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Abstract

The effectiveness of traditional type checking in C is limited by the presence of type conversions
using type casts. Because the C standard allows arbitrary type conversions between pointer types,
neither C compilers, nor tools such as lint, can guarantee type safety in the presence of such type
conversions. In particular, by using casts involving pointers to structures (C structs), a programmer
can interpret any memory region to be of any desired type, further compromising C’s weak type
system. Not only do type casts make a program vulnerable to type errors, they hinder program
comprehension and maintenance by creating latent dependencies between seemingly independent
pieces of code.

To address these problems, we have developed a stronger form of type checking for C programs,
called physical type checking. Physical type checking takes into account the layout of C struct
fields in memory. This paper describes an inference-based physical type checking algorithm and its
implementation. Our algorithm can be used to perform static safety checks, as well as compute
useful information for software engineering applications.

1 Introduction

In C, a pointer of a given type can be cast into any other pointer type. Because of this, a programmer can
interpret any region of memory to be of any type. Traditional type checking for C cannot enforce that
such reinterpretation of memory is done in a meaningful way, because the C standard allows arbitrary
type conversions between pointer types. For this reason, C compilers and tools such as lint do not
provide any warnings against potential runtime errors arising from the use of casts.

We motivate the problem of type safety in C programs using the following two examples.

Example 1. Consider the code fragment in Figure 1. Because of the cast (ColorPoint *), a structure
of type Point can be interpreted as a structure of type ColorPoint. If the sole dereference of pointer pcp
in the program were pcp->x, the program would work correctly, because the x field is present in both
structures at the same offset. However, the dereference pcp->color can cause unexpected behavior.
Neither cc nor lint issues a warning for this program. An overly conservative type checker for C could
disallow the cast from a value of type Point * to a ColorPoint *, regardless of whether the field color
is dereferenced from pcp. Unfortunately, C programs contain casts with surprising frequency[SCKR99],
and a type checker that disallows all casts would, in practice, outlaw too many programs.

Example 2. Consider the code fragment in Figure 2. In this code, the cast (Radio *) converts a type
Clock * (the type of ¢ + 1 as the same as the type of c) to type Radio *. This program would be
declared unsafe by a conservative type checker that rejects all casts. At first glance, this decision appears
to be reasonable, because the cast seems to make no sense. However, notice that ¢ points to the first
field of the structure ClockRadio. Because of C’s pointer-arithmetic rules, the expression ¢ + 1 yields



typedef struct { int x,y; } Point;
typedef struct { int x, y, color; } ColorPoint;

main() {
Point p;
ColorPoint *pcp;

pcp = (ColorPoint *)&p;
pcp—>x = 1;
pcp->color = RED;

Figure 1: A program to illustrate problem with type casts. The dereference pcp->color can cause
unexpected behavior in this program.

typedef struct { int hour, minute; } Clock;
typedef struct { double frequency; } Radio;

typedef struct {
Clock clock;
Radio radio;

} ClockRadio;

main() {
ClockRadio cr;
Clock *c;
Radio *r;

c = &(cr.clock);
r = (Radio *)(c + 1);
r->frequency = 91.5;

Figure 2: An example of the “+1” casting idiom. By C’s type rules, the expression (c + 1) has the
same type as c. Therefore, the cast at the second statement is from Clock* to Radio*. Because Radio
follows Clock in struct ClockRadio, the cast is actually safe.

the address of—i.e., a pointer to—the beginning of the second field of ClockRadio. A pointer to this
field can correctly be dereferenced for a frequency field, as is done in this example. This program relies
on the fact that c points to a region in memory that contains a Clock structure followed by a Radio
structure (and also on the fact that the size of Clock is such that no padding is required between the
fields clock and radio). Although this usage appears contrived, we have found it used frequently in
production code (see [SCKR99]).

These examples show that C programmers implicitly rely on the physical layout of structs in memory.
This makes type checking difficult: a type checker that is based only on manifest types in the program
would either be too conservative, or, like a C compiler, would permit potential run-time errors to go
undetected.

Moreover, casts are used heavily in C programs, particularly in systems software. Table 1 presents
empirical data from a suite of C programs.



Program | kLOC | Void-Struct | Struct-Struct
binutils 516 1109 188
remacs 288 1662 70
gee 208 410 137
telephone 110 126 430
bash 76 123 47
vortex 67 592 50
ijpeg 31 74 601
perl 27 101 15
zkernel 37 1882 179
Total 1360 6079 1717

Table 1: Count of casts in a suite of C programs [SCKR99]—SPEC95 benchmarks gee, ijpeg, perl, vortez,
GNU utilities bash, binutils, zemacs, networking code zkernel, and portions from a Lucent Technologies’s
product code telephone. kLOC is the number of source lines (in thousands). The Void-Struct column
gives the total number of casts in which a void* was converted to a pointer to a struct (or vice versa),
and the Struct-Struct column gives the number of casts in which both the types involved were pointers
to structs. These numbers include both implicit and explicit casts.

1.1 Physical Type Checking

In this paper, we develop a new form of type checking for C programs, called physical type checking,
that is based on the physical layout of structs in memory. The goal of physical type checking is to
provide static safety checks for pointer dereferences in a program. A program that passes these static
safety checks is declared to be physically type safe.

In the first example (Figure 1), our type-checking algorithm would declare the program to be unsafe,
because the actual type of p, Point, does not have a field color, which is required because of the
dereference pcp->color. If the program did not contain the statement pcp->color = RED, our algorithm
would declare the program to be type safe, because the requirements on the structure pcp would be
satisfied by its actual type. In the second example (Figure 2), our algorithm would declare the program
to be type safe, because the requirements on the structure cr are satisfied by its actual type.

Physical type checking is carried out by a flow-insensitive, context-insensitive, interprocedural analysis
algorithm. In terms of how this analysis relates to previous work, the most significant aspects are as
follows:

e The physical-type-checking algorithm is cast as a type-inference problem: For the most part, the
analysis ignores the declared types in a program, and relies on inference to compute a “required”
type for each variable in the program whose address is taken. In recent years, a number of other
papers have also used type inference as a mechanism for specifying flow-insensitive analyses (see
Section 6).

e There are some similarities between the physical-type-checking algorithm and previous work on
flow-insensitive points-to analysis [And94, Ste96, SH97, YHR99]. The relationship between physical
type checking and points-to analysis is addressed in Section 4.3.

Physical type checking is useful for a number of purposes. Its most obvious application is to discover
potential physical type errors caused by inconsistent type interpretations of memory. Just as a tool
such as LClint [Eva96] statically identifies certain classes of errors in programs, physical type checking
detects another class of errors that traditional C type checking misses. Physical type checking also has a
number of applications in software-engineering tools: The information obtained can help a programmer
to understand the ways type casts are used in programs, to uncover hidden dependences between different
C types, and to retrofit more stringent type declarations to variables or function arguments.



ground
| t[n] // array of type t of size n
| tptr // pointer to ¢
| s{mi,...,mp} // struct
| uw{|mi,...,mg|} //union
m
(t,1,1) // member labeled [ of type t at offset i
| (1:n,i) // bit field labeled [ of size n at offset 4
ground ::
e{idy,...,idy} // enum
| void* | char | unsigned char
| short | int | long | double |

Figure 3: A slightly simplified type system for C. Type qualifiers are ignored (e.g., const int and
volatile int are treated as int). Furthermore, typedefs are considered to be synonyms for the types
they redefine.

