
Automatic Discovery of API-Level Exploits

Vinod Ganapathy, Sanjit A. Seshia, Somesh Jha,
Thomas W. Reps and Randal E. Bryant

University of Wisconsin and Carnegie Mellon University

To appear at 27th Intl. Conf. on Software Engineering
St. Louis, Missouri; May 2005

October 27, 2005 Automatic Discovery of API-Level Exploits 2

Two definitions

Exploit
A sequence of operations that attacks

the vulnerability, typically with malicious intent.

Vulnerability
An error in a software package that

allows for unintended behavior.

October 27, 2005 Automatic Discovery of API-Level Exploits 3

Motivation

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

Format-string vulnerability
buf = “%s%s%s”
fprintf(LOG,“%s%s%s”)

Insufficient arguments to
fprintf.Possible outcomes

Unintelligible log entry.
Program crash.
Hacker takes over program!

October 27, 2005 Automatic Discovery of API-Level Exploits 4

Motivation

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

Tools to find format-string
vulnerabilities: Percent-S
[Shankar et al. USENIX Security 2001]

Finds user-controlled format-
strings (using type-qualifiers)

But, tools to systematically
find exploits against such
vulnerabilities?

Trend is similar for other
kinds of vulnerabilities.

October 27, 2005 Automatic Discovery of API-Level Exploits 5

Motivation
Many vulnerability-detection tools. Few, if any,

exploit-finding tools.
Q: What is different about exploit-finding?

Q: Is exploit finding worth the effort?

Q: Isn’t finding exploits a black-hat activity?

October 27, 2005 Automatic Discovery of API-Level Exploits 6

Motivation
Many vulnerability-detection tools. Few, if any,

exploit-finding tools.
Q: What is different about exploit-finding?
A: Modeling low-level implementation details.
Q: Is exploit finding worth the effort?
A: Yes!
Q: Isn’t finding exploits a black-hat activity?
A: Not necessarily!
Exploit-finding can benefit, and improve the

quality of, vulnerability-detection tools.

October 27, 2005 Automatic Discovery of API-Level Exploits 7

Overview of results
We study exploit-finding by considering a class
of exploits called API-Level Exploits.

We present a framework to:
Model low-level details of an API’s implementation.
Automatically analyze the model and find exploits.

Two real-world instantiations:
printf-family format-string exploits.
IBM Common Cryptographic Architecture (CCA) API.

October 27, 2005 Automatic Discovery of API-Level Exploits 8

Talk structure
Motivation and Overview.
Framework for finding API-level exploits.
Example: format-string exploit-detector.

Overview of printf and format-string exploits.
Instantiating printf in our framework.
Results.
Comparison with other tools.

Related work.
Conclusions.

October 27, 2005 Automatic Discovery of API-Level Exploits 9

API-Level Exploits
What are API-Level exploits?

A sequence of API operations allowed by the
underlying system.
But, compromises the security of the system.

Example: [Chen and Wagner, CCS 2002]

System: UNIX, API: system calls.
setuid(0) followed by execl can lead to root
privileges.

October 27, 2005 Automatic Discovery of API-Level Exploits 10

Framework for modeling APIs
Find exploits:

Model low-level details of the system.

Only check allowed sequences:
Otherwise, false alarms.
Must encode sets of allowed sequences.
Example: OS, system calls. Want to check if a
particular application can compromise the OS.
Only check sequences of system calls generated
by that application [Giffin et al. NDSS 2004]

October 27, 2005 Automatic Discovery of API-Level Exploits 11

Framework for modeling APIs
Find exploits:

Model low-level details of the system.

Only check allowed sequences:
Otherwise, false alarms.
Must encode sets of allowed sequences.

Model system S as:

S = (V, Init, Σ, L)

October 27, 2005 Automatic Discovery of API-Level Exploits 12

Framework for modeling APIs
Find exploits:

Model low-level details of the system.

Only check allowed sequences:
Otherwise, false alarms.
Must encode sets of allowed sequences.

Model system S as:

S = (V, Init, Σ, L)

Finite set of variables, denoting current state of S.
Possibly with values from an infinite domain

October 27, 2005 Automatic Discovery of API-Level Exploits 13

Framework for modeling APIs
Find exploits:

Model low-level details of the system.

