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3 LIAFA, CNRS & Université Paris Diderot, e-mail: touili@liafa.jussieu.fr
4 University of Wisconsin, e-mail: reps@cs.wisc.edu
5 GrammaTech, Inc.

Received: date / Revised version: date

Abstract. The problem of interest is to verify data consis-
tency of a concurrent Java program. In particular, we present a
new decision procedure for verifying that a class of data races
caused by inconsistent accesses on multiple fields of an object
cannot occur (so-called atomic-set serializability). Atomic-set
serializability generalizes the ordinary notion of a data race
(i.e., inconsistent coordination of accesses on a single memory
location) to a broader class of races that involve accesses on
multiple memory locations.

Previous work by some of the authors presented a tech-
nique to abstract a concurrent Java program into an EML
program, a modeling language based on pushdown systems
and a finite set of reentrant locks. Our previous work used
only a semi-decision procedure, and hence provides a defi-
nite answer only some of the time. In this paper, we rectify
this shortcoming by developing a decision procedure for ver-
ifying data consistency, i.e., atomic-set serializability, of an
EML program. When coupled with the previous work, it pro-
vides a decision procedure for verifying data consistency of a
concurrent Java program.

We implemented the decision procedure, and applied it
to detect both single-location and multi-location data races in
models of concurrent Java programs. Compared with the prior
method based on a semi-decision procedure, not only was
the decision procedure 34 times faster overall, but the semi-
decision procedure timed out on about 50% of the queries,
whereas the decision procedure timed out on none of the
queries.
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0810053, by AFRL under contract FA8750-06-C-0249, and by ONR under
grant N00014-09-1-0510.
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1 Introduction

Writing correct concurrent programs is a notoriously diffi-
cult task because the programmer must account not only for
the sequential behavior of an individual thread, but also for
non-deterministic interference from other (external) threads.
Non-deterministic interference can result in data-consistency
errors, a class of programming errors that sequential programs
are not prone to. Loosely speaking, a data-consistency er-
ror occurs when a thread of execution exposes intermediate
computational results to external threads, or when it observes
external computational results when executing a sequence of
operations that define one (larger) logically-atomic operation.

Multi-location data-consistency errors arise because pro-
grams often have (usually unstated) consistency relationships
between multiple shared-memory locations. A recent survey
by Lu et al. (2008) of two open-source software applica-
tions, Apache and Firefox, showed that multi-location data-
consistency errors accounted for one third of non-deadlock
consistency errors. Thus, it is crucial that tools and techniques
be able to verify the absence of multi-location data-consistency
errors.

Vaziri et al. (2006) propose atomic-set serializability (AS-
serializability) as a data-centric correctness criterion for con-
current Java programs. AS-serializability is a property of a
program execution, and is a relaxation of serializability. An
execution is serializable if its outcome is equivalent to an
execution where all transactions are executed serially. AS-
serializability relaxes serializability to be only with respect to
specific memory locations specified as a subset of the fields
of a Java class and referred to as an atomic set. An important
result of Vaziri et al. (2006) is that AS-serializability viola-
tions can be completely characterized by a set of fourteen
problematic-access patterns, each of which can be specified
by a finite-state machine. (§2 presents a detailed example of
atomic sets, AS-serializability, and problematic-access pat-
terns.) AS-serializability encompasses data races (single-field
atomic sets), multi-location data-consistency errors (multi-
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PDS control Queries Cost
locations

Splitting O(2|SLocks|) O(2|SLocks|·|A| · |SProcs|) O(2|SLocks| · 2|SLocks|·|A| · |SProcs|)
Tupling O(2|SLocks|·|A|) |SProcs| O(2|SLocks|·|A|) · |SProcs|

Table 1. Comparison between the (corrected) splitting approach of Kahlon and Gupta (2007) and our tupling approach. |SLocks| denotes the number of locks,
|A| denotes the number of states of an IPA A, and |SProcs| denotes the number of EML processes (PDSs).

field atomic sets), and atomicity (all of memory forms one
atomic set).

In previous work by some of the authors (Kidd
et al., 2009b), we developed techniques for verifying AS-
serializability for concurrent Java programs with a finite num-
ber of threads.1 Our tool, EMPIRE, first abstracts a concurrent
Java program into EML, a modeling language based on multi-
pushdown systems (multi-PDSs) (defined in §3) that supports
a finite number of abstract shared-memory locations, reentrant
locks, and threads. Given a generated EML program, the prob-
lem of interest is then to verify that no interleaved execution
of the EML program contains one of the fourteen problematic-
access patterns. The drawback of the approach that we have
used to date is that a generated EML program, along with a
specification of a problematic-access pattern, are compiled
into a communicating pushdown system (CPDS) Bouajjani
et al. (2003); Chaki et al. (2006), for which the required model-
checking problem is undecidable. (A semi-decision procedure
is used in Kidd et al. (2009b).)

In the present paper, we address the limitation of us-
ing CPDS-based model checking (i.e., undecidability), by
developing a new decision procedure for detecting AS-
serializability violations in EML programs. (Actually, we show
decidability for a model-checking formalism that can be used
to encode AS-serializability violation detection; however, for
the purposes of this introduction, we will provide intuition
in terms of AS-serializability.) Because the set of behaviors
of an EML program is an over-approximation of the set of
behaviors of a concurrent Java program, showing that an AS-
serializability violation cannot occur verifies data consistency
of the original concurrent Java program. (Note that the con-
verse does not hold. That is, because an EML program is a
sound abstraction of a Java program (Kidd et al., 2009b), if
an EML program contains an AS-serializability violation the
Java program may or may not also contain a violation.)

Three observations serve as the basis for the decision pro-
cedure that we devised:

1. For each of the fourteen problematic-access patterns, the
non-deterministic finite automaton (NFA) that recognizes
interleaved executions of an EML program containing
that pattern always has a special form: the only loops are
self-loops on states. We call such an automaton an indexed-
phase automaton (IPA). (IPAs are formally defined in §3.)

2. Like Java locks, EML locks are reentrant and are acquired
and released by entering an exiting an EML function. Kidd

1 We say that a concurrent Java program Prog is AS-serializable if every
possible execution of Prog is AS-serializable.

et al. (2008) present the language-strength-reduction trans-
formation, which allows a reentrant lock to be replaced
by a non-reentrant lock without sacrificing soundness or
precision when the acquisitions and releases of the lock
are synchronized with a thread’s calls and returns. Infor-
mally, the PDS stack is used to record the first time a lock
is acquired, subsequent lock acquisitions have no effect
on the state of the acquired lock, and the PDS stack is
queried on each lock release to determine if the release
matches the first acquisition. (See §3.1.2 and Kidd et al.
(2008) for more details.) Thus, we are able to focus on
only non-reentrant locks while remaining faithful to Java
locks.

3. The scheduling constraints from an individual PDS’s use
of the non-reentrant locks—locks that result from applying
the language-strength-reduction transformation—can be
summarized by a finite PDS path abstraction known as
lock histories, first developed by Kahlon and Gupta (2007).

The special form of IPAs, coupled with the ability to finitely
summarize the locking constraints of a PDS, directly led to
the decision procedure that is the focus of this paper.

The results described in this paper are related to results
obtained by Kahlon and Gupta (2007). A detailed comparison
of the two approaches is presented in §11; here we will just
note that the space and time complexity of our method is better
than that of Kahlon and Gupta’s method by an exponential
factor (see Tab. 1).

1. Our approach (“Tupling”) avoids an exponential in the
number of locks |SLocks| when compared to the approach
of Kahlon and Gupta (“Splitting”). (See the rightmost
column in Tab. 1.)

2. Our approach (“Tupling”) isolates the exponential cost in
the PDS state space, which is preferred because that cost
can often be side-stepped using symbolic techniques, such
as BDDs, as explained in §8.

Contributions.This paper makes the following contributions:

– We define a decision procedure for verifying AS-
serializability of an EML program. The decision proce-
dure handles (i) reentrant locks (via the language-strength-
reduction transformation of Kidd et al. (2008)), (ii) an un-
bounded number of context switches, (iii) an unbounded
number of lock acquisitions and releases by each PDS,
and (iv) determines whether the sequence of interleaved
memory accesses of a problematic access pattern is present
(or not). Because the set of behaviors of a generated EML
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program is an over-approximation of the set of behaviors
of the concurrent Java program from which it was gener-
ated, verifying AS-serializability of an EML program also
verifies AS-serializability of the concurrent Java program.

– The decision procedure is modular: each PDS is analyzed
independently with respect to IPA, and then a single com-
patibility check is performed that ties together the results
obtained from the analysis of the different PDSs.

– We leverage the special form of IPAs to give a symbolic
implementation that is more space-efficient than standard
BDD-based techniques for PDSs Schwoon (2002).

– We used the decision procedure to detect AS-serializability
violations in automatically-generated models of four con-
current Java programs from the ConTest benchmark
suite (Eytani et al., 2007). On the corresponding set of
queries, the decision procedure was 34 times faster overall
(i.e., the total running time for all queries) when compared
to the semi-decision procedure. Moreover, with a timeout
threshold of 300 seconds, for each query where the semi-
decision procedure timed out (roughly 50% of the queries),
the decision procedure succeeded within the allotted time,
and actually performed more work because the decision
procedure explored the entire state space.

Organization.The remainder of the paper is organized as fol-
lows: §2 motivates our work by presenting a concurrent Java
program that contains an AS-serializability violation, and dis-
cusses the difficulties in AS-serializability violation detection.
§3 defines multi-PDSs and IPAs. §4 presents the problem
statement along with a more detailed overview of the steps
that were required to obtain the result that AS-serializability-
violation detection is decidable. §5 reviews a decomposition
result due to Kahlon and Gupta. §6 presents lock histories.
§7 presents the decision procedure for a 2-PDS. §8 presents
a symbolic implementation of our 2-PDS decision proce-
dure. §9 generalizes the 2-PDS decision procedure to handle
general multi-PDSs. §10 presents experimental results. §11
gives a detailed comparison with a certain decision procedure
of Kahlon and Gupta. §12 describes other related work. §13
presents some conclusions.

2 Atomic-Set Serializability Violation Detection

Vaziri et al. (2006) introduce atomic sets, unit-of-work meth-
ods, and atomic-set serializability (AS-serializability), where

– an atomic set is a set of fields of a Java class for which
there exists an unspecified data-structure invariant;

– a unit-of-work method is a method that when executed
serially, is guaranteed to reestablish the invariant of an
atomic set upon completion;

– and AS-serializability is a correctness criterion of (inter-
leaved) executions where an execution is said to be atomic-
set serializable if its outcome is equivalent to an execution
in which all unit-of-work methods are executed serially.
In other words, an execution e is atomic-set serializable if

Listing 1. Stack Java program that contains an AS-serializability violation.

1class Stack {
2// @atomic(S)
3Object[] data = new Object[10];
4
5// @atomic(S)
6int count = -1;
7
8// @atomic
9synchronized Object pop(){
10Object res = data[count];
11data[count--] = null;
12return res;
13}
14
15// @atomic
16synchronized void push(Object o) {
17data[++count] = o;
18}
19
20// @atomic
21synchronized int size() {
22return count+1;
23}
24
25// @atomic
26synchronized replaceTop(Object o) {
27pop(); push(o);
28}
29
30static Stack makeStack() {
31return new Stack();
32}
33}
34
35class SafeWrap {
36// @atomic
37synchronized Object popwrap(Stack s) {
38if (s.size() > 0) return s.pop();
39else return null;
40}
41
42static SafeWrap makeSafeWrap() {
43return new SafeWrap();
44}
45
46static void main(String[] args){
47Stack stack = Stack.makeStack();
48stack.push(new Integer(1));
49new Thread("1") {
50makeSafeWrap().popwrap(stack);
51}
52new Thread("2") {
53makeSafeWrap().popwrap(stack);
54}
55}
56}
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T1:

popwrap︷ ︸︸ ︷
[1

size︷ ︸︸ ︷
[1(sR1(c))s]1 .........................................................

pop︷ ︸︸ ︷
[1(sR1(c)R1(d)z

T2: ................

popwrap︷ ︸︸ ︷
[2[2(sR2(c))s]2︸ ︷︷ ︸

size

[2(sR2(c)R2(d)R2(c)W2(d)W2(c))s]2︸ ︷︷ ︸
pop

]2 ...................

Fig. 1. An interleaved execution of thread T1 and T2 that contains an AS-serializability violation.

for each atomic set S, the projection of e with respect to
S is serializable.

AS-serializability can be viewed as a relaxation of atomic-
ity (Flanagan and Qadeer, 2003) to a user-specified set of
memory locations. That is, using the terminology of Vaziri
et al. (2006), atomicity is equivalent to atomic-set serializ-
ability where all of memory forms one atomic set. We next
illustrate both atomic sets and atomic-set serializability via a
concrete example.

The Java program shown in Listing 1 defines two classes,
Stack and SafeWrap. Class Stack is a minimal imple-
mentation of a stack that contains two fields:
data is an array that stores the objects that have been pushed

onto the stack,
count is a zero-based counter that denotes the number of

items on the stack (zero-based so that the current value of
count is the index into the array data that is the top of
the stack).

The fields are annotated with @atomic(S) to specify that
they belong to the atomic set S. As mentioned above, the in-
variant is that count is a zero-based counter of the number of
objects stored in data. All non-static methods of Stack are
synchronized to implement mutual exclusion of concur-
rent accesses by multiple threads.2 The annotation @atomic
specifies that the non-static methods are also unit-of-work
methods—they are intended to execute atomically with re-
spect to the fields of atomic set S.

Class SafeWrap does not define an atomic set. Instead,
it is a “wrapper” class that (attempts to) “harden” the imple-
mentation of Stack. That is, method Stack.pop does not
perform bounds checking before indexing into the array data
(line 11). Thus, invoking Stack.pop on an empty stack—
one in which count has the value -1—would result in an
ArrayIndexOutOfBoundsException being thrown.
The method SafeWrap.popwrap addresses this liability
by first checking that the input parameter Stack s has a
size greater than 0 (line 38) before invoking Stack.pop.
The @atomic annotation on method SafeWrap.popwrap
specifies that it is a unit-of-work method and thus should ex-
ecute atomically. Because class SafeWrap does not define
an atomic set, atomic execution is just with respect to the
parameter Stack s.

2 In Java, every object has a lock associated with it. A synchronized
method is one in which the lock of the receiving object is acquired upon
entering the method, and released before upon exiting.

