
Specification-Based
Analysis and Enforcement

Jonathon Giffin, Somesh Jha, Barton Miller
University of Wisconsin

4 August 2003 WiSA - Jonathon Giffin 2

Overview

• Intrusion detection and specification-based
monitoring

• An unusual intrusion path
– The Condor attack: How to easily do dangerous and

malicious things to a running job
• How to detect attempted intrusions with pre-

execution static analysis and runtime monitoring
• Precision & performance results for 3 programs
• Recent work

– Null call insertion to improve precision & performance
– Analysis of shared objects

4 August 2003 WiSA - Jonathon Giffin 3

Intrusion Detection

Goal: Discover attempts to maliciously gain
access to a system

4 August 2003 WiSA - Jonathon Giffin 4

Goal: Discover attempts to maliciously gain
access to a system

Specification-Based
Monitoring

•Specify constraints upon
program behavior

•Ensure execution does
not violate specification

•Our work; Ko, et. al.

•Specifications can be
cumbersome to create

Misuse Detection

•Specify patterns of
attack or misuse

•Ensure misuse patterns
do not arise at runtime

•Snort

•Rigid: cannot adapt
to novel attacks

Anomaly Detection

•Learn typical behavior
of application

•Variations indicate
potential intrusions

• IDES

•High false alarm rate

4 August 2003 WiSA - Jonathon Giffin 5

Specification-Based Monitoring

• Two components:

– Specification: Indicates constraints upon
program behavior

– Enforcement: How the specification is
verified at runtime or from audit data

4 August 2003 WiSA - Jonathon Giffin 6

Execution
Obeys Static

Ruleset

Specification

Enforcement

Execution
Matches
Model of

Application

Analyst or
Administrator

Training
Sets

Static
Binary Code

Analysis

Static
Source Code

Analysis

4 August 2003 WiSA - Jonathon Giffin 7

Representative Work by Ko, et. al.

• Specification: Programmers or
administrators specify correct program
behavior

• Enforcement: At runtime, only allow
actions that match the specified policy

PROGRAM fingerd
read(X) :- worldreadable(X);
bind(79);
write(“/etc/log”);
exec(“/usr/ucb/finger”);

END

4 August 2003 WiSA - Jonathon Giffin 8

Execution
Obeys Static

Ruleset

Specification

Enforcement

Execution
Matches
Model of

Application

Analyst or
Administrator

Training
Sets

Static
Binary Code

Analysis

Static
Source Code

Analysis

4 August 2003 WiSA - Jonathon Giffin 9

Our Approach
Specification: Static analysis

of binary code
• Specifications are

automatically generated
• Not reliant upon

programmers
to produce accurate
specifications

• Analyzes all execution paths
• Source code may be

unavailable

function:
save %sp, 0x96, %sp
cmp %i0, 0
bge L1
mov 15, %o1
call read
mov 0, %o0
call line
nop
b L2
nop

L1:
call read
mov %i0, %o0
call close
mov %i0, %o0

L2:
ret
restore

4 August 2003 WiSA - Jonathon Giffin 10

Our Approach
Enforcement: Operate an

automaton modeling
correct system call
sequences

• Dynamic ruleset

• More expressive than
static ruleset of Ko, et. al.

read read

close line

4 August 2003 WiSA - Jonathon Giffin 11

Non-Deterministic Finite
Automaton (NFA)

• Structure
– States
– Labeled edges between

states
• Edge labels are input

symbols – call names
• Path to any accepting

state defines valid
sequence of calls

read read

close line

4 August 2003 WiSA - Jonathon Giffin 12

Our Approach
Enforcement: Operate an

automaton modeling
correct system call
sequences

• Dynamic ruleset

• More expressive than
static ruleset of Ko, et. al.

read read

close line

4 August 2003 WiSA - Jonathon Giffin 13

Example: The Condor Attack

• Users dispatch programs for remote
execution

• Remote jobs send critical system calls
back to local machine for execution

Submitting HostSubmitting Host

Shadow Process
giffin

Execution HostExecution Host

User Job
nobody

system calls

4 August 2003 WiSA - Jonathon Giffin 14

Example: The Condor Attack

• Attackers can manipulate remotely
executing program to gain access to user’s
machine