Only check allowed sequences:
Otherwise, false alarms.
Must encode sets of allowed sequences.

Model system S as:

S = (V, Init, Σ, L)

Initial State of S

October 27, 2005 Automatic Discovery of API-Level Exploits 14

Framework for modeling APIs
Find exploits:

Model low-level details of the system.

Only check allowed sequences:
Otherwise, false alarms.
Must encode sets of allowed sequences.

Model system S as:

S = (V, Init, Σ, L)

Finite set of API operations. Semantics of each operation
specified using Pre- and Post-contitions

October 27, 2005 Automatic Discovery of API-Level Exploits 15

Framework for modeling APIs
Find exploits:

Model low-level details of the system.

Only check allowed sequences:
Otherwise, false alarms.
Must encode sets of allowed sequences.

Model system S as:

S = (V, Init, Σ, L)

Language of API-operations allowed by S

October 27, 2005 Automatic Discovery of API-Level Exploits 16

Finding API-Level Exploits
Specify what is Bad for the system S.
Reduce to satisfiability.
Is there a sequence of k operations, such that

For any finite value of k,
S initially satisfies predicate Init,
The sequence of operations is in L,
The state of S after the kth operation satisfies Bad

October 27, 2005 Automatic Discovery of API-Level Exploits 17

Finding API-Level Exploits
Specify what is Bad for the system S.
Reduce to satisfiability.
Is there a sequence of k operations, such that

For any finite value of k,
S initially satisfies predicate Init,
The sequence of operations is in L,
The state of S after the kth operation satisfies Bad

Not surprisingly, undecidable.
k is unbounded.
In general, system is infinite-state.

October 27, 2005 Automatic Discovery of API-Level Exploits 18

Finding API-Level Exploits
Our approach:

Bound k, the length of the sequence of API
operations.
Model check.

In effect, checking all allowed sequences of
length k for exploits.

October 27, 2005 Automatic Discovery of API-Level Exploits 19

Talk structure
Motivation and Overview.
Framework for finding API-level exploits.
Example: format-string exploit-detector.

Overview of printf and format-string exploits.
Instantiating printf in our framework.
Results.
Comparison with other tools.

Related work.
Conclusions.

October 27, 2005 Automatic Discovery of API-Level Exploits 20

Format-string vulnerabilities

Allow intruder to assume privileges of the
victim program.
Highly prevalent. [http://www.securiteam.com/exploits]

Vulnerability-detection tools available.
Example: Percent-S.

Goals of our tool:
Systematically find exploits against such
vulnerabilities.
Work with real-world applications.

October 27, 2005 Automatic Discovery of API-Level Exploits 21

Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

Stack
growth Pointers

High
addresses

Low
addresses

October 27, 2005 Automatic Discovery of API-Level Exploits 22

Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

October 27, 2005 Automatic Discovery of API-Level Exploits 23

Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

Pointer to buf

October 27, 2005 Automatic Discovery of API-Level Exploits 24

Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

Stack frame of log

October 27, 2005 Automatic Discovery of API-Level Exploits 25

Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

Pointer to buf

October 27, 2005 Automatic Discovery of API-Level Exploits 26

Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

Stack frame of
fprintf

October 27, 2005 Automatic Discovery of API-Level Exploits 27

Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

argptr

DIS

fmtptr

October 27, 2005 Automatic Discovery of API-Level Exploits 28

Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

argptr

DIS

fmtptr

buf = “%x%x%s”

October 27, 2005 Automatic Discovery of API-Level Exploits 29

Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

argptr
DIS

fmtptr

buf = “%x%x%s”

4 bytes,
integer

October 27, 2005 Automatic Discovery of API-Level Exploits 30

Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

argptrDIS

fmtptr

buf = “%x%x%s”

4 bytes,
integer

October 27, 2005 Automatic Discovery of API-Level Exploits 31

Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

argptrDIS

fmtptr

buf = “%x%x%s”

4 bytes,
address

October 27, 2005 Automatic Discovery of API-Level Exploits 32

Format-string exploits

bufLEN argptr

DIS

fmtptr
What if we move argptr into
buf?

