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Abstract. This paper concerns automatically verifying safety
properties of concurrent programs. In our work, the safety
property of interest is to check for multi-location data races
in concurrent Java programs, where a multi-location data race
arises when a program is supposed to maintain an invariant
over multiple data locations, but accesses/updates are not pro-
tected correctly by locks.

The main technical challenge that we address is how to
generate a program model that retains (at least some of) the
synchronization operations of the concrete program, when the
concrete program uses dynamic memory allocation. In the
presence of dynamic memory allocation, the finite number of
abstract objects of the abstract program must represent the un-
bounded number of concrete objects that the concrete program
may allocate, and thus by the pigeon-hole principle some of
the abstract objects must be summary objects—they represent
more than one concrete object. Because abstract summary
objects represent multiple concrete objects, the program an-
alyzer typically must perform weak updates on the abstract
state of a summary object, where a weak update accumulates
information. Because weak updates accumulate rather than
overwrite, the analyzer is only able to determine weak judge-
ments on the abstract state, i.e., that some property possibly
holds, and not that it definitely holds. The problem with weak
judgements is that determining whether an interleaved execu-
tion respects program synchronization requires the ability to
determine strong judgements, i.e., that some lock is definitely
held, and thus the analyzer needs to be able to perform strong
updates—an overwrite of the abstract state—to enable strong
judgements.

We present the random-isolation abstraction as a new prin-
ciple for enabling strong updates of special abstract objects.
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The idea is to associate with a program allocation site two
abstract objects, r] and o], where r] is a non-summary object
and o] is a summary object. Abstract object r] models a dis-
tinguished concrete object that is chosen at random in each
program execution. Because r] is a non-summary object—i.e,
it models only one concrete object—strong updates are able
to be performed on its abstract state. Because which concrete
object r] models is chosen randomly, a proof that a safety
property holds for r] generalizes to all objects modeled by o].

We implemented the random-isolation abstraction in a
tool called EMPIRE, which verifies atomic-set serializability
of concurrent Java programs. (Atomic-set serializability is one
notion of multi-location data-race freedom.) Random isolation
allows EMPIRE to track lock states in ways that would not
otherwise have been possible with conventional approaches.

1 Introduction

This paper concerns automatically verifying safety properties
of concurrent programs. Although the problem is undecidable
in general, in some cases undecidability can be side-stepped
by using the following scheme for obtaining approximate
answers:

– Step 1: Construct an abstraction of the program of interest
using a modeling language for which safety checking is
decidable.

– Step 2: Invoke the decision procedure to determine
whether safety holds.

– Step 3: If the answer obtained in Step 2 is “yes” (safety
holds), report “safe”; otherwise, report “unknown”.

A safety-checking problem may be theoretically intractable
from the standpoint of worst-case running time; however, in
many cases answers can be obtained in a reasonable amount
of time by incorporating fast algorithms and data structures
for key steps of the decision procedure, or for key heuristics
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that it uses. Other work that adopts this approach includes
symbolic model checking (Burch et al., 1990), SLAM (Ball
and Rajamani, 2001), Moped (Schwoon, 2002), Lammich’s
work on the analysis of multi-threaded programs (Lammich
and Müller-Olm, 2008), and the recent work on analyzing
linked lists by Lahiri and Qadeer (2006), among others.

In our work, the safety property of interest is to check
for multi-location data races in concurrent Java programs,
where a multi-location data race arises when a program is
supposed to maintain an invariant over multiple data locations,
but accesses/updates are not protected correctly by locks. (The
precise definition of multi-location data races used by our
checking tool EMPIRE is presented in §2.) Multi-location data
races generalize the traditional notion of data races (i.e., a
single-location data race results from inconsistent coordina-
tion of accesses on a single memory location). The importance
of checking for multi-location data races is underscored by
a study conducted by Lu et al. (2008), which showed that
roughly 30% of the concurrency bugs found in a set of concur-
rent open-source applications were due to multiple-memory-
location problems. (Our approach can find classical single-
location data races as well as multiple-location races.)

An example of a multi-location data race is found
in one of the Vector constructors in Sun’s JDK 1.4.2,
which is illustrated by the code fragment show in List-
ing 1.1 The class contains two fields elementCount and
elementData, where elementData is an array of objects
and elementCount is an integer field whose value specifies
the number of valid components of a Vector object (i.e.,
the logical contents of a Vector object are elementData[0]–
elementData[elementCount− 1]).

When a shared Vector object is accessed by concur-
rently executing threads T1 and T2, it is clearly desirable
for T1 to not be able to observe intermittent writes of T2 to
the two fields. Without proper synchronization, the invari-
ant that elementCount specifies the logical boundaries of
elementData could be violated. With an unfortunate schedul-
ing of thread executions, such a violation could occur in the
Vector constructor shown in Listing 1. In particular, the fol-
lowing interleaved execution would result in the invariant
being violated:

1. T1 begins executing the Vector constructor shown in List-
ing 1;

2. T1 initializes elementCount to be c.size();
3. T2 removes all elements from the shared Vector refer-

enced by the parameter Collection c;
4. T1 initializes elementData with Collection c as modi-

fied by T2.

At this point, if c was initially a non-empty collec-
tion, elementCount will now be non-zero, but the array
elementData will have at each index position from 0 to
elementCount− 1 the null reference.2

Our goal of checking for multi-location data races (such as
the one just described) directly affects the choice of a modeling

1 The snippet is a simplified version of (Vaziri et al., 2006, Fig. 2).
2 The bug was first reported by Wang and Stoller (2006b)

Listing 1. java.util.Vector snippet.

public class Vector {
Object[] elementData;
int elementCount;

Vector(Collection c) {
elementCount = c.size();
elementData = new

Object[elementCount * 110L/100];
c.toArray(elementData);

}
}

language. Specifically, the modeling language should support
multiple threads of execution that communicate via shared
memory, and that protect shared-memory accesses with locks.
However, if we are not careful, the combination of the first
two features alone could result in a modeling language for
which safety checking is undecidable (Ramalingam, 2000).

In our work, decidability is maintained by carefully choos-
ing which aspects of a concurrent Java program will be mod-
eled precisely and which are abstracted away. The problems
that were necessary for us to address can be summarized as fol-
lows: (1) How are data values modeled? (2) How are program
locks modeled? (3) How are Java’s reentrant locks modeled?
(4) What is the algorithm for analyzing the resulting program
model? Below we discuss each issue in turn.

Abstracting Values. The first insight is that multi-location
data races are concerned with reads from and writes to fields
of shared objects, and not with the values of those fields. Thus,
a safe approximation abstracts away the values of all variables.
Once the actual data values have been abstracted away, the
reads and writes of an individual thread can no longer be af-
fected by the reads and writes of other threads. Thus, the tight
coupling between threads that typically results in analysis of
concurrent programs (or program models) being undecidable
has been removed. As in many program analyses, the price
one pays is that the set of behaviors of the program model
is necessarily an over-approximation of the set of behaviors
of the (concrete) program, and hence one one-sided answers
are obtained: safe/possibly-unsafe rather than safe/definitely-
unsafe.

Abstracting Locks. Once data values have been abstracted
away, the resulting program contains no synchronization,
which is obviously not adequate for checking properties that
deal with program synchronization. In general, one cannot
simply decide to model the “lock state” of every Java object
o—i.e., whether the lock associated with o is in the locked
or unlocked state—because Java programs contain dynamic
memory allocation, which results in an a priori unbounded
number of locks. To maintain decidability, we require a mech-
anism that is able to model the unbounded number of concrete
locks—i.e., the set of all locks that are allocated by all dy-
namic concrete runs of the program—with a finite number of
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abstract locks. Unfortunately, the typical approach of using
summary objects does not provide the precision necessary to
reason about lock-based synchronization.

For summary-based analyses, an unbounded set of con-
crete objects are abstracted into a finite set of abstract objects.
One common approach is to use the allocation-site abstraction
of Jones and Muchnick (1982), where an abstract object o] is
defined for each static allocation site of the program (i.e., a
new statement in Java), and the abstract state of o] is a sum-
mary of all possible concrete objects that could be allocated
from that site. It follows from the pigeon-hole principle that
there must be at least one abstract object that represents more
than one concrete object.

The difficulty is that when abstraction techniques summa-
rize multiple objects into a single summary object, the ana-
lyzer is unable to perform strong updates (overwrites) when
interpreting a lock or unlock operation. A strong update of
an abstract object corresponds to a “group kill”: it represents
a definite change in value to all concrete objects that the ab-
stract object represents. Strong updates cannot generally be
performed on summary objects because a (concrete) update
only affects one of the summarized concrete objects. To be
sound, an analyzer has to use weak updates (i.e., it has to accu-
mulate lock states). In particular, it has to use an abstract lock
state that represents {locked, unlocked}. Such an approach
generally leads to significant loss of precision: an analysis
will typically end up showing that a given summary lock is in
the state {locked, unlocked}, which provides no information
whatsoever.

Our second insight, which is the main technical contri-
bution of the paper, is a novel abstraction technique called
random isolation. The idea that we introduce is to analyze a
transformed version of the program in which a set of user-
specified allocation sites are transformed so that, during each
concrete run of the program, at most one object r will be
randomly tagged as being distinguished for that allocation
site. By this means, an analyzer can keep the abstract repre-
sentative for r (say r]) separate from a summary object that
represents the rest of the objects allocated at the specified
allocation site.3 The advantage of random isolation is that
because r is selected randomly, properties proved about its
abstract representative r] can be generalized to all objects that
are potentially allocated at the same allocation site. Moreover,
because each concrete run can have only one instance of r,
r] is not a summary object, which means that strong updates
can be performed on the abstract state of r]—and hence its
lock state can be tracked precisely. In practice, the analyzer
will typically require an additional mechanism to ensure that a
reference-type variable (e.g., this in Java) refers solely to r],
which can be difficult due to aliasing. We address this problem
via a source-to-source transformation that injects expressions
that perform a case analysis on what the reference variable
points to (§6.1).

3 Our convention is to use r for a randomly tagged concrete object, o for
an arbitrary concrete object, and r] resp. o] for their abstract counterparts.
When an allocation-site SITE is specified, we use the subscripted variants
rSITE , oSITE , r]SITE , and o]SITE .

Reentrant Locks. Empire checks concurrent Java programs
that use reentrant locks (obtained via synchronized methods
and synchronized blocks). Our third insight is that when
modeling the locking structure of a program, one can (in some
sense) ignore nested manipulations of the same lock. That is,
only outermost lock/unlock pairs are truly important.

The straightforward way to encode a reentrant lock is
to model it with a pushdown automaton (context-free lan-
guage) that tracks the number of successive lock acquisitions
on the stack. Instead, we apply a transformation that replaces
the context-free language that describes a reentrant lock by
a regular language that describes a non-reentrant lock. We
call this transformation language-strength reduction, and it
is performed in a completely accurate way (i.e., the model’s
behavior is preserved). Language-strength reduction is further
discussed in §8.3.

Analyzing Abstract Programs. After program transforma-
tion and abstraction, the resultant program model contains a
finite number of threads, shared memory locations, and shared
locks. However, one still is left with the task of analyzing such
a model. The model-checking engine on which EMPIRE was
originally based employed a semi-decision procedure (Kidd
et al., 2009a). The reason was that with (i) reentrant locks,
(ii) an unbounded number of context switches, and (iii) an
unbounded number of lock acquisitions, the problem appeared
to be undecidable. The actions of each process are modeled
by a context-free language; any model checker for multiple
processes is dangerously close to the undecidable problem
of determining whether the intersection of two context-free
languages is empty. Surprisingly, after the problem has been
transformed by the random-isolation and language-strength-
reduction transformations, a decision procedure exists for the
resulting simplified problem.