Submitting HostSubmitting Host

Shadow Process
giffin

Execution HostExecution Host

User Job
nobody

system calls

4 August 2003 WiSA - Jonathon Giffin 15

A New View

• Running programs are objects to be easily
manipulated

• The vehicle: the DynInst API

4 August 2003 WiSA - Jonathon Giffin 16

DynInst: Dynamic Instrumentation

• Machine independent library for
instrumentation of running processes

• Modify control flow of the process:
– Load new code into the process
– Remove, replace, or redirect function calls
– Asynchronously call any function in the

process

4 August 2003 WiSA - Jonathon Giffin 17

Condor Attack: Lurking Jobs

Submitting HostSubmitting Host

Shadow Process
giffin

Execution HostExecution Host

Malicious
User Job
nobody

system calls

4 August 2003 WiSA - Jonathon Giffin 18

Condor Attack: Lurking Jobs

Submitting HostSubmitting Host

Shadow Process
giffin

Execution HostExecution Host

Malicious
User Job
nobody

system calls

Lurker
Process
nobody

forkfork

4 August 2003 WiSA - Jonathon Giffin 19

Condor Attack: Lurking Jobs

Submitting HostSubmitting Host Execution HostExecution Host

Lurker
Process
nobody

4 August 2003 WiSA - Jonathon Giffin 20

Condor Attack: Lurking Jobs

Submitting HostSubmitting Host

Shadow Process
bart

Execution HostExecution Host

Innocent
User Job
nobody

system calls

Lurker
Process
nobody

4 August 2003 WiSA - Jonathon Giffin 21

Condor Attack: Lurking Jobs

Submitting HostSubmitting Host

Shadow Process
bart

Execution HostExecution Host

Innocent
User Job
nobody

system calls

Lurker
Process
nobody

attachattach

4 August 2003 WiSA - Jonathon Giffin 22

Condor Attack: Lurking Jobs

Submitting HostSubmitting Host

Shadow Process
bart

Execution HostExecution Host

Innocent
User Job
nobody

system calls

Control remote
system calls

Lurker
Process
nobody

attachattach

4 August 2003 WiSA - Jonathon Giffin 23

Condor Attack: Lurking Jobs

Submitting HostSubmitting Host

Shadow Process
bart

Execution HostExecution Host

Innocent
User Job
nobody

system calls

Control remote
system calls

Lurker
Process
nobody

rm -rf *rm -rf *

attachattach

4 August 2003 WiSA - Jonathon Giffin 24

Can We Safely Execute
Our Jobs Remotely?

The threats:
1. Cause the job to make improper remote system

calls.
2. Cause the job to calculate an incorrect answer.
3. Steal data from the remote job.

Threat protection strategies:
– Monitor execution of remote job (threat #1)
– File or system call sand-boxing (#1)
– Obfuscate or encode remote job (#1, #3)
– Replicate remote job (#2)

4 August 2003 WiSA - Jonathon Giffin 25

Countering Remote Attacks
• Goal: Even if an intruder can see, examine,

and fully control the remote job, no harm
can come to the local machine.

• Method: Model all possible sequences of
remote system calls. At runtime, update
the model with each received call.

• Key technology: Static analysis of binary
code.

4 August 2003 WiSA - Jonathon Giffin 26

Execution Monitoring

Analyzer

Checking
Shadow

Modified
User Job

User Job

4 August 2003 WiSA - Jonathon Giffin 27

Execution Monitoring

Submitting HostSubmitting Host Execution HostExecution Host

Modified
User Job

system callsChecking
Shadow

Job Model

4 August 2003 WiSA - Jonathon Giffin 28

Execution Monitoring

Submitting HostSubmitting Host Execution HostExecution Host

Modified
User Job

system callsChecking
Shadow

Job Model

X
Call 1Call 2Call 3

4 August 2003 WiSA - Jonathon Giffin 29

Model Construction

Binary
Program

Control
Flow

Graphs

Local
Automata

Global
Automaton

Analyzer

Checking
Shadow

Modified
User Job

User Job

4 August 2003 WiSA - Jonathon Giffin 30

The Binary View (SPARC)
function:
save %sp, 0x96, %sp
cmp %i0, 0
bge L1
mov 15, %o1
call read
mov 0, %o0
call line
nop
b L2
nop

