
Directed Proof Generation for Machine Code⋆

A. Thakur1, J. Lim1, A. Lal2, A. Burton1,
E. Driscoll1, M. Elder1⋆⋆, T. Andersen1, and T. Reps1,3⋆ ⋆ ⋆

1 University of Wisconsin; Madison, WI, USA
2 Microsoft Research India; Bangalore, India

3 GrammaTech, Inc.; Ithaca, NY, USA

1 Experiments

Our experiments (see Fig. 1) were run on a single core of a single-processor
quad-core 3.0 GHz Xeon computer running Windows XP, configured so that a
user process has 4 GB of memory. They were designed to test various aspects of
a DPG algorithm and to handle various intricacies that arise in machine code
(some of which are not visible in source code). We compiled the programs with
Visual Studio 8.0, and ran MCVETO on the resulting object files (without using
symbol-table information).4

The examples ex5, ex6, and ex8 are from the NECLA Static Analysis Bench-
marks. The examples barber, berkeley, cars, efm are multi-procedure versions
of the larger examples on which SYNERGY [1] was tested. (SYNERGY was tested
using single-procedure versions only.) Instraliasing illustrates the ability to
handle instruction aliasing. (The instruction count for this example was obtained
via static disassembly, and hence is only approximate.) Smc1 illustrates the abil-
ity of MCVETO to handle self-modifying code. Underflow is taken from a DHS
tutorial on security vulnerabilities. It illustrates a strncpy vulnerability.

The examples are small, but challenging. They demonstrate MCVETO’s abil-
ity to reason automatically about low-level details of machine code using a se-
quence of sound abstractions. The question of whether the cost of soundness is
inherent, or whether there is some way that the well-behavedness of (most) code
could be exploited to make the analysis scale better is left for future research.

References

1. B. Gulavani, T. Henzinger, Y. Kannan, A. Nori, and S. Rajamani. SYNERGY: A
new algorithm for property checking. In FSE, 2006.

⋆ Supported, in part, by NSF under grants CCF-{0540955, 0810053, 0904371}, by
ONR under grants N00014-{09-1-0510, 09-1-0776}, by ARL under grant W911NF-
09-1-0413, and by AFRL under grant FA9550-09-1-0279.

⋆⋆ Supported by an NSF Graduate Fellowship.
⋆ ⋆ ⋆ T. Reps has an ownership interest in GrammaTech, Inc., which has licensed elements

of the technology reported in this publication.
4 The examples are available at www.cs.wisc.edu/wpis/examples/McVeto.

Program MCVETO performance (x86)
Name Outcome #Instrs CE SE Ref time

blast2/blast2 timeout 98 ** ** ** **
fib/fib–REACH-0 timeout 49 ** ** ** **
fib/fib–REACH-1 counterex. 49 1 0 0 0.125
slam1/slam1 proof 84 15 129 307 203
smc1/smc1–REACH-0* proof 21 1 60 188 959
smc1/smc1–REACH-1* counterex. 21 1 0 0 0.016
ex5/ex counterex. 48 2 10 38 3.05
doubleloopdep/count–COUNT-6 counterex. 31 7 11 13 11.5
doubleloopdep/count–COUNT-7 counterex. 31 7 11 13 11.6
doubleloopdep/count–COUNT-8 counterex. 31 7 11 13 11.6
doubleloopdep/count–COUNT-9 counterex. 31 7 11 13 11.7
inter.synergy/barber timeout 253 ** ** ** **
inter.synergy/berkeley counterex. 104 5 13 16 3.95
inter.synergy/cars proof 196 11 118 349 188
inter.synergy/efm timeout 188 ** ** ** **
share/share–CASE-0 proof 50 3 24 75 8.5
cert/underflow counterex. 120 2 6 12 9.55
instraliasing/instraliasing–REACH-0 proof 46 2 36 126 15.0
instraliasing/instraliasing–REACH-1 counterex. 46 2 17 55 5.86
longjmp/jmp AE viol. 74 1 0 0 0.015
overview0/overview proof 49 2 31 91 54.9
small static bench/ex5 proof 33 3 7 13 2.27
small static bench/ex6 proof 30 1 55 146 153
small static bench/ex8 proof 89 4 17 46 6.31
verisec-gxine/simp bad counterex. 1067 1 0 0 0.094
verisec-gxine/simp ok proof 1068 ** ** ** **
clobber ret addr/clobber–CASE-4 AE viol. 43 4 9 18 2.13
clobber ret addr/clobber–CASE-8 AE viol. 35 2 2 5 0.625
clobber ret addr/clobber–CASE-9 proof 35 1 5 21 1.44

Fig. 1. MCVETO experiments. The columns show whether MCVETO returned a proof,
counterexample, or an AE violation (Outcome); the number of instructions (#Instrs);
the number of concrete executions (CE); the number of symbolic executions (SE), which
also equals the number of calls to the YICES solver; the number of refinements (Ref),
which also equals the number of Preα computations; and the total time (in seconds).
*SMC test case. **Exceeded twenty-minute time limit.

2