1.2 Contributions

The starting point for our work is the observation that C programs that use type casts require type
checking that is more powerful than the standard type-checking system for C (which is based only on
variables’ declared types). The paper’s contributions can be categorized as follows:

o We formulate an alternative type system for C based on the physical layout of structs in memory.

o We give an inference-based algorithm to perform such type checking for C programs. We also
describe an implementation of the algorithm that uses an off-the-shelf constraint solver.

e In previous work, we had introduced a notion of physical subtyping between struct types. However,
this work did not handle pointer fields inside structures. In this paper, we introduce a way to handle
subtyping in the presence of pointer fields.

1.3 Outline

The remainder of the paper is organized as follows: Section 2 reviews some ideas from our previous
work [SCKR99] that we draw upon in later sections. Section 3 presents the basic approach behind
our physical-type-checking algorithm, and describes certain problems with pointers that hinder our
approach. Section 4 presents the actual algorithm and shows how it solves these problems. We describe
our implementation in Section 5. Section 6 discusses related work.

2 Preliminaries

In this section, we define what we mean by physical type safety, and review the notion of physical
subtyping, which was introduced in [SCKR99].

Our work addresses a slightly simplified version of the ANSI C type system, as shown in Figure 3.
Members and bit-fields of struct and union types are annotated with an offset. In a struct, the offset
of a member indicates the difference in bytes between the storage location of this member and the first
member of the struct. The first member is, by definition, at offset 0. All union members have offset 0.



The computation of other offsets is compiler dependent, but must follow a number of requirements, as
set down in the ANSI C standard. In particular, C compilers lay out compatible prefixes of two structures
identically. We discuss the data-layout issue further in Appendix A.

It is useful to define a number of auxiliary functions for a type ¢:

o stype(e) is the compiler-assigned type of a C expression e;
o sizeof (t) is the standard C sizeof function;
o offset(t,z) is the offset of field x in struct or union type t.
We assume that the statements in an input program have been normalized to consist of only a few simple

forms, shown in Table 2. The purpose of normalization is to limit the number of cases our analysis must
consider. A procedure to convert a program into this normal form may need to introduce temporary

Address-Of p=&x
Assignment P = castyp; q
Pointer Dereference on rhs P = xq
Pointer Dereference on lhs *p = q
Field Dereference on lhs p—=>a=q
Field Dereference on rhs p=q—a
Field Address p=&(q — a)
Plus One p=q+1
Other Arithmetic p=qopk

Table 2: Statements in the normal form.

variables. We also assume that all assignment statements copy values only of ground types, i.e., struct
copies are transformed to element-wise copies.! Notice that a cast may appear only in the Assignment
statement in the normal form. Such casts are only needed if we want the normalized program to be
a legal C program; in all other respects, casts do not have any significance at all in the physical-type-
checking algorithm. The declared types of variables are used only to compute the appropriate offset
corresponding to a field dereference.

Table 3 shows the normalization of a few sample statements.

p=s.a tmp = &s
p=tmp—=a
p = &(s.a) tmp = &s

p=&(tmp — a)
p—oa—>b=gq tmp=p—a
tmp —b=gq

Table 3: Examples of normalization.

2.1 Physical Type Safety

Since the semantics of C is not formally specified, we must state precisely what we mean by physical type
safety in the context of C programs. Here, we provide only an intuitive notion of safety requirements
on pointer dereferences, leaving a more formal characterization to an appendix. Appendix B describes
a runtime notion of physical type safety that corresponds to these intuitive safety requirements.

Intuitively, to be physically type safe, each pointer dereference should point to “valid memory”, and refer
to a “valid type”. By valid memory, we mean that the address computed for the load of the specified

1 For this transformation to fully simulate a call to memcpy, it may be necessary to introduce manufactured field names
to stand for holes introduced by padding.



field from memory must be within the bounds of the allocation unit that the pointer currently points
to. (Each stack-allocated variable constitutes an allocation unit, as does a chunk of memory returned
by malloc.) By valid type, we mean that the ground type being referred to must be the same as the
one stored at the memory location.

For example, in Figure 1 in the previous section, a dereference of color from pcp is not physically type
safe, because the field color lies outside the valid memory of a Point variable. Suppose we cast &p to
a pointer to struct { int x; float y; }. We would consider a dereference of the y field as unsafe,
because the ground type being referred to (i.e., float) does not match the type stored at the memory
location (i.e., int), although the address of the field does lie within the allocation unit, i.e., refers to
valid memory.

Note that physical type safety is still not a guarantee of absence of runtime errors. For example, it says
nothing about errors related to management of heap storage and to the bounds of array references.

2.2 Physical Subtyping

A cast-free C program that type checks (and that does not use unions inconsistently) will be physically
type safe. However, many C programmers find it useful to use casts, and this motivated us to find
alternative conditions under which physical type safety could be guaranteed. A key concept in defining
such conditions is physical subtyping.

The idea behind physical subtyping is that a value of one type ¢t may be operated upon as if it had
another type #', if in the memory layout of the two types, the values stored in corresponding locations
“make sense”. Consider the following code:

Point pt;
ColorPoint cp;

pt.x = 3; pt.y = 41;
cp.x = 5; pt.y = 17; pt.c = RED;

A picture of how pt and cp are represented in memory might look like:

pt || 3|41
cp || 5| 17 | RED

cp can be thought of as being of the same type as pt simply by ignoring its last field.
We write t<t' to denote that ¢ is a physical subtype of type t'. The intuition behind physical subtypes

can be summarized as follows:
e The size of a type is no larger than the size of any of its subtypes.
e Ground types are physical subtypes of themselves and not of other ground types. For example:

— int<int
intﬁdouble
doubleﬁchar

— an enumerated type is not a physical subtype of a different enumerated type (or any other
ground type)

e If a struct type is a physical subtype of another struct type then the members of two types line
up in some sensible fashion. In matching two struct types, we allow a number of “relaxations”,
for example, flattening out the struct types, or renaming their member labels.



[Reﬂexivity] m
<

[Void Pointers] t ptr<void*
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Struct

[Structures] {mq,...,mp}g{my,...,m},}
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[Member subtype] (1) (n; 4’m') =

Figure 4: Inference rules for physical subtypes.

Figure 4 presents rules for inferring that a C type ¢ is a physical subtype of C type t' (denoted by t<t'),
in the style of [Gun92].

The rule for structures attempts to match up one structure as a prefix of another structure. (The rule
does not show the relaxations that we allow in matching struct types.) Note that there is no rule for
physical subtyping that involves comparing two union types. This is because with unions, determining
which branch within a union is the active one is an orthogonal problem. Note also that we have no rule
for comparing two pointer types, except that we consider any pointer type to be a physical subtype of
void*. In [SCKR99], we report on how these subtyping rules “explain” several patterns of cast usage in
C programs.

3 Physical Type Checking

Our type-checking algorithm works by performing a backwards propagation of type requirements to the
program points at which a memory address is created and bound to a pointer variable. We first describe
and provide the rationale for a new domain of types that is used in our type-checking system. We
then describe the main ideas behind our physical type-checking algorithm. This subsection essentially
presents a type-checking algorithm that works on a restricted subset of programs. Finally, we describe
the difficulties we face when trying to extend the algorithm for general programs.

In Section 4, we will present the complete type-checking algorithm that works on unrestricted programs.
Our motivation for splitting the presentation into two sections is that we wish to first present the essence
of physical type checking in a somewhat simplified setting in which we do not have to face up to the full
range of complications that pointers cause us.

3.1 Type Obligations
We define a domain T of type obligations as follows:

T = {ti,...,tn}
| A

where t; is a C type as defined in Figure 3. A denotes the null type obligation.

