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Two definitions

Exploit
A sequence of operations that attacks 

the vulnerability, typically with malicious intent.

Vulnerability
An error in a software package that 

allows for unintended behavior.
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Motivation

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

Format-string vulnerability
buf = “%s%s%s”
fprintf(LOG,“%s%s%s”)

Insufficient arguments to 
fprintf.Possible outcomes

Unintelligible log entry.
Program crash.
Hacker takes over program!
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Motivation

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input 
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

Tools to find format-string 
vulnerabilities: Percent-S 
[Shankar et al. USENIX Security 2001]

Finds user-controlled format-
strings (using type-qualifiers)

But, tools to systematically
find exploits against such 
vulnerabilities?

Trend is similar for other 
kinds of vulnerabilities.
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Motivation
Many vulnerability-detection tools. Few, if any, 

exploit-finding tools.
Q: What is different about exploit-finding?

Q: Is exploit finding worth the effort?

Q: Isn’t finding exploits a black-hat activity?
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Motivation
Many vulnerability-detection tools. Few, if any, 

exploit-finding tools.
Q: What is different about exploit-finding?
A: Modeling low-level implementation details.
Q: Is exploit finding worth the effort?
A: Yes!
Q: Isn’t finding exploits a black-hat activity?
A: Not necessarily!
Exploit-finding can benefit, and improve the 

quality of, vulnerability-detection tools.
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Overview of results
We study exploit-finding by considering a class 
of exploits called API-Level Exploits.

We present a framework to:
Model low-level details of an API’s implementation.
Automatically analyze the model and find exploits.

Two real-world instantiations:
printf-family format-string exploits.
IBM Common Cryptographic Architecture (CCA) API.
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Talk structure
Motivation and Overview.
Framework for finding API-level exploits.
Example: format-string exploit-detector.

Overview of printf and format-string exploits.
Instantiating printf in our framework.
Results.
Comparison with other tools.

Related work.
Conclusions.
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API-Level Exploits
What are API-Level exploits?

A sequence of API operations allowed by the 
underlying system.
But, compromises the security of the system.

Example: [Chen and Wagner, CCS 2002]

System: UNIX, API: system calls.
setuid(0) followed by execl can lead to root 
privileges.
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Framework for modeling APIs
Find exploits:

Model low-level details of the system.

Only check allowed sequences:
Otherwise, false alarms.
Must encode sets of allowed sequences.
Example: OS, system calls. Want to check if a 
particular application can compromise the OS.
Only check sequences of system calls generated 
by that application [Giffin et al. NDSS 2004]
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Framework for modeling APIs
Find exploits:

Model low-level details of the system.

Only check allowed sequences:
Otherwise, false alarms.
Must encode sets of allowed sequences.

Model system S as:

S = (V, Init, Σ, L)
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Framework for modeling APIs
Find exploits:

Model low-level details of the system.

Only check allowed sequences:
Otherwise, false alarms.
Must encode sets of allowed sequences.

Model system S as:

S = (V, Init, Σ, L)

Finite set of variables, denoting current state of S. 
Possibly with values from an infinite domain
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Framework for modeling APIs
Find exploits:

Model low-level details of the system.

Only check allowed sequences:
Otherwise, false alarms.
Must encode sets of allowed sequences.

Model system S as:

S = (V, Init, Σ, L)

Initial State of S



October 27, 2005 Automatic Discovery of API-Level Exploits 14

Framework for modeling APIs
Find exploits:

Model low-level details of the system.

Only check allowed sequences:
Otherwise, false alarms.
Must encode sets of allowed sequences.

Model system S as:

S = (V, Init, Σ, L)

Finite set of API operations. Semantics of each operation
specified using Pre- and Post-contitions
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Framework for modeling APIs
Find exploits:

Model low-level details of the system.

Only check allowed sequences:
Otherwise, false alarms.
Must encode sets of allowed sequences.