2.1 AS-serializability Violation Example

The programmer attempted to ensure that
SafeWrap.popwrap always executes atomically by
declaring the method to be synchronized. Unfor-
tunately, in this case the object that should have been
synchronized on is the parameter Stack s. By perform-
ing synchronization on the wrong object (namely, the
implicit this parameter of SafeWrap.popwrap), the
interleaved execution shown in Fig. 1, which results in an
ArrayIndexOutOfBoundsException being raised, is
an allowable behavior of the system. (In Fig. 1, the subscripts
“1” and “2” are thread ids; R and W denote a read and
write access, respectively; c and d denote fields count and
data, respectively; “[” and “]” denote the beginning and
end, respectively, of a unit-of-work method; and “(s” and
“)s” denote the acquire and release operations, respectively,
of the lock of Stack s that is the input parameter to
SafeWrap.popwrap.) The execution proceeds as follows:
Initially, the stack contains one item. Thread T1 begins
execution and checks that the stack is non-empty by invoking
Stack.size. The check succeeds, and so T1’s next
action is to invoke Stack.pop. Before doing so, thread
T2 successfully executes SafeWrap.popwrap, which
removes the item from the stack, leaving it empty. When
T1 resumes execution, it invokes Stack.pop on an empty
stack, which raises an exception. The point at which the
exception is raised is indicated by the z symbol at the end
of thread T1’s execution sequence. Note that the execution
in Fig. 1 does not contain a data race (in fact the program in
Listing 1 is data-race free).

An important result of Vaziri et al. (2006) is that AS-
serializability violations can be completely characterized by a
set of fourteen problematic access patterns (see (Vaziri et al.,
2006) for a complete listing).3 Each problematic access pattern
is a finite sequence of reads and writes by two threads to one
or two shared memory locations. For the program in Listing 1
and problematic access pattern 12 instantiated as follows:

[1;R1(c);W2(d);W2(c);R1(d),

the accesses that match the pattern are underlined in the
interleaving shown in Fig. 1.

3 This result relies on an assumption that programs do not always satisfy:
an atomic code section that writes to one member of a set of correlated
locations writes to all locations in that set (e.g., count and data of Stack
s).
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W2(d) W2(c) R1(d)R1(c)[1q1 q2 q3 q4 q5 q6

Σ ΛΛΛΛ

Fig. 2. The IPA A2 that recognizes execution traces of the program from Listing 1 that contain the AS-serializability violation specified by the problematic-access
pattern “[1;R1(c);W2(d);W2(c);R1(d)”. Σ denotes the input alphabet of A2, and Λ is defined as Σ \ {]}. Once A2 guesses that a violation will occur by
making a transition to state q3, it must observe a violation before the unit-of-work end symbol “]” appears in a trace. Otherwise, it will become stuck in a state
q3−6.

Fig. 2 presents the non-deterministic finite automaton
(NFA) A2 that recognizes execution traces that contain the
problematic-access pattern described above. Notice that A2

has a special form—the only loops are self-loops on states.
We call such an automaton an indexed phase automaton (IPA).
“Indexed” denotes that the index of a thread (PDS) is included
on the edge label of a transition. “Phased” denotes that a word
accepted by an IPA can be divided into phases, where a phase
constitutes all symbols of the word that cause an IPA to follow
a self loop, i.e., remain in the same state. A transition between
states is called a phase transition. Notice that an IPA can only
perform a bounded number of phase transitions. Bounding the
number of phase transitions—global synchronizations—is a
key step towards a decision procedure.

The focus of this paper is a technique to statically ver-
ify that no execution trace of a multi-PDS is recognized by
an IPA (e.g., the IPA in Fig. 2). Because each of the four-
teen problematic-access patterns can be encoded as an IPA,
and because AS-serializability violations can be completely
characterized by the fourteen patterns, our decision procedure
can be used to verify AS-serializability of concurrent Java
programs.

2.2 What are the Difficulties?

In previous work Kidd et al. (2009b), we addressed AS-
serializability violation detection by first abstracting a concur-
rent Java program into an EML program. The abstraction is
such that the EML program consists of a finite set of threads
(PDSs), locks, and shared memory locations (i.e., an atomic
set).

Remark 1. The problem addressed by (Kidd et al., 2009b)
was how to create a sound and finite abstraction of a concur-
rent Java program that makes use of dynamic object allocation,
and hence dynamic lock creation, while retaining the ability
to reason precisely about scheduling constraints due to the use
of synchronization. In an EML program, modeling synchro-
nization requires the ability to track definite information—i.e.,
lock l was definitely acquired—which can only be achieved
by performing a strong update to the state of an abstract object.
However, if an abstract object in the EML program were to
represent an a priori unbounded set of objects in the original
Java program, a strong update to the abstract object would be
unsound because in each EML statement only one of the con-
crete objects represented changes state. In the case of abstract
lock objects that summarize more than one concrete Java lock,

unsoundness means that the EML program could have fewer
behaviors than the original Java program.

Kidd et al. (2009b) address the issue via the random-
isolation abstraction, a program transformation that randomly
isolates a single (concrete) object from among those allocated
at a given allocation site. Thus, in the abstract program, two
sorts of objects can be distinguished: a non-summary abstract
object that represents the concrete randomly-isolated object,
and a summary abstract object for all others allocated at the
same allocation site. Because the non-summary object rep-
resents a singleton set of concrete objects, an analysis can
perform strong updates on its state. In the case of locks, the
ability to perform strong updates allows an analysis to track the
lock state of the randomly-isolated lock. Moreover, because
the (concrete) isolated object was picked at random, any prop-
erties that the analysis establishes about the (abstract) isolated
object apply to all of the objects allocated at the allocation
site in question.

In the EML program, the non-summary lock is mapped
to an EML lock, and the summary lock is forgotten (because
we cannot track its lock-state anyway), yielding an abstraction
with a finite number of locks. For this paper, we assume the
abstraction has already been performed, and thus only focus
on program models that have a finite number of processes,
locks, and memory locations.

We addressed AS-serializability violation detection by encod-
ing the problem as a CPDS model-checking problem. The
results of this paper show that CPDS model-checking was,
in some sense, a too-powerful hammer: the CPDS model-
checking problem is, in general, undecidable, and thus we
were not able to obtain answers for roughly 50% of the CPDS
queries posed in the experimental evaluation of Kidd et al.
(2009b).

We discovered that the problem was decidable only after
working on the problem for several years (and developing the
methods discussed in Kidd et al. (2008, 2009b)). There are
several reasons why it is not immediately apparent that the
problem is decidable:

1. EML locks, like Java locks, are reentrant. The straight-
forward approach to encoding a reentrant lock re-
quires a counter to track the depth of nested calls to
synchronized methods, and a counter requires an infi-
nite state space.

2. Like EML locks, units of work are also reentrant, and the
straightforward approach again requires an infinite-state
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counter to track the depth of nested calls to unit-of-work
methods.

3. For an AS-serializability violation to occur, an interleaved
execution must be found such that the read and write ac-
cesses to memory locations occur in a specified order
(e.g., the order shown in Fig. 2). Moreover, the interleaved
execution must respect the semantics of locks, which con-
stitute global state of an EML program. The need to rea-
son precisely about the owners of locks, and the validity
of individual transitions of the PDSs that model EML
processes with respect to locking semantics, induces an
apparent tight coupling between the PDSs.

2.3 Overcoming the Difficulties

At a high level, we overcome the apparent difficulties dis-
cussed above by transforming the problem in several ways—in
each step without losing precision—so that the threads can be
decoupled.

1. The language-strength-reduction transformation of Kidd
et al. (2008) provides a mechanism to replace reentrant
locks with non-reentrant locks while still being able to ex-
plore the entire state space. (Briefly, the technique involves
transforming a PDS so that it pushes a special marker onto
the stack the first time a lock is acquired, and also records
the fact that the PDS holds the lock in the PDS’s state.
All subsequent lock acquires and their matching releases
do not change the state of the lock or the state of the PDS.
Only when the special marker is seen again is the lock
then released. The technique requires that lock acquisi-
tions and releases be synchronized with procedure calls
and returns (à la Java’s synchronized methods), and/or
properly scoped (à la Java’s synchronized blocks). See
§3.1.2 and Kidd et al. (2008) for details.) Precision is not
lost because the transformed model contains the same set
of behaviors as the original model.

2. In much the same way, the language-strength-reduction
transformation also provides a mechanism to eliminate the
need to use a counter to count the depth of nested calls to
unit-of-work methods. In fact, this is a key transformation
in showing that AS-serializability violation detection of
EML programs is decidable, because otherwise the four-
teen problematic-access patterns could not be encoded as
IPAs (discussed in §4).

3. The techniques presented in this paper provide a mecha-
nism to analyze the PDSs that model EML processes inde-
pendently of each other. At a high level, a summary of the
locking behavior of each individual PDS—or more pre-
cisely, a summary of the constraints that the PDS’s use of
locks places on the set of possible interleaved executions—
is computed by independent analysis runs (one run per
PDS). A post-processing step then determines whether
there exists an interleaved execution that satisfies the con-
straints computed for each PDS.

3 Program Model and Property Specifications

This section formally defines the multi-pushdown system
(multi-PDS) programming model, and indexed-phase au-
tomata (IPAs), which are used to specify the property of inter-
est.

Definition 1. A (labeled) pushdown system (PDS) is a tuple
P = (P,Lab, Γ,∆, c0), where P is a finite set of control
states, Lab is a finite set of action labels (actions), Γ is a finite
stack alphabet, and∆ ⊆ (P ×Γ )×Lab×(P ×Γ ∗) is a finite
set of rules. A rule r ∈ ∆ is denoted by 〈p, γ〉 a

↪−→ 〈p′, u′〉. A
PDS configuration 〈p, u〉 is a control state along with a stack,
where p ∈ P and u ∈ Γ ∗, and c0 = 〈p0, γ0〉 is the initial
configuration. ∆ defines a transition system over the set of all
configurations. From c = 〈p, γu〉, P can make a transition to
c′ = 〈p′, u′u〉 on action a, denoted by c a−→ c′, if there exists
a rule 〈p, γ〉 a

↪−→ 〈p′, u′〉 ∈ ∆. For w ∈ Lab∗, c w−−→ c′ is
defined in the usual way. For a rule r = 〈p, γ〉 a

↪−→ 〈p′, u′〉,
act(r) denotes r’s action label a.

Without loss of generality, a pushdown rule is restricted to
have at most two stack symbols appear on the right-hand side,
i.e., for 〈p, γ〉 a

↪−→ 〈p′, u′〉 ∈ ∆, |u′| ≤ 2 (Schwoon, 2002).
Rules with zero, one, and two right-hand-side stack symbols
are called pop, step, and push rules, respectively. We use ∆0,
∆1, and ∆2 to denote the set of pop, step, and push rules in
∆, respectively.

For a PDS P = (P,Lab, Γ,∆, c0), we sometimes need
to reason about the set of PDS paths that cause P to make
a sequence of transitions that take it from configuration c
to configuration c′, which will be denoted by paths(c, c′). A
PDS path ρ is a sequence of PDS rules [r1, . . . , rn], and the
intention is that the rules are applied in order, left to right.
Note that, due to recursion and looping, the size of the set
paths(c, c′) can be infinite.

Given a set of configurations C, we define the set of for-
wards reachable configurations from C as:

post∗(C) =df {c′ | ∃c ∈ C : c⇒∗ c′},

and the set of backwards reachable configurations from C as:

pre∗(C) =df {c′ | ∃c ∈ C : c′ ⇒∗ c}.

3.1 Multi-PDS Programming Model

Informally, a multi-PDS consists of a finite set of PDSs and
a finite set of locks. The intention is that each PDS models a
thread, and that the PDSs acquire and release locks to perform
global synchronization. We assume that locks are acquired and
released in a well-nested fashion—locks are released in the
opposite order in which they are acquired—and in synchrony
with a PDS’s push and pop rules (∆2 and∆0, respectively). In
fact, the latter assumption is all that is necessary as it implies
the former.

We present two execution semantics of multi-PDSs: (i) the
reentrant semantics equips a multi-PDS with reentrant locks;
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and (ii) the non-reentrant semantics equips a multi-PDS with
only non-reentrant locks. As discussed in §2, one can use
the language-strength-reduction transformation of Kidd et al.
(2008) to automatically reduce a multi-PDS with reentrant
semantics to a multi-PDS with non-reentrant semantics when
the locking operations of each PDS meet our assumptions.

Definition 2. A multi-PDS Π is a tuple
(P1, . . . ,Pn, SLocks, Σ), where each PDS Pj =

(Pj ,Labj , Γj , ∆j , c
j
0), SLocks = {l1, . . . , l|SLocks|} is a

finite set of locks, and Σ is a finite alphabet of non-locking
symbols. The action labels Lab of each PDS consist of lock-
acquires (“(i”) and lock-releases (“)i”) for 1 ≤ i ≤ |SLocks|,
plus symbols from Σ. A global configuration (c1, . . . , cn, ō)
is a tuple consisting of:

– a local configuration cj for each PDS Pi, 1 ≤ j ≤ n; and
– an ownership array ō of length |SLocks|, in which each

entry indicates the owner of a given lock: for each 1 ≤
i ≤ |SLocks|, ō[i] ∈ ({⊥, 1, . . . , n} × N ) is a pair where
the first component indicates the identity j of the PDS Pj
that holds lock li (⊥ signifies that li is currently not held
by any PDS), and the second component is a non-negative
number that indicates the number of times that a PDS has
(re)acquired a lock.

The initial global configuration g0 = (c10, . . . , c
n
0 , ō0), where

ci0 is the initial configuration of PDS Pi, 1 ≤ i ≤ n, and ō0 is
the initial ownership array that maps each entry ō[i], 1 ≤ i ≤
|SLocks|, to the ownership pair (⊥, 0). For an ownership array
ō, an update at position i for lock li to a new ownership pair p
is denoted by ō[i 7→ p].

Remark 2. The choice of what symbols (actions) appear in Σ
depends on the intended application. For the target application
of verifying AS-serializability, Σ consists of symbols to read
and write a shared-memory location m (denoted by R(m) and
W (m), respectively), and to begin and end a unit of work ([
and ], respectively).

3.1.1 Reentrant Semantics

For multi-PDS Π = (P1, . . . ,Pn, SLocks, Σ), the Reentrant
Semantics allows for a lock l ∈ SLocks to be reacquired by the
PDS that owns the lock. In particular, two global configura-
tions g and g′ are in the relation , denoted by g  g′, iff
g = (c1, . . . , cj , . . . , cn, ō) and one of the following holds:

1. cj
a−→ c′j , a ∈ Σ, and g′ = (c1 . . . , c

′
j , . . . , cn, ō).

2. cj
(i−−→ c′j , ō[i] = (⊥, 0),

and g′ = (c1, . . . , c
′
j , . . . , cn, ō[i 7→ (j, 1)]).

3. cj
(i−−→ c′j , ō[i] = (j, z),

and g′ = (c1, . . . , c
′
j , . . . , cn, ō[i 7→ (j, z + 1)]).