We say T is a type obligation on a pointer-valued variable p, if in the context provided by the rest of the
program, either

e T = A, and p occurs unconstrained, i.e., the value of p is not used as an address, or,



struct t { int i; } a;

. . . struct s { double d;} b;
union { int i; double d; } *u;

void *p;
R p = &a;
e oy A
u->d = 3.14; ((struct t *)p)->i = 3;

p = &b;

((struct s *)p)->d = 3.14

Figure 5: This figure shows two examples where no single C type would guarantee physical type safety.

o T = {t}, and dereferences from p would be physically type safe if p points to a struct of type t,
or any physical subtype of ¢, or,

o T ={t1,...,tp},n > 1, and no single C type could guarantee that all dereferences from p would
be physically type safe (see Figure 5); however, each of {t;},...,{t,} are type obligations on p.

Type obligations express sufficient, but perhaps more than necessary conditions for physical type safety.
In the systems of constraints that we generate, we denote the type obligation on a variable p by (p).
(Our intention is to find the least restrictive type obligation for each (p) that satisfies the system of
constraint.) We also introduce type obligations for pointer sources. The following syntactic occurrences
are pointer sources:

e An address-of &var
e A malloc call site

e An array arithmetic operation a+i, where a is an array. (Multidimensional arrays also yield a
pointer if the number of subscripts is less than the declared arity.)

In our constraint system, the type obligation of &v is denoted by {(&wv), of a+i by (&a), and of an
occurrence of malloc at a particular program site s by (mallocs).

We define the domain of type obligations in this manner because sometimes it is not possible to infer
that (p) is a single C type for each pointer-valued variable p in a procedure, even though the procedure
is physically type safe. This can happen for two reasons:

e Use of C unions can introduce incompatible type requirements if the dereferences refer to multiple
interpretations of the union. In the first code fragment in Figure 5, there is no single C type that
is a physical subtype of both an int and a double, and could guarantee type safety, therefore (u)
cannot be assigned any C type (see the discussion below). This could happen even if our algorithm
were flow-sensitive.2

e The flow-insensitive nature of our inference algorithm can give rise to spurious type requirements.
In the second code fragment in Figure 5, (p) must be a physical subtype of both struct s and
struct ¢, even though p is used in only one way each time it is assigned. There is no C type that
is a physical subtype of both struct s and struct t.

It may be tempting to infer a C union type as the least restrictive type in such cases. However, the
interpretation of a union of types is an “or” of the constituent types: it provides space to store any
one of the constituent types, but it may hold only one type at a time.> For example, union {int i;
double j;} is not a physical subtype of either int or double, because we do not know which of the two

2We note again that analyzing whether or not unions are treated in a “consistent” manner (e.g., as variant records) is
an orthogonal issue.
3There exist programs that abuse unions to do type casting.



fields was last stored in the union. By contrast, {t1,...,t,} represents an “and” of types, in the sense
that it represents a type that can be all of its constituent type at the same time. Thus, {int,double} is
a physical subtype of both int and double. The set form of type obligations gives us a way of recording
information about certain kinds of inconsistent types, which is helpful in a tool that reports anomalous
usages.

We also define a binary relation C on type obligations, which captures the fact that, if A C B and B
is a type obligation for p, then A is also a type obligation for p. That is, if the right-hand-side term is
sufficient to be (p) for some p, then so is the left-hand-side term, by either being a physical subtype of
the right-hand-side term, or including more types in the set.

The relation C has the following properties:

T C T
T C A
NELANTRET3; = ThCET;s
{.ti,...} C {t:}
Tu{t} C T
t1 <tz & {t1} E{t2}

In the remainder of this paper, we will usually skip the surrounding curly braces when we mention a
singleton C type in the C relation.

3.2 Inference-Based Physical Type Checking

In this subsection, we describe the intuition behind our inference-based approach to physical type check-
ing. Our description is expressed as a simpler algorithm for physical type checking, and works only
for a restricted subset of programs; the full algorithm is described in Section 4. For this subsection,
assume that the program being checked does not contain second-level pointers. Second-level pointers
hold pointers to variables that may themselves be pointers to other variables, or to struct variables
that may contain a pointer as a member field.*

The type-checking algorithm works in two steps. First, it infers a least-restrictive type obligation for each
pointer source (i.e., a type obligation that is greatest with respect to C). The process of inferring least-
restrictive type obligations is described below in Section 3.2.1 and Section 3.2.2. The second step of the
algorithm performs type checking: it checks whether these pointer sources satisfy their type obligations.
A pointer source p satisfies its type obligation if either of the following two cases hold:

1. {p) C {t}, and the static type of the variable associated with the pointer source is a physical
subtype of ¢.

2. {p) C {t1,...,t,}. No static type can, in fact, be a physical subtype of two incomparable (under <)
types. In this case, a user must use other information, such as control flow, to make a determination
of physical type safety.

We provide some examples of this process in Section 3.2.3. By checking that type obligations hold at
pointer sources in a program, we can determine whether or not the program is physically type safe. Note
that we do not perform any checks at the actual points of dereference, because the type-inference step
propagates the “needs” of these dereferences back to the pointer sources.

4Since this algorithm is presented only for expository purposes, we are not concerned with testing whether a program
qualifies for use with this restrictive algorithm. One possibility, however, is to perform a conservative points-to analysis
on the program.
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Figure 6: The relation generation rules.

3.2.1 Generating Type Constraints

The type-inference procedure traverses the abstract syntax tree of the program to generate a set of
relations, or constraints, on type obligations. It generates a set of constraints using the rules in Figure 6.
The {e) terms appear as “unknowns” in this set of relations—the procedure to “solve” for these terms

is described in the Section 3.2.2.

The relation-generation procedure also employs three auxiliary functions for constructing new C types

from existing C types. Let ¢t be a C struct type:

t=s{my,...,mp 1,(ts, T,0g),--., My}
Define
PrefixExclusive(t, z) = s{mq,...my_1}
and
PrefizInclusive(t,x) = s{mu, ... (tz,T,iz)}
and

Concat(t, tnew) = S{t; (tnew; lnew; inew)}

where [,,¢,, is a new field label and i,,., is an appropriate offset. The function PrefizFEzclusive forms a
new struct type that contains all fields in the same order as ¢t up to,> but not including field z; the
function PrefixInclusive is similar except it includes the field z. The function Concat augments a struct

with a new field of the specified type tnew-

We normally use a type-obligation term, e.g.,

(e), in the

second argument of Concat. When this is the case, Concat results in a set of C types, which is the result
of mapping the function defined above onto all the constituent C types of the type-obligation argument.

The rationale for the rules in Figure 6 as follows:

o Field Dereference: The type obligation on e should be a struct that has space for an z field at
the right offset. The constructed type PrefixInclusive(t, ) expresses exactly this criterion. Note
that the field e — 2 itself cannot contain a pointer value.

e Pointer Dereference: The type obligation on e is typeof (*

e), which constraints e to point to the

(only) valid ground type. Note that *e itself cannot contain a pointer value.