Model system S as:

S = (V, Init, Σ, L)

Language of API-operations allowed by S
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Finding API-Level Exploits
Specify what is Bad for the system S.
Reduce to satisfiability.
Is there a sequence of k operations, such that

For any finite value of k,
S initially satisfies predicate Init,
The sequence of operations is in L,
The state of S after the kth operation satisfies Bad
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Finding API-Level Exploits
Specify what is Bad for the system S.
Reduce to satisfiability.
Is there a sequence of k operations, such that

For any finite value of k,
S initially satisfies predicate Init,
The sequence of operations is in L,
The state of S after the kth operation satisfies Bad

Not surprisingly, undecidable.
k is unbounded.
In general, system is infinite-state.
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Finding API-Level Exploits
Our approach:

Bound k, the length of the sequence of API 
operations.
Model check.

In effect, checking all allowed sequences of 
length k for exploits.
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Talk structure
Motivation and Overview.
Framework for finding API-level exploits.
Example: format-string exploit-detector.

Overview of printf and format-string exploits.
Instantiating printf in our framework.
Results.
Comparison with other tools.

Related work.
Conclusions.
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Format-string vulnerabilities

Allow intruder to assume privileges of the 
victim program.
Highly prevalent. [http://www.securiteam.com/exploits]

Vulnerability-detection tools available.
Example: Percent-S.

Goals of our tool:
Systematically find exploits against such 
vulnerabilities.
Work with real-world applications.
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Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input 
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

Stack
growth Pointers

High 
addresses

Low 
addresses
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Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input 
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN
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Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input 
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

Pointer to buf
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Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input 
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

Stack frame of log
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Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input 
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

Pointer to buf
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Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input 
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

Stack frame of 
fprintf
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Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input 
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

argptr

DIS

fmtptr
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Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input 
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

argptr

DIS

fmtptr

buf = “%x%x%s”
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Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input 
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

argptr
DIS

fmtptr

buf = “%x%x%s”

4 bytes,
integer
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Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input 
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

argptrDIS

fmtptr

buf = “%x%x%s”

4 bytes,
integer
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Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input 
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

argptrDIS

fmtptr

buf = “%x%x%s”

4 bytes,
address
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Format-string exploits

bufLEN argptr

DIS

fmtptr
What if we move argptr into  
buf?

Remember, attacker can 
control buf!
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Format-string exploits

LEN argptr

DIS

fmtptr

Example exploit scenario:
•fmtptr is at a “%s”
•buf contains an attacker-
chosen address.
•argptr points to this 
location within buf

Can read from arbitrary 
memory location!

Can also write to arbitrary 
memory location, e.g. return 
addresses (paper has details)

%s

address
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Format-string exploits

bufLEN argptr

DIS

fmtptr

Exploit techniques well-known.

Key observations:
1. DIS and LEN completely 

characterize any printf
call.

2. Each byte in buf instructs 
printf what to do next.
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Format-string exploits

bufLEN argptr

DIS

fmtptr
Format-string is a sequence of 
API operations.

Each byte of the format-string 
is an instruction.

Finding format-string exploits
=

Finding API-Level exploits
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Finding format-string exploits
Model how printf interprets format-string:

Encoded in the source code of printf.
Need to construct this model only once.

S = (V,Init,Σ,L)
V: Various flags used in printf implementation 
that encode its state.
Σ: Set of all ASCII characters (size = 256).
L: All allowed format-strings (Σ*)
• Can restrict L to find exploits that follow a 

particular pattern
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Finding format-string exploits
For a vulnerable application:

Find DIS and LEN: How? Disassemble!
Formulate Bad.
Check against the model of printf.

See paper for examples of Bad to:
Read from arbitrary memory location.
Write to an arbitary memory location.
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Finding format-string exploits
The model of printf:

Requires precise reasoning about stack locations, 
in particular, the format-string.
Has integer operations: pointer arithmetic to 
advance fmtptr and argptr.

Quantifier-free Presburger-arithmetic with 
theory of uninterpreted functions.

UCLID tool. [Bryant et al. CAV 2002]
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Format-string exploit-detection tool
Finds exploits against vulnerabilities in real-
world software packages.
Can find different kinds of exploits.
Can find an arbitrary number of variations of 
a given exploit.
Can work on binary executables.
Can improve the quality of format-string 
vulnerability-detection tools.
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Possible use scenario
Percent-S [Shankar et al. USENIX Security 2001] finds 
possibly vulnerable locations. No exploits.
Run our tool at each vulnerable location:

Exploit generated: true vulnerability.
No exploit generated: possibly a false alarm.