In essence, the couplings between different processes
turned out to be sufficiently weak that the undecidability of
checking emptiness of the intersection of two context-free
languages did not come into play; however, that fact was ob-
fuscated in a non-trivial way in the conditions of the original
problem. We return to this discussion in §8 where an overview
of the decision procedure is presented. (A full description
of the decision procedure is available elsewhere (Kidd et al.,
2010).)

Summary. The above sequence of ideas allowed us to create
a tool that (i) can model concurrent Java programs quite faith-
fully, and (ii) check them for important kinds of concurrency
problems: both multi-location and single-location data races.
When we compared the performance of the decision procedure
against the earlier semi-decision procedure (which represented
the current state-of-the-art), we found that the decision proce-
dure was 34 times faster overall (i.e., comparing the sum of
the running times on all queries, with a 300-second timeout).
Moreover, with the 300-second timeout threshold, for each
query where the semi-decision procedure timed out (roughly
49% of the queries), the decision procedure succeeded within
the allotted time.
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Outline. The remainder of this paper is organized as fol-
lows: §2 provides background material on atomic sets and
AS-serializability, the notion of multi-location data race used
in the paper. §3 presents an overview of EMPIRE, our tool
for checking for multi-location and single-location data races.
§4 presents EML, the EMPIRE modeling language. §5 moti-
vates the need for a new abstraction by discussing how the
commonly used allocation-site abstraction (Jones and Much-
nick, 1982) is insufficient when checking for multi-location
data races. §6 presents the random-isolation abstraction and de-
scribes an implementation of it. §7 presents a sound translation
from a concurrent Java program abstracted using random iso-
lation to an EML program. §8 describes the model-checking
technique used to verify AS-serializability for an EML pro-
gram. §9 presents the experimental evaluation. §10 discusses
related work.

2 Atomic-Set Serializability

This section presents atomic sets—the mechanism to specify
the fields over which an invariant holds—and atomic-set se-
rializability—a data-centric correctness criterion that is used
to define both single-location and multi-location data races.
We present both atomic sets and atomic-set serializability (AS-
serializability) via the example program shown in Listing 2.
(In Listing 2, assume that all methods are public. The Java key-
word public has been omitted to save space. Moreover, the
Java keyword synchronized has been abbreviated as sync.)

An atomic set is defined with respect to a Java class C

and specifies that an invariant holds over a subset of the fields
defined by C. C may define as many atomic sets as fields,
however, each field is allowed to be a member of at most one
atomic set (i.e., the atomic sets are disjoint).

Example (Atomic Sets). Listing 2 presents a simple Java
program that defines a class Stack that implements a stack
data structure using an array Stack.data for storage and
an integer Stack.count whose current value is the top-of-
stack index into the array Stack.data. (For now, ignore
the class SafeWrap.) The annotations @atomic(S) on fields
Stack.data and Stack.count indicate that those fields are
members of the atomic set “S”. The (unspecified) invariant
over data and count is that the current value of count is the
index of the position in data where the top-of-stack item is
stored. The existence of this relationship is reflected by both
fields being members of the atomic set “S”.

Associated with atomic sets are units of work; a unit-of-
work annotation is a programmer assertion that a method
guarantees to maintain the invariant of an atomic set when
executed serially (i.e., the unit-of-work is executed to com-
pletion and all other threads wait for it to complete). We call
a unit of work that writes to all members of an atomic set a
write-complete unit of work.

Example (Units of Work). In Listing 2, the units of work are
methods that have the @atomic annotation (e.g., the method

Listing 2. Concurrent Stack program.

1class Stack {
2public static final int MAX=10;
3@atomic(S) Object[] data = new Object[MAX];
4@atomic(S) int count = -1;
5
6@atomic sync Object pop(){
7Object res = data[count];
8data[count--] = null;
9return res;
10}
11@atomic sync void push(Object o) {
12data[++count] = o;
13}
14@atomic sync int size() {
15return count+1;
16}
17@atomic sync replaceTop(Object o) {
18pop();
19push(o);
20}
21static Stack makeStack() {
22return newSITE Stack();
23}
24}
25class SafeWrap {
26@atomic sync Object popwrap(@atomic Stack s) {
27return (s.size() > 0) ? s.pop() : null;
28}
29static SafeWrap makeSafeWrap() {
30return new SafeWrap();
31}
32
33static void main(String[] args){
34Stack stack = Stack.makeStack();
35stack.push(new Integer(1));
36new Thread("1") {
37makeSafeWrap().popwrap(stack);
38}
39new Thread("2") {
40makeSafeWrap().popwrap(stack);
41}
42}
43}

Stack.pop). The write-complete units of work are the meth-
ods Stack.pop, Stack.push, and Stack.replaceTop.

The correctness criterion associated with atomic
sets is atomic-set serializability (AS-serializability). AS-
serializability is a generalization of serializability. In general,
a code region that should appear to execute atomically forms a
transaction (i.e., represents a logically-atomic operation). An
interleaved program execution is then serializable if it is equiv-
alent to an execution in which the transactions are executed
in some serial order. For AS-serializability, the atomic-code
regions (i.e., transactions) are the unit-of-work methods. An
execution is said to be AS-serializable if its projection on
each atomic set is serializable, where the projection of an
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execution with respect to an atomic set S removes all reads
and writes to memory locations that are not members of S.
AS-serializability is a generalization of serializability because
serializability can be obtained by defining all of memory to be
in one atomic set.4

Example (AS-serializable). Consider the method
Stack.replaceTop, whose body merely invokes the
methods Stack.pop and Stack.push. Each of the three
methods are synchronized methods, and the atomic set with
respect to which they must execute atomically is “S”. Because
the methods are synchronized, no other thread can access the
fields that are members of “S” until Stack.replaceTop com-
pletes execution. Thus, all executions of Stack.replaceTop
must be AS-serializable.

Atomic sets can be dynamically extended to include the
atomic sets of method parameters, which are referred to as
unitfor parameters. This is specified by an @atomic annota-
tion on a method parameter.5 Dynamic extension of an atomic
set captures the fact that if a unit of work is dependent on a
method parameter, execution of that unit of work must (appear
to) be atomic for the atomic sets of the parameter as well.

Example (Unitfor Parameters). Class SafeWrap does not
define an atomic set; however, method popwrap is defined as
a unit of work and parameter Stack s as a unitfor parameter.
Thus, popwrap should execute atomically with respect to the
units of work of class Stack, namely the atomic set S.

2.1 AS-serializability Violations

An execution that is not AS-serializable is said to have an AS-
serializability violation. A result from Vaziri et al. (2006)
is that if all units of work are write-complete, then AS-
serializability violations can be completely characterized by a
set of fourteen problematic access patterns. Tab. 1 presents the
fourteen problematic access patterns.6 Each pattern consists
of a sequence of reads (R) and writes (W ) to an atomic-set
member l, or to two atomic-set members l1 and l2. Prob-
lematic access patterns 1 through 5 capture single-location
data-consistency errors, while problematic access patterns
6 through 14 capture multi-location data-consistency errors.
Each memory access occurs during a unit of work u; the
subscript on the memory access denotes which unit of work
it belongs to. For example, problematic access pattern 1 is
defined as “Ru(l) Wu′(l) Wu(l)”, which describes an AS-
serializability violation that involves an atomic-set member
l. The first read and last write belong to unit of work u. The
intervening write belongs to a unit of work u′ that is executed
by another thread.

4 Defining serializability in terms of AS-serializability requires the ability
for atomic sets to span class definitions.

5 Vaziri et al. (2006) use the annotation “unitfor” to mark method parame-
ters that should be dynamically absorbed into an atomic set.

6 The patterns in Tab. 1 appear in Vaziri et al. (2006) and Hammer et al.
(2008).

To give a concrete illustration of an AS-serializability vio-
lation, let us return to the program in Listing 2. The method
Stack.pop performs no safety checking. That is, Stack.pop
does not verify that the stack is non-empty before attempt-
ing to remove the top-of-stack item. If Stack.pop is invoked
on an empty stack, then the field Stack.count will be −1.
The array access to the field Stack.data will result in an
ArrayIndexOutOfBoundsException being raised because
Stack.count has the value −1.

The class SafeWrap defined below Stack in List-
ing 2 addresses this oversight by defining the method
SafeWrap.popwrap, which first checks that the parameter
Stack s is not empty before invoking the method Stack.pop.
For the class SafeWrap, the method SafeWrap.popwrap is
a unit of work, indicated by the @atomic annotation on the
method, and the parameter “Stack s” is a unitfor parameter,
indicated by the @atomic annotation on parameter s. (Note
that the @atomic annotation provides a specification of the
desired behavior, and not an implementation of it.) Recall that
the atomic sets of a unitfor parameter are dynamically incor-
porated into the atomic sets of the invoking object, i.e., the
this parameter, for the duration of a unit of work. Because
class SafeWrap does not define any atomic sets, the atomic
set with respect to which SafeWrap.popwrap must execute
atomically is the atomic set S defined by class Stack.

Unfortunately, the attempt to “harden” the code by adding
error checking has introduced an AS-serializability violation.
The problem is that the program synchronizes on the wrong
object. In this case, the method SafeWrap.popwrap has the
synchronized annotation, whereas the method should have
been written to synchronize on the parameter Stack s. Thus,
the interleaved execution shown in Fig. 1 is valid.

The interleaved execution shown in Fig. 1 contains prob-
lematic access pattern 12. The data accesses that are involved
in the pattern are underlined in Fig. 1. Because of the AS-
serializability violation, the method SafeWrap.popwrap can
raise an ArrayIndexOutOfBoundsException even when
it is invoked on a non-empty stack. The interleaved execu-
tion shown in Fig. 1 illustrates how that can happen. Ini-
tially, the stack contains one item. Thread T1 begins exe-
cution and checks that the stack is non-empty by invoking
Stack.size. The check succeeds, and so T1’s next action is
to invoke Stack.pop. Before doing so, thread T2 successfully
executes SafeWrap.popwrap, which removes the item from
the stack, leaving it empty. When T1 resumes execution, it
invokes Stack.pop on an empty stack, which raises an excep-
tion. The point at which the exception is raised is denoted by
the symbolz at the end of thread T1’s execution sequence.

3 EMPIRE

EMPIRE is a tool to verify that errors such as the one described
at the end of §2 do not occur in a concurrent Java program
Prog. EMPIRE returns answers of the form “the problematic
access pattern p is definitely not present” or “the problematic
access pattern p may be present”, where p is an integer in the
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Id Problematic Access Pattern Description

1. Ru(l) Wu′(l) Wu(l) Value read is stale by the time an update is made in u.
2. Ru(l) Wu′(l) Ru(l) Two reads of the same location can yield different values in u.
3. Wu(l) Ru′(l) Wu(l) An intermediate state is observed by u′.
4. Wu(l) Wu′(l) Ru(l) Value read may not be the same as the one written last in u.
5. Wu(l) Wu′(l) Wu(l) Value written by u′ can be lost.

6. Wu(l1) Wu′(l1) Wu′(l2) Wu(l2) Memory can be left in an inconsistent state.
7. Wu(l1) Wu′(l2) Wu′(l1) Wu(l2) same as above
8. Wu(l1) Wu′(l2) Wu(l2) Wu′(l1) same as above.
9. Wu(l1) Ru′(l1) Ru′(l2) Wu(l2) State observed can be inconsistent.

10. Wu(l1) Ru′(l2) Ru′(l1) Wu(l2) same as above
11. Ru(l1) Wu′(l1) Wu′(l2) Ru(l2) same as above.
12. Ru(l1) Wu′(l2) Wu′(l1) Ru(l2) same as above.
13. Ru(l1) Wu′(l2) Ru(l2) Wu′(l1) same as above.
14. Wu(l1) Ru′(l2) Wu(l2) Ru′(l1) same as above.

Table 1. The fourteen problematic access patterns. Patterns 1–5 involve a single memory location; patterns 6–14 involve a pair of memory locations.