L1:
call read
mov %i0, %o0
call close
mov %i0, %o0

L2:
ret
restore

function (int a) {
if (a < 0) {

read(0, 15);
line();

} else {
read(a, 15);
close(a);

}
}

4 August 2003 WiSA - Jonathon Giffin 31

Control Flow Graph
Generation

function:
save %sp, 0x96, %sp
cmp %i0, 0
bge L1
mov 15, %o1
call read
mov 0, %o0
call line
nop
b L2
nop

L1:
call read
mov %i0, %o0
call close
mov %i0, %o0

L2:
ret
restore

call read

bge

call read

CFG ENTRY

call close

ret

call line

CFG EXIT

4 August 2003 WiSA - Jonathon Giffin 32

Control Flow Graph
Translation

call read

bge

call read

CFG ENTRY

call close

ret

call line

CFG EXIT

read read

close line

4 August 2003 WiSA - Jonathon Giffin 33

Control Flow Graph
Translation

call read

bge

call read

CFG ENTRY

call close

ret

call line

CFG EXIT

read read

close line

4 August 2003 WiSA - Jonathon Giffin 34

Interprocedural Model
Generation

read read

close line

A

4 August 2003 WiSA - Jonathon Giffin 35

Interprocedural Model
Generation

read read

close line
write

line

A

4 August 2003 WiSA - Jonathon Giffin 36

Interprocedural Model
Generation

read read

close line

line

write

line

A B

close

4 August 2003 WiSA - Jonathon Giffin 37

Interprocedural Model
Generation

read read

close
write

line

A B

ε

ε

line

close

4 August 2003 WiSA - Jonathon Giffin 38

Interprocedural Model
Generation

read read

close
write

line

A B

ε

ε

ε

closeε

4 August 2003 WiSA - Jonathon Giffin 39

Possible
Paths

read read

close
write

line

A B

ε

ε

ε

closeε

4 August 2003 WiSA - Jonathon Giffin 40

Possible
Paths

read read

close
write

line

A B

ε

ε

ε

closeε

4 August 2003 WiSA - Jonathon Giffin 41

Impossible
Paths

read read

close
write

line

A B

ε

ε

ε

closeε

4 August 2003 WiSA - Jonathon Giffin 42

Impossible
Paths

read read

close
write

line

A B

ε

ε

ε

closeε

4 August 2003 WiSA - Jonathon Giffin 43

Y

Y

X

X

Adding Context
Sensitivity

read read

close closewrite

line

A B

ε

ε

ε

ε

4 August 2003 WiSA - Jonathon Giffin 44

PDA State Explosion

• ε-edge identifiers maintained on a stack
– Stack may grow to be unbounded

• Solution:
– Bound the maximum size of the runtime stack
– A regular language overapproximation of the

context-free language of the PDA

X

4 August 2003 WiSA - Jonathon Giffin 45

Data Flow Analysis
Argument recovery

• Statically known
arguments constrain
remote calls

• Reduces opportunity
given to attackers

function:
save %sp, 0x96, %sp
cmp %i0, 0
bge L1
mov 15, %o1
call read
mov 0, %o0
call line
nop
b L2
nop

L1:
call read
mov %i0, %o0
call close
mov %i0, %o0

L2:
ret
restore

4 August 2003 WiSA - Jonathon Giffin 46

Rewriting User Job

Binary
Program

Rewritten
Binary

Analyzer

Checking
Shadow

Modified
User Job

User Job

4 August 2003 WiSA - Jonathon Giffin 47

Call Site Renaming

• Give each monitored
call site a unique name

• Associates arguments
with call sites

• Obfuscation
• Reduces

nondeterminism

function:
save %sp, 0x96, %sp
cmp $i0, 0
bge L1
mov 15, %o1
call read
mov 0, %o0
call line
nop
b L2
nop

L1:
call read
mov %i0, %o0
call close
mov %i0, %o0

L2:
ret
restore

4 August 2003 WiSA - Jonathon Giffin 48

Call Site Renaming

• Give each monitored
call site a unique name

• Associates arguments
with call sites

• Obfuscation
• Reduces

nondeterminism

function:
save %sp, 0x96, %sp
cmp $i0, 0
bge L1
mov 15, %o1
call _638
mov 0, %o0
call line
nop
b L2
nop