4. cj
)i−−→ c′j , ō[i] = (j, z), z > 1,

and g′ = (c1, . . . , c
′
j , . . . , cn, ō[i 7→ (j, z − 1)]).

5. cj
)i−−→ c′j , ō[i] = (j, 1),

and g′ = (c1, . . . , c
′
j , . . . , cn, ō[i 7→ (⊥, 0)]).

The reflexive transitive closure of is denoted by g  ∗ g′.
An execution trace is a sequence of global configura-

tions g0  g1  . . .  gk. Let Σ|SLocks| be the set
Σ ∪ {(i, )i | 1 ≤ i ≤ |SLocks|}. A trace word w is a se-
quence of PDS-identifier/action pairs that records the identi-
fier j for PDS Pj and the action label a ∈ Σ|SLocks| of Pj that
caused global configuration gi to make a transition to global
configuration gi+1, i.e., because PDS Pj made the transition
cj

a−→ c′j , a ∈ Σ|SLocks|. For a trace word w, the observable
trace word wΣ of w is the projection of w to only inlude
PDS-identifier/action pairs of the form (j, a), where a ∈ Σ.
In other words, an observable trace word does not include any
PDS-identifier/action pairs that have a locking action, either
a lock-acquire or lock-release.

3.1.2 Non-Reentrant Semantics

When lock acquisitions and releases are synchronized
with a PDS’s stack, one can use the language-strength-
reduction transformation to replace reentrant locks with
non-reentrant locks. In essence, for a PDS P =
(P,Lab, Γ,∆, c0), the transformation defines a new PDS
P ′ = (P ′,Lab, Γ ′, ∆′, c′0), where

– P ′ = P × 2SLocks , where a member (p, s) of P ′ includes
the original control state p of P and a set s that records
the set of locks that P ′ currently holds.

– Γ ′ = Γ ∪ (Γ × SLocks) consists of the original stack
alphabet Γ , and, in addition, a new set of symbols that
enables P ′ to record on the stack the first time that a lock
l ∈ SLocks has been acquired.

– ∆′ contains, for each rule r ∈ ∆, a set of rules that main-
tain and update the set of held locks s for a control state
(p, s), and record on the stack via a symbol (γ, l) that a
lock has been acquired for the first time. The exact defini-
tion of ∆′ is beyond the scope of this paper, and we refer
the reader to Kidd et al. (2008) for further details.

– c′0 = 〈(p0, ∅), γ0〉 is the initial configuration paired with ∅
to indicate that P ′ does not hold any locks.

After transforming P to be P ′, all nested lock acquisitions
and releases have been removed. Hence, we can refine the
Reentrant Semantics to disallow configurations where an own-
ership array ō contains at position i for lock li an ownership
pair (j, z) such that z > 1. To distinguish between the Non-
Reentrant and Reentrant Semantics, we will use j and ⊥ to
denote the ownership pair (j, 1) and (⊥, 0), respectively. The
shorthand is sound because there can be no ambiguity, i.e.,
(j, z) where z > 1 is not allowed. Moreover, to distinguish the
Non-Reentrant Semantics, we will use −→ instead of to de-
note the transition relation between global configurations. Two
global configurations g and g′ are in −→, denoted by g−→ g′,
iff g = (c1, . . . , cj , . . . , cn, ō) and one of the following holds:

1. cj
a−→ c′j , a /∈ { (i, )i },

and g′ = (c1 . . . , c
′
j , . . . , cn, ō).

2. cj
(i−−→ c′j , ō[i] = ⊥,

and g′ = (c1, . . . , c
′
j , . . . , cn, ō[i 7→ j]).
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3. cj
)i−−→ c′j , ō[i] = j,

and g′ = (c1, . . . , c
′
j , . . . , cn, ō[i 7→ ⊥]).

Note that items 1,2, and 3 correspond to items 1,2, and
5 of the Reentrant Semantics. The reflexive transitive clo-
sure of −→ is denoted by g−→∗ g′. Finally, an execution trace
g0−→ g1−→ . . .−→ gk, trace word w, and observable trace word
wΣ are defined as for the Reentrant Semantics.

Because a multi-PDS Π with Reentrant Semantics can be
automatically transformed into another multi-PDS Π ′ with
Non-Reentrant Semantics, we consider only multi-PDSs with
Non-Reentrant Semantics in the remainder of the paper.

3.2 Property Specification

An indexed phase automaton specifies a program property.

Definition 3. An indexed phase automaton (IPA) is a tuple
(Q, Id, Σ, δ), where Q is a finite, totally ordered set of states
{q1, . . . , q|Q|}, Id is a finite set of thread identifiers, Σ is a
finite alphabet, and δ ⊆ Q×Id×Σ×Q is a transition relation.
The transition relation δ is restricted to respect the order on
states: for each transition (qx, i, a, qy) ∈ δ, either y = x or
y = x+ 1. We call a transition of the form (qx, i, a, qx+1) a
phase transition. The initial state is q1, and the final state is
q|Q|.

The restriction on δ in Defn. 3 ensures that the only loops
in an IPA are self-loops on states. We assume that for every
x, 1 ≤ x < |Q|, there is only one phase transition of the form
(qx, i, a, qx+1) ∈ δ. (An IPA that has multiple such transitions
can be factored into a set of IPAs, each of which satisfy this
property.) Finally, we only consider IPAs that recognize a non-
empty language, which means that an IPA must have exactly
(|Q| − 1) phase transitions. IPAs enjoy the bounded-phase-
transition property.

Property 1 (Bounded Phase Transition). For an IPA A =
(Q, Id, Σ, δ), any run of A that accepts a word w will make
only a bounded number of phase transitions. That is, an ac-
cepting run ofA on word w will make exactly (|Q|−1) phase
transitions.

For expository purposes, through §9 we only consider
2-PDSs, and fix Π = (P1,P2, SLocks, Σ) and A =
(Q, Id, Σ, δ). §9 shows how to generalize the techniques to
multi-PDSs. The implementation, discussed in §8, is for the
general case.

4 Problem Statement

Problem 1. Given Π and IPA A, the model-checking prob-
lem of interest is to determine if there is an observable trace
word wΣ for an execution trace g0−→ g1−→ . . .−→ gk of Π
such that wΣ is recognized by A.

Before defining the decision procedure to solve Problem 1,
we discuss some of the difficulties that need to be overcome.

4.1 Bounded Global Synchronizations

For formalisms that use multiple PDSs to model program
threads, reachability analyses that require an a priori un-
bounded number of global synchronizations are in general
undecidable Ramalingam (2000). For the CPDSs used by
Kidd et al. (2009b), a global synchronization is a communi-
cating action. For the concurrent-PDSs of Qadeer and Rehof
(2005) used for context-bounded analysis, a global synchro-
nization is a context switch. To guarantee that a reachability
query terminates, both formalisms artificially bound the num-
ber of global synchronizations.

Ignoring locks, for Problem 1 a global synchronization oc-
curs when Π makes a transition from a global configuration g
to some global configuration g′ that causes the IPA A to make
a phase transition. Because of the Bounded-Phase-Transition
Property, the number of global synchronizations is bounded,
which is a key property that renders the problem decidable.

Remark 3. Returning to AS-serializability violation detection,
the language-strength-reduction transformation (Kidd et al.,
2008) that eliminates the need to count the depth of nested
calls to unit-of-work methods was paramount for bounding
the number of global synchronizations because otherwise, the
number of ”phase transitions” would be a priori unbounded.
Informally, with reentrant unit-of-work methods, the language
of execution traces that contain an AS-serializability violation
is a context-free language that essentially “counts” the depth
of nested calls by encoding calls and returns via matched-
parentheses. The property specification for detecting AS-
serializability violations (i.e., the language of execution traces
that contain a problematic access pattern), could not have
been encoded as an IPA, which means that our decision proce-
dure could not have been used for AS-serializability violation
detection.

Still ignoring locks, the essence of the decision procedure
is to identify a sequence of global configurations g1, . . . , g|Q|.
The sequence consists of a global configuration for each phase
of the IPAA. Because any execution of Π begins from g0, the
first global configuration in the sequence must be g0. The rest
of the global configurations in the sequence are the points at
which a phase transition occurs in the IPA A.

Example 1. The IPAA2 shown in Fig. 2 recognizes execution
traces of the 2-PDS generated from the Java program shown
in Listing 1 which contains an AS-serializability violation
specified by problematic access pattern 12. For the 2-PDS to
driveA2 to its accepting state, it must pass through a sequence
of global configurations, beginning from the initial global
configuration g0, such that the transition taken from global
configuration gi to global configuration gi+1 in the sequence
causes A2 to make a phase transition. For A2, there are six
phases, and thus the sequence of global configurations will be
of length six: one for the initial global configuration plus one
for each of the five phase transitions.

Because an execution trace that is recognized by an IPA
must cause |Q| − 1 phase transitions, the sequence of global
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configurations must be of length |Q|. If such a sequence of
configurations exists, then it is possible to drive the IPA A to
its accepting state.

4.2 Accounting for Locks

Kahlon et al. (2005) presents a decision procedure for check-
ing reachability of a set of global configurations of a multi-
PDS. That is, for a set of global configurations G, they are
interested in answering the query:

Does there exist a global configuration g in G such
that g0−→∗ g?

To do so, their decision procedure computes lock-usage sum-
maries, known as acquisition histories, for the PDS paths
leading to the target set of single-PDS configurations for each
PDS. A post-processing step then compares the summaries to
determine if the target set of global configurations is reachable.
For the following discussion, we note that acquisition histories
are a finite abstraction—albeit of size O(2|SLocks|)—and can
thus be embedded in the control locations of a single PDS.
Embedding enables a standard, single-PDS reachability query
to be used to compute the lock-usage summaries.

To check for reachability for a bounded sequence of global
configurations, there are two known techniques, both based
on lock histories, an extension of acquisition histories and
formally defined in §6. The first technique, which is used in
our decision procedure, is to use tuples of lock histories. Tu-
pling enables a mechanism to “remember” or “record” the
(set of) lock histories that arise at each global configuration
in the desired sequence, and, in addition, maintains the corre-
lations between the lock histories that arise in the sequence.
That is, it is not sufficient to merely remember a sequence of
sets of lock histories, one set per global configuration in the
target sequence, because the correlations that hold between
the lock histories that arise along an individual sequence are
lost (and, as will be discussed shortly, could be incompatible).
Tupling ensures that these correlations are maintained. For
AS-serializability-violation detection, the tuple will consist
of a lock history for each state of the IPA that accepts traces
that contain an AS-serializability violation. For A2, the tuple
would have six lock histories, one for each state qi, 1 ≤ i ≤ 6.

The second technique is due to Kahlon and Gupta (2007).
To compare our technique with that of Kahlon and Gupta
(2007), we must first develop a fair amount of vocabulary and
notation. Thus, we delay the comparison until §11.

5 Path Incompatibility

The decision procedure analyzes the PDSs of Π indepen-
dently, and then checks if there exists a run from each PDS
that can be performed in interleaved parallel fashion under the
lock-constrained transitions of Π . To do this, it makes use of
a decomposition result, due to Kahlon and Gupta (2007, Thm.
1), which we now review.

Suppose that Π is in global configuration g = (c1, c2, ō).
Let LocksHeld(Pk, g), k ∈ {1, 2}, denote {li | ō[i] = k};
i.e., the set of locks held by PDS Pk at global configuration g.
Furthermore, suppose that PDS Pk, when started in (single-
PDS) configuration ck and executed alone, is able to reach
configuration c′k using the rule sequence ρk = [r1, . . .].

Before the execution of ρk, PDS Pk has a (pos-
sibly empty) set of initially-held locks, i.e., the set
LocksHeld(Pk, g). After the execution of ρk, PDS Pk will
have a (possibly empty) set of finally-held locks. Along rule
sequence ρk and for an initially-held lock li and finally-held
lock lf , we say that the initial release of li is the first release
of li, and that the final acquisition of lf is the last acquisition
of lf . Note that for execution to proceed along ρk, Pk must
hold an initial set of locks at ck that is a superset of the set of
initial releases along ρk; i.e., not all initially-held locks need
be released. Similarly, Pk’s final set of locks at c′k must be a
superset of the set of final acquisitions along ρk.

Consider the case that Π = (P1,P2, SLocks, Σ) is in
global configuration g = (c1, c2, ō), and that Pk, while exe-
cuted alone, can make a transition from configuration ck to
configuration c′k using rule sequence ρk. Kahlon and Gupta’s
decomposition result characterizes the conditions under which
it is not possible for Π to make a transition from global con-
figuration g to g′ = (c′1, c

′
2, ō
′). Informally, by the semantics

of locks, it must be the case that the set of locks held by P1

and P2 at global configurations g and g′ are disjoint—two
PDSs cannot hold the same lock at the same time (items 1
and 2 below). Similarly, if P1 holds a lock li throughout ρ1,
then P2 cannot acquire li, and likewise for P2 (item 5 below).
Items 3 and 4 below capture cycles in the dependence graph
of lock operations: a cycle is a proof that there does not exist
any interleaving of rule sequences ρ1 and ρ2 that adheres to
the lock-constrained semantics of Π . If there is a cycle, then
ρ1 (ρ2) can complete execution but not ρ2 (ρ1), or neither can
complete because of a deadlock.

Theorem 1. (Decomposition Theorem Kahlon and Gupta
(2007).) Suppose that PDS Pk, when started in configuration
ck and executed alone, is able to reach configuration c′k using
the rule sequence ρk. For Π = (P1,P2, SLocks, Σ), there
does not exist an interleaving of rule sequences ρ1 and ρ2 from
global configuration g = (c1, c2, ō) to global configuration
g′ = (c′1, c

′
2, ō
′) iff one or more of the following hold:

1. LocksHeld(P1, g) ∩ LocksHeld(P2, g) 6= ∅: P1 and P2

both hold the same lock initially.
2. LocksHeld(P1, g

′) ∩ LocksHeld(P2, g
′) 6= ∅: P1 and P2

both hold the same lock finally.
3. In ρ1, P1 releases lock li before it initially releases lock lj ,

and in ρ2, P2 releases lj before it initially releases lock li.
4. In ρ1, P1 acquires lock li after its final acquisition of lock
lj , and in ρ2, P2 acquires lock lj after its final acquisition
of lock li,

5. (a) In ρ1, P1 acquires or uses a lock that is held by P2

throughout ρ2, or
(b) in ρ2, P2 acquires or uses a lock that is held by P1

throughout ρ1.
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6 Extracting Information from PDS Rule Sequences

To employ Thm. 1, we must summarize, in a finite manner,
enough information from an a priori unbounded-length rule
sequence ρk so that each of the five conditions can be decided.
I.e., the summary must precisely track for each lock l whether
there was an initial release of l, whether l was held throughout
ρk, and whether there was a final acquisition of l. In addition,
it must summarize the ordering constraints imposed by these
actions (e.g., the final release of l1 happens before final release
of l2 by PDS Pk). We now develop methods to extract such
summary information from a rule sequence ρk for PDS Pk.