T1:

popwrap︷ ︸︸ ︷
[1

size︷ ︸︸ ︷
[1(sR1(c))s]1 ...........................................................................

pop︷ ︸︸ ︷
[1(sR1(c)R1(d)z

T2: .....................

popwrap︷ ︸︸ ︷
[2[2(sR2(c))s]2︸ ︷︷ ︸

size

[2(sR2(c)R2(d)R2(c)W2(d)W2(c))s]2︸ ︷︷ ︸
pop

]2 ............................

Fig. 1. An interleaved execution of thread T1 and T2 that contains an AS-serializability violation. R and W denote a read and write access, respectively. c and d
denote fields count and data, respectively. “[” and “]” denote the beginning and end, respectively, of a unit of work. The subscripts “1” and “2” are thread ids.
“(s” and “)s” denote the acquire and release operations, respectively, of the lock of Stack s that is the input parameter to SafeWrap.popwrap.

range one through fourteen that specifies the particular prob-
lematic access pattern of interest (cf. Tab. 1). EMPIRE uses
abstraction to generate an abstract program Prog] such that
the set of behaviors of Prog] is a sound over-approximation
of the set of behaviors of Prog. The challenge is to define
a finite-data abstraction such that Prog] is able to disallow
certain thread interleavings by modeling the synchronization
of Prog’s processes, and yet analysis of Prog] remains de-
cidable. These two properties are closely intertwined: if the
program model becomes more precise it likely implies that a
more powerful decision procedure will be required.

The EMPIRE toolchain is shown in Fig. 2. The input to
EMPIRE is a concurrent Java program Prog along with a set
of user-specified allocation sites. The allocation sites direct
EMPIRE to (attempt to) verify that all executions are AS-
serializable with respect to the objects that can be allocated
from those sites. We will generally refer to a specified alloca-
tion site by SITE.

Example (Specified Allocation Site). In Listing 2, the allo-
cation site of interest is signified by the subscripted newSITE

statement on line 22.

EMPIRE’s abstraction process proceeds in two stages. First,
a source-to-source program transformation (abbreviated as
“Src-to-Src” in Fig. 2) bootstraps the implementation of the

random-isolation abstraction. Second, the transformed pro-
gram is abstracted via random-isolation abstraction (“RIA” in
Fig. 2) to generate an EML program. From one EML program,
multiple queries are generated for the IPAMC model checker
that implements our decision procedure. The input to IPAMC
is a multi-pushdown system and an indexed phase automaton
that specifies the safety property. We defer the definitions of
these last two entities until §8.

Before getting to random isolation, we begin by defining
the EMPIRE Modeling Language (EML). Defining EML first
serves to motivate the need for a new abstraction technique.

4 EML

An EML program EProg consists of (i) a finite set of shared-
memory locations SMem; (ii) a finite set of reentrant locks
SLocks; and (iii) a finite number of concurrently executing
processes SProcs.

Memory. An EML shared-memory location m is an abstract
memory location: abstract reads and writes can be made on m;
however, EML does not have a notion of a value held by m.
The lack of values stored at shared-memory locations is an ar-
tifact of EMPIRE’s goal of verifying AS-serializability, which
is a property of the order of interleaved reads and writes of an
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Fig. 2. The EMPIRE toolchain. “EML” stands for EMPIRE Modeling Language (§4); “RIA” stands for random-isolation abstraction (§6); “Multi-PDS” stands for
multi-pushdown system (§8); “IPA” stands for indexed-phase automaton (§8); and “IPAMC” is our model checker for multi-PDSs (Kidd et al., 2010).

application, and not of the values read and written. Moreover,
abstracting away values is required to ensure that the analysis
of an EML program remains decidable.

Locks. An EML lock is reentrant, meaning that the lock can
be reacquired by the EML process that currently owns the
lock, and also that the lock must be released the same num-
ber of times to become free. EML restricts the acquisition
and release of an EML lock to occur within the body of a
function, i.e., an EML lock cannot be acquired in a function
f and released in another function f ′. In addition, the acqui-
sition of multiple EML locks by an EML process must be
properly nested: an EML process must release a set of held
locks in the order opposite to their acquisition order. The two
restrictions are naturally fulfilled when EML is used to model
synchronized methods and blocks of a Java thread.

Processes. An EML process Proc is defined by a set of
(possibly) recursive functions, one of which is designated
as the main function of the process. An EML function f is
defined by a labeled-flow graph Gf . A labeled-flow graph is a
tuple Gf = (Nodesf ,Labels,Edgesf , nentry, nexit), where:

– Nodesf is a set of nodes;
– Labels is defined with respect to the set of memory loca-

tions SMem and set of locks SLocks as shown in Tab. 2;
– Edgesf ⊆ Nodesf×Labels×Nodesf is a set of edges;
nentry ∈ Nodesf is the distinct entry node; and

– nexit ∈ Nodesf is the distinct exit node.

An edge e = (n, a, n′) ∈ Edgesf models the flow of control
from node n to node n′. Non-determinism is introduced by
having multiple outgoing edges from the same node. (EML
programs have only non-deterministic branches.) The label
a ∈ Labels represents a semantic action that the EML process
performs when transferring control from node n to node n′.
EML supports the labels listed in Tab. 2.

An edge labeled “start Proc” starts the EML process
named Proc. This is used to model the fact that when a Java
program begins, only one thread is executing its main method,
and all other threads cannot begin execution until they have
been started by an already executing thread.

The design of EML is strictly motivated by the desire to
perform AS-serializability violation detection, and thus we

Labels Semantics

call f invoke function f
read m read from memory location m ∈ SMem

write m write to memory location m ∈ SMem

alloc l allocate the EML lock l ∈ SLocks

lock l acquire the EML lock l ∈ SLocks

unlock l release the EML lock l ∈ SLocks

unitbegin begin a unit of work
unitend end a unit of work
start Proc start EML process Proc
skip a statement whose semantic action is not modeled

Table 2. The edge labels Labels of an EML flow graph that represents an
EML function and their corresponding semantics.

do not give a formal specification of its semantics. Instead,
the meaning of an EML program is defined by its translation
into a set of IPAMC queries. EML provides, in essence, an
intermediate representation in which the relevant information
extracted from a (concrete) Java program can be stored. Using
this intermediate representation, AS-serializability violation
detection can be carried out without further need for either the
original Java program Prog or the program that results from
the source-to-source transformation. Before we explain the
process of analyzing an EML program (§8), however, we first
explain how an EML program is generated.

5 The Allocation-Site Abstraction

The definition of EML in §4 makes explicit the constraints
that the result of program abstraction should satisfy: there
must be a finite number of shared memory locations, a finite
number of threads, and a finite number of reentrant locks that
are acquired and released in a properly nested fashion. A con-
current Java program, however, will typically only satisfy the
requirement that locks are acquired and released in a properly
nested fashion (synchronized methods naturally satisfy this
requirement).7

7 We assume that an analyzed Java program is restricted to use
synchronized methods and blocks and not other synchronization mech-
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To address the incompatibilities between a concrete Java
program and EML, we use program abstraction, and, in par-
ticular, the random-isolation abstraction. Before presenting
the random-isolation abstraction, we motivate the need for
a new abstraction by first discussing why the allocation-site
abstraction (Jones and Muchnick, 1982)—a commonly used
technique for modeling the unbounded set of dynamically allo-
cated concrete objects with a finite set of abstract objects—is
unsatisfactory. Specifically, we highlight the allocation-site
abstraction’s limitations when analyzing a concurrent pro-
gram that uses an unbounded number of dynamically-allocated
locks. Intuitively, the reason why locks pose such a problem
is that modeling synchronization in the abstract program re-
quires definite (must) information—i.e., information that an
abstract lock, and hence all concrete locks represented by the
abstract lock, is definitely in the locked state. When using the
allocation-site abstraction, an analysis typically only has in-
definite (may) information available. We make these concepts
more concrete in the following discussion.

Given an allocation site SITE for class T , let Conc(SITE)
denote the set of all concrete objects of class T that can be
allocated at SITE. The allocation-site abstraction uses a single
abstract object o]SITE to summarize all of the concrete objects
in Conc(SITE). When the size of Conc(SITE), denoted by
|Conc(SITE)|, is greater than 1, the abstract object o]SITE is
referred to as a summary object. Thus, for each field f defined
by T , field o]SITE.f is a summary field for the set of fields
{o.f | o ∈ Conc(SITE)}. Because the program has a finite
number of program points, and each class defines a finite
number of fields, this results in a finite-data abstraction.

Example (Allocation-Site Abstraction). There are five allo-
cation sites in Listing 2: line 22 allocates a Stack object;
line 30 allocates a SafeWrap object; line 35 allocates an
Integer object; and lines 37 and 40 allocate Thread ob-
jects T1 and T2, respectively. All allocation sites except the
one on line 30 are executed exactly one time for all execu-
tions of the program shown in Listing 2. The allocation site
on line 30 allocates two concrete objects because the method
SafeWrap.makeSafeWrap is invoked once by thread T1 and
once by thread T2.

The allocation-site abstraction would define the five ab-
stract objects o]22,o]30, o]35,o]37, and o]40, where abstract object
o]i represents all concrete objects that could be allocated at
the allocation site on line i. For the program in Listing 2, the
abstract objects o]22,o]35, o]37, and o]40 each represent a sin-
gleton set because the program only executes the associated
allocation statement once (as discussed above). However, the
abstract object o]30 represents two concrete objects because
the method SafeWrap.makeSafeWrap is invoked twice, once
by threads T1 and T2, respectively.

For the allocation-site abstraction to be sound, an analy-
sis generally has to perform weak updates on each summary
object. That is, information for the summary object must be

anisms. In particular, the non-syntactically restricted locks provided by the
java.util.concurrent package are not used.

accumulated rather than overwritten. In contrast, a strong
update—the alternative to a weak update—overwrites an ab-
stract object’s abstract state. Such an overwrite corresponds to
a “group kill” when the abstract object is a summary object.
Thus, a strong update of the abstract state generally can only
be performed when the analysis can prove that there is at most
one object allocated at SITE, i.e., |Conc(SITE)| = 1. For the
program in Listing 2, strong updates could be performed on all
abstract objects except o]30 because abstract object o]30 repre-
sents two concrete SafeWrap objects. Note that an interproce-
dural analysis would be required to determine that the abstract
object o]22—the abstract object representing objects allocated
by the Stack.makeStack method—represents a singleton set.
The problem is that o]22 is used to allocate all Stack objects,
and thus an interprocedural analysis would be required to
prove that the method Stack.makeStack is invoked exactly
one time for all executions of the program. Because of this
difficulty, analyses that make use of the allocation-site ab-
straction typically resort to the assumption that every abstract
object is a summary object.

An AS-serializability violation is defined in terms of reads
and writes to the fields of the T object allocated at a specified
allocation site SITE. Thus, to detect an AS-serializability vio-
lation, EMPIRE must track reads and writes to these fields. In
Listing 2, the allocation site of interest is on line 22. This is
denoted by the subscripted newSITE statement. The allocation-
site abstraction is a sound over-approximation for modeling
reads and writes because a read from (write to) the abstract
field o]SITE.f corresponds to a possible read from (write to)
o.f , for one concrete object o in Conc(SITE). For the progam
shown in Listing 2, the reads and writes of interest are to the
fields Stack.data and Stack.count. The @atomic(S) an-
notation on the two fields specifies that each field is a member
of the atomic set S.

Checking for AS-serializability violations also requires
EMPIRE to model program synchronization. If EMPIRE did
not model synchronization operations, it would likely be use-
less because the number of abstract executions would grossly
over-approximate the number of valid concrete executions,
which would typically result in a large number of false posi-
tives. Modeling Prog’s synchronization is accomplished by
defining EML locks. There are two possibilities for defining
the semantics of an EML lock:
1. The first possibility is to interpret a lock acquire as a

strong update, i.e., the program has definitely acquired a
particular lock. This would correspond to acquiring the
locks of all possible instances in Conc(SITE), which in
most circumstances—including the one here—would be
unsound. In the example of Listing 2, this interpretation
of locking combined with the allocation-site abstraction
would preclude the interleaved program execution shown
in Fig. 1 that contains the bug, because the two SafeWrap

objects would effectively get the same lock, and the two
SafeWrap.popwrap methods would execute without in-
terleaving.

