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1. INTRODUCTION

An affine relation is a linear-equality constraint between numeric-valued variables of
the form Σni=1aixi + b = 0. For a given set of variables {xi}, affine-relation analysis
(ARA) identifies affine relations that are invariants of a program. For instance, in
the program shown below i− 2j − 5 = 0 always holds at the head of the loop.

int main() {
unsigned int i = 5;

for (unsigned int j = 0; j < 100; j++) {
i = i + 2;

}
}

An induction variable is a variable that is incremented or decremented by a constant
amount on every iteration of a loop. The results of ARA can be used to identify
induction variables by establishing that an affine relation holds between a given
variable and a loop-control variable. For instance, because j is the loop-control
variable in the above example, and i− 2j − 5 = 0 holds at the head of the loop, i
is an induction variable of the loop.

The results of ARA can also be used to determine a more precise abstract value for
a variable via semantic reduction [Cousot and Cousot 1979]. For instance, interval
analysis would reveal that the value of j at the loop head is always in the interval
[0, 100] (i.e., j 7→ [0, 100] or, equivalently, 0 ≤ j ∧ j ≤ 100), but would not identify
an upper bound on the value of i (i 7→ >). Semantic reduction of the interval
invariant {i 7→ >, j 7→ [0, 100]} with respect to the affine relation i − 2j − 5 = 0
allows the known inequality fact j ≤ 100 to be propagated to i to obtain i ≤ 205.

ARA over integers, or ARAZ, was first studied by Karr [1976]. The versions of
ARA in which we are interested are based on machine arithmetic, e.g., arithmetic
modulo 28, 216, 232, or 264, and are able to take care of arithmetic overflow. In
this paper, an element of an abstract domain of affine relations represents the set
of points that satisfy affine relations over variables that hold machine integers.

Operations on values in ARAZ are based on linear algebra. In contrast, operations
on values in ARA2w (for some machine-integer width w, such as w = 32 or w = 64)
are based on an extension of linear algebra to modules over a ring—in particular,
arithmetic performed modulo 2w. Compared with ARAZ, ARA2w has a number of
advantages:

—ARA2w matches the arithmetic used on actual machines. Because arithmetic
overflow is not accounted for in ARAZ, the results of an ARAZ analysis can be
unsound: the analysis may report that properties are invariants of the program
when, in fact, they do not always hold.

—ARA2w is more expressive than ARAZ. In arithmetic mod 2w, multiplying by a
power of 2 serves to shift bits to the left, with the effect that bits shifted off the
left end are unconstrained. For example, in ARA232 the affine relation 231x = 231

places a constraint solely on the least-significant bit of x; consequently, 231x = 231

is satisfied by all states in which x is odd. Similarly, 231x = 0 is satisfied by all
states in which x is even. In contrast, with affine relations over integers it is not
possible to express information about the parity of a variable.
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This paper addresses a wide variety of issues that arise when performing ARA
over machine arithmetic, and presents new results in each of the topics considered.
The overall contribution of our work is a new abstract domain for ARA, for which
we present

—algorithms for creating sound abstract transformers, which are needed to set up
the ARA equation system that models a given program (§6 and §7),

—algorithms needed inside a program analyzer for solving a set of ARA equations
(§5),

—results that show how our abstract domain relates to previous work (§4), and

—results of experiments with an implementation to evaluate the costs and benefits
of our methods (§8).

Our work was inspired by techniques described in two papers by King and
Søndergaard [2008], [2010]. Despite the potential for confusion between our work
and that of King and Søndergaard, we have adopted the name “KS2w” (or simply
“KS” when the value of w is understood) for our ARA domain, in homage to their
work.

The version of the KS domain that King and Søndergaard used for program
analysis [2010] is the same as our KS domain restricted to Booleans (i.e., affine
relations over variables that hold 1-bit values: KS21). The authors of the present
paper improved upon the King/Søndergaard work in [Elder et al. 2011], which
introduced a normal form for representing KS2w elements for arbitrary machine-
integer width w, and used the normal form to give polynomial-time algorithms for
“best” versions of join, meet, equality, and projection, as well as for finding best
KS2w transformers (replacing the over-approximating methods that had been given
by King and Søndergaard).

Because the abstraction of King and Søndergaard abstracts sets of points in Bn,
they model program variables by using, e.g., 32 or 64 Boolean variables, and express
all operations via bit-blasting. Compared with their work, we avoid the use of bit-
blasting, and work directly with representations of w-bit affine-closed sets. The
greatly reduced number of variables that comes from working at word level opened
up the possibility of applying our methods to much larger problems. As discussed
in §5 and §8, we are able to apply our methods to interprocedural program analysis.

The remainder of this section introduces the issues addressed in the individual
sections of the paper.

Linear Algebra for Arithmetic Modulo 2w (§2). To perform ARA for machine
arithmetic, we must work in the ring Z2w , rather than in a field, as in ARA for
integers [Karr 1976; Müller-Olm and Seidl 2004]. Some aspects of standard linear
algebra do not apply in Z2w , and thus §2 discusses what can and cannot be carried
over from standard linear algebra. In §2, we give the technical definitions of the
abstract domains for ARA with which we work. In particular, we introduce a useful
normal form (so-called “Howell form” for matrices). Howell form has not been used
in past work on modular-arithmetic ARA, and turns out to simplify some of the
issues that come up in later sections.

Comparing Domains for ARA (§3 and §4). Prior to our work, Müller-Olm and
Seidl [2005a], [2007] and King and Søndergaard [2008], [2010] proposed two different
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abstract domains for modular-arithmetic ARA (which we call the MOS domain and
the KS domain, respectively). However, as mentioned above, the KS domain was
only fully worked out for the Boolean case, KS21 . In addition, the relationship
between the MOS and KS domains was unclear.
§3 and §4 considers these domains, along with several variants, and shows how

they relate to each other. In particular, we show that MOS2w and KS2w are, in
general, incomparable; however, we give sound interconversion methods. That is,
we give an algorithm to convert an MOS2w element uMOS to an over-approximating
KS2w element uKS—i.e., γMOS(uMOS) ⊆ γKS(uKS)—(see §4.2), as well as an algo-
rithm to convert a KS2w element vKS to an over-approximating MOS2w element
vMOS—i.e., γKS(vKS) ⊆ γMOS(vMOS)—(see §4.3 and §4.4).

Operations on KS Domain Elements (§5). In §5, we describe the details of KS2w .
§5 covers two related issues:

—How to perform all of the standard abstract-domain operations—join, meet, as-
sume, checking containment, etc.—needed for solving KS2w equations for an in-
traprocedural analysis problem (§5.1).

—How to perform the additional domain operations needed for solving KS2w equa-
tions for an interprocedural analysis problem (§5.2).

Creating Abstract Transformers in the KS Domain (§6 and §7). Past work on
ARA has assumed that the analysis is to be applied to source-code programs,
and that one was only interested in creating abstract transformers for statements
that perform affine transformations—e.g., x = 3 ∗ x + 4 ∗ y + 6. More precisely,
past work has been targeted at supporting a modeling language of affine programs,
in which one can define non-deterministic flow graphs that can call each other
recursively [Müller-Olm and Seidl 2004]. To model program actions, the modeling
language provides a restricted language of (i) affine transformations, and (ii) non-
deterministic assignments of the form “x =?,” for which the semantics is that x
may hold any possible value afterward. An analyzer would create an abstraction of
a concrete program by modeling affine transformations exactly, but modeling read
statements of the form “read(x)” and assignment statements of the form “x = t,”
where t is a non-affine expression, with “x =?.”

The material presented in §5 is sufficient for creating a similar modeling language,
based on the KS domain, for affine programs using modular arithmetic. However,
there are situations in which using such a modeling language may be inconvenient.
In particular, one might have a formal specification of the concrete semantics of the
programming language of interest, e.g., as an operational semantics or an axiomatic
semantics. Such a specification of the semantics is not likely to use only affine trans-
formations; on the contrary, the specification is likely to include arithmetic, logical,
and “bit-twiddling” operations (such as left-shift; arithmetic and logical right-shift;
bitwise-and, bitwise-or, and bitwise-xor; etc.). To address this problem, §6 and §7
describe two techniques that can be used to create sound abstract transformers for
the KS domain.

—§6 describes a greedy, operator-by-operator abstraction method for obtaining KS
abstract transformers.
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—§7 describes how a solver for satisfiability modulo a theory (SMT) can be used
to create best KS abstract transformers—i.e., ones that attain the fundamental
limits on precision that abstract-interpretation theory establishes.

Experiments (§8). §8 presents an experimental study with the Intel IA32

(x86) instruction set in which best KS abstract transformers and two greedy,
operator-by-operator reinterpretation methods—KS-reinterpretation (§6) and
MOS-reinterpretation [Lim and Reps 2013, §4.1.2]—are compared in terms of their
performance and precision. The precision comparison is done by comparing the
affine invariants obtained at branch points, as well as the affine procedure sum-
maries obtained for procedures. For KS-reinterpretation and MOS-reinterpretation,
we also compare the abstract transformers generated for individual x86 instruc-
tions.

Other Material. §9 discusses related work. §10 concludes. Proofs can be found
in the appendices.

2. TERMINOLOGY AND NOTATION

All numeric values in this paper are integers in Z2w for some bit width w. That is,
values are w-bit machine integers with the standard operations for machine addition
and multiplication. Addition and multiplication in Z2w form a ring, not a field, so
some facets of standard linear algebra do not apply, and thus we must be cautious
about carrying over intuition from standard linear algebra. In particular, each odd
element in Z2w has a multiplicative inverse (which may be found in time O(logw)
[Warren 2003, Fig. 10-5]), but no even element has a multiplicative inverse. The
rank of a value x ∈ Z2w is the maximum integer p ≤ w such that 2p divides x
[Müller-Olm and Seidl 2005a; 2007]. For example, rank(1) = 0, rank(24) = 3, and
rank(0) = w. Every element x ∈ Z2w has a unique factoring of the form u2rank(x),
where u is odd and 1 ≤ u ≤ 2w−rank(x) − 1 (e.g., 24 = 3 ∗ 23). Elements of Z2w are
still ordered by less-than (<); i.e., 0 < 1 < 2 < . . . < 2w − 1; however, because of
arithmetic wrap-around, we no longer have the usual laws that connect + with <,
and × with <. As a shorthand, we sometimes write a value in Z2w as a negative
number “−m” rather than as 2w −m (e.g., “−1” really denotes 2w − 1).

Throughout the paper, k is the size of the vocabulary V—i.e., the variable-set
under analysis. A concrete state is an assignment to the variables of V—i.e., a
function in V → Z2w (which is isomorphic to Zk2w). Assignment[V ] denotes the set
of assignments over V .

A two-vocabulary relation R[V ;V ′] is a transition relation between assignments
in the pre-state vocabulary V (i.e., Assignment[V ]) and assignments in the post-
state vocabulary V ′ (Assignment[V ′]). Thus, a transition relation R[V ;V ′] in the
concrete collecting semantics is a subset of Zk2w ×Zk2w (which is isomorphic to Z2k

2w).
Matrix addition and multiplication are defined as usual, forming a matrix ring.

We denote the transpose of a matrix M by M t. A one-vocabulary matrix is a matrix
with k + 1 columns. A two-vocabulary matrix is a matrix with 2k + 1 columns. In
each case, the “+1” is related to the fact that we capture affine rather than linear
relations (however, the technical reasons for the extra column vary according to
what kind of matrix we are dealing with). In conjunction with such matrices, a
concrete state is represented by a row vector of length k + 1, where the entry in
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the “extra” position is 1. I denotes the (square) identity matrix (whose size can be
inferred from context). The rows of a matrix M are numbered from 1 to rows(M);
the columns are numbered from 1 to columns(M).

The row space of a matrix M is defined by rowM
def
= {x | ∃w : wM = x}. When

we speak of the “null space” of a matrix, we actually mean the set of row vectors
whose transposes are in the traditional null space of the matrix. Thus, we define

nulltM
def
= {x |Mxt = 0}.

Notation for Varying Vocabularies. Because the MOS domain inherently in-
volves pre-state-vocabulary to post-state-vocabulary transformers (see §2.4), our
definitions of the AG and KS domains (§2.2 and §2.3, respectively) are also two-
vocabulary domains. Technically, AG and KS can have an arbitrary number of
vocabularies, including just a single vocabulary. Thus, to be able to distinguish
between one-vocabulary and two-vocabulary instances of AG and KS, we introduce
the following notation. For a set of variables V , KS[V ] denotes the set of KS values
over V ; when V and V ′ are disjoint sets of variables, KS[V ;V ′] denotes the set of
KS values over V ∪V ′. KS[V ;V ′] could also be written as KS[V ∪V ′], but because
V and V ′ generally denote the pre-state and post-state variables, respectively, the
notation KS[V ;V ′] emphasizes the different roles of V and V ′. AG[V ], AG[V ;V ′],
and Assignment[V ;V ′] are defined similarly.

For use in §6, we extend this notation to cover singletons: if i is a single variable
not in V , then KS[V ; {i}] denotes the set of KS values over the variables V ∪ {i}.
Operations sometimes introduce additional temporary variables, in which case we
have domains such as KS[V ; {i, i′}], KS[V ; {i, i′, i′′}], and KS[V ;V ′; {i}].

As will become clear in §2.2–§2.4, each element of AG[V ] and KS[V ] represents
a set in P(Assignment[V ]), and each element of MOS, AG[V ;V ′], and KS[V ;V ′]
represents a set in P(Assignment[V ;V ′]).

2.1 Matrices in Howell Form

One way to appreciate how linear algebra in rings differs from linear algebra in fields
is to see how certain issues are finessed when converting a matrix to Howell form
[Howell 1986]. The Howell form of a matrix is an extension of reduced row-echelon
form [Meyer 2000] suitable for matrices over Zn. Because Howell form is canonical
for matrices over principal ideal rings [Howell 1986; Storjohann 2000], it provides
a way to test whether two abstract-domain elements are equal—i.e., whether they
represent the same set of concrete values. Such an equality test is needed during
program analysis to determine whether a fixed point has been reached.

Definition 2.1. The leftmost nonzero value in a row vector is its leading value.
The leading value’s index is the leading index. A matrix M is in row-echelon
form if

—All all-zero rows are at the bottom.

—Each row’s leading index is strictly greater than that of the row above it.

If j is not the leading index of any row in a matrix in row-echelon form, we say
that column j is a skipped column.

If M is in row-echelon form, let [M ]i denote the matrix that consists of all rows
of M whose leading index is i or greater.
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A matrix M is in Howell form if

(1) M is in row-echelon form and has no all-zero rows,

(2) the leading value of every row is a power of two,

(3) each leading value is the largest value in its column, and

(4) for every row ~r of M , for any p ∈ Z, if i is the leading index of 2p~r, then
2p~r ∈ row([M ]i).

2

In Defn. 2.1, item (4) may be confusing, and thus warrants an example.

Example 2.2. Suppose that w = 4, so that we are working in Z16. Consider the
following two matrices and their Howellizations:

M1
def
=
[
4 2 4

]
Howellize(M1) =

[
4 2 4
0 8 0

]

M2
def
=

[
4 2 4
0 4 0

]
Howellize(M2) =

[
4 2 4
0 4 0

]
First, notice that M1 does not satisfy item (4). M1 has only one row, [4 2 4], and
consider what happens when this row is multiplied by powers of 2:

21 · [4 2 4] = [8 4 8]
22 · [4 2 4] = [0 8 0]
23 · [4 2 4] = [0 0 0]

In particular, the leading index of 22 · [4 2 4] = [0 8 0] is 2; however, because
row([M ]2) = ∅, [0 8 0] 6∈ row([M ]2). Consequently, [0 8 0] must be included in
Howellize(M1). We say that a row like [0 8 0] is a logical consequence of [4 2 4]
that is added to satisfy item (4) of Defn. 2.1.

In contrast, matrix M2 satisfies item (4) (and, in fact, M2 is already in Howell
form). For matrix M2 to fail to satisfy item (4), there would have to be some row
~r and power p for which (a) the leading index i of 2p~r is strictly greater than the
leading index of ~r, (b) 2p~r 6= 0, and (c) 2p~r 6∈ row([M ]i). In this example, the only
interesting quantity of the form 2p~r is 22 · [4 2 4] = [0 8 0]. The leading index of
[0 8 0] is 2, but [0 8 0] = 2 · [0 4 0], and so [0 8 0] ∈ row([M ]2). Consequently, M2

satisfies item (4). 2

As we show shortly, a matrix can be put in Howell form using the same elementary
row operations familiar from ordinary linear algebra: (i) the addition of a multiple
of one row to a different row, (ii) interchanging two rows, and (iii) multiplying all
entries in a row by a nonzero constant. As in ordinary linear algebra, operations (i)
and (ii) leave a matrix’s row space and null space unchanged. Unlike ordinary linear
algebra, operation (iii) preserves the row space and null space only if the constant is
odd. Moreover, the Howell form of a matrix is unique among all matrices with the
same row space (or null space) [Howell 1986].1 As mentioned earlier, this property

1In this respect, Howell form plays the same role for matrices over Z2w that reduced row-echelon
form plays for matrices over rationals. A matrix M is in reduced row-echelon form if
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Algorithm 1 Howellize: Put the matrix G in Howell form.

1: procedure Howellize(G)
2: Let j = 0 . j is the number of already-Howellized rows
3: for all i from 1 to columns(G) do
4: Let R = {all rows of G with leading index i}
5: if R 6= ∅ then
6: Pick an ~r ∈ R that minimizes rank ri
7: Pick the odd u and rank p so that u2p = ri
8: ~r ← u−1~r . Adjust ~r, leaving ri = 2p

9: for all ~s in R \ {~r} do
10: Pick the odd v and rank t so that v2t = si
11: ~s← ~s− (v2t−p)~r . Zero out si
12: if row ~s contains only zeros then
13: Remove ~s from G
14: In G, swap ~r with Gj+1 . Place ~r for row-echelon form
15: for all h from 1 to j do . Set values above ri to be 0 ≤ · < ri
16: d← Gh,i � p . Pick d so that 0 ≤ Gh,i − dri < ri
17: Gh ← Gh − d~r . Adjust row Gh, leaving 0 ≤ Gh,i < ri

18: if ri 6= 1 then . Add logical consequences of ~r to G
19: Add 2w−p~r as last row of G . New row has leading index > i

20: j ← j + 1

of Howell form provides a way to test two MOS elements, two KS elements, or two
AG elements for equality.

The notion of a saturated set of generators used by Müller-Olm and Seidl [2007]
is closely related to Howell form, but is defined for an unordered set of matrices
rather than row-vectors arranged in a matrix, and has no analogue of item (3). The
algorithms of Müller-Olm and Seidl do not compute multiplicative inverses (see
§9.2), so a saturated set has no analogue of item (2). Consequently, a saturated set
is not canonical among generators of the same space.

Our technique for putting a matrix in Howell form is the procedure Howellize
(Alg. 1). Much of Howellize is similar to a standard Gaussian-elimination al-
gorithm, and it has the same overall cubic-time complexity as Gaussian elimina-
tion. In particular, Howellize minus lines (15)–(19) puts G in row-echelon form
(item (1) of Defn. 2.1) with the leading value of every row a power of two. (Line (8)
enforces item (2) of Defn. 2.1.) Howellize differs from standard Gaussian elim-
ination in how the pivot is picked (line (6)) and in how the pivot is used to zero
out other elements in its column (lines (7)–(13)). Lines (15)–(17) of Howellize
enforce item (3) of Defn. 2.1, and lines (18)–(19) enforce item (4). Lines (12)–(13)
remove all-zero rows, which is needed for Howell form to be canonical.

(1) It is in row-echelon form.

(2) Every leading value is 1 and is the only nonzero entry in its column.

In Z2w , each odd element has a multiplicative inverse, but no even element has one; consequently,
one cannot divide a row by a power of 2 when working in Z2w . Given this restriction, items (2)
and (3) of Defn. 2.1 are a natural generalization of item (2) above.
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Alg. 1 is simple and easy to implement. For analyses over large vocabularies, one
could replace Alg. 1, which has cubic-time complexity with, say, the algorithm of
Storjohann [2000], which has the same asymptotic complexity as matrix multipli-
cation.

The following properties of matrices in Howell form will be used in §2.5 to bound
the heights of the KS and MOS domains:

Lemma 2.3. Suppose that (n ×m)-matrix M is in Howell form. Suppose that
we append a new row ~r /∈ row(M) to M and Howellize the result, to obtain matrix
M ′ such that M 6= M ′. Then this change affects at least one of the columns. In
particular, if you think of a skipped column as having rank w, no column’s rank
increases, and for at least one column the rank decreases:

(1) for every column position j, either
(a) j is the leading index of some row in M , with leading value v = 2p, and j

is the leading index of some row in M ′ with leading value v′ = 2q, where
0 ≤ q ≤ p < w,

(b) j is a skipped column in both M and M ′, or
(c) j is a skipped column in M , and j is the leading index of some row in M ′

with leading value v′ = 2q, where 0 ≤ q < w.

(2) for at least one column position j, either
(a) j is the leading index of some row in M , with leading value v = 2p, and j

is the leading index of some row in M ′ with leading value v′ = 2q, where
0 ≤ q < p < w, or

(b) j is a skipped column in M , and j is the leading index of some row in M ′

with leading value v′ = 2q, where 0 ≤ q < w.

Note that the condition on q and p in (1a) is 0 ≤ q ≤ p < w, whereas in (2a) it is
0 ≤ q < p < w.

Proof. For a matrix M in Howell form with n columns, we can create a
“counter” vector c, defined by

ci =

{
w if i is a skipped column
rank(li) if li is the leading value of column i

The lemma asserts that if M ′ = Howellize(M ∪ {~r}) 6= M , then no entry in c
increases (properties (1a)–(1c)), and at least one entry in c decreases (properties
(2a)–(2b)).

We use the fact that the Howell form of a matrix is canonical. Thus, when
a minimal-rank pivot element is chosen in line (6) of Alg. 1, if one of the possi-
bilities is a row ~s from M , we can always pick ~s. Consequently, for the result of
Howellize(M∪{~r}) to be different from M , either (i) a row is generated for which
the rank of the leading value is smaller than the rank of the leading value of some
row of M , or (ii) a row ~t is generated for which the leading index j corresponds to a
skipped column in M . In the latter case, rank(tj) < w, and thus in both situations,
(1) no entry in c increases, and (2) the value of at least one entry in c decreases.

Corollary 2.4. For a matrix M in Howell form with n columns, the longest se-
quence of row-append operations that can be made in which each operation satisfies
the conditions of Lem. 2.3 is wn.
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Proof. Consider again the vector c used in the proof of Lem. 2.3. As successive
row-append operations are performed, c acts as a kind of “counter.” For the empty
matrix, the counter has the maximum possible value: (w,w, . . . , w). Each slot
of c can only be pushed down to 0; once c reaches (0, 0, . . . , 0), any row-append
operation, followed by Howellization, will not change M . By Lem. 2.3, each row-
append operation decreases the value of at least one entry in c; consequently, at
most wn row-append operations are possible.

Moreover, it is possible to have a sequence of row-append operations of length wn
that each change M . Start with the empty matrix and c = (w,w, . . . , w). Then,
repeatedly (i) chose a column j for which 0 < cj ≤ w, and (ii) append to M a
row with all zeros, except for 2cj−1 in the jth position. After M is Howellized, c is
unchanged except in position j, where the value of cj has been decreased by 1.

2.2 The Affine-Generator Domain

An element in the Affine Generator domain (AG[ ~X; ~X ′]) is a two-vocabulary matrix

whose rows are the affine generators of a two-vocabulary relation over variables ~X.
An AG[ ~X; ~X ′] element is an r-by-(2k + 1) matrix G, with 0 < r ≤ 2k + 1. The

concretization of an AG[ ~X; ~X ′] element is the set in P(Assignment[ ~X; ~X ′]) defined
as follows:

γAG (G)
def
=
{

(x, x′) | x, x′ ∈ Zk2w ∧ [1|x x′] ∈ rowG
}
.

The AG[ ~X; ~X ′] domain captures all two-vocabulary affine spaces, and treats them
as relations between pre-states and post-states.

The bottom element of the AG domain is the empty matrix, and the AG[ ~X; ~X ′]

element that represents the identity relation is the matrix

[ 1 ~X ~X′

1 0 0
0 I I

]
. The

AG[{x1, x2}; {x′1, x′2}] element


1 x1 x2 x′

1 x′
2

1 0 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 0 2

 (1)

represents the transition relation in which x′1 = x1, x2 can have any value, and x′2
can have any even value.

To compute the join of two AG elements, stack the two matrices vertically and
Howellize the result.

2.3 The King/Søndergaard Domain

An element in the King/Søndergaard domain (KS) is a two-vocabulary matrix

whose rows represent affine constraints on a two-vocabulary relation. A KS[ ~X; ~X ′]
element is an r-by-(2k + 1) matrix M , with 0 ≤ r ≤ 2k + 1. The concretization of

a KS[ ~X; ~X ′] element M is the set in P(Assignment[ ~X; ~X ′]) defined as follows:

γKS (M)
def
=
{

(x, x′) | x, x′ ∈ Zk2w ∧ [x x′|1] ∈ nulltG
}
.

Like the AG domain, the KS domain captures all two-vocabulary affine spaces,
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and treats them as relations between pre-states and post-states.
It is easy to read out affine equalities from a KS element M (regardless of whether

M is in Howell form): if

[ x1 ... xk x′
1 ... x′

k 1

a1 . . . ak a′1 . . . a′k b
]

is a row of M , then
∑
i aixi +

∑
i a
′
ix
′
i = −b is a constraint on γKS (M). The

conjunction of these constraints describes γKS (M) exactly.
KS elements can be ordered by containment (⊆) of their concretizations. The

bottom element of the KS domain is the matrix
[ ~X ~X′ 1

0 0 1
]
; it consists of one

unsatisfiable constraint, and thus its concretization is the empty set of tuples. The

KS element that represents the identity relation is the matrix
[ ~X ~X′ 1

I −I 0
]
. Suppose

that w = 4, so that we are working in Z16. The KS element

[ x1 x2 x′
1 x′

2 1

1 0 −1 0 0
0 0 0 8 0

]
(2)

represents the transition relation in which x′1 = x1, x2 can have any value, and
x′2 can have any even value. Thus, Eqns. (1) and (2) represent the same transition
relation in AG and KS, respectively.

A Howell-form KS element can easily be checked for emptiness: γKS(M) = ∅ if
and only if it contains a row whose leading entry is in its last column. In that sense,
an implementation of the KS domain in which all elements are kept in Howell form
has redundant representations of bottom (whose concretization is ∅). However,
such KS elements can always be detected during Howellize and replaced by the

canonical representation of bottom, namely,
[ ~X ~X′ 1

0 0 1
]
.

Polynomial-time algorithms for domain operations, such as join and projection,
are discussed in §5. To compute the meet of two KS elements, stack the two matrices
vertically and Howellize the result. Meet and projection can be used to implement
composition (see §5.2.1).