As in many program-analysis problems that involve
matched operations Reps (1998)—in our case, lock-acquire
and lock-release—it is useful to consider semi-Dyck languages
Harrison (1978): languages of matched parentheses (Dyck lan-
guages) in which each parenthesis symbol is one-sided (semi-
Dyck languages). That is, the symbols “(” and “)” match in
the string “()”, but do not match in “)(”.4

Let Σ be a finite alphabet of non-parenthesis symbols.
The semi-Dyck language of well-balanced parentheses over
Σ∪{(i, )i | 1 ≤ i ≤ |SLocks|} can be defined by the following
context-free grammar, where σ denotes a member of Σ and
1 ≤ i ≤ |SLocks|:

matched → ε

| σ matched

| (i matched )i matched

Because we are interested in paths (rule sequences) that can
begin and end while holding a set of locks, we also need to
consider prefixes and suffixes of Lang(matched), which are
languages of partially-matched parentheses. In particular,

– The words in the language of suffixes of Lang(matched)
may have extra right-parenthesis symbols: every left paren-
thesis “(i” is balanced by a succeeding right parenthesis
“)i”, but the converse need not hold. This is called an
unbalanced-right language.

– The words in the language of prefixes of Lang(matched)
may have extra left-parenthesis symbols: every right paren-
thesis “)i” is balanced by a preceding left parenthesis
“(i”, but the converse need not hold. This is called an
unbalanced-left language.

The language of words that are possibly unbalanced on each
end is defined by

suffixPrefix → unbalR matched unbalL,

where unbalR and unbalL are defined as follows:

unbalR → ε | unbalR matched )i

unbalL → ε | (i matched unbalL

4 The language of interest is in fact regular because the locks are non-
reentrant. However, the semi-Dyck formulation provides insight into how one
extracts the relevant information from a rule sequence.

Example 2. Consider the following suffixPrefix string, in
which the positions between symbols are marked A–W. Its
unbalR, matched, and unbalL components are the substrings
A–N, N–P, and P–W, respectively.

Â
)1

B̂
(2

Ĉ
)2

D̂
)3

Ê
(2

F̂
(4

Ĝ
(5

Ĥ
)5

Î
)4

Ĵ
(6

K̂
)6

L̂
)2

M̂
)7

N̂
(6

Ô
)6

P̂
(4

Q̂
(2

R̂
)2

Ŝ
(2

T̂
(7

Û
)7

V̂
(8

Ŵ

Let wk ∈ Lang(suffixPrefix) be the word formed by concate-
nating the action symbols of the rule sequence ρk. One can
see that to use Thm. 1, we merely need to extract the relevant
information from wk. That is, items 3 and 4 require extract-
ing (or recording) information from the unbalR and unbalL
portions of wk, respectively; item 5 requires extracting infor-
mation from the matched portion of wk; and items 1 and 2
require extracting information from the initial and final parse
configurations of wk.

For a single PDS’s execution ρk, the information is ob-
tained using acquisition histories (AH) and release histories
(RH) for locks, as well as ρk’s release set (R), use set (U),
acquisition set (A), and held-throughout set (HT).

– The acquisition history (AH) Kahlon and Gupta (2007) for
a finally-held lock li is the union of the set {li} with the
set of locks that are acquired (or acquired and released)
after the final acquisition of li.5 It records locking con-
straints imposed on an interleaved execution because of
the sequential ordering of a PDS rule sequence, and is
required to check item 4 of Thm. 1.

– The release history (RH) Kahlon and Gupta (2007) of an
initially-held lock li, where li is not held throughout, is the
union of the set {li} with the set of locks that are released
(or acquired and released) before the initial release of li.
Like an AH, it records locking constraints imposed on an
interleaved execution because of the sequential ordering
of a PDS rule sequence, and is used to check item 3 of
Thm. 1.

– The release set (R) is the set of initially-released locks.
Along with the held-throughout set HT defined below, it
allows one to recover from ρk the set of initially held locks
by a PDS, which is needed to check item 1 of Thm. 1.

– The use set (U) is the set of locks that are first acquired
and then released, i.e., locks that occur in a matched sub-
sequence of wk. It is used to check item 5 of Thm. 1.

– The acquisition set (A) is the set of finally-acquired locks.
Along with the held-throughout set HT, it enables one to
recover the set of locks that Pk holds after executing ρk,
and is used to check item 2 of Thm. 1.

– The held-throughout set (HT) is the set of initially-held
locks that are not released. Along with A and R, it is used
to check items 1, 2, and 5 of Thm. 1.

A lock history is a six-tuple (R, R̂H,U, ÂH,A,HT):

– R, U, A, and HT are the release, use, acquisition, and
held-throughout sets, respectively.

– R̂H is a tuple of |SLocks| release histories, one for each
lock li, 1 ≤ i ≤ |SLocks|.

5 This is a slight variation from Kahlon and Gupta (2007); we include li
in the acquisition history of lock li.
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η([], I) = (∅, ∅|SLocks|, ∅, ∅|SLocks|, ∅, I)
η([r1, . . . , rn], I) = postη(η([r1, . . . , rn−1], I), act(rn)), where

postη((R, R̂H,U, ÂH,A,HT), a) =



(R, R̂H,U, ÂH,A,HT) if a /∈ {(i, )i}
(R, R̂H,U, ÂH

′
,A ∪ {li},HT) if a = (i

where ÂH
′
[j] =


{li} if j = i
∅ if j 6= i and lj /∈ A
ÂH[j] ∪ {li} if j 6= i and lj ∈ A

(R, R̂H,U ∪ {li}, ÂH
′
,A\{li},HT\{li}) if a = )i and li ∈ A

where ÂH
′
[j] =

{
∅ if j = i

ÂH[j] otherwise
(R ∪ {li}, R̂H

′
,U, ÂH,A,HT\{li}) if a = )i and li /∈ A

where R̂H
′
[j] =

{
{li} ∪ U ∪ R if j = i

R̂H[j] otherwise

Fig. 3. η produces a lock histroy LH from a PDS rule sequence [r1, . . . , rn] and a set of initially-held locks I. Helper function postη produces an updated lock
history from a lock history and a PDS action a.

)1(2)2)3(2(4(5)5)4(6)6)2)7(6)6(4(2)2 (2(7)7(8

RH[3]={1,2,3}

U={2,4,5,6,7}

AH[2]={2,7,8}

R={1,3,7} A={4,2,8}

〈 〈

Fig. 4. The suffixPrefix string from Example 2. Unmatched parentheses are
colored black, while matched parentheses are colored gray and underlined.
The set and arrow annotations are discussed in Example 3).

– ÂH is a tuple of |SLocks| acquisition histories, one for each
lock li, 1 ≤ i ≤ |SLocks|.

Let ρ = [r1, . . . , rn] be a rule sequence that drives a PDS
from some starting configuration to an ending configuration,
and let I be the set of locks held at the beginning of ρ. In
Fig. 3, we define an abstraction function η(ρ, I) from rule
sequences and initially-held locks to lock histories; η(ρ, I)

uses an auxiliary function, postη , which tracks R, R̂H, U, ÂH,
A, and HT for each successively longer prefix.

Example 3. Suppose that ρ is a rule sequence whose labels
spell out the string wk from Example 2, and I = {1, 3, 7, 9}.
Then η(ρ, I) returns the lock history with the following
(named) components (only lock indices are written):

R : {1, 3, 7} U : {2, 4, 5, 6, 7} A : {2, 4, 8}
A : {2, 4, 8} HT : {9}

R̂H : 〈{1}, ∅, {1, 2, 3}, ∅, ∅, ∅, {1, 2, 3, 4, 5, 6, 7}, ∅, ∅〉
ÂH : 〈∅, {2, 7, 8}, ∅, {2, 4, 7, 8}, ∅, ∅, ∅, {8}, ∅〉

Fig. 4 showswk with sets R, A, and U from above with arrows
indicating the lock action that witnesses each member of the
sets. Additionally, the release history for l3 and acquisition
history for l2 are presented with corresponding witness arrows.

Remark 4. R and A are included above only for clarity; they
can be recovered from R̂H and ÂH, as follows: R = {i |

R̂H[i] 6= ∅} and A = {i | ÂH[i] 6= ∅}. In addition, from
LH = (R, R̂H,U, ÂH,A,HT), it is easy to see that the set I
of initially-held locks is equal to (R ∪ HT), and the set of
finally-held locks is equal to (A ∪ HT).

Definition 4. Lock histories LH1 = (R1, R̂H1, U1, ÂH1, A1,
HT1) and LH2 = (R2, R̂H2, U2, ÂH2, A2, HT2) are compat-
ible, denoted by Compat(LH1,LH2), iff all of the following
five conditions hold:

1. (R1 ∪ HT1) ∩ (R2 ∪ HT2) = ∅
2. (A1 ∪ HT1) ∩ (A2 ∪ HT2) = ∅
3. 6 ∃ i, j . lj ∈ ÂH1[i] ∧ li ∈ ÂH2[j]

4. 6 ∃ i, j . lj ∈ R̂H1[i] ∧ li ∈ R̂H2[j]
5. (A1 ∪ U1) ∩ HT2 = ∅ ∧ (A2 ∪ U2) ∩ HT1 = ∅

Each conjunct verifies the absence of the corresponding
incompatibility condition from Thm. 1: conditions 1 and 2
verify that the initially-held and finally-held locks of ρ1 and ρ2
are disjoint, respectively; conditions 3 and 4 verify the absence
of cycles in the acquisition and release histories, respectively;
and condition 5 verifies that ρ1 does not use a lock that is held
throughout in ρ2, and vice versa.

7 The Decision Procedure

As noted in §5, the decision procedure analyzes the PDSs
independently. This decoupling of the PDSs has two conse-
quences.

First, when P1 and A are considered together, indepen-
dently of P2, they cannot directly “observe” the actions of
P2 that cause A to take certain phase transitions. Thus, P1

must guess when P2 causes a phase transition, and vice versa
for P2. An example of the guessing is shown in Fig. 5. The
interleaving labeled “Π” is an example interleaved execution
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Abeg1 R1(i) W2(s) W2(i) R1(s)1:
q3            q4 q4            q5q1            q2 q2            q3 q5            q6

Abeg1 R1(i) W2(s) W2(i) R1(s)2:
q1            q2 q2            q3 q5            q6q3            q4 q4            q5

Abeg1 R1(i) W2(s) W2(i) R1(s)
q3            q4 q4            q5q1            q2 q2            q3 q5            q6Π:

Fig. 5. Π: a bad interleaving that is recognized by A2 (see page 5), showing only the actions that cause a phase transition. 1: the same interleaving from Thread
1’s point of view. The dashed boxes show where Thread 1 guesses that Thread 2 causes a phase transition. 2: the same but from Thread 2’s point of view where
dashed boxes where where Thread 2 guesses that Thread 1 causes a phase transition.

that is accepted by the IPA A2 from §2, namely, the execu-
tion shown in Fig. 1. In Fig. 5, only the PDS actions that
cause phase transitions are shown. The interleaving labeled
“1” shows, via the dashed boxes, where P1 guesses that P2

caused a phase transition. Similarly, the interleaving labeled
“2” shows the guesses that P2 must make.

Second, a post-processing step must be performed to en-
sure that only those behaviors that are consistent with the
lock-constrained behaviors of Π are considered. For exam-
ple, for P2 to perform the W2(d) action, P2 must hold the
lock associated with the Stack object allocated on line 31.
If P1 guesses that P2 performs the W2(d) action at a point
when it currently holds the lock associated with the parameter
Stack s, then the behavior is inconsistent with the seman-
tics of Π because both threads would hold the same lock.
The post-processing step ensures that such behaviors are not
allowed.

7.1 Combining a PDS with an IPA

To define a modular algorithm, we must be able to analyze P1

andA independently of P2, and likewise for P2 andA relative
to P1. Our approach is to combine A and Pi, 1 ≤ i ≤ 2, to
define a new PDS PAi using a cross-product-like construction.
The main difference is that lock histories and lock-history
updates are incorporated in the construction.

Recall that the goal is to determine if there exists an ex-
ecution of Π that drives A to its final state. Because of the
bounded-phase-transition property, we know that any such
execution must make |Q| − 1 phase transitions. Hence, a valid
interleaved execution must be able to reach |Q| global config-
urations, one for each of the |Q| phases.

Lock histories encode the constraints that a PDS path
places on the set of possible interleaved executions of Π . A
desired path of an individual PDS must also make |Q| − 1
phase transitions, and hence our algorithm keeps track of
|Q| lock histories, one for each phase. This is accomplished
by encoding into the state space of PAi a tuple of |Q| lock
histories. A tuple maintains the sequence of lock histories for
one or more paths taken through a sequence of phases. In
addition, a tuple maintains the correlation between the lock
histories of each phase, which is necessary to ensure that only
valid executions are considered. The rules of PAi are then

defined to update the lock-history tuple accordingly. The lock-
history tuples are used later to check whether some scheduling
of an execution of Π can actually perform all of the required
phase transitions.

Let LH denote the set of all lock histories, and let L̂H =
LH|Q| denote the set of all tuples of lock histories of length
|Q|. We denote a typical lock history by LH, and a typical tuple
of lock histories by L̂H. L̂H[k] denotes the kth component of
L̂H.

Our construction makes use of the phase-transition func-
tion on LHs defined as follows:

ptrans((R, R̂H,U, ÂH,A,HT))

=df (∅, ∅|SLocks|, ∅, ∅|SLocks|, ∅,A ∪ HT).

The ptrans function is used to encode the start of a new phase:
the set of initially-held locks is the set of locks held at the end
of the previous phase.

Let Pi = (Pi,Labi, Γi, ∆i, 〈p0, γ0〉) be a PDS, SLocks
be a set of locks of size |SLocks|, A = (Q, Id,Σ, δ) be
an IPA, and L̂H be a tuple of lock histories of length |Q|.
We define the PDS PAi = (PAi , ∅, Γi, ∆Ai , 〈pA0 , γ0〉), where
PAi ⊆ Pi × Q × L̂H. The initial control state is pA0 =

(p0, q1, L̂H∅), where L̂H∅ is the empty lock-history tuple
(∅, ∅|SLocks|, ∅, ∅|SLocks|, ∅, ∅)|Q|. Each rule r ∈ ∆Ai performs
only a single update to the tuple L̂H, at an index x determined
by a transition in δ. The update is denoted by L̂H[x 7→ e],
where e is an expression that evaluates to an LH. Two kinds
of rules are introduced to account for whether a transition in δ
is a phase transition or not. (The update to L̂H is listed after
each rule kind.)