5This may include unnamed “holes” introduced by padding that alignment restrictions may require. We do not explicitly

mention these holes in our examples.
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struct S {

int a;

int b; struct {

struct T { int a:
. )
int x; int b;
. )
?nt s struct {
int z; int x

’
}ou; } ou;
} *ps }

struct T *q;
q = &(p—>u); g—>x = 3;

Figure 7: Example to explain the Field Address constraint-generation rule. The struct on the right
hand side is the constructed type that constrains (p). See the text for details.

o Field Address: This rule propagates the type obligation of a pointer into the middle of a structure
back to the pointer to the top of the structure. For instance, in Figure 7, q is a pointer into the
middle of the structure that p points to. The type obligation of g, based on the dereference q->x,
is struct { int x;}. The type obligation on p must capture the fact that the field at the offset
offset(struct S,u) must satisfy the type obligation of q. The constructed type shown on the right
in Figure 7 constrains (p) accordingly.

e Plus One: For arbitrary arithmetic, the algorithm would declare the type obligation on e to be a
divergent type (T). However, our algorithm takes a special interest in the case of e + 1, because we
can track the type obligation precisely. The rational for this rule is much as in the Field Address
case: the type obligation of an internal pointer in a structure is propagated to a pointer that points
to the “previous field” in the same structure. Note that in this rule, the static type of e need not
be a pointer to a struct.

o Assignment: The type obligation for the left-hand side of an assignment is propagated to the right-
hand side. That is, the assignment rule propagates type obligations counter to the direction in
which values flow during execution. In this sense, the analysis is a backwards analysis (albeit flow
insensitive) that propagates the “needs” originating from dereferences back to the pointer sources.

e Address-Of This case is similar to Assignment.

3.2.2 Solving for (e)

The result of the constraint-generation procedure is a set of C relations involving (e) terms. We now
combine the constraints so we can arrive at the values for (e) terms. We use transitivity and the following
resolution rules, until we have only a single relation involving any given (e) term on the left-hand side.

((e) E{t:D) A ({e) E{t2}) Atr < 82) = ({e) E{t1})
(e) T{t ) A((e) E{t2}) A (tr RKt2) A(t2 K t1) = ({e) T {t1,t2})

These rules, which follow from the properties of C mentioned in Section 3.1, either eliminate types that
are already covered by other types because of physical subtyping, or if they are not related by subtyping,
combine them into a multi-element set. The final right-hand-side value in (e) C T is the answer we get
for (e).

SWe have side-stepped certain details such as an occurs-check test in constructed type terms. These implementation
issues will be covered in Section 5.
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3.2.3 Examples of Inference-Based Type Checking

Example 3. Consider again the code in Figure 1. The following constraints are generated for the three
statements in the program (using the Assignment rule for the first statement and Field Dereference for
the next two statements):

(&p) T (pcp) (1)

(pecp) C struct {int x} (2)

(pecp) E struct {int x, y, color} (3)
By transitivity, we obtain

(&p) LC struct {int x}

(&p) LC struct {int x, y, color}

Since struct {int x, y, color} < struct {int x, y}, the simplified constraint for (&p) is (&p) C
struct {int x, y, color}. Accordingly, the solution for (&p) is struct {int x, y, color}. Since
the declared type of p, Point, is not a physical subtype of (&p), the program is unsafe. Notice that the
algorithm did not attach any significance to the type cast used in Figure 1 (cf. (1) above).

Example 4. Consider the code in Figure 2. We normalize the first statement ¢ = &(cr.clock) to pcr
= &cr and ¢ = &(pcr->clock). The constraints generated for the four statements are:

(&er) T (per) (1)
(per) C  Concat(PrefizExclusive(Clock, clock), (c)) (2)
{(¢) C Concat(Clock, (r)) (3)
(r) C struct {double frequency} (4)

From constraint (4), the solution for (r) is struct {double frequency}. From (3), the solution for {c)
is Concat(Clock, struct {double frequency}), or struct {Clock c, struct {double frequency}
r}.” From (2), the solution for {pcr) is struct { struct {Clock c, struct {double frequency} r}
s}, which, by (1), becomes the solution to {&cr). Since ClockRadio is a physical subtype of the last
constructed type, the program type checks.

Example 5. Figure 8 presents an example of a code where the flow-insensitive nature of our algorithm
forces us to infer multi-set types as least restrictive type obligations. In this code fragment, a voidx
variable p is used to hold, at one time, address of a Point variable, and at another time, address of a
ColorPoint variable. (p) evaluates to { Point, RealPoint }. However, when { Point, RealPoint }
is compared against &pt and &rpt, we will be forced to announce a possible unsafety. As an aside, if
prior to running our algorithm, a conversion to single-static assignment form performed on the program
(so independent occurrences of p are named differently), the algorithm would declare the program to be
safe.

An attractive feature of inference-based type checking is that it propagates use information back to
the source. This has an obvious advantage from the standpoint of reverse-engineering and program-
comprehension applications—one can figure out exactly in which ways a given struct variable is used in
a program. This information can also be used to refine the type declarations of procedure parameters.

3.3 The Pointer Subtyping Problem

We now turn to the restrictions on pointers that we placed on the program in the algorithm in Section 3.2.
Suppose we wish to type check the case in which a member field of a structure itself is a pointer. Consider
the following candidate rule for pointer fields:

"The field names such as ¢ and r are actually offsets in the implementation and thus specific names are unimportant.
(We use symbolic names to keep the examples comprehensible.)
8 PrefizExclusive(Clock,clock) is null.
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typedef struct {
float x;
float y;

} RealPoint;

Point pt;
RealPoint rpt;
void *p;

= (Point *) &pt;
>y = 3;

e liso]

p = (RealPoint *) &rpt;
p~—>y = 3.5;

Figure 8: Inferring a multi-element set type. The definition for Point is the same as in Figure 1.

l=e— 1z stype(e) = struct t ptr
(e} C Concat(PrefitExclusive(t, z), (I) ptr)

[Pointer Field Dereference]

The rationale for this rule is that if the type obligation on e — z is {l), then there are two requirements
on e: there must exist an x field at the appropriate offset, and the type at the pointer-valued field x
must respect the type obligation (I). In other words, e should be pointing to a physical subtype of some
structure that has an x field at the appropriate offset, and that x field must contain a pointer to a
structure that is a physical subtype of (I).

A difficulty with this rule is that there is no obvious subtyping rule for comparing struct {t ptr} to
struct {t' ptr}, where t and t' are related by physical subtyping. This, in turn, is because there is no
subtyping rule for comparing ¢ ptr to t' ptr. Suppose we attempt to remedy this situation by allowing
the following pointer subtyping rule:

; t<t’
PR o\ S
[Pointers] T otr=t ot

The following example shows that this rule is not sound.

Example 6. Consider the code in Figure 9. We generate the following constraints:

(&cps) T (psp) (1)
(&cepsy T {cpsp) (2)
(&pt) T (q) 3)
(pspy C struct { int common, Point *p } (4)
(ecpsp) C  Concat( PrefixExclusive(CPS, p), {cp) ptr) (5)
(cp) C struct { int x, y, color } (6)

From (6), the value of (cp) is ColorPoint. From (5), which comes from the Pointer Field Dereference
rule, {cpsp) is struct { int common, ColorPoint *p }. From (4), (psp) is struct {int common,
Point *p }. From (1) and (2), and the fact that struct { int common, ColorPoint *p }isa physical
subtype of struct {int common, Point *p } (by the (unsound) pointer subtyping rule), (&cps) is
struct { int common, ColorPoint *p }. Since CPS is a physical subtype of the last constructed
type, the program type checks. However, the program is actually unsafe because it accesses the color
field of pt, which is only a Point.