2.4 The Müller-Olm/Seidl Domain

An element in the Müller-Olm/Seidl domain (MOS) is an affine-closed set of affine
transformers, as detailed in [Müller-Olm and Seidl 2007]. An MOS element is
represented by a set of (k+1)-by-(k+1) matrices. Each matrix T is a one-vocabulary

transformer of the form T =
[

1 b
0 M

]
, which represents the state transformation

x′ := x ·M + b, or, equivalently, [1|x′] := [1|x]T .
An MOS element B consists of a set of (k+1)-by-(k+1) matrices, and represents

the affine span of the set, denoted by 〈B〉 and defined as follows:

〈B〉 def
=

{
T

∣∣∣∣∣ ∃w ∈ Z|B|2w : T =
∑
B∈B

wBB ∧ T1,1 = 1

}
.

The concretization of B is the union of the graphs of the affine transformers in
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〈B〉—i.e., the set in P(Assignment[ ~X; ~X ′]) defined as follows:

γMOS (B)
def
=
{

(x, x′)
∣∣x, x′ ∈ Zk2w ∧ ∃T ∈ 〈B〉 : [1|x]T = [1|x′]

}
.

The bottom element of the MOS domain is ∅, and the MOS element that represents
the identity relation is the singleton set {I}.

Example 2.5. If w = 4, the MOS element B =

{[
1 0 0
0 1 0
0 0 0

]
,

[
0 0 2
0 0 0
0 0 0

]}
represents

the affine span

〈B〉 =

{[
1 0 0
0 1 0
0 0 0

]
,

[
1 0 2
0 1 0
0 0 0

]
,

[
1 0 4
0 1 0
0 0 0

]
, . . . ,

[
1 0 12
0 1 0
0 0 0

]
,

[
1 0 14
0 1 0
0 0 0

]}
,

which corresponds to the transition relation in which x′1 = x1, x2 can have any
value, and x′2 can have any even value—i.e., B represents the same transition rela-
tion as Eqns. (1) and (2). 2

The operations join and compose can be performed in polynomial time. If
B and C are MOS elements, B t C = Howellize (B ∪ C) and C ◦ B =
Howellize {BC |B ∈ B ∧ C ∈ C}. In this setting, Howellize of a set of (k + 1)-
by-(k + 1) matrices {M1, . . . ,Mn} means “Apply Alg. 1 to a larger, n-by-(k + 1)2

matrix, in which row i consists of the elements of matrix Mi (e.g., arranged in
row-major order).”

Example 2.6. Consider the set of matrices 〈B〉 from Ex. 2.5. They can be ar-
ranged as the (8× 9)-matrix

M =


1 0 0 0 1 0 0 0 0
1 0 2 0 1 0 0 0 0
1 0 4 0 1 0 0 0 0
. . .
1 0 12 0 1 0 0 0 0
1 0 14 0 1 0 0 0 0


If we apply Howellize to M , we obtain

[
1 0 0 0 1 0 0 0 0
0 0 2 0 0 0 0 0 0

]
, which is the MOS

element B from Ex. 2.5 arranged as a (2× 9)-matrix. 2

2.5 Domain Heights

In all three domains, an element can be represented via an appropriate matrix in
Howell form (where in the case of the MOS domain, we mean a matrix in the
extended sense discussed in Ex. 2.6). For a fixed bit width and a fixed number of
columns, there are only a constant number of Howell-form matrices. Consequently,
the KS, AG, and MOS domains are all finite domains, and hence of finite height.

Theorem 2.7. (1 ) The height of the KS[V ] domain is wk + 1. The height of
the KS[V ;V ′] domain is 2wk + 1.

(2 ) The height of the MOS domain is wk(k + 1) + 1.

Proof. KS[V ], KS[V ;V ′], and MOS are all finite-height domains. Thus, the
length of the longest ascending chain equals the length of the longest descending
chain.
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Proof of (1). For KS[V ] and KS[V ;V ′], Lem. 2.3 and Cor. 2.4 describe properties
of descending chains. By a slight variation on the argument given in Cor. 2.4, the
respective lengths of the longest descending chains in the two domains are wk + 1
and 2wk + 1. The values are wk + 1 and 2wk + 1 rather than w(k + 1) and
w(2k + 1) because any KS value that has a row in which the leading index is
the last column represents ⊥; thus, only the counter values in the first k and 2k
columns, respectively, can be decreased in the manner of Cor. 2.4. The counter
value for the rightmost column can be pushed down exactly once: from w (when

the rightmost column is a skipped column) to 0 (when the KS value is
[ ~X ~X′ 1

0 0 1
]

= ⊥), which accounts for the “+1.”

Proof of (2). For MOS, Lem. 2.3 and Cor. 2.4 describe properties of ascending
chains. Again, by a slight variation on Cor. 2.4, the length of the longest ascending
chain is wk(k+1). The value is wk(k+1)+1 rather than w(k+1)2 +1 because for
each matrix in an MOS value, the first column is either a 1 followed by all zeros,
or all zeros, so there are only k(k+ 1) rather than (k+ 1)2 counter values that can
be decreased in the manner of Cor. 2.4. The final “+1” is for ⊥ (the empty set of
(k + 1)-by-(k + 1) matrices).

Domain elements need not necessarily be maintained in Howell form; instead,
they could be Howellized on demand when it is necessary to check containment (see
§5.1.5). Our implementation maintains domain elements in Howell form using es-
sentially the “list of lists” sparse-matrix representation: each matrix is represented
via a C++ vector of rows; each row is a vector of (column-index, nonzero-value)
pairs.

3. RELATING AG AND KS ELEMENTS

AG and KS are equivalent domains. One can convert an AG element to an equiv-
alent KS element with no loss of precision, and vice versa. In essence, there is
a single abstract domain that has two representations: constraint form (KS) and
generator form (AG). The situation is similar to some other relational domains,
including polyhedra [Cousot and Halbwachs 1978; Bagnara et al. 2008; Jeannet ]
and grids [Bagnara et al. 2006], which also have dual representations. Many imple-
mentations of domains with a dual representation perform some operations in one
representation and other operations in the other representation, converting between
representations as necessary. In contrast, one of the interesting aspects of KS is that
all operations needed by an analyzer can be performed on the KS representation,
without converting to the AG representation.

To convert between KS and AG (and vice versa), we use an operation similar to
singular value decomposition, called diagonal decomposition.

Definition 3.1. The diagonal decomposition of a square matrix M is a triple
of matrices, L, D, R, such that M = LDR; L and R are invertible matrices; and
D is a diagonal matrix in which all entries are either 0 or a power of 2. 2

Müller-Olm and Seidl [2007, Lemma 2.9] give a decomposition algorithm that
nearly performs diagonal decomposition, except that the entries in their D might
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not be powers of 2. We can easily adapt that algorithm. Suppose that their method
yields LDR (where L and R are invertible). Pick u and r so that ui2

ri = Di,i with
each ui odd, and define U as the diagonal matrix where Ui,i = ui. (If Di,i = 0,
then ui = 1.) It is easy to show that U is invertible. Let L′ = LU and D′ = U−1D.
Consequently, L′D′R = LDR = M , and L′D′R is a diagonal decomposition.

From diagonal decomposition we derive the dualization operation, denoted by
·⊥, such that the rows of M⊥ generate the null space of M , and vice versa.

Definition 3.2. The dualization of M , denoted by M⊥, is defined as follows:

—Pad(M) is the columns(M)-by-columns(M) matrix
[
M
~0

]
,

—L,D,R is the diagonal decomposition of Pad(M),

—T is the diagonal matrix with Ti,i
def
= 2w−rank(Di,i), and

—M⊥
def
=
(
L−1

)t
T
(
R−1

)t
2

Matrices D and T in Defn. 3.2 are related by the following property:

Lemma 3.3. Let D and T be square, diagonal matrices, where Di,i = 2pi and
Ti,i = 2w−rank(Di,i) = 2w−pi for all i. Then, nullt T = rowD and nulltD = row T .

Proof. Let ~z be any row vector. To see that nullt T = rowD:

~z ∈ nullt T ⇐⇒ T~z t = 0 ⇐⇒ ∀i : zi2w−pi = 0

⇐⇒ ∀i : 2pi |zi ⇐⇒ ∃~v : ∀i : vi2pi = zi

⇐⇒ ∃~v : ~vD = ~z ⇐⇒ ~z ∈ rowD.

One can show that nulltD = row T by essentially the same reasoning.

Matrix dualization has the following useful property:

Theorem 3.4. For any matrix M , nulltM = rowM⊥ and rowM = nulltM⊥.

Proof. See App. A.

We can therefore use dualization to convert between equivalent KS and AG ele-
ments. For a given (padded, square) AG matrix G = [c|Y Y ′], we seek a KS matrix
Z of the form [X X ′|b] such that γKS (Z) = γAG (G). We construct Z by letting

[b|X X ′] = G⊥ and permuting those columns to Z
def
= [X X ′|b]. This works by

Thm. 3.4, and because

γAG (G) = {(x, x′) | [1|x x′] ∈ rowG}
=
{

(x, x′)
∣∣ [1|x x′] ∈ nulltG⊥

}
=
{

(x, x′)
∣∣ [x x′|1] ∈ nullt Z

}
= γKS (Z) .

Furthermore, to convert from any KS matrix to an equivalent AG matrix, we reverse
the process. Reversal is possible because dualization is an involution: for any matrix

M ,
(
M⊥

)⊥
= M.
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4. RELATING KS AND MOS

4.1 MOS and KS are Incomparable

The MOS and KS domains are incomparable: some relations are expressible in each
domain that are not expressible in the other. Intuitively, the central difference is
that MOS is a domain of sets of functions, while KS is a domain of relations.

KS can capture restrictions on both the pre-state and post-state vocabularies,
while MOS can capture restrictions only on its post-state vocabulary. For exam-
ple, when k = 1, the KS element for “assume x = 2” (before Howellization) is[ x x′ 1

1 0 −2
1 −1 0

]
, i.e., “x = 2 ∧ x = x′.” In contrast, there is no MOS element that

represents x = 2 ∧ x = x′. The smallest MOS element that over-approximates

“assume x = 2” is the identity transformer
{[

1 0
0 1

]}
.

In general, an MOS element M cannot represent transitions with a pre-condition
guard because every element in the concretization of M represents a concrete trans-
former that is total. Therefore, KS can encode transition relations that MOS cannot
encode. On the other hand, an MOS element can encode two-vocabulary relations

that are not affine. One example is the matrix basis B =

{[
1 0 0
0 1 1
0 0 0

]
,

[
1 0 0
0 0 0
0 1 1

]}
.

The set that B encodes is

γMOS (B) =


[
x y x′ y′

] ∣∣∣∣∣∣∣∣
∃w0, w1 :

[
1 x y

]  1 0 0
0 w0 w0

0 w1 w1

 =
[

1 x′ y′
]

∧ w0 + w1 = 1


=
{[
x y x′ y′

] ∣∣∃w0 : x′ = y′ = w0x+ (1− w0)y
}

=
{[
x y x′ y′

] ∣∣∃w0 : x′ = y′ = x+ (1− w0)(y − x)
}

=
{[
x y x′ y′

] ∣∣∃p : x′ = y′ = x+ p(y − x)
}

(3)

Affine spaces are closed under affine combinations of their elements. Thus,
γMOS (B) is not an affine space because some affine combinations of its elements
are not in γMOS (B). For instance, let a =

[
1 −1 1 1

]
, b =

[
2 −2 6 6

]
, and

c =
[
0 0 −4 −4

]
. By Eqn. (3), we have a ∈ γMOS (B) when p = 0 in Eqn. (3),

b ∈ γMOS (B) when p = −1, and c 6∈ γMOS (B) (the equation “−4 = 0 + p(0 − 0)”
has no solution for p). Moreover, 2a− b = c, so c is an affine combination of a and
b. Thus, γMOS (B) is not closed under affine combinations of its elements, and so
γMOS (B) is not an affine space. Because every KS element encodes a two-vocabulary
affine space, MOS can represent γMOS (B) but KS cannot.

4.2 Converting MOS Elements to KS

Soundly converting an MOS element B to a KS element is equivalent to stating
two-vocabulary affine constraints satisfied by B.

To convert an MOS element B to a KS element, we

(1) rewrite B so that every matrix it contains has a 1 in its top-left corner,

(2) build a two-vocabulary AG matrix from each one-vocabulary matrix in B,

(3) join the resulting AG matrices, and
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(4) convert the joined AG matrix to a KS element.

For Step (1), we rewrite B so that

B =

{[
1 ci
0 Ni

]}
, where ci ∈ Z1×k

2w and Ni ∈ Zk×k2w .

If our original MOS element B0 fails to satisfy this property, we can construct an
equivalent B that does. Let C = Howellize(B0); pick the unique B ∈ C such that
B1,1 = 1, and let B = {B}∪{B + C |C ∈ (C \ {B})}. B now satisfies the property,
and 〈B〉 = 〈B0〉.

In Step (2), we construct the matrices

Gi =

[
1 0 ci
0 I Ni

]
.

Note that, for each matrix Bi ∈ B, γMOS ({Bi}) = γAG (Gi). In Step (3), we
join the Gi matrices in the AG domain to yield one matrix G. Thm. 4.1 states the
soundness of this transformation from MOS to AG, i.e., γMOS(B) ⊆ γAG(G). Finally,
G is converted in Step (4) to an equivalent KS element by the method given in §3.

Theorem 4.1. Suppose that B is an MOS element such that, for every B ∈ B,

B =
[

1 cB
0 MB

]
for some cB ∈ Z1×k

2w and MB ∈ Zk×k2w . Define GB =
[

1 0 cB
0 I MB

]
and

G =
⊔

AG {GB |B ∈ B}. Then, γMOS(B) ⊆ γAG(G).

Proof. See App. B.

Because we can easily read affine relations from KS elements (§2.3), this conver-
sion method also gives an easy way to create a quantifier-free formula that over-
approximates the meaning of an MOS element. In particular, the formula read out
of the KS element obtained from MOS-to-KS conversion captures affine relations
implied by the MOS element.

4.3 Converting KS Without Pre-State Guards to MOS

If a KS element is total with respect to pre-state inputs, then we can convert it to
an equivalent MOS element. First, convert the KS element to an AG element G.
When G expresses no restrictions on its pre-state, it has the form

G =


1 V V ′

1 0 b
0 I M
0 0 R

, (4)

where b ∈ Z1×k
2w ; I,M ∈ Zk×k2w ; and R ∈ Zk×r2w with 0 ≤ r ≤ k.

Definition 4.2. An AG matrix of the form

[ 1 V V ′

1 0 b
0 I M

]
, (5)

such as the Gi matrices discussed in §4.2, is said to be in explicit form. An AG
matrix in this form represents the transition relation x′ = x ·M + b. 2
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Explicit form is desirable because we can immediately convert the AG matrix of
Defn. 4.2 into the MOS element {[

1 b
0 M

]}
.

The matrix G in Eqn. (4) is not in explicit form because of the rows
[ 1 V V ′

0 0 R
]
;

however, G is quite close to being in explicit form, and we can read off a set of
matrices to create an appropriate MOS element. We produce this set of matrices
via the Shatter operation, where

Shatter(G)
def
=

{[
1 b
0 M

]}
∪
{[

0 Rj,∗
0 0

] ∣∣∣∣ 1 ≤ j ≤ r} , where Rj,∗ is row j of R.

As shown in Thm. 4.3, γAG (G) = γMOS (Shatter(G)). Intuitively, this property

holds because the coefficients of the
[ 1 V V ′

0 0 Rj,∗
]

rows in an affine combination of

the rows of G correspond to coefficients of the

{[
0 Rj,∗

0 0

]}
matrices in an affine

combination of the matrices in Shatter(G).

Theorem 4.3. When G =


1 V V ′

1 0 b
0 I M
0 0 R

, then γAG (G) = γMOS (Shatter(G)) .

Proof.

(~x, ~x′) ∈ γAG(G) ⇐⇒ ∃~v :
[

1 ~x ~v
]
G =

[
1 ~x ~x′

]
⇐⇒ ∃~v : b+ ~xM + ~vR = ~x′

⇐⇒ ∃~v :
[

1 ~x
]([ 1 b

0 M

]
+
∑
i

vi

[
0 Ri
0 0

])
=
[

1 ~x′
]

⇐⇒ (~x, ~x′) ∈ γMOS(Shatter(G))

4.4 Converting KS With Pre-State Guards to MOS

If a KS element is not total with respect to pre-state inputs, then there is no MOS
element with the same concretization. However, we can find an over-approximating
element in the MOS domain for such a KS element. This section describes two
different over-approximation methods. As in §4.3, KS-to-MOS conversion starts by
converting the KS element into an AG matrix G using the algorithm from §3 and
Howellize.

There are two ways in which G can enforce guards on the pre-state vocabulary: it
might contain one or more rows whose leading value is even, or it might skip some
leading indexes in row-echelon form. Either feature is enough to prevent us from
being able to put G in either (i) explicit form (Eqn. (5)), or (ii) the form shown
in Eqn. (4). In §4.4.1 and §4.4.2, we describe methods to find over-approximating
elements G′ and G′′ such that

—G′ has the form shown in Eqn. (4) (§4.4.1)
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—G′′ is in a form that is a close relative of Eqn. (4) (§4.4.2).

As we show in §4.4.3, the G′ and G′′ that we find are, in general, incomparable.
The intuition to keep in mind is that G′ captures only a trivial pre-state/post-state
relation—i.e., the pre-state is completely unconstrained. In contrast, G′′ retains
some aspects of G’s pre-state/post-state relation. We will illustrate both methods

on the AG element G =


1 x1 x2 x3 x′

1 x′
2 x′

3

1 0 2 0 0 0 0
4 0 12 2 4 0

4 0 8

, where k = 3 and w = 4. Note

that all tuples in γ(G) satisfy

(x1 = x′2) ∧ (4x1 = 0). (6)

4.4.1 KS-to-MOS Conversion Method 1. G′ is created by havocking the pre-

state variables of G, which can be performed via G′ := G t
[ 1 ~X ~X′

1 0 0
0 I 0

]
. For

instance, for our running example this operation yields

G′ =



1 x1 x2 x3 x′
1 x′

2 x′
3

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 2 4 0
0 0 0 0 0 8 8

.

The havoc operation causes the pre-state to be completely unconstrained in
γAG(G′).
G′ has the form shown in Eqn. (4), and hence we can apply the Shatter oper-

ation from §4.3 to G′ to obtain an equivalent MOS element M ′. In our example,

M ′ = Shatter(G′) =



1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 ,

0 2 4 0

0 0 0 0
0 0 0 0
0 0 0 0

 ,

0 0 8 8

0 0 0 0
0 0 0 0
0 0 0 0


 . (7)

4.4.2 KS-to-MOS Conversion Method 2. The second conversion method uses
procedure MakeExplicit (see Alg. 2) to retain some aspects of G’s pre-state/post-
state relation in the matrix G′′ := MakeExplicit(G). MakeExplicit uses trans-
formations on G that ensure that γAG(G′′) ⊇ γAG(G). Moreover, G′′ has a form
that is a close relative of Eqn. (4)—close enough that we can apply a variant of
Shatter to it to obtain the desired MOS element.

The idea used in MakeExplicit is as follows:

For each row ~r in which (i) the leading value is in the pre-state, and
(ii) the leading value is even (and equals 2p), split ~r “bitwise” to create
two rows, ~rhigh and ~rlow, made up, respectively, of the high-order bits
(p+ 1 ≤ h ≤ w) and low-order bits (1 ≤ l ≤ p) of each entry of ~r.

Because it is possible to reconstruct ~r from ~rhigh and ~rlow, this transformation never
loses elements from the concretization of G, although it may add elements to it.
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Algorithm 2 MakeExplicit: Transform an AG matrix G in Howell form to
near-explicit form.

Require: G is an AG matrix in Howell form
1: procedure MakeExplicit(G)
2: for all i from 2 to k + 1 do . Consider each col. of the pre-state voc.
3: if there is a row r of G with leading index i then
4: if rank ri > 0 then
5: for all j from 1 to 2k + 1 do . Build s from r, with si = 1
6: sj ← rj � rank ri

7: Append s to G
8: G← Howellize(G)

9: for all i from 2 to k + 1 do
10: if there is no row r of G with leading index i then
11: Insert, as the ith row of G, a new row of all zeroes

(Appending extra rows to an element G ∈ AG—or in this case, replacing a row ~r by
two rows from which ~r can be reconstructed—can only enlarge the concretization
of G.)

For instance, consider ~r =
[ 1 x1 x2 x3 x′

1 x′
2 x′

3

0 4 0 12 2 4 0
]
. Assuming that w = 4, ~r in

binary notation is
[ 1 x1 x2 x3 x′

1 x′
2 x′

3

0000 0100 0000 1100 0010 0100 0000
]
. The leading value is

4 = 22, so ~r is split into ~rhigh, with bits 3 and 4 of each entry (shifted to the right),
and ~rlow, with bits 1 and 2 of each entry:

~rhigh =
[ 1 x1 x2 x3 x′

1 x′
2 x′

3

00 01 00 11 00 01 00
]
=
[ 1 x1 x2 x3 x′

1 x′
2 x′

3

0 1 0 3 0 1 0
]

(8)

~rlow =
[ 1 x1 x2 x3 x′

1 x′
2 x′

3

00 00 00 00 10 00 00
]
=
[ 1 x1 x2 x3 x′

1 x′
2 x′

3

0 0 0 0 2 0 0
]

Note that ~r = 4~rhigh + ~rlow. (Because the leading value of ~rhigh is always 1, in
general, ~r = leading-value(~r) ∗ ~rhigh + ~rlow.)

The effect of the bitwise split of ~r (and right-shift of the bits in ~rhigh) is two-fold:

(1) Whereas ~r ∈ G has some value 2p, p > 1, at the leading-index position i of ~r,
G′′ has a row whose leading value is 1 at position i.

(2) G′′ retains from row ~r ∈ G (i) some relation derived from the high-order bits
of ~r, and (ii) some relation derived from the low-order bits of ~r.

For instance, in ~rhigh shown in Eqn. (8), (i) the leading value is 1, and (ii) there is
a non-trivial relation on x1, x3, and x′2, namely, (x1 = x′2) ∧ (x3 = 3x′2).

Lines (4)–(8) of Alg. 2 only append ~rhigh (i.e., ~s in line (7)), relying on the call
to Howellize to replace ~r by ~r − leading-value(~r) ∗ ~rhigh (= ~rlow), as well as to
perform the remaining steps of Howellization.

As mentioned earlier, there are two ways in which G can enforce guards on
the pre-state vocabulary: (i) it might contain one or more rows whose leading
value is even, or (ii) it might skip some leading indexes in row-echelon form. The
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bitwise-split/right-shift transformation deals with (i): after the loop on lines (2)–
(8) finishes, for each row that generates a non-zero pre-state-vocabulary value, the
leading value is 1. To handle (ii), the loop on lines (9)–(11) inserts all-zero rows into
G so that each leading element from the pre-state vocabulary lies on the diagonal.

The row space of the final matrix G′′ may be larger than the original row space
of G, but, as shown above, the row space of G′′ can retain some non-trivial pre-
state/post-state relationships from the original G.

Example 4.4. On the first iteration of the loop on lines (2)–(8) of
MakeExplicit, one additional row, ~s = [ 0 1 0 3 0 1 0 ], is appended to G. Note
that this operation makes the row space strictly greater than the original row space
of G: row(G ∪ {~s}) ) rowG. After the call to Howellize on line (8), we have


1 x1 x2 x3 x′

1 x′
2 x′

3

1 0 0 0 0 0 0
1 0 3 0 1 0

2 0 0
8

. No additional rows are added during the rest of the loop

on lines (2)–(8), and after the loop on lines (9)–(11), the final matrix returned is

G′′ =



1 x1 x2 x3 x′
1 x′

2 x′
3

1 0 0 0 0 0 0
1 0 3 0 1 0

0 0 0 0 0
0 0 0 0

2 0 0
8

. 2

The effect of MakeExplicit is to convert G into a matrix G′′ that has the form
1 V V ′

1 a b
0 J M
0 0 R

, such that

—J and M are square matrices, where J is upper-triangular and has only ones and
zeroes on its diagonal,

—if Jj,j = 1, then column j of J is zero everywhere else, and

—if Jj,j = 0, then row j of J and row j of M are all zeroes.

Although G′′ does not have the form shown in Eqn. (4), the properties possessed
by G′′ make it a close relative of Eqn. (4). We can define a suitable variant of
Shatter as follows:

Shatter(G′′)
def
=

{[
1 b
0 M

]}
∪
{[

0 Rj,∗
0 0

] ∣∣∣∣ 1 ≤ j ≤ r} , where Rj,∗ is row j of R.

Note that a and J , which may represent a pre-state guard, do not contribute explicit
values to the result of Shatter(G′′). Consequently, as illustrated by the following
example, we can have γMOS(Shatter(G′′)) ) γAG(G′′):

Example 4.5. The final MOS element for Ex. 4.4 is

M ′′ = Shatter(G′′) =



1 0 0 0

0 0 1 0
0 0 0 0
0 0 0 0

 ,

0 2 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 ,

0 0 0 8

0 0 0 0
0 0 0 0
0 0 0 0


 . (9)

Note that, because of the first matrix in M ′′, all transformers generated by M ′′

in Eqn. (9) must satisfy (x1 = x′2). That property is weaker than the property
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(x1 = x′2) ∧ (4x1 = 0) that all tuples in γ(G) satisfy (see Eqn. (6)). However,
(x1 = x′2) ∧ (4x1 = 0) implies (x1 = x′2), and thus M ′′ retains some non-trivial
pre-state/post-state relationship from G. In contrast, the transformers generated
by M ′ in Eqn. (7) do not capture any relationship between x1 and x′2.

For this example, γMOS(M ′′) ) γAG(G′′) ) γAG(G): for instance,
[ 1 x1 x2 x3

1 1 0 0
]
×

1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 =
[ 1 x′

1 x′
2 x′

3

1 0 1 0
]
, so we have γMOS(M

′′) 3
[ x1 x2 x3 x′

1 x′
2 x′

3

1 0 0 0 1 0
]
6∈ γAG(G

′′).

Moreover, γAG(G
′′) 3

[ x1 x2 x3 x′
1 x′

2 x′
3

1 0 3 0 1 0
]
6∈ γAG(G). 2

Theorem 4.6. For G ∈ AG, γAG (G) ⊆ γMOS (Shatter (MakeExplicit(G))).

Proof. See App. B.

Thus, we can use the KS–to–AG conversion method of §3, MakeExplicit, and
Shatter to obtain an over-approximation of a KS element in MOS.

4.4.3 Incomparability of the Two Conversion Methods. In general, the meth-
ods presented in §4.4.1 and §4.4.2 lead to incomparable results, as shown by the
following example:

Example 4.7. Let k = 1 and w = 4, and consider the matrix G shown in the
middle below, along with G′ and G′′ produced by the methods presented in §4.4.1
and §4.4.2.

G′ =


1 x x′

1 0 0
0 1 0
0 0 4

 havoc x←−−−−
[ 1 x x′

1 0 0
0 4 12

]
MakeExplicit−−−−−−−−→

[ 1 x x′

1 0 0
0 1 3

]
= G.′′

G′ and G′′ are incomparable:

γAG(G′) 3
[ 1 x x′

1 0 4
]
6∈ γAG(G′′), whereas γAG(G′) 63

[ 1 x x′

1 1 3
]
∈ γAG(G′′).

After the calls on the respective variants of Shatter, we end up with two in-
comparable MOS values:

M ′ = Shatter(G′) =
{[

1 0
0 0

]
,
[

0 4
0 0

]}
M ′′ = Shatter(G′′) =

{[
1 0
0 3

]}
.