2. The second possibility for defining the semantics of EML
locks is to interpret a lock acquire as a weak update, i.e.,
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the program may have acquired a particular lock. A weak
update would leave the lock in a “possibly-held” state.
When an EML process Proc attempts to acquire a lock
that is in the “possibly-held” state, two cases must be
considered.
(a) The lock is actually held by another EML process

Proc′ and thus Proc must block until Proc′ releases
the lock.

(b) The lock is not held by another EML process Proc′

and thus Proc may acquire the lock.
This semantics is sound because all possible cases are
considered. However, the overall effect of this semantics
is, in essence, equivalent to an EML program without
locks because the program can never reason definitively
whether or not a lock is actually held. That is, in the ab-
stract program a thread is always able to acquire a lock,
which in essence means that the abstract program operates
as if there are no synchronization constraints. In general,
this possibility would greatly increase the number of false
positives. For instance, in the example of Listing 2, if we
were to fix the code by adding an additional synchroniza-
tion block on the parameter Stacks inside the body of
SafeWrap.popwrap, the analysis would still report a bug
because locking behavior was modeled imprecisely.

Summary. Neither of the two possible semantics for locks
with the allocation-site abstraction is satisfactory: the first
leads to an unsound analysis and the second leads to an analy-
sis that would be useless in practice. Thus, a new abstraction
mechanism is required, one that is sound, but allows strong
updates to be performed on at least some of the abstract locks
(so that the analysis can (partially) reason about program syn-
chronization).

6 Random-Isolation Abstraction

To address the deficiencies of using the allocation-site ab-
straction, we developed a new abstraction technique, random-
isolation, which is a novel extension of allocation-site abstrac-
tion. The random-isolation abstraction is motivated by the
following observation:

Observation 1. The concrete objects that can be allocated
at a given allocation site SITE, Conc(SITE), cannot be distin-
guished by the allocation-site abstraction.

Obs. 1 states that if one chooses to isolate a random concrete
object rSITE from Conc(SITE), the allocation-site abstraction
would not be able to distinguish the randomly-chosen con-
crete object from any of the other concrete objects that are
represented by o]SITE.

The random-isolation abstraction leverages Obs. 1 by ran-
domly isolating one of the concrete objects allocated at allo-
cation site SITE and tracking it specially in the abstraction.
Whereas allocation-site abstraction would use one summary
object o]SITE to represent all concrete objects Conc(SITE) that
can be allocated at SITE, random isolation uses two objects:

one summary, o]SITE, and one non-summary, r]SITE. The object
r]SITE is a non-summary object because it alone represents the
randomly-isolated concrete object rSITE. Because r]SITE is a
non-summary object, it is safe to perform strong updates to its
(abstract) state, which gives us Random-Isolation Principle 1.

Random-Isolation Principle 1 (Updates) Let rSITE ∈
Conc(SITE) be a randomly-isolated concrete object. Because
rSITE is modeled by a special abstract object r]SITE, the
random-isolation abstraction enables an analysis to perform
strong updates on the abstract state of r]SITE.

Random isolation also provides a powerful methodology
for proving properties of a program, which is captured by
following Proofs Principle. In plain English, to establish that
a universally quantified safety property φ holds for all objects
oSITE ∈ Conc(SITE), it suffices to establish the property for
only the randomly-isolated object r ∈ Conc(SITE).

Random-Isolation Principle 2 (Proofs) Given allocation
site SITE and safety property φ over concrete objects,
to establish that ∀o : Conc(SITE) . φ(x) holds, it
is sufficient to establish that the augmented formula
∀o : Conc(SITE) . is ri(o) → φ(x) holds, where the
predicate is ri is true for the randomly isolated object
(allocated at site SITE).

Proof. The proof is by contradiction. Let Prog be a (con-
crete) concurrent program, Prog] be an (abstract) concurrent
program obtained via the random-isolation abstraction, where
the set of behaviors of Prog] over-approximates the set of
behaviors of Prog, i.e., Prog] is a sound abstraction of Prog.

Consider the case where the abstract program analyzer—
i.e., the software model checker—has verified that φ holds
for the randomly-isolated object in Prog], and also that
there exists a concrete trace where for some object oSITE ∈
Conc(SITE), φ(oSITE) does not hold. Because of random iso-
lation, the randomly-isolated object rSITE is just as likely to be
oSITE as it is to be any other concrete object. Thus, the model
checker must consider the case that rSITE is oSITE. Because the
property holds for r]SITE, and because r]SITE represents oSITE

in the trace under consideration, then the property must also
hold for oSITE, which is a contradiction under the above listed
assumptions. ut

Random-Isolation Principle 2 is crucial for applying soft-
ware model checking to the analysis of concurrent programs.
In particular, it allows the model checker to consider only
finite-data abstract programs yet still be able to prove safety
properties of infinite-data concrete programs.8

Random Isolation in EMPIRE Before describing the tech-
nical details of how random isolation is implemented, we
highlight the benefits of random isolation as used in EMPIRE.

EMPIRE attempts to establish that all executions of a con-
current Java program Prog are AS-serializable with respect to

8 We say finite-data and not finite-state because each thread has an
unbounded-sized stack, giving rise to an infinite-state space.
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the objects allocated at a user-specified allocation site SITE.
Formally, let φ(oSITE) be a formula stating that an execution
is AS-serializable with respect to the concrete object oSITE.
EMPIRE’s goal is then to establish that for all executions,

ψ1 = ∀x ∈ Conc(SITE) . φ(x).

Applying random-isolation abstraction allows us, via Random
Isolation Principle 2, to change the goal to that of establishing
the property:

ψ2 = ∀x ∈ Conc(SITE) . is ri(x)→ φ(x).

Eliminating the implication, we rewrite ψ2 as follows:

ψ3 = ∀x : Conc(SITE) . ¬is ri(x) ∨ φ(x).

Finally, to establish ψ3 via a software model checker, we
perform the following steps:

1. An abstract program Prog] is generated via the random-
isolation abstraction.

2. Formula φ3 is reinterpreted in the abstraction:

ψ]3 = ∀x] ∈ {r]SITE, o
]
SITE} . ¬is ri(x]) ∨ φ(x]).

The universal quantification is now over the two abstract
objects defined by the abstract program.9

3. Model checker IPAMC is used to check if there exists an
execution of the abstract program Prog] that satisfies the
negation of the formula. If IPAMC reports that no such
execution exists, then the original formula φ]3 holds. The
negation is defined as:

¬ψ]3 = ∃x] ∈ {r]SITE, o
]
SITE} . is ri(x]) ∧ ¬φ(x]).

4. To use IPAMC to determine if an execution satisfies ¬ψ]3,
EMPIRE must actually make fourteen separate queries. The
reason being that the negated formula, ¬φ(x]), is precisely
defined by the fourteen problematic access patterns listed
in Tab. 1. Thus, EMPIRE must perform one IPAMC query
per pattern.

The motivation for random isolation is to allow strong up-
dates on the abstract lock of an abstract object, where a strong
update corresponds to a definite lock acquire or definite lock
release. Strong updates are enabled in EML by defining an
EML lock for each non-summary object. Because of random
isolation, the state of the Java lock that is associated with the
randomly-isolated instance rSITE can be modeled precisely
by the state of the special abstract object r]SITE. That is, the
acquiring and releasing of the lock for rSITE by a thread of
execution can be modeled by a strong update on the state of
r]SITE, thus allowing the analyzer to disallow certain thread
interleavings when performing state-space exploration on the
generated EML program, and thereby improving the precision
of the analysis.

9 The concrete and abstract formulas, ψ3 resp. ψ]3, are related via the
Embedding Theorem (Sagiv et al., 2002). The reader is referred to Harris
et al. (2009, Lemma 1 and Theorem 1) for correctness proofs in the context
of three-valued logic and universal quantification in abstractions of logical
structures.

In contrast, because sound tracking of the lock state for a
summary object generally would result in the “possibly-held”
state, EML programs have no locks for summary objects:
their modeled behaviors are not restricted by synchronization
primitives. This approach provides a sound, finite model of
the locking behavior of Prog]. (It is an over-approximation
because the absence of locks on summary objects can cause
the abstract program to have thread interleavings not found in
the concrete Java program.)

6.1 Implementing Random Isolation

Random isolation can be implemented via a source-to-source
transformation. For expository purposes, we break down the
discussion of the source-to-source transformation into three
separate rewriting steps:

1. Random Tagging: The first transformation produces a
residual program that for any execution of the original
program Prog, at most one concrete object is randomly
chosen to be tagged as special, i.e., at most one concrete
object r is randomly isolated.

2. Synchronized-Method Elimination: The second trans-
formation makes explicit the synchronization opera-
tion for a Java synchronized method. Recall that a
synchronized method implicitly acquires the lock as-
sociated with the implicit this parameter. This trans-
formation makes the synchronization explicit by erasing
synchronized from method declarations and introducing
their semantically equivalent synchronized blocks.

3. Synchronized-Block Case Analysis: Finally, synchronized
blocks are the only source of lock and unlock operations.
When analyzing the program model, the lock-state of
a lock can generally only be determined precisely for
randomly-isolated objects, i.e., those introduced by the
first transformation above. However, due to aliasing it
might not be possible to determine statically whether a
reference uniquely refers to a randomly-isolated object
or not. The final transformation introduces case-analysis
expressions to determine whether an object reference ref
in a Java expression ”synchronized(ref){...}” solely
refers to a randomly-isolated object or not.

We now discuss each transformation in turn. To assist the
reader, the transformations are illustrated for the example
program shown in Listing 2.

Random Tagging: As explained above, the purpose of the
first source-to-source transformation is to modify the program
so that at most one concrete object is randomly tagged on any
given run of a program. Because we do not wish to modify
class definitions (e.g., by instrumenting each class to have
an additional “tag” field), our approach to random tagging
is to (i) generate a fresh allocation site; and (ii) ensure that
at most one object can be allocated from the fresh allocation
site for any given run of the program. Thus, random tagging
corresponds to being allocated from the new allocation site.
An additional benefit of this transformation is that it plays
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nicely with the allocation-site abstraction, the basis for the
random-isolation abstraction. Specifically, by definition of the
allocation-site abstraction, the introduction of a new allocation
site in the program’s source code causes the allocation-site
abstraction to have an additional abstract object. In essence,
our implementation of the random-isolation abstraction ex-
tends the allocation-site abstraction with special semantics
to abstract objects that correspond to the newly introduced
allocation sites—namely, the allocation-site abstraction is ex-
tended with the knowledge that the corresponding abstract
objects are non-summary objects.

Concretely, let us consider the random-tagging transforma-
tion in the context of the example program in Listing 2, where
the allocation site of interest is on line 22 and is repeated
below for convenience.

return newSITE Stack(); (1)

The Random-Tagging transformation involves transforming
the newSITE statement into

(rand() && testAndSet(FSITERI))

? newSITERI Stack() : newSITE Stack();
(2)

Site SITE from code fragment (1) is transformed into a
conditional-allocation site, where the conditional performs
a test and set of a newly introduced global flag FSITERI.10

The global flag FSITERI can be set to true at most once, thus
ensuring that at most one concrete object rSITE can ever be
allocated at the generated site SITERI. That is, FSITERI guar-
antees that |Conc(SITERI)| ≤ 1 for all possible executions
of the program; consequently, the size of the set that is the
concretization of r]SITE must also be less than or equal to one.