Intuitively, the pointer subtyping rule is not sound because it cannot track indirect modifications. In
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typedef struct { int common; Point *p; } PS;
typedef struct { int common; ColorPoint *p; }

CPS;
psp: g

pt:

PS *psp;

CPS cps, *cpsp;
Point pt, *q;

ColorPoint *cp; Cpsp: cps:

main() { p
psp = (PS *) &cps;
cpsp = &cps;

q = &pt; cp:
pPsp—>p = q;

Cp = Cpsp—>Pp;
cp—>color = RED;

}

Figure 9: An unsafe program. The definitions for Point and ColorPoint are the same as in Figure 1.
The picture shows the state just before the execution of the last statement.

the example just presented, we indirectly modified the value of cpsp->p (by assigning to psp->p, rather
than cpsp->p). Had we “visibly” assigned a Point pointer value to cpsp->p, we would have been able
to catch the error. (Incidentally, the void pointers rule of Figure 4 is sound, because void pointers cannot
be dereferenced.)

4 An Algorithm for Physical Type Checking

In this section, we present an algorithm for physical type checking that works on all programs, no
matter how many levels of pointers are used. The algorithm follows the same pattern as the restrictive
algorithm presented in Section 3.2: it generates a set of constraints involving type obligations, and uses
the final type obligations to check the pointer sources. We add a new kind of type-obligation term into
our constraint system, and we use a different set of rules to generate the constraints.

We first describe these two changes, and then illustrate the algorithm with an example. We also compare
this algorithm with points-to analysis.

4.1 Type Obligations Revisited

The {p) type obligations presented so far are, by construction, the smallest (ordered by C) type that can
be safely read via a dereference of p. This is p’s get type obligation. We now introduce a complementary
set type obligation. The set type obligation of p, denoted by [p], is the largest type (ordered by C)—or
least restrictive type—that must be written through a pointer. The following example illustrates this
idea.

Example 7. Consider the code fragment in Figure 10. The set type obligation on pp is ColorPoint,
because, when we assign through pp, as in *pp = &p, we require a particular constraint on the right-
hand-side pointer value. This is because the assignment indirectly modifies q, and {q) = ColorPoint.
Thus, [pp] = ColorPoint.

Intuitively, the set type obligation for a pointer variable represents the get type obligations of the elements
in its points-to set. By tracking the set type obligation of a pointer variable in addition to its get type
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Point p, **pp;
ColorPoint *q;

main() {
pp = (Point *x) &q;
*pp = &p;

q—>color = RED;

}

Figure 10: An example to illustrate set type obligations.

obligation, we are able to deal with the problem of pointer subtyping.

4.2 Get-Type and Set-Type Inference

Physical type checking is expressed in terms of the inference rules presented in Figure 11, which now
involve constraints over unknowns of the form (p) and [p]. Note that in the new rules, we not only
generate constraints from the statements in the program (as before), but also infer new constraints from
previously generated constraints. We first explain the new items of notation used in Figure 11.

e r.a stands for the base-offset representation of the field a in a structure r. Because of type casting,
one can view a structure of type S as a structure of type 7. When a field named a that belongs
to type T is accessed, it does not follow that a corresponding a field exists in the type S. Yong
et al. [YHR99] have addressed this issue by using a symbolic representation of fields and their
positions. We have adopted a simpler, though non-portable approach of computing the offset of a
field from the beginning of the structure. The notation a stands for this offset (in bytes). When r

itself has a non-zero offset, i.e., it is a field of some containing structure (e.g., s.b), r.a stands for
the same base, and a new offset that is the sum of r’s offset and @ (viz., s.(b + a)).

o r.all stands for all offsets within the structure r. [p] C [r.all] is a shorthand for the set of relations

[p] C [r.1], [p] C [r.2] etc.

The rationale for the rules given in Figure 11 is as follows:

o Address-Of: This rule considers an assignment of an address-of-variable expression as a special case
of assignment. It links the get obligation on the right-hand-side variable z to the set obligation on
the left-hand-side variable p via the constraint [p] C (z).

o Assignment: This rule is similar to the assignment rule in Figure 6, except that now it also
propagates the set-type obligations in a forward direction. Set-type obligations flow forwards,
originating from address-of statements (e.g., p = &z) through simple assignments (e.g., ¢ = p) to
indirect modification statements (e.g., xq = v).

In the remaining rules, the first parts are the same as in Figure 6 in each case. We describe the rationale
only for the second parts.

e Pointer Dereference: Consider the R case (the L case is analogous). This rule can be thought of
as an assignment to p of all of the variables that ¢ might point to. If ¢ points to some variable r,
we have [¢] C (r), either generated directly, or inferred. We infer the constraints that we would

generate for the assignment p = r.

o Field Dereference: Consider the R case (the L case is analogous). For each structure r that ¢ may
point to, we infer the constraints that we would generate for the assignment p = r.a.
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[Address-Of]

(&x) E (p) [P E (o)
[Assignmen] @CH WCE
(Pointer Dereference (1) = e e
[Pointer Dereference (L)] =4 ?;pré(f) =t ptr T [p[]r]E ;<T[21]
Field Derefrence (1) 2= e e el I
Field Dereference (R)] 2= e s e b
Fid Addres] RN o) v e
Plus Onel et A e st

Figure 11: Constraint generation and inference rules.

o Field Address: This statement essentially translates the pointer ¢ by a particular offset within the
structure r that ¢ points to. The field r.a denotes the field whose address is assigned to p. By the
reasoning of the Address-of case, p’s set obligation must satisfy the get obligation of that field.

e Plus One: If q points to (any field of) a structure r, in general we do not know, which field might
g+ 1 point to. To be conservative, we assume that p may point to anywhere in the structure (which
is the same behavior that we want on arbitrary arithmetic). This now reduces to Field Offset case,

but with all possible offsets in r taken into account.

After we perform inference (until no more new judgments are obtained), we use the values of the get-type
obligation on pointer sources to perform actual type safety checking. The latter process is the same as
in the restrictive algorithm of Section 3. Our inference rules can be encoded in a class of set constraints

that is known to be solvable in cubic time (we sketch this encoding in Section 5).

Example 8. Reconsider the code in Figure 9. Using the rules in Figure 11, we generate the following

chain of inferences:

cp = cpsp — cpsp = &cps

P [epsp] C (cps) ¢p — color = RED stype(cp) = ColorPoint

(csp.p) E (cp)

{cp) C ColorPoint

(1)

_ . psp=&cps
P3P =P =4 [p5pT T (cps)
(q) C (cps.p)

(2)

(csp-p) E ColorPoint

{(csp.p) C ColorPoint (from (1))

q = &pt
(&pt) C (g

(¢) C ColorPoint

) (g) C ColorPoint (from (2))

(3) (&pt) C ColorPoint

Consequently, (&pt) must be a physical subtype of ColorPoint. Because the declared type of pt, namely

Point, is not a physical subtype of ColorPoint, we flag an error.

Example 9. The purpose of this example is to point out a possibility of divergence during constraint

generation and inference, and one way to avoid it. Consider the following three statements:
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1. q = &M;
2. p = &(g—>a);
3. q4=p;

Statement 1 will generate the constraint [q] E (M). Statement 2, using the Field Offset rule, will
generate the constraint [p] C (M.a). From statement 3, we have [¢] C [p]. By transitivity, [¢] C (M.a).
The steps just mentioned can now be repeated, leading to increasingly deeper cumulative offsets into M
(M., M.(2 *a), etc.), and non-termination of constraint generation. Since we do not rely on declared
types in the inference phase (except for evaluating a), the algorithm must assume that all offsets—no
matter how deep—are possible. To circumvent this problem, an implementation could check for the
offset of r in the Field Offset case. If it is above a prespecified threshold, then, instead of inferring the
usual constraint [p] C (r.a), it should infer [p] C (r.all). An appropriate threshold would be the size of
the largest struct type in the program.