L1:
call read
mov %i0, %o0
call close
mov %i0, %o0

L2:
ret
restore

4 August 2003 WiSA - Jonathon Giffin 49

Call Site Renaming

• Give each monitored
call site a unique name

• Associates arguments
with call sites

• Obfuscation
• Reduces

nondeterminism

function:
save %sp, 0x96, %sp
cmp $i0, 0
bge L1
mov 15, %o1
call _638
mov 0, %o0
call line
nop
b L2
nop

L1:
call _83
mov %i0, %o0
call close
mov %i0, %o0

L2:
ret
restore

4 August 2003 WiSA - Jonathon Giffin 50

Call Site Renaming

• Give each monitored
call site a unique name

• Associates arguments
with call sites

• Obfuscation
• Reduces

nondeterminism

function:
save %sp, 0x96, %sp
cmp $i0, 0
bge L1
mov 15, %o1
call _638
mov 0, %o0
call line
nop
b L2
nop

L1:
call _83
mov %i0, %o0
call _1920
mov %i0, %o0

L2:
ret
restore

4 August 2003 WiSA - Jonathon Giffin 51

Call Site Renaming

• Give each monitored
call site a unique name

• Associates arguments
with call sites

• Obfuscation
• Reduces

nondeterminism

read read

close line

4 August 2003 WiSA - Jonathon Giffin 52

Call Site Renaming

• Give each monitored
call site a unique name

• Associates arguments
with call sites

• Obfuscation
• Reduces

nondeterminism

_638 _83

_1920 line

4 August 2003 WiSA - Jonathon Giffin 53

Prototype Implementation

• Simulates remote execution environment
• Measure model precision
• Measure runtime overheads
• Measure the effect of changing maximum

stack depth on bounded PDA model

4 August 2003 WiSA - Jonathon Giffin 54

Test Programs

Process 1 incoming email message

Finger 3 non-local users

Compress a 13 MB file

Workload

56,686gzip

107,167procmail

95,534GNU finger

Program Size
in Instructions

4 August 2003 WiSA - Jonathon Giffin 55

Precision Metric

• Average branching factor

• Lower values indicate greater precision

getpid
open

chown

4 August 2003 WiSA - Jonathon Giffin 56

Optimizations Improve Precision

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

gzip GNU finger procmail

Program

A
ve

ra
ge

 B
ra

nc
hi

ng
 F

ac
to

r

None Rename Argument Capture Rename+Capture

4 August 2003 WiSA - Jonathon Giffin 57

PDA Precision Improves with
Increased Stack Depth (procmail)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

0 1 2 3 4 5 6 7 8 9 10

Stack Bound

A
ve

ra
ge

 B
ra

nc
hi

ng
 F

ac
to

r

Rename+Capture

4 August 2003 WiSA - Jonathon Giffin 58

PDA Overhead (procmail)

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6 7 8 9 10

Stack Bound

O
ve

rh
ea

d
(s

ec
on

ds
)

Rename+Capture

4 August 2003 WiSA - Jonathon Giffin 59

Recent Work

• Improving precision with null calls
– Surprise! PDA performance improves

• Analysis of shared objects

4 August 2003 WiSA - Jonathon Giffin 60

Null Calls

• Observation: PDA is more precise than
NFA because it provides context
sensitivity

• Idea: Insert null calls into NFA model to
add some context sensitivity without
suffering runtime cost of PDA

4 August 2003 WiSA - Jonathon Giffin 61

Null Call
Insertion

read read

close
write

line

A B

ε

ε

ε

closeε

4 August 2003 WiSA - Jonathon Giffin 62

Null Call
Insertion

read read

close
write

line

A B

ε

ε

close

null_1

null_2

4 August 2003 WiSA - Jonathon Giffin 63

Null Call Experiments

• Inserted null calls at 3 rates
– High: At entries of functions with fan-in of 2