The observant reader might be concerned that an AS-
serializability violation could occur on an object allocated
from SITE that is not tagged. For example, an execution that
contains an AS-serializability violation but never allocates
an object from the fresh allocation site SITERI would satisfy
this criteria. Fortunately, this is not a problem because our
analysis considers all executions of the abstract program. The
following corollary makes formal why such executions—those
where the fresh allocation site is never executed—need not be
considered:

Corollary 1. For performing AS-serializability-violation de-
tection, we only have to be concerned with executions in which
rSITE is eventually allocated.

Proof. The claimed property is a consequence of the use of
randomness in code fragment 2. If there were a trace in which
rSITE was not allocated but the trace did in fact contain an AS-
serializability violation, then because of the use of randomness,
there must exist a similar trace in which the rSITE object was
allocated and the violation occurred on that object. That is,
the need to only consider traces in which rSITE is (eventually)

10 The “testAndSet” must be an atomic operation.11 Without the use of an
atomic “testAndSet”, the source-to-source transformation would introduce a
race condition that would allow multiple objects to be allocated at the newly
introduced allocation site SITERI.

allocated is a corollary of Random-Isolation Principle 2. All
such traces have the property that the global flag FSITERI must
eventually be set to true (see ¬ψ]3 in item 3 on page 10). ut

Synchronized-Method Elimination: We now discuss the
second transformation, which makes explicit all lock acqui-
sitions and releases in the Java program Prog. It is desirable
to have explicit locking operations because the analysis re-
quires the ability to distinguish between locking operations
performed on randomly tagged objects—i.e., concrete objects
whose abstract counterpart is guaranteed to be a non-summary
object—versus all other objects. Making the locking opera-
tions explicit allows uniform treatment of the case analysis,
which is the subject of the third transformation. Because this
transformation is trivial, we describe it by example.

Consider the method Stack.size() in Listing 2, repeated
below for convenience:

@atomic sync int size() { return count + 1; }

The lock associated with the this object is implicitly acquired
when size() is invoked, and released upon return. To make
the acquisition and release explicit, the method is transformed
as follows:

@atomic int size() { sync(this) { return count + 1; }}

Observe that the synchronized keyword has been removed
from the method declaration, and the entire body of the method
has been enclosed in a synchronized block that acquires the
lock associated with the (implicit) this parameter. (For static
synchronized methods, i.e., for synchronized class methods,
the this parameter to the synchronized block is replaced with
the name of the Java class in which the method declaration
occurs.)

Synchronized-Block Case Analysis: The last transformation
performs a case analysis on the points-to information asso-
ciated with the reference parameter to a synchronized block.
Consider the body of the transformed size method just de-
scribed:

sync(this) { return count + 1; }

in the context of the program with a transformed allocation
site as described in the Random-Tagging transformation.

(rand() && testAndSet(FSITERI))

? newSITERI Stack() : newSITE Stack();

The size method could be invoked on either the randomly-
tagged object rSITERI or an object allocated from the original al-
location site oSITE. When analyzing the program under random-
isolation semantics, the analysis can generally only prove
that the abstract object r]SITERI corresponding to the randomly-
tagged object rSITERI is a non-summary object. Thus, locking
operations, which constitute strong updates to the abstract
state of a lock object, can generally only be performed on the
object referred to by a Java reference if the analysis can prove
that the reference only refers to a randomly-tagged object. In
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points-to analysis terms, where the set of abstract objects that
a reference (e.g, this) may point to is denoted by Pts(this),
acquiring and releasing a lock is generally only possible when
the analysis can prove that Pts(this) = {r]SITERI}.

Our final transformation embeds a case analysis that en-
ables such a distinction to be made. The key observation is
that the desired case—that Pts(this) = {r]SITERI}—can be
precisely checked for dynamically. Specifically, the dynamic
check tests whether or not the reference refers to the randomly-
tagged (concrete) object rSITERI. We call the checking method
is ri because it is a test whether a reference is a reference to
a randomly isolated object. The concrete semantics of is ri

is as follows:

is ri(t) =def FSITERI ∧ t = rSITERI

The final transformation for a synchronized block on ref-
erence t is as follows:

//is ri(t) = true implies Pts(t) = {rSITERI}
if (is ri(t)) { sync(t) { body } }

//is ri(t) = false implies Pts(t) 63 rSITERI

else { sync(t) { body } }

Observe that the true and false branches of the is ri test
perform the same concrete actions. This is crucial because
the transformation must not alter the concrete semantics of
the program. That is, one should view is ri as performing a
metadata test, where the metadata of interest is whether or not
the referred to object has been randomly tagged. During EML
generation (discussed in §7), the metadata test determines
whether or not the generated EML program will contain an
action that changes the state of an abstract lock.

During points-to analysis, the interpretation of the call
on is ri performs a case analysis on Pts(t). Specifically,
the abstract interpretation of is ri performs the abstract test
“FSITERI ∧ t = r]SITERI”, which is just the corresponding ab-
stract semantics of the concrete semantics of is ri given
above. We extend the points-to analysis to interpret the is ri

method call as follows: when following the true branch of
the condition, the points-to analysis performs an “assume
Pts(t) = {r]SITERI}”; and when following the false branch
of the condition, the points-to analysis performs an “assume
Pts(t) = Pts(t) \ {r]SITERI}”.

Remark 2. The final transformation can be avoided, i.e., the
transformation that implements a case analysis via is ri,
when the analysis can already prove that Pts(t) = {r]SITERI}.
Such a property can often be established by means of an object-
sensitive interprocedural control-flow graph (ICFG). For read-
ers familiar with object-sensitive analysis in the style of Mi-
lanova et al. (2005), and its corresponding object-sensitive call
graph, the technique we use is similar to Milanova et al. (2005).
Briefly, an object-sensitive call graph CG models the interpro-
cedural control flow of a program, qualified by the identities of
the receiver objects of methods: there is a node in CG for each
method of the program for each context—i.e., each abstract

object that can act as the receiver of the invocation—in which
it can be invoked (Milanova et al., 2005). An object-sensitive
points-to analysis associates points-to facts with the nodes of
CG, thus computing different points-to facts for different ob-
ject contexts of the same method. Because these two analysis
artifacts are object-sensitive, their respective dataflow facts
make a distinction between objects allocated at SITERI and
objects allocated at SITE. For example, referring back to the
program in Listing 2, there would be two copies of the control-
flow graph (CFG) for the method Stack.size, one for object
context o]SITE and one for object context r]SITERI. Thus, inside
of the CFG for Stack.size with object context r]SITERI, an
analysis is able to take advantage of the fact that the special
Java this variable refers solely to the non-summary object
r]SITERI.

Defining the Abstract Program. After the source-to-source
transformations have been performed, the resulting program
is ready for abstraction; the corresponding abstract program
Prog] will operate over a set of abstract objects consisting of
o]SITE for each allocation site SITE in the program (including
the special abstract object r]SITERI for the generated allocation
site SITERI). Because threads in Java are objects themselves,
Prog] now has a finite number of abstract threads, where each
thread is associated with an allocation site. (We can, of course,
generate multiple copies of each thread as needed. That is, the
number of threads is actually a parameter of Prog].)

6.2 Summary

We conclude with three points about random isolation and its
implementation via source-to-source transformations:
1. Observe that if the randomly-isolated abstract object
r]SITERI is folded into the summary object o]SITE, then the
abstraction reduces to the allocation-site abstraction.

2. From the above observation, we can conclude that ran-
dom isolation can be used to improve the precision of any
analysis that must reason about an unbounded set of indis-
tinguishable objects, especially analyses that already use
the allocation-site abstraction. Moreover, random isolation
is particularly effective when an analysis needs the ability
to perform strong updates on the abstract state of an object.

3. Even though the transformations have been presented in
the context of AS-serializability-violation detection, ran-
dom isolation is a generic approach that can be applied
wherever an analysis needs to distinguish between r]SITERI

and o]SITE to perform a strong update. In particular, the
splitting of allocation sites to distinguish a random individ-
ual and the injection of case-analysis expressions to isolate
the actions performed on that individual has applications
outside of AS-serializability violation detection.

7 EML Generation

Once the abstract program Prog] has been generated from a
concurrent Java program Prog, the next step in EMPIRE is
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to generate an EML program EProg. We now discuss the
EML-generation process.

To model the randomly-isolated abstract object r]SITE,
EProg defines a shared memory location mf for each field f
of the class T , and also an EML lock lSITERI to model the lock
associated with r]SITE. The status of the global flag FSITERI is
modeled by the EML lock lSITERI being allocated or not. As
shown in §6.1 (see Corollary 1), we are only concerned with
executions in which lSITERI is eventually allocated. Hence we
need only be concerned with traces of the EML program in
which “alloc lSITERI” appears somewhere.

Let Threads be the set of all subclasses of
java.lang.Thread. For each θ ∈ Threads, and for
each allocation site SITEθ that allocates an instance of θ,
EProg defines an EML process ProcSITEθ that models the
behavior of one instance of θ that is allocated at SITEθ. Also,
EProg defines an EML process Procmain that models the
Java thread that begins execution of the main method.

The functions of an EML process Proc correspond one-
to-one with the methods of the Java program, i.e., for each
Java method m there is an EML function fm. The labeled-
flow graph Gfm is defined from the control-flow graph CFGm
that is associated with m.12 The control-flow graph CFGm
consists of a set of Java statements Stmts, a successor relation
Succ ⊆ Stmts× Stmts, and has distinct entry and exit state-
ments. The translation from CFGm to Gfm is straightforward.
There is a node nstmt ∈ Nodesfm for each stmt ∈ Stmts.
There is a labeled edge (nstmt, astmt, nstmt′) for each pair of
statements (stmt, stmt′) ∈ Succ. The label astmt models the
execution of the Java statement stmt. Tab. 3 shows the la-
bel astmt that is generated for a Java statement stmt. Note
that (i) synchronized blocks have been compiled down to
the lower-level Java bytecode statements monitorenter and
monitorexit; (ii) label generation must know if a method is
a unit of work; and (iii) a read or write access to the contents
of array field f of T is treated as a read or write access to the
field f .13

8 Verifying AS-serializability of EML Programs

An EML program has a set of shared-memory locations, SMem,
a set of EML locks, SLocks, and a set of EML processes,
SProcs. To verify AS-serializability of an EML program, EM-
PIRE generates a number of queries that are then answered
by IPAMC (Kidd et al., 2009b, 2010)—a model checker for
multi-PDSs with reentrant locks, whose decision procedure
can answer the types of queries required by EMPIRE.

Remark 3. Even though many analyses for multi-PDSs are
undecidable, some are decidable. Kahlon and Gupta (2007)

12 When using an object-sensitive analysis as discussed in Remark 2, there
will be multiple labeled-flow graphs for a Java method m, one for each object
context in which it could be invoked.

13 Our decision to treat an array and its contents as one field is not strictly
necessary. Using a more-refined analysis that can reason about arrays (Sagiv
et al., 2002; Gulwani et al., 2008; Dillig et al., 2010), a more precise model
could be generated.

Rule Control flow modeled

〈p, n1〉
s1
↪−→ 〈p, n2〉 Intraprocedural edge n1 → n2

〈p, nc〉
sc
↪−→ 〈p, ef rc〉 Call to f , with entry ef ,

from nc that returns to rc
〈p, xf 〉

sf
↪−→ 〈p, ε〉 Return from f at exit xf

Table 4. The encoding of a call graph’s and CFG’s edges as PDS rules. The
action a denotes the abstract behavior of executing that edge.

explore the boundary of decidability for answering queries
expressed in temporal logic on multi-PDSs. For a detailed
account of the decision procedure of Kidd et al. (2010) and
the characteristics of the problem that render it decidable, the
reader is referred to Kidd (2009).

A query is generated for each pair (m,m′) ∈ SMem ×
SMem for the fourteen interleaving scenarios. Pairs are used
because the interleaving scenarios are defined in terms of at
most two locations from an atomic set (cf. Tab. 1). Moreover,
AS-serializability-violation detection is asymmetric in that
it is performed with respect to an individual EML process
Proc. In total, EMPIRE generates O(|SProcs| ∗14∗ (|SMem|2))
queries for an EML program.