4.3 Comparison with Flow-Insensitive Points-To Analysis

In this section, we explore the connection between the algorithm presented above and previous work on
flow-insensitive points-to analysis [And94, Ste96, SH97, YHR99].

The goal of points-to analysis is to compute, for each pointer variable p, a set of variables whose address
p might contain. The physical-type-checking algorithm has most in common with algorithms for points-
to analysis that distinguish between fields of structures [Ste96, WL95, YHR99, ZRL96]. Like much of
this work, our analysis tracks fields in terms of a base pointer and a numeric offset. Consequently, the
information obtained from the analysis is specific to a given platform (although we are confident that a
portable, platform-independent version could be developed).

The first point to note is that the nature of the information obtained from physical type checking and
points-to analysis is different: In points-to analysis, the information obtained is that a variable p might
contain the address of a variable ¢; in contrast, with physical type checking the information obtained is
that the type of a variable ¢ (where the address of ¢ is taken somewhere in the program) needs to have
a certain collection of fields for pointer dereferences in the program to be safe.

There are also differences in “philosophy” behind the two kinds of analyses:

e To obtain points-to information, one makes an a priori assumption that the given types of variables
are correct, at least insofar as determining the size of a variable is concerned. If the declared type of
a variable is inadequate with respect to actual dereferences in the program (e.g., the declared type
is Point when the dereferences demand a ColorPoint), a points-to analysis would either (i) quit,
(ii) assume (pessimistically) that an arbitrary piece of memory in the activation record has been
clobbered, or (iii) assume (optimistically) that the out-of-bound access does not clobber other
variables in the activation record. For example, in such a scenario, Steensgaard’s algorithm [Ste96]
will fail to “type check” or produce a points-to graph.

In contrast, in our approach, all accesses are treated as if they must fall within bounds; that is,
the essence of our approach is to infer the types that would make all accesses fall within bounds.
The algorithm discriminates between structure fields to maintain precision, but does not “trust”
the declared types.

¢ Most points-to analyses attempt to track the consequences of whatever casts a programmer has
made use of in his or her program. The motivation behind physical type checking is different. We
identify a class of “sensible” casts that we are prepared to handle—e.g., upcasts from a subtype to
a supertype—and deem all others unacceptable. The notion of “sensible” is motivated by a number
of idioms that C programmers use to simulate object-oriented language features [SCKR99].

A key technical difference between physical type checking and points-to analysis is that physical type
checking involves a backwards propagation of needs as opposed to a forwards propagation of points-to
information.
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Despite these differences, there are some similarities between physical type checking and points-to analy-
sis. For one thing, the augmented rules of Section 4.2 must account for the effect of indirect modifications
via pointers. In addition, a judgment [p] C (r) that arises in our analysis is somewhat similar to a points-
to fact points-to(p,r), and some of the rules by which our analysis infers such judgments are similar to
the rules for inferring points-to facts in Andersen’s pointer analysis [And94]. However, judgments of the
form [p] C (r) do not represent ezactly the same information as points-to facts: If points-to(p,r), then
our analysis generates the judgment [p] C (r), but the converse does not necessarily hold, as shown by
the following example.

Example 10. Consider the following three statements:

1. q =4&r
2. s = &q
3.p=q

A pointer-analysis would infer the following points-to facts: points-to(q,r), points-to(s, q), and points-to(p,r).
In particular, Andersen’s analysis would generate the following proof tree:

qg=&r
points-to(q,r)
points-to(p,r)

Correspondingly, our analysis would generate the following proof tree:

p=q q=&r
[pl Clg] [q] E({r)
[p] E (r)

Our proof tree has a slightly different shape, because in our system, p = ¢ does not insist on an immediate
judgment of the form [q] C (r). However, our analysis also admits another proof tree:

s=&q¢ p=g¢q
[s]E (@) () C (p)
[s] C (p)
Although points-to(s,p) does not hold, the inferred judgment [s] C (p) is appropriate. It says that p’s

get-type obligation must be larger that s’s set-type obligation, which makes sense given the points-to
relations that do hold. This example shows that the judgment [p] C (r) is not the same as points-to(p,r).

It should be noted that pointer analysis does give alternative ways to do physical type checking.

e One possible physical type-checking algorithm can work in two phases, by performing an alias
analysis in the first phase, and the type inference of Section 3.2 in the second phase. Recall the
problem we faced in formulating a subtyping rule for pointers (Section 3.3). We found that the
“obvious” pointer subtyping rule was not sound, because it could not track indirect modifications.
Two l-values in a program are aliases if they may denote the same memory location. The results
of a points-to analysis can be used to compute alias relationships:

— If p points to x, then xp and z are aliases.

— If p and ¢ are variables that have a common member in their points-to sets, xp and *q are
aliases.

— If e; and e, are aliases, so are e;.a and es.a, where a is a field in a structure that both e; and
e2 may denote (as l-values).

Given alias information, we can augment the restricted algorithm of Section 3 in the following
manner: In each case of an assignment [hs = rhs, we assume that all aliases of the left-hand side
are also assigned the right-hand-side value.

18



In the example of Figure 9, once aliasing information is taken into account, the algorithm would
expose the type-safety violation as follows: Because cpsp->p is an alias of psp->p, the assignment
psp—>p = q also requires us to consider the effect of cpsp->p = q. We now have

(&pt) C {q) C {cpsp — p) C {cp) C struct {int x, y, color},
which propagates the type obligation on cp to &pt.

e Another possibility is to use the results of points-to analysis to “directly” perform physical type-
checking, without invoking the type-inference step of Section 3.2. Given the points-to relation, we
can verify the validity of each field dereference p — a by looking for the field a in each points-to
target of p. This approach, however, is not as well-suited to reverse engineering, because it does not
actually construct an expected type for the target. Starting from the results of points-to analysis,
one will need to perform a computation similar to the one given in Section 3.2 to construct expected

types.

Although the results from a points-to analysis can be used to achieve the goals of physical type checking,
this involves working “outside the type system”. In particular, it addresses the issue of physical subtyping
in the presence of pointers indirectly, at best. One of our contributions is the formulation of a rule for
physical subtyping in the presence of pointers. The key idea in our approach involves introducing two
distinct variables in the constraint system per program variable. This approach may have applications
beyond physical type checking.

5 Implementation

Our implementation first uses a C front end to build an abstract syntax tree (AST) of a program. It
then traverses the AST and generates constraints in a form suitable for being solved by Bane [FA97], a
publicly available constraint solver from University of California, Berkeley. In this section, we describe
several implementation details that arise in this process.

5.1 Dealing with structure fields

Our algorithm relies on a base-offset scheme to refer to the fields of a struct and therefore discriminates
between fields precisely (though not portably). In order to follow the algorithm faithfully, an implemen-
tation must store separately the type-obligation information for every offset that can be referred to in
each structure.

In practice, a given implementation may trade precision for lower memory requirements and higher speed.
An implementation may choose not to discriminate between the fields of a struct by deliberately taking
each offset (an @ term) to be zero. An implementation might also choose to maintain precise information
only as long as the maximum cumulative offset remains below a prespecified threshold.

5.2 Handling of Arrays and Function Pointers

Variables of an array type are treated as pointers to the memory the array occupies. Thus, an array a
is treated as &a, where a is the name of the block of memory corresponding to the array. (A syntactic
address-of operator applied to an array is treated as a no-op.) A read or write to any individual array
element is treated as a read or write to a, the entire array.