M ′ cannot generate the transformer
[

1 0
0 3

]
∈ 〈M ′′〉, and M ′′ cannot generate the

transformer
[

1 4
0 0

]
∈ 〈M ′〉. 2

5. DOMAIN OPERATIONS FOR THE KS DOMAIN

This section describes algorithms for performing all of the domain operations for
the KS domain that would be used inside a program analyzer for solving a set of
equations over KS values. This section actually covers two related, but somewhat
different, sets of operations:

(1) All of the basic abstract-domain operations—meet, project, join, assume, check-
ing containment, etc.—needed for solving KS equations for an intraprocedural
analysis problem (§5.1).
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(2) The additional domain operations needed for solving KS equations for an in-
terprocedural analysis problem (§5.2).

The algorithms described in §5.1 apply to KS values of types KS[V ] and KS[V ;V ′]
(although the examples used in §5.1 all use KS[V ] values). The algorithms in §5.2
apply to KS values of type KS[V ;V ′]

5.1 Basic KS Domain Operations

5.1.1 Meet. We define X u Y to be the result of creating the block matrix [XY ]
and then Howellizing. As discussed in §2.3, the meaning of a KS matrix X can
be expressed as a formula by forming a conjunction that consists of one equality
for each row of X. Thus, [XY ]—and hence Howellize([XY ])—precisely represents
the conjunction of the formulas for X and Y . Consequently, the resulting matrix
exactly represents the intersection of the meanings of X and Y :

γKS(X u Y ) = γKS(X) ∩ γKS(Y ).

5.1.2 Project and Havoc. King and Søndergaard [2008, §3] describe a way to
project a KS element X onto a suffix xi, . . . , xk of its vocabulary: (i) put X in row-
echelon form to create X ′; (ii) create X ′′ by removing from X ′ every row a in which
any of a1, . . . , ai−1 is nonzero (i.e., X ′′ = [X ′]i); and (iii) remove columns 1, . . . , i−1.
(Note that the resulting matrix has only a portion of the original vocabulary; we
have projected away {x1, . . . , xi−1}.) However, although their method works for
Boolean-valued KS elements (i.e., KS elements over Zk2), when the leading values
of X are not all 1, as can occur in KS elements over Zk2w for w > 1, step (ii) is not
guaranteed to produce the most-precise projection of X onto xi, . . . , xk, although
the KS element obtained is always sound.

Example 5.1. Suppose that X =
[ x1 x2 1

4 2 6
]
, with w = 4, and the goal is to

project away the first column (for x1). When the King/Søndergaard projection
algorithm is applied to X, we obtain the empty matrix, which represents no con-
straints on x2—i.e., x2 ∈ {0, 1, . . . , 15}. However, closer inspection reveals that
x2 cannot be even; if x2 were even, then both of the terms 4x1 and 2x2 would
be divisible by 4, and hence both values would have at least two zeros as their
least-significant bits. Such a pair of values could not sum to a value congruent to
6 because the binary representation of 6 ends with “10.” 2

Instead, we put X in Howell form before removing rows. By Thm. 5.2, step
(ii) above returns the exact projection of the original KS element onto the smaller
vocabulary.

Theorem 5.2. Suppose that M has c columns. If matrix M is in Howell form,

x ∈ nulltM if and only if ∀i : ∀y1, . . . yi−1 :
[
y1 · · · yi−1 xi · · · xc

]
∈ nullt([M ]i).

Proof. See App. C.

Example 5.3. The Howell form of X from Ex. 5.1 is

[ x1 x2 1

4 2 6
0 8 8

]
, and thus we
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obtain the following answer for the projection of X onto x2:
[ x2 1

8 8
]
, which rep-

resents x2 ∈ {1, 3, . . . , 15}.
This example illustrates how the logical-consequence step of Howellization

(lines (18)–(19) of Alg. 1) introduces a row that is (i) not deleted by the column-
removal step of projection, and (ii) represents a constraint that is not in the answer
produced in Ex. 5.1 by the King/Søndergaard projection algorithm. 2

Given KS element M , it is also possible to project away a set of variables V that
does not constitute a prefix of the vocabulary: create M ′ by permuting the columns
of M so that the columns for the variables in V come first—the order chosen for
the V columns themselves is unimportant—and then project away V from M ′ as
described earlier.

The havoc operation removes all constraints on a set of variables V . To havoc
V from KS element M , project away V and then (i) add back an all-0 column for
each variable in V , and (ii) permute columns to restore the original variable order.
Because of the all-0 columns, the resulting KS element has no constraints on the
values of the variables in V .

Example 5.4. Suppose that we wish to havoc x2 from the KS value
[ x1 x2 1

2 4 6
]
.

We permute columns and Howellize to create

[ x2 x1 1

4 2 6
0 8 8

]
, project onto the vocabu-

lary suffix x1, obtaining
[ x1 1

8 8
]
, add back an all-0 column for x2,

[ x2 x1 1

0 8 8
]
, and

permute columns back to the original order to obtain
[ x1 x2 1

8 0 8
]
. 2

5.1.3 Join. To join two KS elements Y and Z, we first construct the matrix[
−Y Y
Z 0

]
and then project onto the last 2k + 1 columns.

King and Søndergaard [2008, §3] give a method to compute the join of two KS
elements by building a (6k + 3)-column matrix and projecting onto its last 2k + 1
variables. We improve their approach slightly, building a (4k + 2)-column matrix
and then projecting onto its last 2k + 1 variables.

If Y and Z are considered as representing linear spaces, rather than affine spaces,

this approach works because
[
−Y Y
Z 0

][
u
v

]
= 0 is true just if (Y (v−u) = 0)∧(Zu =

0). Because (v − u) ∈ nullY , and u ∈ nullZ, we know that v is the sum of values
in nullY and nullZ, and so v is in their linear closure. In App. D, Thm. D.1
demonstrates the correctness of the same algorithm in affine spaces; that proof is
driven by roughly the same intuition.

Join is not exact in the same sense that meet, project, and compose are above:
affine spaces are not closed under union. However, this algorithm does return the
least upper bound of Y and Z in the space of KS elements.

Meet and join do not distribute, as illustrated in the following examples:

Meet over join. In this example, we use the fact that > =
[ x x′ 1

1 0 0
]
t
[ x x′ 1

0 1 0
]
.

Although technically we are not working with a vector space over a field, the intu-
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ition is that the KS element
[ x x′ 1

1 0 0
]

represents the “line” x = 0, the KS element[ x x′ 1

0 1 0
]

represents the “line” x′ = 0, and their affine closure is the whole “plane”
(i.e., >).

(at b)u c 6= (au c)t (bu c) for a =
[ x x′ 1

1 0 0
]
, b =

[ x x′ 1

0 1 0
]
, and c =

[ x x′ 1

1 −1 0
]
,

because

“(x = x′)” =
[ x x′ 1

1 −1 0
]

= > u
[ x x′ 1

1 −1 0
]

=

 [ x x′ 1

1 0 0
]
t
[ x x′ 1

0 1 0
] u [ x x′ 1

1 −1 0
]

6=

 [ x x′ 1

1 0 0
]
u
[ x x′ 1

1 −1 0
] t

 [ x x′ 1

0 1 0
]
u
[ x x′ 1

1 −1 0
]

=

[ x x′ 1

1 0 0
0 1 0

]
t
[ x x′ 1

1 0 0
0 1 0

]
=

[ x x′ 1

1 0 0
0 1 0

]
= “(x = 0) ∧ (x′ = 0)”

Join over meet. Similarly, (a u b) t c 6= (a t c) u (b t c) for a =
[ x x′ 1

1 0 0
]
,

b =
[ x x′ 1

0 1 0
]
, and c =

[ x x′ 1

1 −1 0
]
, because

“(x = x′)” =
[ x x′ 1

1 −1 0
]

=

[ x x′ 1

1 0 0
0 1 0

]
t
[ x x′ 1

1 −1 0
]

=

 [ x x′ 1

1 0 0
]
u
[ x x′ 1

0 1 0
] t [ x x′ 1

1 −1 0
]

6=

 [ x x′ 1

1 0 0
]
t
[ x x′ 1

1 −1 0
] u

 [ x x′ 1

0 1 0
]
t
[ x x′ 1

1 −1 0
] = > u> = “true”

5.1.4 Assuming Conditions. By “assuming” a condition ϕ on a KS element X,
we mean to compute a minimal KS element Y such that

γKS(Y ) ⊇ γKS(X) ∩ {v |ϕ(v)} .

This operation is needed to compute the transformer for an assume edge in a pro-
gram graph (i.e., the true-branch or false-branch of an if-then-else statement). It
can also be used to create transformers for assignments; for instance, the trans-
former for the assignment x ← 3u + 2v can be created by starting with the KS

element for the identity relation on vocabulary ~V ,
[ ~V ~V ′ 1

I −I 0
]
, havocking x′ ∈ ~V ′,

and assuming the equality x′ = 3u+ 2v.
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Assuming a w-bit affine constraint is straightforward: rewrite the constraint to
isolate 0 on one side; form a matrix row from resulting constraint’s coefficients;
append the row to the KS element X; and Howellize. In other words, when ϕ is
an affine constraint, we create a one-row KS element that represents ϕ exactly, and
take the meet with X.

It is also possible to perform an assume with respect to an affine congruence
of the form “lhs = rhs (mod 2h),” with h < w. (Examples in which we need to
assume such congruences are discussed §6.6.4.2.) We rewrite the congruence as an
equivalent congruence modulo 2w, by multiplying the modulus 2h and all of the
coefficients by 2w−h, to obtain the w-bit affine constraint “2w−hlhs = 2w−hrhs.”
We then proceed as before.

5.1.5 Containment. Two KS elements X and Y are equal if their concretizations
are equal: γ(X) = γ(Y ). However, when each KS element is in Howell form,
equality checking is trivial because Howell form is unique among all matrices with
the same row space (or null space) [Howell 1986]. Consequently, containment can
be checked using meet and equality: X v Y iff X = X u Y .

5.1.6 Number of Satisfying Solutions. The size of a KS element X with k vari-
ables over Z2w is the number of k-tuples that satisfy X.2 The size computation is
inexpensive; the size of X depends on the leading values in X, and the number of
rows in X. (X is assumed to be in Howell form.)

—If X is bottom, then Size(X) = 0.

—Otherwise, we can derive how to compute Size(X) by imagining that we are
building up a partial assignment for the variables, from right to left. (In what
follows, for simplicity we assume that we have a one-vocabulary KS element and
“right to left” means from higher-indexed variables to lower-indexed variables.)
In this case, each variable vi is constrained by the current partial assignment to
the variables {vj | i < j}, and by the row with leading index i:
—If the leading value of that row is 1, then for every partial assignment to

the variables {vj | i < j}, there is exactly one consistent value for vi, namely,
whatever value for vi satisfies the equation for the row when the values in the
partial assignment are used for the higher-indexed variables.

—If the leading value of a row is 2m for some value m, then for every partial
assignment to the variables {vj | i < j}, there is exactly one consistent value for

2A size operation is not often described in presentations of abstract domains; however, it can

be useful in some situations. It has received attention in the related context of applying linear
and non-linear constraint solvers to support automatic loop parallelization [Tawbi 1994; Pugh

1994; Clauss 1996; Fahringer 1998]. Constraints are generated in which each integer solution

corresponds to a distinct pattern in which computational resources are consumed in a program,
such as the memory locations or cache lines touched by a loop, the operations executed by a
loop, or the memory locations whose contents need to be transferred from one process to another.
The number of solutions can reveal such information as the computation-to-memory balance of
a computation; whether a loop is load-balanced (as well as whether a loop never iterates at all);

estimates of statement-execution counts, branch probabilities, and message traffic; or how large
message buffers need to be. We also have colleagues who are using the number of solutions to

a set of constraints in an information-flow analysis to bound the likelihood of disclosing certain
properties of private variables during the execution of a program [Fredrikson and Jha 2013]. (All
such work has been for contexts other than the KS domain.)
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2mvi, namely, whatever value y for 2mvi satisfies the equation for the row when
the values in the partial assignment are used for the higher-indexed variables.

However, there are 2m different ways to choose vi to obtain the needed value
y. That is, if v is a value such that 2mv = y, then so are all 2m values in the
set

{(v + 2w−mp) (mod 2w) | 0 ≤ p ≤ 2m − 1}.

—Finally, if there is no row with leading index i, then vi is fully unconstrained,
and can take on any of the 2w available values.

Altogether, the product of these counts is the number of satisfying solutions of
KS element X. In particular, let u be the number of indices that are not the
leading index of any row of X. Then Size(X) is the product of the leading values
in X, times (2w)u.

Example 5.5. Consider again the KS[V ;V ′] element from Eqn. (2)

X0 =

[ x1 x2 x′
1 x′

2 1

1 0 −1 0 0
0 0 0 8 0

]
,

where w = 4, so that we are working in Z16. Then Size(X0) equals 1×8× (24)2 =
2, 048. 2

5.2 Operations for Interprocedural KS Analysis

This section presents a two-vocabulary version of the KS abstract domain for use in
interprocedural dataflow analysis. Unlike previous work by King and Søndergaard
[2008], [2010], it is not necessary to perform bit-blasting to perform interprocedural
dataflow analysis using the version of KS presented here.

An interprocedural analyzer would use KS[V ;V ′] versions of all the operations
discussed in §5.1. §5.2.1 and §5.2.2 describe the additional operations needed to
use the KS[V ;V ′] domain with an interprocedural-analysis algorithm in the style of
Sharir and Pnueli [1981] or Knoop and Steffen [1992], or to use the KS domain as
a weight domain in a weighted pushdown system (WPDS) [Bouajjani et al. 2003;
Reps et al. 2005; Lal et al. 2005; Kidd et al. 2007].

To perform interprocedural analysis, one needs to create two-vocabulary KS el-
ements that represent abstract transformers. §6 and §7 discuss two methods for
that task.

5.2.1 Compose. King and Søndergaard [2010, §5.2] present a technique to com-
pose two-vocabulary affine relations. For completeness, that algorithm follows.
Suppose that we have KS elements Y =

[
Ypre Ypost y

]
and Z =

[
Zpre Zpost z

]
,

where Ypre, Ypost, Zpre, and Zpost are k-column matrices, and y and z are column
vectors. We want to compute the relational composition “Z ◦ Y ”; i.e., find some X
such that (x, x′′) ∈ γKS (X) if and only if ∃x′ : (x, x′) ∈ γKS (Y )∧ (x′, x′′) ∈ γKS (Z).

Because the KS domain has a projection operation, we can create Z ◦ Y by first
constructing the three-vocabulary matrix W ,

W =

[
Ypost Ypre 0 y
Zpre 0 Zpost z

]
,
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and then projecting away the first vocabulary of W . Any element (x′, x, x′′) ∈
γKS (W ) has (x, x′) ∈ γKS (Y ) and (x′, x′′) ∈ γKS (Z); consequently, the projection
yields a matrix X such that γKS (X) = γKS (Z) ◦ γKS (Y ), as required. Note that
the steps of the abstract-composition algorithm mimic a standard way to express
the composition of concrete relations, i.e.,

(Z ◦ Y )[V ;V ′′] = ∃V ′ : Y [V ;V ′] ∧ Z[V ′;V ′′].

Compose and join do not distribute, as illustrated in the following examples:

Compose over join.

i. a ◦ (btc) 6= (a ◦ c)t(b ◦ c) for a =
[ x1 x2 x′

1 x′
2 1

1 −1 0 0 0
]
, b =


x1 x2 x′

1 x′
2 1

1 0 0 0 0
0 1 0 −1 0
0 0 1 0 0

,

and c =


x1 x2 x′

1 x′
2 1

1 0 −1 0 0
0 1 0 0 0
0 0 0 1 0

, because

“(x1 = x2)” =
[ x1 x2 x′

1 x′
2 1

1 −1 0 0 0
]

=
[ x1 x2 x′

1 x′
2 1

1 −1 0 0 0
]
◦
[ x1 x2 x′

1 x′
2 1

1 0 −1 0 0
0 1 0 −1 0

]

=
[ x1 x2 x′

1 x′
2 1

1 −1 0 0 0
]
◦



x1 x2 x′

1 x′
2 1

1 0 0 0 0
0 1 0 −1 0
0 0 1 0 0

 t

x1 x2 x′

1 x′
2 1

1 0 −1 0 0
0 1 0 0 0
0 0 0 1 0




6=

 [ x1 x2 x′
1 x′

2 1

1 −1 0 0 0
]
◦


x1 x2 x′

1 x′
2 1

1 0 0 0 0
0 1 0 −1 0
0 0 1 0 0




t

 [ x1 x2 x′
1 x′

2 1

1 −1 0 0 0
]
◦


x1 x2 x′

1 x′
2 1

1 0 −1 0 0
0 1 0 0 0
0 0 0 1 0




=

[ x1 x2 x′
1 x′

2 1

1 0 0 0 0
0 1 0 0 0

]
t
[ x1 x2 x′

1 x′
2 1

1 0 0 0 0
0 1 0 0 0

]

=

[ x1 x2 x′
1 x′

2 1

1 0 0 0 0
0 1 0 0 0

]
= “(x1 = 0) ∧ (x2 = 0)”
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ii. (atb)◦c 6= (a◦c)t(b◦c) for a =


x1 x2 x′

1 x′
2 1

0 0 1 0 0
0 −1 0 1 0
1 0 0 0 0

, b =


x1 x2 x′

1 x′
2 1

−1 0 1 0 0
0 0 0 1 0
0 1 0 0 0

,

and c =
[ x1 x2 x′

1 x′
2 1

0 0 1 −1 0
]
, because

“(x′1 = x′2)” =
[ x1 x2 x′

1 x′
2 1

0 0 1 −1 0
]

=

[ x1 x2 x′
1 x′

2 1

1 0 −1 0 0
0 1 0 −1 0

]
◦
[ x1 x2 x′

1 x′
2 1

0 0 1 −1 0
]

=



x1 x2 x′

1 x′
2 1

0 0 1 0 0
0 −1 0 1 0
1 0 0 0 0

 t


x1 x2 x′
1 x′

2 1

−1 0 1 0 0
0 0 0 1 0
0 1 0 0 0


 ◦ [ x1 x2 x′

1 x′
2 1

0 0 1 −1 0
]

6=



x1 x2 x′

1 x′
2 1

0 0 1 0 0
0 −1 0 1 0
1 0 0 0 0

 ◦ [ x1 x2 x′
1 x′

2 1

0 0 1 −1 0
]


t




x1 x2 x′
1 x′

2 1

−1 0 1 0 0
0 0 0 1 0
0 1 0 0 0

 ◦ [ x1 x2 x′
1 x′

2 1

0 0 1 −1 0
]


=

[ x1 x2 x′
1 x′

2 1

0 0 1 0 0
0 0 0 1 0

]
t
[ x1 x2 x′

1 x′
2 1

0 0 1 0 0
0 0 0 1 0

]

=

[ x1 x2 x′
1 x′

2 1

0 0 1 0 0
0 0 0 1 0

]
= “(x′1 = 0) ∧ (x′2 = 0)”
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Join over compose. (a◦b)tc 6= (atc)◦(btc) for a =
[ x x′ 1

1 −1 1
]
, b =

[ x x′ 1

1 −1 0
]
,

and c =
[ x x′ 1

1 −1 1
]
, because

“(x′ = x+ 1)” =
[ x x′ 1

1 −1 1
]

=
[ x x′ 1

1 −1 1
]
t
[ x x′ 1

1 −1 1
]

=

 [ x x′ 1

1 −1 1
]
◦ Id

 t [ x x′ 1

1 −1 1
]

=

 [ x x′ 1

1 −1 1
]
◦
[ x x′ 1

1 −1 0
] t [ x x′ 1

1 −1 1
]

6=

 [ x x′ 1

1 −1 1
]
t
[ x x′ 1

1 −1 1
] ◦

 [ x x′ 1

1 −1 0
]
t
[ x x′ 1

1 −1 1
]

=
[ x x′ 1

1 −1 1
]
◦ > = > = “true”

5.2.2 Merge Functions. Knoop and Steffen [1992] extended the Sharir and
Pnueli algorithm [1981] for interprocedural dataflow analysis to handle local vari-
ables. At a site where procedure P calls procedure Q, the local variables of P are
modeled as if the current incarnations of P ’s locals are stored in locations that are
inaccessible to Q and to procedures transitively called by Q. Because the contents
of P ’s locals cannot be affected by the call to Q, a merge function is used to com-
bine them with the element returned by Q to create the state in P after the call to
Q has finished. Other work using merge functions includes Müller-Olm and Seidl
[2004] and Lal et al. [2005].

Let us start by presenting the desired concrete collecting semantics of merge
functions. To simplify the discussion, assume that all scopes have the same number
of locals, and that each vocabulary V consists of sub-vocabularies G and L so that
we have relations of the form R[G,L;G′, L′]. We still use k to denote |V | = |G|+|L|.

Suppose that we have two relations, R1[G,L;G′, L′] and R2[G,L;G′, L′],
each of which is a subset of Zk2w × Zk2w Operationally, we want
Merge(R1[G,L;G′, L′], R2[G,L;G′, L′]) to act as a modified relational com-
position in which R2 acts like the identity function on locals so that L′ values from
R1 are passed through R2 unchanged to become the L′ values of the result. This
semantics can be specified as follows:

Merge(R1[G,L;G′, L′], R2[G,L;G′, L′])

= ((∃L′ : R2[G,L;G′, L′]) ∧ (L = L′)) ◦ R1[G,L;G′, L′] (10)

In an interprocedural analysis, the use case for Eqn. (10) is to apply Merge to
the relation CallSiteVal[G,L;G′, L′] that arises at a call-site that calls procedure Q
with the relation CalleeExitVal[G,L;G′, L′] that arises at the exit of Q:

Merge(CallSiteVal[G,L;G′, L′],CalleeExitVal[G,L;G′, L′]).
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In the KS abstract semantics, the implementation of (∃L′ : R2[G,L;G′, L′])∧(L =
L′) is straightforward:

(1) Havoc vocabulary L′ in R2.

(2) Append L rows,
[ G L G′ L′ 1

0 I 0 −I 0
]
, so that each variable in vocabulary L′ is

constrained to have the value of the corresponding variable in vocabulary L.

Example 5.6. Suppose that G = {g1, g2} and L = {l}, and that the CallSiteVal
and CalleeExitVal transformations are as follows:

CallSiteVal[G,L;G′, L′] : g′1 = g1 + 7l ∧ g′2 = g2 ∧ l′ = g1 + 3l
CalleeExitVal[G,L;G′, L′] : g′1 = g1 + l ∧ g′2 = g1 + g2 ∧ l′ = g1 + g2 + l

The (Howellized) KS values for CallSiteVal and CalleeExitVal are

CallSiteVal =


g1 g2 l g′1 g′2 l′ 1

1 0 3 0 0 −1 0
0 1 0 0 −1 0 0
0 0 4 −1 0 1 0

 CalleeExitVal =


g1 g2 l g′1 g′2 l′ 1

1 0 0 −1 −1 1 0
0 1 0 1 0 −1 0
0 0 1 0 1 −1 0


Steps (1) and (2) produce

[ g1 g2 l g′1 g′2 l′ 1

1 0 1 −1 0 0 0
0 1 −1 1 −1 0 0

] 
g1 g2 l g′1 g′2 l′ 1

1 0 0 −1 0 1 0
0 1 0 1 −1 −1 0
0 0 1 0 0 −1 0


Step (1) Step (2)

Finally, the composition of the Step (2) value with CallSiteVal produces


g1 g2 l g′1 g′2 l′ 1

1 0 3 0 0 1 0
0 1 0 1 −1 −1 0
0 0 4 −1 0 2 0

 (11)

It is easy to check this result: letting double-primed symbols denote the state-
variables after the call, the desired transformation is expressed symbolically as

g′′1 = g′1 + l′ = 2g1 + 10l
g′′2 = g′1 + g′2 = g1 + g2 + 7l
l′′ = l′ = g1 + 3l

,

or as the matrix


g1 g2 l g′′1 g′′2 l′′ 1

2 0 10 −1 0 0 0
1 1 7 0 −1 0 0
1 0 3 0 0 −1 0


which becomes Eqn. (11) when put in Howell form. 2

6. USING KS FOR REINTERPRETATION

Most program analyses that use abstract domains must compute an abstract trans-
former τ# for each concrete program transformer τ . There are actually two slightly
different but related problems that arise:
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(1) Applying τ#: This process can be viewed as a function ApplyAbsTrans that
takes an abstract state and a concrete transformer τ as input, and yields a new
abstract state as output. For instance, the effect of the assignment z ← x+ 2y
on a state with current abstract value A would be computed as

ApplyAbsTrans(“z ← x+ 2y”, A).

ApplyAbsTrans may be computed in an ad-hoc, analysis-specific way, as long
as the resulting abstract state is a sound over-approximation of applying the
assignment “z ← x+ 2y” to all concrete states in γ(A).

(2) Creating a representation of τ#: This process can be viewed as a function
CreateAbsTrans that takes a concrete transformer τ as input, and yields
an abstract transformer as output. In this case, the abstract version of the
assignment z ← x+ 2y would be computed as

CreateAbsTrans(“z ← x+ 2y”).

CreateAbsTrans may also be computed in an ad-hoc, analysis-specific way,
as long as the resulting abstract transformer is a sound over-approximation
of the concrete semantics of “z ← x + 2y,” viewed as a function from sets of
concrete states to sets of concrete states.

Semantic reinterpretation [Mycroft and Jones 1985; Jones and Mycroft 1986;
Nielson 1989; Malmkjær 1993; Lim and Reps 2008] is a principled method for im-
plementing ApplyAbsTrans and CreateAbsTrans. Semantic reinterpretation
is based on the idea of factoring the concrete semantics of a programming language
into two parts: (i) a client specification, and (ii) a semantic core. The interface
to the core consists of certain base-types, map-types, and operators (sometimes
called a semantic algebra [Schmidt 1986]), and the client is expressed in terms of
this interface. This organization permits the core to be reinterpreted to produce an
alternative semantics for the programming language.

In the remainder of this section, we describe the algorithms needed to cre-
ate a semantic reinterpretation, based on the KS domain, that implements
CreateAbsTrans: the reinterpretation creates an abstract transformer—as a
KS[V ;V ′] value—for an assignment statement or sequence of assignment state-
ments. It would also be possible to define a different KS reinterpretation that
implements ApplyAbsTrans—and the reader will see that some of the sub-pieces
of the KS CreateAbsTrans have the flavor of ApplyAbsTrans.

Consider an assignment statement “z ← x + 2y.” The semantic core of a lan-
guage that supports such statements consists of integers, states, operations like
multiplication and addition, and operations to lookup a variable’s value in a state
and to create a variant of a given state in which a variable is bound to a new value.
The reinterpretation of the core must consist of a domain of abstract integers, a
domain of abstract states, abstract multiplication and abstract addition of abstract
integers, and operations to lookup a variable’s value in an abstract state and to
create an updated version of a given abstract state.