A generated query Π consists of a (i) pushdown system
(PDS) for each EML process (§8.2), and (ii) an indexed phase
automaton (IPA)—a restricted kind of non-deterministic finite
automaton (NFA)—that recognizes EML execution traces
containing an AS-serializability violation involving one or
two memory locations (§8.4). The remainder of this section
proceeds as follows: §8.1 formally defines PDSs, multi-PDSs,
and IPAs; §8.2 defines the translation from an EML process
to a PDS; §8.3 describes how IPAMC handles reentrant locks;
and §8.4 defines the IPA for an atomic-set/problematic-access-
pattern pair.

8.1 Definitions

A pushdown system (PDS) naturally models the interproce-
dural control flow of an EML process (see Tab. 4). In essence,
a PDS is an NFA equipped with a stack. The control states
of the NFA portion of a PDS models the global state of an
EML process, while the stack is used to ensure that only
interprocedurally valid paths are modeled.

Definition 1. A pushdown system (PDS) is a tuple P =
(P, Γ, Lab, ∆, c0), where P is a finite set of control loca-
tions; Γ is a finite set of stack symbols; Lab is a finite set
of labels (or actions); ∆ ⊆ (P × Γ ) × Lab × (P × Γ ∗)
is a finite set of labeled-transition rules, where a rule is de-
noted by r = 〈p, γ〉 a

↪−→ 〈p′, u′〉; and c0 = 〈p0, γ0〉 is the
initial configuration of P . A configuration c of P is a pair
〈p ∈ P, u ∈ Γ ∗〉. For a rule r = 〈p, γ〉 a

↪−→ 〈p′, u′〉, we use
lab(r) to denote r’s label a. Without loss of generality, we
restrict there to be at most two right-hand-side stack symbols
of a rule. A rule with zero, one, and two right-hand-side stack
symbols is called a pop, step, and push rule, respectively.
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stmt astmt Condition

o.m() call m
entry unitbegin this= r]SITE, CFGm is a unit of work
exit unitend this= r]SITE, CFGm is a unit of work
x = o.f, x = o.f[i] read mf r]SITE ∈ Pts(o)
o.f = x, o.f[i] = x write mf r]SITE ∈ Pts(o)
newSITERI T alloc l

r
]
SITE

monitorenter o lock l
r
]
SITE

Pts(o) = {r]SITE}
monitorexit o unlock l

r
]
SITE

Pts(o) = {r]SITE}
o.start() start ProcSITEθ o]SITEθ

∈ Pts(o).
* skip

Table 3. Java statement types for CFGm, their corresponding EML labels, and the condition necessary to generate the EML label. The final row is a catchall for
the Java statements that are either not modeled in EML or that do not satisfy the listed condition.

A concurrent program that synchronizes via locks, i.e., an
EML program, is modeled by a multi-PDS . Informally, a
multi-PDS consists of a finite set of PDSs and a finite set of
locks. The intention is that each PDS models a thread, and
that the PDSs acquire and release locks to perform global syn-
chronization. We assume that locks are acquired and released
in a well-nested fashion—locks are released in the opposite
order in which they are acquired—and in synchrony with a
PDS’s push and pop rules. In fact, the latter assumption is all
that is necessary as it implies the former.

Definition 2. A multi-PDS consists of a finite num-
ber of PDSs P1, . . . ,Pn, where each PDS Pj =

(Pj , Γj ,Labj , ∆j , c
j
0), that synchronize via a finite set of

locks SLocks = {l1, . . . , l|SLocks|}. The actions Lab of each
PDS consist of lock-acquires (“(i”) and releases (“)i”) for 1 ≤
i ≤ |SLocks|, plus symbols from Σ, a finite alphabet of non-
parenthesis symbols. A global configuration (c1, . . . , cn, ō)
is a tuple consisting of:

– a local configuration cj for each PDS Pi, 1 ≤ j ≤ n; and
– an ownership array ō of length |SLocks|, in which each

entry indicates the owner of a given lock: for each 1 ≤
i ≤ |SLocks|, ō[i] ∈ ({⊥, 1, . . . , n} × N ) is a pair where
the first component indicates the identity j of the PDS Pj
that holds lock li (⊥ signifies that li is currently not held
by any PDS), and the second component is a non-negative
number that indicates the number of times that a PDS has
(re)acquired a lock.

The initial global configuration g0 = (c10, . . . , c
n
0 , ō0), where

ci0 is the initial configuration of PDS Pi, 1 ≤ i ≤ n, and ō0 is
the initial ownership array that maps each entry ō[i], 1 ≤ i ≤
|SLocks|, to the ownership pair (⊥, 0). For an ownership array
ō, an update at position i for lock li to a new ownership pair p
is denoted by ō[i 7→ p].

Definition 3. For multi-PDS Π = (P1, . . . ,Pn, SLocks, Σ),
the Reentrant Semantics allows for a lock l ∈ SLocks to be
reacquired by the PDS that owns the lock. In particular, two
global configurations g and g′ are in the relation , denoted
by g  g′, iff g = (c1, . . . , cj , . . . , cn, ō) and one of the
following holds:

1. cj
a−→ c′j , a ∈ Σ, and g′ = (c1 . . . , c

′
j , . . . , cn, ō).

2. cj
(i−−→ c′j , ō[i] = (⊥, 0),

and g′ = (c1, . . . , c
′
j , . . . , cn, ō[i 7→ (j, 1)]).

3. cj
(i−−→ c′j , ō[i] = (j, z),

and g′ = (c1, . . . , c
′
j , . . . , cn, ō[i 7→ (j, z + 1)]).

4. cj
)i−−→ c′j , ō[i] = (j, z), z > 1,

and g′ = (c1, . . . , c
′
j , . . . , cn, ō[i 7→ (j, z − 1)]).

5. cj
)i−−→ c′j , ō[i] = (j, 1),

and g′ = (c1, . . . , c
′
j , . . . , cn, ō[i 7→ (⊥, 0)]).

The reflexive transitive closure of is denoted by g  ∗ g′. A
multi-PDS execution π is a finite sequence steps g0  g1  
. . .  gk. The word w assocated with π is the sequence of
actions from Σ—locking operations are not exposed—that
correspond to each transition step by item 1 above.

Given a multi-PDS, IPAMC is a model checker that de-
termines whether there exists an interleaved execution π of a
multi-PDS such that the word w associated with π is recog-
nized by an indexed phase automaton (IPA).

Definition 4. An indexed phase automaton (IPA) is a tuple
(Q, Id, Σ, δ), where Q is a finite, totally ordered set of states
{q1, . . . , q|Q|}, Id is a finite set of thread identifiers, Σ is a
finite alphabet, and δ ⊆ Q×Id×Σ×Q is a transition relation.
The transition relation δ is restricted to respect the order on
states: for each transition (qx, i, a, qy) ∈ δ, either y = x or
y = x+ 1. We call a transition of the form (qx, i, a, qx+1) a
phase transition. The initial state is q1, and the final state is
q|Q|.

The restriction on δ in Defn. 4 ensures that the only loops
in an IPA are self-loops on states, which is crucial for keeping
the checking problem decidable (Kidd, 2009). We assume that
for every x, 1 ≤ x < |Q|, there is only one phase transition
of the form (qx, i, a, qx+1) ∈ δ. (An IPA that has multiple
such transitions can be factored into a set of IPAs, each of
which satisfy this property.) Finally, we only consider IPAs
that recognize a non-empty language, which means that an
IPA must have exactly (|Q| − 1) phase transitions, i.e., any
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accepting run of an IPA will contain only a bounded number
of phase transitions.

8.2 Modeling an EML Process

We now discuss the generation of a PDS for an EML process
Proc. For expository purposes, we break the translation into
two steps.

– Step 1: a PDS P1 is generated that models the interpro-
cedural control flow of Proc. In this stage, all locking
operations—i.e., inter-process communication—are not
modeled by P1.

– Step 2: from PDS P1 a PDS P2 is generated that ac-
counts for locking operations and thus implements the
necessary interprocess communication that restricts the set
of allowable schedules.

Step 1: The first step is straightforward: a single-state PDS
P1 = (P1 = {p},Lab1, Γ1, ∆1, 〈p, emain〉) is generated us-
ing the rule templates depicted in Tab. 4, with Lab1 being the
set of all distinct EML statements used by Proc prefixed with
the EML process’s name. For example, if the EML statement
is “read m” and the EML process’s name is Proc, then Lab1

will contain “Proc.read m”. Including the EML process’s
name in the PDS action enables the violation monitor and
locks to know which EML process performs an action (cf. the
PDS rules for an EML lock above). P1 captures the inter-
procedural control flow of Proc. There is one exception, the
EML statement “start ProcSITEθ” does not include Proc as a
prefix because a thread can be started by any other thread (but
only started one time).

Step 2: PDS P2 is PDS P1 augmented to account for lock
allocation. (Recall that a lock must be allocated before it can
be used.) The set of control locations P1 of P1 is expanded to
include a boolean flag for each lock l. If the flag is true then
l has been allocated, otherwise an EML process has yet to
allocate l.

From Proc’s point of view, there are two ways that a
lock can be allocated: either Proc allocates a lock or an-
other EML process Proc′ allocates the lock. If Proc allo-
cates the lock l, then there will be a PDS rule of the form

〈p, γ〉 Proc.alloc l
↪−→ 〈p′, u〉. The corresponding rule in PDS

P2’s rule set ∆2 must ensure that the control location on the
left-hand-side has the flag for l set to false, and the control
location on the right-hand-side has the flag for l set to true.
Otherwise Proc′ allocates l. In this case, Proc has no way
of knowing when Proc′ allocates l, and therefore must guess
when the allocation occurred. Guessing is modeled by non-
deterministically invoking the guess method, which simply
guesses that another EML process allocates l. Because of
non-determinism, the guess method causes Proc to consider
all possibilities of lock allocation (i.e., the cross product of
SProcs and SLocks).

Formally, PDS P2 = (P2,Lab2, Γ2, ∆2, 〈∅, emain〉),
where

– P2 = 2SLocks : a control location is a set of flags s denot-
ing which locks have been allocated. The set of control
locations P1 is not used because it is the singleton set {p}.

– Lab2 = Lab1∪{P ′.alloc l | P ′ ∈ (SProcs \{Proc}), l ∈
SLocks}: Lab2 is Lab1 augmented to include actions that
allow for P2 to guess when another EML process Proc′

allocates a lock.
– Γ2 = Γ1 ∪{guess}: Γ2 includes the stack symbol guess

that implements the guessing procedure.
– ∆2 is defined from ∆1 as shown in Tab. 5. Row 2 ensures

that no lock is allocated more than once; row 3 ensures that
a lock is not used before being allocated; and rows 4 and 5
ensure that the shared-memory locations are not accessed
before r]SITE has been allocated. Row 6 defines rules that
invoke the “guessing” procedure for each configuration of
P2. Guessing is necessary because an EML process cannot
know when another EML process allocates a lock. Row 7
defines rules that implement the guessing procedure: from
control location s, s ⊆ SLocks, guess that EML process
P ′ ∈ (SProcs \ {P}) allocates a lock l ∈ (SLocks \ s), and
return back to the caller in the control location s ∪ {l}.
The guessing rule is then labeled with action P ′.alloc l.

The multi-PDS that models an EML program then has,
for each EML process, a PDS P defined as just described,
and the set of locks is merely the set of locks SLocks of the
EML program.

8.3 Modeling an EML Lock

The translation from an EML lock to a multi-PDS lock that
is used by IPAMC is straightforward: there is a one-to-one
correspondence between EML locks and the set of multi-
PDS locks. The use of the notation SLocks to represent both
the set of EML locks and multi-PDS locks emphasizes this
correspondence.