Remember, attacker can
control buf!

October 27, 2005 Automatic Discovery of API-Level Exploits 33

Format-string exploits

LEN argptr

DIS

fmtptr

Example exploit scenario:
•fmtptr is at a “%s”
•buf contains an attacker-
chosen address.
•argptr points to this
location within buf

Can read from arbitrary
memory location!

Can also write to arbitrary
memory location, e.g. return
addresses (paper has details)

%s

address

October 27, 2005 Automatic Discovery of API-Level Exploits 34

Format-string exploits

bufLEN argptr

DIS

fmtptr

Exploit techniques well-known.

Key observations:
1. DIS and LEN completely

characterize any printf
call.

2. Each byte in buf instructs
printf what to do next.

October 27, 2005 Automatic Discovery of API-Level Exploits 35

Format-string exploits

bufLEN argptr

DIS

fmtptr
Format-string is a sequence of
API operations.

Each byte of the format-string
is an instruction.

Finding format-string exploits
=

Finding API-Level exploits

October 27, 2005 Automatic Discovery of API-Level Exploits 36

Finding format-string exploits
Model how printf interprets format-string:

Encoded in the source code of printf.
Need to construct this model only once.

S = (V,Init,Σ,L)
V: Various flags used in printf implementation
that encode its state.
Σ: Set of all ASCII characters (size = 256).
L: All allowed format-strings (Σ*)
• Can restrict L to find exploits that follow a

particular pattern

October 27, 2005 Automatic Discovery of API-Level Exploits 37

Finding format-string exploits
For a vulnerable application:

Find DIS and LEN: How? Disassemble!
Formulate Bad.
Check against the model of printf.

See paper for examples of Bad to:
Read from arbitrary memory location.
Write to an arbitary memory location.

October 27, 2005 Automatic Discovery of API-Level Exploits 38

Finding format-string exploits
The model of printf:

Requires precise reasoning about stack locations,
in particular, the format-string.
Has integer operations: pointer arithmetic to
advance fmtptr and argptr.

Quantifier-free Presburger-arithmetic with
theory of uninterpreted functions.

UCLID tool. [Bryant et al. CAV 2002]

October 27, 2005 Automatic Discovery of API-Level Exploits 39

Format-string exploit-detection tool
Finds exploits against vulnerabilities in real-
world software packages.
Can find different kinds of exploits.
Can find an arbitrary number of variations of
a given exploit.
Can work on binary executables.
Can improve the quality of format-string
vulnerability-detection tools.

October 27, 2005 Automatic Discovery of API-Level Exploits 40

Possible use scenario
Percent-S [Shankar et al. USENIX Security 2001] finds
possibly vulnerable locations. No exploits.
Run our tool at each vulnerable location:

Exploit generated: true vulnerability.
No exploit generated: possibly a false alarm.