At first glance, one might think that semantic reinterpretation is limited to non-
relational domains (such as intervals)—e.g., abstract integers would represent sets
of concrete integers, and abstract states would represent sets of concrete states.
The key insight behind the approach presented in §6.3 is as follows:
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Abstract integers are values in a relational domain (KS[V ; {i}]). Be-
cause a relationship is kept at all times between the pre-state and the
computed value, the reinterpretation of a state-transformer expression
is a KS[V ;V ′] value that can have nontrivial relations between pre-state
and post-state values.

The work reported in this section was motivated by our work on TSL [Lim
and Reps 2008; 2013], which is a system that uses semantic reinterpretation to
generate abstract interpreters for machine code. The presentation is intended to be
understandable without any prior knowledge of TSL. TSL is summarized in §6.1,
and a few TSL examples are used in §6.3–§6.7 to illustrate how to create a suitable
CreateAbsTrans function for the KS domain. §6.2.2 presents the outlines of a
relational concrete collecting semantics, which is used in §6.4, §6.5, and §6.6.3 to
sketch the core parts of a proof of soundness of semantic reinterpretation for KS.

For a reader interested solely in implementing a “traditional” abstract inter-
pretation using the KS domain, this section should still provide insight on details
that are useful in any implementation of ApplyAbsTrans and CreateAbsTrans
for the KS domain. Such a reader may think of semantic reinterpretation as
just a particular way to organize the implementation of ApplyAbsTrans and
CreateAbsTrans. The material presented in this section also serves as a model
for how an operator-by-operator abstraction method can be developed for almost
any relational numeric abstract domain. (See [Lim and Reps 2013, §3.1.4.2] for an
abbreviated, domain-neutral presentation of the approach used in this section.)

6.1 Semantic Reinterpretation in TSL

With TSL, one specifies an instruction set’s concrete operational semantics by defin-
ing an interpreter for the instruction set

interpInstr : instruction× state→ state

using a first-order functional language. TSL provides features that are common to
many functional languages, such as (i) a datatype-definition mechanism for defining
recursive datatypes, (ii) data-construction expressions, and (iii) data deconstruction
by means of pattern matching (in the style pioneered by Burstall [1969]).

Example 6.1. Fig. 1(a) shows a TSL specification for the MOV and ADD instruc-
tions of the Intel IA32 instruction set. Consider the instruction “add eax, ebx,”
which (i) adds the value of register ebx to that of eax, (ii) stores the result in eax,
and (iii) sets the processor’s flags according to the result. The instruction would
be represented as the TSL term “ADD(DirectReg(EAX()), DirectReg(EBX())).” The
semantics of ADD(·, ·) terms is specified on lines (22)–(27) of Fig. 1(a).

Given a state S, to obtain the state S′ that holds after the execution of the
instruction “add eax, ebx,” one performs

S′ := interpInstr(ADD(DirectReg(EAX()), DirectReg(EBX())), S).

2

From the concrete operational semantics and a specification of a specific abstract
domain, the TSL compiler produces semantic reinterpretations of machine-code
instructions.
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(1) // Abstract-syntax declarations
(2) reg: EAX() | EBX() | . . . ;
(3) flag: ZF() | SF() | . . . ;
(4) operand: Indirect(reg reg INT8 INT32)
(5) | DirectReg(reg)
(6) | Immediate(INT32) | . . .;
(7) instruction
(8) : MOV(operand operand)
(9) | ADD(operand operand) | . . . ;
(10) state: State(MAP[INT32,INT8] // memory-map
(11) MAP[reg,INT32] // register-map
(12) MAP[flag,BOOL]); // flag-map
(13) // Interpretation functions
(14) INT32 interpOp(state S, operand op) { . . . };
(15) state updateFlag(state S, . . .) { . . . };
(16) state updateState(state S, . . .) { . . . };
(17) state interpInstr(instruction I, state S) {
(18) with(I) (
(19) MOV(dstOp, srcOp):
(20) let srcVal = interpOp(S, srcOp);
(21) in ( updateState(S, dstOp, srcVal) ),
(22) ADD(dstOp, srcOp):
(23) let dstVal = interpOp(S, dstOp);
(24) srcVal = interpOp(S, srcOp);
(25) res = dstVal + srcVal;
(26) S2 = updateFlag(S, dstVal, srcVal, res);
(27) in ( updateState(S2, dstOp, res) ),
(28) . . .
(29) );
(30) };

(1) template <class INTERP> class CIR {
(2) class reg { . . . };
(3) class EAX : public reg { . . . }; . . .
(4) class flag { . . . };
(5) class ZF : public flag { . . . }; . . .
(6) class operand { . . . };
(7) class Indirect: public operand { . . . }; . . .
(8) class instruction { . . . };
(9) class MOV : public instruction { . . .
(10) operand op1; operand op2; . . .
(11) };
(12) class ADD : public instruction { . . . }; . . .
(13) class state { . . . };
(14) class State: public state { . . . };
(15) INTERP::INT32 interpOp(state S, operand op) { . . . };
(16) state updateFlag(state S, . . . ) { . . . };
(17) state updateState(state S, . . .) { . . . };
(18) state interpInstr(instruction I, state S) {
(19) switch(I.id) {
(20) case ID MOV: . . .
(21) case ID ADD:
(22) operand dstOp = I.get child1();
(23) operand srcOp = I.get child2();
(24) INTERP::INT32 dstVal = interpOp(S, dstOp);
(25) INTERP::INT32 srcVal = interpOp(S, srcOp);
(26) INTERP::INT32 res = INTERP::Plus32(dstVal, srcVal);
(27) state S2 = updateFlag(S, dstVal, srcVal, res);
(28) ans = updateState( S2, dstOp, res );
(29) break;
(30) . . .
(31) }
(32) }};

(a) (b)

Fig. 1. (a) A fragment of the TSL specification of the concrete semantics of the Intel IA32
instruction set. (b) A part of the reinterpretation template generated from (a) (simplified for
presentational purposes). (“CIR” stands for “common intermediate representation.”)

—The compiler creates a reinterpretation template that allows the meanings of the
input-language constructs to be redefined by supplying alternative interpretations
of the TSL base-types, the map-types used in the semantic specification, and
operations on base-type and map-type values.

—An abstract domain A is given in the form of a C++ class for representing and
operating on abstract values.

—By instantiating the reinterpretation template with an abstract domain for each
TSL base-type and map-type used in the instruction-set specification, the rein-
terpretation of the instruction-set specification is extended to TSL expressions
and functions.

—As long as the reinterpreted operators over-approximate the semantics of each
operation of the TSL meta-language, the reinterpretation of interpInstr is an
abstract transformer that over-approximates the semantics of each instruction of
the instruction set.

Example 6.2. Fig. 1(b) shows part of the reinterpretation template generated
from Fig. 1(a). (The template has been simplified for the presentation in this
paper.)

A reinterpretation template is a C++ template class that is parameterized on
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class INTERP, which specifies an abstract domain for an analysis of interest (line (1)
of Fig. 1(b)). The user-defined abstract syntax (lines (2)–(9) of Fig. 1(a)) is trans-
lated to a set of C++ abstract-syntax classes (lines (2)–(12) of Fig. 1(b)). The
user-defined types, such as reg, operand, and instruction, are translated to abstract
C++ classes, and the constructors, such as EAX(), Indirect( , , , ), and ADD( , ), are
subclasses of the appropriate parent abstract C++ classes.

Each user-defined function in Fig. 1(a) is translated to a C++ function
(lines (15)–(32) of Fig. 1(b)). Each TSL base-type name and base-type opera-
tor name is prepended with the template parameter name INTERP. To instantiate
the reinterpretation template, a class INTERP that is appropriate for the analysis
of interest is supplied by an analysis developer. 2

6.2 Concrete Semantics and Concrete Collecting Semantics

6.2.1 Concrete Semantics. Throughout the remainder of §6, as an alternative
to interpInstr : instruction × state → state, it will often be convenient to
denote the standard concrete semantics of a deterministic state-to-state transformer
τ by [[τ ]] : state → state. That is, (x′1, . . . , x

′
k) = [[τ ]]((x1, . . . , xk)) is the output

state from applying τ to input state (x1, . . . , xk). Similarly, for an expression e,
[[e]]((w1, . . . , wk)) denotes the output value obtained when e is evaluated according
to the concrete semantics of expressions on input state (w1, . . . , wk).

6.2.2 Concrete Collecting Semantics. The concrete collecting semantics
of a state-to-state transformer τ , denoted by [[τ ]]c, is the relation in
P(Assignment[V ;V ′]) defined as follows:

[[τ ]]c = {(x1, . . . , xk, x′1, . . . , x′k) | (x′1, . . . , x′k) = [[τ ]]((x1, . . . , xk))}.

Our definition of the concrete collecting semantics of an expression is somewhat
non-standard. It is motivated by the need to represent the values that a given
(sub)expression can take on in the context of a particular state-to-state transfor-
mation. The concrete collecting semantics of e with respect to a given state-to-state
transformation ρ ∈ P(Assignment[V ;V ′]), denoted by [[e]]c(ρ), is the set of assign-
ments in P(Assignment[V ; {i}]) defined as follows:

[[e]]c(ρ) = {(v, x1, . . . , xk) | (x1, . . . , xk, x′1, . . . , x′k) ∈ ρ ∧ v = [[e]]((x′1, . . . , x
′
k))}.

Note that [[e]]c(ρ) is an element of P(Assignment[V ; {i}]), not
P(Assignment[V ′; {i}]): the concrete collecting semantics of a subexpression
with respect to a given prestate-to-poststate transformation is a relation that
represents a prestate-to-value transformation.

6.3 Abstract Domains for Reinterpretation

The discussion in §4 and §5.2 focused on the abstract domain KS[V ;V ′]. Each value
in KS[V ;V ′] describes an affine-closed relation between pre-states and post-states,
where (i) each state is an assignment to some set of variables V , and (ii) both
states have the same number of variables. In this section, we use KS[V ;V ′] values
to over-approximate the concrete collecting semantics of state-to-state transformers
outlined in §6.2.2. Typically, we think of V states as “initial states” and V ′ states
as “current states.” However, to describe semantic reinterpretation for KS, we also
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need a way to represent state-to-value transformations, which are needed to over-
approximate the concrete collecting semantics of a subexpression with respect to a
given state-to-state transformation (§6.2.2).

Recall from §2 our notation for the addition of an individual variable i 6∈ V : the
domain KS[V ; {i}] is the set of KS values over the variables V ∪ {i}. Operations
sometimes introduce additional temporary variables, in which case we have domains
like KS[V ; {i, i′}] and KS[V ; {i, i′, i′′}].

To over-approximate the concrete collecting semantics of a subexpression with re-
spect to a given state-to-state transformation (which represents the evaluation con-
text of the subexpression), we use the domain KS[V ; {i}], and reinterpret machine-
integer values as affine-closed relations on pre-states to machine integers. In partic-
ular, we introduce a fresh variable i to hold the “current value” of a subexpression
in its evaluation context. Because the evaluation context refers to the pre-state V ,
we write the abstract domain as “KS[V ; {i}].” Although technically we are work-
ing with relations, for a KS[V ; {i}] value it is often useful to think of V as a set of
independent variables and i as the dependent variable.

The KS reinterpretation of a state-to-state transformer τ , denoted by [[τ ]]KS :
KS[V ;V ′], is defined in §6.4 and §6.5.2. The KS reinterpretation of expression
e with respect to K ∈ KS[V ;V ′], denoted by [[e]]KS : KS[V ;V ′] → KS[V ; {i}], is
defined in §6.5.1 and §6.6.

As illustrated in line (17) of Fig. 1, the top-level function that is reinterpreted in
TSL is interpInstr : instruction×state→ state. To use semantic reinterpre-
tation to implement CreateAbsTrans for the KS domain, state is reinterpreted
as a KS[V ;V ′] value, and interpInstr is reinterpreted as a KS[V ;V ′] transformer;
that is, interpInstrKS has the type

interpInstrKS : instruction×KS[V ;V ′]→ KS[V ;V ′].

Let IdKS denote the KS[V ;V ′] identity relation,
[ ~V ~V ′ 1

I −I 0
]
. To reinterpret an

individual instruction ι, one invokes interpInstrKS(ι, IdKS). Thus, for a TSL-

based KS reinterpretation, [[ι]]KS
def
= interpInstrKS(ι, IdKS).

Example 6.3. Our implementation of KS for IA32 tracks affine relationships be-
tween the processor registers at different program points. It uses an abstraction in
which the abstraction of an instruction’s semantics is a value in KS[R;R′], where
R is the set of register names in the processor. To simplify the example, assume
that R is {eax, ebx}.

Consider again the IA32 instruction “add eax, ebx” from Ex. 6.2, which is repre-
sented as the term “ι1 = ADD(DirectReg(EAX()), DirectReg(EBX())).” To trans-
late “add eax, ebx” to a KS[{eax, ebx}; {eax′, ebx′}] value, we would evaluate
interpInstrKS(ι1, IdKS). As discussed in §6.5.1 and §6.6.3, the variables used
in lines (23)–(25) of Fig. 1(a) would have the following values in the domain
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KS[{eax, ebx}; i]:
Line Variable Value in KS[{eax, ebx}; i] Meaning

(23) dstVal
[ i eax ebx 1

1 −1 0 0
]

i = eax

(24) srcVal
[ i eax ebx 1

1 0 −1 0
]

i = ebx

(25) res
[ i eax ebx 1

1 −1 −1 0
]

i = eax+ ebx

As discussed in §6.5.2, the function call “updateState(S2, dstOp, res)” on line (27)

of Fig. 1(a) would return (the Howellization of) K1 =

[ eax ebx eax′ ebx′ 1

1 1 −1 0 0
0 1 0 −1 0

]
, whose

meaning is “(eax′ = eax + ebx) ∧ (ebx′ = ebx).” 2

6.4 Basic Blocks

For a basic block B = ι1; ι2; . . . ; ιm, there are two approaches to performing
KS[V ;V ′] reinterpretation:

—Composed reinterpretation:

interpInstrKS(ιm, IdKS)◦KS. . .◦KSinterpInstrKS(ι2, IdKS)◦KSinterpInstrKS(ι1, IdKS).

—Cascaded reinterpretation:

interpInstrKS(ιm, . . . interpInstrKS(ι2, interpInstrKS(ι1, IdKS)) . . . ).

Example 6.4. To illustrate cascaded reinterpretation, suppose that we want
the KS[{eax, ebx}; {eax′, ebx′}] value for the instruction sequence “add eax, ebx;
add ebx, eax.” Let ι1 be the TSL term that represents “add eax, ebx,”
as in Ex. 6.3; let ι2 be the TSL term that represents “add ebx, eax”:
“ADD(DirectReg(EBX()), DirectReg(EAX())).” Using cascaded reinterpretation, we
would evaluate

K = interpInstrKS(ι2, interpInstrKS(ι1, IdKS)) = interpInstrKS(ι2,K1).

During the course of evaluating interpInstrKS(ι2,K1), we would have

Line Variable Value in KS[{eax, ebx}; i] Meaning

(23) dstVal
[ i eax ebx 1

1 0 −1 0
]

i = ebx

(24) srcVal
[ i eax ebx 1

1 −1 −1 0
]

i = eax+ ebx

(25) res
[ i eax ebx 1

1 −1 −2 0
]

i = eax+ 2ebx

As discussed in §6.5.2, the function call “updateState(S2, dstOp, res)” on line (27)

of Fig. 1(a) would return (the Howellization of) K =

[ eax ebx eax′ ebx′ 1

1 1 −1 0 0
1 2 0 −1 0

]
, whose

meaning is “(eax′ = eax + ebx) ∧ (ebx′ = eax + 2ebx).”
Alternatively we could use composed reinterpretation, which would per-

form two independent calls K1 = interpInstrKS(ι1, IdKS) and K2 =
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interpInstrKS(ι2, IdKS), and then perform K = K2 ◦KS K1. In this exam-

ple, K2 equals (the Howellization of)

[ eax ebx eax′ ebx′ 1

1 0 −1 0 0
1 1 0 −1 0

]
and K = K2 ◦ K1

equals

[ eax ebx eax′ ebx′ 1

1 0 −2 1 0
0 1 1 −1 0

]
, which again corresponds to the transition relation

(eax′ = eax+ ebx) ∧ (ebx′ = eax+ 2ebx). 2

In §6.7, we give examples that demonstrate that neither technique is strictly
better than the other. For reasons discussed in §8.2, the technique used in our
experiments is cascaded reinterpretation. Thus, we assume henceforth that the
reinterpretation of each basic block is performed via cascaded reinterpretation. The
abstraction that we obtain of [[ι1; ι2; . . . ; ιm]]c, the concrete collecting semantics from
§6.2.2, is thus

[[ι1; ι2; . . . ; ιm]]KS
def
= interpInstrKS(ιm, . . . , interpInstrKS(ι2, interpInstrKS(ι1, IdKS)) . . .).

(12)

In the degenerate case when m = 0, [[ι1; ι2; . . . ; ιm]]KS = [[ε]]KS = IdKS. Note that
[[ι]]KS = interpInstrKS(ι, IdKS).

Soundness of the Abstraction. We now describe the correctness requirements on
interpInstrKS and [[e]]KS to ensure that cascaded reinterpretation of a basic block
over-approximates the concrete collecting semantics.

Property 6.5. For all ι ∈ instruction, e ∈ expression, and K ∈ KS[V ;V ′],

(1) γ(interpInstrKS(ι,K)) ⊇ [[ι]]c ◦ γ(K), and

(2) γ([[e]]KS(K)) ⊇ [[e]]c(γ(K)).

2

Lemma 6.6. (Soundness of Cascaded Reinterpretation.) If Property 6.5(1)
holds, then for all n,

γ([[ι1; . . . ; ιn]]KS) ⊇ [[ι1; . . . ; ιn]]c. (13)

Proof. By induction on n. Let Km denote [[ι1; . . . ; ιm]]KS.

Base case. When n = 0, γ([[ε]]KS) = γ(IdKS) = Id = [[ε]]c.

Induction step. Assume that Eqn. (13) holds for all natural numbers ≤ m.

γ([[ι1; . . . ; ιm; ιm+1]]KS)
= γ(interpInstrKS(ιm+1),Km) by Eqn. (12)
⊇ [[ιm+1]]c ◦ γ(Km) by the hypothesis of the lemma
= [[ιm+1]]c ◦ γ([[ι1; . . . ; ιm]]KS)
⊇ [[ιm+1]]c ◦ [[ι1; . . . ; ιm]]c by the induction hypothesis
= [[ι1; . . . ; ιm; ιm+1]]c

6.5 Access and Update Operations

Let S be a state, xj be a variable name, and X be a value. In the concrete
semantics, the operations access(S, xj) and update(S, xj , X) on states have the
usual semantics:
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—An access on state S with respect to xj returns the value of xj in S. That is,

[[xj ]](S)
def
= access(S, xj),

and hence,

[[xj ]]c(ρ) = {(v, x1, . . . , xk) | (x1, . . . , xk, x′1, . . . , x′k) ∈ ρ ∧ v = access((x′1, . . . , x
′
k), xj)}

= {(x′j , x1, . . . , xk) | (x1, . . . , xk, x′1, . . . , x′k) ∈ ρ}.

—The update of state S with respect to xj and value X results in an updated state
that acts just like S, except that xj is mapped to X:

access(update(S, xj , X), xi) = ((xi = xj) ? X : access(S, xi)),

where (exp1 ? exp2 : exp3) denotes an “if-then-else” expression.

A typical use of update(S, xj , X) is the final state-creation operation of an
instruction with operand e that evaluates to X in state S. For brevity, we
sometimes leave S implicit, and write “xj ← e,” where

[[xj ← e]](S)
def
= update(S, xj , [[e]](S)),

and hence,

[[xj ← e]]c

= {(x1, . . . , xk, x′1, . . . , x′k) | (x′1, . . . , x′k) = [[xj ← e]]((x1, . . . , xk))}
= {(x1, . . . , xk, x′1, . . . , x′k) | (x′1, . . . , x′k) = update((x1, . . . , xk), xj , [[e]]((x1, . . . , xk)))}
= {(x1, . . . , xk, x1, . . . , xj−1, v, xj+1, . . . xk) | v = [[e]]((x1, . . . , xk))}.

In the KS reinterpretation, accessKS and updateKS are operations that trans-
form values from KS[V ;V ′] to KS[V ; {i}] and vice versa:

accessKS : KS[V ;V ′]× identifier→ KS[V ; {i}]
updateKS : KS[V ;V ′]× identifier×KS[V ; {i}]→ KS[V ;V ′].

In a slight abuse of notation, we pretend that “xj ← e” is an instruction, and write

interpInstrKS(xj ← e,K)
def
= updateKS(K, xj , [[e]]KS(K)).

6.5.1 Access Operations. We sometimes denote the operation accessKS(K, xj),
where K ∈ KS[V ;V ′], by [[xj ]]KS(K). For accessKS(K, xj), the following method
is used to create the KS[V ; {i}] result:

(1) Extend K to be a KS[V ;V ′; {i}] value, adding an all-0 column for i. (An all-0
column for i means that there is no constraint on the value of i.)

(2) Assume the constraint i = x′j on the extended K value. (We wish to obtain the
value of variable xj from the “current state,” which corresponds to vocabulary
V ′.)

(3) Project away V ′, yielding a KS[V ; {i}] value, as desired.

Assuming the constraint i = x′j is straightforward, because it is represented exactly

by the KS value
[ i V x′

1 ... x′
j ... x′

k 1

1 0 0 . . . −1 . . . 0 0
]
.
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Fig. 2. (a) Concrete semantics of [[xj ]]c([[ι1; ι2; . . . ; ιm]]c). (b) State pairs that are over-

approximated by the successive abstract values K1,K2, . . . ,Km ∈ KS[V, V ′] that arise dur-
ing cascaded interpretation, and the state-to-value tuples that are over-approximated by

accessKS(Km, xj) ∈ KS[V ; {i}]. (c) Depiction of the vocabularies involved in the KS[V ; {i}]
relation returned by accessKS(Km, xj).

Soundness of the Abstraction. We now use the concrete collecting semantics from
§6.2.2 to argue that steps (1)–(3) above over-approximate the concrete collecting
semantics of a variable access [[xj ]]c(γ(K)) : P(Assignment[V ; {i}]). We can assume
that Property 6.5 holds on proper subterms. (In a formal proof, the derivation given
below, along with those in §6.4, §6.5.2, and §6.6.3, would be part of an inductive
argument in which Property 6.5 would be one of the properties proven.)

Fig. 2 depicts the concrete semantics of [[xj ]]c([[ι1; ι2; . . . ; ιm]]c), and how it is over-
approximated by the KS[V ; {i}] relation returned by cascaded reinterpretation. Let
Km denote [[ι1; ι2; . . . ; ιm]]KS. We have

[[xj ]]c([[ι1; ι2; . . . ; ιm]]c)

⊆ [[xj ]]c(γ([[ι1; ι2; . . . ; ιm]]KS)) (by Lem. 6.6)

= [[xj ]]c(γ(Km))

= {(v, x1, . . . , xk) | (x1, . . . , xk, x′1, . . . , x′k) ∈ γ(Km) ∧ v = [[xj ]](x
′
1, . . . , x

′
k)}

= {(x′j , x1, . . . , xk) | (x1, . . . , xk, x′1, . . . , x′k) ∈ γ(Km)}
= γ(accessKS(Km, xj)) (by steps (1)–(3) of “accessKS(Km, xj)” and Thm. 5.2)

= γ([[xj ]]KS(Km)).

In particular, lines 3–7 in the derivation above show that for γ([[xj ]]KS(Km)) and
[[xj ]]c(γ(Km)), Property 6.5(2) holds with equality (rather than with ⊇).

6.5.2 Update Operations. In the KS reinterpretation, suppose that (i) we have
the abstract transformer K ∈ KS[V ;V ′], and (ii) the reinterpretation of some ex-
pression e with respect to K has produced the reinterpreted value J = [[e]]KS(K) ∈
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KS[V ; {i}]. Intuitively, we want to create an abstract transformer K ′′ ∈ KS[V ;V ′]
that acts like K, except that the post-state variable x′ ∈ V ′ satisfies the constraints
in J ∈ KS[V ; {i}].

The operation updateKS(K, xj , J) is carried out by the following sequence of
steps:

(1) Let K ′ be the result of havocking x′ from K. (As discussed in §5.1.2, to havoc
x′, project away x′ and then add back an all-0 column for x′.)

(2) Let J̃ be the result of starting with J , renaming i to x′, and then adding an
all-0 column corresponding to every variable in the set V ′ \ {x′}. Note that
J̃ ∈ KS[V ;V ′].

(3) Return K ′′
def
= K ′ u J̃ .

In this method, K ′ captures the state in which we “forget” the previous value of x′,
and J̃ captures the assertion that x′ equals the value of the assignment’s expression.

Example 6.7. Returning to Ex. 6.3, consider the call to
updateState(S2, dstOp, res) in line (27) of Fig. 1(a) during the interpreta-
tion of the instruction “add eax, ebx” under the KS reinterpretation of TSL. To
create the abstract transformer for “add eax, ebx,” the initial value of state

S supplied to interpInstr line (17) would be IdKS, the identity element of
KS[{eax, ebx}; {eax′, ebx′}].

Because the KS reinterpretation does not track values of IA32 flags, updateFlag
is the identity function, and thus on line (26), S2 would have the value IdKS. As

described in Ex. 6.3, variable res would have the KS[V ; {i}] value
[ i eax ebx 1

1 −1 −1 0
]
.

The call “updateState(S2, dstOp, res)” would return the matrix

havoc

 [ eax ebx eax′ ebx′ 1

1 0 −1 0 0
0 1 0 −1 0

]
, eax′

 u [ eax ebx eax′ ebx′ 1

1 1 −1 0 0
]

=
[ eax ebx eax′ ebx′ 1

0 1 0 −1 0
]
u
[ eax ebx eax′ ebx′ 1

1 1 −1 0 0
]

= Howellize

 [ eax ebx eax′ ebx′ 1

1 1 −1 0 0
0 1 0 −1 0

] =

[ eax ebx eax′ ebx′ 1

1 0 −1 1 0
0 1 0 −1 0

]
= K1,

which corresponds to the transition relation (eax′ = eax+ ebx) ∧ (ebx′ = ebx).

To create the abstract transformer for the sequence “add eax, ebx; add ebx, eax,”
a second call on interpInstr would be performed with instruction I being the
TSL term for “add ebx, eax,” and state S having the value K1. As described in

Ex. 6.4, variable res would have the KS[V ; {i}] value
[ i eax ebx 1

1 −1 −2 0
]
. The call
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“updateState(S2, dstOp, res)” on line (27) of Fig. 1(a) would return the matrix

havoc

 [ eax ebx eax′ ebx′ 1

1 0 −1 1 0
0 1 0 −1 0

]
, ebx′

 u [ eax ebx eax′ ebx′ 1

1 2 0 −1 0
]

=
[ eax ebx eax′ ebx′ 1

1 1 −1 0 0
]
u
[ eax ebx eax′ ebx′ 1

1 2 0 −1 0
]

= Howellize

 [ eax ebx eax′ ebx′ 1

1 1 −1 0 0
1 2 0 −1 0

] =

[ eax ebx eax′ ebx′ 1

1 0 −2 1 0
0 1 1 −1 0

]
,

which corresponds to the transition relation (eax′ = eax+ebx)∧ (ebx′ = eax+2ebx).
2

Soundness of the Abstraction. We now use the concrete collecting semantics from
§6.2.2 to argue that steps (1)–(3) above over-approximate the concrete semantics of
“update(S, xj , X).” In particular, we wish to show that with KS reinterpretation,

interpInstrKS(xj ← e,K)
def
= updateKS(K, xj , [[e]]KS(K)) satisfies Property 6.5(1).