Function names are lifted to be pointers to function definitions. (A syntactic address-of operator applied
to a function is treated as a no-op.) Each function definition is also associated with a special return
variable. The algorithm tracks function pointers in 0-CFA style. At call sites, formal parameters are
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considered to be assigned the values of actual parameters,® and a (possibly dummy) variable gets assigned
the value of the function’s return variable.

Our treatment of arrays and function pointers is similar to that of Foster et al. [FFA97].

5.3 Constraint Solving

We now sketch how to express our algorithm in Bane. Our intention here is only to give a flavor of how
our algorithm can be implemented with Bane to the reader. An actual implementation of our algorithm
includes more details, e.g. handling of struct fields, which we do not describe here. This is also not
a complete description of Bane: for further details on Bane and on how to use it to perform program
analyses (including points-to analysis), we refer the reader to [FA97, FFA97].

We use the part of Bane that deals with sets. To begin with, Bane has variables and constructors, both of
which are expressions of type set. For example, one might declare a 0-ary constructor R : unit — s, and a
binary constructor C' : (s, —s) = s. The binary constructor declaration specifies that its first argument
is covariant and second argument contravariant. An example of an expression using this constructor
is C(R,0), where the constant 0 denotes the empty set (1 denotes the universal set). Finally, Bane
defines an inclusion relation < on expressions. Thus, C'(R,0) < p says that the set denoted by variable
p includes the set denoted by the constructed term C(R,0). The Bane interpretation of inclusion is the
same as the usual subset relation on sets. For example, < is transitive, and 0 < p for all p.

In encoding our constraints in Bane, we exploit constructors that have both covariant and contravariant
positions. Bane resolves constructed terms as follows. Two constructed terms cannot be compared
with < unless their constructor is the same (a violation of this leads to an error). With the same
constructor, resolution introduces element-wise inclusion constraints, with the sense of inclusion reversed
for contravariant arguments. Thus, C(R, q) < C(p,0) result in, R < p and 0 < q.

We now show how to write out an initial set of constraints as Bane constraints, starting from a pro-
gram’s AST. We will illustrate that the inferred constraints emerge automatically from Bane’s resolution
procedure. We first define a 4-ary constructor F : (—s,s,—s,s) — 8. (The role of the four positions will
be explained shortly.) In the following, keep in mind that the ordering imposed by our C connective is
in the opposite sense of Bane’s <. See Table 4. For the purposes of the present discussion, we denote
the variables of the Bane specification by [p], (&p), etc. Note that the [p] variables in this formulation
are connected to constructed terms F'(...), whereas in the previous sections, [p] was connected to (g)
terms; however, values corresponding to the familiar meaning of [p] can be obtained by projecting out
the fourth argument from the constructed terms appearing in the solution for [p] in this formulation.

Abstract Syntax Bane Constraints
(i) |p=&= F([z], [2], (z), (z)) < [p] and (p) < (&z)
(i) [ p=4q [¢] < [p] and (p) < (q)
(111) b =*q q] < F(07 [p]a (p>7 1)
(iv) | sp=¢ lp] < F([q],1,0,(q))
v) |p—a PrefixInclusive(typeof(xp), a) < (p)

Table 4: Bane constraints generated for normalized statements. The constructed type in the last row is
actually concealed from Bane behind a 0-ary constructor unique to the constructed type.

The first two positions in the constructor F' are used to store the set-type obligations, and the remaining
two positions are used to store the get-type obligations. Within each pair, the first position is used as a
contravariant argument and the second as a covariant argument. We select which of the two positions
to use in such a way that the flow of set-type obligations is forwards and that of get-type obligations is
backwards. It is easiest to explain this using an example.

Example 11. Consider the following two statements:

9As a matter of further detail, when a function’s formal parameter is declared to be an array type, we must unlift the
type of the actual parameters, to avoid lifting an array type to a pointer twice.
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1. 9 = &p;

2. t = *q;

In Figure 11, the rule for Dereference (R) would propagate the get-type obligation on ¢ to p by inferring
a new constraint. We can see that a similar propagation in Bane occurs by contravariance: From (1),
by rule (i) of Table 4, we have F([p], [p], {p), {p)) < [g] and from (2), by rule (iii) of Table 4, we have
[q] < F(0,[t], (t),1). By transitivity and the resolution of F', we have [p] < [t] and () < {p). These are
equivalent to the relations that the rules in Figure 11 would infer:

t—xg 18P
[q] C (p)
() C(t) [t] C[p]

We chose to put [t] and (t) in those particular positions in F' so that the contravariance reverses the
sense of the inclusion for (t), but covariance maintains the sense for [t], giving us the desired relations.
(Compare how rules (i) and (iii) of Table 4 interact, as illustrated above, with how rules (i) and (iv)
interact.)

5.4 Circularity

The results of constraint solving might need post-processing to account for circularity. Consider the
following two statements:

t+1

1. s
2. t s

These statements will generate the following constraints:
(s) E Concat(typeof (xt), (t))
{t) C(s)

In this example, one cannot simply read off the answers for (s) and (t) from the outcome of constraint
solving. (The constraint system treats the Concat-term as a constant and leaves it as such in the final set
of constraints.) An implementation must perform an occurs-check of variable names inside constructed
terms to detect cycles. In this particular example, both (s) and (t) evaluate to a divergent value (T).

We have created a prototype implementation of our algorithm using Bane. Our plan is to tune the
implementation and run it on large code bases, in particular, code from a Lucent Technologies product,
and report our experiences.

6 Related Work

Related work falls into the five categories: static semantic checking tools; alternate type systems for
C; record and variant subtyping; points-to and alias analysis in the presence of structs and unions;
constraint-based analysis.

Static semantic checking tools Physical type-checking is related to, but complementary to, such
tools as lint [JR78, Joh78] and LCLint [Eva96]. Our algorithm, as well as lint and LCLint, can be used
to assist in the static detection of type errors that escape the notice of many C compilers. LCLint can
identify problems and constructs that our system cannot—for example, problems with dereferencing null
pointers—but only by adding explicit annotations to the source code. On the other hand, neither lint
nor LCLint has a notion of subtyping.

Alternative type systems. The idea of applying alternative type systems to C appears in several
places, among them [GS93, SV96, 0J95, SR96, Ste96]. Most of these references discuss the application
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of parametric polymorphism to C. In particular, [SV96] concerns a new dialect of C that is polymorphic
and type safe. [0J95] uses polymorphic type inference on existing C programs, but for determining
information about the transfer of values.

Physical type safety may also be contrasted with the work on typed assembly language of Morrisett et
al.  MWCG98]. In that work, a type system is imposed on a RISC-like assembly language in such a way
that individual registers and memory locations are assigned types to provide run-time type safety.

Ramalingam et al. [RFT99] have presented an algorithm to infer a particular kind of typing on structures.
Their type system allows various degrees of coarsening of a structure: at one end, a structure may be
treated atomically in a program, and at the other end, each field may be referred to separately. Their
analysis attempts to find the coarsest admissible type for each structure in a program.

Comparison to Record Subtyping Our work has some similarity to record subtyping proposed by
Cardelli [Car84]. In both cases, a structure (or record) that contains a superset of the fields of another
structure is considered a subtype of the second structure. The primary difference is that we take into
account the physical layout of data types when determining subtype relationships, while in Cardelli’s
work the notion of a physical layout does not apply.

The problem of subtyping in the presence of pointer fields inside structures appears to be related to
the problem of record subtyping in the presence of mutable fields [AC96]. We plan to investigate this
relationship in future work.