We next briefly describe how IPAMC replaces reentrant
locks with non-reentrant locks via a transformation called
language-strength reduction (Kidd et al., 2008). The transfor-
mation relies on the fact that lock acquisitions and releases
are synchronized with a PDS’s stack. Briefly, the technique
involves transforming a PDS so that it pushes a special marker
onto the stack the first time a lock is acquired, and also records
the fact that the PDS acquired the lock in the PDS’s state
space. All subsequent lock acquisitions and and their match-
ing releases do not change the state of the PDS. When the
special marker is seen again on the stack, the PDS is about
to execute the matching release for the initial lock acquisi-
tion, and thus actually release the lock. In essence, for PDS
P = (P,Lab, Γ,∆, c0), the transformation defines a new
PDS P ′ = (P ′,Lab, Γ ′, ∆′, c′0), where

– P ′ = P × 2SLocks , where a member (p, s) of P ′ includes
the original control state p of P and a set s that records
the set of locks that P ′ currently holds.

– Γ ′ = Γ ∪ (Γ × SLocks) consists of the original stack
alphabet Γ , and, in addition, a new set of symbols that
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Action a Rule 〈p, γ〉 a
↪−→ 〈p, w〉 ∈ ∆1

τ , start P ′ { 〈s, γ〉 a
↪−→ 〈s, w〉 | s ∈ 2SLocks }

alloc l { 〈s, γ〉 P.a
↪−→ 〈s ∪ {l}, w〉 | s ∈ 2SLocks ∧ l /∈ s }

lock/unlock l { 〈s, γ〉 P.a
↪−→ 〈s, w〉 | s ∈ 2SLocks ∧ l ∈ s }

read/write m { 〈s, γ〉 P.a
↪−→ 〈s, w〉 | s ∈ 2SLocks ∧ lSITERI ∈ s }

ubegin/uend { 〈s, γ〉 P.a
↪−→ 〈s, w〉 | s ∈ 2SLocks ∧ lSITERI ∈ s }

? { 〈s, γ〉 τ
↪−→ 〈s, guess γ〉 | s ∈ 2SLocks }

? { 〈s, guess〉 P ′.alloc l
↪−→ 〈s ∪ {l}, ε〉 | s ∈ 2SLocks ∧ l /∈ s ∧ P ′ ∈ (SProcs \ {P}) }

Table 5. Each row defines a set of PDS rules in ∆2 from a rule in ∆1. The control location p from a rule in ∆1 is not repeated because all rules in ∆1 are
single-control-location rules. The condition for generating a rule reflects that certain actions can only occur when a lock has been allocated, e.g., acquiring a lock
l can only occur after l has been allocated (see §8.2).

enables P ′ to record on the stack the first time that a lock
l ∈ SLocks has been acquired.

– ∆′ contains, for each rule r ∈ ∆, a set of rules that main-
tain and update the set of held locks s for a control state
(p, s), and record on the stack via a symbol (γ, l) that a
lock has been acquired for the first time. The exact defini-
tion of ∆′ is beyond the scope of this paper, and we refer
the reader to Kidd et al. (2008) for further details.

– c′0 = 〈(p0, ∅), γ0〉 is the initial configuration paired with ∅
to indicate that P ′ does not hold any locks.

After transforming P to be P ′, all nested lock acquisitions
and releases have been removed. Hence, we can refine the
Reentrant Semantics to disallow configurations where an own-
ership array ō contains at position i for lock li an ownership
pair (j, z) such that z > 1, which gives the Non-Reentrant Se-
mantics. To distinguish between the Non-Reentrant and Reen-
trant Semantics, we will use j and ⊥ to denote the ownership
pair (j, 1) and (⊥, 0), respectively. The shorthand is sound
because there can be no ambiguity, i.e., (j, z) where z > 1 is
not allowed. Moreover, to distinguish the Non-Reentrant Se-
mantics, we will use −→ instead of to denote the transition
relation between global configurations.

Definition 5. The Non-Reentrant Semantics of a multi-PDS
CP is defined by a transition relation −→ on global configura-
tions. Two global configurations g and g′ are in −→, denoted
by g−→ g′, iff g = (c1, . . . , cj , . . . , cn, ō) and one of the fol-
lowing holds:

1. cj
a−→ c′j , a /∈ { (i, )i },

and g′ = (c1 . . . , c
′
j , . . . , cn, ō).

2. cj
(i−−→ c′j , ō[i] = ⊥,

and g′ = (c1, . . . , c
′
j , . . . , cn, ō[i 7→ j]).

3. cj
)i−−→ c′j , ō[i] = j,

and g′ = (c1, . . . , c
′
j , . . . , cn, ō[i 7→ ⊥]).

Note that items 1,2, and 3 correspond to items 1,2, and 5 of
the Reentrant Semantics. The word w that for an execution π
is defined the same as in the Reentrant Semantics.

8.4 Violation Monitor

The IPA Amon acts as a violation monitor that detects when
one of the problematic access patterns occurs during a unit of
work for a specific EML process Proc. To do so, it must track
(i) the reads and writes to the shared-memory locations SMem
by each EML process, and (ii) whether or not the target EML
process Proc is executing a unit of work.

Tracking the reads and writes of EML processes requires
only a finite amount of state, i.e., state to track which reads
and writes of interest have been seen. Recall that units of work
are reentrant because unit-of-work methods may be recursive
or invoke other unit-of-work methods. Thus, tracking the unit-
of-work status of Proc requires an infinite amount of state.
Fortunately, the stack of the PDS for Proc is infinite-state, and
the language-strength-reduction transformation (Kidd et al.,
2008) can be used to fuse the unit-of-work depth count with
the PDS stack. The transformation is analogous to the one
discussed in §8.3. After applying the transformation, tracking
the unit-of-work status for Proc requires only a finite amount
of state, namely a Boolean flag, and thus tracking both the
reads and writes of interest and the unit-of-work status of
Proc can be performed by an IPA Amon.

The IPA Amon accepts interleaved executions (traces) that
contain the memory accesses specified by the problematic
access pattern of interest. To make the discussion more con-
crete, we focus on the IPA A12 shown in Fig. 3, which tracks
the problematic access pattern “R1(c);W2(d);W2(c);R1(d)”
for the AS-serializability violation from the program shown
in Listing 2. For a generic problematic access pattern p, the
definition of the NFA Amon that recognizes traces containing
p follows naturally.

Fig. 3 gives a graphical depiction of A12. The initial state
is q1 and the final state is q7. For a trace to be accepted by
A12, it must make a transition through each state q1–7. That
is, the states q1–7 track the memory accesses that make up
problematic access pattern 12. The transition (q1,alloc, q2)
models the allocation of the randomly-isolated object. Once
the randomly-isolated object has been allocated, A12 ignores
reads and writes by following the self-loop on state q2 until
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q7q1
alloc

q2
[

Σ

q3
R1(c)

Λ

q4
W2(d)

Λ

q5
W2(c)

Λ

q6
R1(d)

Λ

Fig. 3. The NFAA12 that recognizes traces of interleaved read and write memory accesses containing problematic access pattern 12 for the program shown in
Listing 2. The edge labeled alloc denotes allocating the randomly-isolated object. An edge labeled R1(c) (W2(c)) denotes a read from (write to) the field
Stack.count by thread T1 (T2). Similarly, edges labeled R1(d) and W2(d) denote accesses to the field Stack.data. The symbols [ and ] denote Proc
beginning and ending a unit of work, respectively. Σ denotes the input alphabet ofA12, and Λ is defined as Σ \ {]}. OnceA12 guesses that a violation will
occur by making a transition to state q3, it must observe a violation before the unit-of-work end symbol “]” appears in a trace. Otherwise, it will become stuck in
a state q3−6.

the target EML process Proc begins a unit of work—modeled
by the transition (q2, [, q3).
A12 makes use of non-determinism. For each state qi,

3 ≤ i ≤ 6, there is a self-loop labeled with [RiWi. The
symbol [ models reentrant calls to units of work. The state does
not change because Proc must be executing a unit of work
for A12 to be in state qi. The symbols Ri and Wi denote read
and write accesses to any memory location by either thread.
The use of non-determinism enables A12 to “guess” which
memory accesses are actually involved in problematic access
pattern 12. For example, if A12 is in state q3 and observes
the action R1(c), it can make a transition to state q4—-the
action is part of problematic access pattern 12—or it can
follow the self-loop and remain in state q3—the action is
not part of problematic access pattern 12. Non-determinism
is required because a thread may perform multiple memory
accesses during a unit of work.

8.5 Queries

Once a multi-PDS Π and IPA Amon have been generated
for an EML program EProg, a query is given to the model
checker IPAMC to determine if an interleaved execution of Π
is recognized by Amon. If IPAMC returns true, meaning that
there is an interleaved execution of Π recognized by Amon,
then the EML program has an AS-serializability violation.
Otherwise, IPAMC returns false, and the EML program does
not have an AS-serializability violation for the given scenario
defined over a single or double-memory location for scenarios
1–5 and 6–14, respectively, and the target EML process Proc.

9 Experiments

EMPIRE is implemented using the WALA (IBM, 2009)
program-analysis framework. Random isolation is imple-
mented using WALA’s facilities for rewriting the abstract-
syntax tree (AST) of a Java program. The default object-
sensitive call graph construction and points-to analyses
are modified to implement the semantic reinterpretation of
“is ri”, as described in §6.1. After rewriting the ASTs, EM-
PIRE emits an EML program from the input Java program.

The EML program is then translated into multiple multi-
PDS/IPA pairs, for which reachability queries are answered
using IPAMC (Kidd et al., 2009b, 2010). All experiments were
run on a dual-core 3 GHz Pentium Xeon processor with 4 GB
of memory.

The goal of the experiments was to determine whether
the techniques developed and implemented in EMPIRE could
detect both single- and multi-location AS-serializability vi-
olations. We evaluated EMPIRE on eight programs from the
ConTest suite (Eytani et al., 2007), which is a set of small
benchmarks with known concurrency bugs. EMPIRE requires
that the allocation site of interest be annotated in the source
program. We annotated eleven of the twenty-seven programs
that ConTest documentation identifies as having “non-atomic”
bugs. Our front-end currently handles eight of the eleven (the
AST rewriting currently does not support certain Java con-
structs). When analyzing a program with the user-specified
allocation site SITE that allocates an object of type T , we used
the default assumptions that (i) all fields declared by T are in
one atomic set, and (ii) each public method defined by T is a
unit of work.

To reduce the size of the generated models, we made minor
modifications to the benchmark programs. For the programs
analyzed, file I/O is used to output debugging and scheduling
information, and to receive input that specifies the number of
threads. We removed these operations, and manually unrolled
loops that allocate Thread objects 2 times. When a bench-
mark used a shared object of type java.lang.Object as a
lock, the type was changed to java.lang.Integer because
our implementation uses selective object-sensitivity, for which
the use of java.lang.Object as a shared lock removes all se-
lectivity and severely degrades performance.14 The programs
SoftwareVerificationHW and shop define each thread’s
run() method to consist of a loop that repeatedly executes one
unit of work. For these programs, the code in the body of the
loop was extracted out into its own method so that the default
unit-of-work assumptions would be correct. Each modification
had no impact on the AS-serializability violations that could
occur in a benchmark.

14 By selective object-sensitivity, we mean that a full object-sensitive call
graph is not constructed because doing so exhausts memory resources. Instead,
the call graph is only object sensitive with respect to a few key object types:
the type T of the specified allocation site, the types of all of T ’s fields, and
the type of all subclasses of threads.
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Benchmark # Queries # Violations Found # Queries Verified

Account 642 38 604
AirlineTickets 900 18 882
PingPong 384 35 349
ProducerConsumer 512 72 440

SoftwareVerificationHW 15 6 9
BugTester 615 0 615
BuggyProgram 615 16 599
shop 900 27 873

Totals 4583 212 4371

Table 6. For each benchmark, column “# Queries” gives the number of queries that were generated (i.e., the number of IPAs generated for a benchmark’s
model Π). Columns “# Violations Found” and “# Queries Verified” give the breakdown of query satisfaction (i.e., an execution of Π is and is not, respectively,
recognized by a generated IPA). The horizontal line after row 4 separates the benchmarks that did not contain any synchronization operations after abstraction
from those that still did contain synchronization operations.