As in the proof sketch in §6.5.1, we can assume that Property 6.5 holds on
proper subterms. (In particular, see §6.5.1 and §6.6.3 for the justification of Prop-
erty 6.5(2).) Let Km denote [[ι1; ι2; . . . ; ιm]]KS. We now show that Property 6.5(1)
holds for γ(interpInstrKS(xj ← e,Km)), as follows:

[[xj ← e]]c ◦ γ(Km)

=

{
(x1, . . . , xk, x

′′
1 , . . . , x

′′
k)

∣∣∣∣( (x1, . . . , xk, x
′
1, . . . , x

′
k) ∈ γ(Km)

∧ (x′1, . . . , x
′
k, x
′′
1 , . . . , x

′′
k) ∈ [[xj ← e]]c

)}
=

{
(x1, . . . , xk, x

′
1, . . . , x

′
j−1, v, x

′
j+1, . . . x

′
k)

∣∣∣∣( (x1, . . . , xk, x
′
1, . . . , x

′
k) ∈ γ(Km)

∧ v = [[e]]((x′1, . . . , x
′
k))

)}
=

{
(x1, . . . , xk, x

′
1, . . . , x

′
j−1, v, x

′
j+1, . . . x

′
k)

∣∣∣∣( (x1, . . . , xk, x
′
1, . . . , x

′
k) ∈ γ(Km)

∧ (v, x1, . . . , xk) ∈ [[e]]c(γ(Km))

)}
⊆
{
(x1, . . . , xk, x

′
1, . . . , x

′
j−1, v, x

′
j+1, . . . x

′
k)

∣∣∣∣( (x1, . . . , xk, x
′
1, . . . , x

′
k) ∈ γ(Km)

∧ (v, x1, . . . , xk) ∈ γ([[e]]KS(Km))

)}
(by Property 6.5(2))

=

(
{(x1, . . . , xk, x′1, . . . , x′j−1, wj , x

′
j+1, . . . , x

′
k) | (x1, . . . , xk, x′1, . . . , x′k) ∈ γ(Km)}

∩ {(x1, . . . , xk, w1, . . . , wj−1, v, wj+1, . . . , wk) | (v, x1, . . . , xk) ∈ γ([[e]]KS(Km))}

)
=

(
havoc(Km, v

′
j)

∩ {(x1, . . . , xk, w1, . . . , wj−1, v, wj+1, . . . , wk) | (v, x1, . . . , xk) ∈ γ([[e]]KS(Km))}

)
= γ(updateKS(Km, xj , [[e]]KS(Km))) (by steps (1)–(3) of “updateKS(Km, xj , [[e]]KS(Km))”)

= γ(interpInstrKS(xj ← e,Km)).

6.6 Operations on Reinterpreted Integers in KS[V ; {i}]
With semantic reinterpretation, the value of an expression is a function of the
values of the expression’s proper constituents3—just as in the concrete semantics.

3This principle is often referred to as “compositionality.” However, we avoid this term because
in §6.4 we defined “composed reinterpretation” of a basic block to be a specific reinterpretation
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Semantic reinterpretation computes the value of an expression by first evaluating
the constants and variables at the expression’s leaves, then evaluating the operation
at each internal node, until it yields an abstract value for the entire expression.

6.6.1 Constants. The KS reinterpretation of a constant c, [[c]]KS : KS[V ;V ′]→
KS[V ; {i}], ignores the input argument and returns the KS[V ; {i}] value that en-

codes the equation i = c:
[ i V 1

1 0 . . . 0 −c
]
.

6.6.2 Multiplication by a Constant. Suppose that we have the KS[V ; {i}] value
Ke for subexpression e, and wish to compute the KS[V ; {i}] value for the expression
c ∗ e. We proceed as follows:

(1) Extend Ke to be a KS[V ; {i, i′}] value, adding an all-0 column for i′.

(2) Assume the constraint i′ = ci on the extended Ke value.

(3) Project away i, yielding a KS[V ; {i′}] value.

(4) Rename i′ to i, yielding a KS[V ; {i}] value, as desired.

The constraint i′ = ci is represented exactly by the KS value
[ i′ i V 1

1 −c 0 0
]
. Because

projection and the added constraint are both exact, the resulting value is the most
precise value that the KS domain can represent.

6.6.3 Addition. Suppose that we have the KS[V ; {i}] values Kx and Ky for
subexpressions x and y, respectively, and wish to compute the KS[V ; {i}] value for
the expression x+ y. We proceed as follows:

(1) Rename Ky’s i variable to i′; this makes Ky a KS[V ; {i′}] value.

(2) Extend both Kx and Ky to be KS[V ; {i, i′, i′′}] values, adding all-0 columns for
i′ and i′′ to x, and all-0 columns for i and i′′ to Ky. This step causes i′ and i′′

to be unconstrained in Kx, and i and i′′ to be unconstrained in Ky.

(3) Compute Kx uKy.

(4) Assume the constraint i′′ = i + i′ on the KS[V ; {i, i′, i′′}] value computed in
step (3).

(5) Project away i and i′, yielding a KS[V ; {i′′}] value.

(6) Rename i′′ to i, yielding a KS[V ; {i}] value, as desired.

The vocabulary manipulations in the first two steps put the values into compara-
ble form (i.e., KS[V ; {i, i′, i′′}]), and are easy to perform. The constraint i′′ = i+ i′

is represented exactly by the KS value
[ i′′ i′ i V 1

1 −1 −1 0 0
]
. Because projection, meet,

and the added constraint are all exact, the resulting value is the most precise value
that the KS domain can represent.

Soundness of the Abstraction. To justify abstract addition in KS[V ; {i}] with
respect to the concrete collecting semantics defined in §6.2.2, suppose that e =
e1 + e2, and that ρ : P(Assignment[V ;V ′]) is some state-to-state transformation.

pattern (different from the “cascaded reinterpretation” of a basic block).

42



Then the concrete collecting semantics of addition in the evaluation context ρ can
be expressed as follows:

[[e1 + e2]]c(ρ) =

(v, x1, . . . , xk)

∣∣∣∣∣∣
(v1, x1, . . . , xk) ∈ [[e1]]c(ρ)
∧ (v2, x1, . . . , xk) ∈ [[e2]]c(ρ)
∧ v = v1 + v2

 .

In an inductive proof of soundness, we can assume that Property 6.5(2) holds for e1
and e2. That is, for all K ∈ KS[V ;V ′] and i ∈ {1, 2}, γ([[ei]]KS(K)) ⊇ [[ei]]c(γ(K)).
Then,

[[e1 + e2]]c(γ(K)) =

(v, x1, . . . , xk)

∣∣∣∣∣∣
(v1, x1, . . . , xk) ∈ [[e1]]c(γ(K))
∧ (v2, x1, . . . , xk) ∈ [[e2]]c(γ(K))
∧ v = v1 + v2


⊆

(v, x1, . . . , xk)

∣∣∣∣∣∣
(v1, x1, . . . , xk) ∈ γ([[e1]]KS(K))
∧ (v2, x1, . . . , xk) ∈ γ([[e2]]KS(K))
∧ v = v1 + v2

 (14)

= γ([[e1 + e2]]KS(K)). (15)

Line (15) follows from line (14) by steps (1)–(6) above, which perform KS[V ; {i}],
KS[V ; {i′}], and KS[V ; {i, i′, i′′}] operations that implement the set-former expres-
sion in line (14).

Remark 6.8. Multiplication by a constant and addition are both examples of
linear operations. The KS domain can precisely compute any linear combination of
KS values. For instance, given KS[V ; {i}] values Kx and Ky for the subexpressions
x and y, respectively, we can compute a KS[V ; {i}] value for the expression 3x+8y.
The steps are similar to those used for addition, except that step (4) would be
“Assume the constraint i′′ = 3i+ 8i′ on Kx uKy.”

However, semantic reinterpretation creates an over-approximating abstract trans-
former for a state-transformation expression via an over-approximating reinterpre-
tation for each individual operator, and thus 3x + 8y would be treated as two in-
stances of multiplication-by-a-constant and one instance of addition. While in some
cases this approach is myopic—i.e., one could obtain a more precise transformer by
considering the semantics of an entire instruction (or, even better, an entire basic
block or other loop-free program fragment)—in the case of combinations of linear
operators there is no loss of precision. For instance, when we treat the expression
3x + 8y as two multiplication-by-a-constant operators and an addition, we obtain
the same KS[V ; {i}] value that we would obtain by treating 3x + 8y as a single
linear operator. 2

6.6.4 Non-Linear Operations. The KS domain cannot interpret most instances
of non-linear operations precisely. However, when a KS[V ; {i}] value has the form[ i V 1

1 0 . . . 0 −c
]
, the dependent variable i of a KS[V ; {i}] value can have only a sin-

gle concrete value c, regardless of the values of the independent variables; i.e., the
KS[V ; {i}] value represents the constant c. When an operation’s input KS[V ; {i}]
values each denote a constant, the operation can be performed precisely by per-
forming it in concrete arithmetic on the identified constants. In essence, this ap-
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proach uses special-case handling to identify constants, and then performs constant
propagation—including constant propagation over non-linear operators.

6.6.4.1 Identifying Partially-Constant Values. We can generalize the notion of
“constant value” to a class of partially-constant values. A variable is partially con-
stant if some bits of the dependent variable are constant across all valid assignments
to the independent variables, even though overall the dependent variable might take
on multiple values. As with constants, when an operation’s input KS[V ; {i}] values
denote partially-constant values, special-case handling in the abstract operation
can be used to compute a more-precise answer than would otherwise be obtained.
(see §6.6.4.2).

For instance, consider the following KS[{x, y} ; {i}] value, in Z16:

X =
[ i x y 1

1 12 8 13
]

This value captures the congruence i + 12x + 8y = 3. If we consider these values
modulo 4, we would have i+ 0x+ 0y = 3 (mod 4), which means that the rightmost
two bits of i must both be 1, even though the leftmost two bits of i depend on the
values of x and y. Consequently, i is partially constant.

Using projection, we can locate the right-hand constant portion of a partially-
constant KS variable, and determine the value of those constant bits:

Given a non-bottom KS[V ; {i}] value X, project away the variables V
and Howellize the result. Call the Howellized matrix X ′. If X ′ is the
empty matrix, i is fully non-constant; it may be any value in Z2w . Oth-
erwise, for some m and c, Howellization leaves X ′ in the following form:

X ′ =
[ i 1

2m −2mc
]
.

X ′ denotes the congruence 2mi = 2mc (mod 2w), which may be expressed equiv-
alently as i = c (mod 2w−m).4 Consequently, the rightmost w − m bits of i are
constant, and their value is c.

Notice that i is (fully) constant exactly when m = 0.

6.6.4.2 Bitwise Operations on Partially-Constant Values. In this section, we
consider the case of binary bitwise operations, such as bitwise-and, bitwise-or, and
bitwise-xor, when we have information that the argument KS[V ; {i}] values are
partially constant. In such a case, we can obtain a non-trivial over-approximation
of the result of a bitwise operation by the method described below.

First, the partially-constant values for the two arguments are computed using the
technique described in §6.6.4.1. For the moment, assume that for each argument
exactly m bits are known to be partially constant. Let a denote the rightmost m
bits of the first argument, and b denote the rightmost m bits of the second argument.
Let ./ denote the operation to be performed (i.e., bitwise-and, bitwise-or, or bitwise-
xor). The exact value for the rightmost m bits of the answer is c = a ./ b. We then

4As discussed in §5.1.4, a congruence of the form “lhs = rhs (mod 2h)” can be expressed as
the w-bit affine constraint “2w−hlhs = 2w−hrhs.” In the example above, m = w − h, and thus
h = w −m.
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Fig. 3. Bitwise-and when more bits are known to be partially constant for the first argument i

than for the second argument i′. (a) amid ends in L zeros; (b) amid ends in L ones.

proceed as in §6.6.3, except that step (4) assumes the congruence i′′ = c (mod 2m)
(as explained in §5.1.4). The latter constraint expresses the condition that the
rightmost m bits of i′′ are c.

When different numbers of bits are known for the two arguments, we can also
manage to retain precision for some of the bit-locations where only one of the two
operands is known to be partially constant. For example, suppose that we wish to
perform a bitwise-and operation, and we know the rightmost m′ + m bits of the
first argument and the rightmost m bits of the second argument. In particular,
suppose that the first argument’s partially-constant value is 2mamid + alow, where
0 ≤ alow < 2m and 0 ≤ amid < 2m

′
. (That is, alow is the value of the m “low”

bits of the first argument, and amid is the value of the m′ “middle” bits of the first
argument.) Let b denote the rightmost m bits of the second argument, and let
c = alow & b.

The binary representation of amid must either end in a string of zeros or ones.
If amid ends in L zeros, then we know that the corresponding L bits in the answer
are also 0 (see Fig. 3(a)). Thus, we can capture L+m constant bits in the answer
by using the method from §6.6.3, except that step (4) assumes the congruence

i′′ = c (mod 2L+m).

On the other hand, if amid ends in a string of L ones, then we know that the
corresponding L bits of the answer are equal to the corresponding L bits of the
second argument—which may vary. Usually, linear congruences cannot describe a
bit region that does not stretch to the least-significant end of the value. In this
case, though, the rightmost m bits of the second argument are known to be the
constant value b (see Fig. 3(b)). If i′ represents the value of the second argument,
then the rightmost m bits of i′ − b are zeros, and the remaining bits are the bits of
i′. Thus, we can capture L + m bits in the answer using the method from §6.6.3,
except that step (4) assumes the congruence

i′′ = (i′ − b+ c) (mod 2L+m). (16)

Both bitwise-or and bitwise-xor can be handled in a similar fashion. The only
subtlety is that for bitwise-xor, when amid ends in a string of L ones, the analogue
of Eqn. (16) must complement the L middle-region bits of the second argument.
The bitwise-complement of a value v is −v − 1, and hence can be expressed as an
affine constraint. Using i′ to represent the second argument, i′ − b is i′ with its
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rightmost m bits replaced by zeros. Thus, −(i′−b)−1 is the bitwise complement of
i′ with its rightmost m bits replaced by ones. To eliminate those ones, we subtract
2m − 1; that is, −(i′ − b) − 2m is the bitwise complement of i′ with its rightmost
m bits replaced by zeros. Consequently, we can capture L + m bits in the answer
using the method from §6.6.3, except that step (4) assumes the congruence

i′′ = (−(i′ − b)− 2m + c) (mod 2L+m),

where here c = alow xor b.

6.7 Incomparability of Composed and Cascaded Reinterpretation

As shown by Exs. 6.9 and 6.10 below, neither technique for basic-block reinterpre-
tation is strictly better than the other.

Example 6.9. To see that cascaded reinterpretation can create a more precise
KS[V ;V ′] element than composed reinterpretation, consider the following code frag-
ment, which zeros the two low-order bytes of register eax and does a bitwise-or of
eax into ebx (ax denotes the two low-order bytes of register eax):

ι3 : xor ax, ax
ι4 : or ebx, eax

The semantics of this code fragment can be expressed as follows:

ebx′ = (ebx | (eax & xFFFF0000)) ∧ eax′ = (eax & xFFFF0000),

where “&” and “|” denote bitwise-and and bitwise-or, respectively.

interpInstrKS(ι3, IdKS) creates the KS element

[ eax ebx eax′ ebx′ 1

0 1 0 −1 0
0 0 216 0 0

]
, which

captures (ebx′ = ebx) ∧ (216eax′ = 0). The two approaches to reinterpretation
produce the following answers:

—Composed reinterpretation:

interpInstrKS(ι4, IdKS) ◦KS interpInstrKS(ι3, IdKS)

=
[ eax ebx eax′ ebx′ 1

1 0 −1 0 0
]
◦KS

[ eax ebx eax′ ebx′ 1

0 1 0 −1 0
0 0 216 0 0

]

=
[ eax ebx eax′ ebx′ 1

0 0 216 0 0
]

= (216eax′ = 0).

—Cascaded reinterpretation:

interpInstrKS(ι4, interpInstrKS(ι3, IdKS))

= interpInstrKS(ι4,

[ eax ebx eax′ ebx′ 1

0 1 0 −1 0
0 0 216 0 0

]
)

=

[ eax ebx eax′ ebx′ 1

0 216 0 −216 0
0 0 216 0 0

]
= (216ebx′ = 216ebx) ∧ (216eax′ = 0).
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The reinterpretation of “ι4: or ebx, eax” takes place in a context in which the
two low-order bytes of eax are partially constant (see §6.6.4.1 and §6.6.4.2); in
particular, 216eax = 0 holds. Because of this additional piece of information, the
reinterpretation technique described in §6.6.4.2 recovers the additional conjunct
“216ebx′ = 216ebx.”

Put more succinctly, what the above example shows is that because of the eval-
uation methods used to increase precision for partially constant values (§6.6.4.1
and §6.6.4.2), it is possible to have

interpInstrKS(ι, IdKS) ◦ K = interpInstrKS(ι,K).

2

Example 6.10. To see that composed reinterpretation can create a more pre-
cise KS[V ;V ′] element than cascaded reinterpretation, consider the following code
fragment:

ι5 : test eax, eax
ι6 : setnz cl

ι7 : add esi, ecx

Cascaded KS-reinterpretation obtains

(eax = eax′) ∧ (ebx = ebx′),

whereas composed KS-reinterpretation obtains the more precise answer

(eax = eax′) ∧ (ebx = ebx′) ∧ (esi′ = esi + ecx′).

The instruction “test eax, eax” sets the x86 processor flags according to the
result of the bitwise logical-and of the value of register eax with itself. In particular,
it sets the ZF flag to true iff the result is 0 (which, for this instruction, would happen
exactly when the value of eax is 0). The instruction “setnz cl” sets the low-order
byte of register ecx to 1 if ZF is true, and 0 if ZF is false. Because the value of ecx
is unknown on entry to the code fragment, the prefix “[[ι5; ι6]]KS” of the cascaded
reinterpretation computes a KS[V, V ′] element KS5,6 in which nothing is known
about the values of ecx and ecx′. When interpInstrKS(ι7,KS5,6) is performed,
the KS[V ; {i}] value retrieved for the value of argument ecx of “add esi, ecx” is
>KS[V ;{i}] (see §6.5.1), and hence cascaded reinterpretation is unable to identify
the desired relationship between esi, ecx′, and esi′.

In contrast, with composed reinterpretation, the KS[V, V ′] element given to
interpInstrKS for “add esi, ecx” is IdKS. When interpInstrKS(ι7, IdKS) is per-

formed, the KS[V ; {i}] value retrieved for the value of ecx is
[ i eax ebx ecx esi 1

1 0 0 −1 0 0
]
.

The addition of ecx to esi results in
[ i eax ebx ecx esi 1

1 0 0 −1 −1 0
]
. As discussed in §6.5.2,

the function call “updateState(S2, dstOp, res)” on line (27) of Fig. 1(a) would
return the KS[V, V ′] element


eax ebx ecx esi eax′ ebx′ ecx′ esi′ 1

1 0 0 0 −1 0 0 0 0
0 1 0 0 0 −1 0 0 0
0 0 1 0 0 0 −1 0 0
0 0 −1 −1 0 0 0 1 0

,
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which Howellizes to


eax ebx ecx esi eax′ ebx′ ecx′ esi′ 1

1 0 0 0 −1 0 0 0 0
0 1 0 0 0 −1 0 0 0
0 0 1 0 0 0 −1 0 0
0 0 0 1 0 0 1 −1 0

. (17)

When matrix (17) is composed with

interpInstrKS(ι6, IdKS) ◦ interpInstrKS(ι5, IdKS),

ecx and ecx′ are havocked, but the last row is retained, i.e., esi′ = esi + ecx′.
In this example, the shorter range over which an instruction’s effect is considered

during composed reinterpretation allows an affine relation to be identified with
respect to a post-state variable, even though all information about the value of the
corresponding pre-state variable is lost. Because of this phenomenon it is possible
to have

interpInstrKS(ι,K) = interpInstrKS(ι, IdKS) ◦ K.
The example shows that identifying relationships with post-state variables can

be important. Because reinterpretation performs forward (evaluation-order) eval-
uation, it is natural to use KS[V ; {i}] values that keep relationships between a
computed value and the values of pre-state variables. To create reinterpreted in-
tegers as relations of the form KS[V ′; {i}], with respect to post-state variables,
would seem to require a backward reinterpretation, performed counter to normal
evaluation order. 2

Note that appending the code fragment from Ex. 6.9 at the end of the one from
Ex. 6.10 creates a code fragment in which the respective KS elements obtained
from cascaded and composed reinterpretation are incomparable. One could always
perform both reinterpretations and take the meet of the two results.

7. SYMBOLIC ABSTRACTION

Cousot and Cousot [1979] gave the following specification of the most-precise ab-
stract interpretation of a concrete operator (“transformer”) τ that is possible in a
given abstract domain:

Given a Galois connection C −−−→←−−−α
γ
A between concrete domain C and

abstract domain A, the best abstract transformer, τ# : A → A, is the
most precise abstract operator possible that over-approximates τ . τ#

can be expressed as follows: τ# = α ◦ τ ◦ γ.

The latter equation defines the limit of precision obtainable using abstraction A.
Unfortunately, there are several problems that make it difficult to obtain best

abstract transformers in practice.

(1) The definition does not provide a useful algorithm, either for applying τ# or
for finding a representation of the function τ#. In particular, in many cases,
the explicit application of γ to an abstract value would yield an intermediate
result—a set of concrete values or concrete states—that is either infinite or too
large to fit in computer memory.
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(2) Best abstract operators are not closed under composition. That is, if τ#1 and

τ#2 are the best abstract operators that over-approximate τ1 and τ2, τ#2 ◦ τ
#
1

is not necessarily the best abstraction of τ2 ◦ τ1. Consequently, one cannot
obtain the best abstract operator for an entity by combining best abstractions
of the entity’s constituents.

In particular, even if one has best KS operators for the set of machine-integer
operations (cf. §6), an operator-by-operator reinterpretation method, like the one
used in the TSL system, will not necessarily create the best abstract transformer
for an individual assignment statement, basic block, or loop-free program fragment.

In practice, whether analyzing source code or machine code, the concrete se-
mantics typically includes arithmetic, logical, and “bit-twiddling” operations. The
latter include left-shift; arithmetic and logical right-shift; bitwise-and, bitwise-or,
and bitwise-xor; etc. Unfortunately, few abstract domains retain precision over the
full gamut of such operations. Moreover, issue (2) above can amplify the deficiencies
of an abstract domain in tracking the result of a computation because of cascade
effects when reinterpretation is applied to a large expression.

An operator-by-operator reinterpretation method abstracts operations in isola-
tion, and is therefore rather “myopic.” In contrast, a more “far-sighted” approach
that considers the semantics of an entire instruction—or, even better, an entire
basic block or other loop-free program fragment—can yield a more precise abstract
transformer. In particular, the notion of symbolic abstraction [Reps et al. 2004] both
(i) adopts a global outlook, and (ii) provides an algorithm for obtaining abstract
transformers. Symbolic abstraction is parameterized on a logic L that is assumed
to be rich enough to express the semantics of the constructs of the programming
language in use.

—Abstract domainA is said to support a symbolic implementation of the α function
of a Galois connection (or “symbolic abstraction,” for short) if, for every logical
formula ψ ∈ L that specifies (symbolically) a set of concrete stores [[ψ]], there is a
method α̃ that finds a sound abstract element α̃(ψ) ∈ A that over-approximates
[[ψ]]. That is, [[ψ]] ⊆ γ(α̃(ψ)), where [[ψ]] denotes the meaning function for L.

—For some abstract domains, it is even known how to perform a best symbolic
implementation of α, denoted by α̂ [Reps et al. 2004]. For every ψ, α̂ finds the
best element in A that over-approximates [[ψ]].

Using symbolic abstraction, the issue of “myopia” can be addressed by first creating
a logical formula ϕι ∈ L that captures the concrete semantics of each instruction
ι (or basic block, or loop-free program fragment), and then performing α̃(ϕι) or
α̂(ϕι).

In our work, L is quantifier-free bit-vector logic (QFBV). The generation
of a QFBV formula that, with no loss of precision, captures the concrete se-
mantics of an instruction or basic block is a problem that itself fits the TSL
operator-reinterpretation paradigm [Lim and Reps 2013, §4.1.5]. That is, given
ι, the desired formula ϕι is [[ι]]QFBV, which can be obtained by evaluating
interpInstrQFBV(ι, IdQFBV).

King and Søndergaard [2010, Fig. 2] gave an algorithm for symbolic abstraction
for the KS domain: given a QFBV formula ϕ, their algorithm returns an element
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in KS that over-approximates [[ϕ]]. As originally stated, their algorithm did not
return the best element in KS that over-approximates [[ϕ]] because, as discussed
in §5.1.2, it used row-echelon form—rather than Howell form—for the projections
that take place in the algorithm’s join operations (cf. Ex. 5.1). However, with our
more precise projection operation from §5.1.2, the symbolic-abstraction algorithm
does return the best element in KS that over-approximates [[ϕ]].
α̂ for the KS domain has the potential to create more precise abstract transform-

ers than operator-by-operator reinterpretation, because α̂ can account for transfor-
mations of register values that involve a sequence of memory-access/update and/or
flag-access/update operations within a basic block B. Consider the following ex-
amples:

Example 7.1. B contains a store to memory of register eax’s value, and a sub-
sequent load from memory of that value into ebx.

ι8 : push eax

ι9 : pop ebx

Because the formula [[ι8; ι9]]QFBV given to α̂ captures the two memory opera-
tions, α̂ finds the KS[V ;V ′] element that represents the transformation (eax′ =
eax) ∧ (ebx′ = eax). In contrast, KS-reinterpretation produces >KS[V ;V ′] because
it interprets memory-access/update operations very conservatively.

Example 7.2.

ι10 : test eax, eax
ι11 : jz label

ι12 : 〈some instr〉
ι13 : label : ...

Suppose that we want to obtain the KS transformer for the path that consists of
ι10, ι11, and the jump to label. The jump is performed only if ZF is true. ZF is set to
true by ι10 exactly when eax is zero. Because the formula [[ι10; ι11; label]]QFBV given
to α̂ captures the flag-access/update operations performed in ι10 and ι11, α̂ finds
the KS[V ;V ′] element that represents the transformation (eax′ = 0)∧(ebx′ = ebx).
In contrast, KS-reinterpretation obtains the weaker result (ebx′ = ebx).

Pseudo-code for the improved King and Søndergaard algorithm, which we will
denote by α̂↑KS(ϕ), is shown in Fig. 4(a). The matrix lower is maintained in Howell

form throughout. In line (6), α̂↑KS(ϕ) uses an operation to convert an element p
of the KS domain to a logical formula, called the symbolic concretization of p. In
general,

For all A ∈ A, the symbolic concretization of A, denoted by γ̂(A), maps
A to a formula γ̂(A) such that A and γ̂(A) represent the same set of
concrete states (i.e., γ(A) = [[γ̂(A)]]) [Reps et al. 2004].