1. Non-phase Transitions:
L̂H
′

= L̂H[x 7→ postη(L̂H[x], a)].

(a) For each rule 〈p, γ〉 a
↪−→ 〈p′, u〉 ∈ ∆i and tran-

sition (qx, i, a, qx) ∈ δ, there is a rule of the form:

〈(p, qx, L̂H), γ〉 ↪−→ 〈(p′, qx, L̂H
′
), u〉 ∈ ∆Ai . Rules

of this form ensure that PAi is constrained to follow
the self-loops on IPA state qx.

(b) For each rule 〈p, γ〉 a
↪−→ 〈p′, u〉 ∈ ∆i, a ∈ {(k, )k},

and each qx ∈ Q, there is a rule of the form:
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〈(p, qx, L̂H), γ〉 ↪−→ 〈(p′, qx, L̂H
′
), u〉 ∈ ∆Ai . Rules

of this form record the acquisition or release of the lock
lk in the lock-history tuple L̂H at index x. (Recall that
the language of an IPA is only over the non-parenthesis
alphabet Σ, and does not constrain the locking be-
havior. Consequently, a phase transition cannot occur
when PAi is acquiring or releasing a lock.)

2. Phase Transitions:
L̂H
′

= L̂H[(x+ 1) 7→ ptrans(L̂H[x])].

(a) For each rule 〈p, γ〉 a
↪−→ 〈p′, u〉 ∈ ∆i and transi-

tion (qx, i, a, qx+1) ∈ δ, there is a rule of the form:

〈(p, qx, L̂H), γ〉 ↪−→ 〈(p′, qx+1, L̂H
′
), u〉 ∈ ∆Ai .

Rules of this form perform a phase transition on the
lock-history tuple L̂H for PDS Pi.

(b) For each transition (qx, j, a, qx+1) ∈ δ, j 6= i, and for
each p ∈ Pi and γ ∈ Γi, there is a rule of the form:
〈(p, qx, L̂H), γ〉 ↪−→ 〈(p, qx+1, L̂H

′
), γ〉 ∈ ∆A.

Rules of this form implement PAi ’s guessing that an-
other PDS PAj , j 6= i, causes a phase transition, in
which case PAi has to move to the next phase as well.

Given PA, one can compute the set of all reachable config-
urations via the query Apost∗ = post∗PA(〈pA0 , γ0〉) using stan-
dard automata-based PDS techniques Bouajjani et al. (1997);
Finkel et al. (1997). (Because the initial configuration is de-
fined by the PDS PA, henceforth, we merely write post∗PA .)
A configuration c ∈ Apost∗ will be of the form 〈(p, q, L̂H), u〉,
where p is a state of the original PDS P , q is a state of the IPA
A, L̂H is a lock-history tuple, and u ∈ Γ ∗ is a reachable stack.
The lock-history tuple L̂H encodes the locking constraints of
all paths from 〈pA0 , γ0〉 to the configuration c.

7.2 Checking Path Compatibility

For a generated PDS PAk , we are interested in the set of
paths that begin in the initial configuration 〈pA0 , γ0〉 and drive
A to its accepting state q|Q|. Each such path ends in some
configuration 〈(pk, q|Q|, L̂Hk), u〉, where u ∈ Γ ∗. Let ρ1 and
ρ2 be such paths from PA1 and PA2 , respectively. To determine
if there exists a compatible scheduling for ρ1 and ρ2, we use
Thm. 1 on each component of the lock-history tuples L̂H1 and
L̂H2 from the ending configurations of ρ1 and ρ2:

Compat(L̂H1, L̂H2)⇐⇒
|Q|∧
i=1

Compat(L̂H1[i], L̂H2[i]).

(1)
Due to recursion, PA1 and PA2 could each have an infinite

number of such paths. However, each path is abstracted as a
tuple of lock histories L̂H, and there are only a finite number
of tuples in L̂H; thus, we only have to check a finite number of
(L̂H1, L̂H2) pairs. For each PDS PA = (PA,Lab, Γ,∆, cA0 ),
the set of relevant L̂H tuples are found in the PAk -automaton

input : A 2-PDS Π = (P1,P2, SLocks, Σ) and a IPA A.
output: true if Π can drive A to its accepting state.
let A1

post∗ ← post∗PA1
; let A2

post∗ ← post∗PA2
;

foreach p1 ∈ P1, L̂H1 s.t.
∃u1 ∈ Γ ∗1 : 〈(p1, q|Q|, L̂H1), u1〉 ∈ L(A1

post∗) do
foreach p2 ∈ P2, L̂H2 s.t.
∃u2 ∈ Γ ∗2 : 〈(p2, q|Q|, L̂H2), u2〉 ∈ L(A2

post∗) do
if Compat(L̂H1, L̂H2) then

return true;

return false;
Algorithm 1: The decision procedure.

Akpost∗ that results from the post∗ operation. That is, one merely

enumerates the state space of Akpost∗ , extracting the L̂H tuples

that are members of a state (p, q|Q|, L̂H). By only considering
states that have an IPA state-component of q|Q|, we ensure
that the PDS Pk performed the required (|Q| − 1) phase
transitions.

Alg. 1 gives the algorithm to check whether Π can drive
A to its accepting state. The two tests on lines 2 and 3 of the
form “∃uk ∈ Γ ∗k : 〈(pk, q|Q|, L̂Hk), uk〉 ∈ L(Akpost∗)”, where
L(Akpost∗) is the language of the Pk-automaton, can be per-

formed by finding any path inAkpost∗ from state (pk, q|Q|, L̂Hk)
to the accepting state.

Theorem 2. For 2-PDS Π = (P1,P2, SLocks, Σ) and IPA
A, there exists an execution ofΠ that drivesA to its accepting
state iff Alg. 1 returns true.

Proof. The proof builds on Thm. 1 by showing that for runs
ρ1 and ρ2 of PDSs P1 and P2, respectively, that reach the
target set of configurations of their respective PDSs, there
exists a scheduling of ρ1 and ρ2 for each phase by the proof
of Thm. 1. Because each phase can be scheduled, there exists
a scheduling for runs ρ1 and ρ2.

In particular, from Thm. 1, we know that rule sequences
ρ1 and ρ2 from PDSs P1 and P2, respectively, where ρ1 and
ρ2 begin execution from configurations with a disjoint set
of initially held locks I1 and I2, there exists a compatible
scheduling of ρ1 and ρ2 iff Compat(η(ρ1, I1), η(ρ2, I2)).

If Alg. 1 returns true, then there exists two tuples of lock
histories, L̂H1 and L̂H2, where L̂H1 (L̂H2) is an abstraction of
a rule sequence ρ1 (ρ2) from the initial configuration of PDS
P1 (P2) that drives the IPA A to the accepting state, such that
Compat(L̂H1, L̂H2). Because of the Decomposition Theorem
and the definition of Compat(L̂H1, L̂H2), there must exist a
scheduling of ρ1 and ρ2 that adheres to the interleaved seman-
tics of ofΠ . That is, there must exist an interleaved scheduling
of ρ1 and ρ2 that causes Π , starting from the initial global
configuration g0, to pass through a sequence of configurations
such that a phase transition occurs at each intermediate config-
uration, and finally to reach a configuration such that the IPA
A is in its accepting state.

If Alg. 1 returns false, then there does not exist two such
tuples of locks histories. This can occur if one (or both) of
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the PDSs does not have a path that can drive the IPA A to
the accepting state, and thus it is not possible for an inter-
leaved execution of Π to drive IPA A to the accepting state.
Alternatively, there are a pair of tuples for rule sequences that
drive the respective PDSs to their final states, but the tuples
are not in the Compat relation. From the definition of Com-
pat, there must be some phase such that the lock histories are
incompatible, and thus no interleaved execution exists. ut

8 A Symbolic Implementation

Alg. 1 solves the multi-PDS model-checking problem for
IPAs. However, an implementation based on symbolic tech-
niques is required because it would be infeasible to perform
the final explicit enumeration step specified in Alg. 1, lines
2–5. One possibility is to use Schwoon’s BDD-based PDS
techniques Schwoon (2002); these represent the transitions
of a PDS’s control-state from one configuration to another
as a relation, using BDDs. This approach would work with
relations over Q×LH, which requires using |Q|2|LH|2 BDD
variables, where |LH| = 2|SLocks|+ 2|SLocks|2.

This section describes a more economical encoding that
needs only (|Q|+ 1)|LH| BDD variables. Our approach lever-
ages the fact that when a property is specified with an IPA,
once a PDS makes a phase transition from qx to qx+1, the
first x entries in L̂H tuples are no longer subject to change. In
this situation, Schwoon’s encoding contains redundant infor-
mation; our technique eliminates this redundancy.

Our symbolic implementation encodes the lock history
tuples as a semiring or weight domain for use with weighted
pushdown systems (WPDSs) (Reps et al., 2005), where a
WPDS equips a PDS with a semiring, and annotates the PDS
rules with elements from the semiring’s domain. Reps et al.
(2005) showed the strong connection between interprocedural
dataflow analysis and reachability queries on WPDSs. We
now formally define these concepts.

Definition 5. A bounded idempotent semiring is a tuple
S = (D,⊕,⊗, 0, 1), where D is a finite set of elements called
weights, 0, 1 ∈ D, and ⊕ (the combine operation) and ⊗ (the
extend operation) are binary operations on D such that

1. (D,⊕) is an commutative monoid with neutral element 0,
where ⊕ is idempotent: ∀x ∈ D, x⊕ x = x.

2. (D,⊗) is a monoid with neutral element 1.
3. ⊗ distributes over ⊕: ∀x, y, z ∈ D,

x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z)
and (x⊕ y)⊗ z = (x⊗ z)⊕ (y ⊗ z).

4. 0 is an annihilator with respect to ⊗: ∀x ∈ D, x ⊗ 0 =
0 = 0⊗ x.

5. In the partial orderv defined by ∀x, y ∈ D, x v y iff x⊕
y = x, there are no infinite descending chains.

Definition 6. A weighted PDS (WPDS) is a tuple W =
(P,S, f), where P = (P, Γ, Lab, ∆, c0) is a PDS, S =

(D,⊕,⊗, 0, 1) is a bounded idempotent semiring, and f :
∆ → D is a map from PDS rules to weights. We abuse
notation by defining f : ∆∗ → D as f overloaded to
operate on a rule sequence σ = [r1, . . . , rn] as follows:
f(σ) = f(r1)⊗ . . .⊗ f(rn).

For a WPDSW = (P,S, f) and configurations c and c′,
the set of PDS paths paths(c, c′) is defined on the underlying
PDS P . For a set of configurations C, reachability queries
for PDSs—post∗ and pre∗—are generalized for WPDSs as
follows:

post∗(C) =df

{ (c′, w) | ∃c ∈ C : c⇒∗ c′ ∧ w =
⊕

ρ∈paths(c,c′)

f(ρ)}

pre∗(C) =df

{ (c′, w) | ∃c ∈ C : c′ ⇒∗ c ∧ w =
⊕

ρ∈paths(c,c′)

f(ρ)}

We now present the particular semiring that we use in our
analysis algorithm, the multi-arity relational weight domain,
whose elements are generalized relations, which we call θ-
term formal power series.

Definition 7. Let S be a finite set; let A ⊆ Sm+1 and B ⊆
Sp+1 be relations of arity m+ 1 and p+ 1, respectively. The
generalized relational composition of A and B, denoted by
“A ; B”, is the following subset of Sm+p:

A ; B = { 〈a1, . . . , am, b2, . . . , bp+1〉 |
〈a1, . . . , am, x〉 ∈ A ∧ 〈x, b2, . . . , bp+1〉 ∈ B }.

Definition 8. Let S be a finite set, and θ > 0 be a bound. The
set of all θ-term formal power series over z, with relation-
valued coefficients of different arities, is

RFPS[S, θ] = {
θ−1∑
i=0

ciz
i | ci ⊆ Si+2}.

A monomial is written as cizi (all other coefficients are un-
derstood to be ∅); a monomial c0z0 denotes a constant. The
multi-arity relational weight domain over S and θ is defined
by (RFPS[S, θ],×,+, Id, ∅), where × is polynomial multi-
plication in which generalized relational composition and ∪
are used to multiply and add coefficients, respectively, and
terms cjzj for j ≥ θ are dropped; + is polynomial addition us-
ing ∪ to add coefficients; Id is the constant {〈s, s〉 | s ∈ S}z0;
and ∅ is the constant ∅z0.

Remark 5. A multi-arity relational weight domain over S and
θ, as defined in Defn. 8, meets the requirements of a bounded
idempotent semiring (Defn. 5) because of (i) the properties of
polynomial addition and truncated polynomial multiplication,
(ii) the fact that the set of all relations of finite arity ≥ 2 and
the operation of generalized relational composition defined
in Defn. 7 (“;”) is a monoid, and (iii) “;” is both left- and
right-distributive over union of arity-k relations.
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We now define the WPDS Wi = (PWi ,S, f)
that results from taking the product of PDS Pi =
(Pi,Labi, Γi, ∆i, 〈p0, γ0〉) and phase automaton A =
(Q, Id,Σ, δ). The construction is similar to that in §7.1, i.e.,
a cross product is performed that pairs the control states of
Pi with the state space of A. The difference is that the lock-
history tuples are removed from the control state, and in-
stead are modeled by S, the multi-arity relational weight
domain over the finite set LH and θ = |Q|. We define
PWi = (Pi × Q, ∅, Γi, ∆Wi , 〈(p0, q1), γ0〉), where ∆Wi and
f are defined as follows:

1. Non-phase Transitions:
f(r) = {〈LH,postη(LH, a)〉 | LH ∈ LH}z0.

(a) For each rule 〈p, γ〉 a
↪−→ 〈p′, u〉 ∈ ∆i and transition

(qx, i, a, qx) ∈ δ, there is a rule r = 〈(p, qx), γ〉 ↪−→
〈(p′, qx), u〉 ∈ ∆Wi .

(b) For each rule 〈p, γ〉 a
↪−→ 〈p′, u〉 ∈ ∆i, a ∈

{(k, )k}, and for each qx ∈ Q, there is a rule r =
〈(p, qx), γ〉 ↪−→ 〈(p′, qx), u〉 ∈ ∆Wi .

2. Phase Transitions:
f(r) = {〈LH,LH,ptrans(LH)〉 | LH ∈ LH}z1.

(a) For each rule 〈p, γ〉 a
↪−→ 〈p′, u〉 ∈ ∆i and tran-

sition (qx, i, a, qx+1) ∈ δ, there is a rule r =
〈(p, qx), γ〉 ↪−→ 〈(p′, qx+1), u〉 ∈ ∆Wi .