In total, EMPIRE generated 4583 IPAMC queries. Each
query was analyzed using a 300-second timeout, and com-
pleted successfully within that threshold. Tab. 6 presents a
summary of the analysis results. The dividing line that sepa-
rates the first four benchmarks from the latter four benchmarks
pertains to lock usage. Each generated EML program consists
of a single lock, namely, the lock for the randomly-isolated
object.15 However, for the first four benchmarks, the code does
not contain synchronized methods, and hence does not acquire
and release the lock associated with the randomly-isolated
object. For the latter four benchmarks, the code contains syn-
chronized methods, and the generated EML programs for
these four contain lock and unlock operations. In total, EM-
PIRE:

1. found 212 (possible) AS-serializability violations (col. “#
Violations Found”); and

2. determined that 4371 queries did not contain an AS-
serializability violation (col. “# Queries Verified”).

Tab. 7 presents a breakdown of the problematic-access-
pattern numbers of the AS-serializability violations that were
found for each benchmark program. For 7 of the 8 benchmarks
listed in Tab. 7, EMPIRE found multiple AS-serializability
violations (indicated by ⊗), where by actual AS-serializability
violation we mean a true AS-serializability violation in the
concrete concurrent Java program listed. The false positives
(denoted by �) reported for PingPong are due to an over-
approximation of a thread’s control flow—exceptional-control-
flow paths are allowed in the model that cannot occur during
a real execution of the program. Tab. 7 entries marked by “?”
indicate problematic access patterns for which there is an AS-
serializability violation in the EML program, but has not been
verified in the original Java program.16

15 EMPIRE can generate multi-lock EML programs when the Java program
makes use of global locks that are guaranteed to be unique, such as the lock
that is associated with a Class object.

16 Due to a limitation of our implementation in not producing witness
traces for failed queries (sometimes called “counterexamples”), we are not
able to check whether the AS-serializability violations found using IPAMC
but not by our previous approach (Kidd et al., 2009a) using the model checker

Overall, the experiments show that EMPIRE is able to
detect both single- and multi-location AS-serializability vio-
lations. It is interesting to note that for benchmarks where a
multi-location AS-serializability violation was found, a single-
location AS-serializability violation also occurred. This can
be explained by the fact that Java methods typically read and
write to a field multiple times, which allows for both single-
and multi-location AS-serializability violations to occur.

10 Related Work

Strong updates on an isolated non-summary object. The
idea of identifying non-summary objects so that strong updates
can be performed on them has a long history in shape-analysis
algorithms. Originally, some non-summary objects could be
identified as a fortuitous byproduct of the abstraction in use.
For instance, with approaches based on k-limiting (Jones and
Muchnick, 1981; Horwitz et al., 1989) non-summary nodes
are maintained along selector-edge paths of length ≤ k from
program variables. The shape abstraction of Chase et al. (1990)
tracked which node merges in an abstract memory configu-
ration preserved the property that the resulting abstract node
represents a single concrete node in each store that the abstract
memory configuration represents.

Plevyak et al. (1993) introduced the idea of deliber-
ately isolating a non-summary node that represents only the
memory location that will be updated during a transition.
They called this operation deconstruction. Deconstruction
has turned out to be essential, both for developing analyses
that are tolerant of temporary violations of data-structure in-
variants, as well as for developing analyses that are capable of
synthesizing data-structure invariants while analyzing loops
that traverse linked data structures. Ordinarily, deconstruction
is used to isolate the current node m being operated on, which
is often the only node that does not satisfy some node-centric

CPDSMC (Chaki et al., 2006) are actual bugs or false positives. The lack of
witness traces is not a fundamental limitation of the approach used in IPAMC,
just of our current implementation; in principle, it is possible to extend IPAMC
to produce witness traces.
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Program 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Account ⊗ ⊗ ? ⊗ ⊗ ? ? ?
AirlineTickets ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ? ? ?
PingPong ⊗ ⊗ ⊗ ⊗ � � � � � � � � �
ProducerConsumer ⊗ ⊗ ⊗ ⊗ ⊗ ? ? ? ? ? ⊗ ⊗ ⊗ ?

SoftwareVerificationHW ? ? ? ?
BugTester
BuggyProgram ⊗ ⊗ ⊗ ⊗ ⊗
shop ⊗ ⊗ ? ? ? ? ? ? ⊗ ? ? ?

Table 7. Marked entries denote violations reported by EMPIRE, with ⊗ being a true positive; � a false positive; and ? being a reported violation that that we
have not determined whether or not it is a true positive. Scenarios 6–16 involve two memory locations.

property ϕ(n) that holds for all other nodes ni of the data
structure (often a local connectivity property, but sometimes
a non-local reachability property). Once “surgery” has been
completed on node m to establish ϕ(m), the loop moves on
to another node, and m is often folded into an existing sum-
mary node—and thus ϕ(·) continues to hold for all concrete
nodes represented by the summary node. By this means, the
fixed-point-finding loop of an abstract-interpretation solver
can perform what amounts to an inductive argument that the
loop (re-)establishes ϕ(·) throughout the data structure.

The work of Plevyak et al. (1993), and related work by Sa-
giv et al. (1998), exploited deconstruction in analyses tailored
for specific data structures—doubly-linked lists in the case
of Plevyak et al., and singly-linked lists in the case of Sagiv
et al. Later work by Sagiv et al. (2002) gave an account of
deconstruction in terms of logic, and showed that the essence
of deconstruction involves a step, called focus, which forces
the values of certain formulas (e.g., one that specifies which
memory location will be updated during a transition) from an
indefinite value (unknown) to a definite value (true or false).
Focus is a semantic reduction (Cousot and Cousot, 1979): it
has the effect of converting an abstract memory configuration
into one or more abstract memory configurations that are more
precise than the original one. Moreover, the approach taken by
Sagiv et al. (2002) provided the ability to apply deconstruction
in every abstraction specifiable using their parametric frame-
work for shape analysis (which is implemented in the TVLA
system (Lev-Ami and Sagiv, 2000)).

Gopan et al. (2004, 2005) also used the idea of working
with a non-summary element so that strong updates could be
performed, and showed how it could be applied to the analysis
of programs that manipulate arrays.

Work in the type-theory community that uses similar ideas
includes that of Walker and Morrisett (2000), Foster et al.
(2002), Fahndrich and DeLine (2002), Aiken et al. (2003),
Ahmed et al. (2007), and Rondon et al. (2010).

When the analysis methods discussed above also employ
the allocation-site abstraction (Jones and Muchnick, 1982),
each abstract memory configuration will have some bounded
number of abstract nodes per allocation site.

Like random-isolation abstraction, recency abstraction
(Balakrishnan and Reps, 2006) uses no more than two ab-
stract blocks per allocation site SITE: a non-summary block

MRAB[SITE], which represents the most-recently-allocated
block allocated at SITE, and a summary block NMRAB[SITE],
which represents the non-most-recently-allocated blocks al-
located at SITE. As the names indicate, recency abstraction is
based on tracking a temporal property of a block b: the “is-the-
most-recent-block-from-SITE(b)” property, which serves to
isolate MRAB[b] from the blocks represented by NMRAB[b].

With counter abstraction (McMillan, 1999; Pnueli et al.,
2002; Yavuz-Kahveci and Bultan, 2002), numeric information
is attached to summary objects to characterize the number of
concrete objects represented. The information on summary
object u of abstract configuration S describes the number of
concrete objects that are mapped to u in any concrete configu-
ration that S represents. Counter abstraction has been used in
the analysis of infinite-state systems (McMillan, 1999; Pnueli
et al., 2002), as well as in shape analysis (Yavuz-Kahveci and
Bultan, 2002).

In contrast to all of the aforementioned work, random-
isolation abstraction is based on isolating a random individual
(so that strong updates can be performed on its abstract coun-
terpart), tracking its properties, and generalizing from the
properties of the randomly chosen individual to all of the in-
dividuals allocated at the same allocation site, according to
Random-Isolation Principle 2. The isolation can be performed
either via (i) a source-to-source transformation of the original
program (as explained in §6.1); (ii) in the concrete operational
semantics; or (iii) in the abstract semantics. Method (i) facili-
tates the use of random isolation in conjunction with existing
analyses as a way to strengthen them. In addition to the work
described in the present paper, random isolation has been used
to model check information-flow properties of decentralized
information flow control (DIFC) systems, which manipulate
potentially unbounded sets of processes, principals, and com-
munication channels (Harris et al., 2009).

The work most closely related to random isolation is the
technique of temporal case splitting (Emmi et al., 2009),
which was developed independently and contemporaneously
with random isolation (Kidd et al., 2009a). Temporal case
splitting also provides a way to reduce analysis problems that
involve an unbounded number of entities and resources to a
finite abstraction. In temporal case splitting, manually intro-
duced “Skolem variables” serve to name a single, arbitrary
individual among a given class of individuals. Emmi et al.
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(2009) used temporal case splitting as one of several tech-
niques in a tool to verify programs that use reference counting
to track resources and schedule their deallocation.

Detection of concurrency-related bugs. Traditional work on
error detection for concurrent programs has focused on clas-
sical data races. Static approaches for detecting data races
include type systems, where the programmer indicates proper
synchronization via type annotations (e.g., Boyapati et al.
(2002)), model checking (e.g., Qadeer and Wu (2004)), and
static analysis (e.g., Naik and Aiken (2007)). Dynamic analy-
ses for detecting data races include those based on the lock-
set algorithm (Savage et al., 1997), on the happens-before
relation (Min and Choi, 1991), or on a combination of the
two (O’Callahan and Choi, 2003). A data race is a heuristic
indication that a concurrency bug may exist, and does not
directly correspond to a notion of program correctness. In
our approach, we treat atomic-set, unit-of-work, and unitfor
annotations as a specification language that allow a program-
mer to state his intensions more precisely. Moreover, AS-
serializability accounts for multi-location consistency errors
that the aforementioned techniques would not be able to find.

High-level data races may take the form of view incon-
sistency (Artho et al., 2003), where memory is read inconsis-
tently, as well as stale-value errors (Burrows and Leino, 2004),
where a value read from a shared variable is used beyond the
synchronization scope in which it was acquired. Our problem-
atic interleaving scenarios capture these forms of high-level
data races, as well as several others, in one framework.

Several notions of serializability and associated detection
tools have been presented, including Flanagan and Freund
(2004); Sasturkar et al. (2005); Lu et al. (2005); Wang and
Stoller (2006a). These correctness criteria ignore relationships
that may exist between shared memory locations, and treat all
locations as forming one atomic set. Therefore, they may not
accurately reflect the intentions of the programmer for correct
behavior. Atomic-set-serializability takes such relationships
into account and provides a finer-grained correctness criterion
for concurrent systems. For a detailed discussion and compar-
ison of different notions of serializability see Hammer et al.
(2008).

AS-serializability was proposed by Vaziri et al. (2006).
That work focused on inference of locks. A dynamic violation-
detection tool was proposed in Hammer et al. (2008) to
find errors in legacy code. Hammer et al. also analyzed pro-
grams from the CONTEST benchmark suite, and their dy-
namic tool found AS-serializability violations in the pro-
grams Account, AirlineTcks, BugTester, PingPong, and
SoftwareVerificationHW. EMPIRE is a static counterpart
of their tool, with the benefit that EMPIRE considers multi-
ple executions of a program (symbolically), instead of just
one execution like the dynamic tool of Hammer et al. Even
though EMPIRE did not find the AS-serializability violation
in BugTester because EMPIRE exhausted its available re-
sources, it did find AS-serializability violations in shop, which
the tool of Hammer et al. did not find. The remaining two
benchmarks were not analyzed by their tool.
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