For most abstract domains, including KS, it is easy to write a γ̂ function. As
mentioned in §2.3, affine equalities can be read out from a KS element M (regardless
of whether M is in Howell form) as follows:

50



Require: ϕ: a QFBV formula

Ensure: α̂(ϕ) for the KS domain
1: lower← ⊥
2: i← 1

3:
4: while i ≤ rows(lower) do

5: p← lower[rows(lower)− i+ 1]

{p w lower}
6: S ← Model(ϕ ∧ ¬γ̂(p))

7: if S is TimeOut then return >
8: else if S is None then {ϕ⇒ γ̂(p)}
9: i← i+ 1

10:

11: else {S 6|= γ̂(p)}
12: lower← lower t β(S)

13: ans← lower

14: return ans

Require: ϕ: a QFBV formula

Ensure: α̂(ϕ) for the KS domain

1: lower← ⊥
2: i← 1

3: upper← >
4: while i ≤ rows(lower) do

5: p← lower[rows(lower)− i+ 1]

{p w lower, p 6w upper}
6: S ← Model(ϕ ∧ ¬γ̂(p))

7: if S is TimeOut then return upper

8: else if S is None then {ϕ⇒ γ̂(p)}
9: i← i+ 1

10: upper← upper u p
11: else {S 6|= γ̂(p)}
12: lower← lower t β(S)

13: ans← lower

14: return ans
(a) (b)

Fig. 4. (a) The King-Søndergaard algorithm for symbolic abstraction (α̂↑KS(ϕ)). (b) The
Thakur-Elder-Reps bilateral algorithm for symbolic abstraction, instantiated for the KS domain:

α̂
l
TER[KS]

(ϕ). In both algorithms, lower is maintained in Howell form throughout.

If
[ x1 ... xk x′

1 ... x′
k 1

a1 . . . ak a′1 . . . a′k b
]

is a row of M , then
∑
i aixi+

∑
i a
′
ix
′
i = −b

is a constraint on γKS (M).

The conjunction of these constraints describes γKS (M) exactly. Consequently,
γ̂(M) can be defined as follows:

γ̂(M)
def
=

∧
[
a1 · · · ak a′1 · · · a

′
k |b
]

is a row of M

∑
i

aixi +
∑
i

a′ix
′
i = −b

The algorithm α̂↑KS(ϕ) is a successive-approximation algorithm: it computes a
sequence of successively larger approximations to [[ϕ]]. It maintains an under-
approximation of the final answer in the variable “lower,” which is initialized to ⊥
on line (1). On each iteration, the algorithm selects p, a single row (constraint)
of lower (line (5)), and calls a decision procedure to determine whether there is a
model that satisfies the formula “ϕ ∧ ¬γ̂(p)” (line (6)). When ϕ ∧ ¬γ̂(p) is unsat-
isfiable, ϕ implies γ̂(p). In this case, p cannot be used to figure out how to make
lower larger, so variable i is incremented (line (9)), which means that on the next
iteration of the loop, the algorithm selects the row immediately above p (line (5)).

On the other hand, if the decision procedure returns a model S, the under-
approximation lower is updated to make it larger via the join performed on the
right-hand side of the assignment in line (12)

lower← lower t β(S). (18)

Because KS elements represent two-vocabulary relations, S is an assignment of
concrete values to both the pre-state and post-state variables:

S = [. . . , xi 7→ vi, . . . , x
′
i 7→ v′i, . . .],
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or, equivalently,

S = [ ~X 7→ ~v, ~X ′ 7→ ~v′]. (19)

The notation β(S) in line (12) denotes the abstraction of the singleton state-set
{S} to a KS element. {S} can always be represented exactly in the KS domain as
follows (where the superscript t denotes the operation of vector transpose):

β(S)
def
=

[ ~X ~X′ 1

I 0 (−~v)t

0 I (−~v′)t
]

(20)

7.1 Correctness of α̂↑KS

As originally stated, the King and Søndergaard algorithm only created best ab-
stract transformers for the Boolean case (KS21). For the general KS2w domain,
their algorithm creates a sound, but not necessarily best, transformer (i.e., it is an
algorithm for α̃(ϕ)). They claimed to prove its correctness, but the proof is flawed
for the general KS2w domain. In this section and App. E, we prove that Fig. 4(a)
implements α̂(ϕ). Our proof also provides insight on how the algorithm works.

The argument that Fig. 4(a) is correct is somewhat subtle. In particular, one of
the tricky aspects of Fig. 4(a) is the indexing into matrix lower via variable i: i is
used to index rows of lower relative to the last row of lower. Initially, lower is the

one-row matrix
[ ~X ~X′ 1

0 0 1
]
, which represents ⊥KS, and i = 1 indexes the last row

of lower. However, assuming that ϕ is satisfiable, the first iteration of the while
loop finds an assignment S that satisfies “ϕ ∧ ¬(0 = 1)” (line (6)), and performs
the assignment “lower← ⊥KStβ(S)” (line (12)), after which lower holds the value
β(S). Thus, as can be seen from Eqn. (20), after the first iteration lower has 2k
rows.

Thereafter, each iteration of the while loop considers a single row p, selected
by the assignment p ← lower[rows(lower) − i + 1] on line (5). During each itera-
tion, either i is incremented and lower is left unchanged (line (9)), or an update
lower ← lower t β(S) is performed (line (12) and Eqn. (18)). The latter step
seems problematic because, in general, the join operation will cause the number
of rows in lower to change. Fortunately, as we show in Lem. E.4, the join on
line (12) leaves the bottommost i − 1 rows of lower unchanged—whereas the top-
most (rows(lower) − i + 1) rows can be changed by the join. The fact that the
bottommost i− 1 rows are not changed by “lower← lower t β(S)” is what makes
it possible to index rows of lower relative to the last row of lower.

Algorithm α̂↑KS maintains two invariants:

(1) lower v α̂(ϕ)

(2) lower[(rows(lower)− i+ 2) . . . rows(lower)] w α̂(ϕ)

Note that both invariants are established before the loop is entered on line (4):
(i) the assignment “lower ← ⊥” on line (1) sets lower = ⊥ v α̂(ϕ); and (ii) the
assignment “i← 1” on line (2) sets lower[(rows(lower)− i+ 2) . . . rows(lower)] =
> w α̂(ϕ).5 In App. E, we prove a sequence of lemmas that establish that Algorithm

5When i = 1, the range (rows(lower)− i+ 2) . . . rows(lower) is empty, and lower[(rows(lower)−
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α̂↑KS maintain these invariants properly. The lemmas are used to prove the following
theorem:

Theorem 7.3. If algorithm α̂↑KS from Fig. 4(a) does not encounter a timeout,
(i) the algorithm terminates, and (ii) the element returned is α̂(ϕ) with respect to
the KS domain.

Proof. See App. E.

7.2 An Improvement to α̂↑KS

Algorithm α̂↑KS from Fig. 4(a) is related to, but distinct from, an earlier α̂ algorithm,
due to Reps et al. [2004] (RSY), which applies not just to the KS domain, but to
all abstract domains that meet a certain interface. (In other words, α̂RSY is the
cornerstone of a framework for symbolic abstraction.) The two algorithms resemble
one another in that they both find α̂(ϕ) via successive approximation from below.
However, there is a key difference in the nature of the satisfiability queries that are
passed to the decision procedure by the two algorithms. Compared to α̂RSY, α̂KS

issues comparatively inexpensive satisfiability queries in which only a single affine
equality is negated6—i.e., line (6) of Fig. 4(a) calls Model(ϕ ∧ ¬γ̂(p)), where p is a
single constraint from lower.

This difference—together with the observation that in practice α̂KS was about
ten times faster than α̂RSY when the latter was instantiated for the KS domain—led
Thakur, Elder, and Reps [2012] (TER) to investigate the fundamental principles

underlying α̂RSY and α̂KS. They developed a new framework, α̂
l
TER, that transfers

α̂KS’s advantages from the KS domain to other abstract domains [Thakur et al.
2012].

Fig. 4(b) shows the α̂
l
TER algorithm instantiated for the KS domain, which we

call α̂
l
TER[KS]. The differences between Fig. 4(a) and (b) are highlighted in gray.

In addition to generating less expensive satisfiability queries, the second benefit of

α̂
l
TER is that α̂

l
TER generally returns a more precise answer than α̂RSY and α̂KS when

a timeout occurs. Because α̂RSY and α̂KS maintain only under-approximations of
the desired answer, if the successive-approximation process takes too much time

and needs to be stopped, they must return > to be sound. In contrast, α̂
l
TER is

bilateral, and can generally return a nontrivial (non->) element in case of a timeout.

That is, α̂
l
TER maintains both an under-approximation (lower) and a nontrivial

over-approximation of the desired answer, and hence is resilient to timeouts: α̂
l
TER

returns the over-approximation if it is stopped at any point (see line (7) of Fig. 4(b)).
In the proof of correctness of α̂KS in App. E, it is convenient to abbreviate

lower[(rows(lower) − i + 2) . . . rows(lower)] as “upper,” and restate invariant (2)

as upper w α̂(ϕ). In α̂
l
TER, the over-approximation of α̂(ϕ) is obtained by mate-

rializing the ghost variable upper from invariant (2) of §7.1 as an actual variable.

α̂
l
TER[KS] initializes upper to > on line (3) of of Fig. 4(b). At any stage in the algo-

rithm, upper w α̂(ϕ) holds. By exactly the same argument given in Lem. E.2, it is

i+ 2) . . . rows(lower)] denotes the empty set of constraints, which equals >.
6See [Thakur et al. 2012, §3] for a more extensive explanation of the differences between α̂KS and
α̂RSY.
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sound to update upper on line (10) by performing a meet with the row p that was
selected in line (5). Because p’s leading index, LI (p), is less than the leading index
of every row in upper, p constrains the value of variable xLI (p), whereas upper places
no constraints on variable xLI (p). Therefore, p 6w upper, which guarantees progress
because p u upper < upper. Termination is guaranteed by the same argument used
in Thm. 7.3.

In case of a decision-procedure timeout, α̂
l
TER[KS] returns upper as the answer

(line (7)). If the algorithm finishes without a timeout, then α̂
l
TER[KS] computes

α̂(ϕ); on the other hand, if a timeout occurs, the element returned is generally an

over-approximation of α̂(ϕ)—i.e., α̂
l
TER[KS] computes α̃(ϕ).

In the KS instantiation of α̂
l
TER, upper can actually be represented implicitly.

By invariant (2), we know that lower[(rows(lower)− i+ 2) . . . rows(lower)] w α̂(ϕ)
always holds. Consequently, the assignment upper ← lower[(rows(lower) − i +
2) . . . rows(lower)] need only be performed if line (7) is reached, and neither of the
assignments on lines (3) and (10) need to be performed explicitly.

7.3 Symbolic Abstraction for the MOS Domain

It was not previously known how to perform symbolic abstraction for MOS. Us-
ing α̂KS in conjunction with the algorithms from §3 and §4.4, we can obtain an
algorithm for α̃MOS(ϕ) as follows:

let G = ConvertKStoAG (α̂KS(ϕ)) in Shatter (MakeExplicit (G)) .

8. EXPERIMENTS

In this section, we present the results of experiments to evaluate the costs and
benefits—in terms of time and precision—of the methods described in earlier sec-
tions. The experiments were designed to shed light on the following questions:

(1) Which method of obtaining abstract transformers is fastest: α̂KS (§7), KS-
reinterpretation (§6), or MOS-reinterpretation ([Lim and Reps 2013, §4.1.2])?

(2) Does MOS-reinterpretation or KS-reinterpretation yield more precise abstract
transformers for machine instructions?

(3) For what percentage of program points does α̂KS produce more precise answers
than KS-reinterpretation and MOS-reinterpretation? This question actually
has two versions, depending on whether we are interested in
—one-vocabulary affine relations that hold at branch points in the program’s

control-flow graph
—two-vocabulary procedure summaries obtained at procedure-exit points.

As shown in §4.1, the MOS and KS domains are incomparable. To compare
the final results obtained using the two domains, we converted each MOS element
to a KS element, using the algorithm from §4.2, and then checked for equality,
containment (§5.1.5), or incomparability. It might be argued that this approach
biases the results in favor of KS. However, if we have run an MOS-based analysis
and are interested in using affine relations in a client application, we must extract
an affine relation from each computed MOS element. In §4.1, we showed that, in
general, an MOS element B does not represent an affine relation; thus, a client
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Instruction Characteristics

# instruction # different
Kind instances opcodes

ordinary 12,734 164
lock prefix 2,048 147
rep prefix 2,143 158

repne prefix 2,141 154

full corpus 19,066 179

Fig. 5. Some of the characteristics of the corpus of 19,066 (non-privileged, non-floating point,

non-mmx) instructions.

application needs to obtain an affine relation that over-approximates γMOS(B).7

Consequently, the comparison method that we used is sensible, because it compares
the precision of the affine relations that would be seen by a client application.

To address the questions posed above, we performed two kinds of experiments.
Both were run on a single core of a single-processor 16-core 2.27 GHz Xeon computer
running 64-bit Windows 7 Enterprise (Service Pack 1), configured so that a user
process has 4 GB of memory.
§8.1 describes an experiment that involved performing reinterpretation on a large

corpus of x86 instruction instances; this experiment answers questions (1) and (2).
§8.2 describes an experiment in which flow-sensitive, context-sensitive, interproce-
dural affine-relation analysis was performed on nine Windows utilities, using dif-
ferent sets of abstract transformers; this experiment answers question (3). §8.3
discusses how the evaluation order chosen by a dataflow analyzer can affect the
precision of the results obtained with KS abstract transformers, due to the fact
that the KS domain is non-distributive.

8.1 Reinterpretation of Individual Instructions

Experimental Setup. On a corpus of 19,066 instances of x86 instructions, we
measured (i) the time taken to create MOS and KS transformers via the operator-
by-operator reinterpretation method supported by TSL [Lim and Reps 2008; 2013],8

and (ii) the relative precision of the abstract transformers obtained by the two
methods.

This corpus was created using the ISAL instruction-decoder generator [Lim and
Reps 2013, §2.1] in a mode in which the input specification of the concrete syntax
of the x86 instruction set was used to create a randomized instruction generator—
instead of the standard mode in which ISAL creates an instruction recognizer.

7The process by which Müller-Olm and Seidl extract one-vocabulary affine relations from an MOS
value is not stated as an algorithm in their paper [2007]; however, an algorithm is implicit in the

discussion, lemmas, and theorems of §2 of their paper.
In our case, we use the algorithm from §4.2 to convert an MOS valueM to an over-approximating

two-vocabulary KS value K. The reason that this algorithm extracts affine relations from M is

because the set of rows in K can be read off as the desired affine relations. Moreover, one-
vocabulary affine relations can be obtained from K by projecting K onto the desired vocabulary.
8The algorithm for obtaining MOS transformers via reinterpretation is similar to the reinterpre-

tation method for obtaining KS transformers via reinterpretation given in §6. Reinterpretation
for MOS is sketched in [Lim and Reps 2013, §3.1.4.2 and §4.1.2].
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Total MOS-reinterpretation KS-reinterpretation
instructions time (seconds) time (seconds)

19,066 23.3 382.9

Fig. 6. Comparison of the performance of MOS-reinterpretation and KS-reinterpretation for x86

instructions.

Identical MOS-reinterpretation KS-reinterpretation
precision more precise more precise Incomparable Total

18,190 0 876 0 19,066

Fig. 7. Comparison of the precision of MOS-reinterpretation and KS-reinterpretation for x86

instructions.

By this means, we are assured that the corpus has substantial coverage of the
syntactic features of the x86 instruction set (including opcodes, addressing modes,
and prefixes, such as “lock,” “rep,” and “repne”); see Fig. 5.

Experimental Results. Figs. 6 and 7 summarize the results of the per-instruction
experiment. They answer questions (1) and (2) posed at the beginning of §8.

—KS-reinterpretation created an abstract transformer that was more precise than
the one created by MOS-reinterpretation for about 4.59% of the instructions.
MOS-reinterpretation never created an abstract transformer that was more pre-
cise than the one created by KS-reinterpretation, and there were no cases in
which the two abstract transformers were incomparable.

—However, MOS-reinterpretation is much faster: to generate abstract transformers
for the entire corpus of instructions, MOS-reinterpretation is about 16.4 times
faster than KS-reinterpretation.

Example 8.1. One instruction for which the abstract transformer created by
KS-reinterpretation is more precise than the transformer created by MOS-

reinterpretation is ι
def
= “add bh,al”. This instruction adds the value of al, the

low-order byte of register eax, to the value of bh, the second-to-lowest byte of reg-
ister ebx, and stores the result in bh. The semantics of this instruction can be
expressed as a QFBV formula as follows:

ϕι
def
=

(
ebx′ =

(
(ebx & 0xFFFF00FF)
| ((ebx + 256 ∗ (eax & 0xFF)) & 0xFF00)

))
∧ (eax′ = eax) ∧ (ecx′ = ecx).

(21)

Eqn. (21) shows that the semantics of the instruction involves non-linear bit-
masking operations.

The abstract transformer created via MOS-reinterpretation represents the func-
tion that havocs ebx’; all other registers are unchanged. That is, if we only had
the three registers eax, ebx, and ecx, the abstract transformer created via MOS-
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reinterpretation would be


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 ,


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0


 ,

which captures the affine transformation “(eax′ = eax)∧(ecx′ = ecx)”. In contrast,
the transformer created via KS-reinterpretation is


eax ebx ecx eax′ ebx′ ecx′ 1

1 0 0 −1 0 0 0
0 224 0 0 −224 0 0
0 0 1 0 0 −1 0

, (22)

which corresponds to “(eax′ = eax) ∧ (224ebx′ = 224ebx) ∧ (ecx′ = ecx)”. Both
transformers are over-approximations of the instruction’s semantics, but the extra
conjunct (224ebx′ = 224ebx) in the KS element captures the fact that the low-order
byte of ebx is not changed by executing “add bh,al”.

In contrast, α̂KS(ϕι), the most-precise over-approximation of ϕι that can be
expressed as a KS element is (the Howellization of)


eax ebx ecx eax′ ebx′ ecx′ 1

1 0 0 −1 0 0 0
224 216 0 0 −216 0 0
0 0 1 0 0 −1 0

,
which corresponds to “(eax′ = eax) ∧(216ebx’ = 216ebx+224eax) ∧(ecx′ = ecx)”.
Multiplying by a power of 2 serves to shift bits to the left; because it is performed
in arithmetic mod 232, bits shifted off the left end are unconstrained. Thus, the
second conjunct captures the relationship between the low-order two bytes of ebx′,
the low-order two bytes of ebx, and the low-order byte of eax.

The result of KS-reinterpretation of the semantics of instruction ι is less precise
than α̂KS(ϕι) because (i) a KS[R; {i}] value can hold onto only a limited class of
properties of a subexpression of the specification of the semantics of ι, and (ii) this
lack of precision propagates to enclosing subexpressions. Roughly speaking, the
semantics of ι involves the following TSL expression:

let a = regAccess(S, BH());
b = regAccess(S, AL());
c = a + b;

in ( updateState(S, BH(), c) )

The subexpression regAccess(S, BH()) accesses the second-least significant byte of
register ebx. For the domain KS[R; {i}], R is the set of 32-bit registers. Unfortu-
nately, KS[R; {i}] cannot express a constraint on the value of i in terms of input
register ebx, and hence the KS-reinterpretation of regAccess(S, BH()) is > (in the
domain KS[R; {i}]). In contrast, the subexpression regAccess(S, AL()) accesses the
least-significant byte of eax. In this case, the equality relationship is captured
precisely as the KS[R; {i}] value

[ i eax ebx ecx 1

−224 224 0 0 0
]
.

57



Measures of Size

Program WPDS Rules

Name Instrs Procs BBs Branches ∆0 ∆1 ∆2

write 322 11 184 26 11 151 48

finger 562 19 318 48 19 275 72
subst 1119 17 627 74 17 556 128

label 1193 17 591 103 17 579 98

chkdsk 1494 19 805 119 19 769 136
convert 1953 39 1031 161 39 1041 119

route 2125 41 1006 243 41 1019 181

comp 2403 36 1279 224 36 1297 170
logoff 2484 47 1157 306 47 1272 155

setup 4745 68 1876 596 68 2233 197

Fig. 8. Program information for the application code only. (Information about the library code

called by the applications is given in Fig. 9.) All nine utilities are from Microsoft Windows version

5.1.2600.0, except setup, which is from version 5.1.2600.5512. The columns show the number of
instructions (Instrs); the number of procedures (Procs); the number of basic blocks (BBs); the

number of branch instructions (Branches); and the number of ∆0, ∆1, and ∆2 rules in the WPDS

encoding (WPDS Rules).

However, the lack of precision in the value of a propagates to c: i.e., the evaluation
of c = a + b yields >. Finally, updateState(S, BH(), >) can only capture the
fact that the least-significant byte of ebx′ equals the least-significant byte of ebx.
Consequently, the final KS[R;R′] value obtained for ι is the one shown in Eqn. (22).
2

8.2 Interprocedural Analysis

Experimental Setup. We performed flow-sensitive, context-sensitive, interproce-
dural affine-relation analysis on the executables of nine Windows utilities, using
three different sets of abstract transformers:

(1) MOS transformers for basic blocks, created by performing operator-by-operator
MOS-reinterpretation.

(2) KS transformers for basic blocks, created by performing operator-by-operator
KS-reinterpretation.

(3) KS transformers for basic blocks, created by symbolic abstraction of quantifier-
free bit-vector (QFBV) formulas that capture the precise bit-level semantics of
register-access/update operations in the different basic blocks. We denote this
symbolic-abstraction method by α̂KS. (See Remark 8.2 for more details about
the symbolic-abstraction method.)

For these programs, the generated abstract transformers were used as “weights”
in a weighted pushdown system (WPDS). WPDSs are a modern formalism for
solving flow-sensitive, context-sensitive interprocedural dataflow-analysis problems
[Bouajjani et al. 2003; Reps et al. 2005]. The weight on each WPDS rule is the
MOS/KS transformer for a basic block of the program, including a jump or branch
to a successor block. The asymptotic cost of weight generation is linear in the size
of the program: to generate the weights, each basic block in the program is visited
once, and a weight is generated by the relevant method.

58



Measures of Size

Program WPDS Rules

Name Instrs Procs BBs Branches ∆0 ∆1 ∆2

write 311967 5319 126847 35264 5319 139486 17811

finger 98416 1487 38088 11137 1487 42905 4951
subst 79871 1133 30955 9211 1133 35358 3891

label 84131 1174 32522 9703 1174 37173 4109

chkdsk 84211 1176 32645 9702 1176 37276 4126
convert 84951 1203 32999 9761 1203 37669 4126

route 319631 5336 131490 36492 5336 144361 18763

comp 84221 1228 32911 9666 1228 37451 4114
logoff 79590 1103 30373 9438 1103 35299 3635

setup 66652 851 24389 7759 851 28633 2902

Fig. 9. Program information for the library code called by the applications. The columns show
the number of instructions (Instrs); the number of procedures (Procs); the number of basic blocks

(BBs); the number of branch instructions (Branches); and the number of ∆0, ∆1, and ∆2 rules

in the WPDS encoding (WPDS Rules).

Fig. 8 lists several size parameters of the executables (number of instructions,
procedures, basic blocks, branches, and number of WPDS rules), when the code for
libraries called by the application is not included. Fig. 9 lists size parameters for
the library code called by the applications. WPDS rules can be divided into three
categories, called ∆0, ∆1, and ∆2 rules [Bouajjani et al. 2003; Reps et al. 2005].
The number of ∆1 rules corresponds roughly to the total number of edges in a
program’s intraprocedural control-flow graphs; the number of ∆2 rules corresponds
to the number of call sites in the program; the number of ∆0 rules corresponds to
the number of procedure-exit sites.

As discussed in §6.3, for a basic block B = ι1; . . . ; ιm, there are two approaches
to performing KS[V ;V ′] reinterpretation: composed reinterpretation and cascaded
reinterpretation. Our experiments use cascaded reinterpretation for the following
reasons:

—In the case of α̂KS, a formula ϕB is created that captures the concrete semantics
of B (via symbolic execution), and then the KS weight for B is obtained by
performing wBKS ← α̂KS(ϕB). Letting QFBV denote the type of quantifier-free
bit-vector formulas, the QFBV reinterpretation of interpInstr has the type

interpInstrQFBV : instruction×QFBV→ QFBV.

Symbolic execution is performed by cascaded reinterpretation:

ϕB ← interpInstrQFBV(ιm, . . . interpInstrQFBV(ι2, interpInstrQFBV(ι1, IdQFBV)) . . . ).

—For our experiments, we wanted to control for any effects on precision that might
be due solely to the use of cascaded reinterpretation or composed reinterpretation;
thus, we used cascaded reinterpretation for all of the weight-generation methods.9

The interprocedural-analysis experiments used the WALi system [Kidd et al.
2007] for WPDSs. EWPDS merge functions [Lal et al. 2005] were used to preserve

9MOS-reinterpretation of a basic block is performed by cascaded reinterpretation, using
interpInstrMOS : instruction×MOS→ MOS.
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caller-save and callee-save registers across call sites. Running a WPDS-based anal-
ysis to find the least fixed-point value for a given set of program points involves
calling two operations, “post*” and “path summary,” as detailed in [Reps et al.
2005]. The post* queries used the FWPDS algorithm [Lal and Reps 2006].

Due to the high cost of the α̂KS method for weight generation (see §8.2), KS-
reinterpretation is used for the library-code weights in the α̂KS-based analysis. This
approach made it feasible to create sound basic-block transformers for the library
code for the α̂KS-based analysis, so that we could analyze the application plus
library code for all three weight-generation methods. Thus, in §8.2, when we com-
pare analysis results obtained via the α̂KS-based analysis against those obtained via
KS-reinterpretation, we are measuring the impact of using more precise abstract
transformers in the application code only.

The analysis also needed to model system calls. In our experiments, system calls
were modeled approximately (albeit unsoundly, in general) by “havoc(eax’)”.

To implement α̂KS, we used the Yices solver [Dutertre and de Moura 2006],
version 1.0.19, with the timeout for each invocation set to three seconds.

We compared the precision of the one-vocabulary affine relations at branch points,
as well as two-vocabulary affine relations at procedure exits, which can be used as
procedure summaries.

Remark 8.2. This remark explains more precisely how weights were constructed
in the α̂KS runs. We used the following “chained” method for generating weights:

(1) KS-reinterpretation, the method of §6, is performed first.

(2) The generalized-St̊almarck algorithm of Thakur and Reps [2012]—instantiated
for the KS domain—is applied next, starting with the element obtained via
KS-reinterpretation. The generalized-St̊almarck algorithm successively over-
approximates the best transformer from above. By starting the algorithm
with the element obtained via KS-reinterpretation, the generalized-St̊almarck
algorithm does not have to work its way down from >; it merely continues
to work its way down from the over-approximation already obtained via KS-
reinterpretation.

(3) The final step is to apply α̂
l
TER[KS], from Fig. 4(b), which maintains both an

under-approximation and a (nontrivial) over-approximation of the desired an-
swer, and hence is resilient to timeouts—i.e., it returns the over-approximation

if a timeout occurs. In the chained method for generating weights, α̂
l
TER[KS]

is started with the element obtained via the St̊almarck method as an over-
approximation as a way to accelerate its performance.

