
Using AOP for Detailed
Runtime Monitoring

Instrumentation

Jonathan E Cook, joncook@nmsu.edu
Amjad Nusayr, anusayr@cs.nmsu.edu

The 2009 Workshop on Dynamic Analysis

New Mexico State University

The act of observing an executing
system in order to learn something
about its dynamic behavior

RM needs an extremely wide variety
of instrumentation mechanisms

Runtime Monitoring

An elegant framework for
constructing program behaviour that
is orthogonal to the underlying
program code base

AOP is a natural fit for the domain of
runtime monitoring

Aspect Oriented Programming

AOP Weaving vs Runtime
monitoring instrumentation

Code to be instrumented Advice to be weaved
Init()

Method Exec

Exception

Underlying
program

Init()

Method Exec

Exception

Weaving: the process of
instrumentation

Advice: code that will be weaved
Jointpoint: points in the program

where advice can be weaved
method call, object construction

Aspect: an entity that holds all of the
above

Aspect Oriented Programming

Naturally captures the idea of
scattered instrumentation in a base
program

Can be used on existing programs
It is formal and uses normal

programming concepts that
programmers can readily grasp

AOP for Runtime Monitoring

Not enough detail to cover all
runtime monitoring needs
e.g., statement level weaving, basic

blocks, loops, local variable access
Limited to weaving based on the

source code
Sampling-based profiling needs weaving

based on execution time intervals rather
than on places in the code

AOP Deficiencies

 final double matgen(double a[][], final int n, double b[]) {
 …..
 for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {
 init = 3125 * init % 65536;
 a[j][i] = (init - 32768.0) / 16384.0;
 norma = (a[j][i] > norma) ? a[j][i] : norma;
 }
 }

 for (j = kp1; j < n; j++) {
 col_j = a[j];
 if (l != k) {
 col_j[l] = col_j[k];
 col_j[k] = t;
 }
 daxpy(n - (kp1), t, col_k, kp1, 1, col_j, kp1, 1);
 }

…..
}

 final double matgen(double a[][], final int n, double b[]) {
 …..
 for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {
 init = 3125 * init % 65536;
 a[j][i] = (init - 32768.0) / 16384.0;
 norma = (a[j][i] > norma) ? a[j][i] : norma;
 }
 }

 for (j = kp1; j < n; j++) {
 col_j = a[j];
 if (l != k) {
 col_j[l] = col_j[k];
 col_j[k] = t;
 }
 daxpy(n - (kp1), t, col_k, kp1, 1, col_j, kp1, 1);
 }

…..
}

Existing
joinpoints

Method Call

Existing
joinpoints
Method

Execution

Non-existing
joinpoints

current AOP coverage

Data space

Weaving in
code and data

space

Weaving in two dimensions
Code space

Axes of Weaving

Extending the axes of
weaving to a 3 dimensional view

Data space

Code space

TimeTime

extended AOP coverage

Axes of Weaving

Sampling

Data space

Code spaceCode space

TimeTime

extended AOP coverage

Axes of Weaving

New Code PCDs
An extension in abc (AspectJ)
New basicblock pointcut designator

enables advice on every basic block
New loopbackedge pointcut

designator enables advice on every
loop

Both give reflective information
Class and Method name (already existing)
In-method unique ID (additional)

aspect TraceBasicBlocks {
 before(int blockID) : basicblock() && args(blockID)

(

 {
 System.err.println("Entering Block --> " + blockID
 + " at" + thisJoinPoint.getSourceLocation());

 }
 after(int blockID) : basicblock() && args(blockID)

(

 {
 System.err.println("Exiting Block --> " + blockID); }
 }
}

Basic Block PCD

Loop Backedge PCD
aspect TraceLoops {

before(int id) : loopbackedge() && args(id)
{

 System.err.println("Loop body done, " +
 id + " at " +
 thisJoinPoint.getSourceLocation());

}
}

AOP / RM Issues

ABC was specifically created for
extensibility, but is still limited
When we tried statement-level advice, we

were told “we never intended abc for
that!”

For RM, we implement before and
after advice, but not around advice
Would around be useful?

AOP / RM Issues

ABC weaving occurs on an
intermediate representation
e.g., all loops translated to if-goto

structures
can we ensure source code fidelity?

After advice misses final logical
compare
single JVM compare-branch instruction
can be fixed with code duplication

AOP / RM Issues

Ultimate goal: performance
abc implements advice as method call
can we rely on optimizing JVMs?

Examples
Benchmark suite

JTetris: Tetris game in Java
Image2Html: converts a bitmap image into HTML
Java Linpack, an implementation in Java of the

FORTRAN Linpack routines

Coverage analysis.
Full instrumentation and Key class instrumentation

Profiling
Time
Probability

Results

Application
Total

number
of blocks

Number of
methods
and loops

Time
no

Instrumentation

Prob= .5

- Time
Block
Instr

Prob= .5

- Time
Loop
Instr

Prob= .05

- Time
Block
 Instr

Prob= .05

Time
Loop
 Instr

Java linpack 156 38 0.0675 0.572 0.335 0.271 0.187

J-Tetris 240 84 0.3275 0.547 0.435 0.439 0.339

Image2Html 409 39 0.6611 2.311 0.819 0.967 0.735

Future work.
Continue to work new joinpoint types

loop body, if-else body, case body
time and probability dimensions

Design, prototype, implement, test, and
evaluate new pointcuts in the new
dimensions

Mechanisms for making reflective
information easier and faster to obtain in
the advice code will be needed

Thank you

Questions ?

Sampling based profiling

time

Weave
on

event

Weave
on

event

Weave
on

event