Format-string
vulnerability
finding tool

List of
vulnerabilities

Our
tool

Exploit
Possible false alarm
Exploit
Exploit
Possible false alarm
Exploit

October 27, 2005 Automatic Discovery of API-Level Exploits 41

Results
Exploits against vulnerabilities in real-

world software:
See paper for details

Overwrite memory location40969364wu-ftpd-2.6.0

Read a memory location10242120qpopper-2.53

Overwrite memory location102424php-3.0.16

Exploit descriptionLENDISSoftware

October 27, 2005 Automatic Discovery of API-Level Exploits 42

Results

“a1a2a3a4%78Lg%80g%72Lg%n”“a1a2a3a4%g%Lg%Lg%s”2432

“a1a2a3a4%61Lg%169Lg%n”“a1a2a3a4%Lg%Lg%s”2024

“a1a2a3a4%210Lg%20g%n”“a1a2a3a4%Lg%g%s”2020

“a1a2a3a4%137g%93g%n”“%Lg%Lg%sa1a2a3a4”1616

“a1a2a3a4%230g%n”“a1a2a3a4%Lx%s”168

“a1a2a3a4%%%229x%n”“%Lx%ld%sa1a2a3a4” 164

“%234Lg%na1a2a3a4”“a1a2a3a4%d%s”164

No exploitNo exploit74

No exploit“a1a2a3a4%s”70

Write exploitRead exploitLENDIS

October 27, 2005 Automatic Discovery of API-Level Exploits 49

Results

“a1a2a3a4%78Lg%80g%72Lg%n”“a1a2a3a4%g%Lg%Lg%s”2432

“a1a2a3a4%61Lg%169Lg%n”“a1a2a3a4%Lg%Lg%s”2024

“a1a2a3a4%210Lg%20g%n”“a1a2a3a4%Lg%g%s”2020

“a1a2a3a4%137g%93g%n”“%Lg%Lg%sa1a2a3a4”1616

“a1a2a3a4%230g%n”“a1a2a3a4%Lx%s”168

“a1a2a3a4%%%229x%n”“%Lx%ld%sa1a2a3a4” 164

“%234Lg%na1a2a3a4”“a1a2a3a4%d%s”164

No exploitNo exploit74

No exploit“a1a2a3a4%s”70

Write exploitRead exploitLENDIS

Ability to find
false alarms

October 27, 2005 Automatic Discovery of API-Level Exploits 50

Results

“a1a2a3a4%78Lg%80g%72Lg%n”“a1a2a3a4%g%Lg%Lg%s”2432

“a1a2a3a4%61Lg%169Lg%n”“a1a2a3a4%Lg%Lg%s”2024

“a1a2a3a4%210Lg%20g%n”“a1a2a3a4%Lg%g%s”2020

“a1a2a3a4%137g%93g%n”“%Lg%Lg%sa1a2a3a4”1616

“a1a2a3a4%230g%n”“a1a2a3a4%Lx%s”168

“a1a2a3a4%%%229x%n”“%Lx%ld%sa1a2a3a4” 164

“%234Lg%na1a2a3a4”“a1a2a3a4%d%s”164

No exploitNo exploit74

No exploit“a1a2a3a4%s”70

Write exploitRead exploitLENDIS

Ability to find different kinds
of exploits: Parametrized by

the predicate Bad

October 27, 2005 Automatic Discovery of API-Level Exploits 51

Results

“a1a2a3a4%78Lg%80g%72Lg%n”“a1a2a3a4%g%Lg%Lg%s”2432

“a1a2a3a4%61Lg%169Lg%n”“a1a2a3a4%Lg%Lg%s”2024

“a1a2a3a4%210Lg%20g%n”“a1a2a3a4%Lg%g%s”2020

“a1a2a3a4%137g%93g%n”“%Lg%Lg%sa1a2a3a4”1616

“a1a2a3a4%230g%n”“a1a2a3a4%Lx%s”168

“a1a2a3a4%%%229x%n”“%Lx%ld%sa1a2a3a4” 164

“%234Lg%na1a2a3a4”“a1a2a3a4%d%s”164

No exploitNo exploit74

No exploit“a1a2a3a4%s”70

Write exploitRead exploitLENDIS

Ability to find
variants of an exploit

October 27, 2005 Automatic Discovery of API-Level Exploits 52

Talk structure
Motivation and Overview.
Framework for finding API-level exploits.
Example: format-string exploit-detector.

Overview of printf and format-string exploits.
Instantiating printf in our framework.
Results.
Comparison with other tools.

Related work.
Conclusions.

October 27, 2005 Automatic Discovery of API-Level Exploits 53

Related work
Software Model Checking [Blast,SLAM,Magic,CBMC]

Counter-example guided abstraction refinement.
Exploits ≈ Concrete counter-examples.

Test generation [Beyer et al. ICSE04,Boyapati et al. ISSTA02]

Exploits can be used as test cases.

Ad-hoc techniques [Thuemmel 2001,Newsham 2000]

No soundness guarantees. Cannot find variants.

October 27, 2005 Automatic Discovery of API-Level Exploits 54

Summary of important ideas
Exploit-finding requires modeling low-level
details of the system.
Exploit-finding can benefit vulnerability-
finding tools.
Demonstrated using API-level exploits.

Automatic Discovery of API-Level Exploits

Vinod Ganapathy, Sanjit A. Seshia, Somesh Jha,
Thomas W. Reps and Randal E. Bryant

University of Wisconsin and Carnegie Mellon University