The generalized-St̊almarck algorithm is a faster algorithm than α̂
l
TER[KS], but is not

guaranteed to find the best abstract transformer [Thakur and Reps 2012]. α̂
l
TER[KS]

is guaranteed to obtain the best abstract transformer, except for cases in which
an SMT solver timeout is reported. The use of KS-reinterpretation accelerates

St̊almarck, and the use of St̊almarck accelerates α̂
l
TER[KS]. Moreover, α̂

l
TER[KS] v

KS-reinterpretation is always guaranteed to hold for the weights that are computed.
2
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WPDS-construction time for the application code

MOS-reinterp KS-reinterp α̂KS

name WPDS WPDS WPDS t/o

write 0.234 0.905 84.942 4(1.90%)

finger 0.219 1.389 248.432 10(2.73%)
subst 0.374 2.371 554.628 6(0.86%)

label 0.421 2.512 551.82 9(1.30%)

chkdsk 0.499 2.917 526.863 9(0.97%)
convert 0.67 3.697 476.83 10(0.83%)

route 0.78 5.382 783.604 19(1.53%)

comp 0.812 5.07 1048.46 9(0.60%)
logoff 0.852 6.677 1131.91 19(1.29%)

setup 1.591 11.794 1924.98 62(2.48%)

Fig. 10. WPDS-construction time for the application code only, using MOS-reinterpretation, KS-

reinterpretation, and α̂KS to generate weights for basic blocks. (WPDS-construction time for
library code is not included.) The column labeled “t/o” reports the number of WPDS rules for

which weight generation timed out during symbolic abstraction via α̂KS.

WPDS-construction time for the library code

MOS-reinterp KS-reinterp α̂KS

name WPDS WPDS WPDS

write 113.085 748.493 742.544
finger 34.102 238.728 239.789

subst 26.13 190.991 191.132
label 29.188 207.153 216.903
chkdsk 28.657 203.316 203.737

convert 28.782 202.987 202.614
route 109.527 749.222 750.781
comp 28.282 200.46 201.224

logoff 26.338 188.012 189.869
setup 20.904 151.945 151.414

Fig. 11. WPDS-construction time for the library code, using MOS-reinterpretation, KS-
reinterpretation, and KS-reinterpretation to generate weights for basic blocks. (Due to the high

cost of the α̂KS method for weight generation, KS-reinterpretation is used for the library-code

weights in the α̂KS-based analysis.)

Experimental Results. Fig. 10 shows the times for WPDS construction—in par-
ticular, the times for constructing the weights that serve as abstract transformers—
for the application code only. Column 5 of Fig. 10 shows the number of α̂ calls
for which weight generation timed out during α̂KS. During WPDS construction, if
Yices times out during α̂KS, the implementation uses a weight that is less precise
than the best transformer, but it always uses a weight that is at least as precise as
the weight obtained using KS-reinterpretation.

The number of WPDS rules is given in Fig. 9; a timeout occurred for about 1.45%
of the α̂KS calls (computed as a geometric mean10).

The experiment showed that the cost of constructing weights via α̂KS is high,

10We use “computed as a geometric mean” as a shorthand for “computed by converting the
data to ratios; finding the geometric mean of the ratios; and converting the result back to a
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Performance of Interprocedural Analysis

MOS-reinterp KS-reinterp α̂KS

post* queries post* queries post* queries

Prog. + path at branch + path at branch + path at branch
name summary points summary points summary points

write 300.162 0.203 69.264 0.265 69.81 3.713
finger 78.749 0.328 18.814 0.39 18.751 3.479

subst 57.345 0.484 14.556 0.546 14.523 4.93
label 63.476 0.734 17.129 0.748 17.535 7.207
chkdsk 61.09 0.811 15.21 0.858 15.179 108.047
convert 62.182 0.936 15.241 1.139 15.288 20.733
route 312.531 1.732 71.698 2.184 71.557 63.913

comp 63.46 1.731 15.226 1.716 15.304 31.948
logoff 57.23 2.012 14.103 3.151 14.196 52.854
setup 52.01 2.106 12.573 6.147 12.604 277.867

Fig. 12. Performance of WPDS-based interprocedural analysis. The times, in seconds, for per-
forming interprocedural dataflow analysis (i.e., running post* and performing path summary) and

finding one-vocabulary affine relations at all branch instructions in the application code, using the
MOS-reinterpretation, KS-reinterpretation, and α̂KS-based analyses.

which was to be expected because α̂KS repeatedly calls an SMT solver. Creat-
ing KS weights via α̂KS is about 167 times slower than creating them via KS-
reinterpretation (computed as the geometric mean of the construction-time ratios).

Moreover, creating KS weights via KS-reinterpretation is itself 6.1 times slower
than creating MOS weights using MOS-reinterpretation. The latter number is
different from the 16.4-fold slowdown reported in §8.1 for two reasons: (i) §8.1
reported the cost of creating KS and MOS abstract transformers for individual
instructions, whereas in Figs. 10 and 11 the transformers are for basic blocks, and
(ii) the WPDS construction times in Figs. 10 and 11 include the cost of creating
merge functions for use at procedure-exit sites, which was about the same for KS-
reinterpretation and MOS-reinterpretation.

Fig. 10 shows the WPDS-construction time for the application code only; Fig. 11
shows the WPDS-construction time for the library code used by the application. As
mentioned earlier, for the α̂KS-based analysis, we use α̂KS to generate weights for
basic blocks in the application code, and KS-reinterpretation to generate weights
for basic blocks in the library code. Thus, columns 3 and 4 of Fig. 11 show roughly
the same times because both analyses use KS-reinterpretation to generate weights
for library code. Fig. 12 shows the time for performing interprocedural dataflow
analysis via post* and path summary, as well as for finding one-vocabulary affine
relations at all branch instructions in the application code.

Figs. 13, 14, and 15 present three studies that compare the precision of the

percentage”. For instance, suppose that you have improvements of 3%, 17%, 29% (i.e., .03, .17,

and .29). The geometric mean of the values .03, .17, and .29 is .113. Instead, we express the

original improvements as ratios and take the geometric mean of 1.03, 1.17, and 1.29, obtaining
1.158. We subtract 1, convert to a percentage, and report “15.8% improvement (computed as a
geometric mean)”.

The advantage of this approach is that it handles datasets that include one or more instances
of 0% improvement, as well as negative percentage improvements.
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WPDS Weights

Prog. MOS-reinterp KS-reinterp
name ∆1 Rules ( KS-reinterp ( MOS-reinterp α̂KS ( KS-reinterp

write 151 0(0.00%) 0(0.00%) 11(7.28%)
finger 275 0(0.00%) 0(0.00%) 29(10.55%)
subst 556 0(0.00%) 0(0.00%) 60(10.79%)

label 579 0(0.00%) 0(0.00%) 84(14.51%)
chkdsk 769 0(0.00%) 0(0.00%) 86(11.18%)
convert 1041 0(0.00%) 2(0.19%) 131(12.58%)

route 1019 0(0.00%) 5(0.49%) 156(15.31%)
comp 1297 0(0.00%) 6(0.46%) 166(12.80%)
logoff 1272 0(0.00%) 5(0.39%) 200(15.72%)
setup 2233 0(0.00%) 29(1.30%) 472(21.14%)

Fig. 13. Comparison of the precision of the WPDS weights computed using MOS-reinterpretation,

KS-reinterpretation, and α̂KS. (E.g., KS-reinterp ( MOS-reinterp reports the number of rules for
which the KS-reinterp weight was more precise than the MOS-reinterp weight.)

1-Vocabulary Affine Relations at Branch Points

Prog. MOS-reinterp KS-reinterp (
name Branches ( KS-reinterp MOS-reinterp α̂KS ( KS-reinterp

write 26 0(0.00%) 0(0.00%) 3(11.54%)
finger 48 0(0.00%) 0(0.00%) 11(22.92%)
subst 74 0(0.00%) 0(0.00%) 12(16.22%)

label 103 0(0.00%) 0(0.00%) 7(6.80%)
chkdsk 119 0(0.00%) 0(0.00%) 4(3.36%)
convert 161 0(0.00%) 0(0.00%) 49(30.43%)
route 243 0(0.00%) 3(1.23%) 47(19.34%)

comp 224 0(0.00%) 0(0.00%) 9(4.02%)
logoff 306 0(0.00%) 24(7.84%) 81(26.47%)
setup 596 0(0.00%) 8(1.34%) 29(4.87%)

Fig. 14. Comparison of the precision of the one-vocabulary affine relations identified by inter-

procedural analysis as holding at branch points in the application code, using weights created
using MOS-reinterpretation, KS-reinterpretation, and α̂KS. (E.g., KS-reinterp ( MOS-reinterp

reports the number of branch points at which the KS-reinterp results were more precise than the

MOS-reinterp results.)

analysis results obtained in the application code via MOS-reinterpretation, KS-
reinterpretation, and α̂KS. (In all three cases, the library code was also analyzed.)

Fig. 13 compares the precision of the WPDS weights computed by the different
methods for each of the example programs. It shows that α̂KS creates strictly
more precise weights than KS-reinterpretation for about 13.13% of the WPDS rules
(computed as a geometric mean). The “α̂KS ( KS-reinterp” column of Fig. 13 is
particularly interesting in light of the fact that a study of relative precision of
abstract transformers created for individual instructions via KS-reinterpretation
and α̂KS [Lim and Reps 2013, §5.4.1], reported that α̂KS creates strictly more precise
transformers than KS-reinterpretation for only about 3.2% of the instructions that
occur in the corpus of 19,066 instructions from §8.1. The numbers in Fig. 13
differ from that study in two ways: (i) Fig. 13 compares the precision of abstract
transformers for basic blocks rather than for individual instructions; and (ii) Fig. 13
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2-Vocabulary Procedure Summaries

Prog. MOS-reinterp KS-reinterp (
name Procs ( KS-reinterp MOS-reinterp α̂KS ( KS-reinterp

write 11 0(0.00%) 0(0.00%) 0(0.00%)
finger 19 0(0.00%) 0(0.00%) 0(0.00%)
subst 17 0(0.00%) 0(0.00%) 0(0.00%)

label 17 0(0.00%) 0(0.00%) 0(0.00%)
chkdsk 17 0(0.00%) 0(0.00%) 0(0.00%)
convert 39 0(0.00%) 0(0.00%) 0(0.00%)

route 40 0(0.00%) 1(2.50%) 0(0.00%)
comp 36 0(0.00%) 0(0.00%) 0(0.00%)
logoff 47 0(0.00%) 0(0.00%) 3(6.38%)
setup 64 0(0.00%) 0(0.00%) 6(9.38%)

Fig. 15. Comparison of the precision of the two-vocabulary affine relations identified by interpro-

cedural analysis as holding at procedure-exit points in the application code, using weights created
using MOS-reinterpretation, KS-reinterpretation, and α̂KS. (E.g., KS-reinterp ( MOS-reinterp

reports the number of procedure-exit points at which the KS-reinterp results were more precise

than the MOS-reinterp results.)

is a comparison for the instructions that appear in specific programs, whereas the
corpus of 19,066 instructions used in the per-instruction study from [Lim and Reps
2013, §5.4.1] was created using a randomized instruction generator.

Figs. 14 and 15 answer question (3) posed at the beginning of §8:

For what percentage of program points does α̂KS produce more precise
answers than KS-reinterpretation and MOS-reinterpretation?

Figs. 14 and 15 summarize the results obtained from comparing the precision of the
affine relations identified via interprocedural analysis using the different weights.11

In the studies reported in Figs. 13, 14, and 15, we never observed cases in
which MOS-reinterpretation produced results that were incomparable with the KS-
reinterpretation or α̂KS results.

Compared to runs based on either KS-reinterpretation or MOS-reinterpretation,
the analysis runs based on α̂KS weights identified more precise one-vocabulary
affine relations at a substantial number of branch points in the application code
(Fig. 14, col. 5). The α̂KS analysis results are strictly more precise than the KS-
reinterpretation results at 14.21% of all application-code branch points (computed
as a geometric mean).

Two-vocabulary affine relations that hold at procedure-exit points describe pro-
cedure summaries. The α̂KS analysis results are strictly more precise than the
KS-reinterpretation results at 1.53% of all application-code procedure exits (com-
puted as a geometric mean)—see Fig. 15, col. 5.

The lower percentage of precision improvement for procedure exits compared
to that obtained for branch points can be explained as follows: most precision

11Register eip is the x86 instruction pointer. There are some situations that cause the MOS-
reinterpretation weights and KS-reinterpretation weights to fail to capture the value of the post-

state eip value. Therefore, before comparing affine relations, we performed havoc(eip’). This
adjustment avoids biasing the results merely because of trivial affine relations of the form “eip’ =
constant”.
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(a’ = a)

.... (b’ = a + 4)

(a’ = a)

.... (b’ = b)

(a’ = a)

.... (b’ = a)

1

2

3

Fig. 16. Simplified version of an example that caused KS results to be less precise than MOS

results, due to compose not distributing over join in the KS domain.

improvements obtained at an instruction ι are lost at join points that occur in the
control flow of the procedure between ι and the procedure’s exit point.

8.3 Imprecision Due to Non-Distributivity of KS

Although it did not show up in the analysis runs reported in §8.2, in some earlier
experiments we observed cases in which the MOS-reinterpretation results were more
precise than the KS-reinterpretation results (as well as the α̂KS results). When we
examined such cases, we found that they were an artifact of (i) the evaluation
order chosen, and (ii) compose failing to distribute over join in the KS domain (see
§5.1.3).

Fig. 16 is a simplified version of the actual transformers that caused the KS-
based analyses to return a less-precise element than the MOS-based analysis. In
particular, if the join of the transformers on the two edges from node 2 to node
3 is performed before the composition of the individual 2 → 3 transformers with
the 1 → 2 transformer, the combined 2 → 3 KS transformer is “a′ = a” (i.e., b
and b′ are unconstrained). The loss of information about b and b′ cascades to the
1→ 3 KS transformer, which is also “a′ = a”. In particular, it fails to contain the
conjunct 230b′ = 230a, which expresses that the two low-order bits of b′ at node 3
are the same as the two low-order bits of a at node 1.

In contrast, in the MOS domain, the combined 2 → 3 transformer is the affine
closure of the transformers “a′ = a∧b′ = b” and “a′ = a∧b′ = a,” which avoids the
complete loss of information about b and b′, and hence the 1→ 3 MOS transformer
is able to capture the relation “a′ = a ∧ 230b′ = 230a”.

9. RELATED WORK

9.1 Abstract Domains for Affine-Relation Analysis

The original work on affine-relation analysis (ARA) was an intraprocedural ARA
algorithm due to Karr [1976]. In Karr’s work, a domain element represents a set
of points that satisfy affine relations over variables that hold elements of a field.
Karr’s algorithms are based on linear algebra (i.e., vector spaces).

Müller-Olm and Seidl [2004] gave an algorithm for interprocedural ARA, again
for vector spaces over a field. Later [2005a; 2007], they generalized their techniques
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to work for modular arithmetic: they introduced the MOS domain, in which an
element represents an affine-closed set of affine transformers over variables that hold
machine integers, and gave an algorithm for interprocedural ARA. The algorithms
for operations of the MOS domain are based on an extension of linear algebra to
modules over a ring.

The version of the KS domain presented in this paper was inspired by, but is
somewhat different from, the techniques described in two papers by King and
Søndergaard [2008], [2010]. Our goals and theirs are similar, namely, to be able to
create abstract transformers automatically that are bit-precise, modulo the inher-
ent limitation on precision that stems from having to work with affine-closed sets
of values. Compared with their work, we avoid the use of bit-blasting, and work
directly with representations of w-bit affine-closed sets. The greatly reduced num-
ber of variables that comes from working at word level opened up the possibility of
applying our methods to much larger problems, and as discussed in §5 and §8, we
were able to apply our methods to interprocedural program analysis.

As shown in §5.1.2, the algorithm for projection given by King and Søndergaard
[2008, §3] does not always find answers that are as precise as the domain is capable
of representing. One consequence is that their join algorithm does not always find
the least upper bound of its two arguments. In this paper, these issues have been
corrected by employing the Howell form of matrices to normalize KS elements (§2.1,
§5.1.2, and §5.1.3; see also §9.2 below).

King and Søndergaard introduced another interesting technique that we did not
explore, which is to use affine relations over m-bit numbers, for m > 1, to represent
sets of 1-bit numbers. To make this approach sensible, their concretization function
intersects the “natural” concretization, which yields an affine-closed set of tuples
of m-bit numbers, with the set {〈v1, . . . , vk〉 | v1, . . . , vk ∈ {0, 1}}. In essence,
this approach restricts the concretization to tuples of 1-bit numbers [King and
Søndergaard 2010, Defn. 2]. The advantage of the approach is that KS elements over
Zk2m can then represent sets of 1-bit numbers that can only be over-approximated
using KS elements over Zk2 .

Example 9.1. Suppose that we have three variables {x1, x2, x3}, and want to
represent the set of assignments {〈001〉, 〈010〉, 〈100〉}. The best KS element over
Z3
2 is

[ x1 x2 x3 1

1 1 1 1
]
, (23)

which corresponds to the affine relation x1 + x2 + x3 + 1 = 0. The set of satisfying
assignments is {〈001〉, 〈010〉, 〈100〉, 〈111〉}, which includes the extra tuple 〈111〉.

Now consider what sets can be represented when m = 2, so that arithmetic is
performed mod 4. In particular, instead of the matrix in Eqn. (23) we use the
following KS element over Z3

4:

[ x1 x2 x3 1

1 1 1 3
]
, (24)

which corresponds to the affine relation x1 + x2 + x3 + 3 = 0. The matrix in
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Eqn. (24) has sixteen satisfying assignments:

〈001〉 〈010〉 〈100〉 〈122〉 〈212〉 〈221〉 〈032〉 〈023〉
〈203〉 〈230〉 〈302〉 〈320〉 〈113〉 〈131〉 〈311〉 〈333〉

However, only three of the assignments are in the restricted concretization, namely,
the desired set {〈001〉, 〈010〉, 〈100〉}. 2

To represent sets of tuples of w-bit numbers, as considered in this paper, the
analogous technique would use a y-bit KS domain, y > w, in a similar fashion. That
is, the “natural” concretization would be intersected with the set {〈v1, . . . , vk〉 |
v1, . . . , vk ∈ {0, 1, . . . , 2w−1}}. We leave the exploration of these issues for possible
future research.

Like some other relational domains, including polyhedra [Cousot and Halbwachs
1978; Bagnara et al. 2008; Jeannet ] and grids [Bagnara et al. 2006], KS/AG fits
the dual-representation paradigm of having both a constraint representation (KS)
and a generator representation (AG). MOS is based on a generator representation.
Whereas many implementations of domains with a dual representation perform
some operations in one representation and other operations in the other represen-
tation, converting between representations as necessary, one of the clever aspects of
both MOS and KS is that they avoid the need to convert between representations.

Granger [1989] describes congruence lattices, where the lattice elements are cosets
in the group Zk. The generator form for a congruence-lattice element is defined by
a point and a basis. The basis is used to describe the coset. The corresponding
constraint form for a domain element is a system of Diophantine linear congruence
equations. Conversion from the “normalized representation” (generator form) to
an equation system is done by an elimination algorithm. The reverse direction
is carried out by solving a set of equations. Granger’s normalized representation
can be used as a domain for representing affine relations over machine integers.
However, Granger’s approach does not have unique normalized representations,
because a coset space can have multiple bases. As a result, his method for checking
that two domain elements are equal is to check containment in both directions (i.e.,
to perform two containment checks). Moreover, checking containment is costly
because a representation conversion is required: one has to compare the cosets,
which involves converting one coset into equational form and then checking if the
other coset (in generator form) satisfies the constraints of equational form. In
contrast, for the KS domain, one can easily check containment using the KS meet
and equality operations:

γ(X) ⊆ γ(Y ) iff X v Y iff X = (X u Y ).

Similarly, containment checking in AG can be performed using the AG join and
equality operations. Thus, in both KS and AG, the costly step of converting be-
tween generator form and constraint form (or vice versa) is avoided.

Müller-Olm and Seidl [2005b] have given improved algorithms for Granger’s do-
main, along with an interprocedural extension. The abstract domain they use for
interprocedural analysis is similar to what we have called the MOS domain in this
paper: each domain element e is a finite set of “basis” matrices, and e denotes the
set of matrices that are in the span of the basis matrices.
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Gulwani and Necula introduced the technique of random interpretation (for vec-
tor spaces over a field), and applied it to identifying both intraprocedural [2003]
and interprocedural [2005] affine relations. The fact that random interpretation
involves collecting samples—which are similar to rows of AG elements—suggests
that the AG domain might be used as an efficient abstract datatype for storing and
manipulating data during random interpretation. Because the AG domain is equiv-
alent to the KS domain (see §3), the KS domain would be an alternative abstract
datatype for storing and manipulating data during random interpretation.

9.2 Howell Form

In contrast with both the Müller-Olm/Seidl work and the King/Søndergaard work,
our work takes advantage of the Howell form of matrices. Howell form can be used
with each of the domains KS, AG, and MOS defined in §2. Because Howell form
is canonical for non-empty sets of basis vectors, it provides a way to test pairs
of elements for equality of their concretizations—an operation needed by analysis
algorithms to determine when a fixed point is reached. In contrast, Müller-Olm
and Seidl [2007, §2] and King and Søndergaard [2008, Fig. 1], [2010, Fig. 2] use
“echelon form” (called “triangular form” by King and Søndergaard), which is not
canonical.

The algorithms given by Müller-Olm and Seidl avoid computing multiplicative
inverses, which are needed to put a matrix in Howell form (line (8) of Alg. 1). How-
ever, their preference for algorithms that avoid inverses was originally motivated
by the fact that at the time of their original 2005 work they were unaware [Müller-
Olm and Seidl 2005c] of Warren’s O(logw) algorithms [Warren 2003, §10-15] for
computing the inverse of an odd element, and only knew of an O(w) algorithm
[Müller-Olm and Seidl 2005a, Lemma 1].

9.3 Symbolic Abstraction for Affine-Relation Analysis

King and Søndergaard [2008], [2010] defined the KS domain, and used it to create
implementations of best KS transformers for the individual bits of a bit-blasted
concrete semantics. They used bit-blasting to express a bit-precise concrete seman-
tics for a statement or basic block. The use of bit-blasting let them track the effect
of non-linear bit-twiddling operations, such as shift and xor.

In this paper, we also work with a bit-precise concrete semantics; however, we
avoid the need for bit-blasting by working with QFBV formulas expressed in terms
of word-level operations; such formulas also capture the precise bit-level semantics
of each instruction or basic block. We take advantage of the ability of an SMT solver
to decide the satisfiability of such formulas, and use α̂KS to create best word-level
transformers.

Prior to our SAS 2011 paper [Elder et al.], it was not known how to perform
α̃MOS(ϕ) in a non-trivial fashion (other than defining α̃MOS to be λf.>). The fact
that King and Søndergaard [2010, Fig. 2] had been able to devise an algorithm for
α̂KS caused us to look more closely at the relationship between MOS and KS. The
results presented in §4.1 establish that MOS and KS are different, incomparable
abstract domains. We were able to give sound interconversion methods (§4.2–§4.4),
and thereby obtained a method for performing α̃MOS(ϕ) (§7.3).
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10. CONCLUSION

This paper has explored a variety of issues pertaining to the MOS and KS do-
mains for affine-relation analysis over variables that hold machine integers. What
is particularly interesting about these domains is that they are based on arithmetic
performed modulo 2w, for some bit width w, which allows them to track machine
arithmetic exactly for linear transformations.

We showed that, in general, MOS and KS are incomparable abstract domains.
That is, some relations are expressible in each domain that are not expressible in the
other. The central difference is that MOS is a domain of sets of functions, while KS
is a domain of relations. However, we gave sound methods to convert a KS element
vKS to an over-approximating MOS element vMOS—i.e., γKS(vKS) ⊆ γMOS(vMOS)—
and to convert an MOS element wMOS to an over-approximating KS element wKS—
i.e., γMOS(wMOS) ⊆ γKS(wKS).

The paper also contributes to a broader research objective of ours—namely, the
development of techniques to raise the level of automation in abstract interpreters.
§6 presents an approach for obtaining KS abstract transformers based on seman-
tic reinterpretation—i.e., by a greedy, operator-by-operator approach. §7 discusses
symbolic abstraction for the KS domain, which provides not only a more global ap-
proach to creating KS abstract transformers, but one that can attain the fundamen-
tal limits on precision that abstract-interpretation theory establishes. §8 presents
the results of experiments to evaluate the costs and benefits of these methods. The
experiments showed that, compared with the semantic-reinterpretation approach,
it is considerably more costly to obtain KS abstract transformers via symbolic ab-
straction. However, the transformers obtained via symbolic abstraction, as well
as the one-vocabulary affine relations discovered to hold at branch points and the
two-vocabulary affine relations discovered as procedure summaries, are often more
precise than the ones obtained via semantic reinterpretation.

The results presented in the paper provide insight on the range of options that
one has for performing affine-relation analysis in a program analyzer, and should
thereby serve as a guide for anyone interested in creating an analysis component
for performing ARA.

Acknowledgments. We thank Evan Driscoll and Aditya Thakur for their com-
ments on a draft of this paper. We thank the referees for their extensive comments
on the submission, which have helped us to improve the presentation. We thank
Referee 1 for suggesting the KS-to-MOS conversion method presented in §4.4.1 as
an alternative to the one given in §4.4.2.

REFERENCES

Bagnara, R., Dobson, K., Hill, P., Mundell, M., and Zaffanella, E. 2006. Grids: A domain

for analyzing the distribution of numerical values. In Int. Workshop on Logic Based Prog. Dev.
and Transformation. 219–235.

Bagnara, R., Hill, P. M., and Zaffanella, E. 2008. The Parma Polyhedra Library: Toward a

complete set of numerical abstractions for the analysis and verification of hardware and software
systems. SCP 72, 1–2, 3–21.

Bouajjani, A., Esparza, J., and Touili, T. 2003. A generic approach to the static analysis of

concurrent programs with procedures. In POPL. 62–73.

69



Burstall, R. 1969. Proving properties of programs by structural induction. Comp. J. 12, 1,

41–48.

Clauss, P. 1996. Counting solutions to linear and nonlinear constraints through ehrhart polyno-

mials: Applications to analyze and transform scientific programs. In Int. Conf. Supercomputing.

278–285.

Cousot, P. and Cousot, R. 1979. Systematic design of program analysis frameworks. In POPL.
269–282.

Cousot, P. and Halbwachs, N. 1978. Automatic discovery of linear constraints among variables

of a program. In POPL. 84–96.

Dutertre, B. and de Moura, L. 2006. Yices: An SMT solver. http://yices.csl.sri.com/.

Elder, M., Lim, J., Sharma, T., Andersen, T., and Reps, T. 2011. Abstract domains of affine

relations. In SAS. 198–215.

Fahringer, T. 1998. Efficient symbolic analysis for parallelizing compilers and performance
estimators. The Journal of Supercomputing 12, 3, 227–252.

Fredrikson, M. and Jha, S. 2013. Personal communication.

Granger, P. 1989. Static analysis of arithmetical congruences. Int. J. of Comp. Math. 30, 3–4,

165–190.

Gulwani, S. and Necula, G. 2003. Discovering affine equalities using random interpretation. In
POPL. 74–84.