(b) For each transition (qx, j, a, qx+1) ∈ δ, j 6= i, and
for each p ∈ Pi and γ ∈ Γi, there is a rule r =
〈(p, qx), γ〉 ↪−→ 〈(p, qx+1), γ〉 ∈ ∆W .

A multi-arity relational weight domain is parameterized by
the quantity θ—the maximum number of phases of interest—
which we have picked to be |Q|. We must argue that weight
operations performed during model checking do not cause
this threshold to be exceeded. For configuration 〈(p, qx), u〉
to be reachable from the initial configuration 〈(p0, q1), γ0〉
of some WPDSWi, IPA A must make a sequence of transi-
tions from states q1 to qx, which means that A goes through
exactly x − 1 phase transitions. Each phase transition mul-
tiplies by a weight of the form c1z

1; hence, the weight re-
turned by Apost∗({〈(p, qx), u〉}) is a monomial of the form
cx−1z

x−1, i.e., cx−1 is a relation of arity x + 1 (a subset of
LHx+1). The maximum number of phases in a IPA is |Q|, and
thus the highest-power monomial that arises is of the form
c|Q|−1z

|Q|−1. (Moreover, during post∗Wk
as computed by the

algorithm from Reps et al. (2005), only monomial-valued
weights ever arise.)

Alg. 2 states the algorithm for solving the multi-PDS
model-checking problem for IPAs. Note that the final step of
Alg. 2 can be performed with a single BDD operation.

Theorem 3. For 2-PDS Π = (P1,P2, SLocks, Σ) and IPA
A, there exists an execution of Π that drives A to the accept-
ing state iff Alg. 2 returns true.

Proof (Sketch). The proof proceeds by showing that the multi-
arity relations that annotate the rules ofW simulate the change

input : A 2-PDS (P1,P2, SLocks, Σ) and a IPA A.
output: true if there is an execution that drives A to the

accepting state.
let A1

post∗ ← post∗W1
; let A2

post∗ ← post∗W2
;

let c1|Q|−1z
|Q|−1 = A1

post∗
(
{〈(p1, q|Q|), u〉 | p1 ∈ P1 ∧ u ∈

Γ ∗1 }
)
;

let c2|Q|−1z
|Q|−1 = A2

post∗
(
{〈(p2, q|Q|), u〉 | p2 ∈ P2 ∧ u ∈

Γ ∗2 }
)
;

return ∃〈LH0, L̂H1〉 ∈ c1|Q|−1, 〈LH0, L̂H2〉 ∈ c2|Q|−1 :

Compat(L̂H1, L̂H2);
Algorithm 2: The symbolic decision procedure.

in control state of the rules of PA, and vice versa. This, com-
bined with the proofs of correctness of algorithms for solving
reachability problems in PDSs Bouajjani et al. (1997); Finkel
et al. (1997) and WPDSs Bouajjani et al. (2003); Reps et al.
(2005), proves that Alg. 2 computes the same result as Alg. 1.
The proof then reduces to the proof of correctness for Alg. 1,
which is given in §7. The full proof of simulation is given in
App. A.

9 Generalizing to More Than Two PDSs

Because the set of reachable configurations, and hence the
set of lock-history tuples, are computed independently for
each PDS, the construction from §7.1 that combines a PDS
P with a IPA A to form a new PDS PA does not change
when generalizing to N PDSs. Hence, the only modification
required to define a decision procedure for an N -PDS is to
generalize the compatibility check for N lock-history tuples.

Generalizing the compatibility check to N lock-history
tuples requires a generalization of the Decomposition Theorem
(Thm. 1, page 9). The extension of forbidden conditions 1, 2,
and 5 of the Decomposition Theorem to N lock-history tuples
is straightforward.

1. ∃i, j : LocksHeld(Pi, g) ∩ LocksHeld(Pj , g) 6= ∅
2. ∃i, j : LocksHeld(Pi, g′) ∩ LocksHeld(Pj , g′) 6= ∅
5. In ρi, Pi acquires or uses a lock that is held by Pj , j 6= i,

throughout ρj .

Items 1 and 2 ensure that no two processes hold the same lock
initially and finally, respectively. Item 5 ensures that a PDS
P does not acquire or use a lock that is held throughout by
another PDS P ′.

In Thm. 1, Items 3 and 4 define incompatibility to be a
cycle of length two in the acquisition and release histories,
respectively. The generalization for an N -PDS is to check
for a cycle of length anywhere from 2 to N . For example,
consider a 3-PDS with three (or more) locks. The absence of
a cycle of length three in a tuple of acquisition histories would
then be defined as:

@i, j, k : li ∈ ÂH1[j] ∧ lj ∈ ÂH2[k] ∧ lk ∈ ÂH3[i].

The absence of a cycle of length three is defined
similarly for release histories. We use the notation



16 Nicholas Kidd et al.: A Decision Procedure

Compat(LH1, . . . ,LHN ) to denote the generalized check.
Then Alg. 1 is modified to contain N foreach loops,
and the compatibility check at line 4 is replaced with
Compat(L̂H1, . . . , L̂HN ).

Similarly, Alg. 2 is modified to construct N WPDSs, per-
form N post∗ operations (line 1), compute N combine-over-
all-paths values c1|Q|−1z

|Q|−1, . . ., cN|Q|−1z
|Q|−1 (lines 2–3),

and finally perform the check

∃〈LH0, L̂H1〉 ∈ c1|Q|−1, . . . , 〈LH0, L̂HN 〉 ∈ cN|Q|−1 :

Compat(L̂H1, . . . , L̂HN ).

As in Alg. 2, the compatibility check can be performed via a
single BDD operation by defining the N -way compatibility
relation.

10 Experiments

Our experiment concerned detecting AS-serializability vio-
lations (or proving their absence) in models of concurrent
Java programs. The experiment was designed to compare the
performance of IPAMC, which implements Alg. 2, against
CPDSMC, which implements the communicating-pushdown
system (CPDS) semi-decision procedure from Kidd et al.
(2009b). IPAMC is implemented using the WALI WPDS li-
brary Kidd et al. (2009a), and the multi-arity relational weight
domain uses the BuDDy BDD library BuDDy (2004). (The
multi-arity relational weight domain is included in WALI start-
ing with release 3.0.) All experiments were run on a dual-core
3 GHz Pentium Xeon processor with 4 GB of memory.

We analyzed four Java programs from the CONTEST
benchmark suite Eytani et al. (2007). Our tool, EMPIRE, re-
quires that the allocation site of interest be annotated in the
source program. We annotated eleven of the twenty-seven
programs that CONTEST documentation identifies as having
“non-atomic” bugs. Our front-end currently handles eight of
the eleven (the AST rewriting of Kidd et al. (2009b) currently
does not support certain Java constructs). Finally, after abstrac-
tion, four of the eight EML models did not use locks, so we did
not analyze them further. The four that we used in our study
are SoftwareVerificationHW, BugTester, BuggyProgram, and
shop.

For each program, the front-end of the EMPIRE tool Kidd
et al. (2009b) was used to create an EML program. An EML
program has a set of shared-memory locations, SMem, a set of
locks, lockset, and a set of EML processes, SProcs. Five of the
fourteen IPAs used for detecting AS-serializability violations
check behaviors that involve a single shared-memory location;
the other nine check behaviors that involve a pair of shared-
memory locations. For each of the five IPAs that involve a
single shared location, we ran one query for each m ∈ SMem.
For each of the nine IPAs that involve a pair of shared locations,
we ran one query for each (m1,m2) ∈ SMem×SMem. In total,
each tool ran 2,145 queries.

The purpose of the experiment was to determine the an-
swer to the queries performed by Kidd et al. (2009b) on which

Query Category

CPDSMC succeeded CPDSMC timed out Total
(1,074) (1,071) (2,145)

CPDSMC 10,000 82,400 92,400
IPAMC 1,400 1,300 2,700

Speedup 7X 62X 34X

Table 3. Total time (in seconds) for examples classified according to whether
CPDSMC succeeded or timed out.

CPDSMC exhausted resources (roughly 50%), and to compare
the performance of the symbolic-decision procedure (Alg. 2)
implemented in IPAMC to the semi-decision procedure that is
implemented in CPDSMC. The analysis summaries are shown
in Tab. 2. As expected, the decision procedure returned a
definitive answer for all queries.

Although the CPDS-based method is a semi-decision pro-
cedure, it is capable of both (i) verifying correctness, and (ii)
finding AS-serializability violations (see Chaki et al. (2006);
Kidd et al. (2009b)). (The third possibility is that it fails to
provide a definite answer because it times out or runs out of
memory.) Fig. 6 presents log-log scatter plots of the execu-
tion times of IPAMC (y-axis) versus CPDSMC (x-axis). The
“inner box” in each scatter plot marks the timeout threshold of
300 seconds.6 The vertical bands on the “inner box” in each
scatter plot are queries where CPDSMC timed out. The dashed-
diagonal line denotes equal running times. Points below and
to the right of the dashed line are queries where IPAMC was
faster than CPDSMC. Because almost every point is below and
to the right of the dashed-diagonal line in Fig. 6, we can see
that IPAMC performed better than CPDSMC on nearly every
query.

Tab. 3 presents a comparison of the total time to exe-
cute all queries. The total times are partitioned according to
whether CPDSMC succeeded or timed out. Comparing the
total time to run all queries, IPAMC ran 34X faster (92,400
seconds versus 2,700 seconds). For queries on which both
IPAMC and CPDSMC returned definitive answers, IPAMC ran
7X faster (10,000 seconds versus 1,400 seconds). Moreover,
CPDSMC timed out, or ran out of memory, on about 50% of
the queries—both for the ones for which IPAMC reported an
AS-serializability violation (39 timeouts out of 49 queries), as
well as the ones for which IPAMC verified correctness (1,064
timeouts out of 2,096 queries).

Tab. 4 breaks down the AS-serializability violations found
according to the problematic access pattern that occurred. En-
tries marked with an “X” are AS-serializability violations that
EMPIRE found using IPAMC but did not find using CPDSMC
because CPDSMC exhausted the available resources.7 The

6 A 300-second timeout is used because that is the point where CPDSMC
is able to answer roughly half of the queries.

7 Due to a limitation of our implementation in not producing witness
traces for failed queries (sometimes called “counterexamples”), we are not
able to check whether the additional AS-serializability violations found using
IPAMC are actual bugs or false positives. The lack of witness traces is not a
fundamental limitation of the approach used in IPAMC, just of our current
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Benchmark # Queries # Violations Found # Queries Verified Out of Memory Out of Time

SoftwareVerificationHW 15 6 (4) 9 (5) 0 0 (6)
BugTester 615 0 615 (460) 0 (155) 0
BuggyProgram 615 16 (0) 599 0 0 (16)
shop 900 27 (6) 873 (0) 0 (839) 0 (55)

Totals 2145 49 (10) 2096 (1064) 0 (994) 0 (77)

Table 2. For each benchmark, column “# Queries” gives the number of queries that were generated (i.e., the number of IPAs generated for a benchmark’s
model Π); columns “# Violations Found” and “# Queries Verified” give the breakdown of query satisfaction (i.e., an execution of Π is and is not, respectively,
recognized by a generated IPA); columns “Out of Memory” and “Out of Time” specify the number of queries that exhausted memory and time resources,
respectively. The counts in parentheses show where CPDSMC did not perform as well as IPAMC.
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Fig. 6. Log-log scatter-plots of the execution times of IPAMC (y-axis) versus CPDSMC (x-axis). The left-hand graph shows the 49 queries for which IPAMC
reported an AS-serializability violation; the right-hand graph shows the 2,096 queries for which IPAMC verified correctness. The dashed lines denote equal
running times; points below and to the right of the dashed lines are runs for which IPAMC was faster. The timeout threshold was 300 seconds, and is marked by
the solid vertical and horizontal lines that form an inner box. The minimum reported time is 0.1 second.

Program 1 2 3 4 5 6 7 8 9 10 11 12 13 14

SoftwareVerificationHW X X X X
BugTester
BuggyProgram X X X X X
shop X X X X X X X X X X X X

Table 4. Marked entries denote violations reported by EMPIRE. An entry marked with “X” was found using both IPAMC and CPDSMC. An entry marked with
“X” was found only using IPAMC.

number of additional AS-serializability violations detected
clearly shows the benefit of using a decision procedure over a
semi-decision procedure.

implementation; in principle, it is possible to extend IPAMC to produce witness
traces.

11 Comparison with the Kahlon-Gupta Decision
Procedure

We now present a more detailed comparison of the decision
procedure from §7 with the (corrected) decision procedure of
Kahlon and Gupta (2007).

The Kahlon-Gupta decision procedure takes as input a
multi-PDS and an LTL formula ϕ. For our comparison, we
will only consider a formula ϕ that consists of the tempo-
ral operators eventually F and next X, and a 2-PDS Π =
(P1,P2, SLocks).
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The Kahlon-Gupta decision procedure also uses lock his-
tories; however, unlike our decision procedure (§7), they do
not use lock-history tuples but merely a single lock history.
Thus, each PDS Pi is augmented so that its set of control
locations Pi includes a lock history. To model a global con-
figuration of Π , they use a configuration pair (c1, c2), where
c1 and c2 are configurations of P1 and P2, respectively. A set
of global configurations G is represented as a pair of sets of
configurations (C1, C2). That is, G = (C1, C2) represents the
set of global configurations { (c1, c2) | c1 ∈ C1, c2 ∈ C2 }.
Finally, for a set of global configurations G = (C1, C2), their
algorithm must maintain the invariant that for each pair of
configurations (c1, c2) ∈ G, lock histories LH1 and LH2 that
annotate the control locations of c1 and c2, respectively, are in
the Compat relation—i.e., that Compat(LH1,LH2) holds.

The Kahlon-Gupta decision procedure is defined induc-
tively. For a given logical formula ϕ, and from an automaton-
pair that satisfies a subformula, they define an algorithm that
computes a new automaton-pair for a larger formula that has
one additional (outermost) temporal operator. For example,
let G = (C1, C2) be the automaton-pair that satisfies a sub-
formula. If the next-outermost temporal operator is F, then
they would define G′ = (C ′1, C

′
2), where C ′i is obtained by

performing a pre∗ query on PDS Pi beginning from Ci. The
automaton-pair G′ is thus the pairing of the automata that
result from the two pre∗ queries.