or greater
– Medium: At entries of functions with fan-in of

5 or greater
– Low: At entries of functions with fan-in of 10

or greater

4 August 2003 WiSA - Jonathon Giffin 64

Precision Improves with Null Calls

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

gzip GNU finger procmail

Program

A
ve

ra
ge

 B
ra

nc
hi

ng
 F

ac
to

r

High Insertion Rate Medium Insertion Rate Low Insertion Rate Rename+Capture

0

4 August 2003 WiSA - Jonathon Giffin 65

Null Call Costs:
Monitoring Overhead & Bandwidth

< 0.1 %< 0.1 %747.0 %gzip

0.7 %1.1 %0.8 %procmail

< 0.1 %0.1 %0.1 %GNU finger

LowMediumHighInsertion Rate

0.0 Kbps5.6 Kbps4350.0 Kbpsgzip

4.0 Kbps13.1 Kbps18.2 Kbpsprocmail

0.9 Kbps9.1 Kbps14.1 KbpsGNU finger

4 August 2003 WiSA - Jonathon Giffin 66

PDA Precision Improves With Null Call Insertion &
Increased Stack Depth (procmail)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

0 1 2 3 4 5 6 7 8 9 10

Stack Bound

A
ve

ra
ge

 B
ra

nc
hi

ng
 F

ac
to

r

High Insertion Rate Medium Insertion Rate Low Insertion Rate Rename+Capture

4 August 2003 WiSA - Jonathon Giffin 67

PDA Overhead (procmail)

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10

Stack Bound

O
ve

rh
ea

d
(s

ec
on

ds
)

High Insertion Rate Medium Insertion Rate Low Insertion Rate Rename+Capture

750 s 95 s

4 August 2003 WiSA - Jonathon Giffin 68

Analyzing Shared Object Code

• Two new difficulties
– Relocatable object code
– Interprocedural data flows

4 August 2003 WiSA - Jonathon Giffin 69

Relocatable Object Code

• Data tables filled out dynamically at load
time

• Data table recovery
– Recover relocation tables
– Simulate action of run-time linker to resolve

table values
• Enables improved analysis

– Trace global data accesses
– Follow jumps through table values

4 August 2003 WiSA - Jonathon Giffin 70

Data Flow Analysis

Argument recovery technique

• Slice on each register of interest to build
a data dependence graph for the value

• Simulate the execution of the instructions
in the dependence graph to reach final
value

4 August 2003 WiSA - Jonathon Giffin 71

Argument Recovery
function:

save %sp, 0x96, %sp
cmp %i0, 0
bge L1
mov 15, %o1
call read
mov 0, %o0
call line
nop
b L2
nop

L1:
call read
mov %i0, %o0
call close
mov %i0, %o0

L2:
ret
restore

call read

mov %i0, %o0 mov 15, %o1

Entry Point

What happens here?

4 August 2003 WiSA - Jonathon Giffin 72

Argument Recovery
Interprocedural Slicing
• Continue slice in

calling functions

call read

mov %i0, %o0 mov 15, %o1

Entry Point

4 August 2003 WiSA - Jonathon Giffin 73

Argument Recovery

Call Site Call Site

call read

mov %i0, %o0 mov 15, %o1

Entry Point

4 August 2003 WiSA - Jonathon Giffin 74

Argument Recovery

Call Site Call Site

call read

mov %i0, %o0 mov 15, %o1

Entry Point

… ………

4 August 2003 WiSA - Jonathon Giffin 75

Argument Recovery

• Interprocedural slicing improves argument
recovery
– Imposes greater constraints upon attacker

• In shared objects, we can recover
function pointers passed to library calls
– Improves model precision

4 August 2003 WiSA - Jonathon Giffin 76

Analyzing Shared Object Code

Infrastructure Changes
• Both relocation table analysis &

interprocedural slicing required
modification of the analysis infrastructure

Status
• Recovering relocation tables is complete
• Interprocedural slicing is underway

4 August 2003 WiSA - Jonathon Giffin 77

Important Ideas
• Our work is specification-based monitoring

with specifications generated
automatically from binary code analysis.

• We enforce the specification by operating
a finite state machine modeling correct
execution.

• Null calls improve precision & PDA
performance.

• Shared object analysis required addition
of capabilities to the infrastructure.

4 August 2003 WiSA - Jonathon Giffin 78

Technical Agenda

• Integrating other specification sources
• Optimal null call insertion
• C++ vtable analysis

Specification-Based
Analysis and Enforcement

Jonathon Giffin, Somesh Jha, Barton Miller
University of Wisconsin