Gulwani, S. and Necula, G. 2005. Precise interprocedural analysis using random interpretation.

In POPL. 324–337.

Howell, J. 1986. Spans in the module (Zm)s. Linear and Multilinear Algebra 19, 1, 67–77.

Jeannet, B. New Polka. www.irisa.fr/prive/Bertrand.Jeannet/newpolka.html.

Jones, N. and Mycroft, A. 1986. Data flow analysis of applicative programs using minimal

function graphs. In POPL. 296–306.

Karr, M. 1976. Affine relationship among variables of a program. Acta Inf. 6, 133–151.

Kidd, N., Lal, A., and Reps, T. 2007. WALi: The Weighted Automaton Library.
www.cs.wisc.edu/wpis/wpds/download.php.

King, A. and Søndergaard, H. 2008. Inferring congruence equations with SAT. In CAV. 281–

293.

King, A. and Søndergaard, H. 2010. Automatic abstraction for congruences. In VMCAI.
197–213.

Knoop, J. and Steffen, B. 1992. The interprocedural coincidence theorem. In CC. 125–140.

Lal, A. and Reps, T. 2006. Improving pushdown system model checking. In CAV. 343–357.

Lal, A., Reps, T., and Balakrishnan, G. 2005. Extended weighted pushdown systems. In CAV.
434–448.

Lim, J. and Reps, T. 2008. A system for generating static analyzers for machine instructions. In

CC. 36–52.

Lim, J. and Reps, T. 2013. TSL: A system for generating abstract interpreters and its application
to machine-code analysis. TOPLAS 35, 1 (Apr.), 4.

Malmkjær, K. 1993. Abstract interpretation of partial-evaluation algorithms. Ph.D. thesis, Dept.

of Comp. and Inf. Sci., Kansas State Univ., Manhattan, Kansas.

Meyer, C. 2000. Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia, PA.

Müller-Olm, M. and Seidl, H. 2004. Precise interprocedural analysis through linear algebra.
In POPL. 330–341.

Müller-Olm, M. and Seidl, H. 2005a. Analysis of modular arithmetic. In ESOP. 46–60.

Müller-Olm, M. and Seidl, H. 2005b. A generic framework for interprocedural analysis of
numerical properties. In SAS. 235–250.

Müller-Olm, M. and Seidl, H. 2005c. Personal communication.

Müller-Olm, M. and Seidl, H. 2007. Analysis of modular arithmetic. TOPLAS 29, 5.

Mycroft, A. and Jones, N. 1985. A relational framework for abstract interpretation. In Programs
as Data Objects. 156–171.

70



Nielson, F. 1989. Two-level semantics and abstract interpretation. Theor. Comp. Sci. 69, 117–

242.

Pugh, W. 1994. Counting solutions to Presburger formulas: How and why. In PLDI. 121–134.

Reps, T., Sagiv, M., and Yorsh, G. 2004. Symbolic implementation of the best transformer. In

VMCAI. 252–266.

Reps, T., Schwoon, S., Jha, S., and Melski, D. 2005. Weighted pushdown systems and their

application to interprocedural dataflow analysis. SCP 58, 1–2 (Oct.), 206–263.

Schmidt, D. 1986. Denotational Semantics. Allyn and Bacon, Inc., Boston, MA.

Sharir, M. and Pnueli, A. 1981. Two approaches to interprocedural data flow analysis. In

Program Flow Analysis: Theory and Applications. Prentice-Hall, 189–233.

Storjohann, A. 2000. Algorithms for matrix canonical forms. Ph.D. thesis, ETH Zurich, Zurich,

Switzerland. Diss. ETH No. 13922.

Tawbi, N. 1994. Estimation of nested loop execution time by integer arithmetic in convex poly-
hedra. In Int. Parallel Processing Symp. 217–221.

Thakur, A., Elder, M., and Reps, T. 2012. Bilateral algorithms for symbolic abstraction. In

SAS. 111–128.

Thakur, A. and Reps, T. 2012. A method for symbolic computation of abstract operations. In
CAV. 174–192.

Warren, Jr., H. 2003. Hacker’s Delight. Addison-Wesley.

71



A. DUALIZATION

For any matrix M , it is a common lemma that
(
M−1

)t
= (M t)

−1
. Thus, the

notation M−t denotes
(
M−1

)t
.

Theorem 3.4 For any matrix M , nulltM = rowM⊥ and rowM = nulltM⊥.

Proof. Let L, D, and R be the diagonal decomposition of M (see Defn. 3.1,
and construct T from D as in Lem. 3.3. Recall that L is invertible. To see that
rowM = nulltM⊥,

rowM = rowLDR = rowDR, so x ∈ rowDR ⇐⇒ xR−1 ∈ rowD

⇐⇒ xR−1 ∈ nullt T ⇐⇒ TR−txt = 0 ⇐⇒ x ∈ nullt TR−t.

We know that L−t is also invertible, so

nullt TR−t = nullt L−tTR−t = nulltM⊥.

Thus, rowM = nulltM⊥. One can show that nulltM = rowM⊥ by essentially the
same reasoning.

B. DOMAIN CONVERSIONS

Thm. 4.1 states that the transformation from MOS to AG given in §4.2 is sound.
Theorem 4.1 Suppose that B is an MOS element such that, for every B ∈ B,

B =
[

1 cB
0 MB

]
for some cB ∈ Z1×k

2w and MB ∈ Zk×k2w . Define GB =
[

1 0 cB
0 I MB

]
and

G =
⊔

AG {GB |B ∈ B}. Then, γMOS(B) ⊆ γAG(G).

Proof. First, recall that for any two AG elements E and F , E tAG F equals
Howellize ([EF ]) . Because Howellize does not change the row space of a matrix,
γAG (E tAG F ) equals γAG ([EF ]) . By the definition of G, we know that γAG(G) =
γAG(G), where G is all of the matrices GB stacked vertically. Therefore, to show
that γMOS(B) ⊆ γAG(G), we show that γMOS(B) ⊆ γAG(G).

Suppose that (x, x′) ∈ γMOS(B). Then for some set of coefficients {vB | B ∈ B},
we have [

1 x
](∑

B∈B
vBB

)
=
[

1 x′
]
.

If we break this equation apart, we see that

∑
B∈B

vB = 1 and
∑
B∈B

vBcB + x

(∑
B∈B

vBMB

)
= x′.

Let v = (v1, . . . , v|B|) be the vector created by listing the coefficients {vB | B ∈ B}
in the same order as the GB were stacked to create G. Now consider the following
vector, ~V = (v1

[
1 x

]
, . . . , v|B|

[
1 x

]
), as a (1× (|B|(k+1)))-vector of coefficients
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for the rows of G:

~VG =
∑
B∈B

[
vB vBxI vBcB + vBxMB

]
=

[ ∑
B∈B

vB x

(∑
B∈B

vB

) ∑
B∈B

vBcB + x

(∑
B∈B

vBMB

) ]
=
[

1 x x′
]
.

Thus,
[

1 x x′
]

is a linear combination of the rows of G, and so (x, x′) ∈ γAG(G).
Therefore, γMOS(B) ⊆ γAG(G).

Lemma B.1. Suppose that M and N are square matrices of equal dimension
such that

(1) M has only ones and zeroes on its diagonal,

(2) if Mi,i = 1, then Mh,i = 0 for all h 6= i, and

(3) if Mi,i = 0, then Ni,h = 0 for all h.

Then, MN = N .

Proof. We know (MN)i,j =
∑
hMi,hNh,j . By Items 2 and 3, if h 6= i then

either Mi,h = 0 or Nh,j = 0, so (MN)i,j = Mi,iNi,j . If Mi,i = 0, then by Item 2,
Ni,j = 0; otherwise, Mi,i = 1. In either case, (MN)i,j = Ni,j , as we require.

Lemma B.2. When G =

[
1 a b
0 J M
0 0 R

]
, such that

[
1 a
0 J

]
and

[
1 b
0 M

]
satisfy the

conditions of Lem. B.1, then γAG(G) ⊆ γMOS (Shatter(G)).

Proof.

(x, x′) ∈ γAG(G) =⇒ ∃v, v′ :
[

1 v v′
]
G =

[
1 x x′

]
=⇒ ∃v, v′ :

[
1 v

] [ 1 a
0 J

]
=
[

1 x
]

∧
[

1 v
] [ 1 b

0 M

]
+ v′

[
0 R

]
=
[

1 x′
]

By Lem. B.1,
[

1 v
] [ 1 b

0 M

]
=
[

1 v
] [ 1 a

0 J

] [
1 b
0 M

]
=
[

1 x
] [ 1 b

0 M

]
, so

(x, x′) ∈ γAG(G) =⇒ ∃v′ :
[

1 x
] [ 1 b

0 M

]
+ v′

[
0 R

]
=
[

1 x′
]

=⇒ ∃v′ :
[

1 x
]([ 1 b

0 M

]
+
∑
i

v′i

[
0 Ri
0 0

])
=
[

1 x′
]

=⇒ (x, x′) ∈ γMOS(Shatter(G))

Theorem 4.6 For G ∈ AG, γAG (G) ⊆ γMOS (Shatter (MakeExplicit(G))).

73



Proof. Without loss of generality, assume that G has 2k + 1 columns and is in
Howell form.

MakeExplicit(G) consists of two loops. In the first loop, every row r with
leading index i ≤ k + 1 for which the rank of the leading value is greater than
0 is generalized by creating from r a row s, which is added to G, such that s’s
leading index is also i, but its leading value is 1. Consequently, after the call on
Howellize(G) in line (8) of MakeExplicit, the leading value of the row with
leading index i is 1.

In the second loop, the matrix is expanded by all-zero rows so that any row with
leading index i ≤ k + 1 is placed in row i.

Thus, for any AG element G, we can decompose MakeExplicit(G) into the

matrix

[
1 c b
0 J M
0 0 R

]
, where c, b ∈ Z1×k

2w ; J,M ∈ Zk×k2w ; and R ∈ Zr×k2w for some r ≤ k.

Moreover, we know that

—J is upper-triangular,

—J has only ones and zeroes on its diagonal,

—if Jj,j = 1, then column j of J is zero everywhere else, and

—if Jj,j = 0, then row j of J and row j of M are all zeroes.

By these properties, Lem. B.2 holds, so we know that

γAG (G) ⊆ γMOS (Shatter (MakeExplicit(G))) .

C. HOWELL PROPERTIES

Definition C.1. Two module spaces R and S are perpendicular (denoted by
R ⊥ S) if

(1) r ∈ R ∧ s ∈ S =⇒ rst = 0,

(2) (∀r ∈ R : rst = 0) =⇒ s ∈ S, and

(3) (∀s ∈ S : rst = 0) =⇒ r ∈ R.

2

Lemma C.2. If R ⊥ S and R ⊥ S′, then S = S′.

Lemma C.3. For any matrix M , rowM ⊥ nulltM .

These are standard facts in linear algebra; their standard proofs essentially carry
over for module spaces.

Lemma C.4. If R ⊥ R′ and S ⊥ S′, then (R+ S) ⊥ (R′ ∩ S′).

Proof. Pick GR and GS so that rowGR = R and rowGS = S. Because the
rows of a matrix are linear generators of its row space,

(R+ S) = row
[
GR

GS

]
, so, by Lem. C.3, (R+ S) ⊥ nullt

[
GR

GS

]
.

Because each row of a matrix acts as a constraint on its null space,

(R+ S) ⊥ (nulltGR ∩ nulltGS).
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By Lem. C.3 again, we know that rowGR ⊥ nulltGR = R ⊥ R′, so nulltGR = R′

by Lem. C.2. Similarly, nulltGS = S′. Thus, (R+ S) ⊥ (R′ ∩ S′).

Note. Recall from §2 that [M ]i is the matrix that consists of all rows of M whose
leading index is i or greater. For any row r, define LI (r) to be the leading index of
r. Define ei to be the vector with 1 at index i and 0 everywhere else.

Theorem C.5. If matrix M is in Howell form, and x ∈ rowM , then x ∈
row([M ]LI (x)).

Proof. Pick v so that x = vM , let j
def
= LI (v), and let `

def
= LI (Mj,∗). If

` ≥ LI (x), then we already know that x ∈ row([M ]LI (x)). Otherwise, assume
` < LI (x). Under these conditions, as depicted in the diagram below,

Mv

x

Mj,*

0

0

0

j l

LI(x)

0 0

l

0

0

—(vM)` = 0, because LI (vM) = LI (x) > `,

—Mh,` = 0 for any h > j, by Rule 1 of Defn. 2.1, and

—vh = 0 for any h < j, because j = LI (v).

Therefore, 0 = (vM)` =
∑
h vhMh,` = vjMj,`. Thus, because j = LI (v), we

know that LI (vjMj,∗) is strictly greater than ` = LI (Mj,∗).
Because multiplication by invertible values can never change nonzero values to

zero, we have LI (vjMj,∗) = LI
(
2rank(vj)Mj,∗

)
. Thus, by Rule 4 of Defn. 2.1, we

know that vjMj,∗ can be stated as a linear combination of rows j + 1 and greater.
That is, vjMj,∗ ∈ row([M ]j+1), or equivalently, vjMj,∗ = uM with LI (u) ≥ j + 1.
We can thus construct v′ = v − vjej + u for which x = v′M and LI (v′) ≥ j + 1.

By employing this construction iteratively for increasing values of j, we can
construct x = yM with LI

(
MLI (y),∗

)
≥ LI (x). Consequently, x can be stated

as a linear combination of rows with leading indexes LI (x) or greater; i.e., x ∈
row([M ]LI (x)).

Theorem 5.2 Suppose that M has c columns. If matrix M is in Howell form,

x ∈ nulltM if and only if ∀i : ∀y1, . . . yi−1 :
[
y1 · · · yi−1 xi · · · xc

]
∈ nullt([M ]i).

Proof. We know that rowM ⊥ nulltM , and that row([M ]i) ⊥ nullt([M ]i). Let
Ei be the module space generated by {ej | j < i}, and let Fi be the module space
generated by {ej | j ≥ i}. Clearly, Ei ⊥ Fi, and thus, by Lem. C.2,

(nulltM + Ei) ⊥ (rowM ∩ Fi).
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By Thm. C.5, we have that row([M ]i) = (rowM ∩ Fi). Consequently,

nullt([M ]i) ⊥ (rowM ∩ Fi),

and thus, by Lem. C.4, we have

nullt([M ]i) = (nulltM + Ei), (25)

Because (nulltM +Ei) is the set
{
x+ y

∣∣x ∈ nulltM ∧ ∀h ≥ i : yh = 0
}

, Eqn. (25)
is an equivalent way of stating the property to be shown.

D. CORRECTNESS OF KS JOIN

Theorem D.1. If Y and Z are both N+1-column KS matrices, and γKS(Y ) and

γKS(Z) are both non-empty sets, then Y t Z is the projection of
[
−Y Y
Z 0

]
onto its

right-most N + 1 columns.

Proof. γKS (Y t Z) is the affine closure of γKS(Y ) ∪ γKS(Z). Thus, we need to
show that, for all x ∈ ZN2w ,

∃u ∈ ZN2w , σ ∈ Z2w :

[
−Y Y
Z 0

]
u
σ
x
1

 = 0

if and only if

x is an affine combination of values in γKS(Y ) and γKS(Z).

Recall that an affine combination is a linear combination whose coefficients sum to
1.

Proof of the “if” direction: Fix a particular x ∈ ZN2w , and suppose that we have
specific values for λ ∈ Z2w , y ∈ γKS(Y ), and z ∈ γKS(Z), such that x = λy+z(1−λ).
Pick σ = 1− λ, and u = (1− λ)z. Then,

[
−Y Y
Z 0

]
(1− λ)z

1− λ
x
1

 = 0

if and only if − Y
[

(1− λ)z
1− λ

]
+ Y

[
x
1

]
= 0 and Z

[
(1− λ)z

1− λ

]
= 0

if and only if Y

[
−(1− λ)z + x

λ

]
= 0 and (1− λ)Z

[
z
1

]
= 0

if and only if λY

[
y
1

]
= 0 and (1− λ)Z

[
z
1

]
= 0.

These last equations are true because y ∈ γKS(Y ) and z ∈ γKS(Z). Thus, if x is in

the affine closure of γKS(Y )∪γKS(Z), then
[
x
1

]
is in the null space of the projected

matrix.
Proof of the “only if” direction: Suppose that x is in the null space of the
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projected matrix. Pick u ∈ ZN2w and σ ∈ Z2w such that

[
−Y Y
Z 0

]
u
σ
x
1

 = 0.

We must show that x is in the affine closure of γKS(Y ) ∪ γKS(Z).

Immediately, we know that Z
[
u
σ

]
= 0 and Y

[
x− u
1− σ

]
= 0. Because γKS(Y ) and

γKS(Z) are nonempty, we can select an arbitrary y0 ∈ γKS(Y ) and z0 ∈ γKS(Z).
Thus,

0 = Y

[
x− u
1− σ

]
+ σY

[
y0
1

]
= Y

[
x− u+ σy0

1

]
, and

0 = Z

[
u
σ

]
+ (1− σ)Z

[
z0
1

]
= Z

[
u+ (1− σ)z0

1

]
.

Now define y and z to be the values that we have just shown to be in γKS(Y ) and
γKS(Z):

y
def
= x− u+ σy0 and z

def
= u+ (1− σ)z0.

If we solve for x and eliminate u in these equations, we get:

x = y − σy0 + z + (σ − 1)z0.

Because y, y0 ∈ γKS(Y ), z, z0 ∈ γKS(Z), and 1 − σ + 1 + (σ − 1) = 1, we have now
stated x as an affine combination of values in γKS(Y ) and γKS(Z), as required.

E. CORRECTNESS OF α̂↑KS

Algorithm α̂↑KS maintains two invariants:

(1) lower v α̂(ϕ)

(2) lower[(rows(lower)− i+ 2) . . . rows(lower)] w α̂(ϕ)

Both invariants are established before the loop is entered on line (4) of Fig. 4(a):
(i) the assignment “lower ← ⊥” on line (1) sets lower = ⊥ v α̂(ϕ); and (ii) the
assignment “i← 1” on line (2) sets lower[(rows(lower)− i+ 2) . . . rows(lower)] =
> w α̂(ϕ).12

Henceforth, we abbreviate lower[(rows(lower)−i+2) . . . rows(lower)] as “upper,”
and restate invariant (2) as upper w α̂(ϕ).

Lemma E.1. The assignment “i ← i + 1” on line (9) of Fig. 4(a) maintains
invariant (1).

Proof. Assume that invariant (1) holds before the assignment on line (9). The
assignment does not change lower; hence invariant (1) continues to hold after the
assignment.

12When i = 1, the range (rows(lower)− i+ 2) . . . rows(lower) is empty, and lower[(rows(lower)−
i+ 2) . . . rows(lower)] denotes the empty set of constraints, which equals >.
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p lower

upper

�

i

Fig. 17. Depiction of the structure of lower during α̂↑KS(ϕ). The shaded blocks running diagonally

represent the leading values of the different rows. The dotted block labeled ~u represents a portion
of row p.

Lemma E.2. The assignment “i ← i + 1” on line (9) of Fig. 4(a) maintains
invariant (2).

Proof. Assume that invariant (2) holds before the assignment on line (9). By
line (6), ϕ ∧ ¬γ̂(p) is unsatisfiable, and hence ϕ⇒ γ̂(p), or equivalently, [[ϕ]] ⊆ [[p]].
Moreover, because abstraction function α is monotonic,

α̂(ϕ) = α([[ϕ]]) v α([[p]]) = α̂(γ̂(p)). (26)

The structure of lower is depicted in Fig. 17. Row p = lower[(rows(lower)−i+1)]
is a single constraint from the Howell-form matrix lower. p by itself is a KS element,
although it might not be in Howell form; the Howell-form matrix for α̂(γ̂(p)) equals
p, together with any additional rows needed to satisfy Defn. 2.1. (Recall that
additional rows are introduced by Defn. 2.1(4).) However, because lower is in Howell
form, so is the matrix that consists of p and upper (i.e., lower[(rows(lower) − i +
1) . . . rows(lower)]). In particular, by Defn. 2.1(4), the row space of upper already
contains constraints that are equal to or stronger than all of the logical consequences
of p. The logical consequences of p—which are all of the form 2m~u for some m that
is sufficiently large to zero out all entries of p to the left of the region labeled ~u in
Fig. 17—are exactly the ones with which p is augmented when α̂(γ̂(p)) is put in
Howell form. Consequently, by Eqn. (26) and invariant (2),

α̂(ϕ) v α̂(γ̂(p)) u upper

= lower[(rows(lower)− i+ 1) . . . rows(lower)].

Hence, after the assignment “i← i+ 1” on line (9) of Fig. 4(a), invariant (2) again
holds: lower[(rows(lower)− i+ 2) . . . rows(lower)] w α̂(ϕ).

Lemma E.3. The assignment “lower ← lower t β(S)” on line (12) of Fig. 4(a)
maintains invariant (1).

Proof. Assume that invariant (1) holds before the assignment on line (12).
S |= ϕ implies β(S) v α̂(ϕ). This property, together with invariant (1), implies
that lowertβ(S) v α̂(ϕ), so invariant (1) holds after the assignment on line (12).

Lemma E.4. The assignment “lower ← lower t β(S)” on line (12) of Fig. 4(a)
does not change upper.

Proof. S is a state that satisfies ϕ∧¬γ̂(p). From Eqns. (19) and (20), we have
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S = [ ~X 7→ ~v, ~X ′ 7→ ~v′] and

β(S) =

[ ~X ~X′ 1

I 0 (−~v)t

0 I (−~v′)t
]
.

Because the distinction between one-vocabulary and two-vocabulary KS elements
is unimportant for this proof, we will consider one-vocabulary KS elements with

k + 1 columns, abbreviating S as [ ~X 7→ ~v] and β(S) as
[ ~X 1

I −v
]
.

Let lower =
[
Y y

]
and upper = lower[(rows(lower) − i + 2) . . . rows(lower)].

We will refer to portions of lower by the names shown in the diagram below (where
the shaded blocks represent the leading values of the different rows):

0

LIlower(p)

0

0

yY

p lower

upper

rest

For instance, lower =

[
Yrest yrest
Yupper yupper

]
.

To perform lowertβ(S) =
[
Y y

]
t
[
I −v

]
, we create the 2k+2-column matrix

M
def
=

[
−Y −y Y y
I −v 0 0

]
and Howellize M . Because I is already in Howell form, we rearrange rows to form[

I −v 0 0
−Y −y Y y

]
,

and then cancel the −Y block by multiplying
[
I −v 0 0

]
on the left by Y , and

adding the result to
[
−Y −y Y y

]
, which produces[

I −v 0 0
0 (−Y v − y) Y y

]
. (27)

Note that the column

[
−v

(−Y v − y)

]
is the only column that causes matrix (27) to

fail to be in Howell form. We can factor this column as follows:[
(−Y v − y)

]
=
[
−Y −y

] [ v
1

]
= −lower

[
v
1

]
= −

[
Yrest yrest
Yupper yupper

] [
v
1

]
.

By invariant (2), we have upper w α̂(ϕ), and hence [[ϕ]] ⊆ [[α̂(ϕ)]] ⊆ γ(upper).
Moreover, S |= ϕ ∧ ¬γ̂(p) means that S ∈ [[ϕ]], which implies that S ∈ γ(upper).
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Fig. 18. Depiction of the structure of the partially Howellized matrix (28) that arises during the

operation lower t β(S).

The latter fact can be expressed as S |= γ̂(upper), or in matrix terms, as[
Yupper yupper

] [ v
1

]
= 0. Therefore, matrix (27) has the following structure

 I −v 0 0
0 (−Yrest ∗ v − yrest) Yrest yrest
0 0 Yupper yupper

 , (28)

which is depicted in more detail in Fig. 18.
We now want to argue that none of the remaining steps carried out to finish

putting matrix (28) into Howell form can affect a row of upper. Obviously, none
of the steps of Howellize that resemble Gaussian elimination—used to enforce
items (1) and (2) of Defn. 2.1—can affect a row of upper, because all of the entries
in column k+1 of matrix (28) for rows of upper are 0. Nor can upper be affected by
the steps of Howellize that resemble back-substitution, which are used to enforce
Defn. 2.1(3).

More surprisingly, the logical-consequence rows added to matrix (28) to enforce
Defn. 2.1(4) cannot change upper either. For instance, consider a row such as row q
in Fig. 18, which has the form

[
0 . . . 0 z 0 . . . 0 t . . . ~u

]
. Let j be the leading

index (with respect to matrix lower) of the first row of upper. Suppose that s is
the smallest number such that when the portion of row q that is in lower, namely,[

0 . . . 0 t . . . ~u
]
, is multiplied by 2s, all entries in column positions < j are 0, and
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we are left with
[

0 . . . 0 2s~u
]
. Because lower is in Howell form, by Defn. 2.1(4)

row([upper]j) includes constraints that are equal to or stronger than all multiples
of
[

0 . . . 0 2s~u
]
.

Now consider again the full row q of matrix (28),
[

0 . . . 0 z 0 . . . 0 t . . . ~u
]
.

For a logical consequence of row q to have non-zero entries only at positions k+1+j
or greater, we must multiply q by at least a power of 2 that is sufficient to zero out
z and all elements at positions k+1+ LIlower(q) to k+1+ j−1. Consequently, the
multiplicand must be a multiple of 2s; however, in that case the result is a vector
that is a multiple of

[
0 . . . 0 2s~u

]
. As observed above, such a constraint cannot

change upper because row([upper]j) already includes constraints that are equal to
or stronger than all multiples of

[
0 . . . 0 2s~u

]
.

From Lem. E.4, we conclude the following:

Corollary E.5. The assignment “lower← lowert β(S)” on line (12) of Fig. 4(a)
maintains invariant (2).

Theorem 7.3 If algorithm α̂↑KS from Fig. 4(a) does not encounter a timeout, (i)
the algorithm terminates, and (ii) the element returned is α̂(ϕ) with respect to the
KS domain.

Proof. Property (i) follows from the observation that algorithm α̂↑KS makes
progress on each iteration of the while loop, as we now show:

(1) The assignment “i← i+ 1” on line (9) increments i, which is used as an index
on rows. Because a Howell-form KS element with 2k + 1 columns can have at
most 2k rows, the increment of i on line (9) can be executed no more than 2k
times.

(2) Row p is a single constraint from the Howell-form matrix lower. Thus, just
before line (12), we know that [[lower]] ⊆ [[p]]. We also know that S |= ϕ∧¬γ̂(p).
These two observations imply that S 6|= γ̂(lower).

Consequently, the value of lower after the assignment “lower← lowertβ(S)”
is strictly greater than (i.e., = in the KS lattice) the value of lower before the
assignment. Because the KS domain is finite-height, line (12) can be performed
at most a finite number of times.

Consequently, the algorithm must eventually terminate.
Property (ii) follows from invariants (1) and (2), which were shown to hold by

Lemmas E.1–E.3 and Cor. E.5. Thus, if algorithm α̂↑KS from Fig. 4(a) does not
encounter a timeout, it reaches line (14) with i ≥ rows(lower) + 1, in which case

lower =

invariant (2)︷ ︸︸ ︷
lower[(rows(1) . . . rows(lower)] w α̂ (ϕ) w lower︸ ︷︷ ︸

invariant (1)

,

and hence ans = lower = α̂(ϕ).
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