We observed that the decision procedure as presented in
Kahlon and Gupta (2007) contains an error, which Kahlon
and Gupta confirmed in email correspondence Kahlon and
Gupta (2009). For two automata-pairs G = (C1, C2) and
G′ = (C ′1, C

′
2), they claimed that disjunction distributes

across automata-pairs—i.e., thatG∨G′ = (C1∨C ′1, C2∨C ′2).
Disjunction does not distribute because it loses correlations
that need to be maintained. To illustrate this point, consider the
following two sets of global configurations: G = ({c1}, {c2})
and G′ = ({c′1}, {c′2}). If one takes the disjunction G ∨ G′
as defined by Kahlon and Gupta (2007), the result would be
G∨G′ = ({c1, c′1}, {c2, c′2}), which allows for the global con-
figuration (c1, c

′
2) to be in the disjunction when it is not in G

or G′. Moreover, because correlations related to the Compat
relation can be lost, the necessary invariant discussed above
can be violated.

We can now explain why sets of automaton pairs are re-
quired to correct their algorithm. The Kahlon-Gupta algo-
rithm must maintain the invariant that for an automaton pair
G = (C1, C2), the lock-history component of all configu-
ration pairs (c1 ∈ C1, c2 ∈ C2) must be in the compatible
relation (i.e., Compat(LH1,LH2), where LHi, 1 ≤ i ≤ 2, is
the lock history component of the control location of config-
uration ci). To maintain the invariant, after computing the
individual reachability query on each automaton Ci (e.g.,
pre∗(Ci)), the resulting automata cannot be simply paired
back together because disjunction does not distribute. Instead,
sets of automaton-pairs must be defined so that (i) the invari-
ant continues to hold, and (ii) the compatibility invariant is
maintained.

To translate a 2-PDSΠ and an IPAA into the input format
of Kahlon and Gupta (2007), one would have to perform two
steps.

1. The input formula ϕ is specified over the control locations
of the individual PDSs. Thus, the control locations of the
PDSs of Π must be expanded to include the states of A.
To do so, one would need to perform the cross product of
Pi, 1 ≤ i ≤ 2, and A.

2. The IPA A must be compiled into an LTL formula. In-
tuitively, for a 2-PDS, an IPA A can be expressed as a
2-indexed LTL formula ϕA using only the “eventually” F
and “next” X operators: self-loops are captured with an F,
and phase-transitions with an X. Let the predicate Sqx de-
note an atomic proposition meaning that the control state
of each (augmented) PDS satisfies qx. That is, the control
state of the PDS that results from the cross product of
PDS P with IPA A is of the form (p, qx). The following
function can be used to translate an IPAA into a 2-indexed
LTL formula:

H(q|Q|) = Sq|Q|
H(qx) = F(Sqx ∧ X(X(Sqx+1

∧H(qx+1)))

In particular, ϕA is H(q1).

The Kahlon-Gupta decision procedure would proceed by
augmenting the input PDSs with lock histories (not lock-
history tuples). For all compatible lock histories LH1 and LH2

(i.e., ∀LH1,LH2 ∈ LH : Compat(LH1,LH2)), the query of
interest is then whether any of the following configuration
pairs are reachable from the initial configuration:{

(〈(p1, q|Q|,LH1), u1〉, 〈(p2, q|Q|,LH2), u2〉) |
p1 ∈ P1, u1 ∈ Γ ∗1 , p2 ∈ P2, u2 ∈ Γ ∗2

}
.

For each state qx of A, the function H(qx) introduces
three temporal operators. Thus, the (corrected) Kahlon-Gupta
decision procedure would require (3 ∗ |Q|) inductive “steps”
to be performed on each PDS, where a step for the temporal
operators X and F requires a single-step post query and a
reachability post∗ query, respectively. Each step operates on
a set of automaton-pairs. In the worst case, the size of the set
of automaton-pairs is of size exponential in the number of
locks. Thus, in the worst case, their algorithm must perform
(3 ∗ |Q|) ∗ 2|SLocks| queries for each PDS.

To implement the (corrected) Kahlon-Gupta algorithm,
there are two problems that appear to be difficult to overcome.
First, the number of queries is exponential in the number of
locks, which is not desirable because the cost of each query is
also exponential in the number of locks—the cost of a PDS
pre∗ query has a linear factor in the size of the control loca-
tions, which is exponential in the number of locks because of
the use of lock histories. Second, the straightforward approach
for reestablishing the invariant after performing the individual
pre∗ queries on the PDSs P1 and P2—i.e., defining the set of
automaton-pairs—is to enumerate the states of the automata
C1 and C2 that result from the pre∗ queries of P1 and P2,
respectively. Enumeration is not desirable because it requires
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enumerating over two sets that are each of size exponential in
the number of locks (i.e., the lock histories).

This paper introduces a different technique than that used
by Kahlon and Gupta. Our algorithm uses WPDS weights that
are sets of lock-history tuples, whereas Kahlon and Gupta use
sets of pairs of configuration automata. Our algorithm also has
a much different structure than theirs. The (corrected) Kahlon
and Gupta algorithm performs a succession of pre∗ queries;
after each one, it splits the resulting set of automaton-pairs to
enforce the invariant that succeeding queries are only applied
to compatible configuration pairs. In contrast, our algorithm
(i) analyzes each PDS independently using one post∗ query
per PDS, and then (ii) ties together the answers obtained
from the different PDSs by performing a single compatibility
check on the sets of lock-history tuples that result. Because
our algorithm does not need a splitting step on intermediate
results, it avoids enumerating compatible configuration pairs,
thereby enabling BDD-based symbolic representations to be
used throughout.

By moving from lock histories to tuples of lock histories,
the decision procedure presented in §7 does not require mul-
tiple reachability queries. Consequently, it does not need to
perform the disjunction of automata that result from inter-
mediate reachability queries as is required by Kahlon and
Gupta (2007). The use of lock-history tuples has the following
benefits:

1. We avoid the need to perform an exponential number of
queries on each PDS because sets of automaton-pairs are
not required.

2. Because tupling maintains correlations between the inter-
mediate configurations of an individual PDSPi, we do not
need to (re)establish the invariant that Kahlon and Gupta
(2007) did for performing successive reachability queries.
Besides avoiding the need to operate on automaton-pairs
as discussed above, not being forced to (re)establish the
invariant avoids the enumeration of the control locations
of automata C1 and C2 that result from the intermediate
pre∗ queries of Kahlon and Gupta (2007).

We note that tupling is not free: the size of the set of control
locations of each PDS has an extra exponential factor, namely,
the size of the set of states Q of A. However, isolating expo-
nential factors in the PDS control locations is favored because
symbolic techniques such as BDDs can often represent ex-
ponentially large state spaces in an efficient manner. Finally,
Tab. 1 repeats the comparison table from the beginning of
the paper to emphasize that worst-case running time of our
algorithm has one less exponential factor when compared to
the (corrected) Kahlon-Gupta algorithm. In particular, see the
rightmost column.

12 Other Related Work

Another approach to model checking concurrent software is
context-bounded analysis, first defined by Qadeer and Re-
hof (2005) and later improved by Lal et al. (2008). Context-
bounded analysis bounds the number of context switches that

LTL/Atomicity CBA

Explicit Kahlon and Gupta (2007) Qadeer and Rehof (2005)
(splitting)
Symbolic Kidd et al. (2009c) Lal et al. (2008)
(tupling) (atomicity)

Table 5. Related work on LTL/atomicity checking and context-bounded analy-
sis (CBA). Each row specifies whether the approach uses an explicit modeling
of the reachable configurations, which requires splitting, or a symbolic mod-
eling via the use of tupling

are explored (while letting processes perform an arbitrary
number of computation steps in between context switches).
In contrast, our approach bounds the number of phases, but
permits an unbounded number of context switches and an
unbounded number of lock acquisitions and releases by each
PDS. Moreover, the decision procedures from §7 and §8 are
able to explore the entire state space of the model; thus, our
algorithms are able to verify properties of multi-PDSs instead
of just performing bug detection.

Dynamic pushdown networks (DPNs) Bouajjani et al.
(2005) extend parallel PDSs with the ability to create threads
dynamically. Lammich et al. (2009) present a generalization
of acquisition histories to DPNs with properly-nested locks.
Their algorithm uses chained pre∗ queries, an explicit en-
coding of acquisition histories in the state space, and is not
implemented.

13 Conclusion

To sum up, we show that the following problem is decidable:

Given a program consisting of a fixed, finite num-
ber of threads that can use (i) reentrant locks, (ii) an
unbounded number of context switches, and (iii) an
unbounded number of lock acquisitions and releases,
determine whether the lock-constrained executions of
the program contain any sequence of interleaved mem-
ory accesses that match a given problematic access
pattern.

When compared to a previous approach that uses CPDS
model checking, which implements only a semi-decision pro-
cedure, the implementation of Alg. 2 was 34 times faster
overall. Moreover, with a timeout threshold of 300 seconds,
for each query where the semi-decision procedure timed out or
ran out of memory (roughly 50% of the queries), the decision
procedure succeeded within the allotted time, and actually per-
formed more work because the decision procedure explored
the entire state space.

Another contribution of the paper is that it sheds light
on what appears to be a general principle for reducing the
cost of model checking concurrent software, namely, the ad-
vantages of tupling over splitting for maintaining required
correlations. The issue arises both in our setting—-verifying
data-consistency properties—as well as in context-bounded
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analysis (Qadeer and Rehof, 2005; Lal et al., 2008); see Tab. 5.
In both settings, the model checker needs to establish facts
about reachability for a sequence of intermediate global con-
figurations of a multi-PDS, while maintaining information
about certain kinds of correlations between intermediate con-
figurations.

– The decision procedure presented in this paper uses tu-
pling to maintain the correlations between intermediate
configurations, whereas the (corrected) Kahlon and Gupta
(2007) algorithm uses splitting. As shown in Tab. 1, the
cost of the tupling-based method is asymptotically lower
than that of the splitting-based method: tupling avoids a
factor that is exponential in the number of locks. Tupling
also isolates an exponential cost in the PDS control loca-
tions, which is beneficial because that cost can often be
side-stepped using symbolic techniques, such as BDDs.

– In context-bounded analysis Qadeer and Rehof (2005); Lal
et al. (2008), the algorithm of Qadeer and Rehof (2005)
uses splitting to maintain correlations. In that setting, they
enumerate the global state space at a context switch so
that they can maintain correlations between the global data
state and the (unbounded-size) program stack for a given
thread. In contrast, Lal et al. (2008) use a form of tupling to
maintain correlations, which also enables them to isolate
an exponential cost in the PDS control locations.8

In general, the use of tupling is preferred because

1. Tupling may permit an exponential-cost enumeration step
to be avoided (and thus lower the worst-case asymptotic
cost).

2. Tupling enables symbolic techniques to be employed,
which often allows the remaining exponential factors to
be overcome in practice.

References

Bouajjani, A., Esparza, J., and Maler, O. (1997). Reachabil-
ity analysis of pushdown automata: Application to model
checking. In CONCUR.

Bouajjani, A., Esparza, J., and Touili, T. (2003). A generic
approach to the static analysis of concurrent programs with
procedures. In POPL.

Bouajjani, A., Müller-Olm, M., and Touili, T. (2005). Reg-
ular symbolic analysis of dynamic networks of pushdown
systems. In CONCUR.

BuDDy (2004). A BDD package. http://buddy.wiki.
sourceforge.net/.

Chaki, S., Clarke, E., Kidd, N., Reps, T., and Touili, T. (2006).
Verifying concurrent message-passing C programs with
recursive calls. In TACAS.

Eytani, Y., Havelund, K., Stoller, S. D., and Ur, S. (2007).
Towards a framework and a benchmark for testing tools

8 The work of Lal et al. (2008) equips WPDS semirings with a tensor
operation that can be viewed as means for defining tuples for weight domains
of infinite size. For finite weight domains, such as lock histories, explicit
tuples suffice.

for multi-threaded programs. Conc. and Comp.: Prac. and
Exp., 19(3).

Finkel, A., B.Willems, and Wolper, P. (1997). A direct sym-
bolic approach to model checking pushdown systems. Elec.
Notes in Theor. Comp. Sci., 9.

Flanagan, C. and Qadeer, S. (2003). A type and effect system
for atomicity. In PLDI.

Harrison, M. (1978). Introduction to Formal Language Theory.
Addison-Wesley, Reading, MA.

Kahlon, V. and Gupta, A. (2007). On the analysis of interacting
pushdown systems. In POPL.

Kahlon, V. and Gupta, A. (2009). Personal communication.
Kahlon, V., Ivancic, F., and Gupta, A. (2005). Reasoning

about threads communicating via locks. In CAV.
Kidd, N., Lal, A., and Reps, T. (2008). Language strength

reduction. In SAS.
Kidd, N., Lal, A., and Reps, T. (2009a). WALi: The

Weighted Automaton Library. http://www.cs.wisc.
edu/wpis/wpds/download.php.

Kidd, N., Reps, T., Dolby, J., and Vaziri, M. (2009b). Find-
ing concurrency-related bugs using random isolation. In
VMCAI.

Kidd, N. A., Lammich, P., Touili, T., and Reps, T. (2009c). A
decision procedure for detecting atomicity violations for
communicating processes with locks. In SPIN.

Lal, A., Touili, T., Kidd, N., and Reps, T. (2008). Interpro-
cedural analysis of concurrent programs under a context
bound. In TACAS.

Lammich, P., Müller-Olm, M., and Wenner, A. (2009). Prede-
cessor sets of dynamic pushdown networks with tree-regular
constraints. In CAV.

Lu, S., Park, S., Seo, E., and Zhou, Y. (2008). Learning from
mistakes—a comprehensive study on real world concur-
rency bug characteristics. In ASPLOS.

Qadeer, S. and Rehof, J. (2005). Context-bounded model
checking of concurrent software. In TACAS.

Ramalingam, G. (2000). Context-sensitive synchronization-
sensitive analysis is undecidable. ACM Transactions on
Programming Languages and Systems, 22.

Reps, T. (1998). Program analysis via graph reachability. Inf.
and Softw. Tech., 40.

Reps, T., Schwoon, S., Jha, S., and Melski, D. (2005).
Weighted pushdown systems and their application to in-
terprocedural dataflow analysis. SCP, 58.

Schwoon, S. (2002). Model-Checking Pushdown Systems.
PhD thesis, TUM.

Vaziri, M., Tip, F., and Dolby, J. (2006). Associating syn-
chronization constraints with data in an object-oriented
language. In POPL.

http://buddy.wiki.sourceforge.net/
http://buddy.wiki.sourceforge.net/
http://www.cs.wisc.edu/wpis/wpds/download.php
http://www.cs.wisc.edu/wpis/wpds/download.php


Nicholas Kidd et al.: A Decision Procedure 21

A Proof of Thm. 3

Theorem 3. For 2-PDS Π = (P1,P2, SLocks, Σ) and IPA A,
there exists an execution of Π that drives A to the accepting
state iff Alg. 2 returns true.