Format-string
vulnerability
finding tool

List of
vulnerabilities

Our
tool

Exploit
Possible false alarm
Exploit
Exploit
Possible false alarm
Exploit
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Results
Exploits against vulnerabilities in real-

world software:
See paper for details

Overwrite memory location40969364wu-ftpd-2.6.0

Read a memory location10242120qpopper-2.53

Overwrite memory location102424php-3.0.16

Exploit descriptionLENDISSoftware
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Results

“a1a2a3a4%78Lg%80g%72Lg%n”“a1a2a3a4%g%Lg%Lg%s”2432

“a1a2a3a4%61Lg%169Lg%n”“a1a2a3a4%Lg%Lg%s”2024

“a1a2a3a4%210Lg%20g%n”“a1a2a3a4%Lg%g%s”2020

“a1a2a3a4%137g%93g%n”“%Lg%Lg%sa1a2a3a4”1616

“a1a2a3a4%230g%n”“a1a2a3a4%Lx%s”168

“a1a2a3a4%%%229x%n”“%Lx%ld%sa1a2a3a4” 164

“%234Lg%na1a2a3a4”“a1a2a3a4%d%s”164

No exploitNo exploit74

No exploit“a1a2a3a4%s”70

Write exploitRead exploitLENDIS
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Results

“a1a2a3a4%78Lg%80g%72Lg%n”“a1a2a3a4%g%Lg%Lg%s”2432

“a1a2a3a4%61Lg%169Lg%n”“a1a2a3a4%Lg%Lg%s”2024

“a1a2a3a4%210Lg%20g%n”“a1a2a3a4%Lg%g%s”2020

“a1a2a3a4%137g%93g%n”“%Lg%Lg%sa1a2a3a4”1616

“a1a2a3a4%230g%n”“a1a2a3a4%Lx%s”168

“a1a2a3a4%%%229x%n”“%Lx%ld%sa1a2a3a4” 164

“%234Lg%na1a2a3a4”“a1a2a3a4%d%s”164

No exploitNo exploit74

No exploit“a1a2a3a4%s”70

Write exploitRead exploitLENDIS

Ability to find 
false alarms



October 27, 2005 Automatic Discovery of API-Level Exploits 50

Results

“a1a2a3a4%78Lg%80g%72Lg%n”“a1a2a3a4%g%Lg%Lg%s”2432
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“%234Lg%na1a2a3a4”“a1a2a3a4%d%s”164

No exploitNo exploit74

No exploit“a1a2a3a4%s”70

Write exploitRead exploitLENDIS

Ability to find different kinds 
of exploits: Parametrized by 

the predicate Bad
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Results

“a1a2a3a4%78Lg%80g%72Lg%n”“a1a2a3a4%g%Lg%Lg%s”2432

“a1a2a3a4%61Lg%169Lg%n”“a1a2a3a4%Lg%Lg%s”2024
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“a1a2a3a4%%%229x%n”“%Lx%ld%sa1a2a3a4” 164

“%234Lg%na1a2a3a4”“a1a2a3a4%d%s”164

No exploitNo exploit74

No exploit“a1a2a3a4%s”70

Write exploitRead exploitLENDIS

Ability to find 
variants of an exploit
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Talk structure
Motivation and Overview.
Framework for finding API-level exploits.
Example: format-string exploit-detector.

Overview of printf and format-string exploits.
Instantiating printf in our framework.
Results.
Comparison with other tools.

Related work.
Conclusions.
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Related work
Software Model Checking [Blast,SLAM,Magic,CBMC]

Counter-example guided abstraction refinement.
Exploits ≈ Concrete counter-examples.

Test generation [Beyer et al. ICSE04,Boyapati et al. ISSTA02]

Exploits can be used as test cases.

Ad-hoc techniques [Thuemmel 2001,Newsham 2000]

No soundness guarantees. Cannot find variants.
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Summary of important ideas
Exploit-finding requires modeling low-level 
details of the system.
Exploit-finding can benefit vulnerability-
finding tools.
Demonstrated using API-level exploits.
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