in A6. Hence, Mc(v') = v.

—Moreover, because u’ is a stack-configuration of Gg, and lines 19-24 preserve
the language of stack-configurations of L(A6) in the calling structure of R, u’
must correspond (via M¢) to some word in L(q). Consequently, L(A6) has some
configuration (v, u)) such that Mg (u') = u.

Thus, there is a configuration (v,u)) in L(A6) such that Mc((v', /) = (v,u). O

Corollary 4.15. Let R be the SDG created via Alg. 1 for SDG S and slicing
criterion C. R has no parameter mismatches. O

PROOF. Let Mg be the mapping that maps PDG vertices and call-sites in R
back to the original alphabet of S. Let Gg be the unrolling of S and G be the
unrolling of R. Because each procedure instance is called at a unique call-site
in an unrolled graph, the closure slice in Gg has no parameter mismatches. By
Thm. 4.14, M (Gg) is isomorphic to the closure slice of S with respect to C, and
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hence has no parameter mismatches. M is purely a name-change operation, and
thus does not change the calling structure of Gg. The way the SDG is read out
of automaton A6 preserves the calling structure of Gg in R, and thus R has no
parameter mismatches. [