Proof. The proof proceeds as follows: (i) show by induction
that Alg. 1 and Alg. 2 compute the same lock-history tuples
for related PDS paths; and (ii) combine the previous step with
the proof of correctness for WPDSs. We use the following
definitions.

1. P = (P,Lab, Γ,∆, c0) is a PDS
2. A = (Q, Id, Σ, δ) is a IPA
3. PA =

(
PA, ∅, Γ,∆A, 〈(p0, q1, L̂H0), γ0〉

)
is the (unla-

beled) PDS that results from combining P with A as
defined in §7.1

4. W =
(
(P × Q, ∅, Γ,∆W , 〈(p0, q1), γ0〉),S, f

)
is the

WPDS that results from combining P with A as defined
in §8

5. ρP = [rP1 , . . . , r
P
n ] is a rule sequence from P

6. ρA = [rA1 , . . . , r
A
n ] is a rule sequence from PA

7. ρW = [rW1 , . . . , rWn ] is a rule sequence fromW
8. val(ρW) = f(rW1 )⊗. . .⊗f(rWn ) is the weighted valuation

of ρW

9. inflate(cx−1z
x−1, x) =

cx−1z
x−1;

{
〈LH,LH,LH|Q|−x0 〉 | LH ∈ LH

}
z|Q|−x

10. deflate(c|Q|−1z
|Q|−1, x) =

{
〈LH1, . . . ,LHx,LHx+1〉

| 〈LH1, . . . ,LHx,LHx+1, . . . ,LH|Q|−1〉 ∈ c|Q|−1
}
zx−1

Item 9 defines the inflate function that takes a monomial
of arity m and transforms it into a monomial of arity |Q| − 1.
This is necessary for comparing the result of executing a rule
sequence ρA of PA with executing a rule sequence ρW of
W because ρW might not have performed |Q| − 1 phase
transitions. The function inflate “appends” the empty lock
history LH0 to the end of the monomial cx−1zx−1. This co-
incides with the fact that a path from the initial configura-
tion of PA only modifies the lock-history tuple entries for
the phases that it has been in or is currently executing in.
The function deflate simply undoes the result of inflate, i.e.,
cx−1z

x−1 = deflate(inflate(cx−1z
x−1, x), x).

Let cA0 ⇒ρA cA denote that PA makes a transition to
a configuration cA from configuration cA0 when executing
rule sequence ρA. Similarly, let cW0 ⇒ρW cW denote thatW
makes a transition to a configuration cW from configuration
cW0 when executing rule sequence ρW . We show the following:

cA0 ⇒ρA 〈(p, qx, L̂H), u〉
⇐⇒

cW0 ⇒ρW 〈(p, qx), u〉 ∧ 〈LH0, L̂H〉 ∈ inflate(val(ρW), x).

The proofs in both directions are by induction on the length of
a rule sequence.

Show⇒.
For rule sequence ρA = [rA1 , . . . , r

A
n ], assume that cA0 ⇒ρA

〈(p, qx, L̂H), u〉. We show how to construct a rule sequence

ρW = [rW1 , . . . , rWn ] such that (i) cW0 ⇒ρW 〈(p, qx), u〉 and
(ii) 〈LH0, L̂H〉 ∈ inflate(val(ρW), x). For each case, we rely
on the fact that the generalized relational product always com-
poses on the rightmost tuple-component in the left-hand-side
operand. This allows us to show that the “effect” of extending
weights when firing a rule sequence ofW mimics the explicit
change in the control state of PA that occurs when firing a
rule sequence of PA.

– Base case: n = 1.

For the base case, there is only one rule: rA1 =

〈(p0, q1, L̂H0), γ0〉 ↪−→ 〈(p, qx, L̂H), u〉. From the
definition of PA, there must be the rule rP1 =

〈p0, γ0〉
a
↪−→ 〈p, u〉 in the original PDS P , and a

transition (q1, i, a, qx) ∈ δ. Thus, by the definition of
W , there must be the rule rW1 = 〈(p0, q1), γ0〉 ↪−→
〈(p, qx), u〉. We perform a case analysis on rA1 to show
that 〈LH0, L̂H〉 ∈ inflate(val(rW1 ), x).

1. If x = 1, then
(a) L̂H = L̂H0[1 7→ postη(L̂H0[1], a)] =

〈postη(LH0, a),LH|Q|−10 〉
(b) f(rW1 ) =

{
〈LH,postη(LH, a)〉 | LH ∈ LH

}
z0

(c) inflate(val([rW1 ]), 1) ={
〈LH,postη(LH, a),LH|Q|−10 〉 | LH ∈
LH
}
z|Q|−1

(d) 〈LH0, L̂H〉 ∈ inflate(val([rW1 ]), 1)
2. Otherwise x = 2, then

(a) L̂H = L̂H0[2 7→ ptrans(L̂H0[1])] =

〈LH0,ptrans(LH0),LH|Q|−20 〉
(b) f(rW1 ) =

{
〈LH,LH,ptrans(LH)〉 | LH ∈

LH
}
z1

(c) inflate(val([rW1 ]), 2) ={
〈LH,LH,ptrans(LH),LH|Q|−20 〉
| LH ∈ LH

}
z|Q|−1

(d) 〈LH0, L̂H〉 ∈ inflate(val([rW1 ]), 2)

– Inductive step.

Now consider the rule sequence ρAn = [rA1 , . . . , r
A
n−1, r

A
n ],

and assume that for the first n− 1 rules of the sequence,
cA0 ⇒ρAn−1 〈(p, qx, L̂H), γu〉. Furthermore, let us use
the notation L̂H = 〈LH1, . . . ,LHx,LHx+1

0 , . . . ,LH|Q|0 〉
so that we can deconstruct the L̂H tuple. (Note that it
must be the case that at all tuple indices greater than x
the lock history is LH0 by construction.) By the induc-
tion hypothesis we have the following: there exists a rule
sequence ρWn = [rW1 , . . . , rWn−1] such that cW0 ⇒ρWn−1

〈(p, qx), γu〉 and 〈LH0, L̂H〉 ∈ inflate(val(ρWn−1), x). In
addition, the following holds: 〈LH0,LH1, . . . ,LHx〉 ∈
deflate(inflate(val(ρWn−1), x), x)

Let rAn = 〈(p, qx, L̂H), γ〉 ↪−→ 〈(p′, qy, L̂H
′
), u′〉, then

cA0 ⇒ρAn 〈(p′, qy, L̂H
′
), u′u〉. From the definition of PA,

there must exist a rule 〈p, γ〉 a
↪−→ 〈p′, u′〉 ∈ ∆ and tran-
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sition (qx, i, a, qy) ∈ δ. Thus, from the definition of W ,
there exists a rule rWn = 〈(p, qx), γ〉 ↪−→ 〈(p′, qy), u′〉 ∈
∆W , and cW0 ⇒ρWn 〈(p′, qy), u′u〉, which satisfies condi-
tion (i) above. To show that condition (ii) above is satisfied,
i.e., that 〈LH0, L̂H

′
〉 ∈ inflate(val(ρWn ), y), we perform

a case analysis on the rule rAn = 〈(p, qx, L̂H), γ〉 ↪−→
〈(p′, qy, L̂H

′
), u′〉.

1. If x = y, then
(a) L̂H

′
= L̂H[x 7→ postη(L̂H[x], a)] =

〈LH1, . . . ,postη(LHx, a),LHx+1
0 , . . . ,LH|Q|0 〉

(b) f(rWn ) =
{
〈LH,postη(LH, a)〉 | LH ∈ LH

}
z0

(c) 〈LH0,LH1, . . . ,LHx〉 ∈
deflate(inflate(val(ρWn−1), x), x), by the induc-
tion hypothesis

(d) 〈LH0,LH1, . . . ,postη(LHx, a)〉 ∈
deflate(inflate(val(ρWn−1), x), x)⊗ f(rWn )

(e) inflate(val(ρWn ), x) = inflate(val(ρWn−1) ⊗
f(rW1 ), x)

(f) 〈LH0, L̂H
′
〉 ∈ inflate(val(ρWn ), x)

2. Otherwise y = x+ 1, and
(a) L̂H

′
= L̂H[y 7→ ptrans(L̂H[x])] =

〈LH1, . . . ,LHx,ptrans(LHx), . . . ,LH|Q|0 〉
(b) f(rWn ) =

{
〈LH,LH,ptrans(LH)〉 | LH ∈

LH
}
z1.

(c) 〈LH0,LH1, . . . ,LHx〉 ∈
deflate(inflate(val(ρWn−1), x), x), by the induc-
tion hypothesis

(d) 〈LH0,LH1, . . . ,LHx,ptrans(LHx)〉 ∈
deflate(inflate(val(ρWn−1), x), x)⊗ f(rWn )

(e) inflate(val(ρWn ), y) = inflate(val(ρWn−1) ⊗
f(rW1 ), y)

(f) 〈LH0, L̂H
′
〉 ∈ inflate(val(ρWn ), y)

Show⇐.
For a rule sequence ρWn = [rW1 , . . . , rWn ], assume
that cW0 ⇒ρW 〈(p, qx), u〉 and that 〈LH0, L̂H〉 ∈
inflate(val(ρWn ), x). We show how to construct a rule
sequence ρA = [rA1 , . . . , r

A
n ] such that cA0 ⇒ρA

〈(p, qx, L̂H), u〉. The proof is by induction on the length n
of the rule sequence.

– Base case: n = 1.

For the base case, there is only one rule: rW1 =
〈(p0, q1), γ0〉 ↪−→ 〈(p, qx), u〉. From the definition ofW ,
there must exist the rule rP1 = 〈p0, γ0〉

a
↪−→ 〈p, u〉 ∈ ∆,

and a transition (q1, i, a, qx) ∈ δ. Thus, by the definition of
PA, there must be a rule rA1 = 〈(p0, q1, L̂H0), γ0〉 ↪−→
〈(p, qx, L̂H

′
), u〉. We perform a case analysis on rW1 to

show that 〈LH0, L̂H〉 ∈ inflate(val([rW1 ]), x) ⇒ L̂H
′

=

L̂H.
1. If x = 1, then

(a) f(rW1 ) =
{
〈LH,postη(LH, a)〉 | LH ∈ LH

}
z0

(b) 〈LH0,postη(LH0, a),LHQ−10 〉 ∈
inflate(val([rW1 ]), x)

(c) L̂H
′

= L̂H0[1 7→ postη(L̂H0[1], a)] =

〈postη(LH0, a),LH|Q|−10 〉.
(d) L̂H

′
= L̂H

2. Otherwise x = 2, then
(a) f(rW1 ) = c1z

1 ={
〈LH,LH,ptrans(LH)〉 | LH ∈ LH

}
z1.

(b) 〈LH0,LH0,ptrans(LH0),LH|Q−2|0 〉 ∈
inflate(val([rW1 ]), 2).

(c) L̂H
′

= L̂H0[2 7→ ptrans(L̂H0[1])] =

〈LH0,ptrans(LH0),LH|Q|−20 〉.
(d) L̂H

′
= L̂H

– Inductive step.

Now consider the rule sequence ρWn =
[rW1 , . . . , rWn−1, r

W
n ], and assume that for the first

n − 1 rules of the sequence, cW0 ⇒ρWn−1 〈(p, qx), γu〉.
Let rWn = 〈(p, qx), γ〉 ↪−→ 〈(p′, qy), u′〉, then cW0 ⇒ρWn

〈(p′, qy), u′u〉. By the induction hypothesis we have
the following: for 〈LH0, L̂H〉 ∈ inflate(val(ρWn−1), x),
there exists a rule sequence ρAn−1 = [rA1 , . . . , r

A
n−1]

such that cA0 ⇒ρAn−1 〈(p, qx, L̂H), γu〉. Furthermore,
let L̂H = 〈LH1, . . . ,LHx,LHx+1

0 , . . . ,LH|Q|0 〉; then
〈LH0,LH1, . . . ,LHx〉 ∈ val(ρWn−1).
From the definition of W , there must exist a rule
〈p, γ〉 a

↪−→ 〈p′, u′〉 ∈ ∆ and transition (qx, i, a, qy) ∈ δ.
From the definition of PA, there must exist a rule rAn =

〈(p, qx, L̂H), γ〉 ↪−→ 〈(p′, qy, L̂H
′
), u′〉 ∈ ∆A, and

cA0 ⇒ρWn 〈(p′, qy, L̂H
′
), u′u〉. We perform a case analysis

on rWn to show that 〈LH0, L̂H〉 ∈ inflate(val(ρWn ), x)⇒
L̂H
′

= L̂H.
1. If x = y, then

(a) f(rWn ) =
{
〈LH,postη(LH, a)〉 | LH ∈ LH

}
z0

(b) 〈LH0,LH1, . . . ,LHx〉 ∈ val(ρWn−1), by the induc-
tion hypothesis

(c) 〈LH0,LH1, . . . ,postη(LHx, a)〉 ∈ val(ρWn−1) ⊗
f(rWn )

(d) 〈LH0,LH1, . . . ,postη(LHx, a)〉 ∈ val(ρWn )

(e) 〈LH0,LH1, . . . ,postη(LHx, a),LHx+1
0 , . . . ,LH|Q|0 〉 ∈

inflate(val(ρWn ), x)

(f) L̂H
′

= L̂H[x 7→ postη(L̂H[x], a)] =

〈LH1, . . . ,postη(LHx, a),LHx+1
0 , . . . ,LH|Q|0 〉

(g) L̂H
′

= L̂H
2. Otherwise y = x+ 1, and

(a) f(rWn ) = c1z
1 =

{
〈LH,LH,ptrans(LH)〉 |

LH ∈ LH
}
z1

(b) 〈LH0,LH1, . . . ,LHx〉 ∈ val(ρWn−1), by the induc-
tion hypothesis

(c) 〈LH0,LH1, . . . ,LHx,ptrans(LHx)〉 ∈
val(ρWn−1)⊗ f(rWn )
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(d) 〈LH0,LH1, . . . ,LHx,ptrans(LHx)〉 ∈ val(ρWn )

(e) 〈LH0,LH1, . . . ,LHx,ptrans(LHx), . . . ,LH|Q|0 〉 ∈
inflate(val(ρWn ), x)

(f) L̂H
′

= L̂H[y 7→ ptrans(L̂H[x])] =

〈LH1, . . . ,LHx,ptrans(LHx), . . . ,LH|Q|0 〉
(g) L̂H

′
= L̂H

We have proved that the multi-arity relations that annotate the
rules ofW simulate the change in control state of the rules
of PA, and vice versa. This, combined with the proofs of
correctness of algorithms for solving reachability problems
in PDSs Bouajjani et al. (1997); Finkel et al. (1997) and
WPDSs Bouajjani et al. (2003); Reps et al. (2005), proves that
Alg. 2 computes the same result as Alg. 1, and thus completes
the proof of correctness. ut
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