Relation to Points-to and Alias Analysis We already presented a comparison between flow-insensitive
points-to analysis and physical-type-safety analysis in Section 4.3. In [ZRL96], which also presents an
alias-analysis algorithm, a subtype-like relationship called a weakly right-regular relation is defined for
pairs of C expressions. The definition of the relation has some of the flavor of the physical-subtyping
rules discussed here. However, the system described in [ZRL96] has no provision for handling type casts
and considers two structs to be related only if they are of equal type, whereas in our system the structs
are related if one is a physical subtype of the other.

We would like to clear up a possible terminological confusion that may arise when our work is compared
to that of Foster et al. [FFA9T7]. In that work, the use of “get” and “set” components of a type variable
in the type-inference scheme corresponds to the covariant and contravariant aspects, respectively, of the
same type variable. Our use of “get” and “set” corresponds to two different type variables, each of which
themselves have covariant and contravariant components in a Bane implementation.

Constraint-based analyses The constraint-based analysis for inferring most general physical types
gathers information about “access obligations” that a variable’s type must satisfy. This bears some rela-
tionship to certain kinds of (backwards, flow-sensitive) need-based analyses developed in the functional-
programming community, including algorithms for neededness [Hug88|, strictness analysis [WH87], pro-
gram slicing [RT96], and dependence analysis [Liu98]. These all use the idea of treating the accesses on
a variable as a “contract” to limit attention to certain portions of the variable in question; the minimal
obligations on a variable are determined by accounting for all of the accesses on it. Our work has ap-
plied this idea in the context of a flow-insensitive analysis for C (an imperative language that supports
destructive updating of heap-allocated storage). Our algorithm incorporates the notion of a “set-type
obligation” in order to handle destructive updating.

7 Conclusions

We have presented an algorithm to perform physical type checking on C programs. Physical type
checking can be useful for static safety checks, and also has application to program comprehension and
reverse engineering.

In the near future, we plan to experiment with physical type checking on several large software systems,
particularly on a proprietary product of Lucent Technologies that consists of several hundred thousands
of lines of code.
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A Data Layout in the ANSI C standard

In this section, we briefly review the storage model for C data structures. For a more detailed account,
the reader is directed to [HS91, KR88, ISO90].

All data objects in C are represented by an integral number of bytes in memory. The size of a data
object is the number of bytes occupied by the data object [HS91]. A character type (char, signed char,
unsigned char) is defined to occupy one byte of memory. The sizes of other C types are implementation
dependent, but must conform to the following guidelines:
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e signed, unsigned, const, and volatile qualifiers do not affect the size of a type. For example,
an unsigned int is of the same size as a const int.

e shorts and ints require at least 16 bits.

e shorts are no longer than ints.

e longs require at least 32 bits.

e ints are no longer than longs.

e floats, doubles, and long doubles require at least 32 bits.

e a union requires at least as much storage as its largest member.

e a struct requires at least as much storage as the sum of the storage of its members, respecting
the alignments of its members (see below).

Some computers allow an object to be stored at any address in memory, regardless of the type of the
object. However, many computers impose alignment restrictions on certain data types. Some types
are required to be stored at addresses that are integral multiples of bytes. If a data object is stored
in accordance with its type’s alignment restriction, expressions (other than casts) involving that object
are portable across all C compilers compliant with the C standard. However, because of the ability of C
programmers to cast an expression of one type to be of another type, it is possible to make an end-run
around alignment restrictions resulting in non-portable code.

Character types have no alignment restrictions since they occupy only one byte of memory. The align-
ment restrictions of other C types are implementation dependent, but conform to the following guidelines:

e signed, unsigned, const, and volatile qualifiers do not affect the alignment of a type. For
example, an unsigned int has the same alignment as a const int.

e The alignment of a struct or union is no less than the maximum alignment of its members.

The storage rules of struct types dictate that the first member be stored at the beginning of the struct.
All subsequent members are stored in the order they are declared within the struct. The alignments of
the types of the members of a struct may require that unused space be placed between members. For
example, suppose a machine requires integers to be stored at four-byte multiples. Consider the following
struct:

struct { char a; int b; char c; } x;

If the struct is stored at address 0, then x.a is at address 0, x.b is at address 4 (not address 1), and
x.c is at address 8. Furthermore, the entire struct is padded to be a multiple of its largest alignment,
resulting in a total size of 12 bytes.

We say that the number of bytes between the address of a field of a struct and the struct itself is the
offset of the field. C guarantees that the offset of the first member (assuming it is not a bit field) of a
struct is 0 and the offset of any other member (again, assuming it is not a bit field) is a multiple of the
alignment of the type of that member. C guarantees that all non-bit-field members of unions are placed
at offset 0.

The storage of bit-field members is implementation dependent. In our type system (see Figure 3) we
assume that offsets are supplied explicitly. In our implementation (see Section 5) we assume that for
struct types without bit fields, the members are stored as close together as possible without violating
alignment restrictions.
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B Defining Physical Type Safety

We define physical type safety using a scheme in which each pointer and pointer expression carries with
it (as instrumentation) a dynamic type. This dynamic type is a pair (¢,0), where ¢ is a C type (i-e., from
Figure 3) and o is an offset in this type. Given a pointer expression e, let dtype(e) be e’s dynamic type
(t,0), where dtype(e).t = t and dtype(e).o = o. The instrumentation scheme has been inspired by the
SafeC tool [ABS94].

We define an auxiliary function typeat(t,0) that returns the type of the object beginning at offset o for
a struct t. If ¢t is a ground type, pointer, or array then typeat(t,0) =t if and only if 0 = 0, and is L
otherwise. If offset o is contained in a union w inside type ¢, we assume that the correct member of the
union is chosen. Enforcing that the correct member of a union is chosen is an orthogonal issue that we
do not deal with in this paper.

Dynamic types are created and propagated by the following rules:

dtype(malloc(sizeof (T))) = (T,0)

dtype(&(e->x)) = (dtype(e).t, dtype(e).o + offset(stype(e), x))
dtype(&e) = (stype(e),0).'°

If dtype(e) = (t,0), then dtype(e + ¢) = (¢, 0 + ¢ * sizeof (stype(e)))

After an assignment p = e, dtype(p) = dtype(e)

Note that pointer casts, explicit or implicit, do not affect the dynamic type of a pointer expression.

Given this instrumentation, a memory reference e->x is physically type safe if the offset of x is a wvalid
offset with respect to dtype(e). Let o, = offset(stype(e),z) and let dtype(e) = (te,0e). Offset o, is a
valid offset with respect to (t., 0e) if the following conditions are met:

o 0, + sizeof (stype(e->x)) < sizeof (typeat(t.,0.)). The intuition behind this condition is that the
referred memory location should lie within the “chunk” of memory that e currently points to.

o typeat(stype(e), 0,) = typeat(te, 0. + 0;). The refered location must contain the same type of data
as the type of field z.

Consider the application of this instrumentation to the last two statements in Figure 1. The dynamic
type of &p is (Point,0), which is propagated to become the dynamic type of the pointer pcp. The
dereference pcp->x is physically type safe because the type Point contains an integer at offset 0. The
dereference pcp->color is not physically type safe because the offset of the field color is outside of the
type Point.

We illustrate how pointers are tracked as they move within a struct using Figure 2. After execution of
the first statement, the dynamic type of c is (ClockRadio,0). After execution of the second statement,
the dynamic type of r is (ClockRadio,sizeof (Clock)), which represents the type Radio. Thus, the
dereference r->frequency is physically type safe.

10This implies that this scheme does not track pointers that point into the middle of arrays.

26



